TW201707394A - Method and apparatus for hybrid beamforming - Google Patents

Method and apparatus for hybrid beamforming Download PDF

Info

Publication number
TW201707394A
TW201707394A TW105122082A TW105122082A TW201707394A TW 201707394 A TW201707394 A TW 201707394A TW 105122082 A TW105122082 A TW 105122082A TW 105122082 A TW105122082 A TW 105122082A TW 201707394 A TW201707394 A TW 201707394A
Authority
TW
Taiwan
Prior art keywords
matrix
subchannel
covariance matrix
base station
channel
Prior art date
Application number
TW105122082A
Other languages
Chinese (zh)
Inventor
Lu Wu
ke-ying Wu
Original Assignee
Alcatel Lucent
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent filed Critical Alcatel Lucent
Publication of TW201707394A publication Critical patent/TW201707394A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

Embodiments of the present disclosure provide a method and apparatus for hybrid beamforming in a base station as well as a method and apparatus for hybrid beamforming in a mobile terminal. The method for hybrid beamforming in a base station comprising: calculating a wideband analog beamforming matrix based on long-term-level estimation of a physical channel; quantizing the wideband analog beamforming matrix to obtain a quantized wideband analog beamforming matrix; applying the quantized wideband analog beamforming matrix to the physical channel to obtain an effective channel of the physical channel; calculating a sub-band digital beamforming matrix based on short-term-level estimation of the effective channel; and performing hybrid beamforming on downlink signals with the sub-band digital beamforming matrix and the quantized wideband analog beamforming matrix. The hybrid beamforming solution according to the embodiments of the present disclosure makes massive MIMO systems more practical and cost-effective to deploy.

Description

混合波束賦形方法和裝置 Hybrid beamforming method and device

本發明的實施例一般地涉及無線通訊技術,更具體地,涉及混合波束賦形方法和裝置。 Embodiments of the present invention generally relate to wireless communication technologies and, more particularly, to hybrid beamforming methods and apparatus.

大規模多輸入多输出(MIMO)或大型天線系統由於在能效、頻譜效率、強健性和可靠性方面的巨大優勢,已經被廣泛認為是5G通信系統的關鍵實現技術。大規模MIMO的基本前提是基地台天線的數目遠大於單天線終端的數目。理論上,具有全數位波束賦形(BF)的大規模MIMO系統可以產生最佳性能。然而,付出的代價是硬體複雜度和成本(射頻通道的數目)、以及信號處理的複雜度和能耗的迅速增加。因此,當天線數目非常大時,實施相同數目的射頻通道可能是不可行的。因此,如何實現具有有限數目射頻通道的大規模MIMO是關鍵的技術問題。 Large-scale multiple-input multiple-output (MIMO) or large-scale antenna systems have been widely recognized as key implementation technologies for 5G communication systems due to their enormous advantages in energy efficiency, spectrum efficiency, robustness, and reliability. The basic premise of massive MIMO is that the number of base station antennas is much larger than the number of single antenna terminals. In theory, a massive MIMO system with full digital beamforming (BF) can produce optimal performance. However, the price paid is hardware complexity and cost (number of RF channels), as well as the complexity of signal processing and the rapid increase in energy consumption. Therefore, when the number of antennas is very large, it may not be feasible to implement the same number of radio frequency channels. Therefore, how to implement massive MIMO with a limited number of RF channels is a key technical issue.

為了減少所需射頻通道的數目,動態天線切換技術不失為一種選擇,但由於未能充分利用額外天線的優勢,這種方案提供了有限的陣列增益,並且在相關通道中性能很差。為了解決這一問題,可以考慮利用有源天線的類比波 束賦形。總體而言,類比波束賦形透過類比相移器的網路來控制每個天線上的信號相位。由於振幅和相位控制方面的硬體限制,類比波束賦形的性能通常是次佳的。為了實現具有更大波束賦形增益的多資料流程預編碼,最近提出了混合的類比和數位波束賦形(以下簡稱混合波束賦形)策略。然而,目前,例如在靈活的用户調度、訓練信號設計、以及針對FDD(分頻多工)系統或者具有或不具有精確天線校準的TDD系統的通道資訊獲取等方面,混合波束賦形演算法仍遠不成熟。 In order to reduce the number of required RF channels, dynamic antenna switching techniques are an option, but because of the inability to take full advantage of the extra antennas, this scheme provides limited array gain and poor performance in the associated channels. In order to solve this problem, consider using analog waves of active antennas. Beam shaping. In general, analog beamforming controls the phase of the signal on each antenna through the network of analog phase shifters. The performance of analog beamforming is usually second best due to hardware limitations in amplitude and phase control. In order to realize multi-data flow precoding with larger beamforming gain, a hybrid analog and digital beamforming (hereinafter referred to as hybrid beamforming) strategy has recently been proposed. However, at present, hybrid beamforming algorithms are still used, for example, in flexible user scheduling, training signal design, and channel information acquisition for FDD (frequency division multiplexing) systems or TDD systems with or without accurate antenna calibration. Far from being mature.

本發明的實施例提供了一種在基地台中進行混合波束賦形的方法和裝置以及在行動終端中用於混合波束賦形的方法和裝置,以解決或者至少部分地緩解現有技術中存在的上述問題。 Embodiments of the present invention provide a method and apparatus for hybrid beamforming in a base station and a method and apparatus for hybrid beamforming in a mobile terminal to address or at least partially alleviate the above problems in the prior art .

在第一態樣中,本發明的實施例提供了一種在基地台中進行混合波束賦形的方法。該方法包括:基於對物理通道的長時估計,計算寬頻類比波束賦形矩陣;對所述寬頻類比波束賦形矩陣進行量化,以獲得經量化的寬頻類比波束賦形矩陣;向所述物理通道應用所述經量化的寬頻類比波束賦形矩陣,以獲得所述物理通道的等價通道;基於對所述等價通道的短時估計,計算子帶數位波束賦形矩陣;以及利用所述子帶數位波束賦形矩陣和所述經量化的寬頻類比波束賦形矩陣,對下行鏈路信號進行混合波束賦形。 In a first aspect, embodiments of the present invention provide a method of hybrid beamforming in a base station. The method includes: calculating a broadband analog beamforming matrix based on long-term estimation of a physical channel; quantizing the broadband analog beamforming matrix to obtain a quantized broadband analog beamforming matrix; to the physical channel Applying the quantized broadband analog beamforming matrix to obtain an equivalent channel of the physical channel; calculating a subband digital beamforming matrix based on short-term estimation of the equivalent channel; and utilizing the sub- A hybrid beamforming is performed on the downlink signal with a digital beamforming matrix and the quantized broadband analog beamforming matrix.

在一個實施例中,對所述寬頻類比波束賦形矩陣進行量化包括:將所述寬頻類比波束賦形矩陣中的每個非零元素的幅度進行正規化;以及針對所述每個非零元素,在預定的相位集合中逐元素地執行相位搜尋,以選擇使得所述等價通道的容量最大化的相位。 In one embodiment, quantifying the broadband analog beamforming matrix comprises: normalizing the amplitude of each non-zero element in the broadband analog beamforming matrix; and for each of the non-zero elements A phase search is performed element by element in a predetermined set of phases to select a phase that maximizes the capacity of the equivalent channel.

在一個實施例中,該方法進一步包括:基於對所述等價通道的短時估計,執行子帶用戶調度。 In one embodiment, the method further comprises performing sub-band user scheduling based on a short-term estimate of the equivalent channel.

在一個實施例中,該方法進一步包括:分別透過所述基地台的水平線性陣列和垂直線性陣列向所述行動終端發送第一訓練信號和第二訓練信號,以便所述行動終端分別基於所述第一訓練信號和所述第二訓練信號來估計與所述水平線性陣列相關聯的水平子通道共變異數矩陣以及與所述垂直線性陣列相關聯的垂直子通道共變異數矩陣;分別從所述行動終端接收對所述水平子通道共變異數矩陣的估計的回饋、以及對所述垂直子通道共變異數矩陣的估計的回饋;以及基於所述回饋來構建所述水平子通道共變異數矩陣與所述垂直子通道共變異數矩陣的克羅內克積,以作為所述物理通道的寬頻通道共變異數矩陣。 In one embodiment, the method further comprises: transmitting, by the horizontal linear array and the vertical linear array of the base station, a first training signal and a second training signal to the mobile terminal, respectively, so that the mobile terminal is respectively based on the a first training signal and the second training signal to estimate a horizontal subchannel covariance matrix associated with the horizontal linear array and a vertical subchannel covariance matrix associated with the vertical linear array; The mobile terminal receives an estimated feedback of the horizontal subchannel covariance matrix and an estimated feedback of the vertical subchannel covariance matrix; and constructs the horizontal subchannel covariance based on the feedback The Kroneck product of the matrix and the vertical subchannel covariance matrix is used as the broadband channel covariance matrix of the physical channel.

在第二態樣中,本發明的實施例提供了一種在基地台中進行混合波束賦形的方法。該方法包括:基於對物理通道的長時估計,計算寬頻類比波束賦形矩陣;向所述物理通道應用所述寬頻類比波束賦形矩陣,以獲得所述物理通道的等價通道;基於對所述等價通道的短時估計,計算子帶數位波束賦形矩陣並且執行子帶用戶調度;以及利用所 述寬頻類比波束賦形矩陣和所述子帶數位波束賦形矩陣,對用於被調度用户的下行鏈路信號進行混合波束賦形。 In a second aspect, embodiments of the present invention provide a method of hybrid beamforming in a base station. The method includes: calculating a broadband analog beamforming matrix based on long-term estimation of a physical channel; applying the broadband analog beamforming matrix to the physical channel to obtain an equivalent channel of the physical channel; Short-term estimation of the equivalent channel, calculating the sub-band digital beamforming matrix and performing sub-band user scheduling; The wideband analog beamforming matrix and the subband digital beamforming matrix are used for hybrid beamforming of downlink signals for scheduled users.

在一個實施例中,該方法進一步包括:分別透過所述基地台的水平線性陣列和垂直線性陣列向行動終端發送第一訓練信號和第二訓練信號,以便所述行動終端分別基於所述第一訓練信號和所述第二訓練信號來估計與所述水平線性陣列相關聯的水平子通道共變異數矩陣以及與所述垂直線性陣列相關聯的垂直子通道共變異數矩陣;分別從所述行動終端接收對所述水平子通道共變異數矩陣的估計的回饋、以及對所述垂直子通道共變異數矩陣的估計的回饋;以及基於所述回饋來構建所述水平子通道共變異數矩陣與所述垂直子通道共變異數矩陣的克羅內克積,以作為所述物理通道的寬頻通道共變異數矩陣。 In one embodiment, the method further includes: transmitting, by the horizontal linear array and the vertical linear array of the base station, a first training signal and a second training signal to the mobile terminal, respectively, so that the mobile terminal is respectively based on the first Training a signal and the second training signal to estimate a horizontal subchannel covariance matrix associated with the horizontal linear array and a vertical subchannel covariance matrix associated with the vertical linear array; respectively from the action The terminal receives an estimated feedback of the horizontal subchannel covariance matrix and an estimated feedback of the vertical subchannel covariance matrix; and constructs the horizontal subchannel covariance matrix based on the feedback The Kronek product of the vertical subchannel covariance matrix is used as the broadband channel covariance matrix of the physical channel.

在協力廠商態樣中,本發明的實施例提供了一種在行動終端中用於混合波束賦形的方法。該方法包括:基於從基地台的天線的水平線性陣列接收到的第一訓練信號,估計與所述水平線性陣列相關聯的水平子通道共變異數矩陣;基於從所述基地台的天線的垂直線性陣列接收到的第二訓練信號,估計與所述垂直線性陣列相關聯的垂直子通道共變異數矩陣;以及向基地台回饋對所述水平子通道共變異數矩陣的估計、以及對所述垂直子通道共變異數矩陣的估計。 In a synergistic aspect, embodiments of the present invention provide a method for hybrid beamforming in a mobile terminal. The method includes estimating a horizontal subchannel covariance matrix associated with the horizontal linear array based on a first training signal received from a horizontal linear array of antennas of a base station; based on an antenna from the base station a second training signal received by the linear array, estimating a vertical subchannel covariance matrix associated with the vertical linear array; and feeding back to the base station an estimate of the horizontal subchannel covariance matrix, and Estimation of the vertical subchannel covariance matrix.

在一個實施例中,該方法進一步包括:將所述水平子通道共變異數矩陣與第一傳輸相關係數相關聯,以及將所 述垂直子通道共變異數矩陣與第二傳輸相關係數相關聯;並且其中向基地台回饋對所述水平子通道共變異數矩陣的估計、以及對所述垂直子通道共變異數矩陣的估計包括:向所述基地台回饋所述第一傳輸相關係數的幅度和相位以及所述第二傳輸相關係數的幅度和相位。 In one embodiment, the method further comprises: associating the horizontal subchannel covariance matrix with the first transmission correlation coefficient, and The vertical subchannel covariance matrix is associated with a second transmission correlation coefficient; and wherein an estimate of the horizontal subchannel covariance matrix is fed back to the base station, and an estimate of the vertical subchannel covariance matrix is included Transmitting, to the base station, the amplitude and phase of the first transmission correlation coefficient and the amplitude and phase of the second transmission correlation coefficient.

在一個實施例中,該方法進一步包括:基於從所述基地台接收到的第三訓練信號,估計等價通道;以及向所述基地台回饋對所述等價通道的估計。 In one embodiment, the method further comprises: estimating an equivalent channel based on the third training signal received from the base station; and feeding back an estimate of the equivalent channel to the base station.

