TW201528754A - Encryption and decryption system and method using chaotic mapping with spatial-temporal perturbation - Google Patents

Encryption and decryption system and method using chaotic mapping with spatial-temporal perturbation Download PDF

Info

Publication number
TW201528754A
TW201528754A TW103101209A TW103101209A TW201528754A TW 201528754 A TW201528754 A TW 201528754A TW 103101209 A TW103101209 A TW 103101209A TW 103101209 A TW103101209 A TW 103101209A TW 201528754 A TW201528754 A TW 201528754A
Authority
TW
Taiwan
Prior art keywords
chaotic
time
random number
bit
iterative
Prior art date
Application number
TW103101209A
Other languages
Chinese (zh)
Other versions
TWI552563B (en
Inventor
Wen-Wei Lin
Chung-Hsi Li
Original Assignee
Wen-Wei Lin
Chung-Hsi Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wen-Wei Lin, Chung-Hsi Li filed Critical Wen-Wei Lin
Priority to TW103101209A priority Critical patent/TWI552563B/en
Publication of TW201528754A publication Critical patent/TW201528754A/en
Application granted granted Critical
Publication of TWI552563B publication Critical patent/TWI552563B/en

Links

Landscapes

  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

The present invention provides an encryption and decryption system and method using chaotic mapping with spatial-temporal perturbation for secure communication. A chaotic cryptographic operator in a transmitting terminal loads a plaintext message and securely transmits the plaintext message from the transmitting terminal to a receiving terminal. A chaotic cryptographic encryptor in the transmitting terminal executes an encryption process. The chaotic cryptographic operator executes at least one iterative operation of the encryption and decryption system and method using chaotic mapping with spatial-temporal perturbation to generate a set of keys. Execute the exclusive-or operation to the plaintext message and the set of keys to generate a set of ciphertext blocks. A chaotic cryptographic receiver receives the set of ciphertext blocks and the set of keys transmitted from the transmitting terminal. A chaotic cryptographic decryptor executes the exclusive-or operation to the set of ciphertext blocks and the set of keys to generate a decrypted plaintext message.

Description

時間擾動混沌映射加密解密系統與方法 Time disturbance chaotic map encryption and decryption system and method

本發明係有關一種用於保密通訊之時間擾動混沌映射加密解密系統與方法,可將一明文訊息以保密方式自一發送端傳送至一接收端,係屬於對稱加密法中之密碼流加密法,具有密鑰空間大、非線性、不可預測性、計算速度快等特點。 The invention relates to a time-disturbing chaotic map encryption and decryption system and method for secret communication, which can transmit a plaintext message from a sender to a receiver in a secret manner, which belongs to the cipher stream encryption method in the symmetric encryption method. It has the characteristics of large key space, non-linearity, unpredictability and fast calculation speed.

一般習知,用於保密通訊上已經有許多種之加密解密法,其中將混沌理論應用在密碼學上,雖然有許多先前的研究,但是在避免混沌空窗的影響上、均勻性上、動態退化的影響上、金鑰的選取上以及安全性上,都還需要加強,在實作上,成本經常過高,速度不夠快,也是一般習知的缺陷。有鑑於此,本發明人發展出新的設計,能夠比面上述之缺點,具有密鑰空間大、非線性、不可預測性、計算速度快等優點,且係可在任何具有16位元以上之加法器的數位計算元件上,如,CPU、GPU、MPU、MCU、DSP、FPGA、SoC等,皆能實現。 It is generally known that there are many kinds of encryption and decryption methods used in secure communication, in which chaos theory is applied to cryptography, although there are many previous studies, but in avoiding the influence of chaotic window, uniformity, dynamic The impact of degradation, the selection of keys, and security must be strengthened. In practice, the cost is often too high and the speed is not fast enough. It is also a common flaw. In view of this, the inventors have developed a new design, which has the advantages of the above-mentioned disadvantages, large key space, non-linearity, unpredictability, fast calculation speed, and the like, and can be any 16-bit or more. The digital computing component of the adder, such as CPU, GPU, MPU, MCU, DSP, FPGA, SoC, etc., can be implemented.

本發明之主要目的在提供一種用於保密通訊之時間擾動混沌映射加密解密系統與方法,可將一明文訊息以保密方式自一發送端傳送至一接收端,係屬於對稱加密法中之密碼流加密法,具有密鑰空間大、非線性、不可預測性、計算速度快等特點,在一般具有16位元以上之加法器 的數位計算元件上,如,CPU、GPU、MPU、MCU、DSP、FPGA、SoC等,皆能實現,且在混沌映射的選取上,能避免混沌空窗以及動態退化的影響,並具有均勻性以及安全性。 The main object of the present invention is to provide a time-disturbing chaotic map encryption and decryption system and method for secret communication, which can transmit a plaintext message from a sender to a receiver in a secure manner, which belongs to the password stream in the symmetric encryption method. The encryption method has the characteristics of large key space, non-linearity, unpredictability, fast calculation speed, etc., and generally has an adder of 16 bits or more. The digital computing components, such as CPU, GPU, MPU, MCU, DSP, FPGA, SoC, etc., can be implemented, and the chaotic window can be selected to avoid the effects of chaotic window and dynamic degradation, and have uniformity. And security.

為達上述之目的,本發明提供一種用於保密通訊之時間擾動 混沌映射加密解密系統,可將一明文訊息以保密方式自一發送端傳送至一接收端,包括至少一混沌密碼運算器、一混沌密碼加密器、一混沌密碼接收器以及一混沌密碼解密器;其中該混沌密碼運算器,係分別設置於該發送端以及該接收端內;經由輸入一初始狀態至該發送端內之該混沌密碼運算器中,使該混沌密碼運算器執行至少一次該時間擾動混沌映射加密解密系統之迭代運算而產生一金鑰組;其中該混沌密碼加密器,係設置於該發送端內,該混沌密碼加密器將該明文訊息載入,並將該明文訊息與該金鑰組經互斥運算而產生一密文小區塊組;其中該混沌密碼接收器,係設置於該接收端內,其中該混沌密碼接收器接收傳送自該發送端之該密文小區塊組以及該初始狀態;經由輸入該初始狀態至該接收端內之該混沌密碼運算器中,使該混沌密碼運算器執行至少一次該時間擾動混沌映射加密解密系統之迭代運算而產生與該發送端內相同之該金鑰組;且其中該混沌密碼解密器,係設置於該接收端內,其中該混沌密碼解密器將該密文小區塊組與該金鑰組經互斥運算而產生一解密明文訊息。 For the above purposes, the present invention provides a time disturbance for secure communication The chaotic map encryption and decryption system can transmit a plaintext message from a sending end to a receiving end in a secret manner, including at least one chaotic cipher operator, a chaotic cipher encryptor, a chaotic cipher receiver and a chaotic cipher decryptor; The chaotic cryptographic operator is respectively disposed in the transmitting end and the receiving end; and the chaotic cryptographic operator performs the at least one time disturbance by inputting an initial state to the chaotic cryptographic operator in the transmitting end. An iterative operation of the chaotic map encryption and decryption system generates a key group; wherein the chaotic cipher is set in the sender, the chaotic cipher encrypts the plaintext message, and the plaintext message and the gold The key group is mutually exclusive to generate a ciphertext block group; wherein the chaotic cipher receiver is disposed in the receiving end, wherein the chaotic cipher receiver receives the ciphertext block group transmitted from the transmitting end and The initial state; the chaotic cryptographic operator is implemented by inputting the initial state to the chaotic cipher operator in the receiving end At least one time interrupting the iterative operation of the chaotic map encryption and decryption system to generate the same key group as in the transmitting end; and wherein the chaotic password decryptor is disposed in the receiving end, wherein the chaotic password decryptor The ciphertext cell block group and the key group are mutually exclusive operations to generate a decrypted plaintext message.

於實施時,前述之該混沌密碼運算器,包括一運算開關、一 輸入會合端、一偽隨機數暫存器、一金鑰輸出端、一延遲長度位移暫存器、一循環位移暫存器以及一迭代運算器;其中該運算開關係用以啟動該混沌密碼運算器進行一次該時間擾動混沌映射加密解密系統之迭代運算;其中 該輸入會合端係可選擇該初始狀態或一迭代狀態,當選擇該初始狀態時,一初始偽隨機數及一初始循環位移隨機數經由該輸入會合端輸入,將該初始偽隨機數傳送至該迭代運算器,且該初始循環位移隨機數將該初始偽隨機數產生循環位移,而產生一偽隨機數,而當選擇該迭代狀態時,該循環位移暫存器中之一循環位移隨機數及該偽隨機數暫存器中之一迭代偽隨機數經由該輸入會合端輸入,將該迭代偽隨機數傳送至該迭代運算器,且該循環位移隨機數將該迭代偽隨機數產生循環位移,而產生該偽隨機數;其中該偽隨機數包括一金鑰元素、一更新循環位移隨機數、一更新時間延遲因子隨機數以及一更新時間延遲因子資料源;其中該金鑰輸出端係用以輸出該金鑰元素;其中該更新循環位移隨機數經存入該循環位移暫存器中,而形成該循環位移隨機數;其中該延遲長度位移暫存器係使用該更新時間延遲因子隨機數以及該更新時間延遲因子資料源來產生一時間延遲因子,並將該時間延遲因子截斷,而形成一被截斷的時間延遲因子,並將該被截斷的時間延遲因子存入該延遲長度位移暫存器內;其中該迭代運算器係將接收自該輸入會合端之該初始偽隨機數或該迭代偽隨機數帶入一混沌映射中並與該被截斷的時間延遲因子產生互斥運算,而產生一新迭代偽隨機數,並將該新迭代偽隨機數存入該偽隨機數暫存器中,而形成該迭代偽隨機數;且其中該金鑰組係由該混沌密碼運算器經至少一次該時間擾動混沌映射加密解密系統之迭代運算後所輸出之至少一個該金鑰元素所組成。 In implementation, the chaotic cipher operator described above includes an operational switch, a Input convergence end, a pseudo random number register, a key output end, a delay length shift register, a cyclic shift register, and an iterative operator; wherein the operation open relationship is used to initiate the chaotic cryptographic operation Performing an iterative operation of the chaotic map encryption and decryption system for the time disturbance; The input convergence end selects the initial state or an iterative state. When the initial state is selected, an initial pseudo random number and an initial cyclic displacement random number are input through the input rendezvous end, and the initial pseudo random number is transmitted to the An iterative operator, and the initial cyclic displacement random number generates a cyclic displacement of the initial pseudo random number to generate a pseudo random number, and when the iterative state is selected, a cyclic displacement random number in the cyclic shift register and An iterative pseudo random number in the pseudo random number register is input through the input rendezvous end, and the iterative pseudo random number is transmitted to the iterative operator, and the cyclic displacement random number generates a cyclic shift of the iterative pseudo random number. Generating the pseudo random number; wherein the pseudo random number includes a key element, an updated cyclic shift random number, an update time delay factor random number, and an update time delay factor data source; wherein the key output is used Outputting the key element; wherein the update cyclic displacement random number is stored in the cyclic shift register to form the cyclic displacement random number; The delay length shift register uses the update time delay factor random number and the update time delay factor data source to generate a time delay factor, and truncates the time delay factor to form a truncated time delay factor, and And storing the truncated time delay factor in the delay length shift register; wherein the iterative operator brings the initial pseudo random number received from the input convergence end or the iterative pseudo random number into a chaotic map And generating a mutually exclusive pseudo-random number with the truncated time delay factor, and generating the new iteration pseudo-random number, and storing the new iteration pseudo-random number into the pseudo-random number register to form the iterative pseudo-random number; And wherein the key group is composed of at least one of the key elements output by the chaotic cryptographic operator after at least one time of the iterative operation of the chaotic map encryption and decryption system.

於實施時,前述之該時間擾動混沌映射加密解密系統之迭代運算係由一數位時擾混沌系統結合一組變異型Logistic映射所定義。 In implementation, the iterative operation of the time-disturbed chaotic map encryption and decryption system is defined by a digital time-spaced chaotic system combined with a set of variant logistic maps.

於實施時,前述之該組變異型Logistic映射包括一變異型 Logistic映射,其定義如下:Ψ α,P(x):[0,1]→[0,1], In implementation, the aforementioned set of variant logistic maps includes a variant logistic map, which is defined as follows: Ψ α , P ( x ): [0, 1] → [0, 1],

其中α N,p [0,1]是控制參數,x是狀態變數。 Where α N,p [0,1] is the control parameter and x is the state variable.

於實施時,前述之該數位時擾混沌系統係為一N維度之數位時擾混沌系統,其定義如下: 令為定義在閉區間的一維混沌映射f θ 之一集合, 其中i=1,...,N,:I→I,I=[0,1],θ i 係定義在參數空間θ i 內,θ i 係為之控制參數,而x I係為狀態變數;因此x之動態行為係可表示成x n+1=f θ (x n ),其中n係為迭代運算之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時f θ 係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固 定位元,組合成一個l位元之一時間延遲因子d n 其中g k:I m →{0,1},,k=1,...,m, 其中d n 最左邊的一個位元係為 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子係被引進用以擾動之動態行為,係由該截斷函數h將該時間延遲因子d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: 該N維度之數位時擾混沌系統係定義為: 其中♁係為互斥運算(XOR),i=1,...,N,n係為迭代運算之次數, 其中 In implementation, the digital time-interfering chaotic system is an N-dimensional digital time-interfering chaotic system, which is defined as follows: To define a set of one-dimensional chaotic maps f θ in a closed interval, where i =1,...,N, :I→I,I=[0,1], θ i is defined in the parameter space θ i , θ i is Control parameters, and x I based state variable; x therefore the dynamic behavior of the system can be expressed as x n +1 = f θ (x n), where n is the number of iterations of operation of the system; in the discretization of the performance, the accuracy of m bits At this time, the closed interval I is expressed as I m . At this time, f θ is expressed as At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost one of d n is and To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor Was introduced to disturb The dynamic behavior is that the truncation function h truncates the last l - m bit in the l- bit of the time delay factor d n and outputs the remaining m bits, The system is defined as: The N-dimensional digital time-interfering chaotic system is defined as: or Where ♁ is a mutually exclusive operation (XOR), i =1,...,N, n is the number of iterations, where

於實施時,前述之該數位時擾混沌系統係為一N×M維度之數位時擾混沌系統,其定義如下: 令為定義在閉區間的一維混沌映射f θ 之一集合, 其中i=1,...,N,j=1,...,M,:I→I,I=[0,1],θ (i,j)係定義在參數空間θ(i,j)內,θ (i,j)係為之控制參數,而x I係為狀態變數,因此x之動態行為係可表示成x n+1=f θ (x n ),其中n係為迭代運算之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時f θ 係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子d n 其中g k:I m →{0,1},,k=1,...,m, 其中d n 最左邊的一個位元係為 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子係被引進用以擾動之動態行為,係由該截斷函數h將該時間延遲因子d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: 該N×M維度之數位時擾混沌系統係定義為: 其中♁係為互斥運算(XOR),1 i N,1 j M,n係為迭代運算之次數, 其中 In the implementation, the digital time-interfering chaotic system is an N×M-dimensional digital time-interfering chaotic system, which is defined as follows: To define a set of one-dimensional chaotic maps f θ in a closed interval, where i =1,...,N, j =1,...,M, :I→I,I=[0,1], θ ( i , j ) is defined in the parameter space θ ( i , j ) , and θ ( i , j ) is Control parameters, and x I based state variable, and therefore the dynamic behavior of the system x can be expressed as x n +1 = f θ (x n), where n is the number of iterations of operation of the system; in the discretization of the performance, the accuracy of m bits At this time, the closed interval I is expressed as I m . At this time, f θ is expressed as At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost one of d n is and To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor Was introduced to disturb The dynamic behavior is that the truncation function h truncates the last l - m bit in the l- bit of the time delay factor d n and outputs the remaining m bits, The system is defined as: The digital time-interference chaotic system of the N×M dimension is defined as: or The ♁ is a mutually exclusive operation (XOR), 1 i N,1 j M, n is the number of iterations, where

於實施時,前述之該組變異型Logistic映射係由N個變異型Logistic映射所組成,其定義如下: 其中α i N,p i [0,1]是控制參數,i=1,...,N,x係為狀態變數;其中該數位時擾混沌系統結合該組變異型Logistic映射之定義如下:x之動態行為係可表示成x n+1 α,P(x n ),其中n係為迭代運算之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時α係表示為,此時p係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固 定位元,組合成一個l位元之一時間延遲因子d n 其中g k:I m →{0,1},,k=1,...,m,其中d n 最左邊的一個位元係為, 而 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子係被引進用以擾動之動態行為,係由該截斷函數h將該時間延遲因子d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: 該時間擾動混沌映射加密解密系統之迭代運算係定義為: 其中♁係為互斥運算(XOR),i=1,...,N,n係為迭代運算之次數, 其中 In implementation, the aforementioned set of variant Logistic mappings is composed of N variant Logistic maps, which are defined as follows: Where α i N, p i [0,1] is the control parameter, i =1,...,N, x is the state variable; wherein the digital time-interfering chaotic system is combined with the definition of the variant logistic map as follows: The dynamic behavior of x can be expressed x n +1 = Ψ α , P ( x n ), where n is the number of iterative operations; in the case of discretization, when the calculation precision is m bits, the closed interval I is expressed as I m , At this time, the α system is expressed as , At this time, the p system is expressed as , At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost bit of d n is And To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor Was introduced to disturb The dynamic behavior is that the truncation function h truncates the last l - m bit in the l- bit of the time delay factor d n and outputs the remaining m bits, The system is defined as: The iterative operation system of the time-disturbed chaotic map encryption and decryption system is defined as: Where ♁ is a mutually exclusive operation (XOR), i =1,...,N, n is the number of iterations, where

於實施時,前述之該時間擾動混沌映射加密解密系統,更設置一線性反饋位移暫存器,使該時間擾動混沌映射加密解密系統之迭代運算定義如下: 其中該線性反饋位移暫存器係為LFSR(n)。 In the implementation, the time-disturbing chaotic map encryption and decryption system is further provided with a linear feedback displacement register, so that the iterative operation of the time-disturbed chaotic map encryption and decryption system is defined as follows: The linear feedback shift register is LFSR( n ).

