TW201440575A - Lighting system control and synthetic event generation - Google Patents

Lighting system control and synthetic event generation Download PDF

Info

Publication number
TW201440575A
TW201440575A TW102148932A TW102148932A TW201440575A TW 201440575 A TW201440575 A TW 201440575A TW 102148932 A TW102148932 A TW 102148932A TW 102148932 A TW102148932 A TW 102148932A TW 201440575 A TW201440575 A TW 201440575A
Authority
TW
Taiwan
Prior art keywords
lighting
event
lmu
lighting fixture
fixture
Prior art date
Application number
TW102148932A
Other languages
Chinese (zh)
Inventor
Mark Vanwagoner
Tim Frodsham
Joseph E Herbst
Original Assignee
Lsi Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/795,848 external-priority patent/US20130249409A1/en
Application filed by Lsi Industries Inc filed Critical Lsi Industries Inc
Publication of TW201440575A publication Critical patent/TW201440575A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/185Controlling the light source by remote control via power line carrier transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/19Controlling the light source by remote control via wireless transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

Systems and methods are described for the control of lighting systems at individual light-fixture, local, regional, and larger-geographical-area levels that also distribute electrical power to consumers. One implementation comprises a hierarchical lighting-control system including an automated network-control center that may control up to many millions of individual lighting fixtures and lighting elements, regional routers interconnected to the network-control center or network-control centers by public communications networks, each of which controls hundreds to thousands of individual light fixtures, and light-management units, interconnected to regional routers by radio-frequency communications and/or power-line communications, each of which controls components within a lighting fixture, including lighting elements, drivers, sensors, and other devices. Systems and methods of using synthetic events for calibration and control of lighting systems are also described.

Description

照明系統控制及合成事件產生 Lighting system control and synthetic event generation

本申請案主張2013年1月9日提申且標題為「照明系統控制及合成事件產生(Lighting System Control and Synthetic Event Generation)」的美國臨時申請案第61/750,425號以及2013年3月12日提申且標題為「照明系統控制及合成事件產生(Lighting System Control and Synthetic Event Generation)」的美國專利申請案第13/795,848號的權利,美國專利申請案第13/795,848號為2012年5月14日提申且標題為「用於電力分配的方法與系統(Method and System for Electric-Power Distribution)」的美國申請案第13/471,257號的部份接續案,美國申請案第13/471,257號主張2011年5月12日提申且標題為「用於電力分配的方法與系統(Method and System for Electric-Power Distribution)」的美國臨時申請案第61/485,552號的權利;本文以引用的方式將前述兩件申請案的完整內容併人。本申請案主張2013年1月9日提申且標題為「照明系統控制及合成事件產生(LIGHTING SYSTEM CONTROL AND SYNTHETIC EVENT GENERATION)」的美國臨時申請案第61/750,425號的優先權,本文以引用的方式將其完整內容併入。 This application claims US Provisional Application No. 61/750,425 and March 12, 2013, entitled "Lighting System Control and Synthetic Event Generation", dated January 9, 2013. U.S. Patent Application Serial No. 13/795,848, entitled "Lighting System Control and Synthetic Event Generation", U.S. Patent Application Serial No. 13/795,848, May 2012 Part of the continuation of U.S. Application No. 13/471,257, entitled "Method and System for Electric-Power Distribution", filed on the 14th, U.S. Application Serial No. 13/471,257 U.S. Provisional Application No. 61/485,552, entitled "Method and System for Electric-Power Distribution," filed on May 12, 2011, which is incorporated herein by reference. The full content of the above two applications will be combined. This application claims priority to US Provisional Application No. 61/750,425, filed on Jan. 9, 2013, entitled &quot Ways to incorporate its full content.

此外,本申請案還和下面有關:2013年3月12日提申且標題為「光的平衡(LIGHT BALANCING)」的美國申請案第13/_,_號,該案主張2013年1月9日提申且標題為「光的平衡(LIGHT BALANCING)」的美國臨時申請案第61/750,435號的優先權;2013年3月12日提申且標題為「光的捕捉(LIGHT HARVESTING)」的美國申請案第13/_,_號,該案主張2013年1月9日提申且標題為「逆向的光捕捉(INVERSE LIGHT HARVESTING)」的美國臨時申請案第61/750,443號的優先權;2013年3月12日提申且標題為「用於電力分配及灌溉控制的方法及系統(METHOD AND SYSTEM FOR ELECTRIC-POWER DISTRIBUTION AND IRRIGATION CONTROL)」的美國申請案第13/_,_號,該案主張2013年1月9日提申且標題為「用於電力分配及灌溉控制的方法及系統(METHOD AND SYSTEM FOR ELECTRIC-POWER DISTRIBUTION AND IRRIGATION CONTROL)」的美國臨時申請案第61/750,455號的優先權;以及2013年3月12日提申且標題為「發光及積體夾具控制(LIGHTING AND INTEGRATED FIXTURE CONTROL)」的美國申請案第13/_,_號,該案主張2013年1月9日提申且標題為「發光及積體夾具控制(LIGHTING AND INTEGRATED FIXTURE CONTROL)」的美國臨時申請案第61/750,492號的優先權。本文以引用的方式將上列申請案的完整內容併入。 In addition, this application is also related to the following: US application No. 13/_, _, entitled "LIGHT BALANCING", which was filed on March 12, 2013, which claims to be January 9, 2013 Priority is given to U.S. Provisional Application No. 61/750,435, entitled "LIGHT BALANCING", which was filed on March 12, 2013 and entitled "LIGHT HARVESTING" US application No. 13/_, _, the case claims to be submitted on January 9, 2013 and titled "Reverse Light Capture (INVERSE LIGHT) Priority of US Provisional Application No. 61/750,443 to HARVESTING); and the method and system for power distribution and irrigation control (METHOD AND SYSTEM FOR ELECTRIC-POWER DISTRIBUTION AND) US Application No. 13/_,_ of IRRIGATION CONTROL), which claims to be submitted on January 9, 2013 and entitled "Methods and Systems for Power Distribution and Irrigation Control (METHOD AND SYSTEM FOR ELECTRIC-POWER) Priority of US Provisional Application No. 61/750,455 to DISTRIBUTION AND IRRIGATION CONTROL); and US Application entitled "LIGHTING AND INTEGRATED FIXTURE CONTROL", which was filed on March 12, 2013 and entitled "LIGHTING AND INTEGRATED FIXTURE CONTROL" Case No. 13/_, __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ right. This document incorporates the entire contents of the above application by reference.

本申請案和用於控制及監視被定位在局部性、地區性、及較大地理區中的特有照明元件、和特有夾具相關聯的照明元件、以及任意大小的照明夾具群的自動控制系統有關,尤其是基於LED的照明,且明確地說,本申請案和額外分配電力給消費者的自動照明控制系統有關。 The present application relates to the control and monitoring of unique lighting elements positioned in local, regional, and large geographic areas, lighting elements associated with unique fixtures, and automated control systems for any size lighting fixture group In particular, LED-based lighting, and in particular, the present application relates to automatic lighting control systems that additionally distribute power to consumers.

用於公用道路、主要幹道、以及設施(私人及商業設施,其包含工廠;辦公室建物綜合設施;學校、大學、以及其它此類機構;以及其它公用與私人設施)的照明系統必須支付龐大的能源及財源年度經費,這些經費包含用於照明設備增添、操作、維修、以及管理的經費。因為能源成本越來越高,市府、當地政府、以及州政府因稅收產生的資金不斷下降,以及因為和各式各樣不同企業及機構相關聯的成本限制的關係,和增添、維修、保養、操作、以及管理照明系統有關的經費在越來越強大的監督下持續的下降。因此,幾乎所有涉及到增添、操作、維修、以及管理照明系統的機構及政府單位都在尋求用於照明夾具之控制的改良方法及系統,以便降低管理、維修以 及操作成本。 Lighting systems used for public roads, main roads, and facilities (private and commercial facilities, including factories; office complexes; schools, universities, and other such institutions; and other public and private facilities) must pay for large amounts of energy And annual financial resources, which include funds for the addition, operation, maintenance, and management of lighting equipment. Because of the increasing cost of energy, the city, the local government, and the state government are declining due to taxation, and because of the cost constraints associated with a variety of different businesses and institutions, and the addition, repair, and maintenance. Funding for operations, operations, and management of lighting systems continues to decline under increasing supervision. Therefore, almost all agencies and government agencies involved in the addition, operation, maintenance, and management of lighting systems are looking for improved methods and systems for the control of lighting fixtures to reduce management and maintenance. And operating costs.

本揭示內容和在特有照明夾具、局部性、地區性及較大地理區層級控制照明系統的主要技術有關,其也會分配電力給消費者。用於此用途的照明元件能夠為任何類型,顯見的範例為LED、白熾、或是高強度放電(High-Intensity-Discharge,HID)類型照明。該些照明夾具同樣能夠包含驅動器、感測器、以及其它裝置/器件。「LED」之引用會包含任何類型的發光二極體,其包含有機發光二極體(Organic Light Emitting Diode,OLED)以及包含其之結構或材料,其中一種施行方式包括階級式照明控制系統,其包含:一自動網路控制中心,其可以控制高達數百萬個特有照明夾具與照明元件;多個地區性路由器,它們藉由公共通訊網路被互連至該或該些網路控制中心,該些路由器中的每一者會控制數百個至數千個特有照明夾具;以及多個光管理單元,它們藉由射頻通訊及/或電力線通訊被互連至地區性路由器,該些光管理單元中的每一者會控制一照明夾具內的器件,該些器件包含照明元件、LED燈具驅動器、感測器、以及其它裝置。 The present disclosure relates to the main techniques for controlling lighting systems in a particular lighting fixture, local, regional, and large geographic area, which also distributes power to consumers. The lighting elements used for this purpose can be of any type, and the obvious examples are LED, incandescent, or High-Intensity-Discharge (HID) type lighting. The lighting fixtures can also include drivers, sensors, and other devices/devices. The reference to "LED" will include any type of light-emitting diode comprising an Organic Light Emitting Diode (OLED) and a structure or material comprising the same, one of which includes a class lighting control system, Includes: an automated network control center that can control up to millions of unique lighting fixtures and lighting components; multiple regional routers that are interconnected to the or the network control center via a public communication network, Each of these routers controls hundreds to thousands of unique lighting fixtures; and a plurality of light management units that are interconnected to regional routers by radio frequency communication and/or power line communication, the light management units Each of them will control devices within a lighting fixture that includes lighting components, LED luminaire drivers, sensors, and other devices.

102‧‧‧街燈夾具 102‧‧‧Street Light Fixture

103‧‧‧街燈夾具 103‧‧‧Street Light Fixture

104‧‧‧街燈夾具 104‧‧‧ Street Light Fixture

110‧‧‧垂直柱 110‧‧‧ vertical column

112‧‧‧臂部或托架 112‧‧‧arm or bracket

114‧‧‧照明單元 114‧‧‧Lighting unit

116‧‧‧光電池切換器 116‧‧‧Photocell Switcher

200‧‧‧照明夾具的位置 200‧‧‧ Location of the lighting fixture

202‧‧‧管理建物 202‧‧‧Management

204‧‧‧操作建物 204‧‧‧Operating structures

206‧‧‧實驗室建物 206‧‧‧Laboratory buildings

207‧‧‧實驗室建物 207‧‧‧Laboratory buildings

208‧‧‧實驗室建物 208‧‧‧Laboratory buildings

210‧‧‧停車場 210‧‧‧Parking

211‧‧‧停車場 211‧‧ ‧ parking lot

212‧‧‧停車場 212‧‧‧Parking

214‧‧‧照明夾具 214‧‧‧Lighting fixture

224‧‧‧照明夾具 224‧‧‧Lighting fixture

225‧‧‧照明夾具 225‧‧‧Lighting fixture

226‧‧‧照明夾具 226‧‧‧Lighting fixture

230‧‧‧照明夾具 230‧‧‧Lighting fixture

302‧‧‧網路控制中心 302‧‧‧Network Control Center

304‧‧‧路由裝置 304‧‧‧Routing device

305‧‧‧路由裝置 305‧‧‧Routing device

306‧‧‧路由裝置 306‧‧‧Routing device

307‧‧‧路由裝置 307‧‧‧Routing device

308‧‧‧路由裝置 308‧‧‧Routing device

309‧‧‧路由裝置 309‧‧‧Routing device

310‧‧‧路由裝置 310‧‧‧Routing device

320‧‧‧射頻(RF)致能橋接照明夾具管理單元(LMU) 320‧‧‧ Radio Frequency (RF) Enable Bridging Fixture Management Unit (LMU)

321‧‧‧射頻(RF)致能橋接照明夾具管理單元(LMU) 321‧‧‧ Radio Frequency (RF) Enable Bridging Fixture Management Unit (LMU)

322‧‧‧射頻(RF)致能橋接照明夾具管理單元(LMU) 322‧‧‧ Radio Frequency (RF) Enable Bridged Lighting Fixture Management Unit (LMU)

323‧‧‧射頻(RF)致能橋接照明夾具管理單元(LMU) 323‧‧‧ Radio Frequency (RF) Enable Bridged Lighting Fixture Management Unit (LMU)

324‧‧‧射頻(RF)致能橋接照明夾具管理單元(LMU) 324‧‧‧ Radio Frequency (RF) Enable Bridging Fixture Management Unit (LMU)

325‧‧‧射頻(RF)致能橋接照明夾具管理單元(LMU) 325‧‧‧ Radio Frequency (RF) Enable Bridging Fixture Management Unit (LMU)

326‧‧‧射頻(RF)致能橋接照明夾具管理單元(LMU) 326‧‧‧ Radio Frequency (RF) Enable Bridging Fixture Management Unit (LMU)

327‧‧‧射頻(RF)致能橋接 照明夾具管理單元(LMU) 327‧‧‧ Radio Frequency (RF) Enable Bridging Lighting Fixture Management Unit (LMU)

328‧‧‧射頻(RF)致能橋接照明夾具管理單元(LMU) 328‧‧‧ Radio Frequency (RF) Enable Bridging Fixture Management Unit (LMU)

329‧‧‧射頻(RF)致能橋接照明夾具管理單元(LMU) 329‧‧‧ Radio Frequency (RF) Enable Bridging Fixture Management Unit (LMU)

330‧‧‧射頻(RF)致能橋接照明夾具管理單元(LMU) 330‧‧‧RF (Energy-Energy) Bridged Lighting Fixture Management Unit (LMU)

331‧‧‧射頻(RF)致能橋接照明夾具管理單元(LMU) 331‧‧‧ Radio Frequency (RF) Enable Bridged Lighting Fixture Management Unit (LMU)

332‧‧‧射頻(RF)致能橋接照明夾具管理單元(LMU) 332‧‧‧ Radio Frequency (RF) Enable Bridging Fixture Management Unit (LMU)