在第四態樣中,本發明的實施例提供了一種在基地台中進行混合波束賦形的裝置。該裝置包括:長時估計單元,被配置為基於對物理通道的長時估計,計算寬頻類比波束賦形矩陣;量化單元,被配置為對所述寬頻類比波束賦形矩陣進行量化,以獲得經量化的寬頻類比波束賦形矩陣;等價通道獲取單元,被配置為向所述物理通道應用所述經量化的寬頻類比波束賦形矩陣,以獲得所述物理通道的等價通道;短時估計單元,被配置為基於對所述等價通道的短時估計,計算子帶數位波束賦形矩陣;以及混合波束賦形單元,被配置為利用所述子帶數位波束賦形矩陣和所述經量化的寬頻類比波束賦形矩陣,對下行鏈路信號進行混合波束賦形。 In a fourth aspect, embodiments of the present invention provide an apparatus for hybrid beamforming in a base station. The apparatus includes a long-term estimation unit configured to calculate a broadband analog beamforming matrix based on a long-term estimation of a physical channel, and a quantization unit configured to quantize the broadband analog beamforming matrix to obtain a a quantized broadband analog beamforming matrix; an equivalent channel acquiring unit configured to apply the quantized broadband analog beamforming matrix to the physical channel to obtain an equivalent channel of the physical channel; short-term estimation a unit configured to calculate a subband digital beamforming matrix based on a short-term estimation of the equivalent channel; and a hybrid beamforming unit configured to utilize the sub-band digital beamforming matrix and the A quantized broadband analog beamforming matrix that performs hybrid beamforming on the downlink signal.

在第五態樣中,本發明的實施例提供了一種在基地台中進行混合波束賦形的裝置。該裝置包括:長時估計單元,被配置為基於對物理通道的長時估計,計算寬頻類比波束賦形矩陣;等價通道獲取單元,被配置為向所述物理 通道應用所述寬頻類比波束賦形矩陣,以獲得所述物理通道的等價通道;短時估計單元,被配置為基於對所述等價通道的短時估計,計算子帶數位波束賦形矩陣並且執行子帶用戶調度;以及混合波束賦形單元,被配置為利用所述寬頻類比波束賦形矩陣和所述子帶數位波束賦形矩陣,對用於被調度用户的下行鏈路信號進行混合波束賦形。 In a fifth aspect, an embodiment of the present invention provides an apparatus for hybrid beamforming in a base station. The apparatus includes a long-term estimating unit configured to calculate a broadband analog beamforming matrix based on a long-term estimation of a physical channel; an equivalent channel acquiring unit configured to be to the physical The channel applies the broadband analog beamforming matrix to obtain an equivalent channel of the physical channel; the short-term estimating unit is configured to calculate a sub-band digital beamforming matrix based on short-term estimation of the equivalent channel And performing subband user scheduling; and a hybrid beamforming unit configured to mix the downlink signals for the scheduled users using the broadband analog beamforming matrix and the subband digital beamforming matrix Beamforming.

在第六方面中,本發明的實施例提供了一種在行動終端中用於混合波束賦形的裝置。該裝置包括:第一估計單元,被配置為基於從基地台的天線的水平線性陣列接收到的第一訓練信號,估計與所述水平線性陣列相關聯的水平子通道共變異數矩陣;第二估計單元,被配置為基於從所述基地台的天線的垂直線性陣列接收到的第二訓練信號,估計與所述垂直線性陣列相關聯的垂直子通道共變異數矩陣;以及回饋單元,被配置為向基地台回饋對所述水平子通道共變異數矩陣的估計、以及對所述垂直子通道共變異數矩陣的估計。 In a sixth aspect, embodiments of the present invention provide an apparatus for hybrid beamforming in a mobile terminal. The apparatus includes a first estimating unit configured to estimate a horizontal subchannel covariance matrix associated with the horizontal linear array based on a first training signal received from a horizontal linear array of antennas of the base station; An estimating unit configured to estimate a vertical subchannel covariance matrix associated with the vertical linear array based on a second training signal received from a vertical linear array of antennas of the base station; and a feedback unit configured An estimate of the horizontal subchannel covariance matrix and an estimate of the vertical subchannel covariance matrix are fed back to the base station.

在一個實施例中,該裝置進一步包括:關聯單元,被配置為將所述水平子通道共變異數矩陣與第一傳輸相關係數相關聯,以及將所述垂直子通道共變異數矩陣與第二傳輸相關係數相關聯;並且其中向基地台回饋對所述水平子通道共變異數矩陣的估計、以及對所述垂直子通道共變異數矩陣的估計包括:向所述基地台回饋所述第一傳輸相關係數的幅度和相位以及所述第二傳輸相關係數的幅度和相位。 In one embodiment, the apparatus further comprises: an associating unit configured to associate the horizontal subchannel covariance matrix with the first transmission correlation coefficient, and to associate the vertical subchannel covariance matrix with the second Transmitting a correlation coefficient associated; and wherein feeding back an estimate of the horizontal subchannel covariance matrix to the base station and estimating the vertical subchannel covariance matrix comprises: feeding back the first to the base station The amplitude and phase of the correlation coefficient and the amplitude and phase of the second transmission correlation coefficient are transmitted.

在一個實施例中,該裝置進一步包括:等價通道估計單元,被配置為基於從所述基地台接收到的第三訓練信號,估計等價通道;並且所述回饋單元被進一步配置為向所述基地台回饋對所述等價通道的估計。 In one embodiment, the apparatus further comprises: an equivalent channel estimation unit configured to estimate an equivalent channel based on the third training signal received from the base station; and the feedback unit is further configured to The base station returns an estimate of the equivalent channel.

根據本發明實施例的混合波束賦形方案,使得大規模MIMO系統的部署更加實用和成本有效。例如,根據本發明實施例的混合波束賦形方案可以達到以下有益效果中的至少一項:透過對寬頻類比波束賦形矩陣進行量化,可以更好地滿足現有硬體的要求,從而降低了硬體實施的複雜度和成本;透過基於對等價通道的短時估計來執行子帶用户調度,可以實現頻率選擇性增益;透過採用兩個低維的共變異數矩陣的回饋來代替對寬頻通道共變異數矩陣的回饋,可以顯著減少用於通道估計的共變異數矩陣的回饋開銷和訓練信號的開銷。 The hybrid beamforming scheme according to an embodiment of the present invention makes deployment of a massive MIMO system more practical and cost effective. For example, the hybrid beamforming scheme according to the embodiment of the present invention may achieve at least one of the following beneficial effects: by quantifying the broadband analog beamforming matrix, the requirements of the existing hardware can be better satisfied, thereby reducing the hard Complexity and cost of implementation; frequency selective gain can be achieved by performing subband user scheduling based on short-term estimation of equivalent channels; instead of pairing wideband channels by using two low-dimensional covariance matrix feedbacks The feedback of the covariance matrix can significantly reduce the feedback overhead and training signal overhead of the covariance matrix used for channel estimation.

300‧‧‧在基地台中進行混合波束賦形的方法 300‧‧‧Method of hybrid beamforming in a base station

S310~S350‧‧‧步驟 S310~S350‧‧‧Steps

500‧‧‧在基地台中進行混合波束賦形的方法 500‧‧‧Method of hybrid beamforming in a base station

S510~S540‧‧‧步驟 S510~S540‧‧‧Steps

600‧‧‧在行動終端中用於混合波束賦形的方法 600‧‧‧Methods for hybrid beamforming in mobile terminals

S610~S630‧‧‧步驟 S610~S630‧‧‧Steps

700‧‧‧在基地台中進行混合波束賦形的裝置 700‧‧‧A device for hybrid beamforming in a base station

710‧‧‧長時估計單元 710‧‧ long-term estimation unit

720‧‧‧量化單元 720‧‧‧Quantification unit

730‧‧‧等價通道獲取單元 730‧‧‧ equivalent channel acquisition unit

740‧‧‧短時估計單元 740‧‧‧Short time estimation unit

750‧‧‧混合波束賦形單元 750‧‧‧Mixed beamforming unit

800‧‧‧在基地台中進行混合波束賦形的裝置 800‧‧‧A device for hybrid beamforming in a base station

810‧‧‧長時估計單元 810‧‧‧Long-term estimation unit

820‧‧‧等價通道獲取單元 820‧‧‧ equivalent channel acquisition unit

830‧‧‧短時估計單元 830‧‧‧Short time estimation unit

840‧‧‧混合波束賦形單元 840‧‧‧Mixed beamforming unit

900‧‧‧在行動終端中進行混合波束賦形的裝置 900‧‧‧A device for hybrid beamforming in mobile terminals

910‧‧‧第一估計單元 910‧‧‧First Estimation Unit

920‧‧‧第二估計單元 920‧‧‧Second estimation unit

930‧‧‧回饋單元 930‧‧‧Return unit

結合圖式並參考以下詳細說明,本發明各實施例的特徵、優點及其他態樣將變得更加明顯,在此以示例性而非限制性的方式示出了本發明的若干實施例。在圖式中:圖1示出了本發明的實施例可以實現於其中的混合的類比和數位波束賦形架構的方塊圖;圖2示出了本發明的實施例可以實現於其中的另一混合的類比和數位波束賦形架構的方塊圖;圖3示出了根據本發明實施例第一態樣的在基地台中 進行混合波束賦形的方法的流程圖;圖4示出了本發明的實施例可以實現於其中的天線的均勻平面陣列的示意圖;圖5示出了根據本發明實施例第二態樣的在基地台中進行混合波束賦形的方法的流程圖;圖6示出了根據本發明實施例協力廠商面的在行動終端中用於混合波束賦形的方法的流程圖;圖7示出了根據本發明實施例第四態樣的在基地台中進行混合波束賦形的裝置的方塊圖;圖8示出了根據本發明實施例第五態樣的在基地台中進行混合波束賦形的裝置的方塊圖;以及圖9示出了根據本發明實施例第五態樣的在行動終端中用於混合波束賦形的裝置的方塊圖。 The features, advantages, and other aspects of the various embodiments of the present invention will become more apparent from the aspects of the invention. In the drawings: Figure 1 shows a block diagram of a hybrid analog and digital beamforming architecture in which embodiments of the present invention may be implemented; Figure 2 illustrates another embodiment in which embodiments of the present invention may be implemented A block diagram of a mixed analog and digital beamforming architecture; FIG. 3 illustrates a first aspect of a base station in accordance with an embodiment of the present invention. A flowchart of a method of performing hybrid beamforming; FIG. 4 is a schematic diagram showing a uniform planar array of antennas in which embodiments of the present invention may be implemented; FIG. 5 illustrates a second aspect of an embodiment of the present invention A flowchart of a method for hybrid beamforming in a base station; FIG. 6 is a flow chart showing a method for hybrid beamforming in a mobile terminal in accordance with an embodiment of the present invention; FIG. EMBODIMENT OF THE INVENTION A block diagram of a device for performing hybrid beamforming in a base station in a fourth aspect; FIG. 8 is a block diagram showing an apparatus for performing hybrid beamforming in a base station according to a fifth aspect of the present invention. And FIG. 9 shows a block diagram of an apparatus for hybrid beamforming in a mobile terminal in accordance with a fifth aspect of an embodiment of the present invention.

下面將參照圖式更詳細地描述本發明的較佳實施例。雖然圖式中顯示了本發明的較佳實施例,然而應該理解,可以以各種形式實現本發明而不應被這裡闡述的實施例所限制。相反,提供這些實施例是為了使本發明更加透徹和完整,並且能夠將本發明的範圍完整地傳達給本領域的技術人員。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the drawings. While the preferred embodiment of the invention has been shown in the drawings Rather, these embodiments are provided so that this disclosure will be thorough and complete.

圖1示出了本發明的實施例可以實現於其中的混合的類比和數位波束賦形架構100的方塊圖。如圖1所示,基地台配備有N t 個天線,服務於S個單天線用户。N(N N t ) 個射頻通道(RF chain)中的每一個與全部N t 個天線連接。首先,S個資料流程S0(t)......SS-1(t)在數位域進行波束賦形,以產生經數位波束賦形的N個資料流程。然後,這N個資料流透過離散傅立葉逆變換(IDFT:Inverse Digital Fourier Transform)從頻域轉換到時域並且輸入到N個RF通道以從數位域轉換到類比域,從而生成N個類比資料流程。然後,N個類比資料流程在類比域進行波束賦形並生成N T 個流。然後,N T 個流中的每一個被映射到基地台的一個傳輸天線,進而被發送至UE(用戶設備)1......UE S。 1 shows a block diagram of a hybrid analog and digital beamforming architecture 100 in which embodiments of the present invention may be implemented. As shown in Figure 1, the base station is equipped with N t antennas to serve S single antenna users. N ( N Each of the N t ) RF chains is connected to all N t antennas. First, the S data flows S 0 (t) ... S S-1 (t) are beamformed in the digital domain to generate N data streams shaped by the digital beam. Then, the N data streams are converted from the frequency domain to the time domain by an Inverse Digital Fourier Transform (IDFT) and input to the N RF channels to convert from the digital domain to the analog domain, thereby generating N analog data flows. . Then, N analogy beamforming process data and generate N T streams in the analog domain. Then, N T streams each of the transmission antenna is mapped to a base station, which in turn is transmitted to the UE (User Equipment) 1 ...... UE S.

圖2示出了本發明的實施例可以實現於其中的另一混合的類比和數位波束賦形架構200的方塊圖。圖2中的混合波束賦形過程與圖1中的類似。然而在圖2的架構200中,N(N N t )個射頻通道中的每一個僅與部分天線、即與N t /N個天線連接。因此,與圖1中的架構100相比,架構200的複雜度更低。 2 shows a block diagram of another hybrid analog and digital beamforming architecture 200 in which embodiments of the present invention may be implemented. The hybrid beamforming process in Figure 2 is similar to that in Figure 1. However, in the architecture 200 of Figure 2, N ( N Each of the N t ) radio frequency channels is only connected to a portion of the antenna, that is, to N t /N antennas. Thus, architecture 200 is less complex than architecture 100 in FIG.