於實施時,前述之該時間擾動混沌映射加密解密系統,其中 在離散化之表現下,計算精度為m=32位元時,,其 中a j {0,1}, 而係可重新表示為二元向量:[a 0,...,a j ,...,a m-1];一初始循環位移隨機數將[a 0,...,a j ,...,a m-1]產生循環位移成 為 其中b j {0,1},而[b0,...,b j ,...,b m-1]包括了一更新循環位移隨機數r c 、一更新時間延遲因子隨機數r d 、一金鑰元素以及一更新時間延遲因子資料源, 其中r d =[b0,...,b2],可表示為 r c =[b3,...,b7],可表示為,此時將該初 始循環位移隨機數之值設定為該更新循環位移隨機數r c 之值,亦即該更新循環位移隨機數r c 係用於下一次產生循環位移所使用之隨機數, 該時間擾動混沌映射加密解密系統之迭代運算係定義為: 其中♁係為互斥運算(XOR),i=1,...,N,n係為迭代運算之次數, 其中 In implementation, the aforementioned time disturbs the chaotic map encryption and decryption system, wherein in the performance of discretization, when the calculation accuracy is m =32 bits, , where a j {0,1}, and Can be re-represented as a binary vector: [ a 0 ,..., a j ,..., a m -1 ]; an initial cyclic displacement random number Generate a cyclic shift of [ a 0 ,..., a j ,..., a m -1 ] make Where b j {0,1}, and [b 0 ,...,b j ,...,b m -1 ] includes an update cyclic displacement random number r c , an update time delay factor random number r d , a gold Key element And an update time delay factor data source , where r d =[b 0 ,...,b 2 ], can be expressed as r c =[b 3 ,...,b 7 ], can be expressed as At this time, the initial cyclic displacement random number The value is set to the value of the updated cyclic displacement random number r c , that is, the updated cyclic displacement random number r c is used for the random number used to generate the cyclic displacement next time. The iterative operation system of the time-disturbed chaotic map encryption and decryption system is defined as: Where ♁ is a mutually exclusive operation (XOR), i =1,...,N, n is the number of iterations, where

其中LFSR(n)係為該線性反饋位移暫存器。 Where LFSR( n ) is the linear feedback shift register.

於實施時,前述之該金鑰組之長度係大於或等於該明文訊息之長度。 In implementation, the length of the aforementioned key group is greater than or equal to the length of the plaintext message.

此外,本發明亦提供一種用於保密通訊之時間擾動混沌映射加密解密方法,係可選擇一合成加密解密過程或一分解加密解密過程,將一發送端內所載入之一明文訊息以保密方式自該發送端傳送至一接收端,其中該合成加密解密過程包括一合成加密過程以及一合成解密過程;其中 該合成加密過程,係於該發送端進行,包括以下步驟:輸入一初始狀態至該發送端內之一混沌密碼運算器;由該混沌密碼運算器執行至少一次該時間擾動混沌映射加密解密方法之迭代運算以產生一金鑰組,其中該金鑰組之長度係大於或等於該明文訊息之長度;以及由一混沌密碼加密器將該明文訊息與該金鑰組進行互斥運算,以產生一密文小區塊組;其中該合成解密過程,係於該接收端進行,包括以下步驟:由一混沌密碼接收器接收來自該發送端之該密文小區塊組與該初始狀態;輸入該初始狀態至該接收端內之該混沌密碼運算器,使該混沌密碼運算器執行至少一次該時間擾動混沌映射加密解密系統之迭代運算而產生與該發送端內相同之該金鑰組;以及由一混沌密碼解密器將該密文小區塊組與該金鑰組進行互斥運算,以產生一合成解密明文訊息;其中該分解加密解密過程包括一分解加密過程以及一分解解密過程;其中該分解加密過程,係於該發送端進行,包括以下步驟:步驟一:輸入該初始狀態至該發送端內之該混沌密碼運算器;步驟二:由該混沌密碼運算器執行一次該時間擾動混沌映射加密解密方法之迭代運算以產生一金鑰元素;步驟三:由該混沌密碼加密器擷取一段該明文訊息以形成一明文小區塊,其中該明文小區塊之長度係與該金鑰元素長度相同;步驟四:由該混沌密碼加密器將該明文小區塊與該金鑰元素進行互斥運算,以產生一密文小區塊;步驟五:重複步驟二、步驟三、步驟四,直至該明文訊息被擷取完畢為止;步驟六:將每一次執行步驟四所產生之該密文小區塊集合而成該密文小區塊組;其中該分解解密過程,係於該接收端進行,包括以下步驟:步驟一:由該混沌密碼接收器接收來自該發送端之該密文小區塊組與該初始狀態;步驟二:輸入該初始狀態至該接收端 內之該混沌密碼運算器;步驟三:由該接收端內之該混沌密碼運算器執行一次該時間擾動混沌映射加密解密方法之迭代運算以產生該金鑰元素;步驟四:將每一次步驟三所產生之該金鑰元素集合而成該金鑰組,若該金鑰組之長度小於該密文小區塊組則重複步驟三,若該金鑰組之長度大於或等於該密文小區塊組則執行步驟五;步驟五:由該混沌密碼解密器將該密文小區塊組與該金鑰組進行互斥運算,以產生一分解解密明文訊息。 In addition, the present invention also provides a time-disturbing chaotic map encryption and decryption method for secure communication, which may select a synthetic encryption and decryption process or a decomposition encryption and decryption process to encrypt a plaintext message loaded in a sender. Transmitting from the transmitting end to a receiving end, wherein the synthetic encryption decryption process comprises a synthetic encryption process and a synthetic decryption process; The synthesizing encryption process is performed on the transmitting end, and includes the following steps: inputting an initial state to a chaotic cipher operator in the transmitting end; and performing, by the chaotic cryptographic operator, the chaotic mapping encryption and decryption method at least once An iterative operation to generate a key group, wherein the length of the key group is greater than or equal to the length of the plaintext message; and the plaintext message is mutually exclusive with the key group by a chaotic cipher encryptor to generate a key a ciphertext block group; wherein the synthesizing and decrypting process is performed at the receiving end, comprising the steps of: receiving, by a chaotic cipher receiver, the ciphertext block group from the transmitting end and the initial state; and inputting the initial state; The chaotic cryptographic operator in the receiving end causes the chaotic cryptographic operator to perform an iterative operation of the chaotic map encryption and decryption system at least once to generate the same key group as in the transmitting end; and a chaotic The cryptographic decryptor mutually exclusiveizes the ciphertext block group with the key group to generate a synthesized decrypted plaintext message; The decomposition encryption and decryption process includes a decomposition encryption process and a decomposition decryption process; wherein the decomposition encryption process is performed at the transmitting end, and includes the following steps: Step 1: input the initial state to the chaotic cryptographic operator in the transmitting end Step 2: Performing an iterative operation of the time-disturbed chaotic map encryption and decryption method by the chaotic cryptographic operator to generate a key element; Step 3: extracting a piece of the plaintext message by the chaotic cipher encryptor to form a plaintext cell a block, wherein the length of the plaintext block is the same as the length of the key element; step 4: the chaotic cipher encrypts the plaintext block and the key element to perform a mutually exclusive operation to generate a ciphertext block; Step 5: Repeat step 2, step 3, and step 4 until the plaintext message is captured; step 6: combine the ciphertext cell blocks generated in step 4 each time to form the ciphertext block group; The decomposing and decrypting process is performed on the receiving end, and includes the following steps: Step 1: Connected by the chaotic password receiver The end of transmission from the ciphertext block groups to the initial cell state; Step II: The initial state of the input to the receiving end The chaotic cryptographic operator; step 3: performing an iterative operation of the time-disturbed chaotic map encryption and decryption method by the chaotic cryptographic operator in the receiving end to generate the key element; step 4: each step three And generating the key element group to form the key group, if the length of the key group is less than the ciphertext block group, repeat step 3, if the length of the key group is greater than or equal to the ciphertext block group Then, step 5 is performed; step 5: the ciphertext block group and the key group are mutually exclusive operation by the chaotic crypto-decryptor to generate a decomposed and decrypted plaintext message.

於實施時,前述之該時間擾動混沌映射加密解密方法之迭代 運算,包括以下步驟:啟動一運算開關,以啟動該混沌密碼運算器進行一次該時間擾動混沌映射加密解密方法之迭代運算;由一輸入會合端選擇該初始狀態或一迭代狀態,其中當選擇該初始狀態時,一初始偽隨機數及一初始循環位移隨機數經由該輸入會合端輸入,將該初始偽隨機數傳送至一迭代運算器,且該初始循環位移隨機數將該初始偽隨機數產生循環位移,而產生一偽隨機數,而當選擇該迭代狀態時,一循環位移暫存器中之一循環位移隨機數及一偽隨機數暫存器中之一迭代偽隨機數經由該輸入會合端輸入,將該迭代偽隨機數傳送至該迭代運算器,且該循環位移隨機數將該迭代偽隨機數產生循環位移,而產生該偽隨機數,其中該偽隨機數包括該金鑰元素、一更新循環位移隨機數、一更新時間延遲因子隨機數以及一更新時間延遲因子資料源;由一金鑰輸出端輸出該金鑰元素;藉由將該更新循環位移隨機數存入該循環位移暫存器中,而形成該循環位移隨機數;藉由一延遲長度位移暫存器使用該更新時間延遲因子隨機數以及該更新時間延遲因子資料源來產生一時間延遲因子,並將該時間延遲因子截斷,而形成一被截斷的時間延遲因子,並將該被截斷的時間延遲因子存入該延遲長 度位移暫存器內;藉由該迭代運算器將接收自該輸入會合端之該初始偽隨機數或該迭代偽隨機數帶入一混沌映射中並與該被截斷的時間延遲因子產生互斥運算,而產生一新迭代偽隨機數,並將該新迭代偽隨機數存入該偽隨機數暫存器中,而形成該迭代偽隨機數;其中該金鑰組係由該混沌密碼運算器經至少一次該時間擾動混沌映射加密解密方法之迭代運算後所輸出之至少一個該金鑰元素所組成。 In implementation, the aforementioned iteration of the chaotic map encryption and decryption method The operation includes the following steps: starting an operation switch to start the chaotic cryptographic operator to perform an iterative operation of the time-disturbing chaotic map encryption and decryption method; selecting an initial state or an iterative state by an input rendezvous end, wherein when the In an initial state, an initial pseudo random number and an initial cyclic displacement random number are input via the input rendezvous end, and the initial pseudo random number is transmitted to an iterative operator, and the initial cyclic displacement random number generates the initial pseudo random number. Cycling displacement, and generating a pseudo-random number, and when the iterative state is selected, one of the cyclic displacement random numbers in a cyclic shift register and one of the pseudo-random number registers in the pseudo-random register are merged via the input End input, the iterative pseudo random number is transmitted to the iterative operator, and the cyclic displacement random number generates a cyclic shift of the iterative pseudo random number to generate the pseudo random number, wherein the pseudo random number includes the key element, An update cyclic shift random number, an update time delay factor random number, and an update time delay factor data source; The key output end outputs the key element; the cyclic shift random number is formed by storing the update cyclic shift random number in the cyclic shift register; and the update time delay is used by a delay length shift register The factor random number and the update time delay factor data source generate a time delay factor, and the time delay factor is truncated to form a truncated time delay factor, and the truncated time delay factor is stored in the delay In the displacement register, the initial pseudo-random number received from the input convergence end or the iterative pseudo-random number is brought into a chaotic map by the iterative operator and mutually exclusive with the truncated time delay factor Computing, generating a new iteration pseudo-random number, and storing the new iteration pseudo-random number into the pseudo-random number register to form the iterative pseudo-random number; wherein the key group is composed of the chaotic cipher operator At least one of the key elements outputted after the iterative operation of the chaotic map encryption and decryption method is disturbed at least once.

於實施時,前述之該時間擾動混沌映射加密解密方法,係由 一數位時擾混沌系統結合一組變異型Logistic映射來執行該時間擾動混沌映射加密解密方法之迭代運算。 In implementation, the aforementioned time-disturbing chaotic map encryption and decryption method is A digital time-interfering chaotic system combined with a set of variant Logistic maps performs an iterative operation of the time-disturbed chaotic map encryption and decryption method.

於實施時,前述之該組變異型Logistic映射包括一變異型 Logistic映射,其定義如下: Ψ α,P(x):[0,1]→[0,1], In implementation, the aforementioned set of variant logistic maps includes a variant logistic map, which is defined as follows: Ψ α , P ( x ): [0, 1] → [0, 1],

其中α N,p [0,1]是控制參數,x是狀態變數。 Where α N,p [0,1] is the control parameter and x is the state variable.

於實施時,前述之該數位時擾混沌系統係為一N維度之數位時擾混沌系統,其定義如下: 令為定義在閉區間的一維混沌映射f θ 之一集合, 其中i=1,...,N,:I→I,I=[0,1],θ i 係定義在參數空間θ i 內,θ i 係為之控制參數,而x I係為狀態變數; 因此x之動態行為係可表示成x n+1=f θ (x n ),其中n係為迭代運算之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時f θ 係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子d n 其中g k:I m →{0,1},,k=1,...,m, 其中d n 最左邊的一個位元係為 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子係被引進用以擾動之動態行為,係由 該截斷函數h將該時間延遲因子d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: 該N維度之數位時擾混沌系統係定義為: 其中♁係為互斥運算(XOR),i=1,...,N,n係為迭代運算之次數, 其中 In implementation, the digital time-interfering chaotic system is an N-dimensional digital time-interfering chaotic system, which is defined as follows: To define a set of one-dimensional chaotic maps f θ in a closed interval, where i =1,...,N, :I→I,I=[0,1], θ i is defined in the parameter space θ i , θ i is Control parameters, and x I based state variable; x therefore the dynamic behavior of the system can be expressed as x n +1 = f θ (x n), where n is the number of iterations of operation of the system; in the discretization of the performance, the accuracy of m bits At this time, the closed interval I is expressed as I m . At this time, f θ is expressed as At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost one of d n is and To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor Was introduced to disturb The dynamic behavior is that the truncation function h truncates the last l - m bit in the l- bit of the time delay factor d n and outputs the remaining m bits, The system is defined as: The N-dimensional digital time-interfering chaotic system is defined as: or Where ♁ is a mutually exclusive operation (XOR), i =1,...,N, n is the number of iterations, where

於實施時,前述之該數位時擾混沌系統係為一N×M維度之數位時擾混沌系統,其定義如下:令為定義在閉區間的一維混沌映射f θ 之一集合,其中i=1,...,N,j=1,...,M,:I→I,I=[0,1],θ (i,j)係定義在參數空間θ(i,j)內,θ (i,j)係為之控制參數,而x I係為狀態變數,因此x之動態行為係可表示成x n+1=f θ (x n ), 其中n係為迭代運算之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時f θ 係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子d n 其中g k:I m →{0,1},,k=1,...,m,其中d n 最左邊的一個位元係為, 而 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子係被引進用以擾動之動態行為,係由該截斷函數h將該時間延遲因子d n l位元中的最後l-m位 元截斷,而輸出剩下的m位元,係定義為: 該N×M維度之數位時擾混沌系統係定義為: 其中♁係為互斥運算(XOR),1 i N,1 j M,n係為迭代運算之次數, 其中 In implementation, the digital time-interfering chaotic system is an N×M-dimensional digital time-interfering chaotic system, which is defined as follows: To define a set of one-dimensional chaotic maps f θ in a closed interval, where i =1,...,N, j =1,...,M, :I→I,I=[0,1], θ ( i , j ) is defined in the parameter space θ ( i , j ) , and θ ( i , j ) is Control parameters, and x I based state variable, and therefore the dynamic behavior of the system x can be expressed as x n +1 = f θ (x n), where n is the number of iterations of operation of the system; in the discretization of the performance, the accuracy of m bits At this time, the closed interval I is expressed as I m . At this time, f θ is expressed as At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost bit of d n is And To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor Was introduced to disturb The dynamic behavior is that the truncation function h truncates the last l - m bit in the l- bit of the time delay factor d n and outputs the remaining m bits, The system is defined as: The digital time-interference chaotic system of the N×M dimension is defined as: or The ♁ is a mutually exclusive operation (XOR), 1 i N,1 j M, n is the number of iterations, where