340‧‧‧虛線 340‧‧‧ dotted line

350‧‧‧路由器 350‧‧‧ router

352‧‧‧照明夾具 352‧‧‧Lighting fixture

353‧‧‧照明夾具 353‧‧‧Lighting fixture

354‧‧‧照明夾具 354‧‧‧Lighting fixture

355‧‧‧照明夾具 355‧‧‧Lighting fixture

356‧‧‧照明夾具 356‧‧‧Lighting fixture

357‧‧‧照明夾具 357‧‧‧Lighting fixture

358‧‧‧照明夾具 358‧‧‧Lighting fixture

359‧‧‧照明夾具 359‧‧‧Lighting fixture

360‧‧‧電力線 360‧‧‧Power line

362‧‧‧變壓器 362‧‧‧Transformer

364‧‧‧電力線 364‧‧‧Power line

370‧‧‧蜂巢式電話 370‧‧‧Hive Phone

402‧‧‧群 402‧‧‧ group

404‧‧‧較小道路 404‧‧‧ minor roads

406‧‧‧群 406‧‧‧ group

408‧‧‧群 408‧‧‧ group

410‧‧‧群 410‧‧‧ group

412‧‧‧群 412‧‧‧ group

602‧‧‧網路控制中心 602‧‧‧Network Control Center

603‧‧‧關聯型資料庫管理伺服器 603‧‧‧Associated database management server

605‧‧‧網路伺服器 605‧‧‧Web server

606‧‧‧網路伺服器 606‧‧‧Web server

607‧‧‧網路伺服器 607‧‧‧Web server

610‧‧‧路由器 610‧‧‧ router

611‧‧‧路由器 611‧‧‧ router

612‧‧‧路由器 612‧‧‧ router

613‧‧‧路由器 613‧‧‧ router

616‧‧‧網際網路 616‧‧‧Internet

618‧‧‧射頻發射器 618‧‧‧RF transmitter

620‧‧‧基於網站的網路控制中心使用者介面 620‧‧‧Web-based network control center user interface

622‧‧‧個人電腦或是工作站 622‧‧‧Personal computer or workstation

630‧‧‧RF致能LMU 630‧‧‧RF-enabled LMU

631‧‧‧RF致能LMU 631‧‧‧RF-enabled LMU

632‧‧‧RF致能LMU 632‧‧‧RF-enabled LMU

633‧‧‧RF致能LMU 633‧‧‧RF-enabled LMU

634‧‧‧RF致能LMU 634‧‧‧RF-enabled LMU

635‧‧‧RF致能LMU 635‧‧‧RF-enabled LMU

636‧‧‧RF致能LMU 636‧‧‧RF-enabled LMU

637‧‧‧RF致能LMU 637‧‧‧RF-enabled LMU

638‧‧‧RF致能LMU 638‧‧‧RF-enabled LMU

639‧‧‧RF致能LMU 639‧‧‧RF-enabled LMU

702‧‧‧RF天線 702‧‧‧RF antenna

704‧‧‧無線通訊晶片或晶片組 704‧‧‧Wireless communication chip or chipset

706‧‧‧電力線通訊晶片或晶片組 706‧‧‧Power line communication chip or chipset

707‧‧‧雜訊濾波器 707‧‧‧ Noise Filter

708‧‧‧CPU 708‧‧‧CPU

709‧‧‧內部電力供應器 709‧‧‧Internal power supply

710‧‧‧光耦合隔絕單元 710‧‧‧Optical coupling isolation unit

712‧‧‧調光電路 712‧‧‧ dimming circuit

714‧‧‧數位至類比電路 714‧‧‧Digital to analog circuits

716‧‧‧切換式繼電器 716‧‧‧Switching relay

802‧‧‧區域網路通訊控制器與埠 802‧‧‧Local Network Communication Controller and 埠

804‧‧‧通訊器件 804‧‧‧Communication devices

806‧‧‧通訊器件 806‧‧‧Communication devices

902‧‧‧ID 902‧‧‧ID

904‧‧‧命令辨識符或碼 904‧‧‧Command identifier or code

906‧‧‧資料 906‧‧‧Information

2002‧‧‧微處理器 2002‧‧‧Microprocessor

2004‧‧‧光耦合隔絕子器件 2004‧‧‧Optically coupled isolation device

2006‧‧‧切換式繼電器子器件 2006‧‧‧Switching Relay Sub-Device

2008‧‧‧內部電力供應子器件 2008‧‧‧Internal power supply sub-device

2010‧‧‧電表子器件 2010‧‧‧Electrometer sub-device

2012‧‧‧AC電力線 2012‧‧‧AC power line

2013‧‧‧AC電力線 2013‧‧‧AC power line

2102‧‧‧微處理器 2102‧‧‧Microprocessor

2104‧‧‧類中斷訊號 2104‧‧‧ class interrupt signal

2105‧‧‧類中斷訊號 2105‧‧‧ class interrupt signal

2106‧‧‧繼電器訊號 2106‧‧‧Relay signal

2108‧‧‧訊號 2108‧‧‧ Signal

2110‧‧‧訊號 2110‧‧‧ Signal

2112‧‧‧訊號線 2112‧‧‧Signal line

2114‧‧‧訊號線 2114‧‧‧Signal line

2115‧‧‧訊號線 2115‧‧‧Signal line

2116‧‧‧訊號線 2116‧‧‧Signal line

2118‧‧‧訊號線 2118‧‧‧ Signal Line

2120‧‧‧內部DC電力 2120‧‧‧Internal DC power

2122‧‧‧接地 2122‧‧‧ Grounding

2202‧‧‧光學連接線 2202‧‧‧Optical cable

2302‧‧‧繼電器訊號 2302‧‧‧Relay signal

2304‧‧‧螺線管切換器或類螺線管切換器裝置 2304‧‧‧Solenoid switch or solenoid-like switchgear

2402‧‧‧輸入AC電力 2402‧‧‧Input AC power

2403‧‧‧輸入AC電力 2403‧‧‧Input AC power

2404‧‧‧整流器與變壓器 2404‧‧‧Rectifiers and transformers

2406‧‧‧內部DC輸出 2406‧‧‧Internal DC output

2408‧‧‧電容器 2408‧‧‧ capacitor

2502‧‧‧積體電路 2502‧‧‧ integrated circuit

2504‧‧‧SPI匯流排介面 2504‧‧‧SPI bus interface

2602‧‧‧感測器或監視裝置 2602‧‧‧Sensor or monitoring device

2604‧‧‧類中斷輸入 2604‧‧‧ class interrupt input

2702‧‧‧晶片 2702‧‧‧ wafer

2704‧‧‧陽極 2704‧‧‧Anode

2705‧‧‧凹腔 2705‧‧‧ cavity

2706‧‧‧陰極 2706‧‧‧ cathode

2802‧‧‧LED裝置 2802‧‧‧LED device

2804‧‧‧p-n接面 2804‧‧‧p-n junction

2806‧‧‧電洞 2806‧‧‧ hole

2808‧‧‧電子 2808‧‧‧Electronics

2810‧‧‧屏障區 2810‧‧‧Block area

2812‧‧‧電壓 2812‧‧‧ voltage

3002‧‧‧街道照明燈具 3002‧‧‧Street lighting

3004‧‧‧遮罩 3004‧‧‧ mask

3006‧‧‧LED元件 3006‧‧‧LED components

3008‧‧‧LED元件陣列 3008‧‧‧LED component array

3010‧‧‧殼體 3010‧‧‧Shell

3012‧‧‧鰭部 3012‧‧‧Fin

3014‧‧‧類環圈夾具 3014‧‧‧Type ring clamp

3102‧‧‧LED 3102‧‧‧LED

3104‧‧‧輸入AC電力 3104‧‧‧Input AC power

3106‧‧‧固定頻率脈衝寬度調變控制器積體電路 3106‧‧‧Fixed Frequency Pulse Width Modulation Controller Integrated Circuit

3402‧‧‧RF致能LMU/基於LED的燈具驅動器 3402‧‧‧RF-enabled LMU/LED-based luminaire driver

3406‧‧‧切換式繼電器 3406‧‧‧Switching relay

3408‧‧‧LED驅動器輸出子器件 3408‧‧‧LED driver output sub-device

3410‧‧‧LED驅動器 3410‧‧‧LED driver

3412‧‧‧LED陣列 3412‧‧‧LED array

3502‧‧‧照明夾具 3502‧‧‧Lighting fixture

3504‧‧‧自動資訊服務站 3504‧‧‧Automatic Information Service Station

3506‧‧‧電量配送單元 3506‧‧‧Power distribution unit

3602‧‧‧資料結構 3602‧‧‧Information Structure

3604‧‧‧資料結構 3604‧‧‧Information Structure

3605‧‧‧資料結構 3605‧‧‧Information Structure

3608‧‧‧資訊服務站管理模組 3608‧‧‧Information Service Station Management Module

3610‧‧‧電量配送單元管理模組 3610‧‧‧Power Distribution Unit Management Module

3702‧‧‧關聯型表格或其它資料結構 3702‧‧‧Associated forms or other data structures

3704‧‧‧關聯型表格或其它資料結構 3704‧‧‧Associated forms or other data structures

3706‧‧‧電量分配模組 3706‧‧‧Power Distribution Module

3708‧‧‧付款與結帳模組 3708‧‧‧Payment and Checkout Module

3710‧‧‧客戶管理模組 3710‧‧‧Customer Management Module

3900‧‧‧合成事件產生系統 3900‧‧‧Synthetic event generation system

3901‧‧‧照明元件 3901‧‧‧Lighting elements

3902‧‧‧照明控制系統 3902‧‧‧Lighting control system

3904‧‧‧事件合成器 3904‧‧‧ Event Synthesizer

3906‧‧‧場所管理器 3906‧‧‧Place Manager

3908‧‧‧感測器 3908‧‧‧Sensor

圖1所示的係在停車場中、主要幹道與道路中、以及工業場所內、學校設施內、以及辦公室建物綜合設施內所觀察到的傳統照明系統的一部分。 Figure 1 shows a portion of a conventional lighting system observed in a parking lot, in major roads and roads, as well as in industrial locations, in school facilities, and in office complexes.

圖2所示的係適中大小的工業或商業場所,其具有相關聯的照明夾具位置。 The moderately sized industrial or commercial location shown in Figure 2 has an associated lighting fixture location.

圖3A至B所示的係用於照明系統控制的概念方式。 The schematics shown in Figures 3A through B are used for lighting system control.

圖4利用圖2中所示的相同工業場所佈局來圖解特有照明夾具的分群方式,以便促成如照明控制系統可達成的自動控制。 Figure 4 illustrates the grouping of unique lighting fixtures using the same industrial site layout shown in Figure 2 to facilitate automatic control as achievable with the lighting control system.

圖5所示的係用於圖4中所示的各群照明夾具之自動控制的顯示排程。 The display shown in Fig. 5 is for the display schedule of the automatic control of each group of lighting fixtures shown in Fig. 4.

圖6提供一種用於自動階級式照明控制系統的通用架構。 Figure 6 provides a general architecture for an automated class lighting control system.

圖7提供一種射頻致能光管理單元的方塊圖。 Figure 7 provides a block diagram of a radio frequency enabled light management unit.

圖8提供一種單機型路由裝置的方塊圖。 Figure 8 provides a block diagram of a stand-alone routing device.

圖9所示的係路由器、射頻致能光管理單元、以及端末點光管理單元之間的通訊。 The communication between the router, the radio frequency enabled optical management unit, and the end point light management unit shown in FIG.

圖10所示的係將256可能命令碼分割成四個子集。 Figure 10 shows the division of 256 possible command codes into four subsets.

圖11所示的係每一個光管理單元內所儲存的資料類型。 Figure 11 shows the type of data stored in each light management unit.

圖12A至B所示的係用於一路由器所管理的所有不同的光管理單元或光夾具之由該路由器所管理的資料。 Figures 12A through B are for the data managed by the router for all of the different light management units or optical fixtures managed by a router.

圖13所示的係使用在路由器至光管理單元通訊中的各種命令。 Figure 13 shows the various commands used in the router-to-light management unit communication.

圖14A至N所示的係上面參考圖13所討論的各種命令與回應的資料內容。 Figures 14A through N show the contents of the various commands and responses discussed above with reference to Figure 13.

圖15至18提供配合一光管理單元的控制功能的流程控制圖。 15 to 18 provide flow control diagrams for the control functions of a light management unit.

圖19提供一路由器使用者介面的狀態轉變圖。 Figure 19 provides a state transition diagram of a router user interface.

圖20所示的係RF致能LMU的方塊圖。 Figure 20 is a block diagram of an RF-enabled LMU.

圖21A至E提供RF致能LMU的微處理器器件的額外說明。 21A-E provide additional illustrations of microprocessor devices for RF enabled LMUs.

圖22提供RF致能LMU的光耦合-隔絕子器件的一部分的電路圖。 Figure 22 provides a circuit diagram of a portion of an optical coupling-insulating sub-device of an RF-enabled LMU.

圖23提供RF致能LMU的切換式繼電器器件的電路圖。 Figure 23 provides a circuit diagram of a switched relay device for an RF enabled LMU.

圖24提供RF致能LMU的內部電力供應器器件的電路圖。 Figure 24 provides a circuit diagram of an internal power supply device of an RF enabled LMU.

圖25A至C提供RF致能LMU的電表器件的電路圖。 25A-C provide circuit diagrams of an energy meter device for an RF enabled LMU.

圖26提供用以將一感測器或監視裝置的輸出互連至微處理器之類中斷輸入的電路的電路圖。 Figure 26 provides a circuit diagram of circuitry for interconnecting the output of a sensor or monitoring device to an interrupt input such as a microprocessor.

圖27至29所示的係基於LED的照明元件的特徵。 The features of the LED-based lighting elements are shown in Figures 27-29.

圖30所示的係基於LED的街道照明燈具。 Figure 30 shows an LED-based street lighting fixture.

圖31至33所示的係其中一種類型的恆定-輸出-電流LED燈驅動器。 One of the types shown in Figures 31 through 33 is a constant-output-current LED lamp driver.

圖34所示的係RF致能LMU/基於LED的燈具驅動器模組。 Figure 34 shows an RF-enabled LMU/LED-based luminaire driver module.

圖35所示的係目前已述照明系統的其中一個範例。 Figure 35 shows an example of a lighting system that has been described so far.

圖36所示的係對儲存在每一個LMU內的資料所進行的特定增強以及為提供電力分配所進行的LMU功能增強。 Figure 36 shows the specific enhancements made to the data stored in each LMU and the LMU enhancements made to provide power distribution.

圖37所示的係路由器及/或網路控制中心內的已儲存資料及功能的增強。 Figure 37 shows an enhancement of stored data and functions in a router and/or network control center.

圖38A至C所示的係代表性電力分配交易。 Figures 38A through C are representative power distribution transactions.

圖39所示的係用於合成事件產生的系統。 The system shown in Figure 39 is used to synthesize the event generation system.

圖40所示的係使用合成事件產生系統的方法。 The method shown in Fig. 40 is a method of synthesizing an event generating system.

有許多不同類型的照明夾具、照明元件或燈具以及照明應用。圖1所示的係在停車場中、主要幹道與道路中、以及工業場所內、學校設施內以及辦公室建物綜合設施內所觀察到的傳統照明系統的一部分。此些照明系統通常運用街燈夾具,例如,圖1中的街燈夾具102至104。每一個街燈夾具皆包含內部電力線繞送經過的剛性垂直柱110及臂部或托架112,它們一起支撐一或更多個照明單元114。每一個照明單元通常包含一或更多個照明元件以及相關聯的電鎮流器,其會限制跨越照明元件的壓降以及照明元件所取出的電流並且緩衝電壓及/或電流突波及塑形輸入電壓或電流,以便提供有良好定義的輸出電壓或電流來驅動該些照明元件。目前用到許多不同類型的照明元件,其包含發光二極體(LED)面板、感應式照明、或是小型螢光元件、高壓鈉照明元件、水銀鹵素照明元件、白熾照明元件以及其它類型照明元件。一系列的照明夾具經常在一公用設施電柵內的共同電路徑中被互連。照明夾具經常由光電池切換器116來控制,其會響應於環境照射及/或缺乏環境照射而在黑暗週期期間開啟照明元件並且在有充分的環境日光可用時關閉照明元件。 There are many different types of lighting fixtures, lighting components or fixtures, and lighting applications. Figure 1 shows a portion of a conventional lighting system observed in a parking lot, in major roads and roads, and in industrial locations, in school facilities, and in office complexes. Such lighting systems typically utilize streetlight fixtures, such as streetlight fixtures 102-104 in FIG. Each street light fixture includes a rigid vertical column 110 and an arm or bracket 112 that the internal power line is routed through, which together support one or more lighting units 114. Each lighting unit typically includes one or more lighting elements and associated electrical ballasts that limit the voltage drop across the lighting elements and the current drawn by the lighting elements and buffer voltage and/or current surges and shaping inputs. Voltage or current to provide a well-defined output voltage or current to drive the lighting elements. Many different types of lighting components are currently used, including light-emitting diode (LED) panels, inductive lighting, or small fluorescent components, high-pressure sodium lighting components, mercury halogen lighting components, incandescent lighting components, and other types of lighting components. . A series of lighting fixtures are often interconnected in a common electrical path within a utility grid. Lighting fixtures are often controlled by photocell switcher 116, which turns on the lighting elements during dark periods in response to ambient illumination and/or lack of ambient illumination and turns off the lighting elements when sufficient ambient daylight is available.

即使適中大小的工業、商業、教育以及其它設施仍經常運用大量照明夾具來達到各式各樣不同目的。圖2所示的係適中大小的工業或商業場所,其具有相關聯的照明夾具位置。圖2中所示的工業場所包含一棟管理建物202、一棟操作建物204、三棟實驗室建物206至208以及三座停車場210至212。照明夾具的位置在圖中顯示為滿填的圓盤,例如,滿填的圓盤214。特定的照明夾具被定位在道路中,例如,照明夾具220,並且可以用以照射道路以及相鄰於道路的建物的明亮部分、建物入口、走道、以及建物與道路周圍環境的其它部分。此類型照明為機動車的操作者及行人提供安全,並且可以解決特定的安全疑慮。其它照明夾具(包含雙臂式照明夾具224至226)會照射停車場,而且主要是為了停車場使用者方便以及安全的目的。其它照明夾具(包含實驗室建物206至208周圍的照明夾具,其包含照明夾具230)主要是為了高安全性建物與地區中及周圍的安全。 Even medium-sized industrial, commercial, educational, and other facilities often use a large number of lighting fixtures to achieve a variety of different purposes. The moderately sized industrial or commercial location shown in Figure 2 has an associated lighting fixture location. The industrial site shown in Fig. 2 includes a management building 202, an operating building 204, three laboratory buildings 206 to 208, and three parking lots 210 to 212. The position of the illumination fixture is shown in the figure as a fully filled disc, for example, a fully filled disc 214. Specific lighting fixtures are positioned in the road, for example, lighting fixtures 220, and can be used to illuminate roads and bright portions of buildings adjacent to the road, building entrances, walkways, and other parts of the building and the environment surrounding the road. This type of lighting provides safety to the operator and pedestrian of the motor vehicle and can address specific safety concerns. Other lighting fixtures (including dual-arm lighting fixtures 224 to 226) illuminate the parking lot and are primarily intended for the convenience and security of the parking lot user. Other lighting fixtures (including lighting fixtures around laboratory buildings 206 through 208, which include lighting fixtures 230) are primarily intended for high security construction and safety in and around the area.

