TW201529041A - Method and system for providing bioimpedance sensor array - Google Patents

Method and system for providing bioimpedance sensor array Download PDF

Info

Publication number
TW201529041A
TW201529041A TW103143275A TW103143275A TW201529041A TW 201529041 A TW201529041 A TW 201529041A TW 103143275 A TW103143275 A TW 103143275A TW 103143275 A TW103143275 A TW 103143275A TW 201529041 A TW201529041 A TW 201529041A
Authority
TW
Taiwan
Prior art keywords
sensor
array
bioimpedance
bio
sensors
Prior art date
Application number
TW103143275A
Other languages
Chinese (zh)
Inventor
Seul-Ki Lee
Lindsay Brown
Eva C Wentink
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/103,717 external-priority patent/US9554724B2/en
Priority claimed from US14/282,950 external-priority patent/US20150157219A1/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW201529041A publication Critical patent/TW201529041A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Signal Processing (AREA)
  • Physiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

Exemplary embodiments provide a bioimpedance sensor array for use in fluid flow detection applications, such as heart rate detection. Aspects of the exemplary embodiment include determining an optimal sub-array in a bioimpedance sensor array comprising more than four bioimpedance sensors arranged on a base such that the sensor array straddles or otherwise addresses a blood vessel when worn by a user; passing an electrical signal through at least a first portion of the bioimpedance sensors in the optimal sub-array to the user; measuring one or more bioimpedance values from the electrical signal using a second portion of the bioimpedance sensors in the optimal sub-array; and analyzing at least a fluid bioimpedance contribution from the one or more bioimpedance values.

Description

偵測心跳效率的生物阻抗感應器陣列 Bioimpedance sensor array for detecting heart rate efficiency 【對相關申請案的相交參考】[Reference reference for related applications]

本申請案為2013年12月11日在美國申請的名稱為「自對準感測器陣列(Self-Aligning Sensor Array)」的專利申請案第14/103,717號的部分連續案。本申請案主張2014年3月24日在美國申請的名稱為「用於心跳速率偵測的生物阻抗方形陣列組態(Bioimpedance Square Array Configuration for Heart Rate Detection)」的專利申請案第61/969,763號的優先權,兩個申請案的內容以引用的方式併入本文中。 This application is a continuation of the patent application No. 14/103, 717, entitled "Self-Aligning Sensor Array", filed in the United States on December 11, 2013. This application claims patent application No. 61/969,763 entitled "Bioimpedance Square Array Configuration for Heart Rate Detection", filed in the United States on March 24, 2014. The priority of both applications is incorporated herein by reference.

本發明是關於一種生物阻抗感測器陣列及一種用於提供生物阻抗感測器陣列的方法。 The present invention relates to a bioimpedance sensor array and a method for providing a bioimpedance sensor array.

心跳速率可(例如)藉由偵測由人體的局部區域內的血流中的脈搏引起的阻抗改變來量測。心跳速率的局部量測通常(例 如)在胸部上進行,但人體的含有動脈的其他部分亦可用於心跳速率量測,諸如在手腕上。 The heart rate can be measured, for example, by detecting a change in impedance caused by a pulse in the blood flow in a localized region of the human body. Local measurement of heart rate is usually For example, it is performed on the chest, but other parts of the body that contain arteries can also be used for heart rate measurement, such as on the wrist.

經由流動血液的電性質的量測偵測心跳速率可藉由量測通過血液、動脈以及周圍組織的電流所產生的電位來達成。在交流電量測中,所量測到的電位將與通過電流及電流通過的區域的阻抗成比例。電極用以進行此量測。電極通常以雙線式配置來配置,在雙線式配置中使電流通過且量測同一對電極之間的電壓。雙線式配置情況下的問題是引入接點(或引線)電阻,其使額外電阻項對電位量測有作用(亦即,對於直流電量測,歐姆定律給出V=I*R,其中在此狀況下,R=樣本的電阻+接點的電阻),且可為總量測電阻的相當大部分,且因此可模糊量測結果,尤其在低電阻值樣本中。 Detecting the heart rate via measurement of the electrical properties of the flowing blood can be achieved by measuring the potential generated by the current through the blood, arteries, and surrounding tissue. In an AC power meter, the measured potential will be proportional to the impedance of the area through which the current and current pass. The electrodes are used for this measurement. The electrodes are typically configured in a two-wire configuration where current is passed through and the voltage between the same pair of electrodes is measured. The problem with a two-wire configuration is the introduction of a contact (or lead) resistor that causes the additional resistance term to have an effect on the potential measurement (ie, for DC power measurements, Ohm's law gives V = I*R, where In this case, R = resistance of the sample + resistance of the junction), and can be a substantial portion of the total resistance, and thus the measurement can be blurred, especially in low resistance samples.

亦可使用藉由使電流在兩個專用電流電極之間通過且量測兩個專用電壓電極之間的電位來克服接點電阻問題的四線式量測,所有電極皆以直列式組態配置(電流電極置放於電壓電極外部)。在四線式電極組態中,電流電極之間的電壓差與電壓量測自身分離,因此使其額外作用最小化。 A four-wire measurement can be used to overcome the contact resistance problem by passing a current between two dedicated current electrodes and measuring the potential between the two dedicated voltage electrodes, all of which are configured in an in-line configuration. (The current electrode is placed outside the voltage electrode). In a four-wire electrode configuration, the voltage difference between the current electrodes is separated from the voltage measurement itself, thus minimizing its extra action.

除直列式配置外,電流電極及電壓電極可以方形佈局組態。對於薄膜阻抗量測,四個電極可描劃方形或矩形形狀的輪廓(亦即,每一電極佔用一角落)。此配置用於量測電阻率(或在涉及實質上二維幾何形狀時量測薄層電阻)的範德堡(Van der Pauw)方法中。在一項實施中,兩個電流電極及兩個電壓電極可置放於方形輪廓的角落處,且電流可沿著所描劃輪廓的方形的單一個邊緣流動。可接著沿著與電流的邊緣對置的邊緣量測電壓,且使用 歐姆定律來運算電流邊緣與電壓邊緣之間的電阻。 In addition to the in-line configuration, the current and voltage electrodes can be configured in a square layout. For film impedance measurements, the four electrodes can be outlined in a square or rectangular shape (ie, each electrode occupies a corner). This configuration is used in the Van der Pauw method of measuring resistivity (or measuring sheet resistance when involving substantially two-dimensional geometries). In one implementation, two current electrodes and two voltage electrodes can be placed at the corners of the square profile, and current can flow along a single edge of the square of the outlined profile. The voltage can then be measured along the edge opposite the edge of the current and used Ohm's law is used to calculate the resistance between the current edge and the voltage edge.

使用者前臂的前側上以直列四線式生物阻抗量測(例如,心跳速率)可藉由沿著橈動脈將四個電極置放成一列而使用生物電阻抗來偵測,兩個電壓電極兩側為兩個電流電極。 The in-line four-wire bioimpedance measurement (eg, heart rate) on the front side of the user's forearm can be detected using bioelectrical impedance by placing the four electrodes in a column along the radial artery, two voltage electrodes The side is two current electrodes.

然而,在具有沿著前臂的電極置放的習知實施中,電極中的每一者為大約0.7公分2或大於0.7公分2,從而使得電極的完全直列式配置要求前臂上高達大約8公分的空間。對於許多應用,由此電極配置要求的空間(例如)過大,此大空間要求將限制上面可安裝基於阻抗的心跳速率偵測器的裝置的類型及形狀。舉例而言,若需要將心跳速率偵測器置放於腕錶型主機裝置內,則將需要更緊密的電極配置。 However, in a conventional implementation having electrodes placed along the forearm, each of the electrodes is about 0.7 cm 2 or greater than 0.7 cm 2 such that a fully inline configuration of the electrodes requires up to about 8 cm on the forearm. space. For many applications, the space required by this electrode configuration is, for example, too large, which would limit the type and shape of the device on which the impedance-based heart rate detector can be mounted. For example, if a heart rate detector needs to be placed in a wristwatch type host device, a tighter electrode configuration would be required.

因此,需要可用於諸如心跳速率偵測的流體流量偵測應用中的生物阻抗量測裝置,以及使用此類阻抗量測裝置的生物阻抗方法及主機裝置,所述阻抗量測裝置利用緊密的電極組態,同時維持足夠的量測靈敏性。 Accordingly, there is a need for bioimpedance measurement devices for use in fluid flow detection applications such as heart rate detection, and bioimpedance methods and host devices using such impedance measurement devices that utilize tight electrodes Configure while maintaining sufficient measurement sensitivity.

例示性實施例提供一種用於諸如心跳速率偵測的流體流量偵測應用中的生物阻抗感測器陣列。例示性實施例的態樣包含:判定包括四個以上生物阻抗感測器的生物阻抗感測器陣列中的最佳子陣列,所述生物阻抗感測器陣列在基底上使得所述感測器陣列在由使用者佩戴時橫跨或以其他方式定址血管;經由所述最佳子陣列中的生物阻抗感測器的至少第一部分將電信號傳遞至所述使用者;使用所述最佳子陣列中的生物阻抗感測器的第二部 分自所述電信號量測一或多個生物阻抗值;以及自所述一或多個生物阻抗值分析至少流體生物阻抗作用。 The illustrative embodiments provide a bioimpedance sensor array for use in fluid flow detection applications such as heart rate detection. An aspect of an illustrative embodiment includes determining an optimal sub-array in a bio-impedance sensor array comprising four or more bio-impedance sensors, the bio-impedance sensor array on the substrate such that the sensor The array spans or otherwise addresses the blood vessel when worn by the user; transmitting an electrical signal to the user via at least a first portion of the bio-impedance sensor in the optimal sub-array; using the best The second part of the bioimpedance sensor in the array And measuring one or more bioimpedance values from the electrical signal; and analyzing at least the fluid bioimpedance effect from the one or more bioimpedance values.

根據本文中所揭露的方法及系統,例示性實施例提供一種可用於佩戴型裝置中的阻抗量測裝置,所述佩戴型裝置並不需要在佩戴者血管上方的準確置放。 In accordance with the methods and systems disclosed herein, the illustrative embodiments provide an impedance measuring device that can be used in a wearable device that does not require accurate placement over the wearer's blood vessel.