於實施時,前述之該組變異型Logistic映射係由N個變異型Logistic映射所組成,其定義如下: ,其中I=[0,1], In implementation, the aforementioned set of variant Logistic mappings is composed of N variant Logistic maps, which are defined as follows: , where I=[0,1],

其中α i N,p i [0,1]是控制參數,i=1,...,N,x係為狀態變數;其中數位時擾混沌系統結合該組變異型Logistic映射之定義如下:x之動態行為係可表示成x n+1 α,P(x n ),其中n係為迭代運算之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時α係表示為,此時p係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子d n 其中g k:I m →{0,1},,k=1,...,m, 其中d n 最左邊的一個位元係為 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元,亦即,其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子係被引進用以擾動之動態行為,係由該截斷函數h將該時間延遲因子d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: 該時間擾動混沌映射加密解密方法之迭代運算係定義為: 其中♁係為互斥運算(XOR),i=1,...,N,n係為迭代運算之次數, 其中 Where α i N, p i [0,1] is the control parameter, i =1,...,N, x is the state variable; wherein the digital time-interfering chaotic system combined with the definition of the variant logistic map is as follows: The dynamic behavior of x can be expressed as x n +1 α , P ( x n ), where n is the number of iterative operations; in the case of discretization, when the calculation precision is m bits, the closed interval I is expressed as I m . At this time, the α system is expressed as , At this time, the p system is expressed as , At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost one of d n is and To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, , where << is the left-shifting operator, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor Was introduced to disturb The dynamic behavior is that the truncation function h truncates the last l - m bit in the l- bit of the time delay factor d n and outputs the remaining m bits, The system is defined as: The iterative operation of the time-disturbed chaotic map encryption and decryption method is defined as: Where ♁ is a mutually exclusive operation (XOR), i =1,...,N, n is the number of iterations, where

於實施時,前述之該時間擾動混沌映射加密解密方法,係以一線性反饋位移暫存器,使該時間擾動混沌映射加密解密方法之迭代運算定義如下: 其中該線性反饋位移暫存器係為LFSR(n)。 In implementation, the aforementioned time-disturbing chaotic map encryption and decryption method is a linear feedback displacement register, and the iterative operation of the time-disturbed chaotic map encryption and decryption method is defined as follows: The linear feedback shift register is LFSR( n ).

於實施時,前述之該時間擾動混沌映射加密解密方法,其中在離散化之表現下,計算精度為m=32位元時,,其中a j {0,1},而係可重新表示為二元向量:[a 0,...,a j ,...,a m-1];一初始循環位移隨機數將[a 0,...,a j ,...,a m-1]產生循環位移成 為 其中b j {0,1},而[b0,...,b j ,...,b m-1]包括了一更新循環位移隨機數r c 、一更新時間延遲因子隨機數r d 、一金鑰元素以及一更新時間延遲因子資料源, 其中r d =[b0,...,b2],可表示為 r c =[b3,...,b7],可表示為,此時將該初 始循環位移隨機數之值設定為該更新循環位移隨機數r c 之值,亦即該更新循環位移隨機數r c 係用於下一次產生循環位移所使用之隨機數, 該時間擾動混沌映射加密解密方法之迭代運算係定義為: 其中♁係為互斥運算(XOR),i=1,...,N,n係為迭代運算之次數, 其中 其中LFSR(n)係為該線性反饋位移暫存器。 In implementation, the foregoing time disturbs the chaotic map encryption and decryption method, wherein in the performance of discretization, when the calculation precision is m =32 bits, , where a j {0,1}, and Can be re-represented as a binary vector: [ a 0 ,..., a j ,..., a m -1 ]; an initial cyclic displacement random number Generate a cyclic shift of [ a 0 ,..., a j ,..., a m -1 ] make Where b j {0,1}, and [b 0 ,...,b j ,...,b m -1 ] includes an update cyclic displacement random number r c , an update time delay factor random number r d , a gold Key element And an update time delay factor data source , where r d =[b 0 ,...,b 2 ], can be expressed as r c =[b 3 ,...,b 7 ], can be expressed as At this time, the initial cyclic displacement random number The value is set to the value of the updated cyclic displacement random number r c , that is, the updated cyclic displacement random number r c is used for the random number used to generate the cyclic displacement next time. The iterative operation of the time-disturbed chaotic map encryption and decryption method is defined as: Where ♁ is a mutually exclusive operation (XOR), i =1,...,N, n is the number of iterations, where Where LFSR( n ) is the linear feedback shift register.

為進一步了解本發明,以下舉較佳之實施例,配合圖式、圖號,將本發明之具體構成內容及其所達成的功效詳細說明如下。 In order to further understand the present invention, the specific embodiments of the present invention and the effects achieved thereby are described in detail below with reference to the drawings and drawings.

1‧‧‧發送端 1‧‧‧Send

2‧‧‧接收端 2‧‧‧ Receiver

3‧‧‧混沌密碼加密器 3‧‧‧Chaotic Password Encryptor

4‧‧‧混沌密碼接收器 4‧‧‧Chaotic password receiver

5‧‧‧混沌密碼解密器 5‧‧‧Chaotic Password Decryptor

6‧‧‧金鑰組 6‧‧‧ Key Group

7‧‧‧明文訊息 7‧‧‧Clear message

8‧‧‧密文小區塊組 8‧‧‧Mciven block group

9‧‧‧解密明文訊息 9‧‧‧Decrypting plaintext messages

10‧‧‧合成解密明文訊息 10‧‧‧Synthesis and decryption of plaintext messages

11‧‧‧明文小區塊 11‧‧‧Mingwen Community Block

12‧‧‧密文小區塊 12‧‧‧Mciven block

13‧‧‧分解解密明文訊息 13‧‧‧ Decomposing and decrypting plaintext messages

20‧‧‧混沌密碼運算器 20‧‧‧Chaotic cryptographic operator

21‧‧‧運算開關 21‧‧‧Operation switch

22‧‧‧輸入會合端 22‧‧‧Input meeting end

23‧‧‧偽隨機數暫存器 23‧‧‧Pseudo-random number register

24‧‧‧金鑰輸出端 24‧‧‧key output

25‧‧‧延遲長度位移暫存器 25‧‧‧Delay length shift register

26‧‧‧循環位移暫存器 26‧‧‧Circular Displacement Register

27‧‧‧迭代運算器 27‧‧‧ Iterative Operator

28‧‧‧線性反饋位移暫存器 28‧‧‧Linear Feedback Displacement Register

30‧‧‧初始偽隨機數 30‧‧‧Initial pseudo-random number

31‧‧‧初始循環位移隨機數 31‧‧‧Initial cyclic displacement random number

32‧‧‧偽隨機數 32‧‧‧Pseudo-random number

33‧‧‧循環位移隨機數 33‧‧‧cyclic displacement random number

34‧‧‧迭代偽隨機數 34‧‧‧Iterative pseudo-random number

35‧‧‧金鑰元素 35‧‧‧Key Elements

36‧‧‧更新循環位移隨機數 36‧‧‧Update cyclic displacement random number

37‧‧‧更新時間延遲因子隨機數 37‧‧‧Update time delay factor random number

38‧‧‧更新時間延遲因子資料源 38‧‧‧Update time delay factor data source

39‧‧‧時間延遲因子 39‧‧‧Time delay factor

40‧‧‧被截斷的時間延遲因子 40‧‧‧Truncate time delay factor

41‧‧‧新迭代偽隨機數 41‧‧‧New iteration pseudo-random number

50‧‧‧混沌映射 50‧‧‧Chaotic mapping

51‧‧‧互斥運算 51‧‧‧Exclusive operation

52‧‧‧數位時擾混沌系統 52‧‧‧Digital time chaotic chaotic system

53‧‧‧一組變異型Logistic映射 53‧‧‧A set of variant logistic maps

54‧‧‧變異型Logistic映射 54‧‧‧Variable Logistic Mapping

55‧‧‧N維度之數位時擾混沌系統 55‧‧‧N-dimensional digital time-interfering chaotic system

56‧‧‧N×M維度之數位時擾混沌系統 56‧‧‧N-M dimension digital time-interfering chaotic system

57‧‧‧N個變異型Logistic映射 57‧‧‧N variant logistic maps

60‧‧‧初始狀態 60‧‧‧ initial state

61‧‧‧迭代狀態 61‧‧‧ Iteration state

62‧‧‧合成加密解密過程 62‧‧‧Synthesis encryption and decryption process

63‧‧‧合成加密過程 63‧‧‧Synthesis encryption process

64‧‧‧合成解密過程 64‧‧‧Synthesis and decryption process

65‧‧‧分解加密解密過程 65‧‧‧ Decomposition and decryption process

66‧‧‧分解加密過程 66‧‧‧Decomposition encryption process

67‧‧‧分解解密過程 67‧‧‧Decomposition and decryption process

70‧‧‧迭代運算 70‧‧‧ Iterative operation

第1圖係為本發明一種用於保密通訊之時間擾動混沌映射加密解密系統之一具體實施例。 FIG. 1 is a specific embodiment of a time-disturbing chaotic map encryption and decryption system for secure communication according to the present invention.

第2圖係為本發明一種用於保密通訊之時間擾動混沌映射加密解密系統之另一具體實施例之混沌密碼運算器之結構圖。 2 is a structural diagram of a chaotic cipher operator of another embodiment of a time-interfering chaotic map encryption and decryption system for secure communication according to the present invention.

第3圖係為本發明一種用於保密通訊之時間擾動混沌映射加密解密方法之合成加密解密流程圖。 FIG. 3 is a flowchart of a synthetic encryption and decryption method for a time-interfering chaotic map encryption and decryption method for secure communication according to the present invention.

第4圖係為本發明一種用於保密通訊之時間擾動混沌映射加密解密方法之分解加密解密流程圖。 Figure 4 is a flow chart of decomposition and decryption of a time-disturbing chaotic map encryption and decryption method for secure communication according to the present invention.

第5圖係為本發明一種用於保密通訊之時間擾動混沌映射加密解密方法之產生被截斷的時間延遲因子之流程圖。 Figure 5 is a flow chart showing the time delay factor of the truncated chaotic map encryption and decryption method for time-sharing of secure communication.

第6圖係為本發明一種用於保密通訊之時間擾動混沌映射加密解密方法之循環位移之流程圖。 Figure 6 is a flow chart of a cyclic shift of a time-interfering chaotic map encryption and decryption method for secure communication according to the present invention.

第7圖係為本發明一種用於保密通訊之時間擾動混沌映射加密解密方法之一實施例之分解加密解密過程之流程圖。 Figure 7 is a flow chart of a process for decomposing encryption and decryption in an embodiment of a time-disturbing chaotic map encryption and decryption method for secure communication.

第8圖係為一Logistic映射函數圖。 Figure 8 is a logistic mapping function diagram.

第9圖係為一折線映射映射函數圖。 Figure 9 is a diagram of a broken line mapping mapping function.

第10、11圖係為本發明一種用於保密通訊之時間擾動混沌映射加密解密方法之變異型Logistic映射之函數圖。 10 and 11 are function diagrams of a variant logistic map for a time-interfering chaotic map encryption and decryption method for secure communication.

請參閱第1圖,其係為本發明一種用於保密通訊之時間擾動 混沌映射加密解密系統之一具體實施例,其中包括一發送端1以及一接收端2;發送端1包括了一混沌密碼加密器3以及一混沌密碼運算器20;接收端2包括了一混沌密碼接收器4,一混沌密碼運算器20以及一混沌密碼解密器5。 Please refer to FIG. 1 , which is a time disturbance for secure communication according to the present invention. A specific embodiment of the chaotic map encryption and decryption system includes a transmitting end 1 and a receiving end 2; the transmitting end 1 includes a chaotic cipher encryptor 3 and a chaotic cipher computing unit 20; and the receiving end 2 includes a chaotic cipher The receiver 4, a chaotic cipher operator 20 and a chaotic cipher decoder 5 are provided.

經由輸入一初始狀態60至發送端1內之混沌密碼運算器20 中;再使混沌密碼運算器20執行至少一次時間擾動混沌映射加密解密系統之迭代運算70而產生一金鑰組6;混沌密碼加密器3將一明文訊息7載入,並將明文訊息7與金鑰組6經互斥運算51而產生一密文小區塊組8。 Passing an initial state 60 to the chaotic cipher operator 20 in the transmitting end 1 And causing the chaotic cryptographic operator 20 to perform at least one time-interfering chaotic mapping encryption and decryption system iterative operation 70 to generate a key group 6; the chaotic cipher encryptor 3 loads a plaintext message 7 and the plaintext message 7 The key group 6 generates a ciphertext block group 8 via the mutual exclusion operation 51.

混沌密碼接收器4接收傳送自發送端1之密文小區塊組8以及 初始狀態60;經由輸入初始狀態60至接收端2內之混沌密碼運算器20中;再使混沌密碼運算器20執行至少一次時間擾動混沌映射加密解密系統之迭代運算70而產生與發送端1內相同之金鑰組6;混沌密碼解密器5將密文小區塊組8與金鑰組6經互斥運算51而產生一解密明文訊息9,藉此明文訊息7經由保密之方式自發送端1傳送至接收端2。 The chaotic cipher receiver 4 receives the ciphertext block group 8 transmitted from the transmitting end 1 and The initial state 60; via the input initial state 60 to the chaotic cryptographic operator 20 in the receiving end 2; and then the chaotic cryptographic operator 20 performs at least one time-interfering chaotic mapping encryption and decryption system iterative operation 70 to generate and transmit within the transmitting end 1 The same key group 6; the chaotic crypto-decryptor 5 generates a decrypted plaintext message 9 by the ciphertext block group 8 and the key group 6 via the mutual exclusion operation 51, whereby the plaintext message 7 is transmitted from the transmitting end 1 through the secret mode. Transfer to the receiving end 2.

請參閱第2圖,其係為本發明之另一具體實施例之混沌密碼 運算器20之結構暨迭代運算70之流程圖,其中包括一運算開關21、一輸入會合端22、一偽隨機數暫存器23、一金鑰輸出端24、一延遲長度位移暫存器25、一循環位移暫存器26以及一迭代運算器27。 Please refer to FIG. 2, which is a chaotic password according to another embodiment of the present invention. The flowchart of the structure of the operator 20 and the iterative operation 70 includes an arithmetic switch 21, an input rendezvous terminal 22, a pseudo random number register 23, a key output terminal 24, and a delay length shift register 25. A cyclic shift register 26 and an iterative operator 27.

運算開關21係用以啟動混沌密碼運算器20進行一次迭代運 算70。輸入會合端21係可選擇一初始狀態60或一迭代狀態61,當選擇初始狀態60時,一初始偽隨機數30及一初始循環位移隨機數31經由輸入會合端21 輸入,將初始偽隨機數30傳送至迭代運算器27,且初始循環位移隨機數31將初始偽隨機數30產生循環位移,而產生一偽隨機數32,而當選擇迭代狀態61時,循環位移暫存器26中之一循環位移隨機數33及偽隨機數暫存器23中之一迭代偽隨機數34經由輸入會合端21輸入,將迭代偽隨機數34傳送至迭代運算器27,且循環位移隨機數33將迭代偽隨機數34產生循環位移,而產生偽隨機數32。偽隨機數32包括一金鑰元素35、一更新循環位移隨機數36、一更新時間延遲因子隨機數37以及一更新時間延遲因子資料源38。金鑰輸出端24係用以輸出金鑰元素35;金鑰組6係由混沌密碼運算器20經至少一次迭代運算70後所輸出之至少一個金鑰元素35所組成。更新循環位移隨機數36經存入循環位移暫存器26中,而形成循環位移隨機數33。延遲長度位移暫存器25係使用更新時間延遲因子隨機數37以及更新時間延遲因子資料源38來產生一時間延遲因子39,並將時間延遲因子39截斷,而形成一被截斷的時間延遲因子40,並將被截斷的時間延遲因子40存入延遲長度位移暫存器25內。迭代運算器27係將接收自輸入會合端21之初始偽隨機數30或迭代偽隨機數34帶入一混沌映射50中並與被截斷的時間延遲因子40產生互斥運算51,而產生一新迭代偽隨機數41,並將新迭代偽隨機數41存入偽隨機數暫存器23中,而形成迭代偽隨機數34。 The operation switch 21 is used to start the chaotic cryptographic operator 20 to perform an iterative operation. Count 70. The input rendezvous end 21 can select an initial state 60 or an iterative state 61. When the initial state 60 is selected, an initial pseudo random number 30 and an initial cyclic displacement random number 31 are passed through the input rendezvous end 21 Input, the initial pseudo-random number 30 is transmitted to the iterative operator 27, and the initial cyclic-displacement random number 31 produces a cyclically displaced initial pseudo-random number 30, producing a pseudo-random number 32, and when the iterative state 61 is selected, the cyclic shift One of the cyclic shift random number 33 and one of the pseudo random number register 23 in the register 26 is input via the input rendezvous end 21, and the iterative pseudo random number 34 is transmitted to the iterative operator 27, and the loop The displacement random number 33 produces a cyclic shift of the iterative pseudo-random number 34, and produces a pseudo-random number 32. The pseudo-random number 32 includes a key element 35, an updated cyclic shift random number 36, an update time delay factor random number 37, and an update time delay factor data source 38. The key output terminal 24 is for outputting a key element 35; the key group 6 is composed of at least one key element 35 output by the chaotic cipher operator 20 after at least one iteration operation 70. The updated cyclic displacement random number 36 is stored in the cyclic shift register 26 to form a cyclic displacement random number 33. The delay length shift register 25 uses the update time delay factor random number 37 and the update time delay factor data source 38 to generate a time delay factor 39 and truncates the time delay factor 39 to form a truncated time delay factor of 40. And the truncated time delay factor 40 is stored in the delay length shift register 25. The iterative operator 27 brings the initial pseudo-random number 30 or the iterative pseudo-random number 34 received from the input rendezvous end 21 into a chaotic map 50 and generates a mutually exclusive operation 51 with the truncated time delay factor 40 to generate a new one. The pseudo-random number 41 is iterated, and the new iteration pseudo-random number 41 is stored in the pseudo-random number register 23 to form an iterative pseudo-random number 34.

