TW201708003A - Chassis system integration structure of multiple-wheel drive electric vehicle, and control method thereof effectively integrating the chassis subsystem functions such as the active front wheel steering, differential driving, and differential braking to enhance the maneuverability and safety - Google Patents

Chassis system integration structure of multiple-wheel drive electric vehicle, and control method thereof effectively integrating the chassis subsystem functions such as the active front wheel steering, differential driving, and differential braking to enhance the maneuverability and safety Download PDF

Info

Publication number
TW201708003A
TW201708003A TW104127205A TW104127205A TW201708003A TW 201708003 A TW201708003 A TW 201708003A TW 104127205 A TW104127205 A TW 104127205A TW 104127205 A TW104127205 A TW 104127205A TW 201708003 A TW201708003 A TW 201708003A
Authority
TW
Taiwan
Prior art keywords
control
vehicle
wheel
tire
torque
Prior art date
Application number
TW104127205A
Other languages
Chinese (zh)
Other versions
TWI560086B (en
Inventor
Kang Li
Eric Jun-Kai Wang
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW104127205A priority Critical patent/TW201708003A/en
Application granted granted Critical
Publication of TWI560086B publication Critical patent/TWI560086B/zh
Publication of TW201708003A publication Critical patent/TW201708003A/en

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The invention provides a chassis system integration structure of multiple-wheel drive electric vehicle and control method thereof to enhance the maneuverability and safety of multiple-wheel drive electric vehicle. The technical means thereof is that the integration structure can be match up with a multiple-wheel drive electric vehicle having dynamic sensing system of vehicle body to effectively integrate three chassis subsystem functions such as the active front wheel steering, differential driving, and differential braking of front wheel to achieve the application of integrated chassis control technology. In the aspect of integration structure, it comprises a dynamic vehicle control unit, a steering control system, a tire slip ratio control system, and a chassis power control system. In the aspect of control method, based on the relationship among the active front wheel steering, differential driving, and differential braking, the dynamic vehicle control unit can be configured in three ways, i.e. the tight coupling control structure, loose coupling control structure, and non-coupling control structure, so as to enhance the maneuverability and safety of multiple-wheel drive electric vehicle.

Description

多 輪驅動電動車之底盤系統整合架構及其控制方法Chassis system integration architecture of multi-wheel drive electric vehicle and control method thereof

本發明涉及一種多輪驅動電動車之底盤系統整合架構及其控制方法,尤指一種能應用於多輪驅動電動車上的底盤動力、煞車與轉向系統整合架構及由其所衍生出的控制方法。 The invention relates to a chassis system integration structure of a multi-wheel drive electric vehicle and a control method thereof, in particular to an integrated structure of a chassis power, a brake and a steering system which can be applied to a multi-wheel drive electric vehicle and a control method derived therefrom .

為了提升車輛的循跡性與高速過彎車輛動態穩定性,現有車輛電子穩定控制[electronic stability control]系統,主要是以主動轉向控制及差動煞車[differential braking]控制,產生適當的偏航轉矩[yaw moment]而達成。 In order to improve the tracking performance of vehicles and the dynamic stability of high-speed cornering vehicles, the existing electronic stability control system is mainly controlled by active steering control and differential braking to generate appropriate yaw rotation. The moment [yaw moment] is reached.

多輪驅動電動車,因為可獨立控制左右各輪的驅動力,以差動驅動[differential traction]方式產生偏航轉矩,故亦可用於車身穩定控制。 The multi-wheel drive electric vehicle can also be used for the stability control of the vehicle body because it can independently control the driving force of the left and right wheels and generate the yaw torque by the differential traction method.

利用差動驅動方式進行車身穩定控制,可不因煞車的介入而降低車速,故可提升車輛的高速過彎轉向性能,亦可減少車輛的動能被損耗於煞車過程的狀況,可提升車輛的能源使用效率。 The differential driving method is used for the stability control of the vehicle body, so that the vehicle speed can be reduced without the intervention of the brake car, so that the high-speed cornering steering performance of the vehicle can be improved, and the kinetic energy of the vehicle can be reduced in the braking process, and the energy use of the vehicle can be improved. effectiveness.

自動輔助/自主駕駛系統,因需要控制車輛的航向角,須透過主動電子轉向系統,進行前輪的轉向控制,然而,車輛在行進時,前軸輪胎轉向以及各個輪胎的扭力輸出,皆會對車輛動態產生影響。 The automatic assist/autonomous driving system, because of the need to control the heading angle of the vehicle, must perform the steering control of the front wheels through the active electronic steering system. However, when the vehicle is traveling, the steering of the front axle tires and the torque output of each tire will be applied to the vehicle. Dynamically affects.

更何況,目前常見的行車輔助控制系統,如第1圖所示的電子穩定控制(Electronic Stability Control,ESC)、防鎖死煞車系統(Anti-lock Brake System,ABS)及自動車道維持輔助(Lane Keeping Assist)系統的架構示 意圖,一般所應用的車輛主動安全系統(200),其包括能配合傳統動力系統(300)、傳統煞車系統(400)、及傳統轉向系統(500)的自動輔助駕駛系統(201)及車輛動態穩定控制系統(202),其中,自動輔助駕駛系統(201)包括自動車道維持輔助系統,車輛動態穩定控制系統(202)包括電子穩定控制和防鎖死煞車系統,還尚未將主動電子轉向控制與差動煞車、差動驅動控制做一個整合,更無有效的控制方法,而且主要的問題在於,現有行車輔助控制系統,並非針對多輪驅動電動車所設計,對多輪驅動電動車而言,並無法有效同時提昇其行車節能性及高速過彎能力、操控性與車身動態穩定性。 What's more, the current common driving assistance control system, such as the Electronic Stability Control (ESC) shown in Figure 1, the Anti-lock Brake System (ABS) and the automatic lane maintenance aid (Lane Keeping Assist) system architecture Intended, generally applied vehicle active safety system (200), including an automatic assisted driving system (201) and vehicle dynamics that can be combined with a conventional power system (300), a conventional brake system (400), and a conventional steering system (500) A stability control system (202), wherein the automatic assisted driving system (201) includes an automatic lane maintenance assist system, and the vehicle dynamic stability control system (202) includes an electronic stability control and an anti-lock brake system, and the active electronic steering control has not yet been Differential braking, differential drive control is an integration, and there is no effective control method. The main problem is that the existing driving assistance control system is not designed for multi-wheel drive electric vehicles. For multi-wheel drive electric vehicles, It is not effective at the same time to improve its energy-saving performance and high-speed cornering ability, handling and dynamic stability of the vehicle body.

有鑑於此,如何提供一種能提升多輪驅動電動車輛之行車節 能性、高速過彎能力、操控性與車身動態穩定性的多輪驅動電動車底盤系統整合架構及其控制方法,便成為本發明欲改進的課題。 In view of this, how to provide a driving section that can enhance multi-wheel drive electric vehicles The multi-wheel drive electric vehicle undercarriage integrated structure and control method thereof, such as energy capability, high-speed cornering ability, maneuverability and dynamic stability of the vehicle body, have become objects to be improved by the present invention.

本發明目的在於提供一種能提高多輪驅動電動車之操控性與安全性的多輪驅動電動車之系統整合架構及其控制方法。 The object of the present invention is to provide a system integration architecture and a control method for a multi-wheel drive electric vehicle capable of improving the handling and safety of a multi-wheel drive electric vehicle.

為解決上述問題及達到本發明的目的,本發明的技術手段是這樣實現的,關於系統整合架構方面,為一種多輪驅動電動車之系統整合架構,能配合具有車輛動態感測系統(20)的多輪驅動電動車(10)應用,其特徵在於:所述整合架構(100),其包括有一安裝於該多輪驅動電動車(10)上、並與該車身動態感測系統(20)連接的車輛動態控制單元(1),該車輛動態控制單元(1)分別與安裝於該多輪驅動電動車(10)上的一轉向控制系統(2)、及一輪胎滑差控制系統(3)連接,而該滑差控制系統(3)還與安裝於該多輪驅動電動車(10)上的一底盤動力控制系統(4)連接。 In order to solve the above problems and achieve the object of the present invention, the technical means of the present invention is realized in the system integration architecture, and is a system integration architecture of a multi-wheel drive electric vehicle, which can cooperate with a vehicle dynamic sensing system (20). Multi-wheel drive electric vehicle (10) application, characterized in that the integrated structure (100) includes a multi-wheel drive electric vehicle (10) mounted thereon, and the body dynamic sensing system (20) Connected vehicle dynamic control unit (1), the vehicle dynamic control unit (1) and a steering control system (2) mounted on the multi-wheel drive electric vehicle (10), and a tire slip control system (3) The connection is made, and the slip control system (3) is also connected to a chassis power control system (4) mounted on the multi-wheel drive electric vehicle (10).

更優選的是,所述底盤動力控制系統(4),其更包括有一套由多顆馬達所構成之多輪驅動系統(41)及一套多輪煞車系統(42)。 More preferably, the chassis power control system (4) further includes a multi-wheel drive system (41) consisting of a plurality of motors and a multi-wheel brake system (42).

關於控制方法方面,能區分為三種,第一種為適用於多輪驅 動電動車底盤系統(含前輪轉向、動力與煞車)採緊密耦合整合架構的控制方法,其特徵在於:將如請求項1所述的該車輛動態控制單元(1),以緊密耦合控制架構方式設置,並使該車輛動態控制單元(1)包括有一個內含模型預測控制演算法(A)的最佳化控制器(11),而該模型預測控制演算法(A)具有一車身動態最佳化問題(A1)之解算能力,讓該車輛動態控制單元(1)能根據該車身動態感測系統(20)所傳遞來的車輛動態值與參考值(T),一次性地將前輪轉向、各輪驅動與煞車動作對整體車輛動態的影響都納入考慮,直接計算出給予該轉向控制系統(2)的第一控制命令(C1)、以及給予該輪胎滑差控制系統(3)的第二控制命令(C2);而所述輪胎滑差控制系統(3)接收到該第二控制命令(C2)後,經過修正之後會產生一第三控制命令(C3)給予該底盤動力控制系統(4),以控制各動力馬達及煞車之扭矩輸出,達成差動驅動與/或差動煞車之功能,進而提升車輛動態穩定性。 Regarding the control method, it can be divided into three types. The first one is applicable to multiple wheel drives. The electric vehicle chassis system (including front wheel steering, power and braking) adopts a tightly coupled integrated architecture control method, characterized in that the vehicle dynamic control unit (1) as described in claim 1 is in a tightly coupled control architecture Setting and causing the vehicle dynamic control unit (1) to include an optimization controller (11) containing a model predictive control algorithm (A), and the model predictive control algorithm (A) has a body dynamics The solving ability of the optimization problem (A1) allows the vehicle dynamic control unit (1) to vertically position the front wheel according to the vehicle dynamic value and the reference value (T) transmitted by the vehicle body dynamic sensing system (20). The effects of steering, wheel drive and braking actions on the overall vehicle dynamics are taken into consideration, and the first control command (C1) given to the steering control system (2) and the tire slip control system (3) are directly calculated. a second control command (C2); and after the tire slip control system (3) receives the second control command (C2), after the correction, a third control command (C3) is generated to be given to the chassis power control system. (4) to control each power motor and brake The torque output achieves the functions of differential drive and/or differential brake to improve the dynamic stability of the vehicle.

更優選的是,所述車輛動態最佳化問題(A1)為一個具有限制條件之線性最佳化問題,相較於非線性最佳化問題容易求解,更適用於車輛即時控制系統使用,如下列所示: u n =[T f ,T rl ,T rr ,Pb L1 ,Pb R1 ,Pb L2 ,Pb R2 ]; Subject to 其中,J為成本函數,w 1w 2w 3分別為各成本項的權重, T p T C 分別為預測區間和控制區間內的時間步階(time-step)△t數目,代表模型預測控制演算法在時間t時預測η在時間為t+i時之預測值,則為η在時間t+i時之參考值,分別代表車輛的縱向速度、側向速度以及偏航角速度,(x軸以車前方為正,y軸以車左方為正,z軸以車上方為正),T f T rl T rr 分別代表前軸馬達、左後輪馬達和右後輪馬達所提供的力矩,Pb L1Pb R1Pb L2Pb R2分別代表左前輪、右前輪、左後輪、右後輪的煞車壓力,δ代表前軸輪胎轉向角,mI zz 分別代表車輛的質量以及相對於z軸的轉動慣量,分別代表左前輪、右前輪、左後輪、右後輪的縱向摩擦力,分別代表前兩輪與地面之總側向摩擦力和後兩輪與地面之總側向摩擦力,L f L r 分別為前軸和後軸到車輛質心的距離,d f d r 分別為前輪和後輪的輪距,I w R w 分別為輪胎的轉動慣量和有效半徑,分別為輪胎縱向摩擦力和輪胎旋轉角加速度,分別為車輪之驅動扭矩和煞車扭矩,其中i=L、R分別代表左、右輪,j=1、2分別代表前、後軸,C f C r 分別代表前後輪的轉向剛性,△X代表X的值在當下與前一個時間步階間的變化量(X代表某物理量),X,minX,max分別代表X的下限值與上限值。 More preferably, the vehicle dynamic optimization problem (A1) is a linear optimization problem with limited conditions, which is easier to solve than the nonlinear optimization problem, and is more suitable for use in a vehicle immediate control system, such as The following is shown: u n =[ T f ,T rl ,T rr ,Pb L 1 ,Pb R 1 ,Pb L 2 ,Pb R 2 ]; Subject to Where J is the cost function, w 1 , w 2 , and w 3 are the weights of the respective cost items, and T p and T C are the number of time-steps Δt in the prediction interval and the control interval, respectively. Representative model predictive control algorithm at time t η predicted prediction value of the time t + i, Then the reference value of η at time t + i , , , Represents the longitudinal speed, lateral velocity, and yaw rate of the vehicle, respectively (the x-axis is positive in front of the car, the y-axis is positive in the left side of the car, and the z-axis is positive in the upper part of the car), T f , T rl , T rr Representing the torque provided by the front axle motor, the left rear wheel motor and the right rear wheel motor, respectively, Pb L 1 , Pb R 1 , Pb L 2 , Pb R 2 represent the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel, respectively. Brake pressure, δ represents the steering angle of the front axle tire, m and I zz represent the mass of the vehicle and the moment of inertia with respect to the z-axis, respectively. , , , Representing the longitudinal friction of the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel, respectively. , Represents the total lateral friction between the first two wheels and the ground and the total lateral friction between the rear two wheels and the ground. L f and L r are the distances from the front and rear axles to the vehicle center of mass, respectively, d f , d r respectively front and rear wheels track, I w, R w are the moment of inertia and the effective radius of the tire, , Tire longitudinal friction and tire rotation angular acceleration, respectively , They are the driving torque of the wheel and the braking torque, respectively, where i=L and R represent the left and right wheels respectively, j=1 and 2 respectively represent the front and rear axles, and C f and C r respectively represent the steering rigidity of the front and rear wheels, △X X represents the amount of change between the current time step before step (representative of a physical quantity X), X, min and X, max respectively represent the lower limit and upper limit of X.