10A‧‧‧佩戴型感測器平台 10A‧‧‧Wearing sensor platform

10B‧‧‧佩戴型感測器平台 10B‧‧‧Wearing sensor platform

10'‧‧‧佩戴型感測器平台 10'‧‧‧ Wearable Sensor Platform

12A‧‧‧基本模組 12A‧‧‧Basic Module

12B‧‧‧基本模組 12B‧‧‧Basic Module

14A‧‧‧感測器模組 14A‧‧‧Sensor Module

14B‧‧‧感測器模組 14B‧‧‧Sensor Module

14'‧‧‧感測器模組 14'‧‧‧Sensor Module

16A‧‧‧條帶/綁帶 16A‧‧‧Strips/Ties

16B‧‧‧條帶/綁帶 16B‧‧‧Strips/Ties

16'‧‧‧條帶 16'‧‧‧ strips

18A‧‧‧顯示器/圖形使用者介面(GUI) 18A‧‧‧Display/Graphical User Interface (GUI)

18B‧‧‧顯示器/圖形使用者介面(GUI) 18B‧‧‧Display/Graphical User Interface (GUI)

18'‧‧‧顯示器 18'‧‧‧ display

20A‧‧‧基本計算單元 20A‧‧‧Basic Computing Unit

20B‧‧‧基本計算單元 20B‧‧‧Basic Computing Unit

22A‧‧‧電池 22A‧‧‧Battery

22B‧‧‧電池 22B‧‧‧Battery

24A‧‧‧感測器單元 24A‧‧‧Sensor unit

24B‧‧‧感測器單元 24B‧‧‧Sensor unit

24'‧‧‧感測器單元 24'‧‧‧Sensor unit

26A‧‧‧感測器板 26A‧‧‧Sensor board

26B‧‧‧感測器板 26B‧‧‧Sensor board

26'‧‧‧感測器板 26'‧‧‧Sensor board

28A‧‧‧感測器計算單元 28A‧‧‧Sensor calculation unit

28B‧‧‧感測器計算單元 28B‧‧‧Sensor calculation unit

28'‧‧‧感測器計算單元 28'‧‧‧Sensor calculation unit

30A‧‧‧卡扣 30A‧‧‧ buckle

30B‧‧‧卡扣 30B‧‧‧ buckle

200‧‧‧基本計算單元 200‧‧‧Basic Computing Unit

201‧‧‧電池 201‧‧‧Battery

202‧‧‧處理器 202‧‧‧ processor

204‧‧‧作業系統(OS)及應用程式 204‧‧‧Operating System (OS) and Applications

205‧‧‧通信介面 205‧‧‧Communication interface

206‧‧‧記憶體 206‧‧‧ memory

208‧‧‧輸入/輸出件(I/O) 208‧‧‧Input/Output (I/O)

210‧‧‧通信介面 210‧‧‧Communication interface

214‧‧‧感測器 214‧‧‧ sensor

214A‧‧‧加速度計/陀螺儀 214A‧‧‧Accelerometer/Gyro

214B‧‧‧溫度計 214B‧‧‧ thermometer

220‧‧‧電源管理單元 220‧‧‧Power Management Unit

222‧‧‧電源介面 222‧‧‧Power interface

308‧‧‧使用者手腕 308‧‧‧User wrist

310‧‧‧條帶 310‧‧‧ strips

312‧‧‧光學感測器陣列 312‧‧‧Optical sensor array

312A‧‧‧離散光學感測器 312A‧‧‧Discrete optical sensor

312B‧‧‧光偵測器 312B‧‧‧Photodetector

312C‧‧‧光源 312C‧‧‧Light source

314‧‧‧皮膚電反應(GSR)感測器陣列 314‧‧‧Skin Electro-Reaction (GSR) Sensor Array

316‧‧‧生物阻抗(BioZ)感測器陣列 316‧‧‧Bioimpedance (BioZ) sensor array

316'‧‧‧生物阻抗感測器 316'‧‧‧Bioimpedance Sensor

318‧‧‧心電圖感測器(ECG) 318‧‧‧Electrocardiographic Sensor (ECG)

320‧‧‧溫度計 320‧‧‧ thermometer

400、402、404、406‧‧‧流程圖的區塊 Blocks of 400, 402, 404, 406‧‧‧ flowcharts

500‧‧‧生物阻抗感測器陣列 500‧‧‧Bioimpedance Sensor Array

502、A、B、C、D、E、F、G‧‧‧子陣列 502, A, B, C, D, E, F, G‧‧ ‧ subarray

504‧‧‧離散生物阻抗感測器 504‧‧‧Discrete bioimpedance sensor

510‧‧‧條帶 510‧‧‧

(1,1)、(1,2)、(2,1)、(2,2)‧‧‧索引 (1,1), (1,2), (2,1), (2,2) ‧ ‧ index

I‧‧‧電流感測器 I‧‧‧ current sensor

LS‧‧‧光偵測器 LS‧‧‧Photodetector

N‧‧‧未使用感測器 N‧‧‧Unused sensor

PD‧‧‧光學感測器 PD‧‧‧ optical sensor

V‧‧‧電壓感測器 V‧‧‧ voltage sensor

自以下結合隨附圖式進行的實施例的描述,本發明的一般發明概念的此等及/或其他特徵及效用將變得顯而易見且更容易瞭解。 These and/or other features and utilities of the general inventive concept of the present invention will become apparent and more readily apparent from the description of the appended claims.

圖1A及圖1B為說明模組化佩戴型感測器平台的實施例的圖。 1A and 1B are diagrams illustrating an embodiment of a modular wearable sensor platform.

圖2為說明模組化佩戴型感測器平台及包括基本模組的組件的一個實施例的圖。 2 is a diagram illustrating one embodiment of a modular wearable sensor platform and components including a base module.

圖3為說明用於諸如模組化佩戴型感測器平台的佩戴型裝置中的感測器陣列系統的例示性實施例的方塊圖。 3 is a block diagram illustrating an illustrative embodiment of a sensor array system for use in a wearable device such as a modular wearable sensor platform.

圖4為說明提供生物阻抗感測器陣列的方法及用於將生物阻抗感測器陣列用以監視及分析生理參數(諸如,流體流量)從而用於包含心跳速率偵測的應用的方法的流程圖。 4 is a flow diagram illustrating a method of providing a bioimpedance sensor array and a method for using a bioimpedance sensor array to monitor and analyze physiological parameters, such as fluid flow, for use in applications including heart rate detection. Figure.

圖5為繪示例示性生物阻抗感測器陣列的方塊圖。 FIG. 5 is a block diagram depicting an exemplary bioimpedance sensor array.

圖6A至圖6D為說明呈2×2子陣列的電流感測器及電壓感測器的可能組態的圖。 6A-6D are diagrams illustrating possible configurations of current sensors and voltage sensors in a 2x2 sub-array.

圖6E繪示可用於2×3生物阻抗感測器中的電流感測器及電壓感測器的對角線子陣列組態。 6E illustrates a diagonal sub-array configuration of current sensors and voltage sensors that can be used in a 2x3 bioimpedance sensor.

現將詳細地參考本發明的一般發明性概念的實施例,隨附圖式中說明所述實施例的實例,其中類似元件符號貫穿全文指代類似元件。下文描述實施例,以便在參看諸圖時解釋本發明的一般發明性概念。 The embodiments of the present general inventive concept will be described in detail with reference to the accompanying drawings, in which The embodiments are described below in order to explain the general inventive concepts of the invention in the drawings.

參考以下實施方式及隨附圖式可更易於理解本發明的優勢及特徵以及實現本發明優勢及特徵的方法。然而,本發明的一般發明概念可以許多不同形式體現,且不應被解釋為限於本文所闡述的實施例。更確切而言,提供此等實施例,使得本發明將為透徹並完整的,且將使一般發明概念的概念充分傳達至熟習此項技術者,且本發明的一般發明概念將僅由所附申請專利範圍定義。在圖式中,為了清楚起見誇示層及區的厚度。 Advantages and features of the present invention, as well as methods for achieving the advantages and features of the present invention, may be more readily understood by reference to the accompanying claims. However, the general inventive concept of the invention may be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, the embodiments are provided so that this disclosure will be thorough and complete, and the concept of the general inventive concept will be fully conveyed to those skilled in the art, and the general inventive concept of the invention will be The scope of the patent application is defined. In the drawings, the thickness of layers and regions are exaggerated for clarity.

除非本文另外指示或明顯與上下文相矛盾,否則在描述本發明的上下文(尤其在以下申請專利範圍的上下文)中使用術語「一」及「所述」以及類似指示詞應理解為涵蓋單數與複數兩者。除非另外指出,否則術語「包括」、「具有」「包含」以及「含有」應理解為開放性術語(亦即,意謂「包含(但不限於)」。 The use of the terms "a", "an" and "the" and "the" Both. Unless otherwise stated, the terms "including", "having", "including" and "including" are understood to mean an open term (ie, meaning "including (but not limited to)".

如本文中所使用,術語「組件」或「模組」意謂(但不限於)執行某些任務的軟體或硬體組件,諸如,場可程式化閘陣列(field programmable gate array;FPGA)或特殊應用積體電路(application specific integrated circuit;ASIC)。組件或模組可有利地經組態以駐留於可定址儲存媒體中,且經組態以在一或多個處理器上運行。因此,組件或模組可包含(作為實例)組件,諸如 軟體組件、物件導向式軟體組件、類別組件以及任務組件、程序(process)、函式、屬性、程序(procedure)、子常式、程式碼區段、驅動程式、韌體、微碼、電路、資料、資料庫、資料結構、表、陣列及變數。可將所提供的用於組件及組件或模組的功能性組合至較少組件及組件或模組中,或將其進一步分離至額外組件及組件或模組中。 As used herein, the term "component" or "module" means, but is not limited to, a software or hardware component that performs certain tasks, such as a field programmable gate array (FPGA) or Application specific integrated circuit (ASIC). A component or module may advantageously be configured to reside in an addressable storage medium and configured to operate on one or more processors. Thus, a component or module can contain (as an example) a component, such as Software components, object-oriented software components, category components, and task components, processes, functions, properties, procedures, subroutines, code segments, drivers, firmware, microcode, circuits, Data, databases, data structures, tables, arrays and variables. The functionality provided for components and components or modules may be combined into fewer components and components or modules, or further separated into additional components and components or modules.

除非另外定義,否則本文中所用的所有技術及科學術語具有與一般熟習本發明所屬領域技術者通常所理解的含義相同的含義。應注意,除非另外指定,否則對本文中所提供的任何及所有實例或例示性術語的使用僅意欲更好地闡明本發明,而非限制本發明的範疇。另外,除非另外定義,否則不可過度解譯常用詞典中所定義的所有術語。 Unless otherwise defined, all technical and scientific terms used herein have the same meaning meaning meaning meaning It is to be noted that the use of any and all of the examples or exemplified terms provided herein is intended to clarify the invention and not to limit the scope of the invention. In addition, all terms defined in a common dictionary cannot be over-interpreted unless otherwise defined.