在另一實施例中,金鑰組6之長度係大於或等於明文訊息7 之長度。 In another embodiment, the length of the key group 6 is greater than or equal to the plaintext message 7 The length.

在另一實施例中,迭代運算70係由一數位時擾混沌系統52 結合一組變異型Logistic映射53所定義,其中該組變異型Logistic映射53係為一種混沌映射50。 In another embodiment, the iterative operation 70 is performed by a digital time-interfering chaotic system 52. Combined with a set of variant Logistic maps 53, wherein the set of variant logistic maps 53 is a chaotic map 50.

在另一實施例中,該組變異型Logistic映射53包括一變異型Logistic映射54,其定義如下:Ψ α,P(x):[0,1]→[0,1], In another embodiment, the set of variant logistic maps 53 includes a variant logistic map 54 defined as follows: Ψ α , P ( x ): [0, 1] → [0, 1],

其中α N,p [0,1]是控制參數,x是狀態變數;該變異型Logistic映射54係為分段連續且分段可為分的,且其唯一之臨界點在參數p(亦即Ψ(p)=0),而且其具有2α個固定點;當α=1時,該變異型Logistic映射54可看成是由一Logistic映射g r 和一折線映射f p,q合成而成,而g r f p,q之定義如下:g r (x)=rx(1-x),其中當3.57<r 4時有混沌行為;f p,q:[0,1]→[0,1], 其中p,q (0,1); 當時,是自身函數(identity function); 其中當時, 請參照第8圖,係為當控制參數r=4時,g r 的圖形;請參照第9圖,係為控制參數p=0.3,q=0.5時,f p,q的圖形;請參照第10圖,係為控制參數α=1,p=0.3時,Ψ α,P的圖形; 請參照第11圖,係為控制參數α=20,p=0.3時,Ψ α,P的圖形;如此設計可將原Logistic映射的固定頂點,經由控制參數p [0,1],可自由在x軸上[0,1]區間水平移動,因此新函數的頂點為(p,1);而增加此水平控制參數p不僅不會有混沌空窗的產生,亦有較強的非線性效果;而之後乘上α N和模(mod)1的簡單操作,可看做是垂直控制操作;控制垂直參數α在自然數內,可有效地增加複雜度,且亦不會有混沌空窗的產生,且當α夠大時,可是分佈更加均勻。 Where α N,p [0,1] is the control parameter, x is the state variable; the variant logistic map 54 is segmented continuously and the segment can be divided, and its only critical point is the parameter p (ie Ψ(p)=0), and it has 2α fixed points; when α=1, the variant logistic map 54 can be regarded as a logistic map g r and a line map f p,q synthesized. And g r and f p,q are defined as follows: g r ( x )= rx (1- x ), where 3.57< r There is chaotic behavior at 4 o'clock; f p,q :[0,1]→[0,1], Where p,q (0,1); when , Time, Is an identity function; Which Time, Please refer to Fig. 8, which is the graph of g r when the control parameter r = 4; please refer to Fig. 9 for the control parameter p=0.3, q=0.5, f p,q ; please refer to Fig. 10 is a graph of Ψ α and P when the control parameter α = 1, p = 0.3; refer to Fig. 11 for the control parameter α = 20, p = 0.3, Ψ α , P ; Design a fixed vertex that maps the original Logistic Via control parameter p [0,1], freely move horizontally in the [0,1] interval on the x- axis, so the vertex of the new function is (p,1); and increasing this horizontal control parameter p will not only have the generation of chaotic empty windows. There is also a strong nonlinear effect; then multiplied by α The simple operation of N and mod 1 can be regarded as a vertical control operation; the vertical parameter α is controlled within a natural number, which can effectively increase the complexity, and there is no chaotic window, and when α is enough Large, but more evenly distributed.

在另一實施例中,數位時擾混沌系統52係可為一N維度之數位時擾混沌系統55,其定義如下: 令為定義在閉區間的一維混沌映射f θ 之一集合, 其中i=1,...,N,:I→I,I=[0,1],θ i 係定義在參數空間θ i 內,θ i 係為之控制參數,而x I係為狀態變數;因此x之動態行為係可表示成x n+1=f θ (x n ),其中n係為迭代運算70之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時f θ 係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 請參閱第5圖,令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子39 d n 其中g k:I m →{0,1},,k=1,...,m,其中d n 最左邊的一個位元係為, 而 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子40 係被引進用以擾動之動態行為,係由截斷函數h將時間延遲因子39 d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: N維度之數位時擾混沌系統55係定義為: 其中♁係為互斥運算51(XOR),i=1,...,N,n係為迭代運算70之次數, 其中 In another embodiment, the digital time-interfering chaotic system 52 can be an N-dimensional digital time-interfering chaotic system 55, which is defined as follows: To define a set of one-dimensional chaotic maps f θ in a closed interval, where i =1,...,N, :I→I,I=[0,1], θ i is defined in the parameter space θ i , θ i is Control parameters, and x I based state variable; x therefore the dynamic behavior of the system can be expressed as x n +1 = f θ (x n), where n is a line number of 70 iteration; discretization in the performance, the accuracy of m bits In the case of elementary time, the closed interval I is expressed as I m . At this time, f θ is expressed as At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Please refer to Figure 5, let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor 39 d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost bit of d n is And To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor of 40 Was introduced to disturb The dynamic behavior is truncated by the truncation function h to the last l - m bit in the l- bit of the time delay factor 39 d n , and the remaining m bits are output, The system is defined as: The N-dimensional digital time-interference chaotic system 55 is defined as: or Where ♁ is a mutual exclusion operation 51 (XOR), i =1,...,N, n is the number of iteration operations 70, where

在另一實施例中,數位時擾混沌系統52係可為一N×M維度之數位時擾混沌系統56,其定義如下: 令為定義在閉區間的一維混沌映射f θ 之一集合, 其中i=1,...,N,j=1,...,M,:I→I,I=[0,1],θ (i,j)係定義在參數空間θ(i,j)內,θ (i,j)係為之控制參數,而x I係為狀態變數,因此x之動態行為係可表示成x n+1=f θ (x n ),其中n係為迭代運算70之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時f θ 係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 請參閱第5圖,令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子39 d n 其中g k:I m →{0,1},,k=1,...,m, 其中d n 最左邊的一個位元係為 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子40 係被引進用以擾動之動態行為,係由截斷函數h將時間延遲因子39 d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: N×M維度之數位時擾混沌系統56係定義為: 其中♁係為互斥運算51(XOR),1 i N,1 j M,n係為迭代運算70之次數, 其中 In another embodiment, the digital time-interfering chaotic system 52 can be an N×M-dimensional digital time-interfering chaotic system 56, which is defined as follows: To define a set of one-dimensional chaotic maps f θ in a closed interval, where i =1,...,N, j =1,...,M, :I→I,I=[0,1], θ ( i , j ) is defined in the parameter space θ ( i , j ) , and θ ( i , j ) is Control parameters, and x I based state variable, and therefore the dynamic behavior of the system x can be expressed as x n +1 = f θ (x n), where n is a line number of 70 iteration; discretization in the performance, the accuracy of m bits In the case of elementary time, the closed interval I is expressed as I m . At this time, f θ is expressed as At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Please refer to Figure 5, let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor 39 d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost one of d n is and To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor of 40 Was introduced to disturb The dynamic behavior is truncated by the truncation function h to the last l - m bit in the l- bit of the time delay factor 39 d n , and the remaining m bits are output, The system is defined as: The digitally time-interfering chaotic system 56 of the N×M dimension is defined as: or The ♁ is a mutual exclusion operation 51 (XOR), 1 i N,1 j M, n is the number of iterations 70, of which

在另一實施例中,該組變異型Logistic映射53係由N個變異型Logistic映射57所組成,其定義如下: ,其中I=[0,1], In another embodiment, the set of variant Logistic maps 53 is composed of N variant logistic maps 57, which are defined as follows: , where I=[0,1],

其中α i N,p i [0,1]是控制參數,i=1,...,N,x係為狀態變數;其中數位時擾混沌系統52結合該組變異型Logistic映射53之定義如下:x之動態行為係可表示成x n+1 α,P(x n ),其中n係為迭代運算70之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時α係表示為,此時p係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 請參閱第5圖,令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子39 d n 其中g k:I m →{0,1},,k=1,...,m, 其中d n 最左邊的一個位元係為 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子40 係被引進用以擾動之動態行為,係由截斷函數h將時間延遲因子39 d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: 時間擾動混沌映射加密解密系統迭代運算70係定義為: 其中♁係為互斥運算51(XOR), i=1,...,N,n係為迭代運算70之次數, 其中 Where α i N, p i [0,1] is a control parameter, i = 1, ..., N , x is the system state variables; chaotic systems 52 wherein the number of bits of the set of defined binding variant Logistic map 53 as follows: x the dynamic behavior of the system can be Expressed as x n +1 = Ψ α , P ( x n ), where n is the number of iterations 70; in the case of discretization, when the calculation accuracy is m bits, the closed interval I is expressed as I m , At this time, the α system is expressed as , At this time, the p system is expressed as , At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Please refer to Figure 5, let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor 39 d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost one of d n is and To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor of 40 Was introduced to disturb The dynamic behavior is truncated by the truncation function h to the last l - m bit in the l- bit of the time delay factor 39 d n , and the remaining m bits are output, The system is defined as: Time-disturbed chaotic map encryption and decryption system iterative operation 70 is defined as: Where ♁ is a mutual exclusion operation 51 (XOR), i =1,...,N, n is the number of iteration operations 70, where

在另一實施例中,更設置一線性反饋位移暫存器28,使迭代運算70定義如下: 其中線性反饋位移暫存器28係為LFSR(n)。 In another embodiment, a linear feedback shift register 28 is further provided to cause the iterative operation 70 to be defined as follows: The linear feedback shift register 28 is LFSR( n ).

在另一實施例中,在離散化之表現下,計算精度為m=32 位元時,,其中a j {0,1}, 而係可重新表示為二元向量:[a 0,...,a j ,...,a m-1];請參閱第6圖,一初始循環位移隨機數31 將[a 0,...,a j ,...,a m-1] 產生循環位移成為 其中b j {0,1},而[b0,...,b j ,...,b m-1]包括了一更新循環位移隨機數36 r c 、一更新時間延遲因子隨機數37 r d 、一金鑰元素35 以及一更新時間延遲因子資料源38 , 其中,可表示為 ,可表示為,此時 將初始循環位移隨機數31 之值設定為更新循環位移隨機數36 r c 之值,亦即更新循環位移隨機數36 r c 係用於下一次產生循環位移所使用之隨機數, 時間擾動混沌映射加密解密系統迭代運算70係定義為: 其中♁係為互斥運算51(XOR),i=1,...,N,n係為迭代運算70之次數, 其中 其中LFSR(n)係為線性反饋位移暫存器28;請參閱第7圖,係為本發明之一實施例之分解加密解密過程之流程圖,其中分解加密過程如下: 將i=1,...,N,組成一組金鑰元素35,將明文訊息分成每小區 塊包含16×N位元之一明文小區塊11,將金鑰元素35與明文小區塊11進行互斥運算51,而產生16×N位元之一密文小區塊12;再進行一次迭代運算70以產生新的一組金鑰元素35,並將新的一組金鑰元素35與下一個明文小區塊11進行互斥運算51,而產生新的一密文小區塊12;重複 以上之步驟,直至所有明文小區塊11皆完成加密為止;其中分解解密過程如下:將每一密文小區塊12與其個別對應之每一金鑰元素35進行互斥運算51,而產生一分解解密明文訊息13,集合每一個分解解密明文訊息13即完成分解解密過程。 In another embodiment, in the case of discretization, when the calculation accuracy is m = 32 bits, , where a j {0,1}, and The system can be re-represented as a binary vector: [ a 0 ,..., a j ,..., a m -1 ]; see Figure 6, an initial cyclic displacement random number 31 Generate a cyclic shift of [ a 0 ,..., a j ,..., a m -1 ] make Where b j {0,1}, and [b 0 ,...,b j ,...,b m -1 ] includes an update cyclic displacement random number 36 r c , an update time delay factor random number 37 r d , a key element 35 And an update time delay factor data source 38 , among them Can be expressed as Can be expressed as At this time, the initial cyclic displacement random number 31 The value is set to update the value of the cyclic displacement random number 36 r c , that is, the update cyclic displacement random number 36 r c is used for the random number used to generate the cyclic displacement next time. Time-disturbed chaotic map encryption and decryption system iterative operation 70 is defined as: Where ♁ is a mutual exclusion operation 51 (XOR), i =1,...,N, n is the number of iteration operations 70, where Wherein LFSR( n ) is a linear feedback shift register 28; see FIG. 7, which is a flowchart of a process of decomposing encryption and decryption according to an embodiment of the present invention, wherein the process of decomposing encryption is as follows: , i =1, . . . , N, form a group of key elements 35, and divide the plaintext message into a block 16 of a plaintext block containing 16×N bits per cell block, and perform the key element 35 with the plaintext block 11 Mutually exclusive operation 51 produces one ciphertext block 12 of 16 x N bits; an iterative operation 70 is performed to generate a new set of key elements 35, and a new set of key elements 35 is associated with the next The plaintext cell block 11 performs a mutual exclusion operation 51 to generate a new ciphertext cell block 12; the above steps are repeated until all the plaintext cell blocks 11 are encrypted; wherein the decryption and decryption process is as follows: each ciphertext block 12 performs a mutual exclusion operation 51 with each of the individual key elements 35 corresponding thereto, and generates a decomposed and decrypted plaintext message 13, and each of the decomposed and decrypted plaintext messages 13 is set to complete the decomposition and decryption process.

在另一實施例中,金鑰的定義如下:Key={(β1,q1),...(β i ,q i ),...,(βN,qN)},其中β i {1,...,2 m -1},q i {1,...,2 m -1},i=1,...,N;因此可由金鑰來設定該組變異型Logistic映射53之參數:α i =210β i ,p i =q i /2 m ,其中i=1,...,N;如此設計α i 一定大於1000,因此α i 是足夠大的;金鑰空間: 假設電腦可在每秒計算k次的乘法運算,而每一次迭代運算70需要計 算3N次乘法運算而得到位元的輸出,則加密解密的輸出速度 可初估成: In another embodiment, the key is defined as follows: Key = {(β 1 , q 1 ),...(β i ,q i ),...,(β N ,q N )}, where β i {1,...,2 m -1},q i {1,...,2 m -1}, i =1,...,N; therefore the parameters of the set of variant logistic maps 53 can be set by the key: α i = 2 10 β i , p i = q i /2 m , where i =1,...,N; so design α i must be greater than 1000, so α i is large enough; key space: Suppose the computer can calculate k times of multiplication per second, and each iteration 70 needs to calculate 3N multiplications. The output of the bit, the output speed of the encryption and decryption can be estimated as:

所以當k=109m=32時,輸出的速度約可估計成5.3Gbits/sec。 So when k = 10 9 and m = 32, the output speed can be estimated to be about 5.3 Gbits/sec.