更優選的是,所述滑差控制系統(3),其內更具有一循跡控 制系統(31)、及防鎖死煞車系統(32);所述第一控制命令(C1),其是為一前輪轉向系統操縱命令(δ);所述第二控制命令(C2),其包括有下列之一或其組合:各驅動馬達之輸出扭力控制命令(T f T rl T rr )、各輪之煞車控制命令(Pb L1Pb R1Pb L2Pb R2);所述第三控制命令(C3),其是為經過循跡控制系統(31)與防鎖死煞車系統(32)修正過後之各驅動馬達及各輪煞車控制命 令;所述車輛動態參考值(T),其包括有下列組合訊息:車輛縱向速度參考值(T1)、車輛側向速度參考值(T2)、車輛偏航角速度參考值(T3)。 More preferably, the slip control system (3) further has a tracking control system (31) and an anti-lock braking system (32); the first control command (C1), which is a front wheel steering system maneuver command ( δ ); the second control command (C2) comprising one or a combination of the following: an output torque control command ( T f , T rl , T rr ) of each drive motor, Each wheel brake control command ( Pb L 1 , Pb R 1 , Pb L 2 , Pb R 2 ); the third control command (C3) is for the tracking control system (31) and the anti-lock brake The system (32) corrects each of the driving motors and the respective wheel brake control commands; the vehicle dynamic reference value (T) includes the following combined message: a vehicle longitudinal speed reference value (T1), and a vehicle lateral speed reference value ( T2), vehicle yaw rate reference value (T3).

關於控制方法方面,能區分為三種,第二種為適用於多輪驅 動電動車底盤系統(含前輪轉向、動力與煞車)採鬆散耦合整合架構的控制方法,其特徵在於:將如請求項1所述的該車輛動態控制單元(1),以鬆散耦合控制架構方式設置,並使該車輛動態控制單元(1)包括有一個內含模型預測控制演算法(A)的控制器(11),和一個使用輸出回授控制的輪胎力分配控制器(12),該內含模型預測控制演算法(A)的控制器(11)能傳遞一車身偏航力矩控制(yaw moment control)命令(C4)給該輪胎力分配控制器(12),而該模型預測控制演算法(A)具有一車身動態最佳化問題(A1)之解算能力,該控制器(11)能根據該車輛動態參考值(T),計算並產生出第一控制命令(C1),給予該轉向控制系統(2),同時,輪胎力分配控制器(12)根據該控制器(11)所傳遞的該車身偏航力矩控制命令(C4)、該車輛動態參考值(T)、及目前的車速,計算並產生出第二控制命令(C2),給予該輪胎滑差控制系統(3);所述輪胎滑差控制系統(3)接收到該第二控制命令(C2)後,還會產生一第三控制命令(C3)給予該底盤動力控制系統(4)。 Regarding the control method, it can be divided into three types, and the second is applicable to multiple wheel drives. A control method for a loosely coupled integrated architecture of an electric vehicle chassis system (including front wheel steering, power and braking), characterized in that the vehicle dynamic control unit (1) according to claim 1 is loosely coupled to control the architecture Setting and causing the vehicle dynamic control unit (1) to include a controller (11) incorporating a model predictive control algorithm (A), and a tire force distribution controller (12) using output feedback control, The controller (11) incorporating the model predictive control algorithm (A) can transmit a yaw moment control command (C4) to the tire force distribution controller (12), and the model predictive control calculus The method (A) has a solving ability of a body dynamic optimization problem (A1), and the controller (11) can calculate and generate a first control command (C1) according to the vehicle dynamic reference value (T), giving The steering control system (2), at the same time, the tire force distribution controller (12) according to the vehicle yaw moment control command (C4) transmitted by the controller (11), the vehicle dynamic reference value (T), and the current Speed, calculate and generate a second control command (C2), give the tire The difference between the control system (3); after the tire slip (3) receiving the second control command (C2) control system also generates a third control command (C3) administering to the chassis dynamics control system (4).

更優選的是,所述車輛動態最佳化問題(A1)為一個具有限制 條件之線性最佳化問題,相較於非線性最佳化問題容易求解,更適用於車輛即時控制系統使用,如下列所示: u n =[δ,T d ]; Subject to 其中,J為成本函數,w 1w 2w 3分別為各成本的權重,T p T C 分別為預測區間和控制區間的時間步階數目(time-step)△t數目,代表模型預測控制演算法在時間t時預測η在時間為t+i時之預測值,則為η在時間t+i時之參考值,分別代表車輛的縱向速度以及偏航角速度,δ代表前軸輪胎轉向角,T d 為車身偏航力矩控制命令,mI zz 分別代表車輛的質量以及相對於z軸的轉動慣量,分別代表前軸側向摩擦力力和後軸側向摩擦力,L f L r 分別為前軸和後軸的軸距,C f C r 分別代表前後輪的轉向剛性,△X代表X的值在當下與前一個時間步階間的變化量(X代表某物理量)。 More preferably, the vehicle dynamic optimization problem (A1) is a linear optimization problem with limited conditions, which is easier to solve than the nonlinear optimization problem, and is more suitable for use in a vehicle immediate control system, such as The following is shown: u n =[ δ,T d ]; Subject to Where J is the cost function, w 1 , w 2 , and w 3 are the weights of the respective costs, and T p and T C are the number of time-steps Δ t of the prediction interval and the control interval, respectively. Representative model predictive control algorithm at time t η predicted prediction value of the time t + i, Then the reference value of η at time t + i , , Representing the longitudinal speed of the vehicle and the yaw rate, δ represents the steering angle of the front axle tire, T d is the yaw moment control command, m and I zz represent the mass of the vehicle and the moment of inertia with respect to the z axis, respectively. , Lateral frictional forces on behalf of the front axle and rear lateral friction, L f, L r, respectively front and rear axles of the wheelbase, C f, C r represent the front and rear wheels steering rigidity, representing X X The value of the change between the current and the previous time step ( X represents a certain physical quantity).

更優選的是,所述滑差控制系統(3),其內更具有一循跡控制系統(31)、及防鎖死煞車系統(32);所述第一控制命令(C1),其是為一前輪轉向系統操縱命令(δ);所述第二控制命令(C2),其包括有下列之一或其 組合:各驅動馬達之輸出扭力控制命令(T f T rl T rr )、各輪之煞車控制命令(Pb L1Pb R1Pb L2Pb R2);所述第三控制命令(C3),其是為經過循跡控制系統(31)與防鎖死煞車系統(32)修正過後之各驅動馬達及各輪煞車控制命令;所述車輛動態參考值(T),其包括有下列組合訊息:車輛縱向速度參考值(T1)、車輛側向速度參考值(T2)、車輛偏航角速度參考值(T3)。 More preferably, the slip control system (3) further has a tracking control system (31) and an anti-lock braking system (32); the first control command (C1), which is a front wheel steering system maneuver command ( δ ); the second control command (C2) comprising one or a combination of the following: an output torque control command ( T f , T rl , T rr ) of each drive motor, Each wheel brake control command ( Pb L 1 , Pb R 1 , Pb L 2 , Pb R 2 ); the third control command (C3) is for the tracking control system (31) and the anti-lock brake The system (32) corrects each of the driving motors and the respective wheel brake control commands; the vehicle dynamic reference value (T) includes the following combined message: a vehicle longitudinal speed reference value (T1), and a vehicle lateral speed reference value ( T2), vehicle yaw rate reference value (T3).

更優選的是,所述輪胎力分配控制器(12),其更包括有一輪 胎力計算模組(121)、及一動力分配模組(122);所述輪胎力計算模組(121),能依據該車身偏航控制力矩命令(C4)、該車輛動態參考值(T)、及目前的車速,計算出該多輪驅動電動車(10)各個輪胎所需要產生的縱向力參考值(C5),並傳遞給該動力分配模組(122);所述動力分配模組(122),能依據該多輪驅動電動車(10)之前、後輪馬達驅動系統的不同型式,配合該輪胎力計算模組(121)所給予的該縱向力參考值(C5),分配各驅動馬達與各輪煞車扭力輸出。 More preferably, the tire force distribution controller (12) further includes a round a tire force calculation module (121) and a power distribution module (122); the tire force calculation module (121) can be based on the vehicle yaw control torque command (C4), the vehicle dynamic reference value (T And the current vehicle speed, calculating a longitudinal force reference value (C5) required for each tire of the multi-wheel drive electric vehicle (10), and transmitting to the power distribution module (122); the power distribution module (122), according to the different types of front and rear wheel motor drive systems of the multi-wheel drive electric vehicle (10), the longitudinal force reference value (C5) given by the tire force calculation module (121) is assigned Drive motor and torque output of each wheel brake.

更優選的是,所述輪胎力計算模組(121),依下列公式決定 More preferably, the tire force calculation module (121) is determined by the following formula

該縱向力參考值(C5): The longitudinal force reference value (C5):

;其中,F x 為總縱向力,T d 為車身偏航力矩控制命令,k為回授增益,m為車輛的質量,V x 為瞬時縱向速度,為縱向速度的參考值,n 1n 2為比例常數。 Where F x is the total longitudinal force, T d is the vehicle yaw moment control command, k is the feedback gain, m is the mass of the vehicle, and V x is the instantaneous longitudinal speed. For the reference value of the longitudinal velocity, n 1 and n 2 are proportional constants.

更優選的是,所述動力分配模組(122),根據馬達驅動系統的不同型式,可以分為單軸單驅動模組及單軸雙驅動模組。 More preferably, the power distribution module (122) can be divided into a single-axis single-drive module and a single-axis dual-drive module according to different types of the motor drive system.

更優選的是,所述動力分配模組(122),其是為單軸單驅動模組時,依下列公式決定該馬達驅動力分配方式: More preferably, when the power distribution module (122) is a single-axis single-drive module, the motor driving force distribution mode is determined according to the following formula:

其中,T、PbL、PbR分別為馬達扭力輸出、左輪的液壓剎車壓力以及右輪的液壓剎車的壓力,Rw、GR、G分別為有效輪胎半徑、齒輪比和液壓剎車壓力換算成扭矩的增益值,Tmax、Tmin為馬達扭力輸出的上下限,Pbmax為液壓剎車壓力的上限,則為左右輪的縱向輪胎路面摩擦力命令。 Among them, T, Pb L and Pb R are the motor torque output, the hydraulic brake pressure of the left wheel and the hydraulic brake pressure of the right wheel, and R w , GR and G are the effective tire radius, gear ratio and hydraulic brake pressure respectively converted into torque. The gain value, T max , T min is the upper and lower limits of the motor torque output, and Pb max is the upper limit of the hydraulic brake pressure. , Then it is the longitudinal tire road friction command of the left and right wheels.

更優選的是,所述動力分配模組(122),其是為單軸雙驅動模組時,依下列公式決定該馬達驅動力分配方式: More preferably, when the power distribution module (122) is a single-axis dual-drive module, the motor driving force distribution mode is determined according to the following formula:

其中,TL、TR為左右馬達的扭力輸出,PbL、PbR分別為左 輪的液壓剎車壓力以及右輪的液壓剎車的壓力,Rw、GR、G分別為有效輪胎半徑、齒輪比和液壓剎車壓力換算成扭矩的增益值,為右輪馬達扭力輸出的上下限,為左輪馬達扭力輸出的上下限,Pbmax為液壓剎車壓力的上限,則為左右輪的縱向輪胎路面摩擦力命令。 Among them, T L and T R are the torque output of the left and right motors, and Pb L and Pb R are the hydraulic brake pressure of the left wheel and the hydraulic brake pressure of the right wheel respectively. R w , GR and G are the effective tire radius, gear ratio and The hydraulic brake pressure is converted into the gain value of the torque, , For the upper and lower limits of the torque output of the right wheel motor, , For the upper and lower limits of the torque output of the left wheel motor, Pb max is the upper limit of the hydraulic brake pressure. , Then it is the longitudinal tire road friction command of the left and right wheels.