例示性實施例提供一種可用於流體流量偵測應用(諸如,心跳速率偵測)中的生物阻抗量測裝置,且描述使用此類生物阻抗量測裝置的生物阻抗方法及主機裝置。生物阻抗感測器陣列可組態為具有四個以上且較佳至少六個或八個離散生物阻抗感測器的X×Y陣列,所述生物阻抗感測器包含(但不限於)電極。在一個實施例中,生物阻抗感測器陣列中的至少一對電極經判定為使感應電流通過的電流電極,且至少另一對電極經選擇為量測電位差或電壓的電壓電極。在一個實施例中,此等成對電流電極及電壓電極的選擇或判定是固定的。在另一實施例中,成對電流電極及電壓電極的選擇或判定是動態的,使得生物阻抗感測器陣列可經掃描以判定對電流電極及電壓電極的哪一選擇提供最佳信號品質。 The illustrative embodiments provide a bioimpedance measurement device that can be used in fluid flow detection applications, such as heart rate detection, and describe bioimpedance methods and host devices that use such bioimpedance measurement devices. The bioimpedance sensor array can be configured as an X x Y array having more than four and preferably at least six or eight discrete bioimpedance sensors, including but not limited to electrodes. In one embodiment, at least one pair of electrodes in the bioimpedance sensor array are determined to be current electrodes through which an induced current is passed, and at least another pair of electrodes are selected as voltage electrodes that measure a potential difference or voltage. In one embodiment, the selection or determination of the pair of current and voltage electrodes is fixed. In another embodiment, the selection or determination of the pair of current and voltage electrodes is dynamic such that the bioimpedance sensor array can be scanned to determine which of the current and voltage electrodes to provide the best signal quality.

生物阻抗量測裝置可用於使用生物阻抗量測裝置的電子裝置中。此類電子裝置可包含(但不限於)佩戴型裝置以及其他攜帶型及非攜帶計算裝置,諸如腕錶、蜂巢式電話、智慧型手機、平板電腦以及膝上型電腦。 The bioimpedance measuring device can be used in an electronic device using a bioimpedance measuring device. Such electronic devices may include, but are not limited to, wearable devices as well as other portable and non-portable computing devices such as wristwatches, cellular phones, smart phones, tablets, and laptops.

圖1A及圖1B為說明模組化佩戴型感測器平台的實施例的圖。圖1A描繪佩戴型感測器平台10A的一個實施例的透視圖,而圖1B描繪佩戴型感測器平台10B的另一實施例的分解圖。儘管佩戴型感測器平台10A及10B(共同地為佩戴型感測器平台10)的組件可實質上相同,但模組及/或組件的位置可不同。在圖1A及1B的確切細則的論述中,使用文字數字指示(例如,10A及10B)。然而,為了參考描繪於圖1A及1B中的任一實施例或兩個實施例,使用數字指示(例如,針對10A及/或10B的10)。 1A and 1B are diagrams illustrating an embodiment of a modular wearable sensor platform. FIG. 1A depicts a perspective view of one embodiment of a wearable sensor platform 10A, while FIG. 1B depicts an exploded view of another embodiment of a wearable sensor platform 10B. While the components of the wearable sensor platforms 10A and 10B (collectively the wearable sensor platform 10) may be substantially identical, the locations of the modules and/or components may vary. In the discussion of the exact details of Figures 1A and 1B, alphanumeric indications (e.g., 10A and 10B) are used. However, for reference to any one or both of the embodiments depicted in Figures 1A and 1 B, a numerical indication (e.g., 10 for 10A and/or 10B) is used.

在繪示於圖1A中的實施例中,佩戴型感測器平台10A可實施為適配於使用者手腕上的智慧型腕錶或其他計算裝置。佩戴型感測器平台10A可包含基本模組12A、條帶16A、卡扣30A、電池22A以及耦接至條帶16A的感測器模組14A。在一些實施例中,佩戴型感測器平台10A的模組及/或組件可由終端使用者移除。然而,在其他實施例中,佩戴型感測器平台10A的模組及/或組件藉由製造商整合至佩戴型感測器平台10A中,且可能並非意欲由終端使用者移除。 In the embodiment illustrated in FIG. 1A, the wearable sensor platform 10A can be implemented as a smart wristwatch or other computing device that fits over the wrist of the user. The wearable sensor platform 10A can include a base module 12A, a strip 16A, a buckle 30A, a battery 22A, and a sensor module 14A coupled to the strip 16A. In some embodiments, the modules and/or components of the wearable sensor platform 10A can be removed by the end user. However, in other embodiments, the modules and/or components of the wearable sensor platform 10A are integrated into the wearable sensor platform 10A by the manufacturer and may not be intended to be removed by the end user.

感測器模組14A可定位於條帶16A內,使得感測器模組14A位於使用者手腕的與使用者的皮膚接觸的底部處以自使用者收集生理資料。基本模組12A附接至條帶16A,使得基本模組12A定位於手腕頂部上。 The sensor module 14A can be positioned within the strip 16A such that the sensor module 14A is located at the bottom of the user's wrist that is in contact with the user's skin to collect physiological data from the user. The base module 12A is attached to the strap 16A such that the base module 12A is positioned on the top of the wrist.

基本模組12A可包含基本計算單元20A,及在上面可提供圖形使用者介面(graphical user interface;GUI)的顯示器18A。基本模組12A執行包含(但不限於)顯示時間、執行運算及/或顯示包含自感測器模組14A收集的感測器資料的資料的功能。除與感測器模組14A通信外,基本模組12A亦可與佩戴於使用者的不同人體部位上的其他感測器模組(未圖示)無線地通信以形成人體區域網路。如關於圖2將更充分地論述,基本計算單元20A可包含處理器、記憶體、通信介面,以及一組感測器,諸如加速度計及溫度計。 The base module 12A can include a base computing unit 20A, and a display 18A on which a graphical user interface (GUI) can be provided. The base module 12A performs functions including, but not limited to, displaying time, performing calculations, and/or displaying data including sensor data collected by the sensor module 14A. In addition to communicating with the sensor module 14A, the base module 12A can also wirelessly communicate with other sensor modules (not shown) that are worn on different body parts of the user to form a body area network. As will be more fully discussed with respect to FIG. 2, basic computing unit 20A can include a processor, a memory, a communication interface, and a set of sensors, such as an accelerometer and a thermometer.

感測器模組14A收集生理資料、活動資料、睡眠統計及/或來自使用者的其他資料,且與基本模組12A通信。感測器模組14A包含收容於感測器板26A中的感測器單元24。感測器單元24A可包含光學感測器陣列、溫度計、皮膚電反應(galvanic skin response;GSR)感測器陣列、生物阻抗(BioZ)感測器陣列、心電圖感測器(electrocardiography sensor;ECG)感測器,或其任何組合。亦可使用其他感測器。 The sensor module 14A collects physiological data, activity data, sleep statistics, and/or other data from the user, and communicates with the basic module 12A. The sensor module 14A includes a sensor unit 24 housed in the sensor board 26A. The sensor unit 24A may include an optical sensor array, a thermometer, a galvanic skin response (GSR) sensor array, a bio-impedance (BioZ) sensor array, and an electrocardiography sensor (ECG). Sensor, or any combination thereof. Other sensors can also be used.

感測器模組14A亦可包含感測器計算單元28A。感測器計算單元28A可分析藉由感測器單元24A收集的資料,對所述資料執行計算,且在一些實施例中儲存所述資料。亦可將來自感測器單元24A的資料提供至基本計算單元20A以供進一步處理。因為可將感測器計算單元28A整合至感測器板26A中,所以在圖1A中由虛線繪示所述感測器計算單元。在其他實施例中,可省略感測器計算單元28A。在此實施例中,基本計算單元20A可執行否則將由感測器計算單元28A執行的功能。經由感測器模組14A及 基本模組12A的組合,可收集、儲存、分析資料且將其呈現給使用者。 The sensor module 14A can also include a sensor calculation unit 28A. The sensor calculation unit 28A can analyze the data collected by the sensor unit 24A, perform calculations on the data, and store the data in some embodiments. The data from the sensor unit 24A can also be provided to the basic computing unit 20A for further processing. Since the sensor computing unit 28A can be integrated into the sensor board 26A, the sensor computing unit is illustrated by dashed lines in FIG. 1A. In other embodiments, the sensor computing unit 28A can be omitted. In this embodiment, the basic computing unit 20A may perform functions that would otherwise be performed by the sensor computing unit 28A. Via sensor module 14A and The combination of the basic modules 12A collects, stores, analyzes and presents the data to the user.

描繪於圖1B中的佩戴型感測器平台10B類似於描繪於圖1A中的佩戴型感測器平台10A。因此,佩戴型感測器平台10B包含條帶16B、電池22B、卡扣30B、包含顯示器/GUI 18B及基本計算單元20B的基本模組12B,以及包含感測器單元24B、感測器板26B以及可選感測器計算單元28B的感測器模組14B,其分別類似於條帶16A、電池22A、卡扣30A、包含顯示器/GUI 18A及基本計算單元20A的基本模組12A,以及包含感測器單元24A、感測器板26A以及可選感測器計算單元28A的感測器模組14A。然而,如圖1B中可看出,某些模組的位置已經變更。舉例而言,卡扣30B相較於卡扣30A更靠近顯示器/GUI 18B。類似地,電池22B藉由基本模組12B收容。在繪示於圖1A中的實施例中,電池22A藉由條帶16A收容,與顯示器18A對置。因此,在各種實施例中,可改變模組的位置及/或功能。 The wearable sensor platform 10B depicted in FIG. 1B is similar to the wearable sensor platform 10A depicted in FIG. 1A. Therefore, the wearable sensor platform 10B includes a strip 16B, a battery 22B, a buckle 30B, a basic module 12B including a display/GUI 18B and a basic computing unit 20B, and a sensor unit 24B and a sensor board 26B. And a sensor module 14B of the optional sensor computing unit 28B, which is similar to the strip 16A, the battery 22A, the buckle 30A, the basic module 12A including the display/GUI 18A and the basic computing unit 20A, and includes The sensor unit 24A, the sensor board 26A, and the sensor module 14A of the optional sensor computing unit 28A. However, as can be seen in Figure 1B, the location of some of the modules has changed. For example, buckle 30B is closer to display/GUI 18B than buckle 30A. Similarly, battery 22B is housed by base module 12B. In the embodiment depicted in FIG. 1A, battery 22A is received by strip 16A opposite display 18A. Thus, in various embodiments, the position and/or function of the module can be changed.

在繪示於圖1A及圖1B中的兩個實施例中,條帶或綁帶16可為一個片件或模組。條帶16可由織物製成。舉例而言,預期到廣泛範圍的可擰扭且可擴展的彈性網布/紡織物。條帶16亦可組態為多條帶或以模組化鏈環組態。在某些實施中,條帶16可包含閂鎖或卡扣機構以將條帶保持於使用者上。在某些實施例中,條帶16將含有連接基本模組12及感測器模組14外加其他的佈線(未圖示)。亦預期到基本模組12與感測器模組14之間的單獨無線通信或結合佈線的無線通信。 In the two embodiments illustrated in Figures 1A and 1B, the strap or strap 16 can be a piece or module. The strip 16 can be made of fabric. For example, a wide range of twistable and expandable elastic mesh/textiles are contemplated. Strip 16 can also be configured as multiple strips or as a modular link configuration. In some implementations, the strap 16 can include a latch or snap mechanism to retain the strap on the user. In some embodiments, the strip 16 will include a connection to the base module 12 and the sensor module 14 plus other wiring (not shown). Individual wireless communication or wireless communication in conjunction with the wiring between the base module 12 and the sensor module 14 is also contemplated.