請參閱第3、4圖,本發明亦提供一種用於保密通訊之時間擾動混沌映射加密解密方法,係可選擇一合成加密解密過程62或一分解加密解密過程65,將一發送端1內所載入之一明文訊息7以保密方式自發送端1傳 送至一接收端2;其中合成加密解密過程62包括一合成加密過程63以及一合成解密過程64;其中分解加密解密過程65包括一分解加密過程66以及一分解解密過程67。 Referring to Figures 3 and 4, the present invention also provides a time-disturbing chaotic map encryption and decryption method for secure communication, which may select a synthetic encryption decryption process 62 or a decomposition encryption decryption process 65, which will be used in a transmitting end 1 Loading one of the plaintext messages 7 is transmitted from the sender 1 in a secure manner. The composite encryption decryption process 62 includes a synthetic encryption process 63 and a synthetic decryption process 64; wherein the decomposition encryption decryption process 65 includes a decomposition encryption process 66 and a decomposition decryption process 67.

合成加密過程63,係於發送端1進行,包括以下步驟:輸入 一初始狀態60至發送端1內之一混沌密碼運算器20;由混沌密碼運算器20執行至少一次迭代運算70以產生一金鑰組6,其中金鑰組6之長度係大於或等於明文訊息7之長度;以及由一混沌密碼加密器3將明文訊息7與金鑰組6進行互斥運算51,以產生一密文小區塊組8。 The synthetic encryption process 63 is performed at the transmitting end 1, and includes the following steps: input An initial state 60 to a chaotic cryptographic operator 20 in the transmitting end 1; at least one iterative operation 70 is performed by the chaotic cryptographic operator 20 to generate a key set 6, wherein the length of the key set 6 is greater than or equal to the plaintext message The length of 7; and a plaintext message 7 and a key group 6 are mutually exclusive operation 51 by a chaotic cipher encryptor 3 to generate a ciphertext block group 8.

合成解密過程64,係於接收端2進行,包括以下步驟:由一 混沌密碼接收器4接收來自發送端1之密文小區塊組8與初始狀態60;輸入初始狀態60至接收端2內之混沌密碼運算器20;使混沌密碼運算器20執行至少一次時間擾動混沌映射加密解密系統之迭代運算70而產生與發送端1內相同之金鑰組6;以及由一混沌密碼解密器5將密文小區塊組8與金鑰組6進行互斥運算51,以產生一合成解密明文訊息10。 The synthetic decryption process 64 is performed at the receiving end 2 and includes the following steps: The chaotic cipher receiver 4 receives the ciphertext block group 8 from the transmitting end 1 and the initial state 60; inputs the initial state 60 to the chaotic cipher operator 20 in the receiving end 2; causes the chaotic cipher operator 20 to perform at least one time perturbation chaos Mapping the encryption and decryption system's iterative operation 70 to generate the same key group 6 as in the transmitting end 1; and a chaotic cryptographic decryptor 5 to cipher the ciphertext block group 8 and the key group 6 to perform a mutually exclusive operation 51 to generate A synthetic decryption plaintext message 10.

分解加密過程66,係於發送端1進行,包括以下步驟:步驟 一:輸入初始狀態60至發送端1內之混沌密碼運算器20;步驟二:由混沌密碼運算器20執行一次迭代運算70以產生一金鑰元素35;步驟三:由混沌密碼加密器3擷取一段明文訊息7以形成一明文小區塊11,其中明文小區塊11之長度與金鑰元素35長度相同;步驟四:由混沌密碼加密器3將明文小區塊11與金鑰元素35進行互斥運算51,以產生一密文小區塊12;步驟五:重複步驟二、步驟三、步驟四,直至明文訊息7被擷取完畢為止;步驟六:將每一次執行步驟四所產生之密文小區塊12集合而成密文小區塊組8。 The decomposition encryption process 66 is performed at the transmitting end 1, and includes the following steps: One: input the initial state 60 to the chaotic cipher operator 20 in the transmitting end 1; Step 2: perform an iterative operation 70 by the chaotic cipher operator 20 to generate a key element 35; Step 3: by the chaotic cipher encryptor 3 A plaintext message 7 is taken to form a plaintext cell block 11, wherein the length of the plaintext cell block 11 is the same as the length of the key element 35; and step 4: the plaintext cell block 11 and the key element 35 are mutually exclusive by the chaotic cipher encryptor 3. The operation 51 is performed to generate a ciphertext block 12; Step 5: repeat step 2, step 3, and step 4 until the plaintext message 7 is retrieved; step 6: each time the ciphertext cell generated in step 4 is executed Block 12 is assembled into a ciphertext block group 8.

分解解密過程67,係於接收端2進行,包括以下步驟:步驟 一:由混沌密碼接收器4接收來自發送端1之密文小區塊組8與初始狀態60;步驟二:輸入初始狀態60至接收端2內之混沌密碼運算器20;步驟三:由接收端2內之混沌密碼運算器20執行一次時間擾動混沌映射加密解密方法之迭代運算70以產生金鑰元素35;步驟四:將每一次步驟三所產生之金鑰元素35集合而成金鑰組6,若金鑰組6之長度小於密文小區塊組8則重複步驟三,若金鑰組6之長度大於或等於密文小區塊組8則執行步驟五;步驟五:由混沌密碼解密器5將密文小區塊組8與金鑰組6進行互斥運算51,以產生一分解解密明文訊息13。 The decomposition decryption process 67 is performed at the receiving end 2 and includes the following steps: A: receiving the ciphertext block group 8 from the transmitting end 1 and the initial state 60 by the chaotic cipher receiver 4; Step 2: inputting the initial state 60 to the chaotic cipher operator 20 in the receiving end 2; Step 3: by the receiving end The chaotic cryptographic operator 20 in 2 performs an iterative operation 70 of a time-interfering chaotic map encryption and decryption method to generate a key element 35; step 4: grouping the key elements 35 generated in each step three into a key group 6, If the length of the key group 6 is smaller than the ciphertext block group 8, repeat step 3, if the length of the key group 6 is greater than or equal to the ciphertext block group 8, perform step 5; step 5: the chaotic password decryptor 5 The ciphertext block group 8 and the key group 6 perform a mutually exclusive operation 51 to generate a decomposed and decrypted plaintext message 13.

在另一實施例中,迭代運算70包括以下步驟: 啟動一運算開關21,以啟動混沌密碼運算器20進行一次迭代運算70;由一輸入會合端22選擇一初始狀態60或一迭代狀態61,其中當選擇初始狀態60時,一初始偽隨機數30及一初始循環位移隨機數31經由輸入會合端22輸入,將初始偽隨機數30傳送至一迭代運算器27,且初始循環位移隨機數31將初始偽隨機數30產生循環位移,而產生一偽隨機數32,而當選擇迭代狀態61時,一循環位移暫存器26中之一循環位移隨機數33及一偽隨機數暫存器23中之一迭代偽隨機數34經由輸入會合端22輸入,將迭代偽隨機數34傳送至迭代運算器27,且循環位移隨機數33將迭代偽隨機數34產生循環位移,而產生偽隨機數32,其中偽隨機數32包括金鑰元素35、一更新循環位移隨機數36、一更新時間延遲因子隨機數37以及一更新時間延遲因子資料源38;由一金鑰輸出端24輸出金鑰元素35,其中金鑰組6係由混沌密碼運算器 20經至少一次迭代運算70後所輸出之至少一個金鑰元素35所組成;藉由將更新循環位移隨機數36存入循環位移暫存器26中,而形成循環位移隨機數33;藉由一延遲長度位移暫存器25使用更新時間延遲因子隨機數37以及更新時間延遲因子資料源38來產生一時間延遲因子39,並將時間延遲因子39截斷,而形成一被截斷的時間延遲因子40,並將被截斷的時間延遲因子40存入延遲長度位移暫存器25內;藉由迭代運算器27將接收自輸入會合端22之初始偽隨機數30或迭代偽隨機數34帶入一混沌映射50中並與被截斷的時間延遲因子40產生互斥運算51,而產生一新迭代偽隨機數41,並將新迭代偽隨機數41存入偽隨機數暫存器23中,而形成迭代偽隨機數34。 In another embodiment, the iterative operation 70 includes the following steps: An operational switch 21 is activated to initiate the chaotic cryptographic operator 20 to perform an iterative operation 70; an initial state 60 or an iterative state 61 is selected by an input rendezvous terminal 22, wherein an initial pseudorandom number 30 is selected when the initial state 60 is selected. And an initial cyclic shift random number 31 is input via the input rendezvous terminal 22, the initial pseudo random number 30 is transmitted to an iterative operator 27, and the initial cyclic shift random number 31 generates a cyclic shift of the initial pseudorandom number 30 to generate a pseudo. The random number 32, and when the iteration state 61 is selected, one of the cyclic shift random number 33 in one of the cyclic shift registers 26 and one of the pseudo random number registers 23 in the pseudo random number register 23 are input via the input rendezvous end 22 The iterative pseudo-random number 34 is passed to the iterative operator 27, and the cyclically-displaced random number 33 produces a cyclically shifted iterative pseudo-random number 34, producing a pseudo-random number 32, wherein the pseudo-random number 32 includes a key element 35, an update a cyclic shift random number 36, an update time delay factor random number 37, and an update time delay factor data source 38; a key element 35 is output by a key output terminal 24, wherein the key group 6 is composed of Chaotic cipher operator 20 is composed of at least one key element 35 outputted after at least one iteration operation 70; by storing the updated cyclic displacement random number 36 in the cyclic shift register 26, a cyclic displacement random number 33 is formed; The delay length shift register 25 uses the update time delay factor random number 37 and the update time delay factor data source 38 to generate a time delay factor 39 and truncates the time delay factor 39 to form a truncated time delay factor 40, The truncated time delay factor 40 is stored in the delay length shift register 25; the initial pseudo random number 30 or the iterative pseudo random number 34 received from the input rendezvous end 22 is brought into a chaotic map by the iterative operator 27. In 50, a mutually exclusive operation 51 is generated with the truncated time delay factor 40, and a new iteration pseudo-random number 41 is generated, and the new iteration pseudo-random number 41 is stored in the pseudo-random number register 23 to form an iterative pseudo. Random number 34.

在另一實施例中,係由一數位時擾混沌系統52結合一組變異型Logistic映射53來執行迭代運算70,其中該組變異型Logistic映射53係為一種混沌映射50。 In another embodiment, the iterative operation 70 is performed by a digital time-interfering chaotic system 52 in conjunction with a set of variant logistic maps 53, wherein the set of variant logistic maps 53 is a chaotic map 50.

在另一實施例中,該組變異型Logistic映射53包括一變異型Logistic映射54,其定義如下:Ψ α,P(x):[0,1]→[0,1], In another embodiment, the set of variant logistic maps 53 includes a variant logistic map 54 defined as follows: Ψ α , P ( x ): [0, 1] → [0, 1],

其中α N,p [0,1]是控制參數,x是狀態變數;該變異型Logistic映射54係為分段連續且分段可為分的,且其唯一之 臨界點在參數p(亦即Ψ(p)=0),而且其具有2α個固定點;當α=1時,該變異型Logistic映射54可看成是由一Logistic映射g r 和一折線映射f p,q合成而成,而g r f p,q之定義如下:g r (x)=rx(1-x),其中當3.57<r 4時有混沌行為;f p,q:[0,1]→[0,1], Where α N,p [0,1] is the control parameter, x is the state variable; the variant logistic map 54 is segmented continuously and the segment can be divided, and its only critical point is the parameter p (ie Ψ(p)=0), and it has 2α fixed points; when α=1, the variant logistic map 54 can be regarded as a logistic map g r and a line map f p,q synthesized. And g r and f p,q are defined as follows: g r ( x )= rx (1- x ), where 3.57< r There is chaotic behavior at 4 o'clock; f p,q :[0,1]→[0,1],

其中p,q(0,1);當時,是自身函數(identity function); 其中當時,Ψ1,P=g 4;請參照第8圖,係為當控制參數r=4時,g r 的圖形;請參照第9圖,係為控制參數p=0.3,q=0.5時,f p,q的圖形;請參照第10圖,係為控制參數α=1,p=0.3時,Ψ α,P的圖形;請參照第11圖,係為控制參數α=20,p=0.3時,Ψ α,P的圖形;如此設計可將原Logistic映射的固定頂點,經由控制參數p [0,1],可自由在x軸上[0,1]區間水平移動,因此新函數的頂點為(p,1);而增加此水平控制參數p不僅不會有混沌空窗的產生,亦有較強的非線性效果;而之後乘上α N和模(mod)1的簡單操作,可看做是垂直控制操作;控制垂直參數α在自然數內,可有效地增加複雜度,且亦不會有混沌空窗的產生,且當α夠大時,可是 分佈更加均勻。 Where p,q (0,1); when , Time, Is an identity function; Which When, Ψ 1, P = g 4 ; Please refer to Figure 8, which is the graph of g r when the control parameter r = 4; please refer to Figure 9, when the control parameter is p=0.3, q=0.5, The graph of f p,q ; please refer to Fig. 10, which is the graph of Ψ α and P when the control parameter α=1, p=0.3; please refer to Fig. 11 for the control parameter α=20, p=0.3 When, Ψ α , P graphics; so designed to fix the fixed vertices of the original Logistic Via control parameter p [0,1], freely move horizontally in the [0,1] interval on the x- axis, so the vertex of the new function is (p,1); and increasing this horizontal control parameter p will not only have the generation of chaotic empty windows. There is also a strong nonlinear effect; then multiplied by α The simple operation of N and mod 1 can be regarded as a vertical control operation; the vertical parameter α is controlled within a natural number, which can effectively increase the complexity, and there is no chaotic window, and when α is enough Large, but more evenly distributed.

在另一實施例中,數位時擾混沌系統52係可為一N維度之數位時擾混沌系統55,其定義如下: 令為定義在閉區間的一維混沌映射f θ 之一集合, 其中i=1,...,N,:I→I,I=[0,1],θ i 係定義在參數空間θ i 內,θ i 係為之控制參數,而x I係為狀態變數;因此x之動態行為係可表示成x n+1=f θ (x n ),其中n係為迭代運算70之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時f θ 係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 請參閱第5圖,令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子39 d n 其中g k:I m →{0,1},,k=1,...,m, 其中d n 最左邊的一個位元係為 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子40 係被引進用以擾動之動態行為,係由截斷函數h將時間延遲因子39 d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: N維度之數位時擾混沌系統55係定義為: 其中♁係為互斥運算51(XOR),i=1,...,N,n係為迭代運算70之次數, 其中 In another embodiment, the digital time-interfering chaotic system 52 can be an N-dimensional digital time-interfering chaotic system 55, which is defined as follows: To define a set of one-dimensional chaotic maps f θ in a closed interval, where i =1,...,N, :I→I,I=[0,1], θ i is defined in the parameter space θ i , θ i is Control parameters, and x I based state variable; x therefore the dynamic behavior of the system can be expressed as x n +1 = f θ (x n), where n is a line number of 70 iteration; discretization in the performance, the accuracy of m bits In the case of elementary time, the closed interval I is expressed as I m . At this time, f θ is expressed as At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Please refer to Figure 5, let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor 39 d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost one of d n is and To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor of 40 Was introduced to disturb The dynamic behavior is truncated by the truncation function h to the last l - m bit in the l- bit of the time delay factor 39 d n , and the remaining m bits are output, The system is defined as: The N-dimensional digital time-interference chaotic system 55 is defined as: or Where ♁ is a mutual exclusion operation 51 (XOR), i =1,...,N, n is the number of iteration operations 70, where

在另一實施例中,數位時擾混沌系統52係可為一N×M維度之數位時擾混沌系統56,其定義如下: 令為定義在閉區間的一維混沌映射f θ 之一集合, 其中i=1,...,N,j=1,...,M,:I→I,I=[0,1],θ (i,j)係定義在參數空間θ(i,j)內,θ (i,j)係為之控制參數,而x I係為狀態變數,因此x之動態行為係可表示成x n+1=f θ (x n ),其中n係為迭代運算70之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時f θ 係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 請參閱第5圖,令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子39 d n 其中g k:I m →{0,1},,k=1,...,m, 其中d n 最左邊的一個位元係為 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子40 係被引進用以擾動之動態行為,係由截斷函數h將時間延遲因子39 d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: N×M維度之數位時擾混沌系統56係定義為: 其中♁係為互斥運算51(XOR),1 i N,1 j M,n係為迭代運算70之次數, 其中 In another embodiment, the digital time-interfering chaotic system 52 can be an N×M-dimensional digital time-interfering chaotic system 56, which is defined as follows: To define a set of one-dimensional chaotic maps f θ in a closed interval, where i =1,...,N, j =1,...,M, :I→I,I=[0,1], θ ( i , j ) is defined in the parameter space θ ( i , j ) , and θ ( i , j ) is Control parameters, and x I based state variable, and therefore the dynamic behavior of the system x can be expressed as x n +1 = f θ (x n), where n is a line number of 70 iteration; discretization in the performance, the accuracy of m bits In the case of elementary time, the closed interval I is expressed as I m . At this time, f θ is expressed as At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Please refer to Figure 5, let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor 39 d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost one of d n is and To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor of 40 Was introduced to disturb The dynamic behavior is truncated by the truncation function h to the last l - m bit in the l- bit of the time delay factor 39 d n , and the remaining m bits are output, The system is defined as: The digitally time-interfering chaotic system 56 of the N×M dimension is defined as: or The ♁ is a mutual exclusion operation 51 (XOR), 1 i N,1 j M, n is the number of iterations 70, of which