關於控制方法方面,能區分為三種,第三種為適用於多輪驅 動電動車底盤系統(含前輪轉向、動力與煞車)採非耦合整合架構的控制方法,其特徵在於:將如請求項1所述的該車輛動態控制單元(1),以非耦合控制架構方式設置,並使該車輛動態控制單元(1)包括有一個內含模型預測控制演算法(A)的最佳化控制器(11)及一個輪胎力分配控制器(12),該最佳化控制器(11)與該輪胎力分配控制器(12)兩者分別單獨運作,不相互連接溝通但擁有相同的控制目標,而該模型預測控制演算法(A)具有一車輛動態最佳化問題(A1)之解算能力,使該車輛動態控制單元(1)能根據該車輛動態感測系統(20)所傳遞來的車輛動態參考值(T),通過該最佳化控制器(11)根據該車 輛動態參考值(T),計算並產生出第一控制命令(C1),給予該轉向控制系統(2),同時,又通過該輪胎力分配控制器(12)根據該車輛動態參考值(T)和目前的車速和偏航角速度,計算並產生出第二控制命令(C2),給予該滑差控制系統(3);所述滑差控制系統(3)接收到該第二控制命令(C2)後,經過其內之循跡控制系統(31)與防鎖死煞車系統(32)修正過後,還會產生一第三控制命令(C3)給予該底盤動力控制系統(4)。 Regarding the control method, it can be divided into three types, and the third is applicable to multiple wheel drives. A control method for a non-coupling integrated architecture of an electric vehicle chassis system (including front wheel steering, power and braking), characterized in that the vehicle dynamic control unit (1) according to claim 1 is in an uncoupled control architecture manner Setting and causing the vehicle dynamic control unit (1) to include an optimization controller (11) containing a model predictive control algorithm (A) and a tire force distribution controller (12), the optimization control The vehicle (11) and the tire force distribution controller (12) operate separately, do not communicate with each other but have the same control target, and the model predictive control algorithm (A) has a vehicle dynamic optimization problem ( The solving ability of A1) enables the vehicle dynamic control unit (1) to be based on the vehicle dynamic reference value (T) transmitted by the vehicle dynamic sensing system (20), by the optimization controller (11) according to The car a dynamic reference value (T), calculated and generated a first control command (C1), given to the steering control system (2), and simultaneously by the tire force distribution controller (12) according to the vehicle dynamic reference value (T And the current vehicle speed and yaw rate, calculating and generating a second control command (C2), giving the slip control system (3); the slip control system (3) receiving the second control command (C2) After that, after the correction of the tracking control system (31) and the anti-lock braking system (32), a third control command (C3) is also given to the chassis power control system (4).

更優選的是,所述車輛動態最佳化問題(A1)為一個具有限制 條件之線性最佳化問題,相較於非線性最佳化問題容易求解,更適用於車輛即時控制系統使用,如下列所示: u n =[δ];Subject to More preferably, the vehicle dynamic optimization problem (A1) is a linear optimization problem with limited conditions, which is easier to solve than the nonlinear optimization problem, and is more suitable for use in a vehicle immediate control system, such as The following is shown: u n =[ δ ];Subject to

其中,J為成本函數,w 1w 2分別為各成本的權重,T p T C 分別為預測區間和控制區間的時間步階數目(time-step)△t數目,代表模型預測控制演算法在時間t時預測η在時間為t+i時之預測值,則為η在時間t+i時之參考值,代表車輛的偏航角速度,δ代表前軸輪胎轉向角,I zz 代表車輛相對於z軸的轉動慣量,L f 為前軸的軸距,C f 代表前輪的轉向剛性,△X代表X的值在當下與前一個時間步階間之變化量(X代表 某物理量)。 Where J is the cost function, w 1 and w 2 are the weights of the respective costs, and T p and T C are the time-step Δ t number of the prediction interval and the control interval, respectively. Representative model predictive control algorithm at time t η predicted prediction value of the time t + i, Then the reference value of η at time t + i , Represents the yaw rate of the vehicle, δ represents the steering angle of the front axle tire, I zz represents the moment of inertia of the vehicle with respect to the z axis, L f is the wheelbase of the front axle, C f represents the steering stiffness of the front wheel, and ΔX represents the value of X The amount of change between the current and previous time steps ( X represents a certain physical quantity).

更優選的是,所述第一控制命令(C1),其是為一前輪轉向操 縱命令;所述第二控制命令(C2),其包括有下列之一或其組合:各驅動馬達之輸出扭力控制命令(T f T rl T rr )、各輪之煞車控制命令(Pb L1Pb R1Pb L2Pb R2);所述第三控制命令(C3),其是為經過循跡控制系統(31)與防鎖死煞車系統(32)修正過後之各驅動馬達及各輪煞車控制命令;所述車輛動態參考值(T),其包括有下列之一或其組合訊息:車輛縱向速度參考值(T1)、車輛側向速度參考值(T2)、車輛偏航角速度參考值(T3)。 More preferably, the first control command (C1) is a front wheel steering command; the second control command (C2) includes one or a combination of the following: output torque of each drive motor Control commands ( T f , T rl , T rr ), brake control commands for each round ( Pb L 1 , Pb R 1 , Pb L 2 , Pb R 2 ); the third control command (C3), which is The drive motor and each wheel brake control command after the correction by the tracking control system (31) and the anti-lock brake system (32); the vehicle dynamic reference value (T) includes one or a combination of the following messages : Vehicle longitudinal speed reference value (T1), vehicle lateral speed reference value (T2), vehicle yaw rate reference value (T3).

更優選的是,所述輪胎力分配控制器(12),其更包括有一輪 胎力計算模組(121)、及一動力分配模組(122);所述輪胎力計算模組(121),能依據該車輛動態參考值(T)、及目前的車速和偏航角速度,配合輸出回授控制,計算出車身偏航控制力矩的值,最終計算出該多輪驅動電動車(10)各個輪胎所需要產生的縱向力參考值(C5),並傳遞給該動力分配模組(122);所述動力分配模組(122),能依據該多輪驅動電動車(10)前、後輪馬達驅動系統的不同型式,配合該輪胎力計算模組(121)所給予的該縱向力參考值(C5),分配各馬達之動力輸出及各輪之煞車扭力輸出。 More preferably, the tire force distribution controller (12) further includes a round a tire force calculation module (121) and a power distribution module (122); the tire force calculation module (121) can be based on the vehicle dynamic reference value (T), and the current vehicle speed and yaw rate, With the output feedback control, the value of the yaw control torque of the vehicle body is calculated, and the longitudinal force reference value (C5) required for each tire of the multi-wheel drive electric vehicle (10) is finally calculated and transmitted to the power distribution module. (122); the power distribution module (122) can be matched with the different types of front and rear wheel motor drive systems of the multi-wheel drive electric vehicle (10), and the tire force calculation module (121) The longitudinal force reference value (C5) distributes the power output of each motor and the torque output of each wheel.

更優選的是,所述輪胎力計算模組(121),依下列公式決定車身總縱向力參考值(C5): 所述輪胎力計算模組(121),依下列公式計算出車身偏航控制力矩值:T d =-k T I zz (AVz-AVz ref );所述輪胎力計算模組(121),依下列公式決定四輪之縱向力: More preferably, the tire force calculation module (121) determines the total longitudinal force reference value (C5) of the vehicle body according to the following formula: The tire force calculation module (121) calculates a vehicle yaw control torque value according to the following formula: T d = - k T I zz ( AVz - AVz ref ); the tire force calculation module (121) The following formula determines the longitudinal force of four rounds:

其中,F x 為總縱向力,T d 為車身偏航控制力矩,k F k T 分別為輪胎縱向力和車身偏航控制力矩的回授增益,mI zz 分別代表車輛的質量以及相對於z軸的轉動慣量,V x 分別為車輛質心之瞬時縱向速度和縱向速度參考值,AVzAVz ref 分別為瞬時偏航角速度和偏航角速度的參考值,n 1n 2為比例常數。 Where F x is the total longitudinal force, T d is the yaw control torque of the vehicle body, k F and k T are the feedback gains of the longitudinal force of the tire and the yaw control torque of the vehicle respectively, m and I zz represent the mass and relative of the vehicle respectively. Moment of inertia on the z-axis, V x , They are the instantaneous longitudinal velocity and longitudinal velocity reference values of the vehicle's centroid, respectively. AVz and AVz ref are the reference values of instantaneous yaw rate and yaw rate, respectively, and n 1 and n 2 are proportional constants.

更優選的是,所述動力分配模組(122),根據馬達動力系統的不同型式,包含單軸單驅動模組及單軸雙驅動模組,將以不同方式進行馬達輸出扭力之分配控制。 More preferably, the power distribution module (122) includes a single-axis single-drive module and a single-axis dual-drive module according to different types of the motor power system, and the motor output torque distribution control is performed in different manners.

更優選的是,所述動力分配模組(122),其是為單軸單驅動模組時,為依公式決定該動力分配方式,公式與第二種控制方法相同。 More preferably, when the power distribution module (122) is a single-axis single-drive module, the power distribution mode is determined according to the formula, and the formula is the same as the second control method.

更優選的是,所述動力分配模組(122),其是為單軸雙驅動模組時,為依公式決定該動力分配方式,公式與第二種控制方法相同。 More preferably, when the power distribution module (122) is a single-axis dual-drive module, the power distribution mode is determined according to the formula, and the formula is the same as the second control method.

與現有技術相比,本發明的作用及效果如下: Compared with the prior art, the functions and effects of the present invention are as follows:

第一點:本發明中,針對多輪驅動電動車(10)所設計的整合架構(100),透過車輛動態控制單元(1),將轉向控制系統(2)及底盤動力控制系統(4)進行整合,能有效整合主動轉向系統、差動驅動與差動煞車系統的控制,以提高多輪驅動電動車(10)的操控性與安全性。 The first point: in the present invention, the integrated architecture (100) designed for the multi-wheel drive electric vehicle (10), through the vehicle dynamic control unit (1), the steering control system (2) and the chassis power control system (4) Integration can effectively integrate the control of the active steering system, differential drive and differential brake system to improve the handling and safety of the multi-wheel drive electric vehicle (10).

第二點:本發明的整合架構(100),還能根據多輪驅動電動車轉向控制系統(2)及底盤動力控制系統(4)之整合緊密程度,提供緊密耦合、鬆散耦合、以及非耦合此三種不同的控制架構,形成三種不同的控制方法,讓本發明能有效地被應用。 The second point: the integrated architecture (100) of the present invention can also provide tight coupling, loose coupling, and uncoupling according to the integration degree of the multi-wheel drive electric vehicle steering control system (2) and the chassis power control system (4). These three different control architectures form three different control methods that allow the invention to be effectively applied.

第三點:本發明的整合架構(100),能因應多輪驅動電動車(10)不同的馬達驅動系統(41)型式,生產整合上的問題少,能快速投入應用。 The third point: the integrated architecture (100) of the present invention can respond to different motor drive systems (41) types of multi-wheel drive electric vehicles (10), has fewer problems in production integration, and can be quickly put into use.

1‧‧‧車輛動態控制單元 1‧‧‧Vehicle Dynamic Control Unit

11‧‧‧最佳化控制器 11‧‧‧Optimized controller

12‧‧‧輪胎力分配控制器 12‧‧‧ Tire force distribution controller

121‧‧‧輪胎力計算模組 121‧‧‧ Tire force calculation module

122‧‧‧動力分配模組 122‧‧‧Power Distribution Module

2‧‧‧轉向控制系統 2‧‧‧Steering Control System

3‧‧‧輪胎滑差控制系統 3‧‧‧Tire slip control system

31‧‧‧循跡控制系統 31‧‧‧Track Control System

32‧‧‧防鎖死煞車系統 32‧‧‧Anti-lock brake system

4‧‧‧底盤動力控制系統 4‧‧‧Chassis Power Control System

41‧‧‧多輪驅動系統 41‧‧‧Multi-wheel drive system

42‧‧‧多輪煞車系統 42‧‧‧Multi-wheel brake system

10‧‧‧多輪驅動電動車 10‧‧‧Multi-wheel drive electric vehicles

20‧‧‧車身動態感測系統 20‧‧‧Body dynamic sensing system

30‧‧‧馬達 30‧‧‧Motor

40‧‧‧軸 40‧‧‧Axis

50‧‧‧方向盤 50‧‧‧Steering wheel

60‧‧‧齒輪箱 60‧‧‧ Gearbox

100‧‧‧整合架構 100‧‧‧Integrated Architecture

200‧‧‧車輛主動安全系統 200‧‧‧Vehicle Active Safety System

201‧‧‧自動輔助駕駛系統 201‧‧‧Automatic assisted driving system

202‧‧‧車輛動態穩定控制系統 202‧‧‧Vehicle Dynamic Stability Control System

300‧‧‧傳統動力系統 300‧‧‧Traditional Power System

400‧‧‧傳統煞車系統 400‧‧‧Traditional brake system

500‧‧‧傳統轉向系統 500‧‧‧Traditional steering system

A‧‧‧模型預測控制演算法 A‧‧‧ model predictive control algorithm

A1車身動態最佳化問題 A1 body dynamic optimization problem

T‧‧‧車輛動態值與參考值 T‧‧‧ Vehicle dynamics and reference values

T1‧‧‧車輛縱向速度參考值 T1‧‧‧ Vehicle longitudinal speed reference

T2‧‧‧車輛側向速度參考值 T2‧‧‧ Vehicle lateral speed reference

T3‧‧‧車輛偏航角速度參考值 T3‧‧‧ Vehicle yaw rate reference

C1‧‧‧第一控制命令 C1‧‧‧ first control order

C2‧‧‧第二控制命令 C2‧‧‧ second control order

C3‧‧‧第三控制命令 C3‧‧‧ third control order

C4‧‧‧車身偏航控制力矩命令 C4‧‧‧ Body yaw control torque command

C5‧‧‧縱向力參考值 C5‧‧‧ longitudinal force reference

第1圖:傳統車輛動態穩定控制及自動輔助駕駛系統的架構示意圖。 Figure 1: Schematic diagram of the structure of a traditional vehicle dynamic stability control and automatic assisted driving system.

第2圖:本發明中第一種車輛動態控制單元的架構實施示意圖。 Figure 2 is a schematic diagram showing the architecture of the first vehicle dynamic control unit in the present invention.

第3圖:本發明中第二種車輛動態控制單元的架構實施示意圖。 Figure 3 is a schematic diagram showing the architecture of a second vehicle dynamic control unit in the present invention.

第4圖:本發明中第三種車輛動態控制單元的架構實施示意圖。 Fig. 4 is a schematic view showing the architecture of a third vehicle dynamic control unit in the present invention.

第5圖:多輪驅動電動車的架構示意圖。 Figure 5: Schematic diagram of the structure of a multi-wheel drive electric vehicle.

第6圖:本發明中輪胎力分配控制器的架構實施示意圖。 Figure 6 is a schematic view showing the architecture of the tire force distribution controller of the present invention.