圖2為說明模組化佩戴型感測器平台10'及包括基本模 組的組件的一個實施例的圖。佩戴型感測器平台10'類似於佩戴型感測器平台10,且因此包含具有類似標記的類似組件。在此實施例中,佩戴型感測器平台10'可包含條帶16'及附接至條帶16'的感測器模組14'。抽取式感測器模組14'可更包含附接至條帶16'的感測器板26',及附接至感測器板26'的感測器單元24'。感測器模組14'亦可包含感測器計算單元28'。 2 is a diagram showing a modular wearable sensor platform 10' and including a basic mode A diagram of one embodiment of a group of components. The wearable sensor platform 10' is similar to the wearable sensor platform 10 and thus contains similar components with similar indicia. In this embodiment, the wearable sensor platform 10' can include a strap 16' and a sensor module 14' attached to the strap 16'. The snubber sensor module 14' may further include a sensor board 26' attached to the strip 16', and a sensor unit 24' attached to the sensor board 26'. The sensor module 14' can also include a sensor computing unit 28'.

佩戴型感測器平台10'包含類似於基本計算單元20的基本計算單元200,及一或多個電池201。舉例而言,可提供類似於電池22的永久性及/或抽取式電池。在一個實施例中,基本計算單元200可經由通信介面205與感測器計算單元28'通信。在一個實施例中,通信介面205可包括串列介面。基本計算單元200可包含處理器202、記憶體206、輸入/輸出件(I/O)208、顯示器18'、通信介面210、感測器214以及電源管理單元220。 The wearable sensor platform 10' includes a basic computing unit 200 similar to the basic computing unit 20, and one or more batteries 201. For example, a permanent and/or removable battery similar to battery 22 can be provided. In one embodiment, the basic computing unit 200 can communicate with the sensor computing unit 28' via the communication interface 205. In one embodiment, communication interface 205 can include a serial interface. The basic computing unit 200 can include a processor 202, a memory 206, an input/output unit (I/O) 208, a display 18', a communication interface 210, a sensor 214, and a power management unit 220.

處理器202、記憶體206、I/O 208、通信介面210以及感測器214可經由系統匯流排(未圖示)耦接在一起。處理器202可包含具有一或多個核心的單一個處理器,或具有一或多個核心的多個處理器。處理器202可運行作業系統(operating system;OS)及各種應用程式204。OS的實例可包含(但不限於)Linux及AndroidTMProcessor 202, memory 206, I/O 208, communication interface 210, and sensor 214 can be coupled together via a system bus (not shown). Processor 202 can include a single processor having one or more cores, or multiple processors having one or more cores. The processor 202 can run an operating system (OS) and various applications 204. Examples of OS may include, but are not limited to, Linux and AndroidTM .

根據例示性實施例,處理器202可運行校準及資料獲取組件(未圖示),其可執行感測器校準及資料獲取功能。在一個實施例中,感測器校準功能可包括用於自對準一或多個感測器陣列與血管的程序。在一個實施例中,感測器校準可在啟動時、在接收來自感測器的資料之前或在操作期間以週期性間隔執行。 According to an exemplary embodiment, processor 202 may run a calibration and data acquisition component (not shown) that may perform sensor calibration and data acquisition functions. In one embodiment, the sensor calibration function can include a program for self-aligning one or more sensor arrays with blood vessels. In one embodiment, sensor calibration may be performed at periodic intervals, either at startup, before receiving data from the sensor, or during operation.

記憶體206可包括一或多個記憶體,所述記憶體包括不同記憶體類型,包含(例如)DRAM、SRAM、ROM、快取記憶體、虛擬記憶體以及快閃記憶體。I/O 208可包括輸入資訊且輸出資訊的組件集合。包括I/O 208的實例組件包含麥克風及揚聲器。 The memory 206 can include one or more memories including different memory types including, for example, DRAM, SRAM, ROM, cache memory, virtual memory, and flash memory. I/O 208 can include a collection of components that input information and output information. Example components including I/O 208 include a microphone and a speaker.

通信介面210可包含無線網路介面控制器(或類似組件)以用於經由網路進行無線通信。在一個實施例中,無線通信的實例類型可包含藍牙低功耗(Bluetooth Low Energy;BLE)及WLAN(無線區域網路)。然而,在另一實施例中,無線通信的實例類型可包含WAN(廣域網路)介面,或蜂巢式網路,諸如3G、4G或LTE(長期演進)。 Communication interface 210 can include a wireless network interface controller (or similar component) for wireless communication over a network. In one embodiment, an example type of wireless communication may include Bluetooth Low Energy (BLE) and WLAN (Wireless Local Area Network). However, in another embodiment, an example type of wireless communication may include a WAN (Wide Area Network) interface, or a cellular network, such as 3G, 4G, or LTE (Long Term Evolution).

在一個實施例中,顯示器18'可與基本計算單元200整合,而在另一實施例中,顯示器18'可在基本計算單元200外部。舉例而言,感測器214可包含任何類型的微機電系統(MEMs)感測器,諸如加速度計/陀螺儀214A及溫度計214B。 In one embodiment, display 18' may be integrated with basic computing unit 200, while in another embodiment, display 18' may be external to basic computing unit 200. For example, sensor 214 can include any type of microelectromechanical system (MEMs) sensor, such as accelerometer/gyroscope 214A and thermometer 214B.

電源管理單元220可耦接至一個/多個電池201,且可包括管控基本計算單元200的電源功能的微控制器。在一個實施例中,電源管理單元220亦可控制電池電力經由電源介面222至抽取式感測器模組14'的供應。 The power management unit 220 can be coupled to one or more batteries 201 and can include a microcontroller that governs the power functions of the basic computing unit 200. In one embodiment, the power management unit 220 can also control the supply of battery power via the power interface 222 to the snubber sensor module 14'.

儘管圖中未繪示,但取決於裝備於感測器模組14上的感測器單元24的類型,基本計算單元200可視情況包含心電圖感測器(ECG)及生物阻抗(BIOZ)類比前端(analog front end;AFE)、皮膚電反應(GSR)AFE及光學感測器AFE。 Although not shown in the drawings, depending on the type of sensor unit 24 that is provided on the sensor module 14, the basic computing unit 200 may optionally include an electrocardiogram sensor (ECG) and a bioimpedance (BIOZ) analog front end. (analog front end; AFE), galvanic skin response (GSR) AFE, and optical sensor AFE.

圖3為說明用於諸如模組化佩戴型感測器平台的佩戴型裝置中的感測器陣列系統的例示性實施例的方塊圖。系統包含可 收容一或多個自對準感測器陣列的條帶310。在一個實施例中,條帶310對應於模組化佩戴型感測器平台10的條帶16(使用或不使用感測器板26)。在另一實施例中,條帶310可為並非模組化佩戴型感測器平台10的部分的單一個裝置。 3 is a block diagram illustrating an illustrative embodiment of a sensor array system for use in a wearable device such as a modular wearable sensor platform. The system contains A strip 310 of one or more self-aligned sensor arrays is housed. In one embodiment, the strip 310 corresponds to the strip 16 of the modular wearable sensor platform 10 (with or without the sensor board 26). In another embodiment, the strip 310 can be a single device that is not part of the modular wearable sensor platform 10.

圖3的頂部部分繪示纏繞使用者手腕308的橫截面的條帶310,而圖3的底部部分繪示處於未捲繞位置的條帶310。根據一個實施例,條帶310包含生物阻抗(BioZ)感測器陣列316,且視情況包含光學感測器陣列312、皮膚電反應(GSR)感測器陣列314、心電圖感測器(ECG)318或其任何組合。 The top portion of Figure 3 shows the strip 310 wrapped around the cross-section of the user's wrist 308, while the bottom portion of Figure 3 shows the strip 310 in the unwound position. According to one embodiment, strip 310 includes a bio-impedance (BioZ) sensor array 316, and optionally an optical sensor array 312, a galvanic skin response (GSR) sensor array 314, an electrocardiogram sensor (ECG), 318 or any combination thereof.

根據一個例示性實施例,感測器陣列316、314以及312各自包括配置或佈置於條帶310上的離散感測器陣列,使得當條帶310佩戴於人體部位上時,每一感測器陣列橫跨或以其他方式定址特定血管(亦即,靜脈、動脈或毛細血管)或具有較高電回應的區域而不考慮血管。更特定而言,感測器陣列316、314以及312中的每一者可實質上垂直於血管的縱向軸線佈置,且覆疊血管寬度以獲得最佳信號。在一個實施例中,條帶310可經佩戴,使得條帶310上的自對準感測器陣列316、314以及312接觸使用者的皮膚,但並非緊密達防止條帶310在人體部位(諸如,使用者手腕308)上方進行任何移動的程度。 According to an exemplary embodiment, the sensor arrays 316, 314, and 312 each include a discrete sensor array disposed or disposed on the strip 310 such that when the strip 310 is worn over a body part, each sensor The array spans or otherwise localizes a particular blood vessel (ie, a vein, artery, or capillaries) or an area with a higher electrical response regardless of the blood vessel. More specifically, each of the sensor arrays 316, 314, and 312 can be disposed substantially perpendicular to the longitudinal axis of the blood vessel and overlap the vessel width to obtain an optimal signal. In one embodiment, the strips 310 can be worn such that the self-aligned sensor arrays 316, 314, and 312 on the strip 310 contact the skin of the user, but are not tight enough to prevent the strip 310 from being in the body part (such as The extent to which any movement is made above the user's wrist 308).

如本文中所使用,生物阻抗(BioZ)感測器陣列316包括可用於活生物體的流體流量偵測應用(諸如,心跳速率偵測)中的阻抗量測裝置。BioZ感測器陣列316及生物阻抗方法可結合包含(但不限於)基本計算單元200的主機電子裝置加以使用。主機電子裝置的其他實例包含(但不限於)其他類型的佩戴型裝 置以及攜帶型及非攜帶型計算裝置,諸如蜂巢式電話、智慧型手機、平板電腦以及膝上型電腦。 As used herein, bio-impedance (BioZ) sensor array 316 includes impedance measurement devices that can be used in fluid flow detection applications of living organisms, such as heart rate detection. The BioZ sensor array 316 and bioimpedance method can be used in conjunction with host electronics including, but not limited to, the basic computing unit 200. Other examples of host electronics include, but are not limited to, other types of wearables And portable and non-portable computing devices, such as cellular phones, smart phones, tablets, and laptops.