在另一實施例中,該組變異型Logistic映射53係由N個變異型Logistic映射57所組成,其定義如下: ,其中I=[0,1], In another embodiment, the set of variant Logistic maps 53 is composed of N variant logistic maps 57, which are defined as follows: , where I=[0,1],

其中α i N,p i [0,1]是控制參數,i=1,...,N,x係為狀態變數;其中數位時擾混沌系統52結合該組變異型Logistic映射53之定義如下:x之動態行為係可表示成x n+1 α,P(x n ),其中n係為迭代運算70之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時α係表示為,此時p係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 請參閱第5圖,令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子39 d n 其中g k:I m →{0,1},,k=1,...,m, 其中d n 最左邊的一個位元係為 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子40 係被引進用以擾動之動態行為,係由截斷函數h將時間延遲因子39 d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: 時間擾動混沌映射加密解密方法之迭代運算70係定義為: 其中♁係為互斥運算51(XOR),i=1,...,N,n係為迭代運算70之次數, 其中 Where α i N, p i [0,1] is a control parameter, i = 1, ..., N , x is the system state variables; chaotic systems 52 wherein the number of bits of the set of defined binding variant Logistic map 53 as follows: x the dynamic behavior of the system can be Expressed as x n +1 = Ψ α , P ( x n ), where n is the number of iterations 70; in the case of discretization, when the calculation accuracy is m bits, the closed interval I is expressed as I m , At this time, the α system is expressed as , At this time, the p system is expressed as , At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Please refer to Figure 5, let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor 39 d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost one of d n is and To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor of 40 Was introduced to disturb The dynamic behavior is truncated by the truncation function h to the last l - m bit in the l- bit of the time delay factor 39 d n , and the remaining m bits are output, The system is defined as: The iterative operation 70 of the time-disturbing chaotic map encryption and decryption method is defined as: Where ♁ is a mutual exclusion operation 51 (XOR), i =1,...,N, n is the number of iteration operations 70, where

在另一實施例中,更設置一線性反饋位移暫存器28,使迭代運算70定義如下: 其中線性反饋位移暫存器28係為LFSR(n)。 In another embodiment, a linear feedback shift register 28 is further provided to cause the iterative operation 70 to be defined as follows: The linear feedback shift register 28 is LFSR( n ).

在另一實施例中,在離散化之表現下,計算精度為m=32 位元時,,其中a j {0,1}, 而係可重新表示為二元向量:[a 0,...,a j ,...,a m-1];請參閱第6圖,一初始循環位移隨機數31 將[a 0,...,a j ,...,a m-1] 產生循環位移成為 其中b j {0,1},而[b0,...,b j ,...,b m-1]包括了一更新循環位移隨機數36 r c 、一更新時間延遲因子隨機數37 r d 、一金鑰元素35 以及一更新時間延遲因子資料源38 , 其中,可表示為 ,可表示為,此時 將初始循環位移隨機數31 之值設定為更新循環位移隨機數36 r c 之值,亦即更新循環位移隨機數36 r c 係用於下一次產生循環位移所使用之隨機數, 時間擾動混沌映射加密解密方法之迭代運算70係定義為: 其中♁係為互斥運算51(XOR),i=1,...,N,n係為迭代運算70之次數, 其中 其中LFSR(n)係為線性反饋位移暫存器28;請參閱第7圖,係為本發明之一實施例之分解加密解密過程之流程圖,其中分解加密過程如下:將i=1,...,N,組成一組金鑰元素35,將明文訊息分成每小區塊包含16×N位元之一明文小區塊11,將金鑰元素35與明文小區塊11進行互斥運算51,而產生16×N位元之一密文小區塊12;再進行一次迭代運算70以產生新的一組金鑰元素35,並將新的一組金鑰元素35與下一個明文小區塊11進行互斥運算51,而產生新的一密文小區塊12;重複以上之步驟,直至所有明文小區塊11皆完成加密為止;其中分解解密過程如下:將每一密文小區塊12與其個別對應之每一金鑰元素35進行互斥運算51,而產生一分解解密明文訊息13,集合每一個分解解密明文訊息13即完成分解解密過程。 In another embodiment, in the case of discretization, when the calculation accuracy is m = 32 bits, , where a j {0,1}, and The system can be re-represented as a binary vector: [ a 0 ,..., a j ,..., a m -1 ]; see Figure 6, an initial cyclic displacement random number 31 Generate a cyclic shift of [ a 0 ,..., a j ,..., a m -1 ] make Where b j {0,1}, and [b 0 ,...,b j ,...,b m -1 ] includes an update cyclic displacement random number 36 r c , an update time delay factor random number 37 r d , a key element 35 And an update time delay factor data source 38 , among them Can be expressed as Can be expressed as At this time, the initial cyclic displacement random number 31 The value is set to update the value of the cyclic displacement random number 36 r c , that is, the update cyclic displacement random number 36 r c is used for the random number used to generate the cyclic displacement next time. The iterative operation 70 of the time-disturbing chaotic map encryption and decryption method is defined as: Where ♁ is a mutual exclusion operation 51 (XOR), i =1,...,N, n is the number of iteration operations 70, where Wherein LFSR( n ) is a linear feedback shift register 28; see FIG. 7, which is a flowchart of a process of decomposing encryption and decryption according to an embodiment of the present invention, wherein the process of decomposing encryption is as follows: , i =1, . . . , N, form a group of key elements 35, and divide the plaintext message into a block 16 of a plaintext block containing 16×N bits per cell block, and perform the key element 35 with the plaintext block 11 Mutually exclusive operation 51 produces one ciphertext block 12 of 16 x N bits; an iterative operation 70 is performed to generate a new set of key elements 35, and a new set of key elements 35 is associated with the next The plaintext cell block 11 performs a mutual exclusion operation 51 to generate a new ciphertext cell block 12; the above steps are repeated until all the plaintext cell blocks 11 are encrypted; wherein the decryption and decryption process is as follows: each ciphertext block 12 performs a mutual exclusion operation 51 with each of the individual key elements 35 corresponding thereto, and generates a decomposed and decrypted plaintext message 13, and each of the decomposed and decrypted plaintext messages 13 is set to complete the decomposition and decryption process.

在另一實施例中,金鑰的定義如下:Key={(β1,q1),...(β i ,q i ),...,(βN,qN)},其中β i {1,...,2 m -1},q i {1,...,2 m -1},i=1,...,N;因此可由金鑰來設定該組變異型Logistic映射53之參數:α i =210β i ,p i =q i /2 m ,其中i=1,...,N;如此設計α i 一定大於1000,因此α i 是足夠大的;金鑰空間: 假設電腦可在每秒計算k次的乘法運算,而每一次迭代運算70需要計算3N次乘法運算而得到位元的輸出,則加密解密的輸出速度可初估成: In another embodiment, the key is defined as follows: Key = {(β 1 , q 1 ),...(β i ,q i ),...,(β N ,q N )}, where β i {1,...,2 m -1},q i {1,...,2 m -1}, i =1,...,N; therefore the parameters of the set of variant logistic maps 53 can be set by the key: α i = 2 10 β i , p i = q i /2 m , where i =1,...,N; so design α i must be greater than 1000, so α i is large enough; key space: Suppose the computer can calculate k times of multiplication per second, and each iteration 70 needs to calculate 3N multiplications. The output of the bit, the output speed of the encryption and decryption can be estimated as:

所以當k=109m=32時,輸出的速度約可估計成5.3Gbits/sec。 So when k = 10 9 and m = 32, the output speed can be estimated to be about 5.3 Gbits/sec.

以上所述乃是本發明之具體實施例及所運用之技術手段,根據本文的揭露或教導可衍生推導出許多的變更與修正,仍可視為本發明之構想所作之等效改變,其所產生之作用仍未超出說明書及圖式所涵蓋之實質精神,均應視為在本發明之技術範疇之內,合先陳明。 The above is a specific embodiment of the present invention and the technical means employed, and many variations and modifications can be derived therefrom based on the disclosure or teachings herein. The role of the invention is not to be exceeded in the spirit of the specification and the drawings, and should be considered as within the technical scope of the present invention.

綜上所述,依上文所揭示之內容,本發明確可達到發明之預期目的,提供一種用於保密通訊之時間擾動混沌映射加密解密系統與方法,極具產業上利用之價值,爰依法提出發明專利申請。 In summary, according to the above disclosure, the present invention can achieve the intended purpose of the invention, and provides a time-disturbing chaotic map encryption and decryption system and method for secret communication, which is of great industrial value. File an invention patent application.

1‧‧‧發送端 1‧‧‧Send

2‧‧‧接收端 2‧‧‧ Receiver

3‧‧‧混沌密碼加密器 3‧‧‧Chaotic Password Encryptor

4‧‧‧混沌密碼接收器 4‧‧‧Chaotic password receiver

5‧‧‧混沌密碼解密器 5‧‧‧Chaotic Password Decryptor

6‧‧‧金鑰組 6‧‧‧ Key Group

7‧‧‧明文訊息 7‧‧‧Clear message

8‧‧‧密文小區塊組 8‧‧‧Mciven block group

9‧‧‧解密明文訊息 9‧‧‧Decrypting plaintext messages

20‧‧‧混沌密碼運算器 20‧‧‧Chaotic cryptographic operator

51‧‧‧互斥運算 51‧‧‧Exclusive operation

70‧‧‧迭代運算 70‧‧‧ Iterative operation

Claims (19)