即使簡單的照明系統仍有相關聯的許多問題,例如,圖1與2中所示者。照明夾具的光電池控制相對簡陋,其會在黑暗週期期間提供百分百的電力並且在有充分的環境光的週期期間不提供任何電力給照明夾具。因此,照明主要係根據白天長度受到控制,而非設施以及在該設施之中工作與經過的人員的需求。光電池與光電池控制電路系統可能故障,導致照明夾具不斷地開啟,從而大幅縮短照明元件的實用長度且大幅增加照明夾具的能量消耗。如參考圖2的討論,一設施內的各種不同照明夾具可用於達到不同目的,且所以,最佳的係,可以的話,根據不同的排程及照明強度需求受到控制。然而,目前的照明系統通常缺乏有效的手段來差異性操作照明夾具及它們裡面的照明元件。基於此些及許多其它理由,照明夾具與照明系統的製造商及賣方,負責增添、操作、維修、以及管理照明系統的機構及單位,以及最後會享受到照明系統之好處的所有人皆持續地尋求用於控制照明系統的改良系統,俾使得盡可能以節省成本的方式來提供照明,以便滿足不同的照明需求及必要條件。 Even simple lighting systems still have many problems associated with them, for example, as shown in Figures 1 and 2. The photocell control of the lighting fixture is relatively simplistic, which provides 100% power during the dark period and does not provide any power to the lighting fixture during periods of sufficient ambient light. Therefore, lighting is primarily controlled according to the length of the day, not the facilities and the needs of the personnel working and passing through the facility. The photovoltaic cell and photovoltaic cell control circuitry may malfunction, causing the illumination fixture to be constantly turned on, thereby substantially reducing the practical length of the illumination component and substantially increasing the energy consumption of the illumination fixture. As discussed with reference to Figure 2, various different lighting fixtures within a facility can be used for different purposes, and therefore, the best system, if possible, can be controlled according to different scheduling and lighting intensity requirements. However, current lighting systems often lack effective means to differentially operate lighting fixtures and lighting components therein. For these and many other reasons, the manufacturers and sellers of lighting fixtures and lighting systems, the organizations and organizations responsible for adding, operating, maintaining, and managing lighting systems, and the people who will ultimately enjoy the benefits of the lighting system are continually An improved system for controlling the lighting system is sought to provide illumination in a cost-effective manner to meet different lighting needs and requirements.

如上面的討論,目前照明系統中的特有照明夾具通常係由光電池來控制,且其中多群的電互連照明夾具可以藉由計時器 及其它簡陋的控制技術而在電路級處受到額外控制,目前照明系統沒有提供用以最佳化照明系統之控制所需要的控制彈性與精確性,以便以特有照明夾具為基礎在特殊的時間處提供所需要的照明強度,監視照明夾具的輸出、器件故障、以及其它操作特徵,以及提供局部區域、地區性、及較大地理區的控制方式來控制照明系統。相反地,本文所述照明系統的範例則經由自動控制系統、公用通訊網路(包含網際網路)、射頻通訊、以及電力線通訊在局部性、地區性、及較大地理區中提供照明夾具的精確控制,不論是電連接拓樸為何。因此,本文所述照明系統的範例提供照明夾具之彈性的、排程的、以及控制性的操作,其粒度細至特有照明夾具內的特有照明元件並且高達任意指定群數的照明夾具,其可能包含分散在大地理區中的數百萬個照明夾具。此外,本文所述照明系統的範例還藉由光管理單元的彈性控制、照明夾具嵌入式感測器、以及光管理單元、路由器、網路控制中心之間的雙向通訊來提供照明元件、照明夾具、以及照明夾具周圍環境的自動監視。本文所述照明系統的範例提供照明夾具中所包含的主動式器件的控制,其包含藉由代表本文所述照明系統範例的階級式控制系統來自動啟動加熱元件、故障改正電路系統、以及其它此類局部功能。 As discussed above, the current unique lighting fixtures in lighting systems are typically controlled by photovoltaic cells, and multiple groups of electrically interconnected lighting fixtures can be used with timers. And other simple control techniques are subject to additional control at the circuit level. Currently, the lighting system does not provide the control flexibility and precision needed to optimize the control of the lighting system, based on the unique lighting fixture at a particular time. Provides the required illumination intensity, monitors the output of the lighting fixture, device failure, and other operational features, as well as providing local area, regional, and larger geographic area control to control the lighting system. Conversely, the examples of lighting systems described herein provide precise illumination fixtures in local, regional, and large geographic areas via automated control systems, public communication networks (including the Internet), RF communications, and power line communications. Control, no matter what the electrical connection topology is. Thus, the examples of illumination systems described herein provide resilient, scheduled, and controlled operation of the illumination fixture, which is fine-grained to the unique illumination elements within the unique illumination fixture and up to any given number of illumination fixtures, which may Contains millions of lighting fixtures scattered throughout a large geographic area. In addition, the examples of the illumination system described herein provide illumination components and illumination fixtures by elastic control of the light management unit, embedded fixtures of the illumination fixture, and two-way communication between the light management unit, the router, and the network control center. And automatic monitoring of the environment around the lighting fixture. An example of a lighting system as described herein provides control of an active device included in a lighting fixture that includes automatically activating a heating element, a fault correction circuitry, and the like by a staged control system representative of an example of a lighting system described herein. Class local function.

圖3A至B所示的係用於照明系統控制的概念方式。根據此範例,照明系統控制係以階級式來施行,一頂層網路控制中心302直接和多個路由裝置304至310通訊,每一個路由裝置接著會和特有夾具內的一或更多個射頻(Radio-Frequency,RF)致能橋接照明夾具管理單元(Lighting-fixture-Management Unit,LMU)320至332通訊,該些照明夾具管理單元會控制照明夾具的操作並且接著透過電力線通訊來與特有照明夾具內的一或更多個端末點LMU通訊。於某些範例中,除了電力線通訊之外,亦能夠使用射頻通訊或硬佈線通訊協定(舉例來說,通用序列匯流排),或者,以射頻通訊或硬佈線通訊協定取代電力線通訊。一般來說,網路控制中心透過網路通訊(包含網際網路)來與路由器通訊。然而,除了網路通訊號之外,於替代的範例中,網路控制中心亦可以運用蜂巢式電話網路通訊、射頻通訊、以及其它類型的通訊。路由器會透過射頻通訊、電力線通訊、以及在 替代施行方式中利用其它類型通訊來與LMU相互通訊。於本文所述照明系統的特定範例中,RF致能橋接LMU利用射頻通訊來與路由器相互通訊,橋接LMU會透過電力線通訊來與額外的端末點LMU通訊。 The schematics shown in Figures 3A through B are used for lighting system control. According to this example, the lighting system control is implemented in a hierarchical manner, with a top-level network control center 302 communicating directly with the plurality of routing devices 304-310, each routing device then with one or more radio frequencies within the unique fixture ( Radio-Frequency, RF) enables the communication of Lightning-Fiture-Management Unit (LMU) 320 to 332. The lighting fixture management unit controls the operation of the lighting fixture and then communicates with the specific lighting fixture through power line communication. One or more end-to-end LMU communications within. In some examples, in addition to power line communication, RF communication or hard-wired communication protocols (for example, universal serial bus) can be used, or power line communication can be replaced by RF communication or hard-wired communication protocols. In general, the network control center communicates with the router through network communication (including the Internet). However, in addition to the network communication number, in an alternative example, the network control center can also use cellular telephone network communication, radio frequency communication, and other types of communication. The router will communicate via RF, power line communication, and Alternative types of communication are used to communicate with the LMU. In a specific example of the illumination system described herein, the RF-enabled bridged LMU utilizes radio frequency communication to communicate with the router, and the bridged LMU communicates with the additional end-point LMU via power line communication.

每一個路由器(例如,路由器304)皆和含有LMU的數個特有照明夾具相關聯,例如,圖3A至B中虛線340所圍住的區域內的照明夾具,其會與該路由器相互通訊以便控制該些照明夾具。接著,該路由器會與一網路控制中心302通訊,該網路控制中心302會為和該網路控制中心通訊的所有路由器所控制的全部照明夾具提供集中式的自動控制。於本文所述照明系統的其中一範例中,在該控制器階級內有四層:(1)集中式網路控制中心302;(2)數個路由裝置304至310;(3)RF致能橋接LMU;以及(4)額外的端末點LMU,它們透過電力線通訊來和RF致能橋接LMU通訊。於本文所述照明系統的替代範例中可以包含額外的階級層,俾使得舉例來說,多個網路控制中心可以和一更高層的中央控制系統通訊,用於控制超大的地理區。或者,多個地理上分開的網路控制中心可以被施行用以交互操作成為一分散式網路控制中心。請注意,經由一特殊路由器被控制的照明夾具(例如,虛線340所圍住的區域內的照明夾具)在地理上未必和另一路由器所控制的照明夾具不同。特有照明夾具內所含的LMU會對該照明夾具內的一或更多個照明元件中的每一者提供政策驅動、特有的、自動控制,提供照明元件的手動控制,接收與處理來自感測器的資料,以及控制照明夾具內的各種主動式裝置。高達1,000個或更多的LMU可以和一特殊路由裝置通訊、匯出資料給一特殊路由裝置、以及從一特殊路由裝置處接收政策指令與資料;而且該網路控制中心可以和高達1,000個或更多的路由裝置通訊、從高達1,000個或更多的路由裝置處接收資料、以及匯出政策指令給高達1,000個或更多的路由裝置。因此,該網路控制中心可以提供百萬個或更多特有照明夾具的自動控制。 Each router (e.g., router 304) is associated with a number of unique lighting fixtures containing LMUs, such as lighting fixtures in the area enclosed by dashed lines 340 in Figures 3A-B, which communicate with the router to control These lighting fixtures. The router then communicates with a network control center 302 that provides centralized automatic control of all lighting fixtures controlled by all routers that communicate with the network control center. In one example of the illumination system described herein, there are four layers within the controller class: (1) a centralized network control center 302; (2) a plurality of routing devices 304-310; (3) RF-enabled Bridging the LMU; and (4) additional end-to-end LMUs that communicate with the RF-enabled bridging LMU via power line communication. An additional class layer may be included in an alternative example of the illumination system described herein such that, for example, multiple network control centers may communicate with a higher level central control system for controlling oversized geographic areas. Alternatively, a plurality of geographically separated network control centers can be implemented to interact as a decentralized network control center. Note that the lighting fixtures that are controlled via a particular router (eg, lighting fixtures in the area enclosed by dashed lines 340) are not necessarily geographically different from the lighting fixtures controlled by another router. The LMU contained within the unique lighting fixture provides policy-driven, unique, and automatic control of each of the one or more lighting elements within the lighting fixture, providing manual control of the lighting components, receiving and processing from sensing Information and control of various active devices within the lighting fixture. Up to 1,000 or more LMUs can communicate with a special routing device, export data to a special routing device, and receive policy commands and data from a special routing device; and the network control center can be up to 1,000 or More routing device communications, receiving data from up to 1,000 or more routing devices, and exporting policy commands to up to 1,000 or more routing devices. Therefore, the network control center can provide automatic control of one million or more unique lighting fixtures.

本文所述照明系統的範例雖然允許從路由裝置提供的使用者介面以及網路控制中心提供的使用者介面來手動控制特有 照明夾具內的特有照明元件;但是,手動控制既乏味且容易出錯。代表本文所述照明系統之範例的自動照明控制系統則能夠將多個特有照明夾具邏輯性聚集成各種不同群的照明夾具,以達控制目的。圖4利用圖2中所示的相同示範性工業場所佈局來圖解特有照明夾具的分群方式,以便促成如本文所述照明控制系統可達成的自動控制。如圖1中所示,滿填的圓盤所示的各個不同照明夾具(例如,滿填的圓盤220)會組合成11不同的控制群。在一公用主要幹道中的照明夾具(包含照明夾具220)會一起被群聚成第一群402,標記為群編號「1」。在一較小道路404及大型停車場212中的管理建物202和操作建物204後面的照明夾具會被分成兩群:(1)群2(圖4中的406);以及(2)群3(圖4中的408)。藉由將此些照明夾具分成兩群,道路及停車場中可交替的燈光會在不同的日子被交替啟動,從而降低能量消耗並且延長照明元件操作壽命。或者,全部此些照明元件可被組合在單一群之中,並且操作在較低的光強度輸出處,以便達到雷同的目的。同樣地,停車場212內的雙臂式照明元件也會被分成兩群410與412,俾便每一個雙臂式照明夾具中僅有單臂上的照明元件會在給定的日子中開啟。群的大小能夠和特有照明夾具一樣小,例如,群6與7(圖4中的4與22);或者,甚至和照明夾具內的特有照明元件一樣小。該階級式、自動控制照明能夠根據本文所述照明系統的範例而合理的縮放,以便控制整個國家或整個大陸內的所有照明夾具。 The example of the lighting system described herein allows for manual control of the unique interface from the user interface provided by the routing device and the user interface provided by the network control center. Unique lighting elements within the lighting fixture; however, manual control is both tedious and error prone. An automated lighting control system representative of an example of a lighting system described herein is capable of logically aggregating a plurality of unique lighting fixtures into a variety of different lighting fixtures for control purposes. Figure 4 illustrates the grouping of unique lighting fixtures using the same exemplary industrial site layout shown in Figure 2 to facilitate automatic control achievable by the lighting control system as described herein. As shown in Figure 1, the various lighting fixtures (e.g., fully filled discs 220) shown in the fully filled discs are combined into 11 different control groups. The lighting fixtures (including the lighting fixtures 220) in a common main road are grouped together into a first group 402, labeled as group number "1." The lighting fixtures behind the administrative building 202 and the operating building 204 in a smaller road 404 and large parking lot 212 are divided into two groups: (1) group 2 (406 in Figure 4); and (2) group 3 (picture 408 in 4). By dividing the lighting fixtures into two groups, alternating lights in the road and parking lot are alternately activated on different days, thereby reducing energy consumption and extending the operational life of the lighting elements. Alternatively, all of these lighting elements can be combined in a single group and operated at a lower light intensity output for the same purpose. Similarly, the dual-arm lighting elements in the parking lot 212 are also divided into two groups 410 and 412. In each of the two-armed lighting fixtures, only the lighting elements on the single arm will be turned on for a given day. The size of the group can be as small as a unique lighting fixture, for example, groups 6 and 7 (4 and 22 in Figure 4); or even as small as the unique lighting elements within the lighting fixture. This hierarchical, automatically controlled illumination can be reasonably scaled according to the examples of illumination systems described herein to control all lighting fixtures throughout the country or the entire continent.