習知的生物阻抗感測器通常包括量測生物電阻抗或與通過組織的電流流動相反的流動的單一對電極:一個電極用於「I」電流且另一電極用於「V」電壓。 Conventional bioimpedance sensors typically include a single counter electrode that measures bioelectrical impedance or flow opposite to the flow of current through the tissue: one for the "I" current and the other for the "V" voltage.

然而,根據一個實施例,提供生物阻抗感測器陣列316,其包括四個以上生物阻抗感測器316'且在佩戴時橫跨使用者的血管。在一個實施例中,任一對生物阻抗感測器360'可經選擇以形成電流對「I」,且另一對可經選擇以形成電壓對「V」,且如下文所解釋。在一個實施例中,選擇是固定的。在另一實施例中,選擇是動態的,且在生物阻抗感測器陣列316的操作期間加以執行。可使用多工器(未圖示)進行動態選擇。在所繪示實施例中,生物阻抗感測器陣列316繪示為橫跨動脈,諸如橈動脈或尺動脈。在一個實施例中,BioZ感測器316'中的一或多者可與GSR感測器314中的一或多者一起多工。 However, according to one embodiment, a bio-impedance sensor array 316 is provided that includes more than four bio-impedance sensors 316' and that spans the user's blood vessel when worn. In one embodiment, any pair of bio-impedance sensors 360' can be selected to form a current pair "I" and another pair can be selected to form a voltage pair "V", and as explained below. In one embodiment, the selection is fixed. In another embodiment, the selection is dynamic and performed during operation of the bio-impedance sensor array 316. A multiplexer (not shown) can be used for dynamic selection. In the illustrated embodiment, bioimpedance sensor array 316 is depicted as spanning an artery, such as a radial artery or a ulnar artery. In one embodiment, one or more of the BioZ sensors 316' can be multiplexed with one or more of the GSR sensors 314.

在一個實施例中,光學感測器陣列312可包括可量測相對血流量、脈搏及/或血氧濃度的光體積描記器(photoplethysmograph;PPG)感測器陣列。在此實施例中,光學感測器陣列312可配置於條帶310上,使得光學感測器陣列312橫跨或以其他方式定址動脈,諸如橈動脈或尺動脈。在一個實施例中,光學感測器陣列312可包含離散光學感測器312A的陣列,其中每一離散光學感測器312A為至少一個光偵測器12B與鄰近於光偵測器312B定位的至少兩個匹配光源312C的組合。在一個實施例中,離散光學感測器312A中的每一者在條帶310上可與相鄰 光學感測器分離大約.5至2毫米的預定距離。 In one embodiment, optical sensor array 312 can include a photoplethysmograph (PPG) sensor array that can measure relative blood flow, pulse, and/or blood oxygen concentration. In this embodiment, optical sensor array 312 can be disposed on strip 310 such that optical sensor array 312 spans or otherwise localizes an artery, such as a radial artery or a ulnar artery. In one embodiment, optical sensor array 312 can include an array of discrete optical sensors 312A, wherein each discrete optical sensor 312A is positioned adjacent to at least one photodetector 12B and adjacent to photodetector 312B. A combination of at least two matching light sources 312C. In one embodiment, each of the discrete optical sensors 312A can be adjacent to the strip 310 The optical sensor separates a predetermined distance of approximately .5 to 2 mm.

在一個實施例中,光源12C可各自包括發光二極體(light emitting diode;LED),其中離散光學感測器312A中的每一者中的LED發射具有不同波長的光。由LED發射的實例光色彩可包含綠色、紅色、近紅外以及紅外波長。光偵測器312B中的每一者將所接收的光能量轉換成電信號。在一個實施例中,信號可包括反射光體積描記器信號。在另一實施例中,信號可包括透射光體積描記器信號。在一個實施例中,光偵測器312B可包括光電晶體。在替代實施例中,光偵測器312B可包括電荷耦合裝置(charge-coupled device;CCD)。 In one embodiment, the light sources 12C can each comprise a light emitting diode (LED), wherein the LEDs in each of the discrete optical sensors 312A emit light having different wavelengths. Example light colors emitted by LEDs can include green, red, near infrared, and infrared wavelengths. Each of the photodetectors 312B converts the received light energy into an electrical signal. In one embodiment, the signal can include a reflected light plethysmograph signal. In another embodiment, the signal can include a transmitted light plethysmograph signal. In one embodiment, photodetector 312B can include a photonic crystal. In an alternate embodiment, photodetector 312B can include a charge-coupled device (CCD).

皮膚電反應(GSR)感測器陣列314可包括四個或四個以上GSR感測器,其可量測隨著水分含量發生變化的皮膚的電導率。習知地,兩個GSR感測器對於量測沿著皮膚表面的電阻是必要的。根據一個實施例的一個態樣,GSR感測器陣列314繪示為包含四個GSR感測器,其中四個感測器中的任兩者可經選擇以供使用。在一個實施例中,GSR感測器314可在條帶上隔開2至5毫米。 The galvanic skin response (GSR) sensor array 314 can include four or more GSR sensors that can measure the electrical conductivity of the skin as the moisture content changes. Conventionally, two GSR sensors are necessary to measure the electrical resistance along the surface of the skin. According to one aspect of an embodiment, the GSR sensor array 314 is depicted as including four GSR sensors, of which any two of the four sensors can be selected for use. In one embodiment, the GSR sensor 314 can be spaced 2 to 5 millimeters apart on the strip.

在又一實施例中,條帶310可包含一或多個心電圖感測器(ECG)318(一個感測器在條帶的面向皮膚的內部上,且另一感測器在條帶外部),其量測一段時間內使用者心臟的電活動。此外,條帶310亦可包含用於量測溫度或溫度梯度的溫度計320。 In yet another embodiment, the strip 310 can include one or more electrocardiographic sensors (ECG) 318 (one sensor on the skin-facing interior of the strip and another sensor outside the strip) It measures the electrical activity of the user's heart over a period of time. Additionally, strip 310 may also include a thermometer 320 for measuring temperature or temperature gradients.

圖4為說明提供生物阻抗感測器陣列的方法及用於將生物阻抗感測器陣列用以監視及分析生理參數(諸如,流體流量)從而用於包含心跳速率偵測的應用的方法的流程圖。在一個實施 例中,程序可由在耦接至感測器陣列的處理器上運行的一或多個軟體組件(例如,校準及資料獲取組件)執行。處理器可對應於感測器計算單元28、基本計算單元200的處理器202(繪示於圖2中)及/或單獨處理器。 4 is a flow diagram illustrating a method of providing a bioimpedance sensor array and a method for using a bioimpedance sensor array to monitor and analyze physiological parameters, such as fluid flow, for use in applications including heart rate detection. Figure. In one implementation In one example, the program can be executed by one or more software components (eg, calibration and data acquisition components) running on a processor coupled to the sensor array. The processor may correspond to the sensor computing unit 28, the processor 202 of the basic computing unit 200 (shown in Figure 2), and/or a separate processor.

根據例示性實施例,程序可藉由以下步驟開始:判定包括四個以上生物阻抗感測器的生物阻抗感測器陣列中的最佳子陣列,所述生物阻抗感測器陣列配置於基底上使得生物阻抗感測器陣列在由使用者佩戴時橫跨或以其他方式定址血管(區塊400)。在一個實施例中,最佳子陣列可包括經選擇以形成電流對「I」的任一對生物阻抗感測器,及經選擇以形成電壓對「V」的另一對生物阻抗感測器。 According to an exemplary embodiment, the program may begin by determining an optimal sub-array in a bio-impedance sensor array comprising four or more bio-impedance sensors, the bio-impedance sensor array being disposed on a substrate The bioimpedance sensor array is caused to span or otherwise address the blood vessel (block 400) when worn by the user. In one embodiment, the optimal sub-array may include any pair of bio-impedance sensors selected to form a current pair "I", and another pair of bio-impedance sensors selected to form a voltage pair "V" .

圖5為繪示例示性生物阻抗感測器陣列的方塊圖。根據一個實施例,生物阻抗感測器陣列500可組態為具有四個以上且較佳至少六個或八個離散生物阻抗感測器504的X×Y陣列。X×Y生物阻抗感測器陣列500可置放於任何適當量測位點上。在使用心跳速率量測作為實例的情況下,感測器可置放於佩戴者前臂的下側(亦即,手掌側)或另一人體部位上。感測器陣列在前臂的下側上的位置可進一步經改進為動脈(諸如,橈動脈或尺動脈)上方的位置,其中相對於動脈定位的感測器可使得動脈可位於由生物阻抗感測器陣列500界定的區域內的任何處,只要血液脈搏在成對的電流感測器與電壓感測器之間行進即可。在所繪示的實施例中,生物阻抗感測器陣列500繪示為定位於尺動脈及橈動脈兩者上方。然而,在另一實施例中,生物阻抗感測器陣列500可置放於動脈中的僅一者上方或其他血管上方。 FIG. 5 is a block diagram depicting an exemplary bioimpedance sensor array. According to one embodiment, the bio-impedance sensor array 500 can be configured as an X x Y array having more than four and preferably at least six or eight discrete bio-impedance sensors 504. The X x Y bio-impedance sensor array 500 can be placed at any suitable measurement site. Where heart rate measurement is used as an example, the sensor can be placed on the underside of the wearer's forearm (ie, on the palm side) or on another body part. The position of the sensor array on the underside of the forearm can be further improved to a position above the artery (such as the radial or ulnar artery), wherein the sensor positioned relative to the artery can cause the artery to be located by bioimpedance sensing Anywhere within the area defined by array 500, as long as the blood pulse travels between the pair of current sensors and the voltage sensor. In the illustrated embodiment, the bioimpedance sensor array 500 is illustrated as being positioned over both the ulnar artery and the iliac artery. However, in another embodiment, the bioimpedance sensor array 500 can be placed over only one of the arteries or over other blood vessels.

根據例示性實施例的一個態樣,X×Y生物阻抗感測器陣列500的至少一個M×N子陣列502A至502G(共同地為子陣列502)經選擇為最佳子陣列。在此實施例中,生物阻抗感測器的最佳子陣列是指具有在血管上方的最佳位置且因此提供最佳信號品質的離散生物阻抗感測器504的特定集合。 According to one aspect of the exemplary embodiment, at least one M x N sub-array 502A-502G (collectively sub-array 502) of the X x Y bio-impedance sensor array 500 is selected as the best sub-array. In this embodiment, the optimal sub-array of the bioimpedance sensor refers to a particular set of discrete bio-impedance sensors 504 that have an optimal position above the blood vessel and thus provide optimal signal quality.