以下依據圖面所示的實施例詳細說明如後:如第1圖至第6圖所示,圖中揭示出,為一種多輪驅動電動車之系統整合架構,能配合具有車輛動態感測系統(20)的多輪驅動電動車(10)應用,其特徵在於:所述整合架構(100),其包括有一安裝於該多輪驅動電動車(10)上、並與該車輛動態感測系統(20)連接的車輛動態控制單元(1),該車輛動態控制單元(1)分別與安裝於該多輪驅動電動車(10)上的一前軸轉向控制系統(2)、及一輪胎滑差控制系統(3)連接,而該輪胎滑差控制系統(3)還與安裝於該多輪驅動電動車(10)上的一底盤動力控制系統(4)連接。 The following is a detailed description of the embodiment shown in the drawings. As shown in FIG. 1 to FIG. 6 , the system discloses a system integration architecture for a multi-wheel drive electric vehicle, which can be combined with a vehicle dynamic sensing system. (20) A multi-wheel drive electric vehicle (10) application, characterized in that the integrated structure (100) includes a multi-wheel drive electric vehicle (10) mounted thereon, and with the vehicle dynamic sensing system (20) a connected vehicle dynamic control unit (1), respectively, a front axle steering control system (2) mounted on the multi-wheel drive electric vehicle (10), and a tire slippery The differential control system (3) is coupled, and the tire slip control system (3) is also coupled to a chassis power control system (4) mounted to the multi-wheel drive electric vehicle (10).

其中,通過車輛動態控制單元(1)的應用,整合轉向控制系統(2)、及底盤動力控制系統(4)的控制,車輛動態控制單元(1)在接受到由車身動態感測系統(20)所傳來的多輪驅動電動車(10)動態之參考值後,會計算出轉向控制系統(2)及底盤動力控制系統(4)的各別輸出,並以輪胎滑差控制系統(3)確保車輛不會進入打滑及偏航動態不穩定的情況,提高多輪驅動電 動車(10)的操控性與安全性。 Among them, through the application of the vehicle dynamic control unit (1), the control of the steering control system (2) and the chassis power control system (4) is integrated, and the vehicle dynamic control unit (1) is received by the vehicle body dynamic sensing system (20). After the reference value of the multi-wheel drive electric vehicle (10) is transmitted, the respective outputs of the steering control system (2) and the chassis power control system (4) are calculated, and the tire slip control system (3) is used. Ensure that the vehicle does not enter the situation of slipping and yaw dynamic instability, and improve multi-wheel drive power The handling and safety of the motor car (10).

上述中,所述底盤動力控制系統(4),其包括有一多馬達組成之多輪驅動系統(41)及一煞車系統(42)。 In the above, the chassis power control system (4) includes a multi-wheel drive system (41) composed of a plurality of motors and a brake system (42).

其中,通過不同的車輛動態控制單元設計,並使用因應的動力分配模組,可讓多輪驅動電動車(10)具備更佳的操控性能,並同時兼顧車輛動態穩定性及安全性。 Among them, through the design of different vehicle dynamic control units, and using the corresponding power distribution module, the multi-wheel drive electric vehicle (10) can have better handling performance, and at the same time take into account the vehicle dynamic stability and safety.

關於第一種控制方法方面的應用,請參考第2圖,為一種適用於多輪驅動電動車底盤系統(含轉向、驅動與煞車)採緊密耦合整合架構的控制方法,其特徵在於:將如請求項1所述的該車輛動態控制單元(1),以緊密耦合控制架構方式設置,並使該車輛動態控制單元(1)包括有一個內含模型預測控制演算法(A)的最佳化控制器(11),而該模型預測控制演算法(A)具有一車輛動態最佳化問題(A1)之解算能力,讓該車輛動態控制單元(1)能根據該車輛動態感測系統(20)所傳遞來的車輛動態參考值(T),一次性地將底盤各子系統,含轉向、驅動與煞車,對車輛動態的影響都納入考慮,直接計算出給予該轉向控制系統(2)的第一控制命令(C1)、以及給予該輪胎滑差控制系統(3)的第二控制命令(C2);而所述輪胎滑差控制系統(3)接收到該第二控制命令(C2)後,會產生一第三控制命令(C3)給予該底盤動力控制系統(4)。 For the application of the first control method, please refer to Figure 2, which is a control method for a tightly coupled integrated architecture of a multi-wheel drive electric vehicle undercarriage system (including steering, drive and brake), which is characterized by The vehicle dynamic control unit (1) according to claim 1 is arranged in a tightly coupled control architecture, and the vehicle dynamic control unit (1) includes an optimization of an embedded model predictive control algorithm (A). The controller (11), and the model predictive control algorithm (A) has a solving ability of the vehicle dynamic optimization problem (A1), so that the vehicle dynamic control unit (1) can be based on the vehicle dynamic sensing system ( 20) The transmitted vehicle dynamic reference value (T), taking into account the effects of the vehicle dynamics on each subsystem of the chassis, including steering, driving and braking, and directly calculating the steering control system (2) a first control command (C1), and a second control command (C2) given to the tire slip control system (3); and the tire slip control system (3) receives the second control command (C2) After that, a third control command (C3) is given Chassis power control system (4).

上述中,所述車輛動態最佳化問題(A1),為下列所示: u n =[T f ,T rl ,T rr ,Pb L1 ,Pb R1 ,Pb L2 ,Pb R2 ]; Subject to 其中,J為成本函數,w 1w 2w 3分別為各成本的權重,T p T C 分別為預測區間和控制區間的時間步階(time-step)△t數目,代表模型預測控制演算法在時間t時預測η在時間為t+i時之預測值,則為η在時間t+i時之參考值,分別代表車輛的縱向速度、側向速度以及偏航角速度,T f T rl T rr 分別代表前方馬達、左後方馬達和右後方馬達所提供的力矩,Pb L1Pb R1Pb L2Pb R2分別代表左前輪、右前輪、左後輪、右後輪的煞車壓力,δ代表前軸輪胎轉向角,mI zz 分別代表車輛的質量以及相對於z軸的轉動慣量,分別代表左前輪、右前輪、左後輪、右後輪的縱向摩擦力,分別代表前軸側向摩擦力和後軸側向摩擦力,L f L r 分別為前軸和後軸至車輛質心的距離,d f d f 分別為前軸和後軸的輪距,I w R w 分別為輪胎的轉動慣量和有效半徑,分別為輪胎縱向摩擦力和輪胎旋轉角加速度,分別為馬達輸出在輪上之驅動扭矩和煞車扭矩,其中i=L、R代表左右輪,j=1、2代表前後軸,C f C r 分別代表前後輪的轉向剛性,△X代表X值在當下與前一個時間步階間的變化量(X代表某物理量)。 In the above, the vehicle dynamic optimization problem (A1) is as follows: u n =[ T f ,T rl ,T rr ,Pb L 1 ,Pb R 1 ,Pb L 2 ,Pb R 2 ]; Subject to Where J is the cost function, w 1 , w 2 , and w 3 are the weights of the respective costs, and T p and T C are the time-step Δ t numbers of the prediction interval and the control interval, respectively. Representative model predictive control algorithm at time t η predicted prediction value of the time t + i, Then the reference value of η at time t + i , , , Representing the longitudinal speed, lateral velocity and yaw rate of the vehicle, respectively, T f , T rl , T rr represent the torque provided by the front motor, the left rear motor and the right rear motor, respectively, Pb L 1 , Pb R 1 , Pb L 2 , Pb R 2 represents the brake pressure of the left front wheel, the right front wheel, the left rear wheel and the right rear wheel, respectively, δ represents the steering angle of the front axle tire, and m and I zz represent the mass of the vehicle and the moment of inertia with respect to the z-axis, respectively. , , , Representing the longitudinal friction of the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel, respectively. , Representing the lateral friction of the front axle and the lateral friction of the rear axle, respectively, L f and L r are the distances between the front axle and the rear axle to the center of mass of the vehicle, respectively, d f and d f are the intervals of the front axle and the rear axle respectively. , I w , R w are the moment of inertia and effective radius of the tire, respectively. , Tire longitudinal friction and tire rotation angular acceleration, respectively , The motor drives the driving torque and the braking torque on the wheel respectively, where i=L and R represent the left and right wheels, j=1 and 2 represent the front and rear axles, C f and C r represent the steering rigidity of the front and rear wheels, respectively, and ΔX represents X. The amount of change between the current and the previous time step ( X represents a physical quantity).

關於第二種控制方法方面的應用,請參考第3圖,為一種多輪驅動電動車之系統整合架構的控制方法,其特徵在於:將如請求項1所述的該車輛動態控制單元(1),以鬆散耦合控制架構方式設置,並使該車輛動態控制單元(1)包括有一個內含模型預測控制演算法(A)的最佳化控制器(11)和一個使用輸出回授控制的輪胎力分配控制器(12),該最佳化控制器 (11)能傳遞一差動力矩命令(C4)給該輪胎力分配控制器(12),而該模型預測控制演算法(A)具有一最佳化問題(A1),通過最佳化控制器(11)根據該車輛動態參考值(T),計算並產生出第一控制命令(C1),給予該轉向控制系統(2),同時,又通過該輪胎力分配控制器(12)根據該最佳化控制器(11)所傳遞的車身偏航控制力矩命令(C4)、該車輛動態參考值(T)、及目前的車速,計算並產生出第二控制命令(C2),給予該輪胎滑差控制系統(3);所述輪胎滑差控制系統(3)接收到該第二控制命令(C2)後,還會產生一第三控制命令(C3)給予該底盤動力控制系統(4)。 For the application of the second control method, please refer to FIG. 3, which is a control method of a system integration architecture of a multi-wheel drive electric vehicle, characterized in that the vehicle dynamic control unit according to claim 1 is provided. ), set in a loosely coupled control architecture, and the vehicle dynamic control unit (1) includes an optimization controller (11) incorporating a model predictive control algorithm (A) and an output feedback control Tire force distribution controller (12), the optimized controller (11) A differential torque command (C4) can be transmitted to the tire force distribution controller (12), and the model predictive control algorithm (A) has an optimization problem (A1) by optimizing the controller (11) calculating and generating a first control command (C1) according to the vehicle dynamic reference value (T), giving the steering control system (2), and simultaneously passing the tire force distribution controller (12) according to the maximum The vehicle yaw control torque command (C4) transmitted by the controller (11), the vehicle dynamic reference value (T), and the current vehicle speed, calculate and generate a second control command (C2), giving the tire slip The differential control system (3); after receiving the second control command (C2), the tire slip control system (3) also generates a third control command (C3) for the chassis power control system (4).

其中,車身動態最佳化控制器(11)為使用模型預測控制演算法(A)進行運作,而輪胎力分配控制器(12)為使用輸出回授控制方法而運作。 Among them, the body dynamics optimization controller (11) operates using the model predictive control algorithm (A), and the tire force distribution controller (12) operates using the output feedback control method.

上述中,車身動態最佳化問題(A1)如下列各式所述: u n =[δ,T d ]; Subject to 其中,J為成本函數,w 1w 2w 3分別為各成本的權重,T p T C 分別為預測區間和控制區間的時間步階(time-step)△t數目,代表模型預測控制演算法在時間t時預測η在時間為t+i時之預測值,則為η在時間t+i時之參考值,分別代表車輛的縱向速度以及偏航角速度,δ代表前軸輪胎轉向角,T d 為車身偏航控制力矩命令,mI zz 分別代表車輛的質量以及相對於z軸的轉動慣量,分別代表前兩輪之總側向摩擦力和後兩輪之總側向摩擦力,L f L r 分別為前輪軸和後輪軸至車輛質心的距離,C f C r 分別代表前、後輪的轉向剛性,△X代表X值在當下與前一個時間步階間的變化量(X代表某物理量)。 In the above, the body dynamics optimization problem (A1) is as follows: u n =[ δ,T d ]; Subject to Where J is the cost function, w 1 , w 2 , and w 3 are the weights of the respective costs, and T p and T C are the time-step Δ t numbers of the prediction interval and the control interval, respectively. Representative model predictive control algorithm at time t η predicted prediction value of the time t + i, Then the reference value of η at time t + i , , Representing the longitudinal speed of the vehicle and the yaw rate, δ represents the steering angle of the front axle tire, T d is the yaw control torque command of the vehicle, and m and I zz represent the mass of the vehicle and the moment of inertia with respect to the z axis, respectively. , Representing the total lateral friction of the first two rounds and the total lateral friction of the last two rounds, L f and L r are the distances from the front and rear axles to the vehicle's center of mass, respectively, C f and C r represent the front, the rear wheel steering rigidity, △ X X represents the current value of a change amount between the previous time step order (X representative of a physical quantity).

上述中,所述輪胎力分配控制器(12),其更包括有一輪胎力計算模組(121)、及一動力分配模組(122);所述輪胎力計算模組(121),能依據該車身偏航控制力矩命令(C4)、該車輛動態參考值(T)、及目前的車速,計算出該多輪驅動電動車(10)各個輪胎所需要產生的縱向力參考值(C5),並傳遞給該動力分配模組(122);所述動力分配模組(122),能依據該多輪驅動電動車(10)馬達驅動系統之型式,配合輪胎力計算模組(121)所給予的輪胎縱向力參考值(C5),分配各驅動馬達或煞車之扭力輸出。 In the above, the tire force distribution controller (12) further includes a tire force calculation module (121) and a power distribution module (122); the tire force calculation module (121) can be based on The vehicle yaw control torque command (C4), the vehicle dynamic reference value (T), and the current vehicle speed, and the longitudinal force reference value (C5) required for each tire of the multi-wheel drive electric vehicle (10) is calculated. And transmitting to the power distribution module (122); the power distribution module (122) can be given according to the type of the multi-wheel drive electric vehicle (10) motor drive system, and the tire force calculation module (121) The tire longitudinal force reference value (C5) is assigned to the torque output of each drive motor or brake.