代表本文所述照明系統其中一個範例的自動照明控制系統的階級施行方式同時提供縮放能力以及通訊彈性。於其中一範例中,圖3B顯示使用數個不同類型通訊方法的照明控制系統的一部分。在圖3B中,一路由器350管理八個不同照明夾具352至359內的LMU。該些照明夾具被分割成兩個不同群,其包含:第一群352至355,它們藉由從變壓器362處發出的第一電力線360來串聯互連;以及第二群356至359,它們藉由從變壓器362處發出的第二電力線364來串聯互連。兩群照明夾具被連接至單一電力線,變壓器362沒有分開兩群照明夾具,照明夾具內的所有LMU僅利用電力線通訊來與路由器直接通訊。然而,電力線通訊無法橋接變壓器362及各種其 它電柵器件。雖然可以使用兩個路由器,每一群照明夾具使用一個路由器,並且利用電力線通訊將每一個路由器互連至其個別的照明夾具群;然而,雙路由器施行方式涉及到關於路由器的連接與定位限制、路由器功能的非必要複製、以及較高的成本。取而代之的係,根據本文所述照明系統的各種範例,路由器350藉由射頻通訊來和每一個照明夾具354與358內的RF致能橋接LMU通訊。每一個1U致能橋接LMU會利用電力線通訊來和該橋接LMU所在的照明夾具群中的其餘照明夾具互通訊。該些橋接LMU充當一照明夾具內的局部LMU,而且也充當一通訊橋,每一群中的端末點LMU能夠藉以從路由器350處接收訊息以及傳送訊息給路由器350。因此,射頻通訊和RF致能橋接LMU提供省成本且彈性的方法來橋接變壓器與一電系統的其它電力線通訊中斷器件。此外,每一個LMU可以包含蜂巢式電話通訊電路系統,用以讓該LMU和一蜂巢式電話370直接通訊。一蜂巢式電話能夠充當一路由器的橋接器或是充當一特殊、局部性的路由器,用以讓維修人員在各種監視與保養活動期間手動控制一LMU。 The class implementation of the automatic lighting control system, which represents one example of the illumination system described herein, provides both zooming capability and communication flexibility. In one example, Figure 3B shows a portion of a lighting control system that uses several different types of communication methods. In FIG. 3B, a router 350 manages the LMUs within eight different lighting fixtures 352-359. The lighting fixtures are divided into two distinct groups, including: first groups 352 through 355 interconnected in series by a first power line 360 from transformer 362; and second groups 356 through 359, which borrow The second power lines 364 from the transformer 362 are interconnected in series. Two sets of lighting fixtures are connected to a single power line. Transformer 362 does not separate two sets of lighting fixtures. All LMUs in the lighting fixture use only power line communication to communicate directly with the router. However, power line communication cannot bridge transformer 362 and its various It has an electrical grid device. Although two routers can be used, each group of lighting fixtures uses one router and each line is interconnected to its individual lighting fixture cluster using power line communication; however, dual router implementation involves connection and location restrictions on the router, routers Non-essential replication of features and higher costs. Instead, the router 350 communicates with the RF enabled bridge LMU within each of the lighting fixtures 354 and 358 by radio frequency communication in accordance with various examples of lighting systems described herein. Each 1U-enabled bridged LMU utilizes power line communication to communicate with the remaining lighting fixtures in the lighting fixture cluster in which the bridged LMU is located. The bridged LMUs act as local LMUs within a lighting fixture and also serve as a communication bridge through which the end-point LMUs in each group can receive messages from the router 350 and transmit messages to the router 350. Therefore, RF communication and RF-enabled bridging LMUs provide a cost-effective and flexible way to bridge transformers with other power line communication interrupting devices of an electrical system. In addition, each LMU can include a cellular telephone communication circuitry for direct communication between the LMU and a cellular telephone 370. A cellular phone can act as a router for a router or as a special, localized router for maintenance personnel to manually control an LMU during various monitoring and maintenance activities.

於本文所述照明系統的特定範例中,LMU根據內部儲存的排程來控制照明夾具內的照明元件的操作。圖5所示的係用於圖4中所示的各群照明夾具之自動控制的顯示排程。排程可以各種方式由路由器與網路控制中心使用者介面常式來顯示,用以讓獲得授權的使用者進行排程的互動式定義、修正、以及刪除。如圖5中所示,圖中提供一特殊日子中圖4中所示之11個群中每一群的照明夾具內的照明元件操作的排程。每一條橫條(例如,橫條502)代表根據當天時間在一特殊群的照明夾具內的照明元件操作的排程。於本文所述照明系統的特定範例中,全部照明夾具(包含該些照明夾具內的所有照明元件)會被指派給多群;而於本文所述照明系統的替代範例中,照明夾具內的特有照明元件可以分開指派給多群。當天時間從該橫條左手邊緣的12:00 a.m.504處開始遞增至該橫條右手邊緣的12:00 p.m.506。該橫條內的陰影區(例如,橫條502中的陰影區508)表示照明元件應該被開啟的時間。陰影區的高度表示照明元件應該被開啟的位準。舉例來說,橫條1中的陰影區510表示群1的照明夾具內的照明 元件應該在12:00 a.m.與2:00 a.m.之間被開啟至最大強度的百分之50;而陰影區508的右手部分表示群1內的照明夾具內的照明元件應該從6:30 p.m.開始被開啟至最大強度直到深夜。 In a particular example of the illumination system described herein, the LMU controls the operation of the lighting elements within the lighting fixture based on the internally stored schedule. The display shown in Fig. 5 is for the display schedule of the automatic control of each group of lighting fixtures shown in Fig. 4. Scheduling can be displayed in a variety of ways by router and network control center user interface routines, allowing authorized users to interactively define, modify, and delete schedules. As shown in Figure 5, a schedule of illumination element operation within the illumination fixture for each of the 11 clusters shown in Figure 4 of a particular day is provided. Each bar (e.g., bar 502) represents a schedule of lighting element operation within a particular group of lighting fixtures based on the time of day. In a particular example of the illumination system described herein, all of the illumination fixtures (including all of the illumination elements within the illumination fixtures) are assigned to multiple groups; and in an alternative to the illumination system described herein, the features within the illumination fixture are unique Lighting elements can be assigned to multiple groups separately. The time of day increases from 12:00 a.m. 504 on the left hand edge of the bar to 12:00 p.m. 506 on the right hand edge of the bar. The shaded area within the crossbar (e.g., shaded area 508 in crossbar 502) indicates when the lighting element should be turned on. The height of the shaded area indicates the level at which the lighting element should be turned on. For example, the shaded area 510 in the bar 1 represents the illumination within the lighting fixture of cluster 1. The component should be turned on between 12:00 am and 2:00 am to 50 percent of the maximum intensity; and the right hand portion of the shaded zone 508 indicates that the lighting components in the lighting fixture within cluster 1 should start at 6:30 pm It is turned on to maximum intensity until late at night.

此外,亦能夠定義每一群的事件驅動式或感測器驅動式操作特徵。舉例來說,在圖5中,小型水平條體(例如,水平條體514)表示當各種不同事件發生時應該如何操作該些照明元件。舉例來說,水平條體514表示倘若光電池輸出從開啟轉變成關閉的話(其表示環境照明充分增加而使得光電池訊號輸出臨界值出錯),當已經被開啟至最大強度的百分之50或以上時,該些燈光應該在最大光強度輸出的百分之50處操作額外的15分鐘,由陰影條體316表示,並且接著關閉。光電池開啟事件的操作特徵會被指定,用以表示從充足照明轉變成黑暗;來自一運動感測器之輸入訊號的操作特徵會被指定,用以表示一照明夾具之區域內的運動。許多額外事件的操作特徵可以被指定,以及額外可控制裝置與功能(其包含啟動加熱元件用以除雪與除冰、各種故障恢復與容錯移轉系統、以及其它此類裝置與功能)的操作特徵亦可以被指定。 In addition, event-driven or sensor-driven operational features of each group can also be defined. For example, in Figure 5, a small horizontal strip (e.g., horizontal strip 514) indicates how the lighting elements should be operated when various different events occur. For example, the horizontal strip 514 indicates that if the photocell output transitions from on to off (which indicates that the ambient illumination is sufficiently increased such that the photocell signal output threshold is erroneous), when it has been turned on to 50% or more of the maximum intensity, The lights should be operated for an additional 15 minutes at 50 percent of the maximum light intensity output, indicated by the shaded bar 316, and then closed. The operational characteristics of the photocell turn-on event are designated to indicate a transition from sufficient illumination to darkness; operational characteristics of the input signal from a motion sensor are designated to indicate motion within the area of a lighting fixture. The operational characteristics of many additional events can be specified, as well as the operational characteristics of additional controllable devices and functions including the activation of heating elements for snow removal and de-icing, various fault recovery and fault-tolerant transfer systems, and other such devices and functions. Can also be specified.

在提供圖5中所示之每一群中不同水平條體所代表的不同操作特徵時(其接著代表經編碼的操作排程及事件相關的操作指令)有許多不同的方式來指定照明元件操作以及許多不同的考量。舉例來說,響應於光電池關閉事件而開啟照明元件並無意義。水平條體514內的小陰影條體516的意義為燈光已開啟至大於最大光強度的百分之50,照明元件應該在完全關閉之前將電力下降至最大光強度的百分之50維持一短暫的時間週期。因此,時間遞增的大型水平條體502及較小水平條體514的組合可以指定,在任何時點中,燈光應該被開啟至當天時間排程條體以及對應於光電池關閉事件的較短水平條體中所示的最小電力位準。然而,於其它情況中,燈光可能需要被開啟至當天時間排程條體以及對應於不同類型事件的較短水平條體中所示的最大電力位準。一般來說,一照明夾具的最終操作特徵(由安裝在該照明夾具內的LMU所施行)可以由任意布林值及關係運算子表示式或是短的直譯腳本或電腦程式來定義,它們會以感測器輸入訊 號為基礎以及以已儲存的基於時間的排程及和特殊事件相關聯的已儲存操作特徵為基礎來計算任何特殊時點中該照明元件應該被開啟的程度。 There are many different ways to specify lighting element operation and when providing different operational features represented by different horizontal strips in each of the groups shown in Figure 5, which in turn represent encoded operational schedules and event related operational instructions. Many different considerations. For example, turning on a lighting element in response to a photocell shutdown event is meaningless. The small shaded strip 516 within the horizontal strip 514 means that the light has been turned on to greater than 50% of the maximum light intensity, and the lighting element should be reduced to 50% of the maximum light intensity for a short period of time before fully shutting down. Time period. Thus, the combination of the time-increasing large horizontal strip 502 and the smaller horizontal strip 514 can specify that at any point in time, the light should be turned on to the current time schedule strip and the shorter horizontal strip corresponding to the photocell shutdown event. The minimum power level shown in . However, in other cases, the lights may need to be turned on to the current time schedule bar and the maximum power level shown in the shorter horizontal bars corresponding to different types of events. In general, the final operational characteristics of a lighting fixture (implemented by the LMU installed in the lighting fixture) can be defined by any Boolean value and relational operator representation or a short literal translation script or computer program. Sensor input The number is based and based on the stored time-based schedule and the stored operational characteristics associated with the particular event, to calculate the extent to which the lighting element should be turned on at any particular point in time.

圖6提供一種用於自動階級式照明控制系統的通用架構,其代表本文所述照明系統的其中一個範例。大型區域控制係透過在網路控制中心602內的運轉的自動控制程式運行一大型地理區域內的許多照明夾具上。除了控制程式之外,該網路控制中心還包含一或更多個關聯型資料庫管理伺服器603或是其它類型的資料儲存系統以及多個網路伺服器或是其它介面伺服系統605至607,它們一起構成一分散式自動照明控制系統網路控制中心。網路控制中心網路伺服器透過網際網路616或是透過射頻發射器618將伺服照明系統控制資訊送至多個路由器610至613。此外,該網路控制中心還可以透過一藉由網際網路或是區域網路和該網路控制中心互連的個人電腦或是工作站622提供一基於網站的網路控制中心使用者介面620。於本文所述照明系統的特定範例中,該網路控制中心可以提供雷同於特有路由器所提供的功能,其包含能夠監視特有LMU的狀態、定義多個群、定義以及修正排程、手動控制照明夾具、以及實行能夠經由路由器提供的使用者介面以局部為基礎來實行的其它此類任務。此外,該網路控制中心還可以提供不在路由器階層所提供的額外功能,其包含監視與分析超大型地理區中的照明系統的各種特徵之計算複雜的分析程式,該些特徵包含功率消耗、維修狀況、以及其它此類特徵。 Figure 6 provides a general architecture for an automated class lighting control system that represents one of the examples of lighting systems described herein. The large area control system runs a number of lighting fixtures within a large geographic area through an automated control program operating within the network control center 602. In addition to the control program, the network control center also includes one or more associated database management servers 603 or other types of data storage systems and multiple network servers or other interface servo systems 605-607. Together, they form a network control center for a decentralized automatic lighting control system. The network control center network server sends servo lighting system control information to the plurality of routers 610 through 613 via the Internet 616 or via the RF transmitter 618. In addition, the network control center can also provide a web-based network control center user interface 620 through a personal computer or workstation 622 interconnected by the Internet or the regional network and the network control center. In a particular example of a lighting system described herein, the network control center can provide functionality similar to that provided by a unique router, including the ability to monitor the status of a unique LMU, define multiple groups, define and correct schedules, and manually control lighting. Fixtures, and other such tasks that are implemented on a local basis that can be provided via a user interface provided by a router. In addition, the network control center can provide additional functions not provided at the router level, including computational and complex analysis programs that monitor and analyze various features of the lighting system in a very large geographic area, including power consumption, maintenance Status, and other such characteristics.

該些路由器可以運轉在膝上型或個人電腦中的軟體來施行,例如,路由器611;可以為單機型裝置,例如,路由器610與612;或者,可以為和個人電腦或工作站相關聯的單機型裝置,如圖6中的路由器613,其中單機型路由器會顯示被提供給使用者的使用者介面。路由器會透過無線通訊(其包含IEEE802.15(Zigbee)通訊)來與RF致能LMU 630至640通訊,而該些RF致能LMU可以控制一特殊的照明夾具並且充當額外端末點LMU之間的連接橋,該些橋接LMU會透過電力線通訊與其通訊,其包含梯級電力線(Echelon Power Line)(ANSI/EIA 709.1-A)。於本文所述照明系統的特定範例 中,路由器可以透過電力線通訊來和LMU通訊,例如,圖6中的路由器612與LMU 633。於本文所述照明系統的又進一步範例中,可以運用其它類型的通訊在網路控制中心與路由器之間、在路由器與橋接LMU或端末點LMU之間、以及在橋接LMU與端末點LMU之間交換資訊。各種不同的晶片組及電路系統能夠被加至LMU、路由器、以及網路控制中心的器件,用以致能額外類型的通訊途徑。 The routers can be implemented in software running on a laptop or personal computer, such as router 611; can be stand-alone devices, such as routers 610 and 612; or can be stand-alone associated with a personal computer or workstation The device, such as router 613 in Figure 6, wherein the stand-alone router displays the user interface provided to the user. The router communicates with the RF-enabled LMUs 630-640 via wireless communication (which includes IEEE 802.15 (Zigbee) communication), and the RF-enabled LMUs can control a particular lighting fixture and act as an additional end-point between the LMUs. Bridges that communicate with the LMU via power line communication, including the Echelon Power Line (ANSI/EIA 709.1-A). Specific examples of lighting systems described herein In the middle, the router can communicate with the LMU through power line communication, for example, router 612 and LMU 633 in FIG. In still further examples of the illumination system described herein, other types of communication may be utilized between the network control center and the router, between the router and the bridged LMU or the end-point LMU, and between the bridged LMU and the end-point LMU. Exchange information. A variety of different chipsets and circuitry can be added to LMUs, routers, and network control center devices to enable additional types of communication paths.

橋接LMU與端末點LMU兩者會控制照明夾具內的照明元件的操作並且經由安裝在照明夾具中的各種類型感測器來收集資料。兩種類型的LMU會根據從路由器與網路控制中心處下載至LMU之中的排程或是製造時已安裝的內定排程而自主地控制照明夾具操作;但是,亦可以響應於接收自路由器與網路控制中心的命令來直接控制照明夾具的操作特徵。被儲存在LMU內的排程及其它控制指令可由和路由器及網路控制中心所提供的使用者介面互動的使用者任意修正。雖然於許多應用中,LMU的控制功能係本文所述照明系統的範例所提供之自動照明系統控制功能的重要部分;但是,於許多其它應用中,LMU所提供的監視功能則具有重要意義或更大意義。LMU架構用於將許多不同感測器輸入連接至LMU,除了LMU中通常包含的電壓與電力感測器之外,該些感測器輸入還包含運動感測器輸入、化學偵測感測器輸入、溫度感測輸入、大氣壓力感測輸入、音頻與視訊訊號輸入、以及許多其它類型的感測器輸入。LMU針對該些不同類型輸入訊號中每一者的響應可以由使用者經由路由器及網路控制中心所提供的使用者介面來配置。該些各種類型的感測器輸入主要可用於提供照明系統操作的有效控制,於特定的情況中,還可用於在局部性、地區性、及大型地理區層級提供更多各式各樣不同類型的監視任務。舉例來說,LMU感測能夠用於安全監視、用於監視交通形態及偵測即將發生的交通壅塞、用於促成交通訊號的智慧控制、用於監視局部性與地區性氣象條件、用於偵測潛在的危險事件(其包含槍擊、爆炸、有毒化學藥品釋放至環境中、火災、地震引起的事件、以及許多其它類型的事件),即時監視該些事件會有益於市府、當地政府、地區政府、以及許多其它機構。 Both the bridged LMU and the end-point LMU control the operation of the lighting elements within the lighting fixture and collect data via various types of sensors installed in the lighting fixture. Both types of LMUs autonomously control lighting fixture operations based on schedules downloaded from the router and network control center to the LMU or built-in scheduled schedules at the time of manufacture; however, they can also be received in response to the receiver Commands with the Network Control Center to directly control the operational characteristics of the lighting fixture. The schedules and other control commands stored in the LMU can be arbitrarily modified by the user interacting with the user interface provided by the router and the network control center. While in many applications, the control functions of the LMU are an important part of the automatic lighting system control functions provided by the examples of lighting systems described herein; however, in many other applications, the monitoring functions provided by the LMU are significant or more Great meaning. The LMU architecture is used to connect many different sensor inputs to the LMU. In addition to the voltage and power sensors typically included in the LMU, the sensor inputs also include motion sensor inputs, chemical detection sensors. Inputs, temperature sensing inputs, atmospheric pressure sensing inputs, audio and video signal inputs, and many other types of sensor inputs. The response of the LMU to each of the different types of input signals can be configured by the user via a user interface provided by the router and the network control center. These various types of sensor inputs can be used primarily to provide effective control of the operation of the lighting system, and in certain cases, to provide a wider variety of different types at the local, regional, and large geographic level levels. Monitoring task. For example, LMU sensing can be used for security surveillance, for monitoring traffic patterns and detecting impending traffic congestion, for intelligent control of traffic signals, for monitoring local and regional meteorological conditions, for detection Measuring potential hazards (including shootings, explosions, release of toxic chemicals into the environment, fires, events caused by earthquakes, and many other types of events), and monitoring these events in real time will benefit the city, local government, and region. The government, as well as many other institutions.