在一個實施例中,最佳子陣列502中的至少一對生物阻抗感測器經選擇作為電流感測器,且至少另一對生物阻抗感測器經選擇作為電壓感測器。除此之外,生物阻抗感測器陣列500中的額外生物阻抗感測器504可經選擇作為電流或電壓感測器,或未被使用。在一個實施例中,對電流感測器及電壓感測器的選擇不必要求選擇在生物阻抗感測器陣列的鄰近列或行中的生物阻抗感測器。 In one embodiment, at least one pair of bio-impedance sensors in the optimal sub-array 502 are selected as current sensors, and at least another pair of bio-impedance sensors are selected as voltage sensors. In addition, the additional bio-impedance sensor 504 in the bio-impedance sensor array 500 can be selected as a current or voltage sensor, or not used. In one embodiment, the selection of the current sensor and voltage sensor does not necessarily require selection of a bio-impedance sensor in an adjacent column or row of the bio-impedance sensor array.

如圖5中所繪示,M×N子陣列502的一個可能組態可包括2×2方形感測器配置。在一個實施例中,鄰近M×N子陣列502電接合在一起以形成完整的X×Y生物阻抗感測器500。在所繪示的實例中,四個2×2子陣列502繪示為彼此鄰近地置放成一列以形成單一個2×8生物阻抗感測器陣列500。 As shown in FIG. 5, one possible configuration of the M x N sub-array 502 can include a 2 x 2 square sensor configuration. In one embodiment, adjacent M x N sub-arrays 502 are electrically joined together to form a complete X x Y bio-impedance sensor 500. In the illustrated example, four 2x2 sub-arrays 502 are shown placed adjacent to each other in a column to form a single 2x8 bio-impedance sensor array 500.

在一個實施例中,子陣列502的組態及置放是固定的,其中子陣列502中的每一者包含至少兩個電流感測器及至少兩個電壓感測器。舉例而言,子陣列A、C、E以及G可為固定的,且在操作期間,此等子陣列中的一者經選擇作為最佳子陣列。 In one embodiment, the configuration and placement of sub-array 502 is fixed, wherein each of sub-arrays 502 includes at least two current sensors and at least two voltage sensors. For example, sub-arrays A, C, E, and G can be fixed, and during operation, one of the sub-arrays is selected as the best sub-array.

在另一實施例中,子陣列502的組態是動態的。在此實施例中,在校準期間,生物阻抗感測器陣列500經掃描以識別哪一生物阻抗感測器集合提供最佳信號,且使用識別出的生物阻抗 感測器集合作為最佳子陣列。在一個實施例中,在此程序期間,離散生物阻抗感測器504可經串列地啟動。在替代實施例中,離散生物阻抗感測器504可經並列地啟動。此後,最佳子陣列中的生物阻抗感測器的提供最佳信號的第一部分經選擇作為電流感測器,且最佳子陣列中的生物阻抗感測器的第二部分經選擇作為電壓感測器。舉例而言,在圖5中,子陣列502的A至G中的任一者可判定為最佳子陣列。其他子陣列亦有可能,但未予以說明。又,在預定時間段之後或以規則時間間隔,可再次執行最佳子陣列的判定以查看是否存在更好設定以改良效能。 In another embodiment, the configuration of sub-array 502 is dynamic. In this embodiment, during calibration, the bioimpedance sensor array 500 is scanned to identify which bioimpedance sensor set provides the best signal and uses the identified bioimpedance The sensor set is the best subarray. In one embodiment, during this procedure, the discrete bio-impedance sensor 504 can be activated in series. In an alternate embodiment, the discrete bio-impedance sensor 504 can be activated in parallel. Thereafter, a first portion of the bioimpedance sensor in the optimal sub-array providing the best signal is selected as the current sensor, and the second portion of the bio-impedance sensor in the optimal sub-array is selected as the voltage sense Detector. For example, in FIG. 5, any of A through G of sub-array 502 can be determined to be the best sub-array. Other subarrays are also possible but are not described. Also, after a predetermined period of time or at regular time intervals, the determination of the best sub-array can be performed again to see if there is a better setting to improve performance.

圖6A至圖6D為說明2×2子陣列中的電流感測器及電壓感測器的可能組態的圖。出於解釋目的,圖6A繪示所說明實例假設2×2子陣列呈具有索引(1,1)、(1,2)、(2,1)及(2,2)的列(x)及行(y)格式。 6A-6D are diagrams illustrating possible configurations of current sensors and voltage sensors in a 2x2 sub-array. For purposes of explanation, FIG. 6A illustrates the illustrated example assuming that the 2×2 sub-array is in columns (x) with indices (1, 1), (1, 2), (2, 1), and (2, 2) and Line (y) format.

圖6A繪示2×2子陣列中的電流感測器「I」及電壓感測器「V」的組態為:(1,1)=I,(1,2)=V,(2,1)=V,且(2,2)=I。 6A shows the configuration of the current sensor "I" and the voltage sensor "V" in the 2×2 sub-array as: (1, 1)=I, (1, 2)=V, (2, 1) = V, and (2, 2) = I.

圖6B繪示2×2子陣列中的電流感測器「I」及電壓感測器「V」的組態為:(1,1)=I,(1,2)=V,(2,1)=I,且(2,2)=V。 6B illustrates the configuration of the current sensor "I" and the voltage sensor "V" in the 2×2 sub-array as: (1, 1)=I, (1, 2)=V, (2, 1) = I, and (2, 2) = V.

圖6C繪示2×2子陣列中的電流感測器「I」及電壓感測器「V」的組態為:(1,1)=V,(1,2)=I,(2,1)=V,且(2,2)=I。 6C shows the configuration of the current sensor "I" and the voltage sensor "V" in the 2×2 sub-array as: (1, 1)=V, (1, 2)=I, (2, 1) = V, and (2, 2) = I.

圖6D繪示2×2子陣列中的電流感測器「I」及電壓感測器「V」的組態為:(1,1)=V,(1,2)=I,(2,1)=I,且(2,2)=V。 6D shows the configuration of the current sensor "I" and the voltage sensor "V" in the 2×2 sub-array as: (1, 1)=V, (1, 2)=I, (2, 1) = I, and (2, 2) = V.

圖6E繪示可用於(例如)2×3生物阻抗感測器中的電流感測器及電壓感測器的對角線子陣列組態,其中N表示六個感測器陣列中的未使用感測器。如圖所示,陣列的第一列中的鄰近 電壓及電流感測器(「V」、「I」)自陣列的第二列中的鄰近電流及電壓感測器(「I」、「V」)偏移一行。 6E illustrates a diagonal subarray configuration of current sensors and voltage sensors that can be used, for example, in a 2x3 bioimpedance sensor, where N represents unused in six sensor arrays. Sensor. As shown, the proximity in the first column of the array The voltage and current sensors ("V", "I") are offset by one line from the adjacent current and voltage sensors ("I", "V") in the second column of the array.

在使用手腕上的心跳速率量測作為實例的情況下,最佳子陣列可位於橈動脈或尺動脈上方,其中子陣列相對於動脈定位可使得任一動脈可位於由最佳子陣列界定的區域內的任何處,只要流體(例如,血液)脈搏在成對的電流感測器與電壓感測器之間行進即可。然而,相對於橈動脈及/或尺動脈置放最佳子陣列可能不必要求橈動脈及/或尺動脈直接位於最佳子陣列中的生物阻抗感測器500中的兩者之間。但只要最佳子陣列的外部周邊實質上覆疊橈動脈及/或尺動脈(或其他血管),便仍可獲得適於推斷心跳速率的量測。 Where a heart rate measurement on the wrist is used as an example, the optimal sub-array may be located above the radial or ulnar artery, wherein positioning of the sub-array relative to the artery may allow any artery to be located in the region defined by the optimal sub-array Anywhere within the fluid, as long as the fluid (eg, blood) pulse travels between the pair of current sensors and the voltage sensor. However, placement of the optimal sub-array relative to the brachial artery and/or ulnar artery may not necessarily require the radial artery and/or ulnar artery to be directly between the bioimpedance sensors 500 in the optimal sub-array. However, as long as the outer periphery of the optimal sub-array substantially covers the radial artery and/or the ulnar artery (or other blood vessel), measurements suitable for inferring the heart rate can still be obtained.

熟習此項技術者可易於認識到,可使用額外感測器及/或以多種陣列類型組態配置額外感測器,以形成不同形狀且有效地增加由感測器陣列覆蓋的感應區域,因此允許感測器裝置的較大置放穩健性,只要子陣列中的至少一者覆疊血管即可。 Those skilled in the art will readily recognize that additional sensors can be configured using additional sensors and/or in a variety of array type configurations to form different shapes and effectively increase the sensing area covered by the sensor array, thus Allowing greater placement robustness of the sensor device, as long as at least one of the sub-arrays overlaps the blood vessel.

在一個實施例中,生物阻抗感測器504中的每一者可包括電極。電極可(例如)在大約0.1至1.0公分2的大小範圍內,且(例如)分離大約0.1至1.0公分的距離。電極大小與電極之間的所要求置放距離成比例,因此較小電極應更靠近地置放在一起。電極可由數種導電材料建構。在一個實施例中,電極材料可包括以下各者中的至少一者:包含金、不鏽鋼、鎳以及其他金屬元素的金屬材料、化合物或合金。在另一實施例中,電極材料可包括非導電材料上的塗層,諸如塗佈有銀/氯化銀(Ag/AgCl)的聚合物或陶瓷。然而,可使用額外導體/非導體材料組合(例如, 額外的貴金屬及金屬鹵化物組合)。在另一實施例中,可使用材料的組合,包含(例如)具有Ag/AgCl塗層的導電橡膠。 In one embodiment, each of the bioimpedance sensors 504 can include an electrode. The electrodes can be, for example, in the range of about 0.1 to 1.0 cm 2 and, for example, separated by a distance of about 0.1 to 1.0 cm. The electrode size is proportional to the required placement distance between the electrodes, so the smaller electrodes should be placed closer together. The electrodes can be constructed from several electrically conductive materials. In one embodiment, the electrode material can include at least one of: a metal material, compound, or alloy comprising gold, stainless steel, nickel, and other metallic elements. In another embodiment, the electrode material can include a coating on a non-conductive material, such as a polymer or ceramic coated with silver/silver chloride (Ag/AgCl). However, additional conductor/non-conductor material combinations (eg, additional precious metal and metal halide combinations) can be used. In another embodiment, a combination of materials can be used, including, for example, a conductive rubber having an Ag/AgCl coating.

再次參看圖4,處理器可經組態以經由最佳子陣列中的生物阻抗感測器的至少第一部分將電信號傳遞至使用者(區塊402)。 Referring again to FIG. 4, the processor can be configured to communicate an electrical signal to the user (block 402) via at least a first portion of the bio-impedance sensor in the optimal sub-array.