以下將參照圖3至8來詳細描述根據本發明實施例的混合波束賦形方法和裝置。 A hybrid beamforming method and apparatus according to an embodiment of the present invention will be described in detail below with reference to FIGS. 3 through 8.

在第一態樣中,本發明的實施例提出了一種在基地台中進行混合波束賦形的方法。圖3示出了根據本發明實施例第一態樣的在基地台中進行混合波束賦形的方法300的流程圖。 In a first aspect, embodiments of the present invention propose a method of hybrid beamforming in a base station. 3 shows a flow diagram of a method 300 of performing hybrid beamforming in a base station in accordance with a first aspect of an embodiment of the present invention.

方法300開始於步驟310。在步驟S310,基於對物理通道的長時估計,計算寬頻類比波束賦形矩陣T。然後,在步驟S320,對寬頻類比波束賦形矩陣T進行量化,以 獲得經量化的寬頻類比波束賦形矩陣。隨後,在步驟S330,向物理通道應用經量化的寬頻類比波束賦形矩陣,以獲得物理通道的等價通道。接下來,在步驟S340,基於對等價通道的短時估計,計算子帶數位波束賦形矩陣W(b)。最後,利用子帶數位波束賦形矩陣W(b)和經量化的寬頻類比波束賦形矩陣,對下行鏈路信號進行混合波束賦形。由此,利用根據本發明實施例的混合波束賦形方案,子帶b上的下行鏈路波束賦形矩陣F(b)是經量化的寬頻類比波束賦形矩陣與子帶數位波束賦形矩陣W(b)的乘積,即: 其中,b=1,2,...,BB為子帶的數目。從上式(1)可見,為了獲得子帶b上的下行鏈路波束賦形矩陣F(b),需要計算經量化的寬頻類比波束賦形矩陣和子帶數位波束賦形矩陣W(b)。因此,在下文中將詳細討論如何計算經量化的寬頻類比波束賦形矩陣和子帶數位波束賦形矩陣W(b)。 The method 300 begins in step 310. In step S310, a broadband analog beamforming matrix T is calculated based on long-term estimation of the physical channel. Then, in step S320, the broadband analog beamforming matrix T is quantized to obtain a quantized broadband analog beamforming matrix. . Subsequently, in step S330, the quantized broadband analog beamforming matrix is applied to the physical channel. To obtain the equivalent channel of the physical channel. Next, in step S340, the subband digital beamforming matrix W ( b ) is calculated based on the short time estimation of the equivalent channel. Finally, the subband digital beamforming matrix W ( b ) and the quantized broadband analog beamforming matrix are utilized. , performing hybrid beamforming on the downlink signal. Thus, with the hybrid beamforming scheme according to an embodiment of the invention, the downlink beamforming matrix F ( b ) on subband b is a quantized broadband analog beamforming matrix The product of the subband digital beamforming matrix W ( b ), namely: Where b =1, 2, ..., B and B are the number of subbands. It can be seen from the above formula (1) that in order to obtain the downlink beamforming matrix F ( b ) on the subband b , it is necessary to calculate the quantized broadband analog beamforming matrix. And subband digital beam shaping matrix W ( b ). Therefore, how to calculate a quantized broadband analog beamforming matrix will be discussed in detail later. And sub-band digital beamforming matrix W (b).

如上所述,經量化的寬頻類比波束賦形矩陣是透過對寬頻類比波束賦形矩陣T進行量化而得到的,因此將首先描述如何得到寬頻類比波束賦形矩陣TAs described above, the quantized broadband analog beamforming matrix It is obtained by quantizing the broadband analog beamforming matrix T , so first, how to obtain the broadband analog beamforming matrix T will be described.

寬頻類比波束賦形矩陣T處於寬頻級,並且是基於例如寬頻通道共變異數矩陣等通道統計資訊而設計的。假定 K S個用戶被同時調度。H(b)表示在第b個子帶上的K×N t 的傳輸通道矩陣: 其中,h k (b)為子帶b上的第k個用戶的N t ×1的下行鏈路通道。 The wideband analog beamforming matrix T is at a wide frequency level and is designed based on channel statistics such as a wideband channel covariance matrix. Assumed K S users are scheduled at the same time. H ( b ) denotes the transmission channel matrix of K × N t on the b- th subband: Where h k ( b ) is the N t ×1 downlink channel of the kth user on subband b .

針對圖1所示的混合波束賦形架構100,考慮到使得類比波束賦形後得到的降維的等價通道容量最大化,則有: 其中,是透過對k個被調度用户的寬頻通道共變異數矩陣求和而得到的對應的N t ×N t 的傳輸通道共變異數矩陣,即: k個用户的寬頻通道共變異數矩陣由下式表示: 因此,類比波束賦形矩陣T由下式表示:T=[u 1 u 2u N ] (6) 其中,T的維度是N t ×Nu 1 u 2u N 是與N個最大特徵值對應的的特徵向量。從式(6)可見,類比波束賦形應該包 括指向全部k個被調度用户的波束。 For the hybrid beamforming architecture 100 shown in FIG. 1, considering the maximization of the reduced-dimensional equivalent channel capacity obtained by shaping the analog beam, there are: among them, Is a corresponding N t × N t transmission channel common variance matrix obtained by summing the broadband common-commutation matrix of k scheduled users, namely: The k- th user wideband channel common variance matrix is represented by: Therefore, the analog beamforming matrix T is represented by the following equation: T = [ u 1 u 2 ... u N ] (6) where T is the dimension N t × N , u 1 u 2 ... u N is the largest with N Characteristic value corresponding Feature vector. As can be seen from equation (6), the analog beamforming should include beams pointing to all k scheduled users.

接下來,可以利用例如迫零演算法等傳統的預編碼演算法,基於等價通道得到子帶b上的N×K的數位波束賦形矩陣W(b)。 Next, traditional precoding algorithms such as zero-forcing algorithms can be utilized, based on equivalent channels. A N × K digital beam shaping matrix W ( b ) on the subband b is obtained.

此外,針對圖2所示的混合波束賦形架構200,由於每個RF通道僅與部分天線、即N t /N個天線連接,因此T為如下形式的分塊對角矩陣: 其中,g k 為第N t /N×1的向量。因此,架構200可以視為將非分塊對角元素設為零而得到的架構100的特例。對於架構200,關鍵是如何設計式(7)中的g k 。為此,本發明提出了從用於架構100的式(6)所示的類比波束賦形矩陣的對應元素獲得這些向量。因此可得到:g k =t k /∥t k ∥, t k =u k ((k-1)N t /N+1:kN t /N) (8) Furthermore, for the hybrid beamforming architecture 200 shown in FIG. 2, since each RF channel is only connected to a part of the antennas, that is, N t /N antennas, T is a block diagonal matrix of the following form: Wherein, g k for the first N t / N × 1 vector. Thus, architecture 200 can be viewed as a special case of architecture 100 resulting from setting the non-blocking diagonal elements to zero. For architecture 200, the key is how to design g k in equation (7). To this end, the present invention proposes obtaining these vectors from the corresponding elements of the analog beamforming matrix shown in equation (6) for architecture 100. Therefore, we can get: g k = t k /∥ t k ∥, t k = u k (( k -1) N t / N +1: kN t / N ) (8)

進一步,子帶b上的數位波束賦形矩陣W(b)的生成與混合架構100相同,即可以利用基於等價通道的傳統的預編碼演算法,例如迫零演算法。 Further, the generation of the digital beamforming matrix W ( b ) on the subband b is the same as that of the hybrid architecture 100, that is, the equivalent channel can be utilized. Traditional precoding algorithms, such as zero-forcing algorithms.

從以上分析可知,為了得到類比波束賦形矩陣T和數位波束賦形矩陣W(b),基地台需要知道全部用户的寬頻通道共變異數矩陣R k 和降維的等價通道向量。因此,如何在混合構架內估計它們成為關鍵問題。在下文 中將針對具有校準天線的TDD系統、以及FDD系統和不具有校準天線的TDD系統分別進行討論。 From the above analysis, in order to obtain the beamforming matrix T analog and digital beamforming matrix W (b), the base station needs to know all of the user's broadband channel covariance matrix R k and vector dimensionality reduction equivalent channel . Therefore, how to estimate them within a hybrid architecture becomes a key issue. A discussion will be made below for a TDD system with a calibrated antenna, and an FDD system and a TDD system without a calibrated antenna, respectively.

具有校準天線的TDD系統TDD system with calibrated antenna

在TDD系統中,如果天線被精確校準,則可以利用通道互易性,基於上行訓練信號來估計下行通道。 In a TDD system, if the antenna is accurately calibrated, the channel reciprocity can be utilized to estimate the downstream channel based on the uplink training signal.

在這種情況下,通道狀態資訊的估計包括兩部分。一部分是通道向量h k (b)和寬頻通道共變異數矩陣的估計,其中考慮到寬頻通道共變異數矩陣的慢變特性和訓練開銷的減少,該部分可以在長時層面完成。基於寬頻通道共變異數矩陣推導出類比波束賦形矩陣T。另一部分是具有推導出的類比波束賦形矩陣T的等價通道向量的估計。的估計是短時的並且處於子帶級,以獲得頻率選擇性增益。 In this case, the estimation of channel status information consists of two parts. Part of it is the estimation of the channel vector h k ( b ) and the broadband channel covariance matrix, which can be completed at the long-term level considering the slow variation characteristics of the broadband channel covariance matrix and the reduction of training overhead. Covariance matrices deduced analog beamforming matrix T based broadband channel. The other part is the equivalent channel vector with the derived analog beamforming matrix T Estimate. The estimate is short-lived and at the sub-band level to obtain a frequency selective gain.

本發明的實施例提出了以下過程來獲取全部用户的寬頻通道共變異數矩陣和降維的等價通道。 Embodiments of the present invention propose the following process to obtain a broadband channel covariance matrix and a dimensionality reduction equivalent channel for all users.

通道向量和寬頻通道共變異數矩陣的長時估計Long-term estimation of common vector of channel vector and broadband channel

步驟1:基於上行訓練信號,針對全部用户估計所有子帶上的通道向量h k (b)。 Step 1: Based on the uplink training signal, estimate the channel vector h k ( b ) on all subbands for all users.

本發明的實施例提出了一種用於估計通道向量的正交上行訓練信號的多重類比波束賦形接收的方法。具體地,不同用户的訓練信號在不同子載波上被發送。假定用於第b個子帶通道估計的用户k的上行訓練信號s k 在第b(k)個 子載波上被發送。分別在用於接收的N t /N個OFDM符號中使用N t /N個不同的類比波束賦形矩陣。採用表示在第i個OFDM符號中、第k個子載波上的Nx1的接收信號向量。在N t /N個OFDM符號中,第b(k)個子載波上的接收信號由下式表示: 上式可以被進一步表示為: 類比波束賦形矩陣T 1 T 2的選取需要滿足以下條件:組合矩陣[T 1 T 2]的秩為N t ,通道向量h k (b)可以根據式(10)來估計。 Embodiments of the present invention propose a method for multi-analog beamforming reception of orthogonal uplink training signals for estimating channel vectors. Specifically, training signals of different users are transmitted on different subcarriers. It is assumed that the uplink training signal s k of the user k for the b- th sub-band channel estimation is transmitted on the bth (k) th subcarrier. N t / N different analog beamforming matrices are used in N t / N OFDM symbols for reception, respectively. use A received signal vector of N x1 on the kth subcarrier in the i- th OFDM symbol. In N t / N OFDM symbols, the received signal on the b (k) th subcarrier is represented by the following equation: The above formula can be further expressed as: Analog beamforming matrix T 1 T 2 ... The selection needs to meet the following conditions: combination matrix [ T 1 T 2 ... The rank of n ] is N t , and the channel vector h k ( b ) can be estimated according to equation (10).

步驟2:根據方程式(5),基於通道向量h k (b)來估計寬頻通道共變異數矩陣R k Step 2: Estimate the broadband channel co-variance matrix R k based on the channel vector h k ( b ) according to equation (5).

步驟3:基於R k ,根據式(6)或(7)來推導出類比波束賦形矩陣T。之後,需要對類比波束賦形矩陣T進行量化,這一點將在後文詳述。 Step 3: Based on R k , the analog beamforming matrix T is derived from equation (6) or (7). After that, the analog beamforming matrix T needs to be quantized, which will be described later.

具有推導出的類比波束賦形的等價通道向量的短時估計Short-term estimation of equivalent channel vectors with derived analog beamforming

步驟4:將類比波束賦形矩陣設置成步驟3中推導出的形式,並發送上行訓練信號,以便對來自全部用户的等 價通道向量進行估計。 Step 4: Set the analog beamforming matrix to the form derived in step 3 and send the uplink training signal to the equivalent channel vector from all users. Make an estimate.

步驟5:基於等價通道執行數位波束賦形和用戶調度。 Step 5: Based on the equivalent channel Perform digital beamforming and user scheduling.

FDD系統或不具有精確校準天線的TDD系統FDD system or TDD system without accurate calibrated antenna

對於FDD系統或不具有精確校準天線的TDD系統,不能很好的保持通道互易性。因而需要對下行通道共變異數矩陣和等價通道向量進行估計和回饋。 For FDD systems or TDD systems that do not have a precisely calibrated antenna, channel reciprocity is not well maintained. Therefore, it is necessary to estimate and feedback the downlink channel common variance matrix and the equivalent channel vector.