其中,輪胎力分配控制器(12)當中的計算過程分為兩個部份,第一個部分需要決定出四顆輪胎所需要產生的縱向力大小,由輪胎力計算模組(121)進行,第二個部分則是由動力分配模組(122)執行,根據多輪驅動電動車(10)的馬達動力系統型式之不同,而有不同的驅動控制方法。 Wherein, the calculation process in the tire force distribution controller (12) is divided into two parts, and the first part needs to determine the longitudinal force required to generate the four tires, which is performed by the tire force calculation module (121). The second part is performed by the power distribution module (122), which has different drive control methods depending on the type of motor power system of the multi-wheel drive electric vehicle (10).

其次,多輪驅動電動車(10)的車輛動力系統,大致上可分為單軸單驅動模組與單軸雙驅動模組兩種,以複式電力推進電動車為例,如第5圖所示,多輪驅動電動車(10)具有數個馬達(30)、數個轉軸(40)、一方向盤(50)、及一齒輪箱(60),前軸使用單顆馬達(30)驅動前兩輪,後軸則使用兩顆馬達(30)各自驅動一個後輪,不論是何種多輪驅動電動車(10),通過輪胎力分配控制器(12)的應用,即能確保多輪驅動電動車(10)的行駛安全。 Secondly, the vehicle power system of the multi-wheel drive electric vehicle (10) can be roughly divided into a single-axis single-drive module and a single-axis dual-drive module, for example, a double-type electric propulsion electric vehicle, as shown in Fig. 5. The multi-wheel drive electric vehicle (10) has a plurality of motors (30), a plurality of rotating shafts (40), a steering wheel (50), and a gear box (60). The front axle is driven by a single motor (30). In two wheels, the rear axle uses two motors (30) to drive one rear wheel. No matter what kind of multi-wheel drive electric vehicle (10), multi-wheel drive can be ensured by the application of the tire force distribution controller (12). The electric vehicle (10) is safe to drive.

另外,動力分配模組(122)在設定時,還需注意多輪驅動電動車(10)的馬達動力系統型式,因為單軸單驅動模組所驅動之左、右輪,其扭矩是相同的,故無法由此種馬達驅動模組提供差動驅動功能,進而產生車身偏航控制力矩,而必須透過差動煞車才能產生車身偏航控制力矩;而單軸雙驅動模組對於所屬輪胎之輸出扭矩是獨立控制的,故左、右輪的扭矩輸出是由左、右側的馬達(30)獨立提供的,因此差動驅動可以藉由左、右輪之獨立驅動扭矩控制而達成,進而提供車身偏航動態穩定控制所需之力矩;然而,若是所需之車身偏航控制力矩較大,超過左右輪差動驅動所能提供之差動力矩上限,仍可以差動煞車補足所需產生之偏航動態控制力矩。 In addition, when setting the power distribution module (122), it is also necessary to pay attention to the motor power system type of the multi-wheel drive electric vehicle (10), because the left and right wheels driven by the single-axis single-drive module have the same torque. Therefore, the differential drive function cannot be provided by the motor drive module, thereby generating the yaw control torque of the vehicle, and the yaw control torque must be generated by the differential brake; and the output of the single axle dual drive module for the tire. The torque is independently controlled, so the torque output of the left and right wheels is independently provided by the left and right motors (30), so the differential drive can be achieved by independent drive torque control of the left and right wheels, thus providing the body The torque required for yaw dynamic stability control; however, if the required yaw control torque of the vehicle is large, the upper limit of the differential torque that can be provided by the differential drive of the left and right wheels can still be used to compensate for the offset required by the brakes. Aerodynamic control torque.

還有,輪胎力分配控制器(12)運作時,需要先由輪胎力計算模組(121)計算出四顆輪胎所需要的縱向力,其中總縱向力為一個縱向速度回授的增益控制,而差動力矩為最佳化控制器(11)所計算出來的。 In addition, when the tire force distribution controller (12) is operated, the longitudinal force required for the four tires is calculated by the tire force calculation module (121), wherein the total longitudinal force is a longitudinal speed feedback gain control. The differential torque is calculated by the optimization controller (11).

上述中,所述輪胎力計算模組(121),依下列公式決定各輪胎之縱向力參考值(C5): In the above, the tire force calculation module (121) determines the longitudinal force reference value (C5) of each tire according to the following formula:

其中,F x 為總縱向力,T d 為車身偏航控制力矩,k為回授增益值,m為車輛的質量,V x 為瞬時縱向速度,為縱向速度的參考值,n 1n 2為比例常數。 Where F x is the total longitudinal force, T d is the vehicle yaw control torque, k is the feedback gain value, m is the mass of the vehicle, and V x is the instantaneous longitudinal speed. For the reference value of the longitudinal velocity, n 1 and n 2 are proportional constants.

上述中,所述動力分配模組(122),根據馬達驅動系統的不同型式,可以分為單軸單驅動模組及單軸雙驅動模組。 In the above, the power distribution module (122) can be divided into a single-axis single-drive module and a single-axis dual-drive module according to different types of the motor drive system.

當所述動力分配模組(122),其是為單軸單驅動模組時,依下列公式決定該馬達驅動力分配方式: When the power distribution module (122) is a single-axis single-drive module, the motor driving force distribution mode is determined according to the following formula:

其中,T、PbL、PbR分別為馬達扭力輸出、左輪的液壓剎車壓力以及右輪的液壓剎車的壓力,Rw、GR、G分別為有效輪胎半徑、齒輪比和液壓剎車壓力換算成扭矩的增益值,Tmax、Tmin為馬達扭力輸出的上下限,Pbmax為液壓剎車壓力的上限,則為左右輪的縱向輪胎路面摩擦力命令。 Among them, T, Pb L and Pb R are the motor torque output, the hydraulic brake pressure of the left wheel and the hydraulic brake pressure of the right wheel, and R w , GR and G are the effective tire radius, gear ratio and hydraulic brake pressure respectively converted into torque. The gain value, T max , T min is the upper and lower limits of the motor torque output, and Pb max is the upper limit of the hydraulic brake pressure. , Then it is the longitudinal tire road friction command of the left and right wheels.

當所述動力分配模組(122),其是為單軸雙驅動模組時,依 下列公式決定該馬達驅動力分配方式: When the power distribution module (122) is a single-axis dual-drive module, the motor driving force distribution mode is determined according to the following formula:

其中,TL、TR為左右馬達的扭力輸出,PbL、PbR分別為馬 達扭力輸出、左輪的液壓剎車壓力以及右輪的液壓剎車的壓力,Rw、GR、G分別為有效輪胎半徑、齒輪比和液壓剎車壓力換算成扭矩的增益值,為右輪馬達扭力輸出的上下限,為左輪馬達扭力輸出的上下限,Pbmax為液壓剎車壓力的上限,則為左右輪的縱向輪胎路面摩擦力命令。 Among them, T L and T R are the torque output of the left and right motors, and Pb L and Pb R are the motor torque output, the hydraulic brake pressure of the left wheel and the hydraulic brake pressure of the right wheel, respectively, and R w , GR and G are the effective tire radius respectively. , gear ratio and hydraulic brake pressure are converted into torque gain values, , For the upper and lower limits of the torque output of the right wheel motor, , For the upper and lower limits of the torque output of the left wheel motor, Pb max is the upper limit of the hydraulic brake pressure. , Then it is the longitudinal tire road friction command of the left and right wheels.

關於第三種控制方法方面的應用,請參考第4圖,為一種多 輪驅動電動車之底盤系統採非耦合整合架構的控制方法,其特徵在於:將如請求項1所述的該車輛動態控制單元(1),以非耦合控制架構方式設置, 並使該車輛動態控制單元(1)包括有一個內含模型預測控制演算法(A)的最佳化控制器(11)及一個輪胎力分配控制器(12),該最佳化控制器(11)與該輪胎力分配控制器(12)兩者分別單獨運作,不相互連接溝通但擁有相同的控制目標,而該模型預測控制演算法(A)具有一車輛動態最佳化問題(A1)之解算能力,使該車輛動態控制單元(1)能根據該車輛動態感測系統(20)所傳遞來的車輛動態參考值(T),通過該最佳化控制器(11)計算並產生出第一控制命令(C1),給予該轉向控制系統(2),同時,又通過該輪胎力分配控制器(12)根據該車輛動態參考值(T)和目前的車速,計算並產生出第二控制命令(C2),給予該輪胎滑差控制系統(3);所述輪胎滑差控制系統(3)接收到該第二控制命令(C2)後,還會產生一第三控制命令(C3)給予該底盤動力控制系統(4)。 For the application of the third control method, please refer to Figure 4, which is a multi-purpose A control method for a chassis-driven electric vehicle chassis system adopting a non-coupling integrated architecture, characterized in that: the vehicle dynamic control unit (1) according to claim 1 is set in an uncoupled control architecture manner, And the vehicle dynamic control unit (1) includes an optimization controller (11) including a model predictive control algorithm (A) and a tire force distribution controller (12), the optimized controller ( 11) The tire force distribution controller (12) operates separately and does not communicate with each other but has the same control target, and the model predictive control algorithm (A) has a vehicle dynamic optimization problem (A1) The solution computing capability enables the vehicle dynamic control unit (1) to calculate and generate the vehicle dynamic reference value (T) transmitted by the vehicle dynamic sensing system (20) through the optimization controller (11) The first control command (C1) is given to the steering control system (2), and at the same time, the tire force distribution controller (12) calculates and generates the first according to the vehicle dynamic reference value (T) and the current vehicle speed. a second control command (C2) for giving the tire slip control system (3); after receiving the second control command (C2), the tire slip control system (3) also generates a third control command (C3) The chassis power control system (4) is given.

上述非耦合之控制架構適用於多輪驅動電動車(10)之底盤 系統(含轉向、驅動和煞車)整合緊密程度最低之情況使用,與鬆散耦合控制架構中所應用的車輛動態控制單元(1)不一樣的地方在於,最佳化控制器(11)和輪胎力分配控制器(12)兩者分別單獨運作,不相互連接溝通,便能計算出底盤動力控制系統(4)中馬達和煞車系統的扭矩輸出,並透過差動驅動與/或差動煞車,提高多輪驅動電動車(10)的操控性與安全性。 The above uncoupled control architecture is suitable for the chassis of a multi-wheel drive electric vehicle (10) The system (with steering, drive and brake) is used in the least tight integration, unlike the vehicle dynamics control unit (1) used in the loosely coupled control architecture, which optimizes the controller (11) and tire force. The distribution controller (12) operates separately and cannot communicate with each other to calculate the torque output of the motor and brake system in the chassis power control system (4), and improve the differential drive and/or differential brake. The handling and safety of the multi-wheel drive electric vehicle (10).

其次,最佳化控制器(11)為使用模型預測控制演算法(A)而運作,輪胎力分配控制器(12)為使用輸出回授控制而運作。 Second, the optimization controller (11) operates to use the model predictive control algorithm (A), and the tire force distribution controller (12) operates to use the output feedback control.

上述中,所述最佳化問題(A1)如下列各式所述: u n =[δ]; Subject to 其中,J為成本函數,w1、w2分別為各成本的權重,Tp、TC分別 為預測區間和控制區間的時間步階(time step)△t數目,代表模型預測控制演算法在時間t時預測η在時間為t+i時之預測值,則為η在時間t+i時之參考值,代表車輛的偏航角速度,δ代表前軸輪胎轉向角,Izz代表車輛相對於z軸的轉動慣量,Lf為前軸的軸距,Cf代表前輪的轉向剛性,△X代表X值在當下與前一個時間步階間的變化量(X代表某物理量)。 In the above, the optimization problem (A1) is as follows: u n =[δ]; Subject to Where J is the cost function, w 1 and w 2 are the weights of the respective costs, and T p and T C are the time step Δt of the prediction interval and the control interval, respectively. Representative model predictive control algorithm at time t η predicted prediction value of the time t + i, Then the reference value of η at time t + i , Represents the yaw rate of the vehicle, δ represents the steering angle of the front axle tire, I zz represents the moment of inertia of the vehicle relative to the z axis, L f is the wheelbase of the front axle, C f represents the steering stiffness of the front wheel, and ΔX represents the X value The amount of change between the current and the previous time step (X represents a certain physical quantity).

上述中,所述輪胎力分配控制器(12),其更包括有一輪胎力 計算模組(121)、及一動力分配模組(122);所述輪胎力計算模組(121),能依據該車輛動態參考值(T)、及目前的車速和偏航角速度,使用輸出回授控制,計算出車身總縱向力和偏航控制力矩的值,最終計算出該多輪驅動電動車(10)各個輪胎所需要產生的縱向力參考值(C5),並傳遞給該動力分配模組(122);所述動力分配模組(122),能依據該多輪驅動電動車(10)前、後輪馬達驅動系統的不同型式,配合該輪胎力計算模組(121)所給予的該縱向力參考值(C5),分配各馬達之動力輸出及各輪之煞車扭力輸出。 In the above, the tire force distribution controller (12) further includes a tire force a calculation module (121) and a power distribution module (122); the tire force calculation module (121) can use an output according to the vehicle dynamic reference value (T) and the current vehicle speed and yaw rate The feedback control calculates the values of the total longitudinal force of the vehicle body and the yaw control torque, and finally calculates the longitudinal force reference value (C5) required for each tire of the multi-wheel drive electric vehicle (10) and transmits it to the power distribution. a module (122); the power distribution module (122) can be provided according to different types of front and rear wheel motor drive systems of the multi-wheel drive electric vehicle (10), and the tire force calculation module (121) The longitudinal force reference value (C5) assigns the power output of each motor and the brake torque output of each wheel.

其中,非耦合控制架構中的輪胎力分配控制器,雖然一樣包 括有縱向力計算模組(121)及動力分配模組(122),但是與鬆散耦合控制架構中的輪胎力分配控制器還是有不一樣的地方,主要在於車身動態最佳化控制器(11)並不決定車身偏航控制力矩之大小,而是由輪胎力分配控制器(12) 所決定;在非耦合控制架構中的輪胎力分配控制器(12)為使用偏航角速度回授的增益控制方式計算出車身偏航控制力矩的值,以確保車身偏航動態的穩定性。 Among them, the tire force distribution controller in the uncoupled control architecture, although the same package It includes a longitudinal force calculation module (121) and a power distribution module (122), but it is different from the tire force distribution controller in the loosely coupled control architecture, mainly in the body dynamic optimization controller (11). Does not determine the size of the body yaw control torque, but by the tire force distribution controller (12) It is determined that the tire force distribution controller (12) in the uncoupled control architecture calculates the value of the vehicle yaw control torque for the gain control method using the yaw rate feedback feedback to ensure the stability of the vehicle yaw dynamics.