在一個實施例中,一或多個電信號可包括在兩個電流感測器之間通過的電流。電信號應較佳與待量測的流體流量的路徑相交。在一實施例中,電信號在必要時可(例如)藉由調整電信號參數來修改以提供最佳量測,電信號參數包含頻率、振幅、波形或其任何組合。在一個實施例中,電信號參數可回應於任何所感應信號的品質而改變。根據一個實施例,感應方法可更包含藉由不同電信號參數進行一系列量測,且所感應信號可經比較以便選擇最佳量測。 In one embodiment, the one or more electrical signals can include a current that passes between the two current sensors. The electrical signal should preferably intersect the path of the fluid flow to be measured. In an embodiment, the electrical signals may be modified, if necessary, by adjusting electrical signal parameters to provide an optimal measurement, the electrical signal parameters including frequency, amplitude, waveform, or any combination thereof. In one embodiment, the electrical signal parameters may change in response to the quality of any of the sensed signals. According to one embodiment, the sensing method may further comprise performing a series of measurements by different electrical signal parameters, and the sensed signals may be compared to select an optimal measurement.

仍參看圖4,使用最佳子陣列中的生物阻抗感測器的第二部分自電信號量測一或多個生物阻抗值(區塊404)。在一個實施例中,可藉由感應生物阻抗感測器陣列中的兩個電壓感測器/電極之間的電位或電壓來量測生物阻抗值。在一個實施例中,電位的此感應較佳與待量測的流體流量的路徑相交。在又一實施例中,可量測來自鄰近電極的生物阻抗值。 Still referring to FIG. 4, one or more bioimpedance values are measured from the electrical signal using a second portion of the bioimpedance sensor in the optimal sub-array (block 404). In one embodiment, the bioimpedance value can be measured by sensing a potential or voltage between two voltage sensors/electrodes in the bioimpedance sensor array. In one embodiment, this induction of potential preferably intersects the path of the fluid flow to be measured. In yet another embodiment, bioimpedance values from adjacent electrodes can be measured.

最終,接著自一或多個生物阻抗值量測至少流體生物阻抗作用(區塊406)。正量測的流體生物阻抗可包含各種流體類型,包含(例如)諸如流動通過動脈的血液的在人體內流動的流體。 Finally, at least the fluid bioimpedance effect is measured from one or more bioimpedance values (block 406). The positively measured fluid bioimpedance can comprise a variety of fluid types including, for example, fluids flowing in the body such as blood flowing through the artery.

已揭露了用於提供用於心跳速率偵測的生物阻抗感測器陣列的方法及系統。已根據所繪示的實施例描述了本發明,且 可存在對實施例的變化,且任何變化將在本發明的精神及範疇內。舉例而言,可使用硬體、軟體、含有程式指令的電腦可讀媒體或其組合來實施一個實施例。根據本發明撰寫的軟體將儲存於某一形式的電腦可讀媒體(諸如,記憶體、硬碟或CD/DVD-ROM)中,且將由處理器運行。因此,在不脫離所附申請專利範圍的精神及範疇的情況下,一般熟習技術者可作出許多修改。 Methods and systems for providing bio-impedance sensor arrays for heart rate detection have been disclosed. The invention has been described in terms of the illustrated embodiments, and There may be variations to the embodiments, and any variations are within the spirit and scope of the invention. For example, an embodiment may be implemented using hardware, software, a computer readable medium containing program instructions, or a combination thereof. Software written in accordance with the present invention will be stored in some form of computer readable medium, such as a memory, hard drive or CD/DVD-ROM, and will be executed by the processor. Therefore, many modifications may be made by those skilled in the art without departing from the spirit and scope of the appended claims.

400、402、404、406‧‧‧流程圖的區塊 Blocks of 400, 402, 404, 406‧‧‧ flowcharts

Claims (30)

一種用於提供生物阻抗感測器陣列的方法,其包括:判定包括四個以上生物阻抗感測器的生物阻抗感測器陣列中的最佳子陣列,所述生物阻抗感測器陣列配置於基底上使得所述感測器陣列在由使用者佩戴時橫跨或以其他方式定址血管;經由所述最佳子陣列中的所述生物阻抗感測器的至少第一部分將電信號傳遞至所述使用者;使用所述最佳子陣列中的所述生物阻抗感測器的第二部分自所述電信號量測一或多個生物阻抗值;以及自所述一或多個生物阻抗值分析至少流體生物阻抗作用。 A method for providing a bio-impedance sensor array, comprising: determining an optimal sub-array in a bio-impedance sensor array comprising four or more bio-impedance sensors, the bio-impedance sensor array being configured Having the sensor array straddle or otherwise address a blood vessel when worn by a user; transmitting an electrical signal to at least a first portion of the bioimpedance sensor in the optimal sub-array Using the second portion of the bioimpedance sensor in the optimal sub-array to measure one or more bioimpedance values from the electrical signal; and from the one or more bioimpedance values Analyze at least the fluid bioimpedance effect. 如申請專利範圍第1項所述的方法,其更包括:選擇所述最佳子陣列中的至少一對所述生物阻抗感測器以形成電流感測器,且選擇至少另一對生物阻抗感測器以形成電壓感測器。 The method of claim 1, further comprising: selecting at least one pair of the bio-impedance sensors of the optimal sub-array to form a current sensor, and selecting at least another pair of bio-impedances A sensor to form a voltage sensor. 如申請專利範圍第1項所述的方法,其中所述最佳子陣列的組態及置放是固定的。 The method of claim 1, wherein the configuration and placement of the optimal sub-array is fixed. 如申請專利範圍第1項所述的方法,其中所述最佳子陣列的組態及置放是動態的。 The method of claim 1, wherein the configuration and placement of the optimal sub-array is dynamic. 如申請專利範圍第4項所述的方法,其更包括:掃描所述生物阻抗感測器陣列以識別哪一生物阻抗感測器集合提供最佳電流信號,且使用所述識別出的生物阻抗感測器集合作為所述最佳子陣列;選擇所述最佳子陣列中的所述生物阻抗感測器的提供最佳電流信號的第一部分作為電流感測器;以及選擇所述最佳子陣列中的所述生物阻抗感測器的第二部分作為電壓感測器。 The method of claim 4, further comprising: scanning the bioimpedance sensor array to identify which bioimpedance sensor set provides an optimal current signal, and using the identified bioimpedance a sensor set as the optimal sub-array; selecting a first portion of the bio-impedance sensor in the optimal sub-array that provides an optimal current signal as a current sensor; and selecting the best sub- A second portion of the bioimpedance sensor in the array acts as a voltage sensor. 如申請專利範圍第5項所述的方法,其中所述最佳子陣列是相對於所述血管定位,使得所述血管位於由所述最佳子陣列界定的區域內的任何處,只要血液脈搏在成對的所述電流感測器與所述電壓感測器之間行進即可。 The method of claim 5, wherein the optimal sub-array is positioned relative to the blood vessel such that the blood vessel is located anywhere within the region defined by the optimal sub-array, as long as the blood pulse It suffices to travel between the pair of current sensors and the voltage sensor. 如申請專利範圍第1項所述的方法,其更包括:將所述生物阻抗感測器中的一或多者與一或多個皮膚電反應感測器一起多工。 The method of claim 1, further comprising: multiplexing one or more of the bioimpedance sensors with one or more galvanic skin sensors. 如申請專利範圍第1項所述的方法,其中所述生物阻抗感測器包括電極。 The method of claim 1, wherein the bioimpedance sensor comprises an electrode. 如申請專利範圍第8項所述的方法,其中所述電極大小的大小與所述電極之間的所要求置放距離成比例,使得較小電極更靠近地置放在一起。 The method of claim 8, wherein the size of the electrode is proportional to a desired placement distance between the electrodes such that the smaller electrodes are placed closer together. 如申請專利範圍第8項所述的方法,其中所述電極在大約0.1至1.0公分2的大小範圍內,且分離大約0.1至1.0公分的距離。 The method of claim 8, wherein the electrode is in a size range of about 0.1 to 1.0 cm 2 and is separated by a distance of about 0.1 to 1.0 cm. 如申請專利範圍第8項所述的方法,其中所述電極包括以下各者中的至少一者:包含金、不鏽鋼、鎳以及其他金屬元素的金屬材料、化合物或合金。 The method of claim 8, wherein the electrode comprises at least one of a metal material, a compound or an alloy comprising gold, stainless steel, nickel, and other metal elements. 如申請專利範圍第8項所述的方法,其中所述電極包括塗佈有銀/氯化銀的聚合物或陶瓷。 The method of claim 8, wherein the electrode comprises a polymer or ceramic coated with silver/silver chloride. 如申請專利範圍第8項所述的方法,其中所述電極包括具有銀/氯化銀塗層的導電橡膠。 The method of claim 8, wherein the electrode comprises a conductive rubber having a silver/silver chloride coating. 如申請專利範圍第1項所述的方法,其中傳遞電信號更包括:藉由調整信號參數來修改所述電信號以提供最佳量測,所 述信號參數包含頻率、振幅、波形或其任何組合。 The method of claim 1, wherein the transmitting the electrical signal further comprises: modifying the electrical signal by adjusting a signal parameter to provide an optimal measurement, The signal parameters include frequency, amplitude, waveform, or any combination thereof. 如申請專利範圍第14項所述的方法,其更包括:使用不同信號參數進行一系列量測。 The method of claim 14, further comprising: performing a series of measurements using different signal parameters. 一種生物阻抗感測器陣列,其包括:具有四個以上生物阻抗感測器的陣列,其配置於基底上使得所述感測器陣列在由使用者佩戴時橫跨或以其他方式定址血管;以及處理器,其耦接至所述感測器陣列,所述處理器經組態以進行以下操作:判定所述生物阻抗感測器陣列中的最佳子陣列;經由所述最佳子陣列中的所述生物阻抗感測器的至少第一部分將電信號傳遞至所述使用者;使用所述最佳子陣列中的所述生物阻抗感測器的第二部分自所述電信號量測一或多個生物阻抗值;以及自所述一或多個生物阻抗值分析至少流體生物阻抗作用。 A bioimpedance sensor array comprising: an array having four or more bioimpedance sensors disposed on a substrate such that the sensor array spans or otherwise addresses blood vessels when worn by a user; And a processor coupled to the sensor array, the processor configured to: determine an optimal sub-array in the bio-impedance sensor array; via the optimal sub-array At least a first portion of the bio-impedance sensor transmits an electrical signal to the user; using a second portion of the bio-impedance sensor in the optimal sub-array from the electrical signal measurement One or more bioimpedance values; and analyzing at least the fluid bioimpedance effect from the one or more bioimpedance values. 如申請專利範圍第16項所述的系統,其更包括:選擇所述最佳子陣列中的至少一對所述生物阻抗感測器以形成電流感測器,且選擇至少另一對生物阻抗感測器以形成電壓感測器。 The system of claim 16, further comprising: selecting at least one pair of the bio-impedance sensors of the optimal sub-array to form a current sensor, and selecting at least another pair of bio-impedances A sensor to form a voltage sensor. 如申請專利範圍第16項所述的系統,其中所述子陣列的組態及置放是固定的。 The system of claim 16, wherein the configuration and placement of the sub-array is fixed. 如申請專利範圍第18項所述的系統,其中所述子陣列的組態及置放是動態的。 The system of claim 18, wherein the configuration and placement of the sub-array is dynamic. 如申請專利範圍第19項所述的系統,其中所述處理器掃 描所述生物阻抗感測器陣列以識別哪一生物阻抗感測器集合提供最佳電流信號,且使用所述識別出的生物阻抗感測器集合作為所述最佳子陣列;以及選擇所述最佳子陣列中的所述生物阻抗感測器的第二部分作為電壓感測器。 The system of claim 19, wherein the processor sweeps Depicting the bioimpedance sensor array to identify which bioimpedance sensor set provides an optimal current signal, and using the identified set of bioimpedance sensors as the optimal subarray; and selecting the The second portion of the bioimpedance sensor in the optimal sub-array acts as a voltage sensor. 如申請專利範圍第20項所述的系統,其中所述最佳子陣列是相對於所述血管定位,使得所述血管位於由所述最佳子陣列界定的區域內的任何處,只要血液脈搏在成對的所述電流感測器與所述電壓感測器之間行進即可。 The system of claim 20, wherein the optimal sub-array is positioned relative to the blood vessel such that the blood vessel is located anywhere within the region defined by the optimal sub-array, as long as the blood pulse It suffices to travel between the pair of current sensors and the voltage sensor. 如申請專利範圍第16項所述的系統,其中將所述生物阻抗感測器中的一或多者與一或多個皮膚電反應感測器一起多工。 The system of claim 16, wherein one or more of the bioimpedance sensors are multiplexed with one or more galvanic skin sensors. 如申請專利範圍第16項所述的系統,其中所述生物阻抗感測器包括電極。 The system of claim 16, wherein the bioimpedance sensor comprises an electrode. 如申請專利範圍第23項所述的系統,其中所述電極大小的大小與所述電極之間的所要求置放距離成比例,使得較小電極更靠近地置放在一起。 The system of claim 23, wherein the size of the electrode is proportional to a desired placement distance between the electrodes such that the smaller electrodes are placed closer together. 如申請專利範圍第23項所述的系統,其中所述電極在大約0.1至1.0公分2的大小範圍內,且分離大約0.1至1.0公分的距離。 The system of claim 23, wherein the electrode is in the range of about 0.1 to 1.0 cm 2 and is separated by a distance of about 0.1 to 1.0 cm. 如申請專利範圍第23項所述的系統,其中所述電極包括以下各者中的至少一者:包含金、不鏽鋼、鎳以及其他金屬元素的金屬材料、化合物或合金。 The system of claim 23, wherein the electrode comprises at least one of: a metal material, compound or alloy comprising gold, stainless steel, nickel, and other metallic elements. 如申請專利範圍第23項所述的系統,其中所述電極包括塗佈有銀/氯化銀的聚合物或陶瓷。 The system of claim 23, wherein the electrode comprises a polymer or ceramic coated with silver/silver chloride. 如申請專利範圍第23項所述的系統,其中所述電極包括 具有銀/氯化銀塗層的導電橡膠。 The system of claim 23, wherein the electrode comprises Conductive rubber with silver/silver chloride coating. 如申請專利範圍第16項所述的系統,其中藉由調整信號參數來修改所述電信號以提供最佳量測,所述信號參數包含頻率、振幅、波形或其任何組合。 The system of claim 16, wherein the electrical signal is modified to provide an optimal measurement by adjusting a signal parameter comprising a frequency, an amplitude, a waveform, or any combination thereof. 如申請專利範圍第29項所述的系統,其中使用不同信號參數進行一系列量測。 The system of claim 29, wherein the series of measurements are performed using different signal parameters.
TW103143275A 2013-12-11 2014-12-11 Method and system for providing bioimpedance sensor array TW201529041A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/103,717 US9554724B2 (en) 2013-12-11 2013-12-11 Self-aligning sensor array
US201461969763P 2014-03-24 2014-03-24
US14/282,950 US20150157219A1 (en) 2013-12-11 2014-05-20 Bioimpedance sensor array for heart rate detection