在這種情況下,通道狀態資訊估計和回饋包括兩部分。一部分是寬頻通道共變異數矩陣的長時估計和回饋。基於寬頻通道共變異數矩陣的回饋來推導類比波束賦形矩陣。另一部分是具有推導出的類比波束賦形的等價通道向量的短時估計和回饋。 In this case, channel state information estimation and feedback consists of two parts. Part of it is the long-term estimation and feedback of the common-variation matrix of broadband channels. The analog beamforming matrix is derived based on the feedback of the broadband common-variation matrix. The other part is the short-term estimation and feedback of the equivalent channel vector with the derived analog beamforming.

本發明的實施例提出了以下過程來獲得全部用戶的寬頻通道共變異數矩陣和降維的等價通道。 Embodiments of the present invention propose the following process to obtain a broadband channel covariance matrix and a dimensionality reduction equivalent channel for all users.

寬頻通道共變異數矩陣的長時估計和回饋Long-term estimation and feedback of a common-variation matrix of broadband channels

由於幾何尺寸的實際限制,大規模MIMO系統通常採用天線的均勻平面陣列(Uniform Planar Array,UPA),如圖4所示。在圖4中,N t 個發射天線的均勻平面陣列包括M c 行乘以M r 列天線,即N t =M r M c 。眾所周知,N t ×1的通道向量可以近似為M r ×1的水平子通道向量和M c ×1的垂直子通道向量的克羅內克積(kronecker product),即: 相應的通道共變異數矩陣可以透過下式得出: Due to the practical limitations of geometric size, massive MIMO systems typically employ a Uniform Planar Array (UPA) of antennas, as shown in Figure 4. Uniform planar array, N t transmit antennas 4 includes M c M r rows by column antennas, i.e., N t = M r M c. It is well known that the channel vector of N t ×1 can be approximated as the horizontal subchannel vector of M r ×1 and the kronecker product of the vertical subchannel vector of M c ×1, namely: The corresponding channel common variance matrix can be obtained by:

可見,均勻平面陣列的通道共變異數矩陣R可以近似為與水平線性陣列相關聯的子通道共變異數矩陣R r 和與垂直線性陣列相關聯的子通道共變異數矩陣R c的克羅內克積。 It can be seen that the channel covariance matrix R of the uniform planar array can be approximated by the subchannel covariance matrix R r associated with the horizontal linear array and the Krone of the subchannel covariance matrix R c associated with the vertical linear array. Keji.

因此,N t ×N t 的總通道共變異數矩陣R的回饋可以由兩個低維的共變異數矩陣的回饋來代替:一個是水平線性陣列的M r ×M r 的共變異數矩陣R r ,另一個是垂直線性陣列的M c ×M c 的共變異數矩陣R c。以這種方式,可以顯著減少用於通道估計的共變異數矩陣的回饋開銷和訓練信號的開銷。 Therefore, the feedback of the total channel common variance matrix R of N t × N t can be replaced by the feedback of two low-dimensional covariance matrix: one is the covariance matrix R of the horizontal linear array M r × M r r , the other is the covariance matrix R c of M c × M c of the vertical linear array. In this way, the feedback overhead of the covariance matrix for channel estimation and the overhead of the training signal can be significantly reduced.

步驟1:每個用戶基於具有專門設計的類比波束賦形的第一下行訓練信號對全部子帶上的水平通道向量進行估計。之後,每個用戶量化並回饋水平寬頻共變異數矩陣。 Step 1: Each user estimates the horizontal channel vector on all subbands based on the first downlink training signal with a specially designed analog beamforming. Each user then quantizes and feeds back the horizontal broadband covariance matrix.

為了進行水平通道向量的估計,基地台將第一初始類比波束賦形矩陣設為如下形式: In order to estimate the horizontal channel vector, the base station sets the first initial analog beamforming matrix to the following form:

其中,e i 為基本向量,在e i 中除第i個元素為1外、 其他元素均為零。 Where e i is a basic vector, except that the i- th element is 1 in e i and all other elements are zero.

然後,基地台選擇第i個水平天線陣列(即選擇圖4中的第i行的天線)和M r N個RF通道。隨後,基地台利用上式(13)中的第一初始類比波束賦形矩陣,在所選擇的第i個水平天線陣列上發送用於水平通道向量估計的下行訓練信號(也稱作第一下行訓練信號)。利用上式(13)中的第一初始類比波束賦形矩陣,可以重新利用用於全數位波束賦形方法的傳統訓練信號設計和通道估計方法。 Then, the base station selects the i-th array antenna level (i.e., selects the antenna in the i-th row in FIG. 4) and M r N RF channels. Subsequently, using the base station in the above formula (13) a first initial analog beamforming matrix, in the selected i-th horizontal antenna array transmits a training signal for the downlink channel vector estimate level (also referred to as a first lower Line training signal). By using the first initial analog beamforming matrix in the above equation (13), the conventional training signal design and channel estimation method for the full digital beamforming method can be reused.

作為一個具體示例,假定圖4中的天線陣列包括4行×8列天線。基地台首先選擇第1行的8個天線和8個RF通道。隨後,基地台利用上式(13)中的第一初始類比波束賦形矩陣,在第1行的8個天線上發送第一下行訓練信號並且使其他行的天線靜默。接下來,用户基於該第一下行訓練信號估計與第1行的8個天線對應的水平通道向量,從而得到8×1的水平通道向量。隨後,用户基於該8×1的水平通道向量計算與第1行的8個天線對應的共變異數矩陣,從而得到一個8×8的共變異數矩陣。類似地,基地台和用戶針對第2至4行的8個天線分別執行上述過程,從而最終得到4個8×8的共變異數矩陣。之後,透過對這4個8×8的共變異數矩陣進行平均,可得到針對4個水平天線陣列的共變異數矩陣R r As a specific example, it is assumed that the antenna array in Fig. 4 includes 4 rows x 8 columns of antennas. The base station first selects 8 antennas and 8 RF channels in the 1st row. Subsequently, the base station transmits the first downlink training signal on the 8 antennas of the first row and silences the antennas of the other rows using the first initial analog beamforming matrix in the above equation (13). Next, the user estimates a horizontal channel vector corresponding to the 8 antennas of the 1st row based on the first downlink training signal, thereby obtaining an 8×1 horizontal channel vector. Then, the user calculates a covariance matrix corresponding to the 8 antennas of the 1st row based on the 8×1 horizontal channel vector, thereby obtaining an 8×8 covariance matrix. Similarly, the base station and the user perform the above processes for the 8 antennas of the 2nd to 4th rows, respectively, thereby finally obtaining 4 8×8 covariance matrix. Then, by averaging the four 8×8 covariance matrices, a common variance number matrix R r for the four horizontal antenna arrays can be obtained.

基於全部子帶上的估計的水平通道向量,水平子通道共變異數矩陣可以由每個用戶根據方程式(5)進行估計。水平子通道共變異數矩陣的量化和回饋可以重新利用現有 的用於線性陣列的方法。 Based on the estimated horizontal channel vectors on all subbands, the horizontal subchannel covariance matrix can be estimated by each user according to equation (5). Quantization and feedback of the horizontal subchannel common variance matrix can reuse existing A method for linear arrays.

在一個實施例中,可將水平子通道共變異數矩陣R r 與第一傳輸相關係數相關聯。以單極化線性陣列為例,水平子通道共變異數矩陣R r 可近似為: 其中,ρ=αe 是傳輸相關係數。由此,對水平子通道共變異數矩陣R r 的回饋可以簡化為對ρ的幅度α和相位θ的回饋。 In one embodiment, the total number of horizontal sub-channel matrix R r with the first correlation coefficients associated with transmission variation. Taking a single-polarized linear array as an example, the horizontal sub-channel common variance matrix R r can be approximated as: Where ρ = αe is the transmission correlation coefficient. Thus, the feedback of the horizontal subchannel common variogram matrix R r can be simplified to the feedback of the amplitude α and the phase θ of ρ .

步驟2:每個用戶基於具有專門設計的類比波束賦形的第二下行訓練信號對全部子帶上的垂直通道向量進行估計。之後,每個用戶量化並回饋垂直寬頻共變異數矩陣。 Step 2: Each user estimates the vertical channel vectors on all subbands based on a second downlink training signal with a specially designed analog beamforming. Each user then quantizes and feeds back the vertical wideband covariance matrix.

為了進行垂直通道向量的估計,基地台將第二初始類比波束賦形矩陣設為如下形式。 In order to estimate the vertical channel vector, the base station sets the second initial analog beamforming matrix to the following form.

從式(15)中可見,第二初始類比波束賦形矩陣包括M c ×M c 的單位陣,而其餘元素均為0。 As can be seen from equation (15), the second initial analog beamforming matrix includes a unit matrix of M c × M c , and the remaining elements are all zero.

然後,除了基地台選擇第i個垂直天線陣列(即選擇圖4中的第i列的天線)和M c N個RF通道、並利用上式(15)中的第二初始類比波束賦形矩陣以發送用於垂直通道向量估計的下行訓練信號(也稱作第二下行訓練信號)之外,垂直通道向量估計和垂直子通道共變異數矩陣R c 的 回饋與步驟1中的類似。 Then, in addition to the base station, the i- th vertical antenna array is selected (ie, the antenna of the ith column in FIG. 4 is selected) and M c N -channels, and using the second initial analog beamforming matrix in equation (15) to transmit the downlink training signal (also referred to as the second downlink training signal) for vertical channel vector estimation, the vertical channel vector The feedback of the estimated and vertical subchannel covariance matrix R c is similar to that in step 1.

此外,類似地,在一個實施例中,可將垂直子通道共變異數矩陣R c 與第二傳輸相關係數相關聯。由此,對垂直子通道共變異數矩陣R c 的回饋可以簡化為對第二傳輸相關係數的幅度和相位的回饋。 Also, similarly, in one embodiment, the total number of vertical sub-channel R c matrix associated with a second transmission coefficient of variation is associated. Thus, the feedback of the vertical subchannel covariance matrix R c can be simplified to the feedback of the amplitude and phase of the second transmission correlation coefficient.

步驟3:根據式(12),基地台基於步驟1和2中的水平和垂直寬頻共變異數矩陣的回饋,獲取全部用户的寬頻通道共變異數矩陣。隨後基地台根據式(6)或(7)推導出類比波束賦形矩陣T。 Step 3: According to equation (12), the base station obtains the broadband common-covariance matrix of all users based on the feedback of the horizontal and vertical broadband common-variation matrix in steps 1 and 2. The base station then derives an analog beamforming matrix T from equation (6) or (7).

具有推導出的類比波束賦形的等價通道向量的短時估計和回饋Short-term estimation and feedback of equivalent channel vectors with derived analog beamforming

步驟4:基地台將類比波束賦形矩陣設置成步驟3中推導出的形式,並發送用於等價通道估計的下行訓練信號(也稱作第三下行訓練信號)。 Step 4: The base station sets the analog beamforming matrix to the form derived in step 3, and transmits a downlink training signal (also referred to as a third downlink training signal) for the equivalent channel estimation.

步驟5:每個用户估計、量化並回饋等價通道向量。此時可以使用傳統的通道狀態資訊回饋方法,例如標量(scalar)量化,自我調整碼本等。 Step 5: Each user estimates, quantifies, and rewards the equivalent channel vector . At this point, traditional channel state information feedback methods can be used, such as scalar quantization, self-adjusting codebooks, and the like.

步驟6:基地台基於步驟5中的來自全部用户的等價通道的回饋,執行數位波束賦形和用户調度。 Step 6: The base station is based on the equivalent channel from all users in step 5. Feedback, performing digital beamforming and user scheduling.

對於步驟5和6,以自我調整碼本為例,最終的碼字是通道共變異數矩陣R eff 和預定義的碼字W(例如,DFT向量)的乘積,即: For steps 5 and 6, take the self-adjusting codebook as an example, the final codeword Is the covariance matrix R eff and predefined codeword W (e.g., the DFT vector) product channels, namely:

用户可以基於估計的等價通道對寬頻等價通道共變異數矩陣進行估計 The user can estimate the common-variation matrix of the broadband equivalent channel based on the estimated equivalent channel.

由於 due to

因此,基地台也可以基於類比波束賦形以及步驟3中推導出的寬頻通道共變異數矩陣的知識,獨自推導寬頻等價通道共變異數矩陣。 Therefore, the base station can also derive the common-variation matrix of the wide-band equivalent channel based on the knowledge of the analog beamforming and the broadband common-variation matrix derived in step 3.

相應地,由於用戶和基地台可以分別獲得共變異數矩陣,從而無需以自我調整碼本的形式回饋共變異數矩陣。用戶僅需對式(16)中的最佳碼字W進行選取和回饋。 Correspondingly, since the user and the base station can respectively obtain the covariance matrix, it is not necessary to feed back the covariance matrix in the form of a self-adjusting codebook. The user only needs to select and feedback the best codeword W in equation (16).

以上透過具體實施例,對如何計算寬頻類比波束賦形矩陣T和子帶數位波束賦形矩陣W(b)進行了詳細描述。在下文中,將詳細描述如何透過對寬頻類比波束賦形矩陣T進行量化而得到經量化的寬頻類比波束賦形矩陣The above describes how to calculate the broadband analog beamforming matrix T and the subband digital beamforming matrix W ( b ) through a specific embodiment. In the following, how to quantize the broadband analog beamforming matrix by quantizing the broadband analog beamforming matrix T will be described in detail. .