圖7提供一種射頻致能光管理單元的方塊圖。該RF致能LMU包含:一RF天線702;一無線通訊晶片或晶片組704,其用於無線接收與傳送命令及回應封包;一電力線通訊晶片或晶片組706,其用於電力線接收與傳送命令及回應封包;一雜訊濾波器707,其會帶通濾波電力線連接中的雜訊;一CPU 708及相關聯的記憶體,用以運轉內部控制程式,其會收集與儲存資料,根據已儲存的資料及已儲存的程式來控制照明元件操作,以及將封包從RF傳送至PL通訊以及從PL傳送至RF通訊;一內部電力供應器,用以將AC輸入電力轉換成DC內部電力,以便供應DC電力給數位器件;一光耦合隔絕單元710,其會隔絕該CPU與電力突波;一調光電路712,其提供電輸出的數位脈衝寬度調變給照明元件,用以提供一輸出電流範圍,以便在一光強度輸出範圍中操作特定類型的照明元件;一數位至類比電路714,其提供受控的電壓輸出給照明元件或其它器件;以及一切換式繼電器716,用於控制送往一照明夾具內各種裝置或器件(包含鎮流器)的電力供應。 Figure 7 provides a block diagram of a radio frequency enabled light management unit. The RF enabled LMU includes: an RF antenna 702; a wireless communication chip or chipset 704 for wirelessly receiving and transmitting commands and response packets; and a power line communication chip or chipset 706 for power line reception and transmission commands And a response packet; a noise filter 707 that filters the noise in the power line connection; a CPU 708 and associated memory for running the internal control program, which collects and stores the data, according to the stored Information and stored programs to control lighting component operation, and transfer packets from RF to PL communications and from PL to RF communications; an internal power supply to convert AC input power to DC internal power for supply The DC power is supplied to the digital device; an optically coupled isolation unit 710 is configured to isolate the CPU from the power surge; and a dimming circuit 712 is provided for adjusting the digital pulse width of the electrical output to the illumination component for providing an output current range To operate a particular type of lighting element in a range of light intensity output; a digit to analog circuit 714 that provides a controlled voltage output to the lighting element or Its device; and a switching relay 716 for controlling the supply of power to various devices or devices (including ballasts) within a lighting fixture.

圖8提供一種單機型路由裝置的方塊圖。該單機型路由裝置包含如圖7中所示之RF致能LMU中所包含的許多相同元件,新增一區域網路通訊控制器與埠802以及其它通訊器件804與806,它們允許該單機型路由器和一個人電腦或工作站互連,用於顯示一使用者介面。 Figure 8 provides a block diagram of a stand-alone routing device. The stand-alone routing device includes many of the same components included in the RF-enabled LMU as shown in FIG. 7, adding a regional network communication controller and 802 and other communication devices 804 and 806, which allow the single-model The router is interconnected with a personal computer or workstation for displaying a user interface.

圖9所示的係路由器、射頻致能光管理單元、以及端末點光管理單元之間的通訊。命令與回應會被編碼在用於RF通訊,包括七個與56個位元組之間的封包中。RF通訊協定係一種命令/回應協定,其允許路由器送出命令給RF致能LMU並且從該些命令處接收回應,且其允許RF致能LMU送出命令給路由器並且從該些路由器處接收該些命令的回應。廣播訊息及單向訊息也會被提供。每一個命令或回應封包包含一六位元組ID 902、一單一位元組命令辨識符或碼904、以及零與49個位元組之間的資料906。ID 902被用來從和該路由器通訊的LMU中辨識特殊的LMU或RF致能LMU。該些命令與回應被封包在電力線通訊應用封包內,用以透過梯級電力線通 訊協定以電力線通訊來進行通訊。 The communication between the router, the radio frequency enabled optical management unit, and the end point light management unit shown in FIG. Commands and responses are encoded in the RF communication, including packets between seven and 56 bytes. An RF communication protocol is a command/response protocol that allows a router to send commands to and receive responses from RF-enabled LMUs, and it allows RF-enabled LMUs to send commands to and receive commands from routers. Response. Broadcast messages and one-way messages will also be provided. Each command or response packet contains a six-bit tuple ID 902, a single-byte tuple identifier or code 904, and a data 906 between zero and 49 bytes. The ID 902 is used to identify a particular LMU or RF enabled LMU from the LMU communicating with the router. The commands and responses are encapsulated in a power line communication application packet for passage through the ladder power line The agreement uses power line communication for communication.

圖10所示的係將256可能命令碼分割成四個子集。在圖10中,中央水平行1002包含256個不同的可能命令碼,它們能夠由用於RF通訊與PL通訊的通訊封包內的一位元組命令碼欄位來表示。偶數編號的命令碼對應於命令,而奇數編號的命令碼對應於回應,一特殊命令的回應的數值比該特殊命令的命令碼的數值大一。路由器至端末點LMU命令的命令碼和回應碼具有較低數值碼,表示為水平虛線1004以上的碼數值。路由器至橋接LMU命令則具有較高數值命令碼,由水平虛線1004以下的命令碼來表示。因此,一橋接LMU能夠從該命令碼中立刻判斷接收自一路由器的命令究竟應該由該橋接LMU來處理以局部控制一照明夾具,或者,應該透過PL通訊傳送至下游LMU。同樣地,端末點LMU至路由器命令具有較低編號的命令碼而橋接LMU至路由器命令具有較高編號數值的命令碼。任何特殊的命令碼,例如,命令碼「0」1006可以對應於一路由器至LMU命令或是對應於LMU至路由器命令。該些路由器與LMU能夠區分此些不同的命令,因為路由器僅接收LMU至路由器命令,而LMU僅接收路由器至LMU命令。 Figure 10 shows the division of 256 possible command codes into four subsets. In Figure 10, the central horizontal line 1002 contains 256 different possible command codes that can be represented by a one-tuple command code field within the communication packet for RF communication and PL communication. The even-numbered command code corresponds to the command, and the odd-numbered command code corresponds to the response, and the response value of a special command is one greater than the value of the command code of the special command. The command code and response code of the router-to-end LMU command have a lower value code, which is represented as a code value above the horizontal dotted line 1004. The router-to-bridge LMU command has a higher value command code, represented by a command code below the horizontal dashed line 1004. Therefore, a bridged LMU can immediately determine from the command code whether the command received from a router should be processed by the bridged LMU to locally control a lighting fixture, or should be transmitted to the downstream LMU through the PL communication. Similarly, the end-point LMU-to-router command has a lower numbered command code and bridges the LMU to the router command with a higher numbered command code. Any special command code, for example, command code "0" 1006, may correspond to a router to LMU command or to an LMU to router command. These routers and LMUs are able to distinguish between these different commands because the router only receives LMU to router commands, while the LMU only receives router to LMU commands.

圖11所示的係每一個光管理單元內所儲存的資料類型。每一個LMU儲存高達一固定數量之照明元件中每一者的資訊1102至1105;數個群辨識符1112,其辨識該LMU被指派的群;各種輸入/輸出裝置描述符1114;各種不同事件中每一者的狀態1116;以及一排程1118,其包括高達某個最大數量的操作指令。用以描述一特殊照明元件的每一組資訊(例如,描述照明元件的資訊「0」1102)包含一燈泡狀態1120,其具有一位元用以表示該照明元件是否被開啟或關閉1121,以及一欄位用以表示以該燈光之最大光強度輸出為基準之該燈光被開啟的程度1122。此外,照明元件的操作總時數1124、和照明元件相關聯的鎮流器的操作總時數1126、和照明元件相關聯的電力開啟事件的次數1128、以及各種額外類型的資訊亦會被儲存。關於照明夾具的資訊1108包含:目前功率消耗1130;跨越該照明夾具的目前或瞬間電壓1132;該照明夾具所取出的電流1134;該照明夾具所 使用的累積能量1136;表示特殊警示、其它感測器輸入、或是其它輸入訊號究竟為有作用或無作用的旗標1138;以及表示特殊繼電器及其它輸出器件究竟為有作用或無作用的一組旗標140。照明夾具資訊還包含累計性光狀態1142,其表示和該照明夾具相關聯的任何光元件究竟為開啟或關閉。狀態位元1110包含各式各樣不同的位元旗標用以表示各種類型的問題,其包含撤銷事件、感測器故障、通訊失效、用於控制照明元件操作所需要的儲存資料不存在、以及其它此類事件與特徵。I/O裝置描述符1114提供能夠被LMU監視的各種輸入訊號中每一者之意義的描述。排程1118內的每一個操作指令包含日期的指示符1150、起始時間1152、結束時間1154、和該指令相關聯的燈泡狀態1156、以及表示該指令要套用的群的群ID 1158。 Figure 11 shows the type of data stored in each light management unit. Each LMU stores information 1102 through 1105 for each of a fixed number of lighting elements; a plurality of group identifiers 1112 that identify the group to which the LMU is assigned; various input/output device descriptors 1114; various events Each state 1116; and a schedule 1118 that includes up to some maximum number of operational instructions. Each set of information used to describe a particular lighting element (eg, information "0" 1102 describing the lighting element) includes a light bulb state 1120 having a bit to indicate whether the lighting element is turned "on" or "off" 1121, and A field is used to indicate the extent to which the light is turned on based on the maximum light intensity output of the light. In addition, the total number of hours of operation of the lighting element 1124, the total number of operating hours of the ballast associated with the lighting element 1126, the number of power-on events associated with the lighting element 1128, and various additional types of information are also stored. . Information about the lighting fixture 1108 includes: current power consumption 1130; current or instantaneous voltage 1132 across the lighting fixture; current drawn by the lighting fixture 1134; the lighting fixture Cumulative energy used 1136; indicates whether a special alert, other sensor input, or other input signal is a useful or inactive flag 1138; and indicates whether the special relay and other output devices are active or inactive. Group flag 140. The lighting fixture information also includes an integrated light state 1142 that indicates whether any of the light components associated with the lighting fixture are on or off. Status bit 1110 includes a variety of different bit flags to indicate various types of problems, including revocation events, sensor failures, communication failures, non-existent stored data for controlling the operation of lighting elements, And other such events and features. The I/O Device Descriptor 1114 provides a description of the meaning of each of the various input signals that can be monitored by the LMU. Each operational command within schedule 1118 includes a date indicator 1150, a start time 1152, an end time 1154, and a lightbulb status 1156 associated with the instruction, and a group ID 1158 representing the group to which the instruction is to be applied.

圖12A至B所示的係用於一路由器所管理的所有不同的光管理單元或光夾具之由該路由器所管理的資料。在圖12A至B中提供一組關聯型資料庫表格,用以表示由一路由器所保留的關於該路由器所管理之LMU的資訊的類型。當然,在本文所述照明系統的替代範例中可以設計任何數量的各種不同資料庫架構來儲存及管理路由器的資訊。圖12A至B中所示的關聯型表格的用意在於提供一種示範性資料庫架構,以便圖解被儲存在一路由器內的資料類型。該示範性架構的關聯型表格包含:(1)器件類型1202,其列出一照明控制系統內的器件的各種類型,包含照明夾具的內部器件與照明元件以及LMU、路由器、以及其它器件;(2)位址1204,其包含參照其它表格的各種不同位址;(3)製造者1206,其含有和特殊器件製造者有關的資訊;(4)維修者1208,其含有和負責維修自動照明控制系統之器件的各種維修個人或機構有關的資訊;(5)管理者1210,其含有管理照明控制系統之一部分的各種管理機構或個人管理者有關的資訊;(6)額外表格,用以描述負責供應電力、供應各種其它服務的個人或機構以及圖12A至B中並未顯示的其它此類個人與機構;(7)器件1212,其儲存和該照明控制系統內的特殊器件有關的詳細資訊;(8)電氣1214,其儲存特殊系統器件的詳細電氣特徵,其中的各列參照器件表格中的列;(9)軟體1216,其儲存特殊系統器件的詳細軟體特徵,其 中的各列參照器件表格中的列;(10)機械1218,其儲存特殊系統器件的詳細機械特徵,其中的各列參照器件表格中的列;(11)含有(Contains)1220,其儲存構成「含有」關係的多對器件ID,用以表示該對器件ID中的第一器件ID辨識一含有該對器件ID中的第二器件ID所辨識之器件的器件;(12)管理(Manages)1222,其儲存器件之間的「管理」關係;以及(13)群1224,其含有和針對該路由器所定義的各群LMU有關的資訊。 Figures 12A through B are for the data managed by the router for all of the different light management units or optical fixtures managed by a router. A set of associated database tables is provided in Figures 12A-B to indicate the type of information retained by a router regarding the LMUs managed by the router. Of course, any number of different database architectures can be designed to store and manage router information in an alternative to the lighting system described herein. The associated table shown in Figures 12A-B is intended to provide an exemplary database architecture to illustrate the type of material stored in a router. The associated table of the exemplary architecture includes: (1) device type 1202, which lists various types of devices within a lighting control system, including internal components and lighting components of the lighting fixture, and LMUs, routers, and other devices; 2) address 1204, which contains various addresses referring to other tables; (3) manufacturer 1206, which contains information relating to the manufacturer of the particular device; (4) maintainer 1208, which contains and is responsible for servicing the automatic lighting control Information about various maintenance individuals or institutions of the system's devices; (5) Manager 1210, which contains information about various management agencies or individual managers who manage part of the lighting control system; (6) additional forms to describe responsibility An individual or institution that supplies power, supplies various other services, and other such individuals and institutions not shown in Figures 12A-B; (7) device 1212 that stores detailed information relating to particular devices within the lighting control system; (8) Electrical 1214, which stores the detailed electrical characteristics of the special system components, each of which refers to the column in the device table; (9) software 1216, which stores the special system Detailed features of the software, which The columns in the reference device table are listed; (10) the machine 1218, which stores the detailed mechanical features of the special system device, wherein each column refers to the column in the device table; (11) contains (Contains) 1220, the storage composition a plurality of pairs of device IDs of the "contained" relationship, wherein the first device ID in the pair of device IDs identifies a device that includes the device identified by the second device ID in the pair of device IDs; (12) Management (Manages) 1222, a "management" relationship between the storage devices; and (13) a group 1224 containing information about the groups of LMUs defined for the router.