Publications (1)

Publication Number Publication Date
TW201529041A true TW201529041A (en) 2015-08-01

Family

ID=53406425

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103143275A TW201529041A (en) 2013-12-11 2014-12-11 Method and system for providing bioimpedance sensor array

Country Status (3)

Country Link
KR (1) KR20150068333A (en)
CN (1) CN104706343A (en)
TW (1) TW201529041A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI568413B (en) * 2015-10-21 2017-02-01 國立交通大學 Bio-signal sensor
TWI689286B (en) * 2018-11-29 2020-04-01 國立成功大學醫學院附設醫院 Method for evaluating therapeutic outcomes of treatment for fistula stenosis by detection of audio signal and blood-flow signal as well as wearable device for detection of audio signal and blood-flow signal

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106691408A (en) * 2015-09-06 2017-05-24 陈才维 Composite sensor
CN105105748A (en) * 2015-09-16 2015-12-02 广东欧珀移动通信有限公司 Health monitoring method and system based on galvanic skin sensor
US11129555B2 (en) 2015-11-17 2021-09-28 University-Industry Cooperation Group Of Kyung Hee University Device for measuring biological information including sensor array and method of measuring biological information using device
US10959619B2 (en) 2016-03-07 2021-03-30 Samsung Electronics Co., Ltd. Apparatus and method for acquiring biological information and band for acquiring biological information
WO2018076232A1 (en) * 2016-10-27 2018-05-03 City University Of Hong Kong System, device and sensor for monitoring circulatory conditions and method for manufacturing the same
US10749863B2 (en) * 2017-02-22 2020-08-18 Intel Corporation System, apparatus and method for providing contextual data in a biometric authentication system
CN107485380B (en) * 2017-07-03 2021-06-08 中网联金乐盟科技(北京)有限公司 Wrist-worn heart rate monitoring device and heart rate monitoring control method
US11083392B2 (en) * 2017-07-13 2021-08-10 Samsung Electronics Co., Ltd. Bio-processor, bio-signal detecting system, and operation method of bio-processor
US10499827B2 (en) * 2017-09-19 2019-12-10 Honeywell International Inc. System and method for interpretation of signal-to-noise ratios detected in an array of electrodes sensors in terms of physical and cognitive state
CN108245157B (en) * 2017-12-15 2021-05-25 芯海科技(深圳)股份有限公司 Anti-plagiarism method of human body composition measuring instrument algorithm
CN108498081A (en) * 2018-05-25 2018-09-07 深圳市知赢科技有限公司 Pulse wave velocity device, blood pressure continuous measurement device and method
CN109374973B (en) * 2018-11-08 2021-01-05 深圳市国赛生物技术有限公司 Insulation resistance detection circuit, detection circuit and detection device
CN110200605A (en) * 2019-04-26 2019-09-06 青岛歌尔智能传感器有限公司 A kind of heart rate sensor and the electronic equipment for acquiring heart rate
CN111671414B (en) * 2020-06-05 2023-03-28 中国人民解放军陆军军医大学第一附属医院 System and method for monitoring, evaluating and controlling senile heart failure based on non-invasive blood flow
CN113951826B (en) * 2021-10-25 2023-09-05 思澜科技(成都)有限公司 Method, system and equipment for evaluating sleep condition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP711998A0 (en) * 1998-11-13 1998-12-10 Micromedical Industries Limited Wrist mountable monitor
CN101522096B (en) * 2006-09-05 2013-03-27 N.I.医学有限公司 Method and system for non-invasive measurement of cardiac parameters
FI120619B (en) * 2006-11-17 2009-12-31 Suunto Oy Device and method for monitoring performance
WO2009033625A1 (en) * 2007-09-07 2009-03-19 Flore, Ingo Medical measuring device for bioelectrical impedance measurement
EP2101408B1 (en) * 2008-03-11 2012-05-16 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Floating front-end amplifier and one-wire measuring devices
US20090275854A1 (en) * 2008-04-30 2009-11-05 Zielinski Todd M System and method of monitoring physiologic parameters based on complex impedance waveform morphology
CN203252647U (en) * 2012-09-29 2013-10-30 艾利佛公司 Wearable device for judging physiological features

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI568413B (en) * 2015-10-21 2017-02-01 國立交通大學 Bio-signal sensor
TWI689286B (en) * 2018-11-29 2020-04-01 國立成功大學醫學院附設醫院 Method for evaluating therapeutic outcomes of treatment for fistula stenosis by detection of audio signal and blood-flow signal as well as wearable device for detection of audio signal and blood-flow signal

Also Published As

Publication number Publication date
CN104706343A (en) 2015-06-17
KR20150068333A (en) 2015-06-19

Similar Documents

Publication Publication Date Title
TW201529041A (en) Method and system for providing bioimpedance sensor array
US20150157219A1 (en) Bioimpedance sensor array for heart rate detection
US10595786B2 (en) Confidence indicator for physiological measurements using a wearable sensor platform
JP6441054B2 (en) Modular sensor platform device and system
US10194809B2 (en) Integrated electronics for photoplethysmography and electrocardiography
EP3541269B1 (en) Vital monitoring device, system, and method
CN106716295B (en) Locating wearable devices for data collection
KR101629974B1 (en) Medical measurement device for bioelectrical impedance measurement
US10194808B1 (en) Correlated hemodynamic measurements
US20180078163A1 (en) Biometric Reading Apparatus, System and Method of Use Thereof
JP6616069B2 (en) Vital sensor module
US20180014742A1 (en) Biological information measuring device
CN108366731A (en) The wearable device and method of electrodermal activity for determining object
JP6706465B2 (en) Vital sensor module
JP2017006230A (en) Biological information measurement device
US20200397314A1 (en) Cutaneous system for monitoring an individual
KR102568715B1 (en) Apparatus for Measuring Complex Biological Signals
KR101934487B1 (en) An ECG sensor system with trisection electrode pattern
US11998298B2 (en) System and method for a wearable vital signs monitor
US20230200729A1 (en) Physiological sensor patch for making complex measurements of bioimpedance
CN207855684U (en) A kind of human body balance by bio-impedance sensing measurement human heart rate
US20190261859A1 (en) System and Method for a Wearable Vital Signs Monitor
KR20230006373A (en) Apparatus and method for estimating bio-information based on bio-impedence
JP2023061111A (en) Wearable electrocardiographic device
Farooqui et al. Inkjet printed wireless smart bandage