從以上描述的式(6)和(8)可見,基於通道估計而得到的類比波束賦形矩陣T中的每個元素都是任意的複數,其相位和幅度都是隨機的。然而,類比波束賦形是利用相移器來實施的,而相移器要求類比波束賦形矩陣T中的每個元素都是恒模的並且相位是在一個預定的相位集合中選取的。因此,考慮到硬體實施的複雜度和成本,需要將類比波束賦形矩陣T變換成符合現有硬體要求的矩陣,並且使 得損失盡可能小。在本文中,這種變換也稱為針對硬體減損(impairment)而對類比波束賦形矩陣T的量化。一個直觀的方法是對類比波束賦形矩陣T中的每個非零元素進行單獨量化。但是,考慮到通道容量最大化,該方法可能不是最佳的。為此,針對式(6)和(8)中的類比波束賦形矩陣T,本發明的實施例提出了根據通道容量最大化準則執行相位搜尋的方法,具體過程如下。 It can be seen from the equations (6) and (8) described above that each element in the analog beamforming matrix T obtained based on the channel estimation is an arbitrary complex number whose phase and amplitude are random. However, analog beamforming is implemented using a phase shifter that requires each element in the analog beamforming matrix T to be constant modulus and phase selected in a predetermined set of phases. Therefore, considering the complexity and cost of hardware implementation, it is necessary to transform the analog beamforming matrix T into a matrix that conforms to existing hardware requirements, and to make the loss as small as possible. In this context, this transformation is also referred to as quantification of the analog beamforming matrix T for hardware impairments. An intuitive approach is to separately quantify each non-zero element in the analog beamforming matrix T. However, this approach may not be optimal considering the maximum channel capacity. To this end, for the analog beamforming matrix T in equations (6) and (8), the embodiment of the present invention proposes a method of performing phase searching according to the channel capacity maximization criterion, and the specific process is as follows.

如式(3)所示,根據等價通道容量最大化準則,具有有限相位解析度的最佳化的類比波束賦形矩陣(即經量化的類比波束賦形矩陣)可以由下式來表示: 其中,表示計算括弧內矩陣的行列式, 表示取使得最大的矩陣。矩陣被稱作候選矩陣,其中的非零元素的幅度均為1並且相位從一個預定的相位集合中選取。為了找出最佳化的類比波束賦形,需要對全部候選矩陣進行搜尋。但是,由於類比波束賦形候選矩陣的數目對於架構100而言為,對於架構200而言為,因此對於大型天線系統中的實際使用而言,完成這種全面搜尋的計算複雜度是非常高的。因此,明顯減少用於對類比波束賦形矩陣搜尋的計算複雜度的次佳方法是重要的且必須的。為此,本發明的實施例提出了根據通道容量最大化準則執行相位搜尋的方法。 As shown in equation (3), an optimized analog beamforming matrix with finite phase resolution (ie, a quantized analog beamforming matrix) can be represented by the following equation according to the equivalent channel capacity maximization criterion: among them, Represents the determinant of the matrix in the brackets, Representation Largest matrix . matrix It is called a candidate matrix, in which the non-zero elements have an amplitude of 1 and the phase is selected from a predetermined set of phases. In order to find an optimized analog beamforming Need to search all candidate matrices. However, since the number of analog beamforming candidate matrices is for architecture 100 For architecture 200 Therefore, the computational complexity of accomplishing such a comprehensive search is very high for practical use in large antenna systems. Therefore, it is important and necessary to significantly reduce the sub-optimal method for computational complexity of analog beamforming matrix searches. To this end, embodiments of the present invention propose a method of performing phase search in accordance with channel capacity maximization criteria.

首先,將式(6)或(7)中的類比波束賦形矩陣T中的每 個元素的幅度進行正規化,並且將其相位與預定相位集合中的相位進行比較,從中選擇與其最接近的一個相位值,從而形成一個初始化的類比波束賦形矩陣,並且將其作為最佳化的種子。作為一個具體示例,預定相位集合包括將360度進行16等分而得到的16個相位值。應當理解,預定相位集合的選取取決於用於類比波束賦形的硬體的要求,即根據具體的硬體可以選擇任何適當的預定相位集合。 First, the amplitude of analog beamforming matrix T of formula (6) or (7) of each element were normalized, and its phase is compared with the phase of the predetermined phase set, select its nearest A phase value that forms an initialized analog beamforming matrix and is used as a seed for optimization. As a specific example, the predetermined phase set includes 16 phase values obtained by dividing 16 degrees into 360 degrees. It should be understood that the selection of the predetermined set of phases depends on the requirements of the hardware used for analog beamforming, i.e., any suitable predetermined set of phases can be selected depending on the particular hardware.

接下來,需要執行數次反覆運算。在每次反覆運算中,根據通道容量最大化準則,針對上述初始化的類比波束賦形矩陣中的每個元素,逐一地執行相位搜尋,從而每次反覆運算確定中的一個元素。具體而言,在每次反覆運算中,僅改變上述初始化的類比波束賦形矩陣中的一個元素的相位,而其他元素保持不變,最終針對一個元素, 從預定相位集合中選擇一個能夠使得式(19)中的最大的相位值。從而,類比波束賦形候選矩陣的數目對於架構100可顯著減小到qdNN t ,對於架構200可顯著減小到qdN t ,其中q表示反覆運算數目。通常,小數值的q足以滿足搜尋的收斂,例如在後面的類比中,q的值為4。 Next, you need to perform several iterations. In each iterative operation, according to the channel capacity maximization criterion, the phase search is performed one by one for each element in the above-mentioned initialized analog beamforming matrix, so that each iterative operation is determined. An element in the middle. Specifically, in each iterative operation, only the phase of one element in the initialized analog beamforming matrix is changed, while the other elements remain unchanged, and finally, for one element, one of the predetermined phase sets can be selected. In (19) The largest phase value. Thus, the number of analog beamforming matrix for candidates architecture 100 may be reduced significantly to qdNN t, architecture 200 may be significantly reduced for the qdN t, where q represents the number of repeated operations. Usually, the decimal value q is sufficient to satisfy the convergence of the search. For example, in the latter analogy, the value of q is 4.

應當理解,對矩陣T的上述量化過程僅僅是出於說明的目的而呈現的。針對不同的硬體,可以採取不同的量化過程,本發明的範圍在此態樣不受限制。 It should be understood that the above-described quantization process for matrix T is presented for illustrative purposes only. Different quantization processes may be employed for different hardware, and the scope of the invention is not limited in this respect.

透過以上描述可以理解,所提出的類比波束賦形基於每個小區內被服務的全部候選用户的寬頻通道共變異數矩 陣而向該全部候選用户指示波束。隨後,基於對類比波束賦形後的降維的等價通道的估計進行數位波束賦形。可以重新利用例如迫零法(ZF:zero-forcing)等傳統的預編碼演算法進行數位波束賦形設計。在下文中將描述關於用戶調度的設計。 It can be understood from the above description that the proposed analog beamforming is based on the broadband common-covariance moment of all candidate users served in each cell. The beam is indicated to all of the candidate users. Digital beamforming is then performed based on the estimation of the reduced-dimensional equivalent channel after the analog beam shaping. The traditional precoding algorithm such as ZF (zero-forcing) can be reused for digital beamforming design. The design regarding user scheduling will be described below.

首先,本發明的實施例提出了一種聯合的類比波束賦形和寬頻用戶調度方案(以下簡稱聯合調度方案)。考慮到寬頻用戶調度,可以基於最大加權和容量的準則將類比波束賦形與用戶調度聯合進行設計。基於被調度用户的寬頻通道共變異數矩陣之和,根據以上描述的式(4)、(5)以及(6)來推導出類比波束賦形矩陣。 First, an embodiment of the present invention proposes a joint analog beamforming and broadband user scheduling scheme (hereinafter referred to as a joint scheduling scheme). Considering broadband user scheduling, analog beamforming can be designed in conjunction with user scheduling based on criteria for maximum weighting and capacity. Based on the sum of the wideband channel covariance matrices of the scheduled users, the analog beamforming matrix is derived from equations (4), (5), and (6) described above.

在該聯合調度方案中,由於類比波束賦形的設計取決於被調度的用戶,所以應該在每個調度子幀內對全部B個子帶上的全部S個用户的通道向量h k (b)(1 k S;1 b B)進行估計。 In the joint scheduling scheme, since the design of the analog beamforming depends on the user to be scheduled, the channel vector h k ( b ) of all S users on all B subbands should be in each scheduling subframe ( 1 k S ;1 b B) is estimated.

在該聯合調度方案中,由於在類比波束賦形中考慮了用戶調度,所以類比波束賦形與用戶調度之間就存在聯繫。寬頻通道共變異數矩陣具有慢變特性,而用戶調度是一個快變的過程。一旦用戶調度的結果發生改變,則類比波束賦形矩陣也相應地需要改變。由於類比波束賦形的測量(通道估計)需要的開銷很大,因此希望類比波束賦形矩陣是一個慢變的量。換言之,一旦被調度的用戶發生改變,類比波束賦形矩陣較佳不發生改變。為此,本發明的實施例還提出了一種分離的類比波束賦形和子帶用戶調度 方案(以下簡稱分離調度方案)。 In the joint scheduling scheme, since user scheduling is considered in analog beamforming, there is a relationship between analog beamforming and user scheduling. The wide-band channel common-variation matrix has a slow-changing characteristic, and user scheduling is a fast-changing process. Once the results of the user scheduling change, the analog beamforming matrix also needs to change accordingly. Since the measurement of analog beamforming (channel estimation) requires a lot of overhead, it is desirable that the analog beamforming matrix is a slowly varying amount. In other words, the analog beamforming matrix preferably does not change once the scheduled user changes. To this end, embodiments of the present invention also propose a separate analog beamforming and subband user scheduling. Scheme (hereinafter referred to as the separation scheduling scheme).

在分離調度方案中,基於全部S個候選用户的寬頻通道共變異數矩陣之和,設計用於對全部S個用户指示波束的類比波束賦形,即: 之後,基於對類比波束賦形後的等價通道的短時估計,執行子帶用戶調度。由此,類比波束賦形和用戶調度分離地進行,從而可以支持子帶用户調度以獲得頻率選擇性增益。 In the separation in the schedule, based on all the S wideband channel candidate users and covariance matrices, designed for indicating beam S for all user analog beamforming, namely: Sub-band user scheduling is then performed based on a short-term estimate of the equivalent channel after the analog beam shaping. Thus, analog beamforming and user scheduling are performed separately, thereby enabling subband user scheduling to obtain frequency selective gain.

在該分離調度方案中,不管在每個子幀內的用戶調度如何,在一個用户的通道共變異數矩陣改變時類比波束賦形矩陣才發生改變。從而類比波束賦形矩陣的更新週期比前述聯合調度方案更慢。該分離調度方案的另一個優點是僅需在每個子幀內對等價通道向量T H h k (b)(1 k S;1 b B)進行估計,無需如聯合調度方案中那樣對通道向量h k (b)進行估計。 In the separate scheduling scheme, the analog beamforming matrix changes when a user's channel common variance matrix changes, regardless of user scheduling within each subframe. Thus, the update period of the analog beamforming matrix is slower than the aforementioned joint scheduling scheme. Another advantage of this separate scheduling scheme is that only the equivalent channel vector T H h k ( b ) is required within each subframe. k S ;1 b B ) Estimation is made without estimating the channel vector h k ( b ) as in the joint scheduling scheme.

在如下表I中示出兩種用户調度方案之間的性能比較。類比參數和假設歸納在表II中。從比較結果可見,對於64個發射天線和16個RF通道而言,分離調度方案比聯合調度方案的小區邊緣增益高20%。 A performance comparison between the two user scheduling schemes is shown in Table I below. Analog parameters and assumptions are summarized in Table II. It can be seen from the comparison that for 64 transmit antennas and 16 RF channels, the split scheduling scheme is 20% higher than the cell edge gain of the joint scheduling scheme.

在第二態樣中,本發明的實施例還提出了一種在基地台中進行混合波束賦形的方法。圖5示出了根據本發明實施例第二態樣的在基地台中進行混合波束賦形的方法500的流程圖。方法500開始於步驟510。在步驟S510,基於對物理通道的長時估計,計算寬頻類比波束賦形矩陣。然後,在步驟S520,向所述物理通道應用所述寬頻類比波束賦形矩陣,以獲得所述物理通道的等價通道。然後,在步驟S530,基於對所述等價通道的短時估計,計算子帶數位波束賦形矩陣並且執行子帶用戶調度。隨後,在步驟S540,利用所述寬頻類比波束賦形矩陣和所述子帶數位波束賦形矩陣,對用於被調度用户的下行鏈路信號進行混合波束賦形。 In a second aspect, embodiments of the present invention also provide a method of hybrid beamforming in a base station. FIG. 5 illustrates a flow diagram of a method 500 of hybrid beamforming in a base station in accordance with a second aspect of an embodiment of the present invention. The method 500 begins at step 510. At step S510, a broadband analog beamforming matrix is calculated based on long-term estimation of the physical channel. Then, in step S520, the broadband analog beamforming matrix is applied to the physical channel to obtain an equivalent channel of the physical channel. Then, in step S530, based on the short-term estimation of the equivalent channel, the sub-band digital beamforming matrix is calculated and sub-band user scheduling is performed. Then, in step S540, the downlink signal for the scheduled user is subjected to hybrid beamforming using the broadband analog beamforming matrix and the subband digital beamforming matrix.