所述輪胎力計算模組(121),依下列公式決定該總縱向力參 考值(C5): 所述輪胎力計算模組(121),依下列公式計算出車身偏航控制力矩值:T d =-k T I zz (AVz-AVz ref );所述輪胎力計算模組(121),依下列公式決定四輪之縱向力: 其中,F x 為總縱向力,T d 為車身偏航控制力矩,k F k T 分別為縱向力和差動力矩的回授增益值,mI zz 分別代表車輛的質量以及相對於z軸的轉動慣量,V x 分別為車質心之瞬時縱向速度和縱向速度的參考值,AVzAVz ref 分別為瞬時偏航角速度和偏航角速度的參考值,n 1n 2為比例常數。 The tire force calculation module (121) determines the total longitudinal force reference value (C5) according to the following formula: The tire force calculation module (121) calculates a vehicle yaw control torque value according to the following formula: T d = - k T I zz ( AVz - AVz ref ); the tire force calculation module (121) The following formula determines the longitudinal force of four rounds: Where F x is the total longitudinal force, T d is the vehicle yaw control torque, k F and k T are the feedback gain values of the longitudinal force and the differential torque, respectively, m and I zz represent the mass of the vehicle and relative to z The moment of inertia of the shaft, V x , They are the reference values of the instantaneous longitudinal velocity and longitudinal velocity of the vehicle centroid respectively. AVz and AVz ref are the reference values of the instantaneous yaw angular velocity and the yaw angular velocity, respectively, and n 1 and n 2 are proportional constants.

上述中,所述動力分配模組(122),根據馬達動力系統的不同型式,包含單軸單驅動模組及單軸雙驅動模組,將以不同方式進行馬達輸出扭力之分配控制。 In the above, the power distribution module (122) includes a single-axis single-drive module and a single-axis dual-drive module according to different types of the motor power system, and the motor output torque distribution control is performed in different manners.

當所述動力分配模組(122),其是為單軸單驅動模組時,為依公式決定該動力分配方式,公式與第二種控制方法相同。 When the power distribution module (122) is a single-axis single-drive module, the power distribution mode is determined according to the formula, and the formula is the same as the second control method.

當所述動力分配模組(122),其是為單軸雙驅動模組時,為依公式決定該動力分配方式,公式與第二種控制方法相同。 When the power distribution module (122) is a single-axis dual-drive module, the power distribution mode is determined according to the formula, and the formula is the same as the second control method.

上述三種控制方法當中,所述第一控制命令(C1),其是為一前輪轉向控制系統操縱命令;所述第二控制命令(C2),其包括有下列之一或其組合:各驅動馬達輸出扭力控制命令、各輪煞車扭力控制命令;所述第三控制命令(C3),其是為一已經過循跡控制系統(31)與防鎖死煞車系統(32)修正過後之各驅動馬達及各輪煞車扭力控制命令;所述車輛動態參考值(T),其包括有下列組合訊息:車輛縱向速度參考值(T1)、車輛側向速度參考值(T2)、車輛偏航角速度參考值(T3)。 Among the above three control methods, the first control command (C1) is a front wheel steering control system manipulation command; the second control command (C2) includes one or a combination of the following: each drive motor Outputting a torque control command, each wheel brake torque control command; the third control command (C3), which is a drive motor that has been corrected by the tracking control system (31) and the anti-lock brake system (32) And each wheel torque control command; the vehicle dynamic reference value (T) includes the following combination message: vehicle longitudinal speed reference value (T1), vehicle lateral speed reference value (T2), vehicle yaw rate reference value (T3).

其中,透過第一控制命令(C1)進行前輪主動轉向控制並透過第三控制命令(C3)進行差動驅動與/或差動煞車控制可同時提升車身循跡性和偏航動態穩定性,故可使車輛動態控制單元(1)有效地整合前輪主動轉向控制系統(2)和底盤動力控制系統(4),順利地控制多輪驅動電動車(10),不用擔心會發生運作不良的問題。 Wherein, the front wheel active steering control through the first control command (C1) and the differential driving and/or differential braking control through the third control command (C3) can simultaneously improve the body tracking and yaw dynamic stability, so The vehicle dynamic control unit (1) can effectively integrate the front wheel active steering control system (2) and the chassis power control system (4), and smoothly control the multi-wheel drive electric vehicle (10) without worrying about the problem of poor operation.

其次,通過車輛動態參考值(T)中的不同參考值之配合,讓車輛動態控制單元(1)能依循該參考值,進行多輪驅動電動車(10)之縱向速度、側向速度、及偏航角速度之監控,以有效地判斷多輪驅動電動車(10)的行駛動態穩定性,好讓車輛動態控制單元(1)通過運算,有效並正確地控制多輪驅動電動車(10)行駛。 Secondly, through the cooperation of different reference values in the vehicle dynamic reference value (T), the vehicle dynamic control unit (1) can follow the reference value to perform the longitudinal speed, the lateral speed, and the multi-wheel drive electric vehicle (10). The yaw angle speed is monitored to effectively judge the driving dynamic stability of the multi-wheel drive electric vehicle (10), so that the vehicle dynamic control unit (1) can effectively and correctly control the multi-wheel drive electric vehicle (10) by calculation. .

以上依據圖式所示的實施例,詳細說明本發明的構造、特徵及作用效果;惟以上所述僅為本發明之較佳實施例,但本發明不以圖面所示限定實施範圍,因此舉凡與本發明意旨相符的修飾性變化,只要在均等範圍內都應涵屬於本發明專利範疇。 The structure, features and effects of the present invention are described in detail above with reference to the embodiments shown in the drawings. However, the above description is only the preferred embodiment of the present invention. Modifications that are consistent with the intent of the present invention are intended to fall within the scope of the invention as long as they are within the scope of the invention.

1‧‧‧車輛動態控制單元 1‧‧‧Vehicle Dynamic Control Unit

11‧‧‧控制器 11‧‧‧ Controller

2‧‧‧轉向控制系統 2‧‧‧Steering Control System

3‧‧‧輪胎滑差控制系統 3‧‧‧Tire slip control system

31‧‧‧循跡控制系統 31‧‧‧Track Control System

32‧‧‧防鎖死煞車系統 32‧‧‧Anti-lock brake system

4‧‧‧底盤動力控制系統 4‧‧‧Chassis Power Control System

41‧‧‧馬達驅動系統 41‧‧‧Motor drive system

42‧‧‧煞車系統 42‧‧‧ brake system

100‧‧‧整合架構 100‧‧‧Integrated Architecture

A‧‧‧模型預測控制演算法 A‧‧‧ model predictive control algorithm

A1‧‧‧車輛動態最佳化問題 A1‧‧‧ Vehicle dynamic optimization problem

C1‧‧‧第一控制命令 C1‧‧‧ first control order

C2‧‧‧第二控制命令 C2‧‧‧ second control order

C3‧‧‧第三控制命令 C3‧‧‧ third control order

T‧‧‧車輛動態參考值 T‧‧‧Vehicle dynamic reference

T1‧‧‧車輛縱向速度參考值 T1‧‧‧ Vehicle longitudinal speed reference

T2‧‧‧車輛側向速度參考值 T2‧‧‧ Vehicle lateral speed reference

T3‧‧‧車輛偏航角速度參考值 T3‧‧‧ Vehicle yaw rate reference

Claims (21)