一種用於保密通訊之時間擾動混沌映射加密解密系統,可將一明文訊息以保密方式自一發送端傳送至一接收端,包括:至少一混沌密碼運算器,係分別設置於該發送端以及該接收端內,係先經由輸入一初始狀態至該發送端內之該混沌密碼運算器中,再使該混沌密碼運算器執行至少一次該時間擾動混沌映射加密解密系統之迭代運算而產生一金鑰組;一混沌密碼加密器,係設置於該發送端內,該混沌密碼加密器將該明文訊息載入,並將該明文訊息與該金鑰組經互斥運算而產生一密文小區塊組;一混沌密碼接收器,係設置於該接收端內,其中該混沌密碼接收器接收傳送自該發送端之該密文小區塊組以及該初始狀態,先經由輸入該初始狀態至該接收端內之該混沌密碼運算器中,再使該混沌密碼運算器執行至少一次該時間擾動混沌映射加密解密系統之迭代運算而產生與該發送端內相同之該金鑰組;一混沌密碼解密器,係設置於該接收端內,其中該混沌密碼解密器將該密文小區塊組與該金鑰組經互斥運算而產生一解密明文訊息。 A time-disturbing chaotic map encryption and decryption system for secret communication, which can transmit a plaintext message from a sender to a receiver in a secure manner, including: at least one chaotic cipher operator, respectively disposed at the sender and the The receiving end first inputs an initial state to the chaotic cryptographic operator in the transmitting end, and then causes the chaotic cryptographic operator to perform an iterative operation of the chaotic mapping encryption and decryption system at least once to generate a key. a chaotic cipher encryptor is disposed in the sender, the chaotic cipher encrypts the plaintext message, and the ciphertext message and the key group are mutually exclusive to generate a ciphertext block group a chaotic cipher receiver is disposed in the receiving end, wherein the chaotic cipher receiver receives the ciphertext block group transmitted from the transmitting end and the initial state, and first inputs the initial state to the receiving end In the chaotic cryptographic operator, the chaotic cryptographic operator is further executed to perform the iterative operation of the chaotic map encryption and decryption system at least once. And generating the same key group as the sending end; a chaotic cryptographic decryptor is disposed in the receiving end, wherein the chaotic crypto-decryptor mutually exclusiveizes the ciphertext block group and the key group And generate a decrypted plaintext message. 如申請專利範圍第1項所述之用於保密通訊之時間擾動混沌映射加密解密系統,其中該混沌密碼運算器,包括一運算開關、一輸入會合端、一偽隨機數暫存器、一金鑰輸出端、一延遲長度位移暫存器、一循環位移暫存器以及一迭代運算器;其中該運算開關係用以啟動該混沌密碼運算器進行一次該時間擾動混 沌映射加密解密系統之迭代運算,其中該輸入會合端係可選擇該初始狀態或一迭代狀態,當選擇該初始狀態時,一初始偽隨機數及一初始循環位移隨機數經由該輸入會合端輸入,將該初始偽隨機數傳送至該迭代運算器,且該初始循環位移隨機數將該初始偽隨機數產生循環位移,而產生一偽隨機數,而當選擇該迭代狀態時,該循環位移暫存器中之一循環位移隨機數及該偽隨機數暫存器中之一迭代偽隨機數經由該輸入會合端輸入,將該迭代偽隨機數傳送至該迭代運算器,且該循環位移隨機數將該迭代偽隨機數產生循環位移,而產生該偽隨機數,其中該偽隨機數包括一金鑰元素、一更新循環位移隨機數、一更新時間延遲因子隨機數以及一更新時間延遲因子資料源,其中該金鑰輸出端係用以輸出該金鑰元素,其中該更新循環位移隨機數經存入該循環位移暫存器中,而形成該循環位移隨機數,其中該延遲長度位移暫存器係使用該更新時間延遲因子隨機數以及該更新時間延遲因子資料源來產生一時間延遲因子,並將該時間延遲因子截斷,而形成一被截斷的時間延遲因子,並將該被截斷的時間延遲因子存入該延遲長度位移暫存器內,其中該迭代運算器係將接收自該輸入會合端之該初始偽隨機數或該迭代偽隨機數帶入一混沌映射中並與該被截斷的時間延遲因子產生互斥運算,而產生一新迭代偽隨機數,並將該新迭代偽隨機數存入該偽隨機數暫存器中,而形成該迭代偽隨機數,且其中該金鑰組係由該混沌密碼運算器經至少一次該時間擾動混沌映射加密解密系統之迭代運算後所輸出之至少一個該金鑰元素所組成。 The time-disturbing chaotic map encryption and decryption system for confidential communication, as described in claim 1, wherein the chaotic cryptographic operator includes an operational switch, an input rendezvous end, a pseudo-random number register, and a gold a key output end, a delay length shift register, a cyclic shift register, and an iterative operator; wherein the operation open relationship is used to start the chaotic cipher operator to perform the time perturbation An iterative operation of the chaotic mapping encryption and decryption system, wherein the input convergence end selects the initial state or an iterative state, and when the initial state is selected, an initial pseudo random number and an initial cyclic displacement random number are input through the input convergence end Transmitting the initial pseudo random number to the iterative operator, and the initial cyclic displacement random number generates a cyclic displacement of the initial pseudo random number to generate a pseudo random number, and when the iterative state is selected, the cyclic displacement temporarily One of the cyclic displacement random numbers in the register and one of the pseudo-random number registers, the iterative pseudo-random number is input via the input convergence end, and the iterative pseudo-random number is transmitted to the iterative operator, and the cyclic displacement random number is Generating the iterative pseudo-random number to generate a pseudo-random number, wherein the pseudo-random number includes a key element, an updated cyclic displacement random number, an update time delay factor random number, and an update time delay factor data source , wherein the key output is used to output the key element, wherein the update cyclic displacement random number is stored in the cyclic displacement Forming the cyclic displacement random number, wherein the delay length shift register uses the update time delay factor random number and the update time delay factor data source to generate a time delay factor, and truncating the time delay factor Forming a truncated time delay factor and storing the truncated time delay factor in the delay length shift register, wherein the iterative operator is to receive the initial pseudo random number from the input convergence end Or the iterative pseudo-random number is brought into a chaotic map and a mutually exclusive operation is generated with the truncated time delay factor, and a new iterative pseudo-random number is generated, and the new iteration pseudo-random number is stored in the pseudo-random number. Forming, in the register, the iterative pseudo-random number, and wherein the key group is at least one of the key elements output by the chaotic cryptographic operator after at least one time of the iterative operation of the chaotic map encryption and decryption system composition. 如申請專利範圍第1項所述之用於保密通訊之時間擾動混沌映射加密解密系統,其中該時間擾動混沌映射加密解密系統之迭代運算係由一數位時擾混沌系統結合一組變異型Logistic映射所定義。 For example, the time-disturbed chaotic map encryption and decryption system for secure communication, as described in claim 1, wherein the iterative operation of the time-disturbed chaotic map encryption and decryption system is combined with a set of variant logistic maps by a digital time-interfering chaotic system. Defined. 如申請專利範圍第3項所述之用於保密通訊之時間擾動混沌映射加密解密系統,其中該組變異型Logistic映射包括一變異型Logistic映射,其定義如下:Ψ α,P(x):[0,1]→[0,1], 其中α N,p [0,1]是控制參數,x是狀態變數。 The time-disturbed chaotic map encryption and decryption system for secure communication, as described in claim 3, wherein the set of variant logistic maps comprises a variant logistic map, which is defined as follows: Ψ α , P ( x ): [ 0,1]→[0,1], Where α N,p [0,1] is the control parameter and x is the state variable. 如申請專利範圍第3項所述之用於保密通訊之時間擾動混沌映射加密解密系統,其中該數位時擾混沌系統係為一N維度之數位時擾混沌系統,其定義如下:令為定義在閉區間的一維混沌映射f θ 之一集合,其中i=1,...,N,:I→I,I=[0,1],θ i 係定義在參數空間θ i 內,θ i 係為之控制參數,而x I係為狀態變數; 因此x之動態行為係可表示成x n+1=f θ (x n ),其中n係為迭代運算之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時f θ 係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子d n 其中g k:I m →{0,1},,k=1,...,m, 其中d n 最左邊的一個位元係為 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位 元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子係被引進用以擾動之動態行為,係由該截斷函數h將該時間延遲因子d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: 該N維度之數位時擾混沌系統係定義為: 其中♁係為互斥運算(XOR),i=1,...,N,n係為迭代運算之次數, 其中 The time-disturbing chaotic map encryption and decryption system for secure communication, as described in claim 3, wherein the digital time-interfering chaotic system is an N-dimensional digital time-interference chaotic system, which is defined as follows: To define a set of one-dimensional chaotic maps f θ in a closed interval, where i =1,...,N, :I→I,I=[0,1], θ i is defined in the parameter space θ i , θ i is Control parameters, and x I based state variable; x therefore the dynamic behavior of the system can be expressed as x n +1 = f θ (x n), where n is the number of iterations of operation of the system; in the discretization of the performance, the accuracy of m bits At this time, the closed interval I is expressed as I m . At this time, f θ is expressed as At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost one of d n is and To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor Was introduced to disturb The dynamic behavior is that the truncation function h truncates the last l - m bit in the l- bit of the time delay factor d n and outputs the remaining m bits, The system is defined as: The N-dimensional digital time-interfering chaotic system is defined as: or Where ♁ is a mutually exclusive operation (XOR), i =1,...,N, n is the number of iterations, where 如申請專利範圍第3項所述之用於保密通訊之時間擾動混沌映射加密解密系統,其中該數位時擾混沌系統係為一N×M維度之數位時擾混沌系統,其定義如下: 令為定義在閉區間的一維混沌映射f θ 之一集合, 其中i=1,...,N,j=1,...,M,:I→I,I=[0,1],θ (i,j)係定義在參數空間θ(i,j)內,θ (i,j)係為之控制參數,而x I係為狀態變數,因此x之動態行為係可表示成x n+1=f θ (x n ),其中n係為迭代運算之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時f θ 係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子d n 其中g k:I m →{0,1},,k=1,...,m, 其中d n 最左邊的一個位元係為 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子係被引進用以擾動之動態行為,係由該截斷函數h將該時間延遲因子d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: 該N×M維度之數位時擾混沌系統係定義為: 其中♁係為互斥運算(XOR),1 i N,1 j M,n係為迭代運算之次數, 其中 The time-disturbing chaotic map encryption and decryption system for secure communication, as described in claim 3, wherein the digital time-interference chaotic system is an N×M-dimensional digital time-interference chaotic system, which is defined as follows: To define a set of one-dimensional chaotic maps f θ in a closed interval, where i =1,...,N, j =1,...,M, :I→I,I=[0,1], θ ( i , j ) is defined in the parameter space θ ( i , j ) , and θ ( i , j ) is Control parameters, and x I based state variable, and therefore the dynamic behavior of the system x can be expressed as x n +1 = f θ (x n), where n is the number of iterations of operation of the system; in the discretization of the performance, the accuracy of m bits At this time, the closed interval I is expressed as I m . At this time, f θ is expressed as At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost one of d n is and To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor Was introduced to disturb The dynamic behavior is that the truncation function h truncates the last l - m bit in the l- bit of the time delay factor d n and outputs the remaining m bits, The system is defined as: The digital time-interference chaotic system of the N×M dimension is defined as: or The ♁ is a mutually exclusive operation (XOR), 1 i N,1 j M, n is the number of iterations, where 如申請專利範圍第3項所述之用於保密通訊之時間擾動混沌映射加密解密系統,其中該組變異型Logistic映射係由N個變異型Logistic映射所組成,其定義如下: ,其中I=[0,1], 其中α i N,p i [0,1]是控制參數,i=1,...,N,x係為狀態變數;其中該數位時擾混沌系統結合該組變異型Logistic映射之定義如下:x之動態行為係可表示成x n+1 α,P(x n ),其中n係為迭代運算之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時α係表示為,此時p係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子d n 其中g k:I m →{0,1},,k=1,...,m, 其中d n 最左邊的一個位元係為 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子係被引進用以擾動之動態行為,係由該截斷函數h將該時間延遲因子d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: 該時間擾動混沌映射加密解密系統之迭代運算係定義為: 其中♁係為互斥運算(XOR),i=1,...,N,n係為迭代運算之次數, 其中 The time-disturbed chaotic map encryption and decryption system for secure communication, as described in claim 3, wherein the set of variant logistic maps is composed of N variant logistic maps, which are defined as follows: , where I=[0,1], Where α i N, p i [0,1] is the control parameter, i =1,...,N, x is the state variable; wherein the digital time-interfering chaotic system is combined with the definition of the variant logistic map as follows: The dynamic behavior of x can be expressed x n +1 = Ψ α , P ( x n ), where n is the number of iterative operations; in the case of discretization, when the calculation precision is m bits, the closed interval I is expressed as I m , At this time, the α system is expressed as , At this time, the p system is expressed as , At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost one of d n is and To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor Was introduced to disturb The dynamic behavior is that the truncation function h truncates the last l - m bit in the l- bit of the time delay factor d n and outputs the remaining m bits, The system is defined as: The iterative operation system of the time-disturbed chaotic map encryption and decryption system is defined as: Where ♁ is a mutually exclusive operation (XOR), i =1,...,N, n is the number of iterations, where 如申請專利範圍第7項所述之用於保密通訊之時間擾動混沌映射加密解密系統,更設置一線性反饋位移暫存器,使該時間擾動混沌映射加密解密系統之迭代運算定義如下: 其中該線性反饋位移暫存器係為LFSR(n)。 For example, the time-disturbed chaotic map encryption and decryption system for secret communication described in claim 7 is further provided with a linear feedback displacement register, so that the iterative operation of the time-disturbed chaotic map encryption and decryption system is defined as follows: The linear feedback shift register is LFSR( n ). 如申請專利範圍第8項所述之用於保密通訊之時間擾動混沌映射加密解密系統,其中在離散化之表現下,計算精度為m=32位元時, ,其中a j {0,1}, 而係可重新表示為二元向量:[a 0,...,a j ,...,a m-1];一初始循環位移隨機數將[a 0,...,a j ,...,a m-1]產生循環位移成為 其中b j {0,1},而[b0,...,b j ,...,b m-1]包括了一更新循環位移隨機數r c 、一更新時間延遲因子隨機數r d 、一金鑰元素以及一更新時間延遲因子資料源, 其中r d =[b0,...,b2],可表示為 r c =[b3,...,b7],可表示為,此時將該初始循 環位移隨機數之值設定為該更新循環位移隨機數r c 之值,亦即該更新循環位移隨機數r c 係用於下一次產生循環位移所使用之隨機數, 該時間擾動混沌映射加密解密系統之迭代運算係定義為: 其中♁係為互斥運算(XOR),i=1,...,N,n係為迭代運算之次數, 其中 其中LFSR(n)係為該線性反饋位移暫存器。 The time-disturbing chaotic map encryption and decryption system for secure communication, as described in claim 8 of the patent application scope, wherein in the performance of discretization, when the calculation accuracy is m =32 bits, , where a j {0,1}, and Can be re-represented as a binary vector: [ a 0 ,..., a j ,..., a m -1 ]; an initial cyclic displacement random number Generate a cyclic shift of [ a 0 ,..., a j ,..., a m -1 ] make Where b j {0,1}, and [b 0 ,...,b j ,...,b m -1 ] includes an update cyclic displacement random number r c , an update time delay factor random number r d , a gold Key element And an update time delay factor data source , where r d =[b 0 ,...,b 2 ], can be expressed as r c =[b 3 ,...,b 7 ], can be expressed as At this time, the initial cyclic displacement random number The value is set to the value of the updated cyclic displacement random number r c , that is, the updated cyclic displacement random number r c is used for the random number used to generate the cyclic displacement next time. The iterative operation system of the time-disturbed chaotic map encryption and decryption system is defined as: Where ♁ is a mutually exclusive operation (XOR), i =1,...,N, n is the number of iterations, where Where LFSR( n ) is the linear feedback shift register. 如申請專利範圍第1項所述之用於保密通訊之時間擾動混沌映射加密解密系統,其中該金鑰組之長度係大於或等於該明文訊息之長度。 The time-disturbing chaotic map encryption and decryption system for secure communication, as described in claim 1, wherein the length of the key group is greater than or equal to the length of the plaintext message. 一種用於保密通訊之時間擾動混沌映射加密解密方法,係可選擇一合成加密解密過程或一分解加密解密過程,將一發送端內所載入之一明文訊息 以保密方式自該發送端傳送至一接收端,其中該合成加密解密過程包括:一合成加密過程,係於該發送端進行,包括以下步驟:輸入一初始狀態至該發送端內之一混沌密碼運算器;由該混沌密碼運算器執行至少一次該時間擾動混沌映射加密解密方法之迭代運算以產生一金鑰組,其中該金鑰組之長度係大於或等於該明文訊息之長度;以及由一混沌密碼加密器將該明文訊息與該金鑰組進行互斥運算,以產生一密文小區塊組;一合成解密過程,係於該接收端進行,包括以下步驟:由一混沌密碼接收器接收來自該發送端之該密文小區塊組與該初始狀態;輸入該初始狀態至該接收端內之一混沌密碼運算器,使該混沌密碼運算器執行至少一次該時間擾動混沌映射加密解密系統之迭代運算而產生與該發送端內相同之該金鑰組;以及由一混沌密碼解密器將該密文小區塊組與該金鑰組進行互斥運算,以產生一合成解密明文訊息;其中該分解加密解密過程包括:一分解加密過程,係於該發送端進行,包括以下步驟:步驟一:輸入該初始狀態至該發送端內之該混沌密碼運算器;步驟二:由該混沌密碼運算器執行一次該時間擾動混沌映射加密解密方法之迭代運算以產生一金鑰元素; 步驟三:由該混沌密碼加密器擷取一段該明文訊息以形成一明文小區塊,其中該明文小區塊之長度係與該金鑰元素長度相同;步驟四:由該混沌密碼加密器將該明文小區塊與該金鑰元素進行互斥運算,以產生一密文小區塊;步驟五:重複步驟二、步驟三、步驟四,直至該明文訊息被擷取完畢為止;步驟六:將每一次執行步驟四所產生之該密文小區塊集合而成該密文小區塊組;一分解解密過程,係於該接收端進行,包括以下步驟:步驟一:由該混沌密碼接收器接收來自該發送端之該密文小區塊組與該初始狀態;步驟二:輸入該初始狀態至該接收端內之該混沌密碼運算器;步驟三:由該接收端內之該混沌密碼運算器執行一次該時間擾動混沌映射加密解密方法之迭代運算以產生該金鑰元素;步驟四:將每一次步驟三所產生之該金鑰元素集合而成該金鑰組,若該金鑰組之長度小於該密文小區塊組則重複步驟三,若該金鑰組之長度大於或等於該密文小區塊組則執行步驟五;步驟五:由該混沌密碼解密器將該密文小區塊組與該金鑰組進行互斥運算,以產生一分解解密明文訊息。 A time-disturbing chaotic map encryption and decryption method for secret communication, which can select a synthetic encryption and decryption process or a decomposition encryption and decryption process to load a plaintext message in a sender And transmitting to the receiving end in a secure manner, where the synthetic encryption and decryption process comprises: a synthetic encryption process, performed by the sending end, comprising the steps of: inputting an initial state to one of the chaotic passwords in the transmitting end An operator: performing, by the chaotic cryptographic operator, at least one iteration operation of the time-interfering chaotic map encryption and decryption method to generate a key group, wherein the length of the key group is greater than or equal to the length of the plaintext message; The chaotic cipher encrypts the plaintext message and the key group to perform a mutually exclusive operation to generate a ciphertext block group; and a synthesizing and decrypting process is performed at the receiving end, comprising the following steps: receiving by a chaotic cipher receiver The ciphertext cell block group from the transmitting end and the initial state; inputting the initial state to a chaotic cipher operator in the receiving end, so that the chaotic cipher operator performs at least one time perturbation chaotic map encryption and decryption system Iterating the operation to generate the same key group as in the transmitting end; and the ciphertext is small by a chaotic crypto-decryptor The block group and the key group are mutually exclusive operations to generate a synthetic decrypted plaintext message; wherein the decomposing encryption and decryption process comprises: a decomposing encryption process, performed on the transmitting end, comprising the following steps: Step 1: inputting the initial a state to the chaotic cryptographic operator in the transmitting end; step 2: performing an iterative operation of the time-disturbing chaotic map encryption and decryption method by the chaotic cryptographic operator to generate a key element; Step 3: The chaotic cipher encrypts a piece of the plaintext message to form a plaintext block, wherein the length of the plaintext block is the same as the length of the key element; and step 4: the plaintext is encrypted by the chaotic cipher The cell block and the key element are mutually exclusive operations to generate a ciphertext block; step 5: repeat step two, step three, step four until the plaintext message is retrieved; step six: each execution The ciphertext cell block generated in step 4 is assembled into the ciphertext cell block group; a decomposing and decrypting process is performed on the receiving end, and includes the following steps: Step 1: receiving, by the chaotic cipher receiver, the sending end The ciphertext cell block group and the initial state; Step 2: input the initial state to the chaotic cipher operator in the receiving end; Step 3: Performing the time perturbation by the chaotic cipher operator in the receiving end An iterative operation of the chaotic map encryption and decryption method to generate the key element; step 4: assembling the key element generated in each step three into the key group If the length of the key group is smaller than the ciphertext block group, repeat step 3, if the length of the key group is greater than or equal to the ciphertext block group, perform step 5; step 5: the chaotic password decryptor The ciphertext cell block group and the key group are mutually exclusive operations to generate a decomposed and decrypted plaintext message. 如申請專利範圍第11項所述之用於保密通訊之時間擾動混沌映射加密 解密方法,其中該時間擾動混沌映射加密解密方法之迭代運算,包括以下步驟:啟動一運算開關,以啟動該混沌密碼運算器進行一次該時間擾動混沌映射加密解密方法之迭代運算;由一輸入會合端選擇該初始狀態或一迭代狀態,其中當選擇該初始狀態時,一初始偽隨機數及一初始循環位移隨機數經由該輸入會合端輸入,將該初始偽隨機數傳送至一迭代運算器,且該初始循環位移隨機數將該初始偽隨機數產生循環位移,而產生一偽隨機數,而當選擇該迭代狀態時,一循環位移暫存器中之一循環位移隨機數及一偽隨機數暫存器中之一迭代偽隨機數經由該輸入會合端輸入,將該迭代偽隨機數傳送至該迭代運算器,且該循環位移隨機數將該迭代偽隨機數產生循環位移,而產生該偽隨機數,其中該偽隨機數包括該金鑰元素、一更新循環位移隨機數、一更新時間延遲因子隨機數以及一更新時間延遲因子資料源;由一金鑰輸出端輸出該金鑰元素;藉由將該更新循環位移隨機數存入該循環位移暫存器中,而形成該循環位移隨機數;藉由一延遲長度位移暫存器使用該更新時間延遲因子隨機數以及該更新時間延遲因子資料源來產生一時間延遲因子,並將該時間延遲因子截斷,而形成一被截斷的時間延遲因子,並將該被截斷的時間延遲因子存入該延遲長度位移暫存器內;藉由該迭代運算器將接收自該輸入會合端之該初始偽隨機數或該迭代偽隨機數帶入一混沌映射中並與該被截斷的時間延遲因子產生互斥運算,而產生一新迭代偽隨機數,並將該新迭代偽隨機數存入該偽隨機 數暫存器中,而形成該迭代偽隨機數,其中該金鑰組係由該混沌密碼運算器經至少一次該時間擾動混沌映射加密解密方法之迭代運算後所輸出之至少一個該金鑰元素所組成。 Time-disturbed chaotic map encryption for secure communication as described in claim 11 The decryption method, wherein the time disturbing the iterative operation of the chaotic map encryption and decryption method comprises the following steps: starting an operation switch to start the chaotic cryptographic operator to perform an iterative operation of the time-disturbed chaotic map encryption and decryption method; Selecting the initial state or an iterative state, wherein when the initial state is selected, an initial pseudo random number and an initial cyclic displacement random number are input through the input rendezvous end, and the initial pseudo random number is transmitted to an iterative operator, And the initial cyclic displacement random number generates a cyclic displacement of the initial pseudo random number to generate a pseudo random number, and when the iterative state is selected, a cyclic displacement random number and a pseudo random number in a cyclic shift register An iterative pseudo random number in the register is input through the input convergence end, and the iterative pseudo random number is transmitted to the iterative operator, and the cyclic displacement random number generates a cyclic shift of the iterative pseudo random number to generate the pseudo a random number, wherein the pseudo random number includes the key element, an updated cyclic displacement random number, and an update a delay factor random number and an update time delay factor data source; the key element is output by a key output terminal; and the cyclic shift displacement is randomly generated by storing the update cyclic displacement random number into the cyclic shift register a time delay factor is generated by a delay length shift register using the update time delay factor random number and the update time delay factor data source, and the time delay factor is truncated to form a truncated time delay a factor, and storing the truncated time delay factor in the delay length shift register; wherein the iterative operator brings the initial pseudo random number received from the input convergence end or the iterative pseudo random number into a a chaotic map and a mutually exclusive operation with the truncated time delay factor, generating a new iterative pseudo-random number, and storing the new iteration pseudo-random number into the pseudo-random number Forming the iterative pseudo-random number in the number register, wherein the key group is at least one of the key elements output by the chaotic cryptographic operator after the iterative operation of the chaotic map encryption and decryption method at least once. Composed of. 如申請專利範圍第11項所述之用於保密通訊之時間擾動混沌映射加密解密方法,係由一數位時擾混沌系統結合一組變異型Logistic映射來執行該時間擾動混沌映射加密解密方法之迭代運算。 For example, the time-disturbed chaotic map encryption and decryption method for secret communication described in claim 11 is performed by a digital time-interfering chaotic system combined with a set of variant logistic maps to perform iteration of the time-disturbed chaotic map encryption and decryption method. Operation. 如申請專利範圍第13項所述之用於保密通訊之時間擾動混沌映射加密解密方法,其中該組變異型Logistic映射包括一變異型Logistic映射,其定義如下:Ψ α,P(x):[0,1]→[0,1], 其中α N,p [0,1]是控制參數,x是狀態變數。 The time-disturbed chaotic map encryption and decryption method for secure communication, as described in claim 13, wherein the set of variant logistic maps includes a variant logistic map, which is defined as follows: Ψ α , P ( x ): [ 0,1]→[0,1], Where α N,p [0,1] is the control parameter and x is the state variable. 如申請專利範圍第13項所述之用於保密通訊之時間擾動混沌映射加密解密方法,其中該數位時擾混沌系統係為一N維度之數位時擾混沌系統,其定義如下: 令為定義在閉區間的一維混沌映射f θ 之一集合, 其中i=1,...,N,:I→I,I=[0,1], θ i 係定義在參數空間θ i 內,θ i 係為之控制參數,而x I係為狀態變數;因此x之動態行為係可表示成x n+1=f θ (x n ),其中n係為迭代運算之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時f θ 係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子d n 其中g k:I m →{0,1},,k=1,...,m, 其中d n 最左邊的一個位元係為 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子係被引進用以擾動之動態行為,係由該截斷函數h將該時間延遲因子d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: 該N維度之數位時擾混沌系統係定義為: 其中♁係為互斥運算(XOR),i=1,...,N,n係為迭代運算之次數, 其中 The time-disturbing chaotic map encryption and decryption method for secure communication, as described in claim 13, wherein the digital time-interference chaotic system is an N-dimensional digital time-interference chaotic system, which is defined as follows: To define a set of one-dimensional chaotic maps f θ in a closed interval, where i =1,...,N, :I→I,I=[0,1], θ i is defined in the parameter space θ i , θ i is Control parameters, and x I based state variable; x therefore the dynamic behavior of the system can be expressed as x n +1 = f θ (x n), where n is the number of iterations of operation of the system; in the discretization of the performance, the accuracy of m bits At this time, the closed interval I is expressed as I m . At this time, f θ is expressed as At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost one of d n is and To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor Was introduced to disturb The dynamic behavior is that the truncation function h truncates the last l - m bit in the l- bit of the time delay factor d n and outputs the remaining m bits, The system is defined as: The N-dimensional digital time-interfering chaotic system is defined as: or Where ♁ is a mutually exclusive operation (XOR), i =1,...,N, n is the number of iterations, where 如申請專利範圍第13項所述之用於保密通訊之時間擾動混沌映射加密解密方法,其中該數位時擾混沌系統係為一N×M維度之數位時擾混沌系統,其定義如下: 令為定義在閉區間的一維混沌映射f θ 之一集合, 其中i=1,...,N,j=1,...,M,:I→I,I=[0,1],θ (i,j)係定義在參數空間θ(i,j)內,θ (i,j)係為之控制參數,而x I係為狀態變數,因此x之動態行為係可表示成x n+1=f θ (x n ),其中n係為迭代運算之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時f θ 係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子d n 其中g k:I m →{0,1},,k=1,...,m, 其中d n 最左邊的一個位元係為 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子係被引進用以擾動之動態行為,係由該截斷函數h將該時間延遲因子d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: 該N×M維度之數位時擾混沌系統係定義為: 其中♁係為互斥運算(XOR),1 i N,1 j M,n係為迭代運算之次數, 其中 The time-disturbing chaotic map encryption and decryption method for secure communication, as described in claim 13, wherein the digital time-interference chaotic system is an N×M-dimensional digital time-interference chaotic system, which is defined as follows: To define a set of one-dimensional chaotic maps f θ in a closed interval, where i =1,...,N, j =1,...,M, :I→I,I=[0,1], θ ( i , j ) is defined in the parameter space θ ( i , j ) , and θ ( i , j ) is Control parameters, and x I based state variable, and therefore the dynamic behavior of the system x can be expressed as x n +1 = f θ (x n), where n is the number of iterations of operation of the system; in the discretization of the performance, the accuracy of m bits At this time, the closed interval I is expressed as I m . At this time, f θ is expressed as At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost one of d n is and To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor Was introduced to disturb The dynamic behavior is that the truncation function h truncates the last l - m bit in the l- bit of the time delay factor d n and outputs the remaining m bits, The system is defined as: The digital time-interference chaotic system of the N×M dimension is defined as: or The ♁ is a mutually exclusive operation (XOR), 1 i N,1 j M, n is the number of iterations, where 如申請專利範圍第13項所述之用於保密通訊之時間擾動混沌映射加密解密方法,其中該組變異型Logistic映射係由N個變異型Logistic映射所組成,其定義如下: ,其中I=[0,1], 其中α i N,p i [0,1]是控制參數,i=1,...,N,x係為狀態變數;其中該數位時擾混沌系統結合該組變異型Logistic映射之定義如下:x之動態行為係可表示成x n+1 α,P(x n ),其中n係為迭代運算之次數;在離散化之表現下,在計算精度為m位元時, 此時閉區間I係表示為I m 此時α係表示為,此時p係表示為,此時x係表示為係可重新表示為,其中a j {0,1}; 令G l :Π l I m →I l 係為一非線性多變數單值函數, 其中I l 係在計算精度為l位元時,l m 其中G l 係擷取了目前狀態變數x n 的前l個狀態變數中的一個固定位元,組合成一個l位元之一時間延遲因子d n 其中g k:I m →{0,1},,k=1,...,m, 其中d n 最左邊的一個位元係為 欲計算d n+1,其實只要將d n 的所有位元皆向左平移一個位元, 亦即 其中<<係為向左平移操作子,其定義為: ,其中 令h:I l →I m ,係為一截斷函數,h將輸入的l位元中的最後l-m位元截斷,而輸出剩下的m位元,一被截斷的時間延遲因子係被引進用以擾動之動態行為,係由該截斷函數h將該時間延遲因子d n l位元中的最後l-m位元截斷,而輸出剩下的m位元,係定義為: 該時間擾動混沌映射加密解密系統之迭代運算係定義為: 其中♁係為互斥運算(XOR),i=1,...,N,n係為迭代運算之次數, 其中 For example, the time-disturbed chaotic map encryption and decryption method for confidential communication as described in claim 13 of the patent scope, wherein the set of variant logistic maps is composed of N variant logistic maps, which are defined as follows: , where I=[0,1], Where α i N, p i [0,1] is the control parameter, i =1,...,N, x is the state variable; wherein the digital time-interfering chaotic system is combined with the definition of the variant logistic map as follows: The dynamic behavior of x can be expressed x n +1 = Ψ α , P ( x n ), where n is the number of iterative operations; in the case of discretization, when the calculation precision is m bits, the closed interval I is expressed as I m , At this time, the α system is expressed as , At this time, the p system is expressed as , At this time, the x system is expressed as , , Can be re-represented as , where a j {0,1}; Let G l l I m →I l be a nonlinear multivariable single-valued function, where I l is when the calculation precision is 1 bit, l m , The G l system takes a fixed bit in the first l state variable of the current state variable x n and combines it into a l- bit time delay factor d n : Where g k :I m →{0,1}, , k=1,..., m , where the leftmost one of d n is and To calculate d n +1 , in fact, all the bits of d n are shifted to the left by one bit, that is, Where <<< is to shift the operator to the left, which is defined as: ,among them Let h:I l →I m be a truncation function, h truncates the last l - m bit in the input l bit, and outputs the remaining m bits, a truncated time delay factor Was introduced to disturb The dynamic behavior is that the truncation function h truncates the last l - m bit in the l- bit of the time delay factor d n and outputs the remaining m bits, The system is defined as: The iterative operation system of the time-disturbed chaotic map encryption and decryption system is defined as: Where ♁ is a mutually exclusive operation (XOR), i =1,...,N, n is the number of iterations, where 如申請專利範圍第17項所述之用於保密通訊之時間擾動混沌映射加密解密方法,係以一線性反饋位移暫存器,使該時間擾動混沌映射加密解密方法之迭代運算定義如下: 其中該線性反饋位移暫存器係為LFSR(n)。 For example, the time-disturbing chaotic map encryption and decryption method for confidential communication described in claim 17 is a linear feedback displacement register, and the iterative operation of the time-disturbed chaotic map encryption and decryption method is defined as follows: The linear feedback shift register is LFSR( n ). 如申請專利範圍第18項所述之用於保密通訊之時間擾動混沌映射加密解密系統,其中在離散化之表現下,計算精度為m=32位元時, ,其中a j {0,1}, 而係可重新表示為二元向量:[a 0,...,a j ,...,a m-1];一初始循環位移隨機數將[a 0,...,a j ,...,a m-1]產生循環位移成為 其中b j {0,1},而[b0,...,b j ,...,b m-1]包括了一更新循環位移隨機數r c 、一更新時間延遲因子隨機數r d 、一金鑰元素以及一更新時間延遲因子資料源, 其中r d =[b0,...,b2],可表示為 r c =[b3,...,b7],可表示為,此時將該初始循 環位移隨機數之值設定為該更新循環位移隨機數r c 之值,亦即該更新循環位移隨機數r c 係用於下一次產生循環位移所使用之隨機數, 該時間擾動混沌映射加密解密系統之迭代運算係定義為: 其中♁係為互斥運算(XOR),i=1,...,N,n係為迭代運算之次數, 其中 其中LFSR(n)係為該線性反饋位移暫存器。 For example, the time-disturbed chaotic map encryption and decryption system for secure communication as described in claim 18, wherein in the case of discretization, when the calculation accuracy is m =32 bits, , where a j {0,1}, and Can be re-represented as a binary vector: [ a 0 ,..., a j ,..., a m -1 ]; an initial cyclic displacement random number Generate a cyclic shift of [ a 0 ,..., a j ,..., a m -1 ] make Where b j {0,1}, and [b 0 ,...,b j ,...,b m -1 ] includes an update cyclic displacement random number r c , an update time delay factor random number r d , a gold Key element And an update time delay factor data source , where r d =[b 0 ,...,b 2 ], can be expressed as r c =[b 3 ,...,b 7 ], can be expressed as At this time, the initial cyclic displacement random number The value is set to the value of the updated cyclic displacement random number r c , that is, the updated cyclic displacement random number r c is used for the random number used to generate the cyclic displacement next time. The iterative operation system of the time-disturbed chaotic map encryption and decryption system is defined as: Where ♁ is a mutually exclusive operation (XOR), i =1,...,N, n is the number of iterations, where Where LFSR( n ) is the linear feedback shift register.
TW103101209A 2014-01-13 2014-01-13 Encryption and decryption system and method using chaotic mapping with spatial-temporal perturbation TWI552563B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103101209A TWI552563B (en) 2014-01-13 2014-01-13 Encryption and decryption system and method using chaotic mapping with spatial-temporal perturbation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103101209A TWI552563B (en) 2014-01-13 2014-01-13 Encryption and decryption system and method using chaotic mapping with spatial-temporal perturbation