在一個實施例中,方法500進一步包括:分別透過所述基地台的水平線性陣列和垂直線性陣列向行動終端發送第一訓練信號和第二訓練信號,以便所述行動終端分別基於所述第一訓練信號和所述第二訓練信號來估計與所述水平線性陣列相關聯的水平子通道共變異數矩陣以及與所述垂直線性陣列相關聯的垂直子通道共變異數矩陣;分別從所述行動終端接收對所述水平子通道共變異數矩陣的估計 的回饋、以及對所述垂直子通道共變異數矩陣的估計的回饋;以及基於所述回饋來構建所述水平子通道共變異數矩陣與所述垂直子通道共變異數矩陣的克羅內克積,以作為所述物理通道的寬頻通道共變異數矩陣。 In one embodiment, the method 500 further includes transmitting, by the horizontal linear array and the vertical linear array of the base station, a first training signal and a second training signal to the mobile terminal, respectively, so that the mobile terminal is respectively based on the first Training a signal and the second training signal to estimate a horizontal subchannel covariance matrix associated with the horizontal linear array and a vertical subchannel covariance matrix associated with the vertical linear array; respectively from the action The terminal receives an estimate of the horizontal subchannel covariance matrix Feedback, and estimated feedback of the vertical subchannel covariance matrix; and Kroneck based on the feedback to construct the horizontal subchannel covariance matrix and the vertical subchannel covariance matrix Product, as the broadband channel covariance matrix of the physical channel.

應當理解,以上針對根據本發明實施例第一態樣的混合波束賦形方法所描述的關於用户調度、訓練信號設計、通道估計以及通道估計結果的回饋的內容,同樣適用於方法500。為了簡明起見,不再贅述。 It should be understood that the above description of user scheduling, training signal design, channel estimation, and feedback of channel estimation results as described for the hybrid beamforming method of the first aspect of the embodiments of the present invention is equally applicable to method 500. For the sake of brevity, I will not repeat them.

在協力廠商態樣中,本發明的實施例還提出了一種在行動終端中用於混合波束賦形的方法。圖6示出了根據本發明實施例協力廠商面的在行動終端中用於混合波束賦形的方法600的流程圖。方法600開始於步驟610。在步驟S610,基於從基地台的天線的水平線性陣列接收到的第一訓練信號,估計與所述水平線性陣列相關聯的水平子通道共變異數矩陣。然後,在步驟S620,基於從所述基地台的天線的垂直線性陣列接收到的第二訓練信號,估計與所述垂直線性陣列相關聯的垂直子通道共變異數矩陣。隨後,在步驟S630,向基地台回饋對所述水平子通道共變異數矩陣的估計、以及對所述垂直子通道共變異數矩陣的估計。 In a synergistic aspect, embodiments of the present invention also propose a method for hybrid beamforming in a mobile terminal. 6 shows a flow diagram of a method 600 for hybrid beamforming in a mobile terminal in accordance with an embodiment of the present invention. The method 600 begins at step 610. At step S610, a horizontal subchannel covariance matrix associated with the horizontal linear array is estimated based on the first training signal received from the horizontal linear array of antennas of the base station. Then, in step S620, a vertical subchannel covariance matrix associated with the vertical linear array is estimated based on a second training signal received from a vertical linear array of antennas of the base station. Then, in step S630, an estimate of the horizontal subchannel covariance matrix and an estimate of the vertical subchannel covariance matrix are fed back to the base station.

在一個實施例中,方法600進一步包括:將所述水平子通道共變異數矩陣與第一傳輸相關係數相關聯,以及將所述垂直子通道共變異數矩陣與第二傳輸相關係數相關聯;並且其中向基地台回饋對所述水平子通道共變異數矩 陣的估計、以及對所述垂直子通道共變異數矩陣的估計包括:向所述基地台回饋所述第一傳輸相關係數的幅度和相位以及所述第二傳輸相關係數的幅度和相位。 In one embodiment, the method 600 further includes: associating the horizontal subchannel covariance matrix with a first transmission correlation coefficient, and associating the vertical subchannel covariance matrix with a second transmission correlation coefficient; And wherein the base station is fed back to the horizontal subchannel co-variation moment The estimation of the array and the estimation of the vertical subchannel covariance matrix include: feeding back the amplitude and phase of the first transmission correlation coefficient and the amplitude and phase of the second transmission correlation coefficient to the base station.

在一個實施例中,方法600進一步包括:基於從所述基地台接收到的第三訓練信號,估計等價通道;以及向所述基地台回饋對所述等價通道的估計。 In one embodiment, method 600 further includes estimating an equivalent channel based on a third training signal received from the base station; and feeding back an estimate of the equivalent channel to the base station.

在第四態樣中,本發明的實施例還提供了一種在基地台中進行混合波束賦形的裝置。圖7示出了根據本發明實施例第四態樣的在基地台中進行混合波束賦形的裝置700的方塊圖。如圖所示,裝置700包括:長時估計單元710,被配置為基於對物理通道的長時估計,計算寬頻類比波束賦形矩陣;量化單元720,被配置為對所述寬頻類比波束賦形矩陣進行量化,以獲得經量化的寬頻類比波束賦形矩陣;等價通道獲取單元730,被配置為向所述物理通道應用所述經量化的寬頻類比波束賦形矩陣,以獲得所述物理通道的等價通道;短時估計單元740,被配置為基於對所述等價通道的短時估計,計算子帶數位波束賦形矩陣;以及混合波束賦形單元750,被配置為利用所述子帶數位波束賦形矩陣和所述經量化的寬頻類比波束賦形矩陣,對下行鏈路信號進行混合波束賦形。 In a fourth aspect, embodiments of the present invention also provide an apparatus for hybrid beamforming in a base station. 7 shows a block diagram of an apparatus 700 for hybrid beamforming in a base station in accordance with a fourth aspect of an embodiment of the present invention. As shown, the apparatus 700 includes a long time estimation unit 710 configured to calculate a broadband analog beamforming matrix based on long-term estimation of a physical channel, and a quantization unit 720 configured to shape the broadband analog beam The matrix is quantized to obtain a quantized broadband analog beamforming matrix; an equivalent channel acquisition unit 730 is configured to apply the quantized broadband analog beamforming matrix to the physical channel to obtain the physical channel Equivalent channel; short time estimation unit 740 configured to calculate a subband digital beamforming matrix based on short-term estimation of the equivalent channel; and hybrid beamforming unit 750 configured to utilize the sub-portion A hybrid beamforming is performed on the downlink signal with a digital beamforming matrix and the quantized broadband analog beamforming matrix.

在一個實施例中,量化單元720被進一步配置為:將所述寬頻類比波束賦形矩陣中的每個非零元素的幅度進行正規化;以及針對所述每個非零元素,在預定的相位集合中逐元素地執行相位搜尋,以選擇使得所述等價通道的容 量最大化的相位。 In one embodiment, quantization unit 720 is further configured to: normalize the amplitude of each non-zero element in the wide-band analog beamforming matrix; and at the predetermined phase for each of the non-zero elements Performing a phase search element by element in the set to select the capacity of the equivalent channel The amount of phase that maximizes.

在一個實施例中,裝置700進一步包括:調度單元,被配置為基於對所述等價通道的短時估計,執行子帶用戶調度。 In one embodiment, apparatus 700 further includes a scheduling unit configured to perform sub-band user scheduling based on a short-term estimate of the equivalent channel.

在一個實施例中,裝置700進一步包括:發送單元,被配置為分別透過所述基地台的水平線性陣列和垂直線性陣列向所述行動終端發送第一訓練信號和第二訓練信號,以便所述行動終端分別基於所述第一訓練信號和所述第二訓練信號來估計與所述水平線性陣列相關聯的水平子通道共變異數矩陣以及與所述垂直線性陣列相關聯的垂直子通道共變異數矩陣;接收單元,被配置為分別從所述行動終端接收對所述水平子通道共變異數矩陣的估計的回饋、以及對所述垂直子通道共變異數矩陣的估計的回饋;以及構建單元,被配置為基於所述回饋來構建所述水平子通道共變異數矩陣與所述垂直子通道共變異數矩陣的克羅內克積,以作為所述物理通道的寬頻通道共變異數矩陣。 In one embodiment, apparatus 700 further includes: a transmitting unit configured to transmit a first training signal and a second training signal to the mobile terminal through a horizontal linear array and a vertical linear array of the base station, respectively, to The mobile terminal estimates a horizontal subchannel covariance matrix associated with the horizontal linear array and a common subchannel covariation associated with the vertical linear array based on the first training signal and the second training signal, respectively a number matrix; a receiving unit configured to receive, from the mobile terminal, an estimated feedback of the horizontal subchannel covariance matrix, and an estimated feedback of the vertical subchannel covariance matrix, respectively; and a building unit And configuring, based on the feedback, a Kronecker product of the horizontal subchannel covariance matrix and the vertical subchannel covariance matrix to serve as a broadband channel covariance matrix of the physical channel.

在第五態樣中,本發明的實施例還提供了一種在基地台中進行混合波束賦形的裝置。圖8示出了根據本發明實施例第五態樣的在基地台中進行混合波束賦形的裝置800的方塊圖。如圖所示,裝置800包括:長時估計單元810,被配置為基於對物理通道的長時估計,計算寬頻類比波束賦形矩陣;等價通道獲取單元820,被配置為向所述物理通道應用所述寬頻類比波束賦形矩陣,以獲得所述物理通道的等價通道;短時估計單元830,被配置為基於 對所述等價通道的短時估計,計算子帶數位波束賦形矩陣並且執行子帶用戶調度;以及混合波束賦形單元840,被配置為利用所述寬頻類比波束賦形矩陣和所述子帶數位波束賦形矩陣,對用於被調度用户的下行鏈路信號進行混合波束賦形。 In a fifth aspect, embodiments of the present invention also provide an apparatus for hybrid beamforming in a base station. 8 shows a block diagram of an apparatus 800 for performing hybrid beamforming in a base station in accordance with a fifth aspect of an embodiment of the present invention. As shown, the apparatus 800 includes a long-term estimation unit 810 configured to calculate a broadband analog beamforming matrix based on a long-term estimation of a physical channel; an equivalent channel acquisition unit 820 configured to the physical channel Applying the broadband analog beamforming matrix to obtain an equivalent channel of the physical channel; a short time estimating unit 830 configured to be based on Calculating a sub-band digital beamforming matrix and performing sub-band user scheduling for short-term estimation of the equivalent channel; and a hybrid beamforming unit 840 configured to utilize the broadband analog beamforming matrix and the sub- A digital beamforming matrix is used to perform hybrid beamforming on the downlink signals for the scheduled users.

在一個實施例中,裝置800進一步包括:訓練信號發送單元,被配置為分別透過所述基地台的水平線性陣列和垂直線性陣列向所述行動終端發送第一訓練信號和第二訓練信號,以便所述行動終端分別基於所述第一訓練信號和所述第二訓練信號來估計與所述水平線性陣列相關聯的水平子通道共變異數矩陣以及與所述垂直線性陣列相關聯的垂直子通道共變異數矩陣;回饋接收單元,被配置為分別從所述行動終端接收對所述水平子通道共變異數矩陣的估計的回饋、以及對所述垂直子通道共變異數矩陣的估計的回饋;以及構建單元,被配置為基於所述回饋來構建所述水平子通道共變異數矩陣與所述垂直子通道共變異數矩陣的克羅內克積,以作為所述物理通道的寬頻通道共變異數矩陣。 In one embodiment, the apparatus 800 further includes: a training signal transmitting unit configured to transmit the first training signal and the second training signal to the mobile terminal through the horizontal linear array and the vertical linear array of the base station, respectively, so that The mobile terminal estimates a horizontal subchannel covariance matrix associated with the horizontal linear array and a vertical subchannel associated with the vertical linear array based on the first training signal and the second training signal, respectively a common variance matrix; a feedback receiving unit configured to receive an estimated feedback of the horizontal subchannel covariance matrix from the mobile terminal and an estimated feedback of the vertical subchannel covariance matrix, respectively; And a building unit configured to construct a Kronecker product of the horizontal subchannel covariance matrix and the vertical subchannel covariance matrix based on the feedback to serve as a broadband channel covariation of the physical channel Number matrix.

在第六態樣中,本發明的實施例還提供了一種在行動終端中進行混合波束賦形的裝置。圖9示出了根據本發明實施例第六態樣的在行動終端中進行混合波束賦形的裝置900的方塊圖。如圖所示,裝置900包括:第一估計單元910,被配置為基於從基地台的天線的水平線性陣列接收到的第一訓練信號,估計與所述水平線性陣列相關聯的水 平子通道共變異數矩陣;第二估計單元920,被配置為基於從所述基地台的天線的垂直線性陣列接收到的第二訓練信號,估計與所述垂直線性陣列相關聯的垂直子通道共變異數矩陣;以及回饋單元930,被配置為向基地台回饋對所述水平子通道共變異數矩陣的估計、以及對所述垂直子通道共變異數矩陣的估計。 In a sixth aspect, embodiments of the present invention also provide an apparatus for hybrid beamforming in a mobile terminal. 9 is a block diagram of an apparatus 900 for performing hybrid beamforming in a mobile terminal in accordance with a sixth aspect of an embodiment of the present invention. As shown, apparatus 900 includes a first estimating unit 910 configured to estimate water associated with the horizontal linear array based on a first training signal received from a horizontal linear array of antennas of the base station a flat subchannel common variance matrix; a second estimating unit 920 configured to estimate a vertical subchannel associated with the vertical linear array based on a second training signal received from a vertical linear array of antennas of the base station a variance matrix; and a feedback unit 930 configured to feed back to the base station an estimate of the horizontal subchannel covariance matrix and an estimate of the vertical subchannel covariance matrix.