一種多輪驅動電動車之系統整合架構,能配合具有車身動態感測系統(20)的多輪驅動電動車(10)應用,其特徵在於:所述整合架構(100),其包括有一安裝於該多輪驅動電動車(10)上、並與該車身動態感測系統(20)連接的車輛動態控制單元(1),該車輛動態控制單元(1)分別與安裝於該多輪驅動電動車(10)上的一轉向控制系統(2)、及一輪胎滑差控制系統(3)連接,而該滑差控制系統(3)還與安裝於該多輪驅動電動車(10)上的一底盤動力控制系統(4)連接。 A multi-wheel drive electric vehicle system integration architecture capable of cooperating with a multi-wheel drive electric vehicle (10) application having a body dynamic sensing system (20), characterized in that: the integrated structure (100) includes a mounting a vehicle dynamic control unit (1) connected to the vehicle body dynamic sensing system (20) on the multi-wheel drive electric vehicle (10), and the vehicle dynamic control unit (1) is respectively mounted on the multi-wheel drive electric vehicle (10) a steering control system (2), and a tire slip control system (3) connected, and the slip control system (3) is also mounted on the multi-wheel drive electric vehicle (10) The chassis power control system (4) is connected. 如請求項1所述的多輪驅動電動車之系統整合架構,其中:所述底盤動力控制系統(4),其更包括有一套由多顆馬達所構成之多輪驅動系統(41)及一套多輪煞車系統(42)。 The system integration architecture of the multi-wheel drive electric vehicle according to claim 1, wherein: the chassis power control system (4) further comprises a multi-wheel drive system (41) and a motor composed of a plurality of motors. Set of multi-wheel brake system (42). 一種多輪驅動電動車之系統整合架構的控制方法,其特徵在於:將如請求項1所述的該車輛動態控制單元(1),以緊密耦合控制架構方式設置,並使該車輛動態控制單元(1)包括有一個內含模型預測控制演算法(A)的最佳化控制器(11),而該模型預測控制演算法(A)具有一車身動態最佳化問題(A1)之解算能力,讓該車輛動態控制單元(1)能根據該車身動態感測系統(20)所傳遞來的車輛動態值與參考值(T),一次性地將前輪轉向、各輪驅動與煞車動作對整體車輛動態的影響都納入考慮,直接計算出給予該轉向控制系統(2)的第一控制命令(C1)、以及給予該輪胎滑差控制系統(3)的第二控制命令(C2);而所述輪胎滑差控制系統(3)接收到該第二控制命令(C2)後,經過修正之後會產生一第三控制命令(C3)給予該底盤動力控制系統(4)。 A method for controlling a system integration architecture of a multi-wheel drive electric vehicle, characterized in that: the vehicle dynamic control unit (1) according to claim 1 is set in a tightly coupled control architecture manner, and the vehicle dynamic control unit is (1) includes an optimization controller (11) with a model prediction control algorithm (A), and the model prediction control algorithm (A) has a body dynamic optimization problem (A1) solution The capability of the vehicle dynamic control unit (1) to steer the front wheel, the wheel drive and the brake action in one time according to the vehicle dynamic value and the reference value (T) transmitted by the vehicle body dynamic sensing system (20). The influence of the overall vehicle dynamics is taken into consideration, and the first control command (C1) given to the steering control system (2) and the second control command (C2) given to the tire slip control system (3) are directly calculated; After receiving the second control command (C2), the tire slip control system (3), after being corrected, generates a third control command (C3) for the chassis power control system (4). 如請求項3所述的多輪驅動電動車之系統整合架構的控制方法,其中:所述車輛動態最佳化問題(A1),為下列所示: u n =[T f ,T rl ,T rr ,P L1 ,Pb R1 ,Pb L2 ,Pb R2 ];Subject to 其中,J為成本函數,w 1w 2w 3分別為各成本的權重,Tp、TC分別為預測區間和控制區間的時間步階(time step)△t數目,代表模型預測控制演算法在時間t時預測η在時間為t+i時之預測值,則為η在時間t+i時之參考值,分別代表車輛的縱向速度、側向速度以及偏航角速度,T f T rl T rr 分別代表前輪馬達、左後輪馬達和右後輪馬達所提供的力矩,Pb L1Pb R1Pb L2Pb R2分別代表左前輪、右前輪、左後輪、右後輪的煞車壓力,δ代表前軸輪胎轉向角,mI zz 分別代表車輛的質量以及相對於z軸的轉動貫量,分別代表左前輪、右前輪、左後輪、右後輪的縱向摩擦力,分別代表前軸側向摩擦力和後軸側向摩擦力,L f L r 分別為前軸和後軸至車輛質心的距離,d f d r 分別為前兩輪和後兩輪的輪距,I w R w 分別為輪胎的轉動慣量和有效半徑,分別為輪胎縱向摩擦力和旋轉角加速度,分別為馬達驅動扭矩和煞車扭矩,其中i=L、R代表左右輪,j=1、 2代表前後軸,C f C r 分別代表前、後輪的轉向剛性,△X代表X在當下與前一時間步階間的變化量(X代表某物理量),η 1為車輛質心之縱向速度。 The control method of the system integration architecture of the multi-wheel drive electric vehicle according to claim 3, wherein: the vehicle dynamic optimization problem (A1) is as follows: u n =[ T f ,T rl ,T rr ,P L 1 ,Pb R 1 ,Pb L 2 ,Pb R 2 ];Subject to Wherein, J is a cost function, w 1, w 2, w 3 are each cost heavy weight, T p, T C, respectively, and the control section prediction interval step time step (time step) △ t is a number, Representative model predictive control algorithm at time t η predicted prediction value of the time t + i, Then the reference value of η at time t + i , , , Representing the longitudinal speed, lateral velocity and yaw rate of the vehicle, respectively, T f , T rl , T rr represent the torque provided by the front wheel motor, the left rear wheel motor and the right rear wheel motor, respectively, Pb L 1 , Pb R 1 , Pb L 2 and Pb R 2 represent the braking pressure of the left front wheel, the right front wheel, the left rear wheel and the right rear wheel, respectively, δ represents the steering angle of the front axle tire, and m and I zz represent the mass of the vehicle and the rotation with respect to the z axis, respectively. Through quantity, , , , Representing the longitudinal friction of the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel, respectively. , Representing the lateral friction of the front axle and the lateral friction of the rear axle, respectively, L f and L r are the distances between the front axle and the rear axle to the center of mass of the vehicle, respectively, d f and d r are the first two rounds and the last two rounds respectively. The track, I w and R w are the moment of inertia and effective radius of the tire, respectively. , Tire longitudinal friction and rotational angular acceleration, respectively , The motor drive torque and the brake torque are respectively, where i=L, R represents the left and right wheels, j=1, 2 represents the front and rear axles, C f and C r represent the steering rigidity of the front and rear wheels respectively, and ΔX represents X in the present and The amount of change between steps in the previous time ( X represents a certain physical quantity), and η 1 is the longitudinal speed of the vehicle's centroid. 如請求項4所述的多輪驅動電動車之系統整合架構的控制方法,其中:所述滑差控制系統(3),其內更具有一循跡控制系統(31)、及防鎖死煞車系統(32);所述第一控制命令(C1),其是為一前輪轉向控制系統操縱命令;所述第二控制命令(C2),其包括有下列之一或其組合:各驅動馬達之輸出扭力控制命令、各輪煞車扭力控制命令;所述第三控制命令(C3),其是為一已經過循跡控制系統(31)與防鎖死煞車系統(32)修正過後之各驅動馬達及各輪煞車扭力控制命令;所述車輛動態參考值(T),其包括有下列組合訊息:車輛縱向速度參考值(T1)、車輛側向速度參考值(T2)、車輛偏航角速度參考值(T3)。 The control method of the system integration architecture of the multi-wheel drive electric vehicle according to claim 4, wherein: the slip control system (3) further has a tracking control system (31) and an anti-lock brake System (32); said first control command (C1), which is a front wheel steering control system maneuver command; said second control command (C2), comprising one or a combination of the following: each drive motor Outputting a torque control command, each wheel brake torque control command; the third control command (C3), which is a drive motor that has been corrected by the tracking control system (31) and the anti-lock brake system (32) And each wheel torque control command; the vehicle dynamic reference value (T) includes the following combination message: vehicle longitudinal speed reference value (T1), vehicle lateral speed reference value (T2), vehicle yaw rate reference value (T3). 一種多輪驅動電動車之系統整合架構的控制方法,其特徵在於:將如請求項1所述的該車輛動態控制單元(1),以鬆散耦合控制架構方式設置,並使該車輛動態控制單元(1)包括有一個內含模型預測控制演算法(A)的最佳化控制器(11)及一個輪胎力分配控制器(12),該最佳化控制器(11)能傳遞一車身偏航控制力矩命令(C4)給該輪胎力分配控制器(12),而該模型預測控制演算法(A)具有一車輛動態最佳化問題(A1)之解算能力,通過該最佳化控制器(11)根據該車輛動態參考值(T),計算並產生出第一控制命令(C1),給予該轉向控制系統(2),同時,又通過該輪胎力分配控制器(12)根據該最佳化控制器(11)所傳遞的該車身偏航控制力矩命令(C4)、該車輛動態參考值(T)、及目前的車速,計算並產生出第二控制命 令(C2),給予該輪胎滑差控制系統(3);所述輪胎滑差控制系統(3)接收到該第二控制命令(C2)後,經過其內部之循跡控制系統(31)與防鎖死煞車系統(32)修正過後,還會產生一第三控制命令(C3)給予該底盤動力控制系統(4)。 A method for controlling a system integration architecture of a multi-wheel drive electric vehicle, characterized in that: the vehicle dynamic control unit (1) according to claim 1 is set in a loosely coupled control architecture manner, and the vehicle dynamic control unit is (1) includes an optimization controller (11) incorporating a model predictive control algorithm (A) and a tire force distribution controller (12) capable of transmitting a body bias The aerodynamic control torque command (C4) gives the tire force distribution controller (12), and the model predictive control algorithm (A) has a solution solving ability of the vehicle dynamic optimization problem (A1) through which the optimization control is performed. The controller (11) calculates and generates a first control command (C1) according to the vehicle dynamic reference value (T), and gives the steering control system (2), and at the same time, according to the tire force distribution controller (12) Optimizing the vehicle yaw control torque command (C4), the vehicle dynamic reference value (T), and the current vehicle speed transmitted by the controller (11), calculating and generating a second control life Let (C2) give the tire slip control system (3); after receiving the second control command (C2), the tire slip control system (3) passes through its internal tracking control system (31) and After the anti-lock brake system (32) is modified, a third control command (C3) is also generated for the chassis power control system (4). 如請求項6所述的多輪驅動電動車之系統整合架構的控制方法,其中:所述最佳化問題(A1),為下列所示: u n =[δ,T d ];Subject to 其中,J為成本函數,w 1w 2w 3分別為各成本的權重,Tp、TC分別為 預測區間和控制區間的時間步階(time step)△t數目,代表模型預測控制演算法在時間t時預測η在時間為t+i時之預測值,則為η在時間t+i時之參考值,分別代表車輛的縱向速度以及偏航角速度,δ代表前軸輪胎轉向角,T d 為偏航控制力矩命令,mI zz 分別代表車輛的質量以及相對於z軸的轉動慣量,分別代表前軸側向摩擦力和後軸側向摩擦力,L f L r 分別為前軸和後軸至車輛質心的距離,C f C r 分別代表前、後輪的轉向剛性,△X代表X在當下與前一時間步階間的變化量(X代表某物理量)。 The control method of the system integration architecture of the multi-wheel drive electric vehicle according to claim 6, wherein: the optimization problem (A1) is as follows: u n =[ δ,T d ];Subject to Where J is the cost function, w 1 , w 2 , and w 3 are the weights of the respective costs, and T p and T C are the time step Δt of the prediction interval and the control interval, respectively. Representative model predictive control algorithm at time t η predicted prediction value of the time t + i, Then the reference value of η at time t + i , , Representing the longitudinal velocity of the vehicle and the yaw rate, δ represents the steering angle of the front axle tire, T d is the yaw control torque command, and m and I zz represent the mass of the vehicle and the moment of inertia with respect to the z axis, respectively. , Representing the lateral friction of the front axle and the lateral friction of the rear axle, respectively, L f and L r are the distances from the front axle and the rear axle to the center of mass of the vehicle, respectively, and C f and C r represent the steering rigidity of the front and rear wheels, respectively. ΔX represents the amount of change of X between the current and previous time steps ( X represents a certain physical quantity). 如請求項7所述的多輪驅動電動車之系統整合架構的控制方法,其中:所述滑差控制系統(3),其內更具有一循跡控制系統(31)、及防鎖死煞車系統(32);所述第一控制命令(C1),其是為一前輪轉向系統操縱命令;所述第二控制命令(C2),其包括有下列之一或其組合:各驅動馬達輸出扭力控制命令、各輪煞車扭力控制命令;所述第三控制命令(C3),其是為一已經過循跡控制系統(31)與防鎖死煞車系統(32)修正過後之各驅動馬達及各輪煞車扭力控制命令;所述車輛動態參考值(T),其包括有下列組合訊息:車輛縱向速度參考值(T1)、車輛側向速度參考值(T2)、車輛偏航角速度參考值(T3)。 The control method of the system integration architecture of the multi-wheel drive electric vehicle according to claim 7, wherein: the slip control system (3) further has a tracking control system (31) and an anti-lock brake System (32); the first control command (C1), which is a front wheel steering system maneuver command; the second control command (C2), which includes one or a combination of the following: each drive motor output torque a control command, each wheel torque control command; the third control command (C3), which is a drive motor that has been corrected by the tracking control system (31) and the anti-lock brake system (32) and each The rim brake torque control command; the vehicle dynamic reference value (T) includes the following combined message: vehicle longitudinal speed reference value (T1), vehicle lateral speed reference value (T2), vehicle yaw rate reference value (T3) ). 如請求項8所述的多輪驅動電動車之系統整合架構的控制方法,其中:所述輪胎力分配控制器(12),其更包括有一輪胎力計算模組(121)、及一動力分配模組(122);所述輪胎力計算模組(121),能依據該車身偏航控制力矩命令(C4)、該車 輛動態參考值(T)、及目前的車速,計算出該多輪驅動電動車(10)各個輪胎所需要產生的縱向力參考值(C5),並傳遞給該動力分配模組(122);所述動力分配模組(122),能依據該多輪驅動電動車(10)之前、後輪馬達驅動系統的不同型式,配合該輪胎力計算模組(121)所給予的該縱向力參考值(C5),分配各驅動馬達與各輪煞車扭力輸出。 The method for controlling a system integration architecture of a multi-wheel drive electric vehicle according to claim 8, wherein: the tire force distribution controller (12) further includes a tire force calculation module (121), and a power distribution a module (122); the tire force calculation module (121), according to the vehicle yaw control torque command (C4), the vehicle Dynamic reference value (T), and current vehicle speed, calculate the longitudinal force reference value (C5) required for each tire of the multi-wheel drive electric vehicle (10), and transmit it to the power distribution module (122); The power distribution module (122) can be matched with the longitudinal force reference value given by the tire force calculation module (121) according to different types of front and rear wheel motor drive systems of the multi-wheel drive electric vehicle (10). (C5), distribute the torque output of each drive motor and each rim brake. 如請求項9所述的多輪驅動電動車之系統整合架構的控制方法,其中:所述輪胎力計算模組(121),依下列公式決定該輪胎力參考值(C5): 其中,F x 為總縱向力,T d 為車身偏航控制力矩,k為回授增益值,m為車輛的質量,V x 為瞬時縱向速度,為縱向速度的參考值,n 1n 2為比例常數。 The control method of the system integration architecture of the multi-wheel drive electric vehicle according to claim 9, wherein: the tire force calculation module (121) determines the tire force reference value (C5) according to the following formula: Where F x is the total longitudinal force, T d is the vehicle yaw control torque, k is the feedback gain value, m is the mass of the vehicle, and V x is the instantaneous longitudinal speed. For the reference value of the longitudinal velocity, n 1 and n 2 are proportional constants. 如請求項10所述的多輪驅動電動車之系統整合架構的控制方法,其中:所述動力分配模組(122),根據馬達驅動系統的不同型式,可以分為單軸單驅動模組及單軸雙驅動模組。 The control method of the system integration architecture of the multi-wheel drive electric vehicle according to claim 10, wherein the power distribution module (122) can be divided into a single-axis single-drive module according to different types of the motor drive system. Single-axis dual drive module. 如請求項11所述的多輪驅動電動車之系統整合架構的控制方法,其中:所述動力分配模組(122),其是為單軸單驅動模組時,依下列公式決定該馬達驅動力分配方式: 其中,T、PbL、PbR分別為馬達扭力輸出、左輪的液壓剎車壓力以及右輪的液壓剎車的壓力,Rw、GR、G分別為有效輪胎半徑、齒輪比和液壓剎車壓力換算成扭矩的增益值,Tmax、Tmin為馬達扭力輸出的上下限,Pbmax為液壓剎車壓力的上限,則為左右輪的縱向輪胎路面摩擦力命令。 The control method of the system integration architecture of the multi-wheel drive electric vehicle according to claim 11, wherein: the power distribution module (122) is a single-axis single-drive module, and the motor drive is determined according to the following formula: Force distribution method: Among them, T, Pb L and Pb R are the motor torque output, the hydraulic brake pressure of the left wheel and the hydraulic brake pressure of the right wheel, and R w , GR and G are the effective tire radius, gear ratio and hydraulic brake pressure respectively converted into torque. The gain value, T max , T min is the upper and lower limits of the motor torque output, and Pb max is the upper limit of the hydraulic brake pressure. , Then it is the longitudinal tire road friction command of the left and right wheels. 如請求項11所述的多輪驅動電動車之系統整合架構的控制方法,其中:所述動力分配模組(122),其是為單軸雙驅動模組時,依下列公式決定該馬達驅動力分配方式: 其中,TL、TR為左右馬達的扭力輸出,PbL、PbR分別為馬達扭力輸出、左輪的液壓剎車壓力以及右輪的液壓剎車的壓力,Rw、GR、G分別為有效輪胎半徑、齒輪比和液壓剎車壓力換算成扭矩的增益值,為右輪馬達扭力輸出的上下限,為左輪馬達扭力輸出的上下限,Pbmax為液壓剎車壓力的上限,則為左右輪的縱向輪胎路面摩擦力命令。 The control method of the system integration architecture of the multi-wheel drive electric vehicle according to claim 11, wherein: the power distribution module (122) is a single-axis dual-drive module, and the motor drive is determined according to the following formula. Force distribution method: Among them, T L and T R are the torque output of the left and right motors, and Pb L and Pb R are the motor torque output, the hydraulic brake pressure of the left wheel and the hydraulic brake pressure of the right wheel, respectively, and R w , GR and G are the effective tire radius respectively. , gear ratio and hydraulic brake pressure are converted into torque gain values, , For the upper and lower limits of the torque output of the right wheel motor, , For the upper and lower limits of the torque output of the left wheel motor, Pb max is the upper limit of the hydraulic brake pressure. , Then it is the longitudinal tire road friction command of the left and right wheels. 一種多輪驅動電動車之系統整合架構的控制方法,其特徵在於:將如請求項1所述的該車輛動態控制單元(1),以非耦合控制架構方式設置,並使該車輛動態控制單元(1)包括有一個內含模型預測控制演算法(A)的最佳化控制器(11)及一個輪胎力分配控制器(12),該最佳化控制器(11)與該輪胎力分配控制器(12)兩者分別單獨運作,不相互連接溝通但擁有相同的控制目標,而該模型預測控制演算法(A)具有一車輛動態最佳化問題(A1)之解算能力,使該車輛動態控制單元(1)能根據該車輛動態感測系統(20)所傳遞來的車輛動態參考值(T),通過該最佳化控制器(11)根據該車 輛動態參考值(T),計算並產生出第一控制命令(C1),給予該轉向控制系統(2),同時,又通過該輪胎力分配控制器(12)根據該車輛動態參考值(T)和目前的車速和偏航角速度,計算並產生出第二控制命令(C2),給予該滑差控制系統(3);所述滑差控制系統(3)接收到該第二控制命令(C2)後,經過其內之循跡控制系統(31)與防鎖死煞車系統(32)修正過後,還會產生一第三控制命令(C3)給予該底盤動力控制系統(4)。 A control method for a system integration architecture of a multi-wheel drive electric vehicle, characterized in that: the vehicle dynamic control unit (1) according to claim 1 is set in an uncoupled control architecture manner, and the vehicle dynamic control unit is (1) includes an optimization controller (11) having a model prediction control algorithm (A) and a tire force distribution controller (12), the optimization controller (11) and the tire force distribution The controller (12) operates separately, does not communicate with each other but has the same control target, and the model predictive control algorithm (A) has a solving ability of the vehicle dynamic optimization problem (A1), so that the controller The vehicle dynamic control unit (1) can according to the vehicle dynamic reference value (T) transmitted by the vehicle dynamic sensing system (20), according to the optimized controller (11) according to the vehicle a dynamic reference value (T), calculated and generated a first control command (C1), given to the steering control system (2), and simultaneously by the tire force distribution controller (12) according to the vehicle dynamic reference value (T And the current vehicle speed and yaw rate, calculating and generating a second control command (C2), giving the slip control system (3); the slip control system (3) receiving the second control command (C2) After that, after the correction of the tracking control system (31) and the anti-lock braking system (32), a third control command (C3) is also given to the chassis power control system (4). 如請求項14所述的多輪驅動電動車之系統整合架構的控制方法,其中:所述最佳化問題(A1),為下列所示: u n =[δ];Subject to 其中,J為成本函數,w 1w 2分別為各成本的權重,Tp、TC分別為預測區間和控制區間的時間步階(time step)△t數目,代表模型預測控制演算法在時間t時預測η在時間為t+i時之預測值,則為η在時間t+i時之參考值,代表車輛的偏航角速度,δ代表前軸輪胎轉 向角,I zz 代表車輛相對於z軸的轉動慣量,L f 為前軸的軸距,C f 代表前輪的轉向剛性,△X代表X在當下與前一時間步階間的變化量(X代表某物理量)。 The control method of the system integration architecture of the multi-wheel drive electric vehicle according to claim 14, wherein: the optimization problem (A1) is as follows: u n =[ δ ];Subject to Where J is the cost function, w 1 and w 2 are the weights of the respective costs, and T p and T C are the number of time steps Δt of the prediction interval and the control interval, respectively. Representative model predictive control algorithm at time t η predicted prediction value of the time t + i, Then the reference value of η at time t + i , Represents the yaw rate of the vehicle, δ represents the steering angle of the front axle tire, I zz represents the moment of inertia of the vehicle with respect to the z axis, L f is the wheelbase of the front axle, C f represents the steering stiffness of the front wheel, and ΔX represents the X at the moment The amount of change from the previous time step ( X represents a certain physical quantity). 如請求項15所述的多輪驅動電動車之系統整合架構的控制方法,其中:所述第一控制命令(C1),其是為一前輪轉向控制系統操縱命令;所述第二控制命令(C2),其包括有下列之一或其組合:各驅動馬達輸出扭力控制命令、各輪煞車扭力控制命令;所述第三控制命令(C3),其是為一已經過循跡控制系統(31)與防鎖死煞車系統(32)修正過後之各驅動馬達及各輪煞車扭力控制命令所述車輛動態參考值(T),其包括有下列組合訊息:車輛縱向速度參考值(T1)、車輛側向速度參考值(T2)、車輛偏航角速度參考值(T3)。 The control method of the system integration architecture of the multi-wheel drive electric vehicle according to claim 15, wherein: the first control command (C1) is a front wheel steering control system manipulation command; and the second control command ( C2), which comprises one or a combination of the following: each drive motor output torque control command, each wheel brake torque control command; the third control command (C3), which is an already passed tracking control system (31) And the vehicle dynamic reference value (T) of each of the drive motor and each wheel brake torque control command after the modified anti-lock brake system (32) includes the following combination message: vehicle longitudinal speed reference value (T1), vehicle Lateral speed reference (T2), vehicle yaw rate reference (T3). 如請求項16所述的多輪驅動電動車之系統整合架構的控制方法,其中:所述輪胎力分配控制器(12),其更包括有一輪胎力計算模組(121)、及一動力分配模組(122);所述輪胎力計算模組(121),能依據該車輛動態參考值(T)、及目前的車速和偏航角速度,使用輸出回授控制,計算出車身總縱向力以及偏航控制力矩的值,最終計算出該多輪驅動電動車(10)各個輪胎所需要產生的縱向力參考值(C5),並傳遞給該動力分配模組(122);所述動力分配模組(122),能依據該多輪驅動電動車(10)前、後輪馬達驅動系統的不同型式,配合該輪胎力計算模組(121)所給予的該縱向力參考值(C5),分配各馬達之動力輸出及各輪之煞車扭力輸出。 The method for controlling a system integration architecture of a multi-wheel drive electric vehicle according to claim 16, wherein: the tire force distribution controller (12) further includes a tire force calculation module (121), and a power distribution a module (122); the tire force calculation module (121) can calculate the total longitudinal force of the vehicle body according to the vehicle dynamic reference value (T), the current vehicle speed and the yaw angle speed, and the output feedback control The value of the yaw control torque finally calculates the longitudinal force reference value (C5) required for each tire of the multi-wheel drive electric vehicle (10) and transmits it to the power distribution module (122); the power distribution module The group (122) can be allocated according to different types of front and rear wheel motor drive systems of the multi-wheel drive electric vehicle (10), and the longitudinal force reference value (C5) given by the tire force calculation module (121) is allocated. The power output of each motor and the torque output of each wheel. 如請求項17所述的多輪驅動電動車之系統整合架構的控制方法,其中: 所述輪胎力計算模組(121),依下列公式決定該縱向力參考值(C5): 所述輪胎力計算模組(121),依下列公式計算出車身偏航控制力矩值:T d =-k T I zz (AVz-AVz ref );所述輪胎力計算模組(121),依下列公式決定四輪之縱向力: 其中,F x 為總縱向力,T d 為車身偏航控制力矩,k F k T 分別為縱向力和差動力矩的回授增益值,mI zz 分別代表車輛的質量以及相對於z軸的轉動慣量,V x 分別為車質心之瞬時縱向速度和縱向速度的參考值,AVzAVz ref 分別為瞬時偏航角速度和偏航角速度的參考值,n 1n 2為比例常數。 The control method of the system integration architecture of the multi-wheel drive electric vehicle according to claim 17, wherein: the tire force calculation module (121) determines the longitudinal force reference value (C5) according to the following formula: The tire force calculation module (121) calculates a vehicle yaw control torque value according to the following formula: T d = - k T I zz ( AVz - AVz ref ); the tire force calculation module (121) The following formula determines the longitudinal force of four rounds: Where F x is the total longitudinal force, T d is the vehicle yaw control torque, k F and k T are the feedback gain values of the longitudinal force and the differential torque, respectively, m and I zz represent the mass of the vehicle and relative to z The moment of inertia of the shaft, V x , They are the reference values of the instantaneous longitudinal velocity and longitudinal velocity of the vehicle centroid respectively. AVz and AVz ref are the reference values of the instantaneous yaw angular velocity and the yaw angular velocity, respectively, and n 1 and n 2 are proportional constants. 如請求項18所述的多輪驅動電動車之系統整合架構的控制方法,其中:所述動力分配模組(122),根據馬達動力系統的不同型式,包含單軸單驅動模組及單軸雙驅動模組,將以不同方式進行馬達輸出扭力之分配控制。 The method for controlling a system integration architecture of a multi-wheel drive electric vehicle according to claim 18, wherein: the power distribution module (122) includes a single-axis single-drive module and a single-axis according to different types of the motor power system. The dual drive module will control the distribution of the motor output torque in different ways. 如請求項19所述的多輪驅動電動車之系統整合架構的控制方法,其中:所述動力分配模組(122),其是為單軸單驅動模組時,依下列公式決定該動力分配方式: 其中,T、PbL、PbR分別為馬達扭力輸出、左輪的液壓剎車壓力以及右輪的液壓剎車的壓力,Rw、GR、G分別為有效輪胎半徑、齒輪比和液壓剎車壓力換算成扭矩的增益值,Tmax、Tmin為馬達扭力輸出的上下限,Pbmax為液壓剎車壓力的上限,則為左右輪的縱向輪胎路面摩擦力命令。 The control method of the system integration architecture of the multi-wheel drive electric vehicle according to claim 19, wherein: the power distribution module (122) is a single-axis single-drive module, and the power distribution is determined according to the following formula: the way: Among them, T, Pb L and Pb R are the motor torque output, the hydraulic brake pressure of the left wheel and the hydraulic brake pressure of the right wheel, and R w , GR and G are the effective tire radius, gear ratio and hydraulic brake pressure respectively converted into torque. The gain value, T max , T min is the upper and lower limits of the motor torque output, and Pb max is the upper limit of the hydraulic brake pressure. , Then it is the longitudinal tire road friction command of the left and right wheels. 如請求項19所述的多輪驅動電動車之系統整合架構的控制方法,其中:所述動力分配模組(122),其是為單軸雙驅動模組時,依下列公式決定該馬達之輸出動力分配方式: 其中,TL、TR為左右馬達的扭力輸出,PbL、PbR分別為馬達扭力輸出、左輪的液壓剎車壓力以及右輪的液壓剎車的壓力,Rw、GR、G分別為有效輪胎半徑、齒輪比和液壓剎車壓力換算成扭矩的增益值,為右輪馬達扭力輸出的上下限,為左輪馬達扭力輸出的上下限,Pbmax為液壓剎車壓力的上限,則為左右輪的縱向輪胎路面摩擦力命令。 The control method of the system integration architecture of the multi-wheel drive electric vehicle according to claim 19, wherein: the power distribution module (122) is a single-axis dual-drive module, and the motor is determined according to the following formula Output power distribution method: Among them, T L and T R are the torque output of the left and right motors, and Pb L and Pb R are the motor torque output, the hydraulic brake pressure of the left wheel and the hydraulic brake pressure of the right wheel, respectively, and R w , GR and G are the effective tire radius respectively. , gear ratio and hydraulic brake pressure are converted into torque gain values, , For the upper and lower limits of the torque output of the right wheel motor, , For the upper and lower limits of the torque output of the left wheel motor, Pb max is the upper limit of the hydraulic brake pressure. , Then it is the longitudinal tire road friction command of the left and right wheels.
TW104127205A 2015-08-20 2015-08-20 Chassis system integration structure of multiple-wheel drive electric vehicle, and control method thereof effectively integrating the chassis subsystem functions such as the active front wheel steering, differential driving, and differential braking to enhance the maneuverability and safety TW201708003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104127205A TW201708003A (en) 2015-08-20 2015-08-20 Chassis system integration structure of multiple-wheel drive electric vehicle, and control method thereof effectively integrating the chassis subsystem functions such as the active front wheel steering, differential driving, and differential braking to enhance the maneuverability and safety