於圖12A至B中所示的示範性資料架構中,器件類型表格1202含有ID/描述對,其描述該自動照明系統中不同類型器件中的每一者。該些ID或辨識符係使用在器件表格1212的CT ID行中。位址表格1204、製造者表格1206、維修者表格1208、以及管理者表格1210中所包含的列會於位址表格的情況中提供位址的描述,以及於製造者表格、維修者表格、以及管理者表格的情況中提供個人或機構的描述。器件表格1212中的每一個登錄項皆描述該自動照明系統內的一不同器件。每一個器件係由器件表格的第一行1230中的一辨識符或ID來辨識。每一個器件具有由第二行1232中所包含的器件類型辨識符所辨識的類型。每一個器件具有由器件表格的第三行1234中的製造者ID所辨識的製造者,其中製造者ID為製造者表格1206的第一行1236中所提供的製造者辨識符。器件會額外由下面來描述:行1240與1242中的保固資訊;行1244中的安裝日期;行1246中的序號;行1248、1250、以及圖12A中沒有顯示的額外行中的電氣表格、軟體表格、以及其它表格中的參照列;以及行1252中的GPS位置。許多其它類型的資訊可以包含在用以描述器件的額外行之中。電氣表格1214描述一器件的各種電子特徵,包含:行1254中的預測壽命;行1256中的該器件的累積運轉時間;行1258中的和該器件相關聯的電力開啟事件;以及行1260、1262、以及圖12B中沒有顯示的額外行中的各種臨界值,用以觸發和一器件相關聯的事件之。於其中一範例中,行1260包含一運轉時間警報,其規定當累積運轉時數等於或大於行1260中所示的臨界值時該照明控制系統應該採取特定行動。軟體表格1216與機械表格1218包含軟體器件和機械器件的各 項特徵。群表格1224中的每一群係由下面來描述:行1270中的ID;行1272中的名稱;行1274、1276、圖12B中並未顯示的額外行中和該群相關聯的管理者、維修者、以及其它服務提供者的各種ID;行1278中和一群相關聯的路由器的器件ID;以及沒有結構性的行1280中的該群的目前排程。 In the exemplary data architecture illustrated in Figures 12A-B, the device type table 1202 contains an ID/description pair that describes each of the different types of devices in the automated lighting system. These IDs or identifiers are used in the CT ID row of device table 1212. The address table 1204, the manufacturer table 1206, the maintainer table 1208, and the columns included in the manager table 1210 provide a description of the address in the case of the address table, as well as the manufacturer form, the maintainer form, and A description of the individual or institution is provided in the case of the manager form. Each entry in device table 1212 describes a different device within the automated lighting system. Each device is identified by an identifier or ID in the first row 1230 of the device table. Each device has a type that is recognized by the device type identifier included in the second row 1232. Each device has a manufacturer identified by the manufacturer ID in the third row 1234 of the device table, where the manufacturer ID is the manufacturer identifier provided in the first row 1236 of the manufacturer table 1206. The device will be additionally described below: warranty information in rows 1240 and 1242; installation date in row 1244; sequence number in row 1246; rows 1248, 1250, and electrical tables, software in additional rows not shown in Figure 12A Tables, and reference columns in other tables; and GPS locations in row 1252. Many other types of information can be included in the extra lines used to describe the device. Electrical form 1214 describes various electronic features of a device, including: predicted lifetime in row 1254; cumulative runtime of the device in row 1256; power-on event associated with the device in row 1258; and rows 1260, 1262 And various thresholds in the extra rows not shown in Figure 12B to trigger events associated with a device. In one example, row 1260 includes an operational time alarm that specifies that the lighting control system should take specific actions when the cumulative operating hours are equal to or greater than the threshold shown in row 1260. The software table 1216 and the mechanical table 1218 contain software devices and mechanical devices. Item characteristics. Each group in the group table 1224 is described by: ID in line 1270; name in line 1272; lines 1274, 1276, additional lines not shown in Figure 12B, and associated managers of the group, maintenance And the various IDs of other service providers; the device ID of row 1278 and a group of associated routers; and the current schedule of the group in unstructured row 1280.

儲存在圖12A至B中所示的示範性資料架構中的資訊允許回應由在一路由器或網路資料中心上執行的使用者介面常式所產生的許多不同類型的查詢。舉例來說,倘若路由器提供的使用者介面的使用者希望找尋Supermall停車場群中的全部燈柱或光夾具的話,路由器使用者介面常式能夠執行下面的SQL查詢以提供經辨識的燈柱的序號以及GPS座標: The information stored in the exemplary data schema shown in Figures 12A-B allows for many different types of queries generated by user interface routines executed on a router or network data center. For example, if the user interface provided by the router wants to find all the light poles or optical fixtures in the Supermall parking lot group, the router user interface routine can execute the following SQL query to provide the identified number of the lamp post. And GPS coordinates:

於本文所述照明系統的特定範例中,一局部儲存在該路由器內或是儲存在一資料庫管理系統中而可由路由器透過網路控制中心來存取的資料庫可以在新增或更新資料時自動觸發產生從 該路由器發送至LMU的訊息。於本文所述照明系統的其它範例中,該些使用者介面常式可以經由該使用者介面響應於使用者輸入而執行查詢以更新該資料庫並且在適當時同時產生要傳送至LMU的命令。於特定的情況中,一分離、不同步的路由器常式可以週期性地比較該資料庫的內容以及除存在LMU內的資訊,以便確保LMU的資訊內容反映儲存在該資料庫內的資訊。一般來說,除存在LMU內的資訊(其包含狀態、運轉時間特徵、感測器的定義、以及其它此類資訊)也會被儲存在路由器的資料庫之中。 In a specific example of the illumination system described herein, a database stored locally in the router or stored in a database management system and accessible by the router through the network control center may be added or updated when the data is added or updated. Automatic trigger generation The message that the router sent to the LMU. In other examples of illumination systems described herein, the user interface routines can perform queries via the user interface in response to user input to update the database and, when appropriate, simultaneously generate commands to be transmitted to the LMU. In a particular case, a separate, asynchronous router routine can periodically compare the contents of the database with information stored in the LMU to ensure that the information content of the LMU reflects the information stored in the database. In general, information other than the presence of the LMU (which includes status, runtime characteristics, sensor definitions, and other such information) is also stored in the router's database.

路由器會經由一命令介面來執行LMU的控制。圖13所示的係使用在路由器至光管理單元通訊中的各種命令。此些命令包含:(1)設定時間命令,其設定配合一LMU所儲存的時間;(2)定義群命令,其設定一LMU所屬的群列表中的登錄項(圖11中的1112);(3)定義排程命令,其被用來定義儲存在LMU內的排程;(4)定義輸入/輸出命令,其定義LMU內的各種感測器裝置及相關聯的事件;(5)強制燈泡狀態,其讓經由使用者介面來和路由器互動的使用者,或者,於替代範例中,讓和蜂巢式電話互動的使用者,透過LMU來手動操作一照明單元;(6)回報狀態命令,其讓路由器向LMU請求狀態資訊;(7)回報狀態命令回應,其數種形式被用來回應LMU所收到的回報狀態命令;(8)事件命令,其會回報事件且其能夠由任何單元發送;(9)設定操作時數命令,其允許路由器設定一LMU所保留的照明夾具內的器件的各種電氣特徵;(10)定義燈泡特徵命令,其允許路由器儲存管理這些照明元件的LMU內的照明元件的特殊燈泡特徵;(11)韌體更新命令,其讓一LMU準備接收韌體更新;(12)後門命令,其用來從LMU處取得資料的除錯命令;以及(13)新增/移除命令,其會通知一橋接LMU在該橋接LMU的電力線網路中新增或刪除一端末點LMU。圖14A至N所示的係上面參考圖13所討論的各種命令與回應的資料內容。圖14A至N中所提供之用於描述訊息的資料欄位的表格相當清楚顯見,本文不作進一步討論。 The router will perform LMU control via a command interface. Figure 13 shows the various commands used in the router-to-light management unit communication. The commands include: (1) setting a time command, which is set to match the time stored by an LMU; and (2) defining a group command, which sets an entry in the group list to which the LMU belongs (1112 in FIG. 11); 3) Define schedule commands that are used to define schedules stored within the LMU; (4) Define input/output commands that define various sensor devices and associated events within the LMU; (5) Force bulbs a state that allows a user interacting with the router via the user interface, or, in an alternative example, a user interacting with the cellular phone to manually operate a lighting unit via the LMU; (6) a return status command, Let the router request status information from the LMU; (7) report the status command response, several forms of which are used to respond to the reward status command received by the LMU; (8) an event command that will report the event and which can be sent by any unit (9) setting an operation time command that allows the router to set various electrical characteristics of the devices within the illumination fixture retained by the LMU; (10) define a bulb feature command that allows the router to store illumination within the LMU that manages the lighting elements Component Special lamp features; (11) firmware update command that allows an LMU to prepare to receive firmware updates; (12) backdoor commands for debugging commands to retrieve data from the LMU; and (13) add/remove A command that notifies a bridged LMU to add or delete an end-point LMU in the power line network of the bridged LMU. Figures 14A through N show the contents of the various commands and responses discussed above with reference to Figure 13. The table for describing the data fields of the message provided in Figures 14A through N is fairly clear and will not be discussed further herein.

圖15至18提供配合一光管理單元的控制功能的流程控制圖。圖15提供一LMU事件處置器的控制流程圖,其會回應發 生在一LMU內的事件。該事件處置器會在步驟1502中等待下一個事件發生,並且接著在條件式陳述組中判斷發生哪一個事件並且回應該事件,例如,在等待步驟1502後面的條件式陳述1504中。該事件處置器會在該LMU中持續地運轉。當發生非同步感測器事件時,例如,來自一光電池的輸出訊號從開啟轉變成關閉或是從關閉轉變成開啟時,如在步驟1504中之判斷,該事件的事件描述符會在事件表格(圖11中的1116)中被找到並且更新。當一計時器逾時表示是時候檢查事件描述符被供應在該事件表格(圖11中的1116)中的各種事件時,會在步驟1508中呼叫檢查事件常式。當該事件對應於將一外來訊息佇列儲存至一外來訊息佇列時,如在步驟1510中之判斷,那麼,便會在步驟1512中呼叫已接收處理命令常式。當該事件對應於將一外送訊息佇列儲存至一外送訊息佇列時,如在步驟1514中之判斷,那麼,便會在步驟1518中呼叫處理外送命令常式。當該事件代表用於控制已儲存操作排程之週期性檢查的計時器逾時時,如在步驟1520中之判斷,那麼,便會在步驟1522中呼叫檢查排程常式。在步驟1524中被召喚的內定事件處置器會處理可能發生的任何各種事件。圖15中明確處理的事件僅為一組示範性事件,其係用來解釋LMU事件處置器的整體功能。 15 to 18 provide flow control diagrams for the control functions of a light management unit. Figure 15 provides a control flow chart of an LMU event handler, which will respond An event born in a LMU. The event handler will wait for the next event to occur in step 1502, and then determine which event occurred and respond to the event in the conditional statement group, for example, in wait for conditional statement 1504 following step 1502. The event handler will continue to operate in the LMU. When an asynchronous sensor event occurs, for example, when an output signal from a photovoltaic cell changes from on to off or from off to on, as determined in step 1504, the event descriptor for the event is in the event table. Found (1116 in Figure 11) and updated. When a timer expires indicating that it is time to check that the event descriptor is supplied to various events in the event table (1116 in FIG. 11), the event routine is called in step 1508. When the event corresponds to storing an incoming message queue to a foreign message queue, as determined in step 1510, then the call processing command routine is received in step 1512. When the event corresponds to storing an outgoing message queue to an outgoing message queue, as determined in step 1514, then the call processing outgoing command routine is processed in step 1518. When the event represents a timer for controlling the periodic check of the stored operational schedule, as judged in step 1520, then the check schedule routine is called in step 1522. The default event handler that is called in step 1524 will handle any of the various events that may occur. The events explicitly handled in Figure 15 are only a set of exemplary events that are used to explain the overall functionality of the LMU event handler.

圖16提供在圖15的步驟1508中所呼叫的檢查事件常式的控制流程圖。在步驟1602至1608的for-迴圈中,一LMU內的事件描述符表格(圖11中的1116)中的每一個事件描述符皆會被探討。倘若該事件被描述為有作用的話,或者,相較於處理時最近才發生的話,那麼,大體上,一用於回報該事件的訊息會在步驟1604中被佇列儲存至一外送訊息佇列,而且當批准進行局部動作時,如在步驟1605中之判斷,那麼,該事件便會在步驟1606中被局部性處理。在訊息佇列儲存及局部處理之後,事件狀態會在步驟1607中被重置。其它類型的事件可以被回報,但是不會被局部性處理。其它類型的事件可以被回報至路由器並且被局部性處理。舉例來說,溫度感測器事件可能會導致局部啟動或取消一加熱元件,以便局部性控制溫度。 Figure 16 provides a control flow diagram for the check event routine called in step 1508 of Figure 15. In the for-loop of steps 1602 through 1608, each event descriptor in the event descriptor table (1116 in Figure 11) within an LMU is discussed. If the event is described as being useful, or if it occurs recently compared to the processing, then, in general, a message for reporting the event will be queued to an outgoing message in step 1604. Columns, and when a partial action is approved, as determined in step 1605, the event is processed locally in step 1606. After the message queue is stored and partially processed, the event status is reset in step 1607. Other types of events can be reported but not processed locally. Other types of events can be reported back to the router and processed locally. For example, a temperature sensor event may cause a local activation or cancellation of a heating element to locally control the temperature.

圖17提供在圖15的步驟1512中所呼叫的「已接收 處理命令」常式的控制流程圖。下一個命令會在步驟1702中從外來命令佇列中被解除佇列儲存。當該命令係一擷取資訊命令時,如在步驟1704中之判斷,那麼,在步驟1706中,適當的資訊會從該LMU所儲存的資訊中被擷取並且被併入在佇列儲存至一外送訊息佇列的回應訊息之中。當將該訊息佇列儲存至該外送訊息佇列時,在步驟1708中會發生一佇列非空乏事件。當該命令係一儲存資訊命令時,如在步驟1708中之判斷,那麼,在步驟1710中,於該命令中所收到的資訊會被儲存至該LMU內的適當資料結構之中。當需要承認時,如在步驟1712中之判斷,那麼,一承認訊息會在步驟1714中被準備並且被佇列儲存至該外送訊息佇列。當該命令導致局部動作時,如在步驟1716中之判斷,那麼,便會在步驟1718中實行該局部動作,以及當需要承認訊息時,如在步驟1720中之判斷,那麼,該承認訊息會在步驟1714中被準備並且被佇列儲存。當命令佇列為空乏時,如在步驟1722中之判斷,那麼,該常式便結束。否則,控制便會回到步驟1702,以便解除佇列儲存下一個已接收的命令。 Figure 17 provides the "received" call in step 1512 of Figure 15. Process control command "normal control flow chart. The next command will be unloaded from the foreign command queue in step 1702. When the command is a command to retrieve information, as determined in step 1704, then in step 1706, the appropriate information is retrieved from the information stored by the LMU and incorporated into the queue for storage. An outgoing message is listed in the response message. When the message queue is stored in the outgoing message queue, a queue of non-depletion events occurs in step 1708. When the command is a store information command, as determined in step 1708, then in step 1710, the information received in the command is stored in the appropriate data structure within the LMU. When acknowledgment is required, as determined in step 1712, an acknowledgment message is prepared in step 1714 and stored in the queue for the outgoing message. When the command causes a local action, as determined in step 1716, then the local action is performed in step 1718, and when the message is required to be acknowledged, as determined in step 1720, then the acknowledgement message It is prepared in step 1714 and stored in a queue. When the command queue is depleted, as judged in step 1722, then the routine ends. Otherwise, control returns to step 1702 to unload the queue to store the next received command.

圖18提供在圖15的步驟1522中所呼叫的「檢查排程」常式的控制流程圖。在步驟1802至1810的for-迴圈中,局部儲存在該LMU內的排程(圖11中的1118)中的每一個登錄項皆會被探討。在步驟1803中,目前時間會和目前探討的排程的起始時間及結束時間作比較。當目前時間落在目前探討的排程事件或登錄項的起始時間登錄項及結束時間登錄項所指定的範圍內時,那麼,在步驟1805至1809的內for-迴圈中,由該LMU控制的照明夾具內的每一個照明元件皆會被探討。當目前探討的照明元件落在其排程登錄項為合法的群裡面時,如比較該排程登錄項的群ID及該照明元件的群ID之決定,那麼,當目前的照明元件輸出不同於該排程的規定時,在步驟1808中,該LMU會藉由變更該照明元件的電壓或電流輸出來將該照明元件的輸出改變為該排程中規定的輸出。 Figure 18 provides a control flow diagram for the "Check Schedule" routine called in step 1522 of Figure 15. In the for-loop of steps 1802 to 1810, each entry in the schedule (1118 in Fig. 11) partially stored in the LMU is discussed. In step 1803, the current time is compared to the start time and end time of the currently discussed schedule. When the current time falls within the range specified by the start time entry and the end time entry of the currently discussed schedule event or entry, then, in the inner for-loop of steps 1805 to 1809, the LMU Each lighting element within the controlled lighting fixture is discussed. When the currently discussed lighting component falls within the group whose scheduling entry is legal, such as comparing the group ID of the scheduling entry and the group ID of the lighting component, then when the current lighting component output is different When the schedule is specified, in step 1808, the LMU changes the output of the illumination element to the output specified in the schedule by changing the voltage or current output of the illumination element.

圖19提供一路由器使用者介面的狀態轉變圖。當一使用者經由一使用者介面和路由器互動時,該路由器一開始會顯示一首頁1902。使用者可能希望觀看資料、更新與修正資料、或是手動控 制一或更多個LMU,而且於本文所述照明系統的特定範例中,可以選擇此三種類型互動中的其中一者並且接受授權,以便經由一或更多個授權頁1904至1906來實行此些類型的動作。使用者可能需要提供密碼、讓手指通過指紋辨識器、提供其它資訊以便藉由和該使用者介面互動來授權該使用者實行此些與其它類型的任務。各種網頁集可以讓使用者觀看或修正:針對LMU所定義的群以及LMU與群的關聯;所希望的照明操作的類行事曆排程;和照明夾具及照明夾具內所含的器件有關的資訊;以及和夾具位置有關的資訊,其包含能夠觀看疊放在地圖上的夾具位置或是含有該些LMU的區域的照片影像。有大量不同的可能使用者介面能夠被設計用來提供LMU及由一特殊路由器所管理的照明夾具的互動式控制。雷同的使用者介面可以在網路控制中心層級處被提供。 Figure 19 provides a state transition diagram of a router user interface. When a user interacts with the router via a user interface, the router initially displays a first page 1902. Users may wish to view material, update and correct data, or manually control One or more LMUs are made, and in a particular example of a lighting system described herein, one of the three types of interactions can be selected and authorized to be executed via one or more authorization pages 1904 through 1906 These types of actions. The user may need to provide a password, pass a finger through the fingerprint reader, and provide other information to authorize the user to perform such and other types of tasks by interacting with the user interface. Various web pages can be viewed or corrected by the user: the group defined for the LMU and the association of the LMU with the group; the calendar schedule of the desired lighting operation; and the information related to the devices contained in the lighting fixture and lighting fixture And information related to the position of the fixture, including the ability to view the position of the fixture stacked on the map or a photo image of the area containing the LMUs. There are a number of different possible user interfaces that can be designed to provide interactive control of the LMU and the lighting fixtures managed by a particular router. The same user interface can be provided at the network control center level.

圖20至26提供上面配合圖7討論的射頻致能光管理單元(RF致能LMU)的額外說明。圖20所示的係RF致能LMU的方塊圖,其代表本文所述照明系統的其中一個範例,雷同於圖7中所示的方塊圖,在圖21A至26中提供其子器件、電路圖的額外細節及虛線表示符。圖21A至26中所提供的電路圖包含額外說明下面由圖20中的虛線矩形所示的子器件:(1)微處理器2002;(2)光耦合隔絕子器件2004;(3)切換式繼電器子器件2006;(4)內部電力供應子器件2008;以及(5)電表子器件2010。電表子器件2010係一積體電路施行的電表,其監視經由AC電力線2012至2013接收電力的燈具的電力用量。RF致能LMU內的軟體常式會查詢電表子器件2010,通常係在規律的時間間隔處及/或在從一路由器或網路控制中心處收到請求時,以便監視該RF致能LMU所管理的燈具的電力用量並且回報該電力用量給該路由器或網路控制中心。 20 through 26 provide additional illustration of the radio frequency enabled light management unit (RF enabled LMU) discussed above in connection with FIG. Figure 20 is a block diagram of an RF-enabled LMU, which represents one of the examples of the illumination system described herein, similar to the block diagram shown in Figure 7, and the sub-devices, circuit diagrams thereof are provided in Figures 21A-26. Additional details and dotted lines. The circuit diagrams provided in Figures 21A through 26 include additional descriptions of the sub-devices shown below by the dashed rectangles in Figure 20: (1) microprocessor 2002; (2) optically coupled isolation sub-device 2004; (3) switched relay Sub-device 2006; (4) internal power supply sub-device 2008; and (5) meter sub-device 2010. The meter sub-device 2010 is an electric meter implemented by an integrated circuit that monitors the amount of power used by lamps that receive power via the AC power lines 2012 to 2013. The software routine within the RF-enabled LMU queries the meter sub-device 2010, typically at regular intervals and/or upon receipt of a request from a router or network control center to monitor the RF-enabled LMU. The amount of power used to manage the luminaire and return the amount of power to the router or network control center.

圖21A至E提供RF致能LMU的微處理器器件(圖20中的2002)的額外說明。微處理器2102包含和外部訊號線耦合的大量接針,該些接針在該微處理器和其它RF致能LMU器件之間提供一介面。在圖21A至E中,該些接針的數字編號從1至32。類中斷訊號2104至2105係由該RF致能LMU的各種感測器或監視器件 輸入至接針12與13。該微處理器輸出一繼電器訊號2106給切換式繼電器器件(圖20中的2006),用以中斷該燈具與該AC電源的連接。該微處理器會從一熱阻器溫度感測器處接收一訊號2108,以便監視該RF致能LMU所在的光夾具殼體內的溫度。一群訊號2110提供一通用非同步接收器傳送器(Universal-Asynchronous-Receiver-Transmitter,UART)介面給無線模組(圖7中的704)以及另一群訊號線2112提供一介面給電力線通訊模組(圖7中的706)。訊號線2114至2115提供一時脈輸入給該微處理器,而訊號線2116群則施行一串列周邊介面(Serial-Peripheral-Interface,SPI)匯流排介面給電表器件(圖20中的2010)。另一群訊號線2118施行一脈衝寬度調變輸出。數個接針會將該微處理器連接至內部DC電力2120及連接至接地2122。微處理器2102包含:快閃記憶體,用以儲存軟體程式以便施行該RF致能LMU的控制與通訊功能;以及傳統的處理器子器件,其包含暫存器、算術單元與邏輯單元、以及其它此類子器件。任何各式各樣不同的微處理器皆可以運用在RF致能LMU之中。 21A-E provide additional illustrations of a microprocessor device (2002 in Figure 20) of an RF enabled LMU. Microprocessor 2102 includes a plurality of pins coupled to external signal lines that provide an interface between the microprocessor and other RF-enabled LMU devices. In Figures 21A-E, the numbers of the pins are from 1 to 32. Class interrupt signals 2104 through 2105 are various sensors or monitors of the RF enabled LMU Input to pins 12 and 13. The microprocessor outputs a relay signal 2106 to the switching relay device (2006 in Figure 20) for interrupting the connection of the luminaire to the AC power source. The microprocessor receives a signal 2108 from a thermistor temperature sensor to monitor the temperature within the optical fixture housing in which the RF enabled LMU is located. A group of signals 2110 provides a Universal-Asynchronous-Receiver-Transmitter (UART) interface to the wireless module (704 in Figure 7) and another group of signal lines 2112 to provide an interface to the power line communication module ( 706) in Figure 7. The signal lines 2114 to 2115 provide a clock input to the microprocessor, and the signal line 2116 group implements a Serial-Peripheral-Interface (SPI) bus interface to the meter device (2010 in Figure 20). Another group of signal lines 2118 performs a pulse width modulation output. A number of pins connect the microprocessor to internal DC power 2120 and to ground 2122. The microprocessor 2102 includes: a flash memory for storing a software program for performing control and communication functions of the RF-enabled LMU; and a conventional processor sub-device including a register, an arithmetic unit and a logic unit, and Other such sub-devices. Any of a variety of different microprocessors can be used in the RF-enabled LMU.

圖22提供RF致能LMU的光耦合-隔絕子器件(圖20中的2004)的一部分的電路圖。輸入線與輸出線會藉由一光學連接線2202而彼此電子隔絕,其中一發光二極體(LED)及光二極體會分別將電子訊號轉換成光訊號以及將光訊號轉換回到電子訊號。 Figure 22 provides a circuit diagram of a portion of an optical coupling-insulating sub-device (2004 in Figure 20) of an RF-enabled LMU. The input and output lines are electrically isolated from each other by an optical connection 2202, and a light-emitting diode (LED) and an optical diode respectively convert the electronic signal into an optical signal and convert the optical signal back to the electronic signal.

圖23提供RF致能LMU的切換式繼電器器件的電路圖(圖20中的2006)。當繼電器訊號2302被解除判定時,一螺線管切換器或類螺線管切換器裝置2304會將輸入AC電力導體互連至輸出AC電力。然而,當繼電器訊號2302被微處理器(圖21A至E中的2101)判定時,該螺線管會從輸出AC電力線中解除耦合輸入AC電力線,因而中斷該燈具和主輸入電力線的連接。當該微處理器沒有發揮功能時,並且在判定由該微處理器及該RF致能LMU內的微處理器常駐軟體控制程式對一光夾具進行控制之前,該燈具的內定狀態係被連接至該些AC輸入主電力線。因此,在該微處理器和控制程式之初始化之前,以及每當該微處理器及/或控制程式無法主動地控制該光夾 具的器件時,該燈具會直接被連接至該些主電力線。如上面的討論,該燈具可以因為接收自一路由器或網路控制中心的命令的結果而在RF致能LMU控制下和該些主電力線中斷連接。 Figure 23 provides a circuit diagram of the switched relay device of the RF enabled LMU (2006 in Figure 20). When the relay signal 2302 is de-asserted, a solenoid switch or solenoid-like switch device 2304 interconnects the input AC power conductor to the output AC power. However, when the relay signal 2302 is determined by the microprocessor (2101 in Figures 21A-E), the solenoid decouples the input AC power line from the output AC power line, thereby interrupting the connection of the luminaire to the main input power line. The default state of the luminaire is connected to the microprocessor before it is determined that the microprocessor and the microprocessor resident software control program in the RF-enabled LMU are controlling the optical fixture. These ACs are input to the main power line. Therefore, before the initialization of the microprocessor and control program, and whenever the microprocessor and/or control program cannot actively control the photo folder When the device is equipped, the luminaire is directly connected to the main power lines. As discussed above, the luminaire can be disconnected from the main power lines under the control of the RF-enabled LMU as a result of commands received from a router or network control center.

圖24提供RF致能LMU的內部電力供應器器件(圖20中的2008)的電路圖。輸入AC電力2402至2403會被一整流器與變壓器2404整流並且下降,用以產生五伏特內部DC輸出2406。該輸出電力訊號會經由一穩定電路系統與器件而穩定,其包含電容器2408。 Figure 24 provides a circuit diagram of an internal power supply device (2008 in Figure 20) of an RF enabled LMU. The input AC power 2402 through 2403 is rectified and lowered by a rectifier and transformer 2404 to produce a five volt internal DC output 2406. The output power signal is stabilized via a stabilizing circuitry and device that includes a capacitor 2408.

圖25A至C提供RF致能LMU的電表器件(圖20中的2010)的電路圖。該電表被施行為一積體電路2502,其透過上面參考圖21A至E討論的SPI匯流排介面2504而介接至該微處理器。 25A through C provide circuit diagrams of an electric meter device (2010 in Fig. 20) of an RF enabled LMU. The meter is implemented as an integrated circuit 2502 that interfaces to the microprocessor via the SPI bus interface 2504 discussed above with reference to Figures 21A-E.

圖26提供用以將一感測器或監視裝置2602的輸出互連至微處理器之類中斷輸入2604的電路的電路圖。當跨越感測器-輸出訊號線的電壓降大於一臨界值時,輸出訊號2604會被判定。 26 provides a circuit diagram of circuitry for interconnecting the output of a sensor or monitoring device 2602 to an interrupt input 2604, such as a microprocessor. The output signal 2604 is asserted when the voltage drop across the sensor-output signal line is greater than a threshold.

基於許多理由,基於發光二極體(LED)的區域照明(包含街道照明)在許多應用(包含街道照明應用)中快速變成較佳的照明技術。基於LED的燈具提供明顯大於白熾燈泡、螢光照明元件、以及其它照明元件技術的能量效率。基於LED的燈具會被施行與控制,用以生產具有所希望頻譜特徵的輸出光,其會輸出特殊波長或波長範圍的光,不同於許多其它類型的照明元件。基於LED的燈具能夠快速地被開啟與關閉,並且在微秒等級的時間週期中達到完全亮度。來自基於LED燈具的輸出能夠輕易地由脈衝寬度調變來控制或是藉由控制該基於LED燈具的電流輸入來控制,從而允許精確的調光。基於LED的燈具傾向於隨著時間而故障,不會如白熾照明元件或螢光照明元件般突然故障。基於LED的燈具的壽命長過其它類型照明元件的壽命2到10倍甚至更大。基於LED的燈具通常比其它類型照明元件更耐用,更能抵抗衝擊及其它類型的機械性破壞。基於此些與其它理由,在下一個五至十年期間,基於LED的燈具被預言會在街道照明應用中大量取代其它類型照明元件。 Area lighting based on light-emitting diodes (LEDs) (including street lighting) quickly becomes a better lighting technology in many applications, including street lighting applications, for a number of reasons. LED-based luminaires provide energy efficiencies that are significantly greater than those of incandescent bulbs, fluorescent lighting components, and other lighting component technologies. LED-based luminaires are implemented and controlled to produce output light having the desired spectral characteristics that output light of a particular wavelength or range of wavelengths, unlike many other types of lighting elements. LED-based luminaires can be turned on and off quickly and reach full brightness in the microsecond-level time period. Outputs from LED-based luminaires can be easily controlled by pulse width modulation or by controlling the current input of the LED-based luminaire, allowing for precise dimming. LED-based luminaires tend to fail over time and do not suddenly fail like incandescent lighting elements or fluorescent lighting elements. LED-based luminaires have a lifespan that is 2 to 10 times longer than other types of luminaires. LED-based luminaires are generally more durable than other types of illuminating components and are more resistant to shock and other types of mechanical damage. For these and other reasons, LED-based luminaires are predicted to overwhelm other types of lighting components in street lighting applications during the next five to ten years.

然而,雖然優點很多,基於LED的燈具仍有特定缺 點,其包含非線性的電流至電壓響應,其需要謹慎的調節被供應至基於LED的燈具的電壓與電流。此外,基於LED的燈具還相對的溫度敏感。基於此些與其它理由,基於LED的燈具的RF致能LMU控制為基於LED的燈具提供的優點會更大於為傳統類型照明提供的優點。舉例來說,RF致能LMU可以包含電表與輸出流明感測器,用以幫助自動監視基於LED的燈具輸出,以便決定基於LED的燈具何時需要備更換。於會突然故障的傳統類型照明元件的情況中,維修人員相對容易確認已故障的照明元件。相反地,因為基於LED的燈具係逐漸地故障,所以,藉由RF致能LMU的監視能夠比藉由維修人員的監視提供更可靠的自動系統來監視與偵測即將故障的基於LED的燈具。此外,RF致能LMU還能夠在相對頻繁的間隔處監視照明夾具內的溫度並且能夠自動降低輸出至燈具的電力而採取其它改善步驟,以便確保溫度敏感的基於LED的燈具保持在最佳的溫度範圍內。 However, although there are many advantages, LED-based lamps still have specific shortcomings. The point, which contains a non-linear current-to-voltage response, requires careful adjustment of the voltage and current supplied to the LED-based luminaire. In addition, LED-based luminaires are also relatively temperature sensitive. For these and other reasons, RF-enabled LMU control for LED-based luminaires provides advantages over LED-based luminaires that are greater than those provided for conventional types of luminaires. For example, an RF-enabled LMU can include an electricity meter and an output lumen sensor to help automatically monitor the LED-based luminaire output to determine when an LED-based luminaire needs to be replaced. In the case of conventional types of lighting elements that can suddenly fail, it is relatively easy for the service personnel to identify the failed lighting elements. Conversely, because LED-based luminaires are progressively failing, monitoring by the RF-enabled LMU can monitor and detect faulty LED-based luminaires by providing a more reliable automated system than monitoring by maintenance personnel. In addition, the RF-enabled LMU is able to monitor the temperature within the lighting fixture at relatively frequent intervals and automatically reduce the power output to the fixture while taking other improvements to ensure that the temperature-sensitive LED-based fixture remains at the optimum temperature. Within the scope.

圖27至29所示的係基於LED的照明元件的特徵。圖27所示的係一典型的小型LED照明裝置。該LED光源係一相對小的半導體材料晶片2702,透過陽極2704元件與陰極2706元件而被施加至該照明裝置的電位跨越該晶片有電壓。一般來說,一半導體晶片2702係被鑲嵌在一反射式凹腔2705內,用以在代表該反射式凹腔所定義之立體角的方向中將光朝外引導。於較高電力的LED中,該半導體晶片的尺寸明顯較大並且通常被鑲嵌至一金屬基板,以便在該較大的半導體晶片中提供較大的熱移除。 The features of the LED-based lighting elements are shown in Figures 27-29. Figure 27 shows a typical small LED lighting device. The LED source is a relatively small semiconductor material wafer 2702 that is applied across the anode 2704 element to the cathode 2706 element to the potential of the illumination device across the wafer. In general, a semiconductor wafer 2702 is embedded in a reflective cavity 2705 for directing light outwardly in a direction representative of the solid angle defined by the reflective cavity. In higher power LEDs, the semiconductor wafer is significantly larger in size and is typically mounted to a metal substrate to provide greater heat removal in the larger semiconductor wafer.