在一個實施例中,裝置900進一步包括:關聯單元,被配置為將所述水平子通道共變異數矩陣與第一傳輸相關係數相關聯,以及將所述垂直子通道共變異數矩陣與第二傳輸相關係數相關聯;並且其中向基地台回饋對所述水平子通道共變異數矩陣的估計、以及對所述垂直子通道共變異數矩陣的估計包括:向所述基地台回饋所述第一傳輸相關係數的幅度和相位以及所述第二傳輸相關係數的幅度和相位。 In an embodiment, the apparatus 900 further includes: an associating unit configured to associate the horizontal subchannel covariance matrix with the first transmission correlation coefficient, and the vertical subchannel covariance matrix and the second Transmitting a correlation coefficient associated; and wherein feeding back an estimate of the horizontal subchannel covariance matrix to the base station and estimating the vertical subchannel covariance matrix comprises: feeding back the first to the base station The amplitude and phase of the correlation coefficient and the amplitude and phase of the second transmission correlation coefficient are transmitted.

在一個實施例中,裝置900進一步包括:等價通道估計單元,被配置為基於從所述基地台接收到的第三訓練信號,估計等價通道;並且所述回饋單元被進一步配置為向所述基地台回饋對所述等價通道的估計。 In one embodiment, apparatus 900 further includes an equivalent channel estimation unit configured to estimate an equivalent channel based on a third training signal received from the base station; and the feedback unit is further configured to The base station returns an estimate of the equivalent channel.

應當理解,裝置700、800和900所包括的單元可以利用各種方式來實現,包括軟體、硬體、韌體或其任意組合。在一個實施例中,一個或多個單元可以使用軟體和/或韌體來實現,例如儲存在儲存介質上的機器可執行指令。除了機器可執行指令之外或者作為替代,裝置700、800和//900中的部分或者全部單元可以至少部分地由一個 或多個硬體邏輯元件來實現。作為示例而非限制,可以使用的示範類型的硬體邏輯元件包括場效可程式邏輯閘陣列(FPGA)、特殊應用積體電路(ASIC)、專用標準品(ASSP)、系統單晶片(SOC)、複雜可程式邏輯裝置(CPLD),等等。 It should be understood that the units included in devices 700, 800, and 900 can be implemented in a variety of ways, including software, hardware, firmware, or any combination thereof. In one embodiment, one or more of the units may be implemented using software and/or firmware, such as machine executable instructions stored on a storage medium. In addition to or in lieu of machine-executable instructions, some or all of the units 700, 800, and/or 900 may be at least partially Or multiple hardware logic components to achieve. By way of example and not limitation, exemplary types of hardware logic elements that may be used include field effect programmable logic gate array (FPGA), special application integrated circuit (ASIC), application specific standard (ASSP), system single chip (SOC). , Complex Programmable Logic Devices (CPLDs), and more.

在下文中將描述針對本發明所提出的方案的系統級類比結果。在本部分中,提出的用於大規模MIMO的混合波束賦形方法的性能在19個網站/57個五角形小區上進行驗證。類比參數和假設總結在表II中。每個基地台具有8行×8列天線的單極平面陣列,並且服務於10個單天線用户。採用具有分離的類比波束賦形和子帶用戶調度(即前述的分離調度方案)的多用戶MIMO。類比結果在表III~IV中示出。 System level analogy results for the proposed scheme of the present invention will be described below. In this section, the performance of the proposed hybrid beamforming method for massive MIMO is verified on 19 sites/57 pentagon cells. Analog parameters and assumptions are summarized in Table II. Each base station has a monopole planar array of 8 rows by 8 columns of antennas and serves 10 single antenna users. Multi-user MIMO with separate analog beamforming and sub-band user scheduling (ie, the aforementioned separate scheduling scheme) is employed. The analogy results are shown in Tables III-IV.

混合波束賦形vs.數位波束賦形Hybrid beamforming vs. digital beamforming

在表III中,混合架構100用一半射頻通道達到了與數位波束賦形相似的性能。進一步將射頻通道的數目減少到四分之一,性能損失仍限制在9%以內。混合架構200比全數位波束賦形的性能損失更大,其具有29%的小區平均損失,以及38%的小區邊緣損失,主要是由於簡化的類比波束賦形的波束賦形增益更少。 In Table III, hybrid architecture 100 achieves similar performance to digital beamforming with half of the RF channel. Further reducing the number of RF channels to a quarter, the performance loss is still limited to 9%. The hybrid architecture 200 has a greater performance penalty than full-bit beamforming, with a cell average loss of 29% and a cell edge loss of 38%, primarily due to less beamforming gain for simplified analog beamforming.

硬體減損的影響Hardware impairment

在表IV中示出4比特相位解析度的硬體減損。利用所提出的相位搜尋方法,在理想類比波束賦形矩陣(採用式(6)或(7)的理想類比波束賦形矩陣)上,混合架構100的性能損失被限制4%以內。由於在根據通道容量最大化準則的相位搜尋期間進一步最佳化了類比波束賦形矩陣,從而混合架構200達到了更好的性能,獲得了高達15%的增益。 The hardware impairment of 4-bit phase resolution is shown in Table IV. With the proposed phase search method, the performance loss of the hybrid architecture 100 is limited to 4% in the ideal analog beamforming matrix (using the ideal analog beamforming matrix of equation (6) or (7)). Since the analog beamforming matrix is further optimized during the phase search according to the channel capacity maximization criterion, the hybrid architecture 200 achieves better performance, achieving gains of up to 15%.

儘管本發明已經參考具體的實施方式進行了說明,但是對本領域技術人員而言明顯的是,本發明不限於前面說明的實施方式的細節,並且本發明可透過各種改變和修改 實現而不背離本發明的範圍。當前的實施方式因此在各個態樣被認為是示例性的而非限制性的,本發明的範圍由申請專利範圍表示而不是由前面的描述表示,進入申請專利範圍的等同意義和範圍內的全部改變因此包含在本發明的範圍內。 Although the present invention has been described with reference to the specific embodiments thereof, it is obvious to those skilled in the art that the present invention is not limited to the details of the embodiments described above, and the present invention can be variously modified and modified. This is accomplished without departing from the scope of the invention. The present embodiments are to be considered in all respects as illustrative and not limiting, and the scope of the invention Variations are therefore included within the scope of the invention.

Claims (15)

一種在基地台中進行混合波束賦形的方法,包括:基於對物理通道的長時估計,計算寬頻類比波束賦形矩陣;對該寬頻類比波束賦形矩陣進行量化,以獲得經量化的寬頻類比波束賦形矩陣;向該物理通道應用該經量化的寬頻類比波束賦形矩陣,以獲得該物理通道的等價通道;基於對該等價通道的短時估計,計算子帶數位波束賦形矩陣;以及利用該子帶數位波束賦形矩陣和該經量化的寬頻類比波束賦形矩陣,對下行鏈路信號進行混合波束賦形。 A method for hybrid beamforming in a base station, comprising: calculating a broadband analog beamforming matrix based on long-term estimation of a physical channel; and quantizing the broadband analog beamforming matrix to obtain a quantized broadband analog beam Forming a matrix; applying the quantized broadband analog beamforming matrix to the physical channel to obtain an equivalent channel of the physical channel; and calculating a subband digital beamforming matrix based on the short time estimation of the equivalent channel; And performing hybrid beamforming on the downlink signal by using the subband digital beamforming matrix and the quantized broadband analog beamforming matrix. 根據請求項1所述的方法,其中對該寬頻類比波束賦形矩陣進行量化包括:將該寬頻類比波束賦形矩陣中的每個非零元素的幅度進行正規化;以及針對該每個非零元素,在預定的相位集合中逐元素地執行相位搜尋,以選擇使得該等價通道的容量最大化的相位。 The method of claim 1, wherein quantizing the broadband analog beamforming matrix comprises normalizing the amplitude of each non-zero element in the broadband analog beamforming matrix; and for each non-zero The element performs a phase search element by element in a predetermined set of phases to select a phase that maximizes the capacity of the equivalent channel. 根據請求項1所述的方法,進一步包括:基於對該等價通道的短時估計,執行子帶用戶調度。 The method of claim 1, further comprising performing sub-band user scheduling based on the short-term estimation of the equivalent channel. 根據請求項1所述的方法,進一步包括:分別透過該基地台的水平線性陣列和垂直線性陣列向 該行動終端發送第一訓練信號和第二訓練信號,以便該行動終端分別基於該第一訓練信號和該第二訓練信號來估計與該水平線性陣列相關聯的水平子通道共變異數矩陣以及與該垂直線性陣列相關聯的垂直子通道共變異數矩陣;分別從該行動終端接收對該水平子通道共變異數矩陣的估計的回饋、以及對該垂直子通道共變異數矩陣的估計的回饋;以及基於該回饋來構建該水平子通道共變異數矩陣與該垂直子通道共變異數矩陣的克羅內克積,以作為該物理通道的寬頻通道共變異數矩陣。 The method of claim 1, further comprising: respectively transmitting a horizontal linear array and a vertical linear array of the base station The mobile terminal transmits a first training signal and a second training signal, so that the mobile terminal estimates a horizontal subchannel covariance matrix associated with the horizontal linear array and based on the first training signal and the second training signal, respectively. a vertical subchannel covariance matrix associated with the vertical linear array; receiving, from the mobile terminal, an estimated feedback of the horizontal subchannel covariance matrix, and an estimated feedback of the vertical subchannel covariance matrix; And constructing a Kroneck product of the horizontal subchannel covariance matrix and the vertical subchannel covariance matrix based on the feedback as a broadband channel covariance matrix of the physical channel. 一種在基地台中進行混合波束賦形的方法,包括:基於對物理通道的長時估計,計算寬頻類比波束賦形矩陣;向該物理通道應用該寬頻類比波束賦形矩陣,以獲得該物理通道的等價通道;基於對該等價通道的短時估計,計算子帶數位波束賦形矩陣並且執行子帶用戶調度;以及利用該寬頻類比波束賦形矩陣和該子帶數位波束賦形矩陣,對用於被調度用户的下行鏈路信號進行混合波束賦形。 A method for performing hybrid beamforming in a base station, comprising: calculating a broadband analog beamforming matrix based on long-term estimation of a physical channel; applying the broadband analog beamforming matrix to the physical channel to obtain the physical channel An equivalent channel; calculating a subband digital beamforming matrix and performing subband user scheduling based on the short-term estimation of the equivalent channel; and utilizing the broadband analog beamforming matrix and the subband digital beamforming matrix, Hybrid beamforming for downlink signals of scheduled users. 根據請求項5所述的方法,進一步包括:分別透過該基地台的水平線性陣列和垂直線性陣列向行動終端發送第一訓練信號和第二訓練信號,以便該行動 終端分別基於該第一訓練信號和該第二訓練信號來估計與該水平線性陣列相關聯的水平子通道共變異數矩陣以及與該垂直線性陣列相關聯的垂直子通道共變異數矩陣;分別從該行動終端接收對該水平子通道共變異數矩陣的估計的回饋、以及對該垂直子通道共變異數矩陣的估計的回饋;以及基於該回饋來構建該水平子通道共變異數矩陣與該垂直子通道共變異數矩陣的克羅內克積,以作為該物理通道的寬頻通道共變異數矩陣。 The method of claim 5, further comprising: transmitting the first training signal and the second training signal to the mobile terminal through the horizontal linear array and the vertical linear array of the base station, respectively, so that the action The terminal estimates a horizontal subchannel covariance matrix associated with the horizontal linear array and a vertical subchannel covariance matrix associated with the vertical linear array based on the first training signal and the second training signal, respectively; The mobile terminal receives the estimated feedback of the horizontal subchannel covariance matrix and the feedback of the vertical subchannel covariance matrix; and constructs the horizontal subchannel covariance matrix and the vertical based on the feedback The Kronecker product of the subchannel common variance matrix is used as the broadband channel covariance matrix of the physical channel. 一種在行動終端中用於混合波束賦形的方法,包括:基於從基地台的天線的水平線性陣列接收到的第一訓練信號,估計與該水平線性陣列相關聯的水平子通道共變異數矩陣;基於從該基地台的天線的垂直線性陣列接收到的第二訓練信號,估計與該垂直線性陣列相關聯的垂直子通道共變異數矩陣;以及向基地台回饋對該水平子通道共變異數矩陣的估計、以及對該垂直子通道共變異數矩陣的估計。 A method for hybrid beamforming in a mobile terminal, comprising: estimating a horizontal subchannel covariance matrix associated with the horizontal linear array based on a first training signal received from a horizontal linear array of antennas of the base station Estimating a vertical subchannel covariance matrix associated with the vertical linear array based on a second training signal received from a vertical linear array of antennas of the base station; and feeding back the horizontal subchannel covariance to the base station An estimate of the matrix and an estimate of the matrix of covariances of the vertical subchannels. 根據請求項7所述的方法,進一步包括:將該水平子通道共變異數矩陣與第一傳輸相關係數相關聯,以及將該垂直子通道共變異數矩陣與第二傳輸相關係數相關聯;並且其中向基地台回饋對該水平子通道共變異數矩陣的估 計、以及對該垂直子通道共變異數矩陣的估計包括:向該基地台回饋該第一傳輸相關係數的幅度和相位以及該第二傳輸相關係數的幅度和相位。 The method of claim 7, further comprising: associating the horizontal subchannel covariance matrix with the first transmission correlation coefficient, and associating the vertical subchannel covariance matrix with the second transmission correlation coefficient; In which the base station is fed back to estimate the horizontal subchannel common variance matrix And estimating the vertical subchannel covariance matrix includes: feeding back the amplitude and phase of the first transmission correlation coefficient and the amplitude and phase of the second transmission correlation coefficient to the base station. 根據請求項7所述的方法,進一步包括:基於從該基地台接收到的第三訓練信號,估計等價通道;以及向該基地台回饋對該等價通道的估計。 The method of claim 7, further comprising: estimating an equivalent channel based on the third training signal received from the base station; and feeding back an estimate of the equivalent channel to the base station. 一種在基地台中進行混合波束賦形的裝置,包括:長時估計單元,被配置為基於對物理通道的長時估計,計算寬頻類比波束賦形矩陣;量化單元,被配置為對該寬頻類比波束賦形矩陣進行量化,以獲得經量化的寬頻類比波束賦形矩陣;等價通道獲取單元,被配置為向該物理通道應用該經量化的寬頻類比波束賦形矩陣,以獲得該物理通道的等價通道;短時估計單元,被配置為基於對該等價通道的短時估計,計算子帶數位波束賦形矩陣;以及混合波束賦形單元,被配置為利用該子帶數位波束賦形矩陣和該經量化的寬頻類比波束賦形矩陣,對下行鏈路信號進行混合波束賦形。 An apparatus for performing hybrid beamforming in a base station, comprising: a long-term estimating unit configured to calculate a broadband analog beamforming matrix based on a long-term estimation of a physical channel; and a quantization unit configured to the broadband analog beam The shaping matrix is quantized to obtain a quantized broadband analog beamforming matrix; the equivalent channel acquiring unit is configured to apply the quantized broadband analog beamforming matrix to the physical channel to obtain the physical channel, etc. a valence channel; a short-term estimating unit configured to calculate a sub-band digital beamforming matrix based on a short-term estimation of the equivalent channel; and a hybrid beamforming unit configured to utilize the sub-band digital beamforming matrix And the quantized broadband analog beamforming matrix performs hybrid beamforming on the downlink signal. 根據請求項10所述的裝置,其中該量化單元被進一步配置為:將該寬頻類比波束賦形矩陣中的每個非零元素的幅度 進行正規化;以及針對該每個非零元素,在預定的相位集合中逐元素地執行相位搜尋,以選擇使得該等價通道的容量最大化的相位。 The apparatus of claim 10, wherein the quantizing unit is further configured to: amplitude of each non-zero element in the broadband analog beamforming matrix Normalization is performed; and for each of the non-zero elements, a phase search is performed element by element in a predetermined set of phases to select a phase that maximizes the capacity of the equivalent channel. 根據請求項10所述的裝置,進一步包括:發送單元,被配置為分別透過該基地台的水平線性陣列和垂直線性陣列向該行動終端發送第一訓練信號和第二訓練信號,以便該行動終端分別基於該第一訓練信號和該第二訓練信號來估計與該水平線性陣列相關聯的水平子通道共變異數矩陣以及與該垂直線性陣列相關聯的垂直子通道共變異數矩陣;接收單元,被配置為分別從該行動終端接收對該水平子通道共變異數矩陣的估計的回饋、以及對該垂直子通道共變異數矩陣的估計的回饋;以及構建單元,被配置為基於該回饋來構建該水平子通道共變異數矩陣與該垂直子通道共變異數矩陣的克羅內克積,以作為該物理通道的寬頻通道共變異數矩陣。 The apparatus of claim 10, further comprising: a transmitting unit configured to transmit the first training signal and the second training signal to the mobile terminal through the horizontal linear array and the vertical linear array of the base station, respectively, so that the mobile terminal Estimating a horizontal subchannel covariance matrix associated with the horizontal linear array and a vertical subchannel covariance matrix associated with the vertical linear array based on the first training signal and the second training signal, respectively; receiving unit, Configuring to receive an estimate of the feedback of the horizontal subchannel covariance matrix from the mobile terminal and an estimate of the feedback of the vertical subchannel covariance matrix, respectively; and a building unit configured to construct based on the feedback The horizontal subchannel covariance matrix and the Kroneck product of the vertical subchannel covariance matrix are used as the broadband channel covariance matrix of the physical channel. 一種在基地台中進行混合波束賦形的裝置,包括:長時估計單元,被配置為基於對物理通道的長時估計,計算寬頻類比波束賦形矩陣;等價通道獲取單元,被配置為向該物理通道應用該寬頻類比波束賦形矩陣,以獲得該物理通道的等價通道;短時估計單元,被配置為基於對該等價通道的短時估 計,計算子帶數位波束賦形矩陣並且執行子帶用戶調度;以及混合波束賦形單元,被配置為利用該寬頻類比波束賦形矩陣和該子帶數位波束賦形矩陣,對用於被調度用户的下行鏈路信號進行混合波束賦形。 An apparatus for performing hybrid beamforming in a base station, comprising: a long-term estimating unit configured to calculate a broadband analog beamforming matrix based on long-term estimation of a physical channel; an equivalent channel acquiring unit configured to The physical channel applies the broadband analog beamforming matrix to obtain an equivalent channel of the physical channel; the short-term estimating unit is configured to be based on a short-term estimation of the equivalent channel Calculating a subband digital beamforming matrix and performing subband user scheduling; and a hybrid beamforming unit configured to utilize the broadband analog beamforming matrix and the subband digital beamforming matrix for scheduling The user's downlink signal performs hybrid beamforming. 一種在行動終端中用於混合波束賦形的裝置,包括:第一估計單元,被配置為基於從基地台的天線的水平線性陣列接收到的第一訓練信號,估計與該水平線性陣列相關聯的水平子通道共變異數矩陣;第二估計單元,被配置為基於從該基地台的天線的垂直線性陣列接收到的第二訓練信號,估計與該垂直線性陣列相關聯的垂直子通道共變異數矩陣;以及回饋單元,被配置為向基地台回饋對該水平子通道共變異數矩陣的估計、以及對該垂直子通道共變異數矩陣的估計。 An apparatus for hybrid beamforming in a mobile terminal, comprising: a first estimating unit configured to estimate an association with the horizontal linear array based on a first training signal received from a horizontal linear array of antennas of the base station a horizontal subchannel common variance matrix; a second estimating unit configured to estimate a vertical subchannel co-variation associated with the vertical linear array based on a second training signal received from a vertical linear array of antennas of the base station a number matrix; and a feedback unit configured to feed back to the base station an estimate of the horizontal subchannel covariance matrix and an estimate of the vertical subchannel covariance matrix. 根據請求項16所述的裝置,進一步包括:關聯單元,被配置為將該水平子通道共變異數矩陣與第一傳輸相關係數相關聯,以及將該垂直子通道共變異數矩陣與第二傳輸相關係數相關聯;並且其中向基地台回饋對該水平子通道共變異數矩陣的估計、以及對該垂直子通道共變異數矩陣的估計包括:向該基地台回饋該第一傳輸相關係數的幅度和相位以及該第二傳輸相關係數的幅度和相位。 The apparatus of claim 16, further comprising: an associating unit configured to associate the horizontal subchannel covariance matrix with the first transmission correlation coefficient, and the vertical subchannel covariance matrix and the second transmission Correlating the correlation coefficient; and wherein the estimating the horizontal subchannel covariance matrix to the base station and the estimating the vertical subchannel covariance matrix comprises: feeding back the amplitude of the first transmission correlation coefficient to the base station And phase and the amplitude and phase of the second transmission correlation coefficient.
TW105122082A 2015-08-05 2016-07-13 Method and apparatus for hybrid beamforming TW201707394A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510475163.XA CN106452539B (en) 2015-08-05 2015-08-05 Hybrid beam forming method and device

Publications (1)

Publication Number Publication Date
TW201707394A true TW201707394A (en) 2017-02-16

Family

ID=56799497

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105122082A TW201707394A (en) 2015-08-05 2016-07-13 Method and apparatus for hybrid beamforming

Country Status (3)

Country Link
CN (1) CN106452539B (en)
TW (1) TW201707394A (en)
WO (1) WO2017021774A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211821A (en) * 2018-11-21 2020-05-29 三星电子株式会社 System and method for analog beamforming of a single-connection antenna array

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106850010B (en) * 2015-11-30 2021-02-09 上海诺基亚贝尔股份有限公司 Channel feedback method and device based on hybrid beam forming
GB2554910B (en) * 2016-10-13 2022-01-19 Univ Surrey Beamforming in multiple input multiple output systems
CN107135024B (en) * 2017-05-12 2020-08-28 西安交通大学 Low-complexity hybrid beam forming iterative design method
CN107276657B (en) * 2017-06-16 2020-09-08 西安电子科技大学 Millimeter wave mixed beam forming method based on parallel algorithm
CN107294590B (en) * 2017-06-20 2020-08-28 电子科技大学 Digital-analog hybrid beam forming method based on uplink training
CN109219062B (en) * 2017-06-30 2022-04-01 中国移动通信有限公司研究院 Beam determination method, terminal and network side equipment
US10771139B2 (en) 2018-06-01 2020-09-08 Samsung Electronics Co., Ltd Apparatus and method for providing efficient beamforming feedback
CN110649948B (en) * 2018-06-26 2021-01-29 上海华为技术有限公司 Signal processing method, baseband unit and radio remote unit
CN108900461B (en) * 2018-06-28 2020-10-13 东南大学 Wireless communication system broadband signal design method based on large-scale MIMO
CN111726155B (en) * 2019-03-21 2022-06-10 大唐移动通信设备有限公司 CSI feedback method, receiving method, terminal and network side equipment
CN110912599B (en) * 2019-12-03 2023-07-07 上海电机学院 Mixed wave beam shaping method in multi-input multi-output multi-user communication system
CN115606157A (en) * 2020-05-14 2023-01-13 诺基亚技术有限公司(Fi) Channel estimation for antenna arrays
CN112165347B (en) * 2020-09-21 2022-09-16 合肥芯谷微电子有限公司 Millimeter wave pure analog beam forming user scheduling method
CN114172763B (en) * 2021-11-16 2023-03-24 浙江大学 Pilot frequency optimization design method and device for hybrid large-scale MIMO system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1656757A4 (en) * 2003-07-21 2011-12-28 Broadcom Corp Weight generation method for multi-antenna communication systems utilizing rf-based and baseband signal weighting and combining based upon minimum bit error rate
CN101626265A (en) * 2008-07-10 2010-01-13 中兴通讯股份有限公司 Method for realizing downlink beam forming in wireless communication system
US8396035B2 (en) * 2009-04-24 2013-03-12 Futurewei Technologies, Inc. System and method for communications using time-frequency space enabled coordinated beam switching
EP2557720B1 (en) * 2010-04-07 2020-02-26 Alcatel Lucent Transformation device and method
KR20130017572A (en) * 2011-08-11 2013-02-20 삼성전자주식회사 Method and apparatus for determining analog beam in hybrid beamforming system
US8913682B2 (en) * 2012-05-18 2014-12-16 Samsung Electronics Co., Ltd. Apparatus and method for channel state information codeword construction for a cellular wireless communication system
TWI617148B (en) * 2012-09-28 2018-03-01 內數位專利控股公司 Wireless transmit/receive unit and method for reporting feedback
WO2015065156A1 (en) * 2013-11-04 2015-05-07 엘지전자 주식회사 Method and apparatus for transmitting signal in wireless communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211821A (en) * 2018-11-21 2020-05-29 三星电子株式会社 System and method for analog beamforming of a single-connection antenna array
CN111211821B (en) * 2018-11-21 2023-08-04 三星电子株式会社 System and method for analog beamforming for a single connection antenna array

Also Published As

Publication number Publication date
WO2017021774A3 (en) 2017-04-20
CN106452539A (en) 2017-02-22
WO2017021774A2 (en) 2017-02-09
CN106452539B (en) 2020-02-04

Similar Documents

Publication Publication Date Title
TW201707394A (en) Method and apparatus for hybrid beamforming
CN107135024B (en) Low-complexity hybrid beam forming iterative design method
US20230308147A1 (en) Methods and apparatuses for feedback reporting in a wireless communications network
CN107453795B (en) Beam allocation method of multi-user millimeter wave communication system, device and system thereof
US10673512B2 (en) Precoding over a beam subset
JP5165119B2 (en) Method for feeding back channel state information of a downlink channel from a mobile station to one or more base stations, and a method for generating a rank-1 precoding vector for multi-base station transmission in a wireless network
CN108880774B (en) Frequency division duplex multi-user large-scale multi-antenna system and downlink pilot signal length design method thereof
US20110299379A1 (en) Process for Beamforming Data to be Transmitted by a Base Station in a MU-MIMO System and Apparatus for Performing the Same
TWI536763B (en) Method of determining two-stage codebook set applicable to 4tx cross-polarized antenna configuration
CN103248457A (en) Method and device for obtaining pre-encoding matrix indication and pre-encoding matrix
CN101626265A (en) Method for realizing downlink beam forming in wireless communication system
CN107086886B (en) Double-layer precoding design for large-scale MIMO system fusion zero forcing and Taylor series expansion
CN102148663B (en) Method for realizing adaptive transmission by comprehensively utilizing long-time and short-time channel state information
CN114142899B (en) Codebook selection method, device, medium and communication equipment
WO2015196974A1 (en) Transmission weighting method and device for csi feedback system
EP2557719B1 (en) Method and system for providing correlation matrix feedback for systems having antenna arrays
CN108259397A (en) Extensive mimo system channel estimation based on adaptive regularization subspace tracking compressed sensing algorithm
WO2016169213A1 (en) Acquisition method and device for acquiring channel information
CN111602378B (en) Information acquisition method, device, equipment and storage medium
CN106850010B (en) Channel feedback method and device based on hybrid beam forming
CN108123741B (en) Overlapping sub-array (OSA) based beamforming method and apparatus
JP2013530591A (en) Method and apparatus for generating and feeding back a high rank adaptive codebook in a multiple input multiple output system
WO2017005086A1 (en) Precoding method and device
KR20120131224A (en) Transformation device and method
CN110943767B (en) Precoding design method based on channel part reciprocity in FDD large-scale MIMO system