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104127205A TW201708003A (en) 2015-08-20 2015-08-20 Chassis system integration structure of multiple-wheel drive electric vehicle, and control method thereof effectively integrating the chassis subsystem functions such as the active front wheel steering, differential driving, and differential braking to enhance the maneuverability and safety

Publications (2)

Publication Number Publication Date
TWI560086B TWI560086B (en) 2016-12-01
TW201708003A true TW201708003A (en) 2017-03-01

Family

ID=58227122

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104127205A TW201708003A (en) 2015-08-20 2015-08-20 Chassis system integration structure of multiple-wheel drive electric vehicle, and control method thereof effectively integrating the chassis subsystem functions such as the active front wheel steering, differential driving, and differential braking to enhance the maneuverability and safety

Country Status (1)

Country Link
TW (1) TW201708003A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5730720A (en) * 1995-08-18 1998-03-24 Ip Scientific, Inc. Perfusion hyperthermia treatment system and method
TWM332877U (en) * 2007-10-19 2008-05-21 Li-John Jou Trace-following-type self-propelled carriage control device

Also Published As

Publication number Publication date
TWI560086B (en) 2016-12-01

Similar Documents

Publication Publication Date Title
US11021158B2 (en) Vehicle dynamics control system in a motor vehicle and electronic vehicle dynamics control unit for a vehicle dynamics control system
CN102275580B (en) Power actuated vehicle and control method thereof
JP5970322B2 (en) Vehicle motion control device
CN101311050B (en) Motion control device of vehicle using acceleration information
KR101305124B1 (en) Vehicle dynamic performance improvement apparatus and method for the same
JP5423391B2 (en) Vehicle speed control device
US10967870B2 (en) Hill descent system for vehicle and control method thereof
US8170767B2 (en) Vehicle stability control system and method
US7761215B2 (en) Device operable to control turning of vehicle using driving and braking force for understeering and oversteering
US9020699B2 (en) Method and braking system for influencing driving dynamics by means of braking and driving operations
KR20120046638A (en) Vehicle with multiple axis driven independently
CN108248583B (en) Automobile electronic stability control system and layering control method thereof
Jalali et al. Development of an advanced torque vectoring control system for an electric vehicle with in-wheel motors using soft computing techniques
JP6754433B2 (en) Systems and methods for independently controlling wheel slip and vehicle acceleration
JP6502084B2 (en) Vehicle control system in case of single wheel failure of four-wheel independent drive vehicle
US20120152633A1 (en) Brake equipment of vehicle with driver seat whose direction is changeable
US7637331B2 (en) Steering device for vehicle
WO2021103186A1 (en) Braking system based on wheel control and braking force distribution method thereof, and trolleybus
CN101474996A (en) Driving stabilization control system and method of vehicle under condition of adhering limit
JP2016182959A (en) Motion control system of vehicle
GB2428755A (en) Vehicle traction control using an active limited slip differential
JP2018030582A (en) Motion control device of vehicle and motion control program
EP1954518A1 (en) Method and system for regulating vehicle dynamics
CN101380952A (en) Stabilization control system of vehicle driving under complex road surface condition
JPH11151956A (en) Vehicle motion control device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees