TW201448625A - Robust uplink transmission and joint base station scheduling distributed compression - Google Patents

Robust uplink transmission and joint base station scheduling distributed compression Download PDF

Info

Publication number
TW201448625A
TW201448625A TW102121071A TW102121071A TW201448625A TW 201448625 A TW201448625 A TW 201448625A TW 102121071 A TW102121071 A TW 102121071A TW 102121071 A TW102121071 A TW 102121071A TW 201448625 A TW201448625 A TW 201448625A
Authority
TW
Taiwan
Prior art keywords
base stations
compression
signals
wtrus
base station
Prior art date
Application number
TW102121071A
Other languages
Chinese (zh)
Inventor
Seok-Hwan Park
Onur Sahin
Osvaldo Simeone
Ariela Zeira
Original Assignee
Interdigital Patent Holdings
New Jersey Tech Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Patent Holdings, New Jersey Tech Inst filed Critical Interdigital Patent Holdings
Priority to TW102121071A priority Critical patent/TW201448625A/en
Publication of TW201448625A publication Critical patent/TW201448625A/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

Systems, methods, and/or techniques for providing an uplink with compression are contemplated. Such systems, methods, and/or techniques may include performing joint base station scheduling and distributed compression. The joint base station scheduling and distribution compression may include a two-phase joint selection and compression algorithm. Additionally, the joint base station scheduling and distribution compression may be configured to be performed jointly using sparsity-inducing optimization. A covariance matrix, channel information, a correlation matrix, a linear transformation matrix, a sum-rate metric, a compression strategy, a determined codebook, a sparsity inducing term, a block-coordinate ascent algorithm, one or more test channels, convergence criterion, and the like may also be used to perform the joint base station scheduling and distribution compression.

Description

穩健上鏈傳輸及聯合基地台排程分布壓縮Robust uplink transmission and joint base station scheduling compression

相關申請的交叉引用 本申請要求2012年7月14日提交的美國臨時專利申請No.61/659,846,標題為“SYSTEMS AND METHODS FOR PROVIDING A ROBUST UPLINK TRANSMISSION VIA DISTRIBUTED CODING AND COMPRESSION”的權益以及要求2012年6月14日提交的美國臨時專利申請No.61/659,856,標題為“SYSTEMS AND METHODS FOR PROVIDING JOINT BASE STATION SCHEDULING AND DISTRIBUTED COMPRESSION”的權益,所述兩個申請的內容分別全部作為引用目的結合於此。CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the present disclosure. U.S. Provisional Patent Application Serial No. 61/659,856, filed on Jun. 14, entitled "SYSTEMS AND METHODS FOR PROVIDING JOINT BASE STATION SCHEDULING AND DISTRIBUTED COMPRESSION," .

當前無線通信系統部署和網路正面臨由於針對裝置和高資料速率應用(諸如在其上執行的)的不斷增加的需求引起的“頻寬危機”。頻寬可以通過數位通信系統中的邏輯或物理通信路徑的網路比特速率來定義。以比特/秒的頻寬還可以指對應於實現的吞吐量的消耗頻寬,諸如通過通信路徑的成功資料傳送的平均速率。Current wireless communication system deployments and networks are facing "bandwidth crises" due to the ever-increasing demands for devices and high data rate applications, such as those performed thereon. The bandwidth can be defined by the network bit rate of a logical or physical communication path in a digital communication system. The bandwidth in bits per second may also refer to the consumption bandwidth corresponding to the throughput achieved, such as the average rate of successful data transmission over the communication path.

涵蓋了用於向上鏈提供壓縮的系統、方法和/或技術。該系統、方法、和/或技術可以包括執行聯合基地台排程和分散式壓縮。聯合基地台排程和分佈壓縮可以包括兩階段聯合選擇和壓縮演算法。附加地,聯合基地台排程和分佈壓縮可以被配置成使用稀疏引導(sparsity inducing)最佳化來聯合執行。協方差矩陣、通道資訊、相關矩陣、線性轉換矩陣、總速率度量、壓縮策略、確定的碼本、稀疏引導術語、塊協調上升演算法、一個或者多個測試通道、收斂準則等等還可以被用來執行聯合基地台排程和分佈壓縮。例如,根據一種實施方式,執行聯合基地台排程和分佈壓縮可以包括以下中的一者或者多者:接收以下中的至少一者:通道資訊、被計算用於使用兩個階段聯合選擇和壓縮演算法所選擇基地台的測試通道、和信號;確定壓縮策略;根據所述壓縮策略壓縮接收到的信號;以及發送與壓縮後的信號關聯的索引等等。 涵蓋了用於向上鏈提供壓縮的系統、方法、和/或技術。該系統、方法、和/或技術包括執行分散式源編碼和壓縮。分散式源編碼和壓縮可以被配置成經由具有邊界資訊的順序源編碼來執行。附加地,協方差矩陣(例如,其取決於一個或多個基地台的通道實現)、通道資訊、相關矩陣、線性轉換矩陣、總速率度量、壓縮策略、確定的碼本等等可以被用來執行分散式源編碼和壓縮。例如,根據一種實施方式,執行分散式源編碼和壓縮可以包括以下中的一者或者多者:接收通道資訊、確定的用於壓縮的順序、相關矩陣和/或信號;提供從接收到的信號中推導的資訊;將線性變換矩陣應用到接收到的信號;基於線性變換矩陣調節預先定義的量化碼本的精度;執行對線性變換輸出的分量形式量化(componet-wise quantization)以獲得在預先定義的量化碼本中的點;發送與在預先定義的量化碼本中的點關聯的索引;根據一個或多個系統參數計算總速率度量;確定壓縮策略;根據所述壓縮策略對接收到的信號進行壓縮;等等。 實施方式涵蓋用於執行分散式碼本和壓縮的技術,所述技術可以包括接收以下中的至少一者:通道資訊、確定的用於壓縮的順序、相關矩陣和信號。該技術還包括提供從接收到的信號中推導的資訊。此外該技術還包括將線性變換矩陣應用到接收到的信號。技術還包括基於線性變換矩陣調節預先定義的量化碼本的精度。此外技術還包括執行對線性變換輸出的分量形式量化以獲得在預先定義的量化碼本中的點。技術還包括發送與在預先定義的量化碼本中的點關聯的索引。並且技術還包括根據一個或多個系統參數計算總速率度量。此外,技術還包括確定壓縮策略和/或根據所述壓縮策略對接收到的信號進行壓縮。 實施方式涵蓋用於執行聯合基地台排程和分佈壓縮的技術。一種或多種技術可以包括由裝置接收通道資訊。該裝置可以與一個或者多個基地台進行通信。所述技術可以包括由所述裝置選擇所述一個或多個基地台。所述技術還包括由所述裝置確定一個或多個壓縮策略。所述技術還包括由所述裝置向所述一個或多個基地台報告一個或多個測試通道。所述技術包括由所述裝置執行速率控制和/或在由所述裝置接收的壓縮資訊上執行解碼。 實施方式涵蓋用於利用壓縮執行上鏈的技術。一種或者多種技術包括由裝置接收通道資訊。該裝置可以與一個或者多個基地台進行通信。所述技術還包括由所述裝置確定所述一個或多個基地台的順序以用於壓縮。所述技術還包括由所述裝置向所述一個或多個基地台報告一個或多個相關矩陣。所述技術還包括由所述裝置確定一個或多個壓縮策略。所述技術還包括由所述裝置向所述一個或多個基地台報告一個或多個測試通道。此外,所述技術還包括由所述裝置執行速率控制和/或對由所述裝置接收的壓縮資訊執行解碼。 實施方式涵蓋裝置,其中所述裝置可以與雲通信網路進行通信。該裝置包括處理器。該處理器可以被配置成至少由裝置接收通道資訊。該裝置可以與一個或者多個基地台進行通信。所述處理器可以被配置成由所述裝置選擇一個或者多個基地台。所述處理器還可以被配置成由所述裝置確定一種或者多種壓縮策略。所述處理器可以被配置成由所述裝置向所述一個或多個基地台報告一個或多個測試通道。此外,所述處理器可以被配置成由所述裝置執行速率控制和/或對由所述裝置接收的壓縮資訊執行解碼。 提供本發明內容以簡化的形式引入概念選擇,所述概念選擇還將在以下具體實施方式中描述。本發明內容不是為了識別要求保護主題的關鍵特徵或者必要特徵,也不是為了用來限制要求保護主題的範圍。此外,所要求保護的主題不限於對解決在本發明中的任何部分中提到的任意或者所有缺點的任何限制。Systems, methods, and/or techniques for providing compression to an up chain are contemplated. The system, method, and/or technique can include performing joint base station scheduling and decentralized compression. Joint base station scheduling and distributed compression may include a two-stage joint selection and compression algorithm. Additionally, joint base station scheduling and distributed compression can be configured to be jointly performed using sparsity inducing optimization. Covariance matrix, channel information, correlation matrix, linear transformation matrix, total rate metric, compression strategy, determined codebook, sparse guidance terminology, block coordination ascending algorithm, one or more test channels, convergence criteria, etc. can also be Used to perform joint base station scheduling and distributed compression. For example, according to one embodiment, performing joint base station scheduling and distributed compression may include one or more of the following: receiving at least one of: channel information, calculated for use in two stages of joint selection and compression The test channel and the signal of the selected base station of the algorithm; determining a compression strategy; compressing the received signal according to the compression strategy; and transmitting an index associated with the compressed signal, and the like. Systems, methods, and/or techniques for providing compression to an up chain are contemplated. The system, method, and/or technique includes performing decentralized source coding and compression. Decentralized source coding and compression can be configured to be performed via sequential source coding with boundary information. Additionally, a covariance matrix (eg, which depends on the channel implementation of one or more base stations), channel information, correlation matrices, linear transformation matrices, total rate metrics, compression strategies, determined codebooks, etc. can be used Perform decentralized source encoding and compression. For example, according to one embodiment, performing decentralized source coding and compression may include one or more of: receiving channel information, determined order for compression, correlation matrix and/or signal; providing received signal Derived information; applying a linear transformation matrix to the received signal; adjusting the precision of the predefined quantized codebook based on the linear transformation matrix; performing a componet-wise quantization of the linear transformation output to obtain a predefined a point in the quantized codebook; an index associated with a point in the predefined quantized codebook; a total rate metric calculated from the one or more system parameters; a compression strategy determined; a received signal based on the compression strategy Compress; and so on. Embodiments encompass techniques for performing decentralized codebooks and compression, the techniques can include receiving at least one of: channel information, determined order for compression, correlation matrices, and signals. The technique also includes providing information derived from the received signal. In addition, the technique also includes applying a linear transformation matrix to the received signal. Techniques also include adjusting the accuracy of a predefined quantization codebook based on a linear transformation matrix. Further techniques include performing component form quantization of the linear transform output to obtain points in a predefined quantized codebook. The technique also includes transmitting an index associated with a point in the predefined quantized codebook. And the technique also includes calculating a total rate metric based on one or more system parameters. Moreover, the techniques also include determining a compression strategy and/or compressing the received signal in accordance with the compression strategy. Embodiments encompass techniques for performing joint base station scheduling and distributed compression. One or more techniques may include receiving channel information by the device. The device can communicate with one or more base stations. The techniques can include selecting the one or more base stations by the device. The techniques also include determining, by the device, one or more compression strategies. The techniques also include reporting, by the device, one or more test channels to the one or more base stations. The techniques include performing rate control by the apparatus and/or performing decoding on compressed information received by the apparatus. Embodiments encompass techniques for performing a winding with compression. One or more techniques include receiving channel information by the device. The device can communicate with one or more base stations. The techniques also include determining, by the device, an order of the one or more base stations for compression. The techniques also include reporting, by the apparatus, one or more correlation matrices to the one or more base stations. The techniques also include determining, by the device, one or more compression strategies. The techniques also include reporting, by the device, one or more test channels to the one or more base stations. Moreover, the techniques further include performing rate control by the apparatus and/or performing decoding on compressed information received by the apparatus. Embodiments encompass a device in which the device can communicate with a cloud communication network. The device includes a processor. The processor can be configured to receive channel information from at least the device. The device can communicate with one or more base stations. The processor can be configured to select one or more base stations by the device. The processor can also be configured to determine one or more compression strategies by the device. The processor can be configured to report one or more test channels to the one or more base stations by the device. Moreover, the processor can be configured to perform rate control by the apparatus and/or perform decoding on compressed information received by the apparatus. The present disclosure is provided to introduce a selection of concepts in a simplified form, which is also described in the following detailed description. The Summary is not intended to identify key features or essential features of the claimed subject matter, and is not intended to limit the scope of the claimed subject matter. Further, the claimed subject matter is not limited to any limitation to any or all disadvantages noted in any part of the invention.

下面參考各種附圖對示例實施方式進行詳細描述。雖然本發明提供了具體的示例實施方式,但應當理解的是這些細節意在示例性並且不限制本發明的範圍。 提供了用於在連接到上鏈傳輸場景中的中心處理器的遠端無線電頭處執行和/或利用聯合基地台排程和分散式源壓縮方案的系統和方法。 提供了用於在連接到上鏈傳輸場景中的中心處理器的遠端無線電頭處提供和/或利用分散式源壓縮方案的系統和方法。當遠端無線電頭在網路中具有非完美的通道狀態資訊時,所提出的分散式壓縮方案可以被使用。 第1A圖描述了可以在其中實施一個或者多個所公開的實施方式的示例通信系統100的圖例。通信系統100可以是將諸如語音、資料、視訊、消息、廣播等之類的內容提供給多個無線用戶的多重存取系統。通信系統100可以通過系統資源(包括無線頻寬)的共用使得多個無線用戶能夠存取這些內容。例如,通信系統100可以使用一個或多個通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)等等。 如第1A圖所示,通信系統100可以包括無線發射/接收單元(WTRU) 102a、102b、102c和/或102d(通常或者統稱為WTRU 102)、無線電存取網路(RAN)103/104/105、核心網路106/107/109、公共交換電話網路(PSTN)108、網際網路110和其他網路112,但可以理解的是所公開的實施方式可以涵蓋任意數量的WTRU、基地台、網路、和/或網路元件。WTRU 102a,102b,102c和/或102d中的每一個可以是被配置成在無線通信中操作和/或通信的任何類型的裝置。作為示例,WTRU 102a、102b、102c、和/或102d可以被配置成傳送和/或接收無線信號,並且可以包括用戶設備(UE)、移動站、固定或移動用戶單元、傳呼機、行動電話、個人數位助理(PDA)、智慧型電話、可攜式電腦、上網本、個人電腦、無線感測器、消費電子產品等等。 通信系統100還可以包括基地台114a和基地台114b。基地台114a,114b中的每一個可以是被配置成與WTRU 102a,102b,102c和/或102d中的至少一者有無線介面,以便於存取一個或多個通信網路(例如核心網路106/107/109、網際網路110和/或網路112)的任何類型的裝置。例如,基地台114a和/或114b可以是基地台收發站(BTS)、節點B、e節點B、家用節點B、家用e節點B、站點控制器、存取點(AP)、無線路由器以及類似裝置。儘管基地台114a,114b每個均被描述為單個元件,但是可以理解的是基地台114a,114b可以包括任何數量的互聯基地台和/或網路元件。 基地台114a可以是RAN 103/104/105的一部分,該RAN 103/104/105還可以包括諸如站點控制器(BSC)、無線電網路控制器(RNC)、中繼節點之類的其他基地台和/或網路元件(未示出)。基地台114a和/或基地台114b可以被配置成傳送和/或接收特定地理區域內的無線信號,該特定地理區域可以被稱作胞元(未示出)。胞元還可以被劃分成胞元扇區。例如與基地台114a相關聯的胞元可以被劃分成三個扇區。由此,在一種實施方式中,基地台114a可以包括三個收發器,即針對所述胞元的每個扇區都有一個收發器。在另一實施方式中,基地台114a可以使用多輸入多輸出(MIMO)技術,並且由此可以使用針對胞元的每個扇區的多個收發器。 基地台114a和/或114b可以通過空中介面115/116/117與WTRU 102a、102b、102c、和/或102d中的一者或多者通信,該空中介面115/116/117可以是任何合適的無線通信鏈路(例如射頻(RF)、微波、紅外(IR)、紫外(UV)、可見光等)。空中介面115/116/117可以使用任何合適的無線電存取技術(RAT)來建立。 更為具體地,如前所述,通信系統100可以是多重存取系統,並且可以使用一個或多個通道存取方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA以及類似的方案。例如,在RAN 103/104/105中的基地台114a和WTRU 102a,102b和/或102c可以實施諸如通用移動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括諸如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)。HSPA可以包括高速下鏈封包存取(HSDPA)和/或高速上鏈封包存取(HSUPA)。 在另一實施方式中,基地台114a和WTRU 102a,102b和/或102c可以實施諸如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,其可以使用長期演進(LTE)和/或高級LTE(LTE-A)來建立空中介面115/116/117。 在其他實施方式中,基地台114a和WTRU 102a,102b和/或102c可以實施諸如IEEE 802.16(即全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1x、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球移動通信系統(GSM)、增強型資料速率GSM演進(EDGE)、GSM EDGE(GERAN)之類的無線電技術。 舉例來講,第1A圖中的基地台114b可以是無線路由器、家用節點B、家用e節點B或者存取點,並且可以使用任何合適的RAT,以用於促進在諸如公司、家庭、車輛、校園之類的局部區域的通信連接。在一種實施方式中,基地台114b和WTRU 102c,102d可以實施諸如IEEE 802.11之類的無線電技術以建立無線區域網路(WLAN)。在另一實施方式中,基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.15之類的無線電技術以建立無線個人區域網路(WPAN)。在又一實施方式中,基地台114b和WTRU 102c、102d可以使用基於胞元的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A等)以建立超微型(picocell)胞元和毫微微胞元(femtocell)。如第1A圖所示,基地台114b可以具有至網際網路110的直接連接。由此,基地台114b不必經由核心網路106/107/109來存取網際網路110。 RAN 103/104/105可以與核心網路106/107/109通信,該核心網路可以是被配置成將語音、資料、應用程式和/或網際網路協定上的語音(VoIP)服務提供到WTRU 102a、102b、102c、和/或102d中的一者或多者的任何類型的網路。例如,核心網路106/107/109可以提供呼叫控制、帳單服務、基於移動位置的服務、預付費呼叫、網際互聯、視訊分配等,和/或執行高級安全性功能,例如用戶驗證。儘管第1A圖中未示出,需要理解的是RAN 103/104/105和/或核心網路106/107/109可以直接或間接地與其他RAN進行通信,這些其他RAT可以使用與RAN 103/104/105相同的RAT或者不同的RAT。例如,除了連接到可以採用E-UTRA無線電技術的RAN 103/104/105,核心網路106/107/109也可以與使用GSM無線電技術的其他RAN(未示出)通信。 核心網路106/107/109也可以用作WTRU 102a、102b、102c、和/或102d存取PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供普通老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括互聯電腦網路的全球系統以及使用公共通信協定的裝置,所述公共通信協定例如傳輸控制協定(TCP)/網際網路協定(IP)網際網路協定套件的中的TCP、用戶資料報協定(UDP)和IP。網路112可以包括由其他服務提供方擁有和/或操作的無線或有線通信網路。例如,網路112可以包括連接到一個或多個RAN的另一核心網路,這些RAN可以使用與RAN 103/104/105相同的RAT或者不同的RAT。 通信系統100中的WTRU 102a、102b、102c、和/或102d中的一些或者全部可以包括多模式能力,即WTRU 102a、102b、102c、和/或102d可以包括用於通過多個通信鏈路與不同的無線網路進行通信的多個收發器。例如,第1A圖中顯示的WTRU 102c可以被配置成與使用基於胞元的無線電技術的基地台114a進行通信,並且與使用IEEE 802無線電技術的基地台114b進行通信。 第1B圖描述了示例WTRU 102的系統框圖。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、發射/接收元件122、揚聲器/麥克風124、數字鍵盤126、顯示器/觸摸板128、不可移除記憶體130、可移除記憶體132、電源134、全球定位系統晶片組136和其他週邊設備138。需要理解的是,在保持與以上實施方式一致的同時,WTRU 102可以包括上述元件的任何子集。此外,實施方式涵蓋基地台114a和114b和/或基地台114a和114b表示的節點(諸如但不侷限於收發器站(BTS)、節點B、站點控制器、存取點(AP)、家用節點B、演進型家用節點B(e節點B)、家用演進型節點B(HeNB)、家用演進型節點B閘道和代理節點等等)可以包括第1B圖中所描述的以及此處所描述的元件的多個或者全部。 處理器118可以是通用目的處理器、專用目的處理器、常規處理器、數位信號處理器(DSP)、多個微處理器、與DSP核心相關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可編程閘陣列(FPGA)電路、其他任何類型的積體電路(IC)、狀態機等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理和/或使得WTRU 102能夠操作在無線環境中的其他任何功能。處理器118可以耦合到收發器120,該收發器120可以耦合到發射/接收元件122。儘管第1B圖中將處理器118和收發器120描述為分別的元件,但是可以理解的是處理器118和收發器120可以被一起整合到電子封裝或者晶片中。 發射/接收元件122可以被配置成通過空中介面115/116/117將信號發送到基地台(例如基地台114a),或者從基地台(例如基地台114a)接收信號。例如,在一種實施方式中,發射/接收元件122可以是被配置成發送和/或接收RF信號的天線。在另一實施方式中,發射/接收元件122可以是被配置成發送和/或接收例如IR、UV或者可見光信號的發射器/檢測器。在又一實施方式中,發射/接收元件122可以被配置成發送和接收RF信號和光信號兩者。需要理解的是發射/接收元件122可以被配置成發送和/或接收無線信號的任意組合。 此外,儘管發射/接收元件122在第1B圖中被描述為單個元件,但是WTRU 102可以包括任何數量的發射/接收元件122。更特別地,WTRU 102可以使用MIMO技術。由此,在一種實施方式中,WTRU 102可以包括兩個或更多個發射/接收元件122(例如多個天線)以用於通過空中介面115/116/117發射和接收無線信號。 收發器120可以被配置成對將由發射/接收元件122發送的信號進行調變,並且被配置成對由發射/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模式能力。由此,收發器120可以包括多個收發器以用於使得WTRU 102能夠經由多RAT進行通信,例如UTRA和IEEE 802.11。 WTRU 102的處理器118可以被耦合到揚聲器/麥克風124、數字鍵盤126和/或顯示器/觸摸板128(例如,液晶顯示(LCD)單元或者有機發光二極體(OLED)顯示單元),並且可以從上述裝置接收用戶輸入資料。處理器118還可以向揚聲器/麥克風124、數字鍵盤126和/或顯示器/觸摸板128輸出資料。此外,處理器118可以存取來自任何類型的合適的記憶體的資訊,以及向任何類型的合適的記憶體儲存資料,所述記憶體例如可以是不可移除記憶體130和/或可移除記憶體132。不可移除記憶體130可以包括隨機存取記憶體(RAM)、可讀記憶體(ROM)、硬碟或者任何其他類型的記憶體儲存裝置。可移除記憶體132可以包括用戶身份模組(SIM)卡、記憶棒、安全數位(SD)記憶卡等類似裝置。在其他實施方式中,處理器118可以存取來自物理上未位於WTRU 102上而位於伺服器或者家用電腦(未示出)上的記憶體的資料,以及在上述記憶體儲存資料。 處理器118可以從電源134接收電力,並且可以被配置成將電力分配給WTRU 102中的其他組件和/或對至WTRU 102中的其他元件的電力進行控制。電源134可以是任何適用於給WTRU 102供電的裝置。例如,電源134可以包括一個或多個乾電池(鎳鎘(NiCd)、鎳鋅(NiZn)、鎳氫(NiMH)、鋰離子(Li-ion)等)、太陽能電池、燃料電池等。 處理器118還可以耦合到GPS晶片組136,該GPS晶片組136可以被配置成提供關於WTRU 102的當前位置的位置資訊(例如經度和緯度)。WTRU可以通過空中介面115/116/117從基地台(例如基地台114a,114b)接收加上或取代GPS晶片組136資訊之位置資訊,和/或基於從兩個或更多個相鄰基地台接收到的信號的定時來確定其位置。需要理解的是,在與實施方式一致的同時,WTRU 102可以通過任何合適的位置確定方法來獲取位置資訊。 處理器118還可以耦合到其他週邊設備138,該週邊設備138可以包括提供附加特徵、功能性和/或無線或有線連接的一個或多個軟體和/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針(e-compass)、衛星收發器、數位相機(用於照片或者視訊)、通用串列匯流排(USB)埠、震動裝置、電視收發器、免持耳機、藍芽R模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲播放器模組、網際網路瀏覽器等等。 第1C圖描述了根據一種實施方式的RAN 103和核心網路106的系統框圖。如上所述,RAN 103可以使用UTRA無線電技術通過空中介面115與WTRU 102a、102b和/或102c通信。RAN 103還可以與核心網路106通信。如第1C圖所示,RAN 103可以包含節點B 140a、140b、和/或140c,其中節點B 140a、140b和/或140c每個可以包含一個或多個收發器,該收發器通過空中介面115來與WTRU 102a、102b、和/或102c通信。節點B 140a、140b、和/或140c中的每個可以與RAN103範圍內的特別單元(未示出)相關聯。RAN 103還可以包括RNC 142a和/或142b。應該理解的是RAN 103可以包含任意數量的節點B和RNC而仍然與實施方式保持一致。 如第1C圖所示,節點B 140a和/或140b可以與RNC 142a進行通信。此外,節點B 140c可以與RNC 142b進行通信。節點B 140a、140b和/或140c可以通過Iub介面與對應的RNC 142a、142b進行通信。RNC 142a、142b可以通過Iur介面相互進行通信。RNC 142a、142b可以分別被配置成控制與其連接的對應的節點B 140a、140b和/或140c。此外,RNC 142a、142b可以分別被配置成實施或者支援其他功能,諸如外環功率控制、負載控制、准許控制、封包排程、切換控制、巨集分集、安全性功能、資料加密等等。 第1C圖中所示的核心網路106可以包括媒體閘道(MGW)144、移動交換中心(MSC)146、服務GPRS支援節點(SGSN)148,和/或閘道GPRS支持節點(GGSN)150。儘管上述元素中的每個被描述為核心網路106的一部分,但是應該理解的是這些元素中的任何一個可以被除了核心網路營運商以外的實體擁有和/或營運。 RAN 103中的RNC 142a可以通過IuCS介面被連接至核心網路106中的MSC 146。MSC 146可以被連接至MGW 144。MSC 146和MGW 144可以向WTRU 102a、102b、和/或102c提供至電路交換網路(例如PSTN 108)的存取,從而便於WTRU 102a、102b、和/或102c與傳統陸線通信裝置之間的通信。 RAN 103中的RNC 142a還可以通過IuPS介面被連接至核心網路106中的SGSN 148。SGSN 148可以被連接至GGSN 150。SGSN 148和GGSN 150 可以向WTRU 102a、102b、和/或102c提供至封包交換網路(例如網際網路110)的存取,從而便於WTRU 102a、102b和/或102c與IP賦能裝置之間的通信。 如以上所述,核心網路106還可以連接至其他網路112,其中所述其他網路112可以包含被其他服務提供商擁有和/或營運的其他有線或無線網路。 第1D圖描述了根據一種實施方式的RAN 104和核心網路107的系統圖。如上所述,RAN 104可以使用E-UTRA無線電技術通過空中介面116與WTRU 102a、102b和/或102c進行通信。RAN 104還可以與核心網路107進行通信。 RAN 104可以包括e節點B 160a、160b、和/或160c,儘管應該理解的是RAN 104可以包含任意數量的e節點B而仍然與實施方式保持一致。e節點B 160a、160b、和/或160c每個可以包含一個或多個收發器,該收發器通過空中介面116來與WTRU 102a、102b、和/或102c通信。在一種實施方式中,e節點B 160a、160b、和/或160c可以使用MIMO技術。由此,例如e節點B 160a可以使用多個天線來傳送無線信號至WTRU 102a並且從WTRU 102a中接收無線資訊。 e節點B 160a、160b、和/或160c中的每個可以與特定單元(未示出)相關聯並且可以被配置成在上鏈和/或下鏈中處理無線電資源管理決定、移交決定、用戶排程。如第1D圖中所示,e節點B 160a、160b、和/或160c可以通過X2介面彼此進行通信。 第1D圖中所示的核心網路107可以包括移動性管理閘道(MME)162、服務閘道164和封包資料網路(PDN)閘道166。儘管上述元素中的每個被描述為核心網路107的一部分,但是應該理解的是這些元素中的任何一個可以被除了核心網路營運商以外的實體擁有和/或營運。 MME 162可以經由S1介面被連接到RAN 104中的e節點B 160a、160b、和/或160c中的每個並且可以作為控制節點。例如,MME 162可以負責認證WTRU 102a、102b、和/或102c的用戶、承載啟動/解除啟動、在WTRU 102a、102b和/或102c的初始連接期間選擇特定服務閘道,等等。MME 162也可以為RAN 104與使用其他無線電技術(例如GSM或WCDMA)的RAN(未示出)之間的交換提供控制平面功能。 服務閘道164可以經由S1介面被連接到RAN 104中的e節點B 160a、160b、和/或160c的每個。服務閘道164通常可以路由和轉發用戶資料封包至WTRU 102a、102b、和/或102c,或者路由和轉發來自WTRU 102a、102b、和/或102c的用戶資料封包。服務閘道164也可以執行其他功能,例如在e節點B間切換期間錨定用戶平面、當下鏈資料可用於WTRU 102a、102b和/或102c時觸發傳呼、為WTRU 102a、102b、和/或102c管理和儲存上下文等等。 服務閘道164也可以被連接到PDN閘道166,該閘道166可以向WTRU 102a、102b、和/或102c提供至封包交換網路(例如網際網路110)的存取,從而便於WTRU 102a、102b、和/或102c與IP賦能裝置之間的通信。 核心網路107可以促進與其他網路之間的通信。例如,核心網路107可以向WTRU 102a、102b、和/或102c提供至電路交換網路(例如PSTN 108)的存取,從而便於WTRU 102a、102b、和/或102c與傳統陸線通信裝置之間的通信。例如,核心網路107可以包括,或可以與下述通信:作為核心網路107和PSTN 108之間介面的IP閘道(例如,IP多媒體子系統(IMS)服務)。另外,核心網路107可以向提供WTRU 102a、102b、和/或102c至網路112的存取,該網路112可以包含被其他服務提供商擁有和/或營運的其他有線或無線網路。 第1E圖描述了根據一種實施方式的RAN 105和核心網路109的系統圖。RAN 105可以使用IEEE 802.16無線電技術通過空中介面117與WTRU 102a、102b、和/或102c進行通信。正如下文將繼續討論的,WTRU 102a、102b、和/或102c、RAN 105和核心網路109的不同功能實體之間的通信鏈路可以被定義為參考點。 如第1E圖所示,RAN 105可以包括基地台180a、180b、和/或180c和ASN 閘道182,儘管應該理解的是RAN 105可以包含任意數量的基地台和ASN閘道而仍然與實施方式保持一致。基地台 180a、180b、和/或180c分別與RAN 105中的特別單元(未示出)相關聯,並且可以分別包括一個或多個收發器,該收發器通過空中介面117來與WTRU 102a、102b、和/或102c通信。在一種實施方式中,基地台180a、180b、和/或180c可以使用MIMO技術。由此,例如基地台180a可以使用多個天線來傳送無線信號至WTRU 102a並且從WTRU 102a中接收無線資訊。基地台180a、180b、和/或180c還可以提供移動性管理功能,例如交遞觸發、隧道建立、無線電資源管理、訊務分類、服務品質(QoS)策略執行,等等。ASN閘道182可以作為訊務彙聚點且可以負責用戶配置檔的傳呼、快取、路由到核心網路109,等等。 WTRU 102a、102b、和/或102c與RAN 105之間的空中介面117可以被定義為執行IEEE 802.16規範的R1參考點。另外,WTRU 102a、102b、和/或102c中的每個可以建立與核心網路109間的邏輯介面(未示出)。WTRU 102a、102b、和/或102c與核心網路109間的邏輯介面可以被定義為R2參考點,其可以被用來認證、授權、IP主機配置管理、和/或移動管理。 基地台180a、180b、和/或180c中的每個之間的通信鏈路可以被定義為包括用於便於WTRU切換和基地台之間的資料傳輸的協定的R8參考點。基地台180a、180b、180c和ASN閘道182之間的通信鏈路可以被定義為R6參考點。R6參考點可以包括用於便於基於與每個WTRU 102a、102b、和/或102c相關的移動事件的移動管理的協定。 如第1E圖所示,RAN 105可以被連接到核心網路109。RAN 105和核心網路109之間的通信鏈路可以被定義為例如包括用於便於資料傳輸和移動管理能力的協定的R3參考點。核心網路109可以包括移動IP本地代理(MIP-HA)184,驗證、授權、計費(AAA)服務186和閘道188。儘管每個上述元素被描述為核心網路109的一部分,但是應該理解的是這些元素中的任意一個可以被除了核心網路營運商以外的實體擁有和/或營運。 MIP-HA 可以負責IP位址管理,且可以使得WTRU 102a、102b、和/或102c在不同的ASN和/或不同的核心網路之間漫遊。MIP-HA 184可以向WTRU 102a、102b、和/或102c提供至封包交換網路(例如網際網路110)的存取,從而便於WTRU 102a、102b和/或102c和IP賦能裝置之間的通信。AAA伺服器186可以負責用戶認證和支援用戶服務。閘道188可以促進與其他網路之間的交互工作。例如,閘道188可以向WTRU 102a、102b、和/或102c提供至電路交換網路(例如PSTN 108)的存取,從而便於WTRU 102a、102b、和/或102c與傳統陸線通信裝置之間的通信。另外,閘道188可以向WTRU 102a、102b、和/或102c提供至網路112的存取,該網路112可以包含被其他服務提供商擁有和/或營運的其他有線或無線網路。 雖然在第1E圖中未示出,應該、可以和/或將理解的是RAN 105可以被連接到其他ASN且核心網路109可以被連接到其他核心網路。RAN 105和其他ASN之間的通信鏈路可以被定義為R4參考點,該R4參考點可以包括用於協調RAN 105和其他ASN之間的WTRU 102a、102b、和/或102c移動性的協定。核心網路109和其他核心網路之間的通信鏈路可以被定義為R5參考點,該R5參考點可以包括用於便於本地核心網路和受訪核心網路之間的交互工作的協定。 實施方式認識到胞元系統的當前部署會面臨由於針對高資料速率應用的增加需求引起的“頻寬危機”。為了緩解“頻寬危機”,雲無線電存取網路可以在基地台(BS)的基頻處理被移植或者整合到BS經由回載鏈路被連接到的“雲”或者網際網路中的中心單元時使用,由此簡化BS的部署和管理並減少BS能量消耗的網路MIMO的有效實現可以被啟用。在雲無線電存取網路的上鏈上,BS可以操作為將“軟”資訊中繼到與接收到的基頻信號有關的雲解碼器的終端。可能由於除其他原因外在不同BS處接收到的信號可以被相關,分散式源編碼策略可以被使用。實施方式認識到分散式源編碼性能對可以被壓縮的接收到的信號中的缺陷敏感。實施方式還認識到包括無線電存取網路部分的雲的有效操作可以包括基地台的節儉(parsimonious)使用,其中基地台能量消耗傾向於位於對針對網路的整個能量開支的相關貢獻中。 為了緩解“頻寬危機”,雲無線電存取網路可以在基地台(BS)的基頻處理被移植或者集成到BS經由回載鏈路被連接到的“雲”或者網路中的中心單元時使用,由此簡化BS的部署和管理並減少BS能量消耗的網路MIMO的有效實現可以被啟用。 在雲無線電存取網路的上鏈上,BS可以操作為將“軟”資訊中繼到與接收到的基頻信號有關的雲解碼器的終端。由於在不同BS處接收到的信號可以被相關,分散式源編碼策略可以被使用。不幸地,分散式源編碼性傾向於對被壓縮的接收到的信號中的缺陷敏感。附加地,包括無線電存取網路部分的雲的有效操作可以包括基地台的節儉使用,所述基地台能量消耗傾向於位於對針對網路的整個能量開支的相關貢獻中。 如此處所描述,針對雲無線電存取網路的上鏈用於分散式源編碼和壓縮方案的系統和/或方法(例如,其使用在不同基地台(BS)處接收到的信號之間的關聯)可以被擴展成包括排程(例如,BS排程),其中多個多天線基地台(BS)可以經由容量限制的回載鏈路被連接到中心單元(例如,如第2圖中所示的雲解碼器)。在該場景中,例如,可以減少活動基地台(BS)的數量並且因此改進或提高移動網路的能量效率。所述系統和/或方法可以包括通過將稀疏引導術語引入到目標功能的方式可以聯合執行壓縮和排程的被公式化的最佳化問題。附加地或可替換地,所述系統和/或方法可以提供被用來收斂到本地最佳化點的迭代法或演算法。 如此處所描述,提供了用於雲無線電存取網路的上鏈的分散式壓縮(例如,通過關注強健性和效率的方式在多天線BS的存在下使用分散式源編碼的壓縮),其中多個多天線基地台(BS)可以經由容量限制的回載鏈路被連接到中心單元(例如,如第2圖中所示的雲解碼器)。由於在不同BS處接收的信號可以被關聯,分散式源編碼策略可以潛在地有益並且可以經由具有邊界資訊的順序源編碼來實現。對於使用邊界資訊的壓縮,可以根據使可達到的速率最大化或使均方差最小化的標準使用可用的壓縮策略。在每種情況中,一個或者多個或者每個BS可以使用有關特定的協方差矩陣資訊來實現分散式源編碼的優點。由於除其他原因外所述協方差矩陣可以取決於對應於其他BS的通道實現,強健性壓縮方法可以被提供和/或使用,其中有關在每個BS處可用的協方差的資訊可以為,例如不完美。在一些實施方式中,該方法可以使用確定性的最壞情況方法來公式化並且可以提供和/或使用實現穩定點的方案。 根據示例實施方式,此處描述的系統和/或方法可以適用於並且使用跨L1-L2的UE、eNB、Het-Net、遠端無線電頭等等。附加地,機率質量函數(pmf)和機率密度函數(pdf)的相同符號,即p(x),表示可以使用的隨機變數X的分佈pmf或pdf。類似的符號還可以被用於聯合和條件分佈。在示例實施方式中,此處公開的方案、等式、和/或演算法可以以二為底(例如除非未指定)。附加地,給定向量x = [x 1 , x 2 .., xn]T,用於子集SЄ{1,2, ..., n}的xS可以被定義為包括以任意順序的具有i 的項ix的向量S。符號xΣ還可以被用於隨機向量x的相關矩陣,即xΣ = E[xx];xyΣ可以表示互相關矩陣xyΣ = E[xy];並且xΣ| 可以表示給定y之x的“條件”相關矩陣,即xΣ| = Σx ΣxyΣ y 1Σ xy。在一種實施方式中,符號nH 可以表示n × n赫密特 (Hermitian)矩陣集。 如此處所描述,系統模型可以被提供和/或使用。例如,包括總數 BN個BS的胞元叢集(cluster)可以被提供和/或使用(例如,如第2圖中所示),其中一個或多個或每個BS可以為MBS或HBS。 MN 個活動MS還可以被提供和/或使用。第2圖描述了具有一個或多個基地台(BS)諸如家用BS(HBS)和巨集BS(MBS)的雲無線電存取網路的上鏈的示例實施方式。在一個或多個實施方式中,BS集可以被表示為BN = {1}B, ..., N。附加地,一個或多個,或每個第i個BS可以經由容量iC的有限容量鏈路被連接到雲解碼器並且可以具有B,in個天線,而一個或多個,或每個MS可以具有M,i n個天線。此處描述的實施方式可以關於上鏈被描述或表現為示例。 將Hij定義為第j個MS和第i個BS之間的B,in×nM,j通道矩陣,向BS i之整個通道矩陣可以被描述為M×nB,in矩陣: Hi= [Hi 1 ···HiNM]                                                (1) 如果叢集中的MN 個MS為同步的,在給定時槽的離散時間通道使用(c.u.)處,由第i個BS處接收的信號可以被給定為:yi= Hix + zi.(2) 在(2)中,向量x =[x1 ···xNM ]可以為×Mn1並且 可以為在叢集中由MS傳送的符號向量(例如,特別的叢集)。雜訊向量zi可以依賴於i並且分佈為zi ~ CN(0,I),對於i Є {1, ..., NB}。在一種或多種實施方式中,雜訊協方差矩陣可以不失一般性(without loss of generality)被選擇為身份,因為接收到的信號可以被BS白化。附加地或者可替換地,通道矩陣Hi在每個時槽中為常量。 使用標準隨機編碼引數,由每個時槽中的MS使用的編碼策略可以在傳送的信號上需要和/或使用分佈p(x),所述傳送的信號可以因式分解(factorize)為(3) 這是由於由不同MS發送的信號可以為獨立的。Example embodiments are described in detail below with reference to the various drawings. While the invention has been described with respect to the specific embodiments of the invention, it is understood that Systems and methods are provided for performing and/or utilizing a joint base station scheduling and decentralized source compression scheme at a remote radio head connected to a central processor in an uplink transmission scenario. Systems and methods are provided for providing and/or utilizing a decentralized source compression scheme at a remote radio head connected to a central processor in an uplink transmission scenario. The proposed decentralized compression scheme can be used when the remote radio head has imperfect channel state information in the network. FIG. 1A depicts an illustration of an example communication system 100 in which one or more disclosed embodiments may be implemented. Communication system 100 may be a multiple access system that provides content such as voice, material, video, messaging, broadcast, etc. to multiple wireless users. Communication system 100 can enable multiple wireless users to access such content through the sharing of system resources, including wireless bandwidth. For example, communication system 100 can use one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA). Single carrier FDMA (SC-FDMA) and the like. As shown in FIG. 1A, communication system 100 can include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, and/or 102d (generally or collectively referred to as WTRU 102), Radio Access Network (RAN) 103/104/ 105, core network 106/107/109, public switched telephone network (PSTN) 108, internet 110 and other networks 112, but it will be understood that the disclosed embodiments may encompass any number of WTRUs, base stations , network, and/or network components. Each of the WTRUs 102a, 102b, 102c, and/or 102d may be any type of device configured to operate and/or communicate in wireless communication. By way of example, the WTRUs 102a, 102b, 102c, and/or 102d may be configured to transmit and/or receive wireless signals, and may include user equipment (UE), mobile stations, fixed or mobile subscriber units, pagers, mobile phones, Personal digital assistants (PDAs), smart phones, portable computers, netbooks, personal computers, wireless sensors, consumer electronics, and more. Communication system 100 can also include a base station 114a and a base station 114b. Each of the base stations 114a, 114b can be configured to have a wireless interface with at least one of the WTRUs 102a, 102b, 102c, and/or 102d to facilitate access to one or more communication networks (eg, a core network) Any type of device of 106/107/109, Internet 110 and/or network 112). For example, base stations 114a and/or 114b may be base station transceiver stations (BTSs), Node Bs, eNodeBs, home Node Bs, home eNodeBs, site controllers, access points (APs), wireless routers, and Similar device. Although base stations 114a, 114b are each depicted as a single element, it will be understood that base stations 114a, 114b may include any number of interconnected base stations and/or network elements. The base station 114a may be part of the RAN 103/104/105, which may also include other bases such as a site controller (BSC), a radio network controller (RNC), a relay node, and the like. Station and/or network elements (not shown). Base station 114a and/or base station 114b may be configured to transmit and/or receive wireless signals within a particular geographic area, which may be referred to as cells (not shown). Cells can also be divided into cell sectors. For example, a cell associated with base station 114a can be divided into three sectors. Thus, in one embodiment, base station 114a may include three transceivers, i.e., one transceiver for each sector of the cell. In another embodiment, base station 114a may use multiple input multiple output (MIMO) technology, and thus multiple transceivers for each sector of the cell may be used. The base stations 114a and/or 114b may communicate with one or more of the WTRUs 102a, 102b, 102c, and/or 102d via the null plane 115/116/117, which may be any suitable Wireless communication links (such as radio frequency (RF), microwave, infrared (IR), ultraviolet (UV), visible light, etc.). The null intermediaries 115/116/117 can be established using any suitable radio access technology (RAT). More specifically, as previously discussed, communication system 100 can be a multiple access system and can utilize one or more channel access schemes such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, base station 114a and WTRUs 102a, 102b and/or 102c in RAN 103/104/105 may implement a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may use broadband CDMA (WCDMA) is used to establish the null intermediaries 115/116/117. WCDMA may include, for example, High Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include High Speed Downlink Packet Access (HSDPA) and/or High Speed Uplink Packet Access (HSUPA). In another embodiment, base station 114a and WTRUs 102a, 102b and/or 102c may implement a radio technology such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution (LTE) and/or Or LTE-Advanced (LTE-A) to establish an empty intermediate plane 115/116/117. In other embodiments, base station 114a and WTRUs 102a, 102b and/or 102c may implement such as IEEE 802.16 (ie, Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 1x, CDMA2000 EV-DO, Temporary Standard 2000 (IS) -2000), Temporary Standard 95 (IS-95), Provisional Standard 856 (IS-856), Global System for Mobile Communications (GSM), Enhanced Data Rate GSM Evolution (EDGE), GSM EDGE (GERAN) . For example, the base station 114b in FIG. 1A can be a wireless router, a home Node B, a home eNodeB, or an access point, and any suitable RAT can be used for facilitating, for example, a company, a home, a vehicle, A local area communication connection such as a campus. In one embodiment, base station 114b and WTRUs 102c, 102d may implement a radio technology such as IEEE 802.11 to establish a wireless local area network (WLAN). In another embodiment, base station 114b and WTRUs 102c, 102d may implement a radio technology such as IEEE 802.15 to establish a wireless personal area network (WPAN). In yet another embodiment, base station 114b and WTRUs 102c, 102d may use cell-based RATs (e.g., WCDMA, CDMA2000, GSM, LTE, LTE-A, etc.) to establish picocell cells and femtocells. Yuan (femtocell). As shown in FIG. 1A, the base station 114b can have a direct connection to the Internet 110. Thus, base station 114b does not have to access Internet 110 via core network 106/107/109. The RAN 103/104/105 can communicate with a core network 106/107/109, which can be configured to provide voice, data, application, and/or voice over internet protocol (VoIP) services to Any type of network of one or more of the WTRUs 102a, 102b, 102c, and/or 102d. For example, the core network 106/107/109 can provide call control, billing services, mobile location based services, prepaid calling, internetworking, video distribution, etc., and/or perform advanced security functions such as user authentication. Although not shown in FIG. 1A, it is to be understood that the RAN 103/104/105 and/or the core network 106/107/109 may communicate directly or indirectly with other RANs, which may be used with the RAN 103/ 104/105 the same RAT or a different RAT. For example, in addition to being connected to the RAN 103/104/105, which may employ E-UTRA radio technology, the core network 106/107/109 may also be in communication with other RANs (not shown) that use GSM radio technology. The core network 106/107/109 may also serve as a gateway for the WTRUs 102a, 102b, 102c, and/or 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include a circuit switched telephone network that provides Plain Old Telephone Service (POTS). The Internet 110 may include a global system interconnecting computer networks and devices using public communication protocols such as TCP in the Transmission Control Protocol (TCP)/Internet Protocol (IP) Internet Protocol Suite. , User Datagram Protocol (UDP) and IP. Network 112 may include a wireless or wired communication network that is owned and/or operated by other service providers. For example, network 112 may include another core network connected to one or more RANs that may use the same RAT as RAN 103/104/105 or a different RAT. Some or all of the WTRUs 102a, 102b, 102c, and/or 102d in the communication system 100 may include multi-mode capabilities, ie, the WTRUs 102a, 102b, 102c, and/or 102d may be included for communication over multiple communication links Multiple transceivers that communicate with different wireless networks. For example, the WTRU 102c shown in FIG. 1A can be configured to communicate with a base station 114a that uses a cell-based radio technology and with a base station 114b that uses an IEEE 802 radio technology. FIG. 1B depicts a system block diagram of an example WTRU 102. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a numeric keypad 126, a display/touch pad 128, a non-removable memory 130, and a removable Memory 132, power supply 134, global positioning system chipset 136, and other peripheral devices 138. It is to be understood that the WTRU 102 may include any subset of the above-described elements while remaining consistent with the above embodiments. Moreover, embodiments encompass nodes represented by base stations 114a and 114b and/or base stations 114a and 114b (such as, but not limited to, transceiver stations (BTS), Node B, site controllers, access points (APs), homes Node B, evolved Home Node B (eNode B), Home Evolved Node B (HeNB), Home Evolved Node B Gateway and Proxy Node, etc. may include those described in FIG. 1B and described herein. Multiple or all of the components. The processor 118 can be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors associated with the DSP core, a controller, Microcontrollers, Dedicated Integrated Circuits (ASICs), Field Programmable Gate Array (FPGA) circuits, any other type of integrated circuit (IC), state machine, etc. Processor 118 may perform signal coding, data processing, power control, input/output processing, and/or any other functionality that enables WTRU 102 to operate in a wireless environment. The processor 118 can be coupled to a transceiver 120 that can be coupled to the transmit/receive element 122. Although processor 118 and transceiver 120 are depicted as separate components in FIG. 1B, it will be appreciated that processor 118 and transceiver 120 can be integrated together into an electronic package or wafer. Transmit/receive element 122 may be configured to transmit signals to or from a base station (e.g., base station 114a) via null intermediaries 115/116/117. For example, in one embodiment, the transmit/receive element 122 can be an antenna configured to transmit and/or receive RF signals. In another embodiment, the transmit/receive element 122 may be a transmitter/detector configured to transmit and/or receive, for example, IR, UV, or visible light signals. In yet another embodiment, the transmit/receive element 122 can be configured to transmit and receive both RF signals and optical signals. It is to be understood that the transmit/receive element 122 can be configured to transmit and/or receive any combination of wireless signals. Moreover, although the transmit/receive element 122 is depicted as a single element in FIG. 1B, the WTRU 102 may include any number of transmit/receive elements 122. More specifically, the WTRU 102 may use MIMO technology. Thus, in one embodiment, the WTRU 102 may include two or more transmit/receive elements 122 (e.g., multiple antennas) for transmitting and receiving wireless signals through the null intermediaries 115/116/117. The transceiver 120 can be configured to modulate a signal to be transmitted by the transmit/receive element 122 and configured to demodulate a signal received by the transmit/receive element 122. As noted above, the WTRU 102 may have multi-mode capabilities. Thus, the transceiver 120 can include multiple transceivers for enabling the WTRU 102 to communicate via multiple RATs, such as UTRA and IEEE 802.11. The processor 118 of the WTRU 102 may be coupled to a speaker/microphone 124, a numeric keypad 126, and/or a display/touch pad 128 (eg, a liquid crystal display (LCD) unit or an organic light emitting diode (OLED) display unit), and may User input data is received from the above device. Processor 118 may also output data to speaker/microphone 124, numeric keypad 126, and/or display/touchpad 128. In addition, processor 118 can access information from any type of suitable memory and store data to any type of suitable memory, such as non-removable memory 130 and/or removable. Memory 132. Non-removable memory 130 may include random access memory (RAM), readable memory (ROM), hard disk, or any other type of memory storage device. The removable memory 132 can include a Subscriber Identity Module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, the processor 118 can access data from memory that is not physically located on the WTRU 102 and located on a server or home computer (not shown), and store the data in the memory. The processor 118 can receive power from the power source 134 and can be configured to distribute power to other components in the WTRU 102 and/or to control power to other elements in the WTRU 102. Power source 134 can be any device suitable for powering WTRU 102. For example, the power source 134 may include one or more dry cells (nickel cadmium (NiCd), nickel zinc (NiZn), nickel hydrogen (NiMH), lithium ion (Li-ion), etc.), solar cells, fuel cells, and the like. The processor 118 may also be coupled to a GPS chipset 136 that may be configured to provide location information (eg, longitude and latitude) regarding the current location of the WTRU 102. The WTRU may receive location information from the base station (e.g., base station 114a, 114b) plus or in place of GPS chipset 136 information through null intermediaries 115/116/117, and/or based on two or more neighboring base stations The timing of the received signal determines its position. It is to be understood that the WTRU 102 can obtain location information by any suitable location determination method while consistent with the embodiments. The processor 118 can also be coupled to other peripheral devices 138, which can include one or more software and/or hardware modules that provide additional features, functionality, and/or wireless or wired connections. For example, peripheral device 138 may include an accelerometer, an electronic compass (e-compass), a satellite transceiver, a digital camera (for photo or video), a universal serial bus (USB) port, a vibrating device, a television transceiver, and With headphones, Bluetooth R module, FM radio unit, digital music player, media player, video game player module, Internet browser and so on. FIG. 1C depicts a system block diagram of RAN 103 and core network 106 in accordance with an embodiment. As described above, the RAN 103 can communicate with the WTRUs 102a, 102b, and/or 102c over the null plane 115 using UTRA radio technology. The RAN 103 can also communicate with the core network 106. As shown in FIG. 1C, the RAN 103 may include Node Bs 140a, 140b, and/or 140c, wherein each of the Node Bs 140a, 140b, and/or 140c may include one or more transceivers that pass through the null plane 115 To communicate with the WTRUs 102a, 102b, and/or 102c. Each of Node Bs 140a, 140b, and/or 140c may be associated with a special unit (not shown) within the scope of RAN 103. The RAN 103 may also include RNCs 142a and/or 142b. It should be understood that the RAN 103 may include any number of Node Bs and RNCs while still being consistent with the implementation. As shown in FIG. 1C, Node Bs 140a and/or 140b can communicate with RNC 142a. Additionally, Node B 140c can communicate with RNC 142b. Node Bs 140a, 140b, and/or 140c can communicate with corresponding RNCs 142a, 142b via the Iub interface. The RNCs 142a, 142b can communicate with each other through the Iur interface. The RNCs 142a, 142b can be configured to control respective Node Bs 140a, 140b, and/or 140c to which they are connected, respectively. In addition, the RNCs 142a, 142b can be configured to implement or support other functions, such as outer loop power control, load control, admission control, packet scheduling, handover control, macro diversity, security functions, data encryption, and the like, respectively. The core network 106 shown in FIG. 1C may include a media gateway (MGW) 144, a mobile switching center (MSC) 146, a Serving GPRS Support Node (SGSN) 148, and/or a Gateway GPRS Support Node (GGSN) 150. . While each of the above elements is described as being part of the core network 106, it should be understood that any of these elements may be owned and/or operated by entities other than the core network operator. The RNC 142a in the RAN 103 can be connected to the MSC 146 in the core network 106 via the IuCS interface. The MSC 146 can be connected to the MGW 144. MSC 146 and MGW 144 may provide WTRUs 102a, 102b, and/or 102c with access to a circuit-switched network (e.g., PSTN 108) to facilitate communication between WTRUs 102a, 102b, and/or 102c and conventional landline communication devices. Communication. The RNC 142a in the RAN 103 can also be connected to the SGSN 148 in the core network 106 via the IuPS interface. The SGSN 148 can be connected to the GGSN 150. SGSN 148 and GGSN 150 may provide WTRUs 102a, 102b, and/or 102c with access to a packet switched network (e.g., Internet 110) to facilitate communication between WTRUs 102a, 102b, and/or 102c and IP-enabled devices. Communication. As noted above, the core network 106 can also be connected to other networks 112, which can include other wired or wireless networks that are owned and/or operated by other service providers. FIG. 1D depicts a system diagram of RAN 104 and core network 107 in accordance with an embodiment. As described above, the RAN 104 can communicate with the WTRUs 102a, 102b, and/or 102c over the null plane 116 using E-UTRA radio technology. The RAN 104 can also communicate with the core network 107. The RAN 104 may include eNodeBs 160a, 160b, and/or 160c, although it should be understood that the RAN 104 may include any number of eNodeBs while still being consistent with the embodiments. The eNodeBs 160a, 160b, and/or 160c may each include one or more transceivers that communicate with the WTRUs 102a, 102b, and/or 102c over the null plane 116. In an embodiment, the eNodeBs 160a, 160b, and/or 160c may use MIMO technology. Thus, for example, the eNodeB 160a can use multiple antennas to transmit wireless signals to and receive wireless information from the WTRU 102a. Each of the eNodeBs 160a, 160b, and/or 160c may be associated with a particular unit (not shown) and may be configured to process radio resource management decisions, handover decisions, users in the uplink and/or downlink schedule. As shown in FIG. 1D, the eNodeBs 160a, 160b, and/or 160c can communicate with each other through the X2 interface. The core network 107 shown in FIG. 1D may include a mobility management gateway (MME) 162, a service gateway 164, and a packet data network (PDN) gateway 166. While each of the above elements is described as being part of core network 107, it should be understood that any of these elements may be owned and/or operated by entities other than the core network operator. The MME 162 may be connected to each of the eNodeBs 160a, 160b, and/or 160c in the RAN 104 via the S1 interface and may act as a control node. For example, MME 162 may be responsible for authenticating users of WTRUs 102a, 102b, and/or 102c, bearer activation/deactivation, selecting a particular service gateway during initial connection of WTRUs 102a, 102b, and/or 102c, and the like. The MME 162 may also provide control plane functionality for the exchange between the RAN 104 and a RAN (not shown) that uses other radio technologies, such as GSM or WCDMA. Service gateway 164 may be connected to each of eNodeBs 160a, 160b, and/or 160c in RAN 104 via an S1 interface. The service gateway 164 can typically route and forward user data packets to the WTRUs 102a, 102b, and/or 102c, or route and forward user data packets from the WTRUs 102a, 102b, and/or 102c. The service gateway 164 may also perform other functions, such as anchoring the user plane during inter-eNode B handover, triggering paging when the downlink data is available to the WTRUs 102a, 102b, and/or 102c, for the WTRUs 102a, 102b, and/or 102c Manage and store contexts and more. Service gateway 164 may also be coupled to PDN gateway 166, which may provide WTRUs 102a, 102b, and/or 102c with access to a packet switched network (e.g., Internet 110) to facilitate WTRU 102a. Communication between 102b, and/or 102c and the IP-enabled device. The core network 107 can facilitate communication with other networks. For example, core network 107 may provide WTRUs 102a, 102b, and/or 102c with access to a circuit-switched network (e.g., PSTN 108) to facilitate WTRUs 102a, 102b, and/or 102c and conventional landline communication devices. Communication between. For example, core network 107 may include, or may communicate with, an IP gateway (eg, an IP Multimedia Subsystem (IMS) service) that interfaces between core network 107 and PSTN 108. In addition, core network 107 may provide access to WTRUs 102a, 102b, and/or 102c to network 112, which may include other wired or wireless networks that are owned and/or operated by other service providers. FIG. 1E depicts a system diagram of RAN 105 and core network 109 in accordance with an embodiment. The RAN 105 can communicate with the WTRUs 102a, 102b, and/or 102c over the null plane 117 using IEEE 802.16 radio technology. As will be discussed further below, the communication links between the different functional entities of the WTRUs 102a, 102b, and/or 102c, the RAN 105, and the core network 109 may be defined as reference points. As shown in FIG. 1E, the RAN 105 may include base stations 180a, 180b, and/or 180c and ASN gateway 182, although it should be understood that the RAN 105 may include any number of base stations and ASN gateways while still with implementations. be consistent. Base stations 180a, 180b, and/or 180c are associated with special units (not shown) in RAN 105, respectively, and may include one or more transceivers, respectively, that communicate with WTRUs 102a, 102b via null intermediaries 117. And/or 102c communicate. In one embodiment, base stations 180a, 180b, and/or 180c may use MIMO technology. Thus, for example, base station 180a can use multiple antennas to transmit wireless signals to, and receive wireless information from, WTRU 102a. Base stations 180a, 180b, and/or 180c may also provide mobility management functions such as handover triggering, tunnel establishment, radio resource management, traffic classification, quality of service (QoS) policy enforcement, and the like. The ASN gateway 182 can act as a traffic aggregation point and can be responsible for paging, caching, routing to the core network 109 of the user profile, and the like. The null interfacing plane 117 between the WTRUs 102a, 102b, and/or 102c and the RAN 105 may be defined as an Rl reference point that implements the IEEE 802.16 specification. In addition, each of the WTRUs 102a, 102b, and/or 102c can establish a logical interface (not shown) with the core network 109. The logical interface between the WTRUs 102a, 102b, and/or 102c and the core network 109 can be defined as an R2 reference point that can be used for authentication, authorization, IP host configuration management, and/or mobility management. The communication link between each of the base stations 180a, 180b, and/or 180c may be defined to include an agreed R8 reference point for facilitating data transfer between the WTRU and the base station. The communication link between the base stations 180a, 180b, 180c and the ASN gateway 182 can be defined as an R6 reference point. The R6 reference point may include an agreement for facilitating mobility management based on mobile events associated with each of the WTRUs 102a, 102b, and/or 102c. As shown in FIG. 1E, the RAN 105 can be connected to the core network 109. The communication link between the RAN 105 and the core network 109 can be defined, for example, as an R3 reference point that includes protocols for facilitating data transfer and mobility management capabilities. Core network 109 may include a Mobile IP Home Agent (MIP-HA) 184, Authentication, Authorization, Accounting (AAA) service 186, and gateway 188. While each of the above elements is described as being part of the core network 109, it should be understood that any of these elements may be owned and/or operated by entities other than the core network operator. The MIP-HA may be responsible for IP address management and may cause the WTRUs 102a, 102b, and/or 102c to roam between different ASNs and/or different core networks. The MIP-HA 184 may provide the WTRUs 102a, 102b, and/or 102c with access to a packet switched network (e.g., the Internet 110) to facilitate communication between the WTRUs 102a, 102b, and/or 102c and the IP enabling device. Communication. The AAA server 186 can be responsible for user authentication and support for user services. Gateway 188 can facilitate interaction with other networks. For example, gateway 188 can provide WTRUs 102a, 102b, and/or 102c with access to a circuit-switched network (e.g., PSTN 108) to facilitate communication between WTRUs 102a, 102b, and/or 102c and conventional landline communication devices. Communication. In addition, gateway 188 can provide access to network 112 to WTRUs 102a, 102b, and/or 102c, which can include other wired or wireless networks that are owned and/or operated by other service providers. Although not shown in FIG. 1E, it should be, can and/or will be understood that the RAN 105 can be connected to other ASNs and the core network 109 can be connected to other core networks. The communication link between the RAN 105 and other ASNs may be defined as an R4 reference point, which may include protocols for coordinating the mobility of the WTRUs 102a, 102b, and/or 102c between the RAN 105 and other ASNs. The communication link between core network 109 and other core networks may be defined as an R5 reference point, which may include protocols for facilitating interworking between the local core network and the visited core network. Embodiments recognize that current deployments of cell systems face "bandwidth crises" due to increased demand for high data rate applications. In order to alleviate the "bandwidth crisis", the cloud radio access network can be ported at the base station (BS) baseband processing or integrated into the "cloud" or the center of the Internet to which the BS is connected via the backhaul link. An efficient implementation of network MIMO, which is used when the unit is used, thereby simplifying the deployment and management of the BS and reducing BS energy consumption, can be enabled. On the uplink of the cloud radio access network, the BS can operate to relay "soft" information to the terminals of the cloud decoder associated with the received baseband signal. It may be that the signals received at different BSs may be correlated for other reasons, and a decentralized source coding strategy may be used. Embodiments recognize that decentralized source coding performance is sensitive to defects in received signals that can be compressed. Embodiments also recognize that efficient operation of a cloud including a portion of a radio access network may include parsimonious use of the base station, where base station energy consumption tends to be in a related contribution to the overall energy expenditure for the network. In order to alleviate the "bandwidth crisis", the cloud radio access network can be ported at the base station (BS) baseband processing or integrated into the "cloud" or the central unit in the network to which the BS is connected via the backhaul link. An efficient implementation of network MIMO, which is used to simplify deployment and management of the BS and reduce BS energy consumption, can be enabled. On the uplink of the cloud radio access network, the BS can operate to relay "soft" information to the terminals of the cloud decoder associated with the received baseband signal. Since signals received at different BSs can be correlated, a decentralized source coding strategy can be used. Unfortunately, decentralized source codeability tends to be sensitive to defects in the compressed received signal. Additionally, efficient operation of the cloud including the portion of the radio access network may include thrift use of the base station, which tends to be in a related contribution to the overall energy expenditure for the network. As described herein, systems and/or methods for distributed source coding and compression schemes for uplinks of cloud radio access networks (eg, which use associations between signals received at different base stations (BSs) Can be extended to include scheduling (eg, BS scheduling) in which multiple multi-antenna base stations (BSs) can be connected to the central unit via a capacity-limited back-load link (eg, as shown in FIG. 2) Cloud decoder). In this scenario, for example, the number of active base stations (BSs) can be reduced and thus the energy efficiency of the mobile network can be improved or improved. The system and/or method may include jointly performing the optimized optimization problem of compression and scheduling by introducing sparse boot terminology into the target function. Additionally or alternatively, the system and/or method may provide an iterative method or algorithm that is used to converge to a local optimization point. As described herein, distributed compression for uplinks of cloud radio access networks is provided (eg, using decentralized source encoded compression in the presence of multi-antenna BSs in a manner that focuses on robustness and efficiency), where many Multiple multi-antenna base stations (BSs) may be connected to the central unit via a capacity limited backhaul link (eg, a cloud decoder as shown in FIG. 2). Since signals received at different BSs can be correlated, a decentralized source coding strategy can potentially be beneficial and can be implemented via sequential source coding with boundary information. For compression using boundary information, the available compression strategy can be used based on criteria that maximize the achievable rate or minimize the mean square error. In each case, one or more or each BS may use the information about the particular covariance matrix to achieve the advantages of decentralized source coding. Since the covariance matrix may be implemented, among other reasons, depending on the channel corresponding to other BSs, a robust compression method may be provided and/or used, wherein the information about the covariance available at each BS may be, for example, not perfect. In some embodiments, the method can be formulated using a deterministic worst case approach and a scheme to achieve a stable point can be provided and/or used. According to example embodiments, the systems and/or methods described herein may be applicable to and use UEs, eNBs, Het-Nets, remote radio heads, etc., across L1-L2. Additionally, the same symbol of the probability mass function (pmf) and the probability density function (pdf), iep(x), indicating the distribution pmf or pdf of the random variable X that can be used. Similar symbols can also be used for union and conditional distribution. In example embodiments, the schemes, equations, and/or algorithms disclosed herein may be based on two (eg, unless otherwise specified). Additionally, given vector x = [x 1 , x 2 .., xn]TFor subsetsSЄ{1,2, ..., n}xSCan be defined to include items with i in any orderiThe vector S of x. symbolxΣ can also be used for the correlation matrix of the random vector x, iexΣ = E[xx];XyΣ can represent the cross-correlation matrixXyΣ = E[xy];andxΣ| Can represent the "conditional" correlation matrix for a given y x, iexΣ| = Σx ΣXyΣ y 1Σ Xy. In one embodiment, the symbolnH can representn × nHermitian matrix set. System models can be provided and/or used as described herein. For example, including the total B NA cell cluster of BSs may be provided and/or used (e.g., as shown in FIG. 2), wherein one or more or each BS may be an MBS or an HBS. M N ActivitiesMSIt can also be provided and/or used. Figure 2 depicts an example implementation of a cloud with a cloud radio access network of one or more base stations (BS) such as Home BS (HBS) and Macro BS (MBS). In one or more embodiments, the set of BSs can be represented asBN = {1}B, ..., N. Additionally, one or more, or each ith BS can pass capacityiC's limited capacity link is connected to the cloud decoder and can haveB,in antennas, and one or more, or each MS may haveM, i n antennas. The embodiments described herein may be described or represented as examples with respect to the winding. Will HIjDefined as between the jth MS and the ith BSB,in×nM,jThe channel matrix, the entire channel matrix to BS i can be described asM×nB,in matrix: Hi= [Hi 1 ···HiNM] (1) If clusteredMThe N MSs are synchronized, and at the discrete time channel (c.u.) of the given slot, the signal received by the i-th BS can be given as:yi= Hix + zi.(2) In (2), the vector x = [x1 ···xNM ]Can be ×MN1 and may be a symbol vector (e.g., a special cluster) transmitted by the MS in the cluster. Noise vector ziCan depend on i and be distributed as zi ~ CN(0,I), fori Є {1, ..., NB}. In one or more embodiments, the noise covariance matrix can be selected as an identity without loss of generality because the received signal can be whitened by the BS. Additionally or alternatively, the channel matrix HiConstant in each time slot. Using standard random coding arguments, the coding strategy used by the MS in each time slot can be used and/or used on the transmitted signal.p(x), the transmitted signal can be factorized into(3) This is because signals transmitted by different MSs can be independent.

根據示例實施方式,分佈可以表示(例如,以簡潔的方式)所採用的調變和通道編碼方案的參數,諸如星座圖(constellation)、發射功率、波束形成以及(vs.)空時編碼、碼本之間的距離等等。信號x可以為離散的(例如,從離散星座圖中採取的)。例如,如果信號被傳送,信號可以從由表示的星座圖中得到離散值。當特別的(例如,好的)通道編碼被使用,諸如turbo碼或者低密度奇偶校驗(LDPC)碼,如果通信發生在高斯通道上時,分佈可以接近高斯分佈。在實施方式中,由第i個MS傳送的信號分佈可以針對給定協方差矩陣被給定為According to an example embodiment, distribution The parameters of the modulation and channel coding scheme employed, such as constellation, transmit power, beamforming, and (vs.) space-time coding, distance between codebooks, etc., may be represented (eg, in a concise manner) Wait. Signal x can be discrete (eg, taken from a discrete constellation). For example, if Signal is transmitted, signal Can be Expressed Discrete values are obtained in the constellation diagram. When special (eg, good) channel coding is used, such as turbo code or low density parity check (LDPC) code, if communication occurs on a Gaussian channel, the distribution Can be close to the Gaussian distribution. In an embodiment, the signal distribution transmitted by the ith MS Can be for a given covariance matrix Given .

BS可以通過諸如向雲提供從接收到的信號中推導的軟資訊的方式與所述雲進行通信。在一種或多種實施方式中,MS可以提供、使用和/或利用壓縮策略,所述壓縮策略不涉及知道一個或者多個碼本諸如星座圖集、MCS等級等之類的BS。使用常規速率失真理論,針對第i個BS的壓縮策略可以由測試通道提供和/或定義,所述測試通道描述了待壓縮信號即yi,以及其將被傳遞給雲的描述之間的關係。The BS can communicate with the cloud by, for example, providing the cloud with soft information derived from the received signal. In one or more embodiments, the MS can provide, use, and/or utilize a compression policy that does not involve knowing one or more codebooks such as constellation atlas, MCS level, and the like. Using conventional rate-distortion theory, the compression strategy for the ith BS can be tested by the channel Providing and/or defining, the test channel Describes the signal to be compressed, y i , and the description it will be passed to the cloud The relationship between.

如此處所描述(例如,在引理(lemma)2中),每個BSi可以將線性變換應用到接收到的信號(例如,第一)並且之後可以執行對線性變換輸出的分量形式量化以獲得預先定義的量化碼本中的點。BSi之後可以經由容量的回載鏈路發送與碼本中的生成點關聯的索引至雲解碼器。量化效應可以根據實施方式通過增加高斯雜訊的方式來被等效地模式化。此外,因為分量形式量化可以被提供和/或使用,所述雜訊的相關矩陣可以為單位矩陣。量化碼本的精度可以通過調節線性變換矩陣來控制。根據示例實施方式,矩陣可以包括,其中單一矩陣U可以扮演生成條件不相關輸出元素(例如,也稱作條件的KLT)的作用並且每個壓縮輸出元素的精度可以通過對角矩陣來控制,這意味著如果,則第個元素可以以比第m個元素更好的精度進行壓縮。根據實施方式,該壓縮可以限制於每個接收到的符號比特。由此,量化碼本的大小可以滿足。所述雲可以根據針對的描述聯合地對MS的信號x進行解碼。從標準信號-理論考慮,可實現的總速率可以被給定為:As described herein (eg, in lemma 2), each BSi can be linearly transformed Applied to the received signal (for example, first) and then can perform a linear transformation output Component form quantization to obtain a predefined quantized codebook The point in the middle. After BSi can pass capacity Return link transmission and codebook Generate an index associated with the point to the cloud decoder. Quantization effects can be increased by adding Gaussian noise according to the implementation The way to be equivalently patterned. Furthermore, because component form quantization can be provided and/or used, the correlation matrix of the noise can be an identity matrix. The accuracy of the quantized codebook can be adjusted by adjusting the linear transformation matrix To control. According to an example embodiment, a matrix Can include , where a single matrix U can act as a conditional uncorrelated output element (eg, also known as a conditional KLT) and the precision of each compressed output element can pass through a diagonal matrix To control, which means if , then Elements can be compressed with better precision than the mth element. According to an embodiment, the compression can be limited to each received symbol Bit. Thereby, the size of the quantized codebook can be satisfied . The cloud can be targeted description of The signal x of the MS is jointly decoded. From standard signal-theoretical considerations, the total achievable rate can be given as:

一旦針對的線性變換矩陣可以被確定,總速率度量(例如,相互資訊)之後可以系統參數為函數而被計算,所述系統參數例如為SNR、輸入分佈和/或通道矩陣以及(可能在一些實施方式中)線性變換矩陣, 。從生成的總速率中,可以確定由MS採用的碼本大小(例如,可能假定在一個或者多個實施方式中的雲解碼器處的連續解碼)。Once targeted Linear transformation matrix Can be determined, total rate metrics (eg, mutual information) The system parameters can then be calculated as functions, such as SNR, input distribution And/or channel matrix And (possibly in some embodiments) a linear transformation matrix, . From the total rate generated, the codebook size employed by the MS can be determined (e.g., it can be assumed that continuous decoding at the cloud decoder in one or more embodiments).

由於由不同BS測量的信號可以被關聯,分散式源編碼方案或技術具有潛力來改進描述的品質。具體來說,若給定壓縮測試通道,如果或者當容量Ci滿足以下條件時,描述可以在雲處恢復。Due to signals measured by different BSs Can be correlated, decentralized source coding schemes or techniques have the potential to improve description Quality. Specifically, if a compression test channel is given , if or when the capacity C i satisfies the following conditions, the description Can be restored in the cloud.

其中根據示例實施方式,ys可以包括具有並且類似地針對以及的每個y iamong them According to an example embodiment, y s may include And similarly targeted as well as Each y i .

其中最佳化可以受限於(6)並且最佳化空間可以包括BS排列(permutation)π。在一些實施方式中,問題(7)仍然複雜。對於該場景中,演算法1中的貪婪方法可以被使用或被應用到排列π的選擇上,同時使所述貪婪方法或演算法的一棝或多個或每個階段處的測試通道最最佳化。所述貪婪演算法可以基於針對相互資訊的鏈式規則,所述相互資訊可以使得或允許總速率(4)針對集合{1,...,NB}的排列π而被表述為:The optimization may be limited to (6) and the optimization space may include a BS permutation π. In some embodiments, question (7) is still complicated. For this scenario, the greedy method in Algorithm 1 can be used or applied to the selection of the arrangement π while making the test channel at one or more or each stage of the greedy method or algorithm Most optimized. The greedy algorithm may be based on a chained rule for mutual information that may cause or allow the total rate (4) to be expressed for the permutation π of the set {1, . . . , NB} as:

。因為此演算法,排列可以被獲得並且是可行的測試通道(例如,從滿足限制(5)的意義上)。在一種或多種實施方式中,在演算法1中基於(9)的壓縮可以被稱作,例如最大速率壓縮。 . Because of this algorithm, the arrangement Can be obtained and is a viable test channel (for example, from the sense that the limit (5) is satisfied). In one or more embodiments, the compression based on (9) in Algorithm 1 can be referred to as, for example, maximum rate compression.

演算法1中的貪婪演算法的實施可以解決針對給定順序π的一個或多個、或每個第i個BS的問題(9)。此外,問題(9)可以在雲解碼器處解決,其中所述雲解碼器之後將該結果傳送至第i個BS。如此處所描述,在一些實施方式中,雲中心可以知道通道矩陣Hi,i=1,...,NB。可替換地或附加地,一旦順序π可以被雲確定,在一個或多個、或每個第i個BS處問題(9)可以被解決。在一些實施方式中,所述雲可以傳送一些資訊至例如此處所描述的一個或多個、或每個BS。The implementation of the greedy algorithm in Algorithm 1 can solve the problem (9) for one or more, or each ith, BS for a given order π. Furthermore, the problem (9) can be solved at the cloud decoder, where the cloud decoder then transmits the result to the ith BS. As described herein, in some embodiments, the cloud center can know the channel matrix H i , i=1, . . . , N B . Alternatively or additionally, once the order π can be determined by the cloud, the problem (9) can be resolved at one or more, or each ith BS. In some embodiments, the cloud can transmit some information to, for example, one or more, or each BS, as described herein.

在一種或多種實施方式中,如此處所描述最大速率或最大化後的總速率可以被壓縮。在假定雲解碼器具有邊界資訊下,可以提供針對在第i個BS處最佳化壓縮測試通道的問題(9)的方案。涉及在問題(9)的隨機向量可以滿足馬可夫鏈(Markov chain)In one or more embodiments, the maximum rate or maximized total rate as described herein can be compressed. Assume that the cloud decoder has boundary information And Next, it is possible to provide an optimized compression test channel for the i-th BS. Problem (9) of the program. The random vector involved in question (9) can satisfy the Markov chain. .

針對排序(ordering)π以及測試通道選擇的演算法1或貪婪方法可以在以下提供或定義。首先,集合S可以被初始化為空集,即。之後,對於j=1,...,NB,以下可以被執行。For ordering π and test channels The chosen algorithm 1 or greedy method can be provided or defined below. First, the set S can be initialized to an empty set, ie . Thereafter, for j =1, . . . , N B , the following can be performed.

之一個或多個、或每個第i個BS可以通過解決以下問題的方式評估通道 One or more, or each ith BS, can evaluate the channel by solving the following problems

在一種或多種實施方式中,該問題的最優值可以被表示為且最佳化的測試通道被表示為。之後,具有最大最佳化值的可以被選擇為並且被添加到集合S諸如以及集合π*(j)=i中。In one or more embodiments, the optimal value of the problem can be expressed as And the optimized test channel is represented as . After that, with the maximum optimization value Can be selected as And added to the collection S such as And the set π *( j )= i .

在一種或多種實施方式中,可以提供和/或使用基於MMSE壓縮的壓縮技術和/或方案,例如,基於高斯輸入向量x,針對問題(9)的最佳化的測試通道可以由在以下引理(例如,引理2)中提到的高斯分佈給出。對於高斯分佈x,最佳化的測試通道可以被描述為:In one or more embodiments, compression techniques and/or schemes based on MMSE compression may be provided and/or used, for example, based on a Gaussian input vector x , an optimized test channel for problem (9) It can be given by the Gaussian distribution mentioned in the following lemma (for example, Lemma 2). Optimized test channel for Gaussian distribution x Can be described as:

其中Ai為待計算的矩陣並且q i ~CN(O , I)可以為壓縮雜訊,其中所述壓縮雜訊獨立於xz i 。而且,定義,問題(9)可以被重新闡述為Where A i is a matrix to be calculated and q i ~CN ( O , I ) may be compressed noise, wherein the compressed noise is independent of x and z i . And, define Problem (9) can be re-expressed as

其中函數可以被定義為:Where the function Can be defined as:

以及as well as

在一種或多種實施方式中,In one or more embodiments, And .

使用壓縮模型(10),在貪婪演算法中的第i個階段,對於雲解碼器可用的邊界資訊可以被給定為:Using the compression model (10), the boundary information available to the cloud decoder in the ith phase of the greedy algorithm Can be given as:

其中j=1,,i-1。among them , j =1 , ... , i -1.

在一種或多種實施方式中,可以提供和/或使用最小均方誤差(MMSE)壓縮。例如,可以提供和/或使用針對問題(9)的基於MSE的方法。具體地,提供目的在於使MSE最小化的技術或最小MSE(MMSE)技術。在一些實施方式中,MMSE技術可以在最佳化測試通道(並且可能僅在一些實施方式中)的準則方面區別於最大速率壓縮。由此,演算法1中的貪婪演算法可以使用MMSE壓縮進行操作並且與最大速率的不同點存在於問題(9)可以使用以此處描述的MMSE準則的問題來替換的事實。In one or more embodiments, minimum mean square error (MMSE) compression may be provided and/or used. For example, an MSE-based approach to question (9) can be provided and/or used. In particular, techniques or minimum MSE (MMSE) techniques aimed at minimizing MSE are provided. In some embodiments, the MMSE technique can be distinguished from maximum rate compression in terms of criteria that optimize the test channel (and possibly only in some embodiments). Thus, the greedy algorithm in Algorithm 1 can operate using MMSE compression and the difference from the maximum rate exists in the fact that the problem (9) can be replaced with the problem of the MMSE criteria described herein.

在一種或多種實施方式中,可以提供和/或使用無邊界資訊(NSI)的直接MMSE。例如,在一些場景中,壓縮可以通過使接收到的信號上的MSE最小化並且忽略所述雲解碼器可以具有邊界資訊的事實的目的來實現或執行。這可以產生以下壓縮準則:In one or more embodiments, direct MMSE can be provided and/or used with Borderless Information (NSI). For example, in some scenarios, compression can be done by making the received signal The MSE on it is minimized and ignores that the cloud decoder can have boundary information The purpose of the facts is to achieve or execute. This can produce the following compression criteria:

其中g(.)可以為函數,諸如在解碼器邊界處受影響的MMSE估計。在一種或多種實施方式中,問題(17)中的限制可以涉及不以為條件的相互資訊,因為在所述雲處的邊界資訊可以不被利用(leverage)。Where g (.) can be a function, such as an MMSE estimate that is affected at the decoder boundary. In one or more embodiments, the limitation in question (17) may involve The mutual information of the condition, because the boundary information at the cloud may not be leveraged.

在一種或多種實施方式中,可以提供和/或使用無邊界資訊(NSI)的問接MMSE。例如,通過考慮所述雲可能對恢復x而不是y i 感興趣的事實可以獲得壓縮(例如,潛在更好的壓縮),並且因此使用MMSE準則:In one or more embodiments, a Borderless Information (NSI) MMSE can be provided and/or used. For example, by considering the fact that the recovery of the clouds may not x y i compression of interest can be obtained (e.g., potentially better compression), and thus using the MMSE criterion:

其中函數g(.)可以具有與之前描述的相同的解釋。該策略可以為“間接”的MMSE,因為其壓縮y i 但以提供x描述為目標,其中所述x描述可能不在BS處直接地測量。Where the function g (.) can have the same interpretation as previously described. The policy may be "indirect" the MMSE, but because it is compressed to provide x y i is described as a target, wherein the x-described may not be measured directly at the BS.

通過利用所述邊界資訊,可以獲得以上討論的直接和/或間接MMSE策略的改進版本,其中所述邊界資訊諸如可以在雲解碼器處可用。邊界資訊可以被用於各種目的諸如,為了減小從的壓縮速率和/或在雲解碼器處以描述和邊界資訊兩者為函數而獲取最後估計。By utilizing the boundary information An improved version of the direct and/or indirect MMSE strategy discussed above may be obtained, wherein the boundary information Such as can be available at the cloud decoder. Boundary information Can be used for various purposes such as, in order to reduce to Compression rate and / or description at the cloud decoder And border information Both are functions And get the final estimate.

在一種或多種實施方式中,可以提供和/或使用具有邊界資訊(SI)的直接MMSE。例如,利用邊界資訊的直接MMSE方法可以產生準則:In one or more embodiments, a direct MMSE with boundary information (SI) can be provided and/or used. For example, a direct MMSE method using boundary information can generate criteria:

可替換地或附加地,可以提供和/或使用具有邊界資訊(SI)的間接MMSE。例如,間接MMSE方法可以產生準則:Alternatively or additionally, an indirect MMSE with boundary information (SI) may be provided and/or used. For example, the indirect MMSE method can produce guidelines:

例如,在命題(例如,命題2)中,針對以上列出的MMSE標準的最佳化壓縮可以使用Ai給出如(10),由此For example, in the proposition (e.g., Proposition 2), the MMSE-optimized compression standards listed above may be used as given by A i (10), whereby And

其中針對直接方法且針對間接方法(其中)且。矩陣U的行數可以為分別針對NSI和SI情況的協方差矩陣的特徵向量,對應於排序後的特徵值 among them For direct methods and For indirect methods (where ) and . The number of rows of the matrix U can be a covariance matrix for the case of NSI and SI, respectively. with Feature vector corresponding to the sorted feature value And

其中μ可以為由此滿足的條件Where μ can be the condition thus satisfied .

在實施方式中,命題(例如,命題2)的論據和/或對該命題的支持可以遵循條件性的KLT結果。In an embodiment, the argument of the proposition (eg, Proposition 2) and/or support for the proposition may follow a conditional KLT result.

在此處描述的一種或多種實施方式中,可以提供和/或使用強健性最佳化壓縮。例如,如以上所描述,在第i個BS處問題(9)的方案引起的最佳化壓縮可以取決於傳送信號的向量的(13)中的協方差矩陣,其中所述傳送信號的向量可以以由在集合S中的BS接收的信號的壓縮版本為條件。可以在雲解碼器處可用。通常,假定矩陣在第i個BS處為已知(例如,非常瞭解)是實際的,因為其取決於集合S中的所有BS的通道矩陣(例如,如(13)中所示)。由此,通過假定第i個BS具有關聯到實際矩陣的矩陣估計的方式提供和/或使用最佳化問題(9)的強健版本,因為In one or more embodiments described herein, robustness optimization compression can be provided and/or used. For example, as described above, the optimal compression caused by the scheme of problem (9) at the ith BS may depend on the covariance matrix in (13) of the vector of the transmitted signal. Where the vector of transmitted signals may be in a compressed version of the signal received by the BS in set S As a condition. Can be used at the cloud decoder. Usually, assuming a matrix Known (e.g., very well understood) at the ith BS is practical because it depends on the channel matrix of all BSs in set S (e.g., as shown in (13)). Thus, by assuming that the ith BS has an association to the actual matrix Matrix Estimated way to provide and/or use a robust version of the optimization problem (9) because

其中可以為對估計誤差建立模型的確定性的赫密特矩陣。根據實施方式,誤差矩陣屬於(例如,被稱作屬於)集合,所述集合對與矩陣有關的第i個BS處的非確定性建立模型。among them A deterministic Hermitian matrix that models the estimation error can be built. Error matrix according to an embodiment Belong to (for example, referred to as belonging to) collection , the set pair and matrix The non-deterministic establishment model at the relevant i-th BS.

在一些實施方式中,除其他原因外,可能為了定義非確定性集合,一個或多個約束(bound)可以被施加到矩陣的特徵值和/或特徵向量的給定測量上。根據(11)中的相互資訊可以被表達為 的觀測,其中,且,所述不確定性在的特徵值上是被約束的。In some embodiments, it may be for the purpose of defining a non-deterministic set, among other reasons One or more bounds can be applied to the matrix The eigenvalue and/or the eigenvector is given on a given measurement. According to the mutual information in (11) Can be expressed as Observation, of which And The uncertainty is The feature values are constrained.

這可以等同於在一些常量範團內約束矩陣的範數(norm)。具體地,在實施方式中,非確定性集可以被定義為赫密特矩陣的集合,由此的條件可以保持針對在矩陣的特徵值上的給定較低和較高約束This can be equated with constrained matrices in some constant vanes Norm. Specifically, in an embodiment, the non-deterministic set Hermitian matrix Collection of conditions of with Can be kept against the matrix Given lower and higher constraints on the eigenvalue .

在該實施方式(例如,在本模型下)中,推導最佳化的強健壓縮策略的問題可以公式化為:In this embodiment (eg, under this model), the problem of deriving an optimized robust compression strategy can be formulated as:

由此 thus And

在一些實施方式中,問題(26)可以不是凸狀的並且閉環形式的方案可以為禁止性的。下一個定理推導針對問題(26)的KKT條件的方案,其可以被稱作穩定點(stationary point)。In some embodiments, the problem (26) may not be convex and the closed-loop form of the scheme may be prohibitive. The next theorem derives a scheme for the KKT condition for problem (26), which can be referred to as a stationary point.

例如,在定理(例如,定理1)中,針對問題(26)的穩定點可以通過矩陣A i 被發現為(10),由此可以被給定為(15),其中矩陣 U 可以從特徵值分解中獲得並且對角元素可以通過解決以下混合整數連續問題的方式來計算:For example, in the theorem (eg, Theorem 1), the stable point for the problem (26) can be found as (10) by the matrix A i , thereby Can be given as (15), where matrix U can be decomposed from eigenvalues Obtained and diagonal elements It can be calculated by solving the following mixed integer continuous problem:

s.t.0<μ<1,,,其中函數可以被定義為:St0<μ<1, , , where the function with Can be defined as:

以及as well as

;以及離散集可以被定義為:and with ; and discrete sets Can be defined as:

其中Q1和S1被給定為:Where Q 1 and S 1 are given as:

And

一種或多種實施方式涵蓋了經由稀疏引導最佳化可以按照描述的來提供和/或使用的聯合基地台選擇和壓縮(例如,分散式壓縮)。例如,為了有效操作網路,N B 可用的BS的子集可以在給定的時槽中傳遞至雲解碼器。例如,當不同的BS可以共用相同的回載資源或者能量消耗並且綠色的網路化為重要時,可以使用這些實施方式。由此(例如,在這種假設下),系統設計可以提供和/或需要子集S的選擇以及針對的壓縮測試通道的選擇。在一種或多種實施方式中,該BS選擇可以使用在BS的數目NB中的指數複雜度的窮舉搜索。由此,在一些實施方式中,根據將稀疏引導術語添加到目標功能的有效率方法可以被提供和/或使用。One or more embodiments encompass joint base station selection and compression (eg, decentralized compression) that may be provided and/or used as described via sparse guidance optimization. For example, in order to operate the network effectively, a subset of BSs available for N B It can be passed to the cloud decoder in a given time slot. For example, these embodiments may be used when different BSs can share the same backhaul resources or energy consumption and green networking is important. Thus (for example, under this assumption), the system design can provide and/or require the selection of subset S as well as Compressed test channel s Choice. In one or more embodiments, the BS selects an exhaustive search that can use exponential complexity in the number N B of BSs. Thus, in some embodiments, an efficient method of adding sparse boot terminology to a target function can be provided and/or used.

例如,每個頻譜單元資源(例如,每個離散時間通道使用)的成本q i可以被關聯到第i個BS,這可以測量在每比特收入上啟動第i個BS的每個頻譜資源的相對成本。為了解決這個想法,可以提供和/或使用如第3圖所示的具有一個MBS和N B -1HBS的單個胞元。HBS(例如,示出的)可以共用針對所述雲解碼器的總回載容量C H ,這就像HBS經由共用無線鏈路傳遞至雲解碼器的實施方式。如果或當MBS為活動的,HBS的子集可以被排程成諸如將附加資訊提供給在給定總回載限制C H 下的雲解碼器。在一種或多種實施方式中,此處提出的方案還可以被推廣至具有多個胞元的多個複雜系統。For example, the cost q i of each spectral unit resource (eg, used per discrete time channel) can be associated to the i-th BS, which can measure the relative of each spectrum resource that initiates the i-th BS on each bit of revenue. cost. To address this idea, a single cell with one MBS and N B -1 HBS as shown in Figure 3 can be provided and/or used. The HBS (eg, shown) may share the total backhaul capacity C H for the cloud decoder as if the HBS were delivered to the cloud decoder via a shared wireless link. If or when MBS is active, a subset of HBS Can be scheduled into additional information such as Provides a cloud decoder at a given total loadback limit C H . In one or more embodiments, the approaches presented herein can also be generalized to multiple complex systems having multiple cells.

在一種或多種實施方式中,可以表示分別包括MBS和HBS的集合。如果或當高斯測試通道(10)在具有給定協方差矩陣的每個第i個BS處使用,經由稀疏引導最佳化的HBS選擇和壓縮的聯合問題可以用公式表示為:In one or more embodiments, with It may represent a set including MBS and HBS, respectively. If or when the Gaussian test channel (10) has a given covariance matrix Used at each ith BS, the joint problem of HBS selection and compression optimized via sparse guidance can be formulated as:

其中1(.)為如果引數狀態為真時取值1否則為0的指示符函數,且出於簡化q 2=...=q NB =q H 。在(34)中,可以是諸如考慮MBS為活動的事實的條件。根據實施方式,問題(34)的目標中的第二項可以為向量範數。如果成本q H 足夠大,該項可以使得該方案將一些矩陣設置為0,從而保持對應的第i個HBS為非啟動。為了避免由於範數引起的不光滑(non-smothness),可以通過使用相同向量的範數替換範數-的方式修改問題(34)。問題(34)因而可以重新用公式表示為如下:Where 1 (.) is an indicator function that takes a value of 1 otherwise 0 if the argument state is true, and for simplicity q 2 =...= q NB = q H . In (34), It may be a condition such as considering the fact that the MBS is an activity. According to an embodiment, the second item in the object of question (34) may be a vector of Norm. If the cost q H is large enough, this item can make the scheme some matrix Set to 0 to keep the corresponding i-th HBS as non-boot. In order to avoid The non-smothness caused by the norm can be achieved by using the same vector Norm replacement The norm - how modifies the problem (34). Question (34) can thus be re-formulated as follows:

其中 among them And .

根據該公式,可以提供和/或使用針對聯合HBS選擇和壓縮問題的兩階段方法(例如,如演算法2中所示)。例如,在第一階段,塊協調上升演算法可以被執行成解決問題(35)。因此,可以獲得具有非零的HBS的子集。在第二階段,塊協調上升演算法可以通過設置在子集上運行,其中所有q H =0。在一些實施方式中,第二階段可以被用來改善在第一階段中獲得的測試通道。例如,針對聯合HBS選擇和壓縮的兩階段演算法可以通過諸如第4圖中所示的整個通信流被使用(例如,針對HBS選擇在6004處以及針對壓縮策略在6006處)。According to this formula, a two-stage approach to joint HBS selection and compression problems can be provided and/or used (eg, as shown in Algorithm 2). For example, in the first phase, a block coordinated ascending algorithm can be implemented to solve the problem (35). Therefore, you can get non-zero Subset of HBS . In the second phase, the block coordination ascending algorithm can be set by In the subset Run on it, all of them And q H =0. In some embodiments, the second phase can be used to improve the test channel obtained in the first phase. For example, a two-stage algorithm for joint HBS selection and compression may be used by the entire communication stream such as shown in FIG. 4 (eg, at 6004 for HBS and 6006 for compression strategy).

例如,兩階段聯合HBS選擇和壓縮演算法(例如演算法2)可以包括或執行以下。在階段1,問題(35)可以經由塊協調上升演算法來解決或計算。例如,可以初始化n=0且。對於可以被更新為以下問題的方案。For example, a two-stage joint HBS selection and compression algorithm (eg, Algorithm 2) may include or perform the following. In phase 1, problem (35) can be solved or calculated via a block coordinated ascending algorithm. For example, you can initialize n=0 and . for Can be updated to the following problem scenario.

在一種或多種實施方式中,如果收斂準則不被滿足,上述(諸如更新)可以被重複並且否則可以被停止(例如,演算法可以被終止)。一旦演算法被終止,獲得的可以被表示為,其中i=2,...,NB並且可以被設置。In one or more embodiments, if the convergence criteria are not met, such as the update ) can be repeated and otherwise can be stopped (eg, the algorithm can be terminated). Once the algorithm is terminated, the obtained Can be expressed as , where i=2,...,N B and Can be set.

在階段2,使用qH=0以及在集合中的HBS,塊協調上升演算法可以被應用到問題(35)。In stage 2, use q H =0 and in the set In the HBS, the block coordinated ascending algorithm can be applied to the problem (35).

第4圖描述了與實施方式一致的針對基地台(BS)選擇和壓縮的示例技術(例如,其可以提供和/或使用演算法2)。如第4圖中所示,在6002處,可以接收和/或獲取通道資訊。在6004處可以選擇一個或多個HBS。在6006處,可以確定壓縮策略或方案(例如,可以計算測試通道),並且在6008處,可以報告或發送壓縮測試通道。速率控制之後可以在6010處執行(例如,總速率可以被計算,碼本可以被確定、和/或碼本索引可以被提供或報告)。在6012處,可以提供上鏈通信(例如,信號可以從碼本中生成並且可以提供和/或接收關聯的信號)。在6014處,可以執行壓縮(例如,信號諸如接收到的信號可以根據測試通道進行壓縮)。之後,在6016處,可以執行解碼(例如,基於碼本生成的信號可以基於諸如描述或壓縮後的信號進行(例如,聯合地)解碼)。Figure 4 depicts an example technique for base station (BS) selection and compression consistent with an embodiment (e.g., it may provide and/or use algorithm 2). As shown in FIG. 4, at 6002, channel information can be received and/or acquired. One or more HBSs can be selected at 6004. At 6006, a compression strategy or scheme can be determined (eg, a test channel can be calculated), and at 6008, a compressed test channel can be reported or sent. Rate control can then be performed at 6010 (eg, the total rate can be calculated, the codebook can be determined, and/or the codebook index can be provided or reported). At 6012, uplink communication can be provided (eg, signals can be generated from a codebook and associated signals can be provided and/or received). At 6014, compression can be performed (eg, a signal such as a received signal can be compressed according to a test channel). Thereafter, at 6016, decoding can be performed (eg, the codebook-based generated signal can be (eg, jointly) decoded based on a signal such as a description or compression).

在一種或多種實施方式中,如此處所描述可以解決提出的演算法(例如,演算法2)的問題(36)。當其他變數被確定為從之前迭代中獲得的值時,該方案或實施方式可以對應於更新。問題(36)的全局極大值可以按照以下所示來獲得(例如,在定理2中)。In one or more embodiments, the problem (36) of the proposed algorithm (eg, algorithm 2) can be addressed as described herein. When other variables When determined as a value obtained from a previous iteration, the scheme or implementation may correspond to an update . The global maximum of the problem (36) can be obtained as shown below (for example, in Theorem 2).

例如(像是根據定理2),針對問題(36)的方案可以使用矩陣A i 由(10)給出,由此,其中且矩陣可以被給定為:For example (like according to Theorem 2), the solution to problem (36) can be given by matrix A i from (10) ,among them Matrix Can be given as:

其中。對角元素α1,....,αnB,i,可以被獲得為,其中among them . The diagonal elements α 1 , . . . , α nB,i can be obtained as ,among them

其中l=1,...,nB,i且qH’=loge2.qH。拉格朗日乘數μ*可以按照以下獲得。如果,其中可以被給定為:Where l = 1, ..., n B, i and q H ' = log e 2. q H . The Lagrangian multiplier μ* can be obtained as follows. in case ,among them Can be given as:

那麼μ*=0;否則μ*可以為唯一值μ〉0,由此,其中 .Then μ*=0; otherwise μ* can be a unique value μ>0, thus ,among them .

雖然本發明的特徵和元素以特定的結合在以上進行了描述,但本領域普通技術人員可以理解的是,每個特徵或元素可以在沒有其他特徵和元素的情況下單獨使用,或在與本發明的任何其他特徵和元素結合的各種情況下使用。此外,本發明提供的實施方式可以在由電腦或處理器執行的電腦程式、軟體或韌體中實施,其中所述電腦程式、軟體或韌體被包含在電腦可讀儲存媒體中。電腦可讀媒體的實例包括電子信號(通過有線或者無線連接而傳送)和電腦可讀儲存媒體。關於電腦可讀儲存媒體的實例包括但不侷限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶裝置、磁媒體(例如,內部硬碟或可移動磁片)、磁光媒體以及CD-ROM光碟和數位多功能光碟(DVD)之類的光媒體。與軟體有關的處理器可以被用於實施在WTRU、UE、終端、基地台、RNC或者任何主電腦中使用的無線電頻率收發器。Although the features and elements of the present invention have been described above in terms of specific combinations, those skilled in the art can understand that each feature or element can be used alone or in the absence of other features and elements. Any other combination of features and elements of the invention is used in various situations. Furthermore, the embodiments provided by the present invention can be implemented in a computer program, software or firmware executed by a computer or processor, wherein the computer program, software or firmware is embodied in a computer readable storage medium. Examples of computer readable media include electronic signals (transmitted over a wired or wireless connection) and computer readable storage media. Examples of computer readable storage media include, but are not limited to, read only memory (ROM), random access memory (RAM), scratchpad, cache memory, semiconductor memory devices, magnetic media (eg, internal hard Disc or removable disk), magneto-optical media, and optical media such as CD-ROMs and digital versatile discs (DVDs). The software related processor can be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, or any host computer.

100...通信系統100. . . Communication Systems

102、102a、102b、102c、102d...無線發射/接收單元(WTRU)102, 102a, 102b, 102c, 102d. . . Wireless transmit/receive unit (WTRU)

103、104、105...無線電存取網路(RAN)103, 104, 105. . . Radio access network (RAN)

106、107、109...核心網路106, 107, 109. . . Core network

108...公共交換電話網路(PSTN)108. . . Public switched telephone network (PSTN)

110...網際網路110. . . Internet

112...其他網路112. . . Other network

114a、114b、180a、180b、180c...基地台(BS)114a, 114b, 180a, 180b, 180c. . . Base station (BS)

115、116、117...空中介面115, 116, 117. . . Empty intermediary

118...處理器118. . . processor

120...收發器120. . . transceiver

122...發射/接收元件122. . . Transmitting/receiving element

124...揚聲器/麥克風124. . . Speaker/microphone

126...數字鍵盤126. . . Numeric keypad

128...顯示器/觸摸板128. . . Display/touchpad

130...不可移除記憶體130. . . Non-removable memory

132...可移除記憶體132. . . Removable memory

134...電源134. . . power supply

136...全球定位系統(GPS)晶片組136. . . Global Positioning System (GPS) chipset

138...週邊設備138. . . Peripherals

140a、140b、140c...節點B140a, 140b, 140c. . . Node B

142a、142b...無線電網路控制器(RNC)142a, 142b. . . Radio Network Controller (RNC)

144...媒體閘道(MGW)144. . . Media Gateway (MGW)

146...移動交換中心(MSC)146. . . Mobile switching center (MSC)

148...服務GPRS支援節點(SGSN)148. . . Serving GPRS Support Node (SGSN)

150...閘道GPRS支持節點(GGSN)150. . . Gateway GPRS Support Node (GGSN)

160a、160b、160c...e節點B160a, 160b, 160c. . . eNodeB

162...移動性管理閘道(MME)162. . . Mobility Management Gateway (MME)

164...服務閘道164. . . Service gateway

166...封包資料網路(PDN)閘道166. . . Packet Data Network (PDN) gateway

184...移動IP本地代理(MIP-HA)184. . . Mobile IP Local Agent (MIP-HA)

186...驗證、授權、計費(AAA)服務186. . . Authentication, Authorization, and Accounting (AAA) services

188...閘道188. . . Gateway

HBS...家用BSHBS. . . Home BS

IP...網際網路協定IP. . . Internet protocol

Iub、IuCS、IuPS、iur、S1、X2...介面Iub, IuCS, IuPS, iur, S1, X2. . . interface

MBS...巨集BSMBS. . . Macro BS

R3:R6、R8...參考點R3: R6, R8. . . Reference point

從以下描述中可以更詳細地理解本發明,這些描述是以實例方式給出的,並且可以結合附圖加以理解,其中: 第1A圖描述了可以在其中實施一個或多個所公開的實施方式的示例通信系統的系統圖。 第1B圖描述了示例無線發射/接收單元(WTRU)的系統圖,其中所述WTRU可以在如第1A圖所示的通信系統中使用。 第1C圖描述了示例無線電存取網路和示例核心網路的系統圖,其中所述示例核心網路可以在如第1A圖所示的通信系統中使用。 第1D圖描述了另一示例無線電存取網路和另一示例核心網路的系統圖,其中所述示例核心網路可以在如第1A圖所示的通信系統中使用。 第1E圖描述了另一示例無線電存取網路和另一示例核心網路的系統圖,其中所述示例核心網路可以在如第1A圖所示的通信系統中使用。 第2圖描述了與實施方式一致的具有諸如家用BS(HBS)和巨集BS(MBS)的一個或者多個基地台(BS)之雲無線電存取網路的上鏈的示例實施方式。 第3圖描述了與實施方式一致的雲無線電存取網路的胞元的示例實施方式。 第4圖描述了與實施方式一致的用於基地台(BS)選擇和壓縮的示例技術。 第5圖描述了與實施方式一致的用於向上鏈系統在基地台(BS)處提供壓縮的示例技術。The invention may be understood in more detail from the following description, which is given by way of example, and which can be understood in conjunction with the accompanying drawings, wherein: FIG. 1A depicts one or more of the disclosed embodiments may be practiced therein. A system diagram of an example communication system. FIG. 1B depicts a system diagram of an example wireless transmit/receive unit (WTRU) that may be used in a communication system as shown in FIG. 1A. Figure 1C depicts a system diagram of an example radio access network and an example core network that may be used in a communication system as shown in Figure 1A. Figure 1D depicts a system diagram of another example radio access network and another example core network, which may be used in a communication system as shown in Figure 1A. Figure 1E depicts a system diagram of another example radio access network and another example core network, which may be used in a communication system as shown in Figure 1A. Figure 2 depicts an example implementation of a cloud with a cloud radio access network of one or more base stations (BSs), such as Home BS (HBS) and Macro BS (MBS), consistent with an embodiment. Figure 3 depicts an example implementation of a cell of a cloud radio access network consistent with an embodiment. Figure 4 depicts an example technique for base station (BS) selection and compression consistent with an embodiment. Figure 5 depicts an example technique for providing compression to a base station (BS) for an uplink system consistent with an embodiment.

BS...基地台BS. . . Base station

HBS...家用BSHBS. . . Home BS

MBS...巨集BSMBS. . . Macro BS

Claims (20)

一種用於執行聯合基地台排程和分佈壓縮的方法,該方法包括: 由一裝置接收通道資訊,所述裝置與一個或多個基地台通信; 由所述裝置選擇所述一個或多個基地台; 由所述裝置確定一個或多個壓縮策略; 由所述裝置向所述一個或多個基地台報告一個或多個測試通道; 由所述裝置執行速率控制;以及 對由所述裝置接收的壓縮資訊執行解碼。A method for performing joint base station scheduling and distributed compression, the method comprising: receiving channel information by a device, the device communicating with one or more base stations; selecting the one or more bases by the device Determining, by the device, one or more compression policies; reporting, by the device, one or more test channels to the one or more base stations; performing rate control by the device; and receiving by the device The compressed information performs decoding. 如申請專利範圍第1項所述的方法,其中選擇所述基地台包括選擇一個或多個家用基地台(HBS)。The method of claim 1, wherein selecting the base station comprises selecting one or more home base stations (HBS). 如申請專利範圍第1項所述的方法,其中所述裝置是一雲通信網路中的一節點。The method of claim 1, wherein the device is a node in a cloud communication network. 如申請專利範圍第1項所述的方法,其中該確定所述一個或多個壓縮策略包括使用一塊協調上升演算法計算針對所述一個或多個基地台的一個或多個測試通道。The method of claim 1, wherein the determining the one or more compression strategies comprises calculating one or more test channels for the one or more base stations using a coordinated ascending algorithm. 如申請專利範圍第1項所述的方法,其中該選擇所述一個或多個基地台包括使用一塊協調上升演算法以最大化協方差矩陣元素的一函數。The method of claim 1, wherein the selecting the one or more base stations comprises using a coordinated ascending algorithm to maximize a function of the covariance matrix elements. 如申請專利範圍第1項所述的方法,其中該選擇所述一個或多個基地台包括使用由所述裝置執行的一稀疏引導最佳化演算法。The method of claim 1, wherein the selecting the one or more base stations comprises using a sparse guidance optimization algorithm performed by the apparatus. 如申請專利範圍第1項所述的方法,其中該執行速率控制包括以下中的至少一者:計算一總速率、確定由一個或多個無線發射/接收單元(WTRU)使用的一個或多個碼本、以及向所述一個或多個WTRU報告與所述一個或多個碼本中的至少一者對應的一索引。The method of claim 1, wherein the performing rate control comprises at least one of: calculating a total rate, determining one or more used by one or more wireless transmit/receive units (WTRUs) And a code, and reporting to the one or more WTRUs an index corresponding to at least one of the one or more codebooks. 如申請專利範圍第1項所述的方法,其中該執行所述解碼包括解碼至少一個信號,所述至少一個信號基於由所述裝置確定的一個或多個碼本來生成。The method of claim 1, wherein the performing the decoding comprises decoding at least one signal, the at least one signal being generated based on one or more codebooks determined by the apparatus. 如申請專利範圍第1項所述的方法,該方法還包括: 由一個或多個無線發射/接收單元(WTRU)生成一個或多個第一信號,一個或多個第一信號基於由所述裝置確定的一個或多個碼本,所述一個或多個WTRU與所述一個或多個基地台通信; 由所述一個或多個基地台接收一個或多個第二信號; 由所述一個或多個基地台基於從所述裝置接收的該一個或多個測試通道來壓縮所述一個或多個第二信號;以及 將與壓縮後的一個或多個第二信號關聯的一索引發送到所述裝置。The method of claim 1, the method further comprising: generating one or more first signals by one or more wireless transmit/receive units (WTRUs), the one or more first signals being based on One or more codebooks determined by the device, the one or more WTRUs communicating with the one or more base stations; receiving one or more second signals by the one or more base stations; Or a plurality of base stations compressing the one or more second signals based on the one or more test channels received from the device; and transmitting an index associated with the compressed one or more second signals to The device. 一種用於利用壓縮執行上鏈的方法,該方法包括: 由一裝置接收通道資訊,所述裝置與一個或多個基地台通信; 由所述裝置確定所述一個或多個基地台的一順序以用於壓縮; 由所述裝置向所述一個或多個基地台報告一個或多個相關矩陣; 由所述裝置確定一個或多個壓縮策略; 由所述裝置向所述一個或多個基地台報告一個或多個測試通道; 由所述裝置執行速率控制;以及 對由所述裝置接收的壓縮資訊執行解碼。A method for performing uplink using compression, the method comprising: receiving channel information by a device, the device communicating with one or more base stations; determining, by the device, a sequence of the one or more base stations For compressing; reporting, by the device, one or more correlation matrices to the one or more base stations; determining one or more compression strategies by the device; from the device to the one or more bases The station reports one or more test channels; performing rate control by the device; and performing decoding on the compressed information received by the device. 如申請專利範圍第10項所述的方法,該方法還包括: 由一個或多個無線發射/接收單元(WTRU)生成一個或多個第一信號,一個或多個第一信號基於由所述裝置確定的一個或多個碼本,所述一個或多個WTRU與所述一個或多個基地台通信; 由所述一個或多個基地台接收一個或多個第二信號; 由所述一個或多個基地台基於從所述裝置接收的一個或多個測試通道來壓縮所述一個或多個第二信號;以及 將與壓縮後的一個或多個第二信號關聯的一索引發送到所述裝置。The method of claim 10, the method further comprising: generating one or more first signals by one or more wireless transmit/receive units (WTRUs), the one or more first signals being based on One or more codebooks determined by the device, the one or more WTRUs communicating with the one or more base stations; receiving one or more second signals by the one or more base stations; Or a plurality of base stations compressing the one or more second signals based on one or more test channels received from the device; and transmitting an index associated with the compressed one or more second signals to the Said device. 如申請專利範圍第10項所述的方法,其中執行速率控制包括下列中的至少一者:計算一總速率、確定由一個或多個無線發射/接收單元(WTRU)使用的一個或多個碼本、或向所述一個或多個WTRU報告與所述一個或多個碼本中的至少一者對應的一索引。The method of claim 10, wherein performing rate control comprises at least one of: calculating a total rate, determining one or more codes used by one or more wireless transmit/receive units (WTRUs) Or reporting to the one or more WTRUs an index corresponding to at least one of the one or more codebooks. 如申請專利範圍第12項所述的方法,其中一總速率度量以下列中的至少一者為一函數而被計算:一信噪比(SNR)、一輸入分佈、一個或多個通道矩陣、或線性轉換器。The method of claim 12, wherein a total rate metric is calculated as a function of at least one of: a signal to noise ratio (SNR), an input distribution, one or more channel matrices, Or a linear converter. 如申請專利範圍第11項所述的方法,其中所述一個或多個基地台接收對該一個或多個第二信號之該接收包括在所述一個或多個基地台中的不同基地台之接收的信號間相關。The method of claim 11, wherein the one or more base stations receive the reception of the one or more second signals comprising receiving at a different base station in the one or more base stations The correlation between the signals. 如申請專利範圍第14項所述的方法,其中該發送與壓縮後的一個或多個第二信號相關聯的該索引至所述裝置經由一個或多個回載鏈路完成。The method of claim 14, wherein the transmitting the index associated with the compressed one or more second signals to the device is accomplished via one or more load-back links. 一種裝置,該裝置與一雲通信網路通信,該裝置包括: 一處理器,該處理器被配置成至少: 由一裝置接收通道資訊,所述裝置與一個或多個基地台通信; 由所述裝置選擇所述一個或多個基地台; 由所述裝置確定一個或多個壓縮策略; 由所述裝置向所述一個或多個基地台報告一個或多個測試通道; 由所述裝置執行速率控制;以及 對由所述裝置接收的壓縮資訊執行解碼。A device for communicating with a cloud communication network, the device comprising: a processor configured to: at least: receive channel information by a device, the device communicating with one or more base stations; Determining, by the device, the one or more base stations; determining, by the device, one or more compression policies; reporting, by the device, one or more test channels to the one or more base stations; Rate control; and performing decoding on the compressed information received by the device. 如申請專利範圍第16項所述的裝置,其中所述處理器還被配置成使得所述一個或多個壓縮策略通過使用一塊協調上升演算法計算針對所述一個或多個基地台的一個或多個測試通道來確定。The apparatus of claim 16, wherein the processor is further configured to cause the one or more compression strategies to calculate one or for the one or more base stations by using a coordinated ascending algorithm Multiple test channels to determine. 如申請專利範圍第16項所述的裝置,其中所述處理器還被配置成使得所述一個或多個基地台使用一塊協調上升演算法來被選擇,以最大化協方差矩陣元素的一函數。The apparatus of claim 16, wherein the processor is further configured to cause the one or more base stations to be selected using a coordinated ascending algorithm to maximize a function of the covariance matrix elements . 如申請專利範圍第16項所述的裝置,其中所述處理器還被配置成: 確定所述一個或多個基地台的一順序以用於壓縮;以及 向所述一個或多個基地台報告一個或多個相關矩陣。The apparatus of claim 16, wherein the processor is further configured to: determine an order of the one or more base stations for compression; and report to the one or more base stations One or more correlation matrices. 如申請專利範圍第16項所述的裝置,其中所述處理器還被配置成使得所述一個或多個基地台使用由所述裝置執行的一稀疏引導最佳化來被選擇。The device of claim 16, wherein the processor is further configured to cause the one or more base stations to be selected using a sparse boot optimization performed by the device.
TW102121071A 2013-06-14 2013-06-14 Robust uplink transmission and joint base station scheduling distributed compression TW201448625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102121071A TW201448625A (en) 2013-06-14 2013-06-14 Robust uplink transmission and joint base station scheduling distributed compression

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102121071A TW201448625A (en) 2013-06-14 2013-06-14 Robust uplink transmission and joint base station scheduling distributed compression

Publications (1)

Publication Number Publication Date
TW201448625A true TW201448625A (en) 2014-12-16

Family

ID=52707677

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102121071A TW201448625A (en) 2013-06-14 2013-06-14 Robust uplink transmission and joint base station scheduling distributed compression

Country Status (1)

Country Link
TW (1) TW201448625A (en)

Similar Documents

Publication Publication Date Title
US11064374B2 (en) CSI feedback design for new radio
JP7473694B2 (en) Methods, apparatus, systems and procedures for uplink (UL) channel reciprocity - Patents.com
JP7453263B2 (en) System and method for single-user hybrid MIMO in mmWAVE wireless networks
US10911266B2 (en) Machine learning for channel estimation
US9838227B2 (en) Joint precoding and multivariate backhaul compression for the downlink of cloud radio access networks
JP5969649B2 (en) System and method for improving feedback accuracy of channel quality indicators in wireless communications using interference prediction
US9537556B2 (en) Systems and methods for optimized beamforming and compression for uplink MIMO cloud radio access networks
TW201438419A (en) Interference management and interference alignment in wireless networks
US9438320B2 (en) Iterative nonlinear precoding and feedback for multi-user multiple-input multiple-output (MU-MIMO) with channel state information (CSI) impairments
EP2583400B1 (en) Long-term feedback transmission and rank reporting
TW201739182A (en) System and method for advanced spatial modulation in 5G systems
US11923929B2 (en) Channel information obtaining method
JP2020517137A (en) Construction of Adaptive Digital Precoder Codebook for Millimeter-Wave Communication Based on Hybrid Beamforming
US9054767B2 (en) Robust transceiver design
CN113949422A (en) Method and apparatus for transmission scheme
TW201737673A (en) Joint source and polar coding
US20230163816A1 (en) Electronic device, method for wireless communication system, and storage medium
WO2014204425A1 (en) Robust uplink transmission and joint base station scheduling distributed compression
WO2022012256A1 (en) Communication method and communication device
TW201448625A (en) Robust uplink transmission and joint base station scheduling distributed compression
WO2024007853A1 (en) Channel state information feedback method, terminal device and access network device
WO2024001744A1 (en) Channel state information reporting method and communication apparatus