Publications (2)

Publication Number Publication Date
TW201528754A true TW201528754A (en) 2015-07-16
TWI552563B TWI552563B (en) 2016-10-01

Family

ID=54198483

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103101209A TWI552563B (en) 2014-01-13 2014-01-13 Encryption and decryption system and method using chaotic mapping with spatial-temporal perturbation

Country Status (1)

Country Link
TW (1) TWI552563B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI571092B (en) * 2015-09-04 2017-02-11 崑山科技大學 Encryption system for safe transmission of network data with adaptive synchronization of hyperchaotic signals free from external interference and parameter disturbance, and method for the same
CN117901122A (en) * 2024-03-19 2024-04-19 成都信息工程大学 Robot positioning method and system based on Logistic-tent chaotic mapping Levenberg Marquardt

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI330485B (en) * 2006-11-10 2010-09-11 Wen Wei Lin Robust hyper-chaotic encryption-decryption system and method for digital secure-communication
TW201001966A (en) * 2008-06-20 2010-01-01 Univ Shu Te Secure communication system and data transmission method thereof
TWI410103B (en) * 2008-06-25 2013-09-21 Univ Shu Te Chaos Communication Confidentiality System and Its Data Transmission Method and Proportional Integral Control Module Design Method
JP4345072B1 (en) * 2008-07-28 2009-10-14 際国 董 Random number generation and management method and apparatus
TW201025982A (en) * 2008-12-31 2010-07-01 Univ Shu Te Chaotic security communication system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI571092B (en) * 2015-09-04 2017-02-11 崑山科技大學 Encryption system for safe transmission of network data with adaptive synchronization of hyperchaotic signals free from external interference and parameter disturbance, and method for the same
CN117901122A (en) * 2024-03-19 2024-04-19 成都信息工程大学 Robot positioning method and system based on Logistic-tent chaotic mapping Levenberg Marquardt
CN117901122B (en) * 2024-03-19 2024-05-17 成都信息工程大学 Robot positioning method and system based on Logistic-Tent chaotic mapping Levenberg Marquardt

Also Published As

Publication number Publication date
TWI552563B (en) 2016-10-01

Similar Documents

Publication Publication Date Title
CN105490802B (en) The parallel encryption and decryption communication means of improvement SM4 based on GPU
US8396209B2 (en) Mechanism for chained output feedback encryption
US7945049B2 (en) Stream cipher using multiplication over a finite field of even characteristic
US10320554B1 (en) Differential power analysis resistant encryption and decryption functions
KR102620649B1 (en) Generating key sequences for cryptographic operations
JP6575532B2 (en) Encryption device, decryption device, encryption processing system, encryption method, decryption method, encryption program, and decryption program
CN109981249B (en) Encryption and decryption method and device based on zipper type dynamic hash and NLFSR
JP6552184B2 (en) INFORMATION PROCESSING APPARATUS AND METHOD THEREOF
Bhaskar et al. An advanced symmetric block cipher based on chaotic systems
Acharya Image encryption using a new chaos based encryption algorithm
TWI552563B (en) Encryption and decryption system and method using chaotic mapping with spatial-temporal perturbation
Bajaj et al. AES algorithm for encryption
JP5207153B2 (en) Pseudo random number generation system
Manucom et al. Security analysis of improved one-time pad cryptography using TRNG key generator
CN110474967B (en) Block chain experiment system and method
CN108777622B (en) Binary stream hash modular encryption and decryption method
Arivazhagan et al. Mixed chaotic maps based encryption for high crypto secrecy
Han et al. A chaos robustness criterion for 2d piecewise smooth map with applications in pseudorandom number generator and image encryption with avalanche effect
JP5268011B2 (en) Encryption system and decryption system
Arivazhagan et al. Locally Applied Mixed Chaotic Maps based Encryption for High Crypto Secrecy
Vorobets et al. Features of synthesis and statistical properties of the modified stream encoder with dynamic key correction
Abbaas et al. Hybrid Efficient Stream Cipher KeyGenerator Based on LFSR's and Chaotic Map
Grozov et al. A Method of Cryptographically Strong Pseudorandom Sequences Generation Based on the Blender
Meera et al. Study on Various Encryption/Decryption Algorithms for Secure Communication using Chaotic based Hashed Key
JP5818768B2 (en) Mask generation apparatus, information processing apparatus, method thereof, and program