圖28圖解LED操作的原理。一構成LED裝置2802之照明元件的半導體晶體會有不同的摻雜,用以產生一p-n接面2804。該晶體的p側含有過量的正電載子或電洞,例如,電洞2806;而該半導體的n側含有過量的負電載子或電子,例如,電子2808。在該半導體晶體的p部與n部之間的介面2804處會形成一淺屏障區2810,其中電子會從n側擴散至p側,而電洞會從p側擴散至n側。該屏障區代表一用以阻止電流流動的小電位能量屏障。然而,當一電壓2812在正向方向中被供應跨越該半導體時,如圖28中所示,稱為「正向偏壓」,該屏障會輕易地被克服,而且電流流動跨越該p-n接 面。反向該電壓源的極性,稱為「反向偏壓」,會誘發電流在反向方向中流過該半導體;不過,當允許增加反向電流時超過一臨界反向電流時,足夠的熱量會被產生而破壞半導體晶格並且永久性禁能該裝置。施行p-n接面的不勻稱性摻雜半導體晶體構成現代電子系統之許多器件的基本功能單元,其包含二極體、電晶體、以及其它器件。於發光二極體(LED)的情況中,當該半導體晶片被正向偏壓且電流流過該p-n接面時,在已激昇的電子結合電洞的過程中該些電子會藉由釋放特定波長的光而轉變成較低的能量位準。 Figure 28 illustrates the principle of LED operation. The semiconductor crystals that make up the illumination elements of LED device 2802 have different dopings to create a p-n junction 2804. The p-side of the crystal contains an excess of positively charged carriers or holes, such as holes 2806; and the n-side of the semiconductor contains an excess of negatively charged carriers or electrons, such as electrons 2808. A shallow barrier region 2810 is formed at the interface 2804 between the p-port and the n-port of the semiconductor crystal, in which electrons diffuse from the n-side to the p-side, and the holes diffuse from the p-side to the n-side. The barrier region represents a small potential energy barrier to block the flow of current. However, when a voltage 2812 is supplied across the semiconductor in the forward direction, as shown in Figure 28, referred to as "forward bias", the barrier is easily overcome and current flows across the p-n surface. Reverse the polarity of the voltage source, called "reverse bias," which induces current to flow through the semiconductor in the reverse direction; however, when a reverse current is allowed to increase beyond a critical reverse current, sufficient heat will It is created to destroy the semiconductor lattice and permanently disable the device. The unevenly doped semiconductor crystals that implement the p-n junction constitute the basic functional unit of many devices of modern electronic systems, including diodes, transistors, and other devices. In the case of a light-emitting diode (LED), when the semiconductor wafer is forward biased and current flows through the pn junction, the electrons are released during the process of the excited electrons binding to the hole. Light of a particular wavelength is converted to a lower energy level.

圖29顯示一典型LED的電流相對於電壓的曲線。當0V被施加跨越LED 2902時,沒有電流通過該LED。LED的正向偏壓會產生一小額初始電流,其會以指數的方式增加超越一臨界正向偏壓電壓2904。LED的反向偏壓會產生一指數式增加超越一崩潰電壓臨界值2906的反向電流。當一外加正向偏壓電壓超越圖29中的臨界電壓2904時,該LED會發光。然而,可以發光而沒有足量電流破壞半導體晶格的操作外加電壓範圍相當窄。換言之,如圖29中所示,一LED以外加電壓為基準的電流有高度的非線性,而且在該電流相對於電壓曲線的指數區域中即使外加電壓小額增家仍會在該裝置內誘發足量電流而破壞該裝置。基於此理由,和在白熾光元件及螢光光元件之中不同,輸出至基於LED的燈具的電壓或電流的控制需要相對精確。基於LED的區域照明夾具通常運用會整流輸入AC電力並且輸出恆定電壓或恆定電流DC電力給該燈具的LED驅動器器件。 Figure 29 shows the current vs. voltage curve for a typical LED. When 0V is applied across the LED 2902, no current flows through the LED. The forward bias of the LED produces a small initial current that increases exponentially beyond a critical forward bias voltage 2904. The reverse bias of the LED produces an exponential increase in reverse current that exceeds a collapse voltage threshold of 2906. When an applied forward bias voltage exceeds the threshold voltage 2904 in Figure 29, the LED will illuminate. However, the operational applied voltage range that can illuminate without a sufficient amount of current to destroy the semiconductor crystal lattice is rather narrow. In other words, as shown in FIG. 29, the current referenced by an LED is highly nonlinear, and in the exponential region of the current with respect to the voltage curve, even if the applied voltage is increased, the foot is induced in the device. The current is destroyed to destroy the device. For this reason, unlike the incandescent and fluorescent elements, the control of the voltage or current output to the LED-based luminaire needs to be relatively accurate. LED-based area lighting fixtures typically employ LED driver devices that rectify input AC power and output constant voltage or constant current DC power to the luminaire.

圖30所示的係基於LED的街道照明燈具。圖中所示的基於LED的街道照明燈具3002和正常的安裝配向反向,其包含一透明遮罩3004,在一LED元件陣列3008中的LED元件(例如,LED元件3006)所發出的光會穿過透明遮罩3004用以照射一區域。該基於LED的街道照明燈具包含一大體上為金屬的殼體3010,其有多個類鳍狀的突出部,例如,鰭部3012,用以幫助該LED陣列的熱移除。該基於LED的街道照明燈具可以還包含一充當該LED陣列之恆定電壓或恆定電流電源的LED驅動器。輸入電力線與訊號線穿過一類環圈夾具3014,其還充當一光夾具托架的機械耦合件。於一替代類型的 基於LED的街道照明燈具中,該LED驅動器可以被放置在一光夾具的一器件內,而非圖30中所示的燈具殼體內,並且藉由穿過該類環圈夾具的繞線被互連至該LED陣列。 Figure 30 shows an LED-based street lighting fixture. The LED-based street lighting fixture 3002 shown in the figures is reversed from the normal mounting alignment, and includes a transparent mask 3004, which is emitted by LED elements (eg, LED elements 3006) in an array of LED elements 3008. A transparent mask 3004 is used to illuminate an area. The LED-based street lighting fixture includes a generally metallic housing 3010 having a plurality of fin-like projections, such as fins 3012, to aid in thermal removal of the LED array. The LED-based street lighting fixture can also include an LED driver that acts as a constant voltage or constant current source for the LED array. The input power and signal lines pass through a type of loop clamp 3014 that also acts as a mechanical coupling for the optical clamp bracket. An alternative type In LED-based street lighting fixtures, the LED driver can be placed in a device of a light fixture, rather than within the fixture housing shown in Figure 30, and are interdigitated by winding through the loop clamps Connect to the LED array.

有許多類型的LED驅動器可在市面上購得。在特定街道照明應用中所使用的其中一種普及的LED驅動器會從100V與277V之間的輸入電壓中輸出0.70A的恆定電流。該LED驅動器包含熱保護電路系統並且耐受該LED陣列中持續的開路事件與短路事件。該LED驅動器被放置在重量三磅以下且維度約21公分x59公分x37公分的長矩形包體內。 There are many types of LED drivers available on the market. One of the popular LED drivers used in certain street lighting applications will output a constant current of 0.70 A from an input voltage between 100V and 277V. The LED driver includes thermal protection circuitry and is resistant to ongoing open and short circuit events in the LED array. The LED driver was placed in a long rectangular envelope weighing less than three pounds and having a dimension of about 21 cm x 59 cm x 37 cm.

圖31至33所示的係其中一種類型的恆定-輸出-電流LED燈驅動器。圖31所示的係LED燈驅動器。該LED燈驅動器利用一固定頻率脈衝寬度調變控制器積體電路3106以輸入AC電力3104為基礎來驅動一串或是一系列LED 3102。圖32提供該LED燈驅動器的該積體電路(圖31中的3106)的功能方塊圖。圖33提供該LED燈驅動器內的該積體電路(圖31中的3106)的功能方塊圖。 One of the types shown in Figures 31 through 33 is a constant-output-current LED lamp driver. Figure 31 shows an LED lamp driver. The LED lamp driver utilizes a fixed frequency pulse width modulation controller integrated circuit 3106 to drive a string or series of LEDs 3102 based on input AC power 3104. Figure 32 provides a functional block diagram of the integrated circuit (3106 in Figure 31) of the LED lamp driver. Figure 33 provides a functional block diagram of the integrated circuit (3106 in Figure 31) within the LED lamp driver.

圖34所示的係RF致能LMU/基於LED的燈具驅動器模組。如圖34中所示,該RF致能LMU/基於LED的燈具驅動器3402包含上面參考圖7討論的RF致能LMU器件702、704、708、710、707、709、以及716以及一額外的切換式繼電器3406、LED驅動器輸出子器件3408、以及一LED驅動器3410,該LED驅動器3410會整流且穩定輸入AC電力用以產生一恆定電流DC輸出給一LED陣列3412。該額外的切換式繼電器3406被控制的方式和切換式繼電器716完全相同,用以確保在該RF致能LMU軟體之初始化之前的內定模式中或是該RF致能LMU沒有主動控制該光夾具的時間週期期間該LED驅動器除了有輸入AC電力之外還具備輸入訊號來驅動從該LED陣列處輸出的光。 Figure 34 shows an RF-enabled LMU/LED-based luminaire driver module. As shown in FIG. 34, the RF-enabled LMU/LED-based luminaire driver 3402 includes the RF-enabled LMU devices 702, 704, 708, 710, 707, 709, and 716 discussed above with respect to FIG. 7 and an additional switch. The relay 3406, the LED driver output sub-device 3408, and an LED driver 3410 rectify and stabilize the input AC power to produce a constant current DC output to an LED array 3412. The additional switched relay 3406 is controlled in exactly the same manner as the switched relay 716 to ensure that the RF enabled LMU does not actively control the optical fixture in the default mode prior to initialization of the RF enabled LMU software. The LED driver has an input signal to drive light output from the LED array in addition to the input AC power during the time period.

LED驅動器增強RF致能LMU解決的問題係被耦合至一或更多個燈具的LED驅動器的功率係數通常不會是1.0,如希望從主電力處取出最小電流有最大光輸出般,而是通常遠小於一。當功率係數為1.0時,電壓的波形會匹配負載內的電流的波形,而視功 率(apparent power)(其被計算為跨越該負載的電壓降和通過該負載的電流的乘積)則等於在該負載內被消耗的功率而且最終會消散至環境中變成熱,稱為實功率(real power)。僅具有淨電阻性特徵的線性負載通常會有1.0的功率係數。相反地,具有電抗性特徵的線性負載則由於負載中的電容或電感的關係而會儲存特定數額的能量並且在每一個AC循環期間將已儲存的能量釋放回到主電力。所以,被提供至負載的視功率超過負載所消耗的實功率。非線性負載(包含整流器及基於脈衝寬度調變的調光電路)會以複雜的方式改變電壓波形與電流波形,並且可以造成遠低於1.0的功率係數。LED驅動器包含整流器及基於脈衝寬度調變的調光電路兩者,且所以代表具有遠低於1.0之功率係數的非線性負載。 The LED driver enhances the RF-enabled LMU to solve the problem that the power factor of the LED driver coupled to one or more luminaires is typically not 1.0, as is the desire to extract the minimum current from the main power with the maximum light output, but usually Far less than one. When the power factor is 1.0, the waveform of the voltage will match the waveform of the current in the load, and the visual power The apparent power (which is calculated as the product of the voltage drop across the load and the current through the load) is equal to the power consumed within the load and eventually dissipates into the environment and becomes hot, called real power ( Real power). Linear loads with only net resistive characteristics typically have a power factor of 1.0. Conversely, a linear load with reactive characteristics will store a certain amount of energy due to the capacitance or inductance in the load and release the stored energy back to the main power during each AC cycle. Therefore, the apparent power supplied to the load exceeds the real power consumed by the load. Nonlinear loads, including rectifiers and pulse width modulation based dimming circuits, alter the voltage and current waveforms in a complex manner and can result in power coefficients well below 1.0. The LED driver includes both a rectifier and a pulse width modulated dimming circuit, and therefore represents a non-linear load having a power factor well below 1.0.

功率係數低於一的問題係負載從主電力供應器所取出的電流大於實際上被用來在負載內產生功率的電流。雖然超額電流沒有被使用在負載之中並且經由主電力被送回電力供應器;但是,被該負載取出的較高電流卻會在傳送期間導致較高的功率損耗,因此,電力供應器經常以較高的速率來充電,用以供應電力給具有低功率係數的裝置。因此,為達最大的成本與能量效率,被併入一LED驅動器增強RF致能LMU之中的LED驅動器需要額外的電路系統與電路元件來提高該LED驅動器增強RF致能LMU與LED驅動器增強RF致能LMU控制的燈具的功率係數至盡可能接近1的數值。電抗性、線性負載的功率係數亦能夠藉由以具有附加電容電感的負載中的負加電容或抵消電容來抵消負載中的電感而提高,稱為「被動式功率係數修正」。非線性負載的功率係數能夠藉由使用主動式電路器件(其包含升壓轉換器、降壓轉換器、或是升降壓轉換器)而提高,稱為「主動式功率係數修正」。相依於一LED驅動器增強RF致能LMU之中所包含的LED驅動器的特殊施行方式,該LED驅動器增強RF致能LMU需要額外的主動式功率係數修正器件,並且於特定的情況中,可能還運用額外的被動式功率係數修正器件。一般來說,功率係數介於0.95與1.0之間的負載不會因電力供應器而有較高費用的要求,且因此,該些LED驅動器增強RF致能LMU會希望有等於或超過0.95 的超額功率係數。而LED驅動器的額外問題係當調光電路系統有作用時,功率係數可能會降低,因為脈衝寬度調變會在電壓/電流波形之中造成額外的諧波。因此,較佳的LED驅動器增強RF致能LMU包含動態功率係數修正,其能夠在燈具調光改變時動態地調整及修正該LED驅動器及被耦合燈具之不斷改變的功率係數。 The problem with a power factor below one is that the current drawn by the load from the main power supply is greater than the current actually used to generate power within the load. Although the excess current is not used in the load and is sent back to the power supply via the main power; however, the higher current drawn by the load causes higher power loss during transmission, so the power supply often uses A higher rate to charge to supply power to a device with a low power factor. Therefore, for maximum cost and energy efficiency, LED drivers incorporated into an LED driver-enhanced RF-enabled LMU require additional circuitry and circuit components to enhance the LED driver-enhanced RF-enabled LMU and LED driver-enhanced RF Enable the power factor of the LMU controlled luminaire to a value as close as possible to 1. The power factor of a reactive, linear load can also be increased by counteracting the inductance in the load with a negative or negative capacitance in a load with an additional capacitive inductance, called "passive power factor correction." The power factor of a non-linear load can be increased by using an active circuit device (which includes a boost converter, a buck converter, or a buck-boost converter), called "active power coefficient correction." Depending on the particular implementation of the LED driver included in an LED driver enhanced RF-enabled LMU, the LED driver enhances the RF-enabled LMU requiring additional active power factor correction devices and, in certain cases, may also be used Additional passive power factor correction device. In general, loads with a power factor between 0.95 and 1.0 do not have higher cost requirements due to the power supply, and therefore, the LED drivers enhance the RF-enabled LMU to have a value equal to or greater than 0.95. Excess power factor. An additional problem with LED drivers is that when the dimming circuitry is active, the power factor may be reduced because pulse width modulation causes additional harmonics in the voltage/current waveform. Thus, a preferred LED driver enhanced RF enabled LMU includes dynamic power factor correction that dynamically adjusts and corrects the changing power factor of the LED driver and coupled luminaire as the luminaire dimming changes.

將LED驅動器併入RF致能LMU之中提供一種單器件方案來控制基於LED的燈具。基於許多理由,在基於LED的街道光夾具中特別需要藉由RF致能LMU所達成的光夾具集中式監視與控制的類型。LED驅動器及基於LED的燈具具有狹窄的操作參數範圍,其包含狹窄的操作溫度範圍以及輸入電壓和輸入電流因LED照明元件之非線性的關係而有相對嚴謹的必要條件。當特定類型的溫度監視與控制電路系統能夠被包含在LED驅動器之中時,RF致能LMU提供參作參數之第二層的集中式、遠端監視並且對照明夾具進行局部與遠端控制,以便最小化及/或消弭LED驅動器毀損條件及LED陣列毀損條件。如上面的討論,RF致能LMU控制能夠用於精確監視基於LED燈具的功率消耗及光輸出,以便自動且遠端判斷燈具需要保養與更換的時點。再者,將RF致能LMU及LED特徵元件一起整合在單一模組之中還會簡化光夾具器件的設計與製造並且降低光夾具的成本。 Incorporating LED drivers into RF-enabled LMUs provides a single device solution to control LED-based luminaires. For many reasons, the type of centralized monitoring and control of optical fixtures achieved by RF-enabled LMUs is particularly desirable in LED-based street light fixtures. LED drivers and LED-based luminaires have a narrow range of operating parameters, including a narrow operating temperature range and relatively stringent requirements for input voltage and input current due to the non-linear relationship of LED lighting components. When a particular type of temperature monitoring and control circuitry can be included in the LED driver, the RF-enabled LMU provides centralized, remote monitoring of the second layer of parameters and local and remote control of the illumination fixture. In order to minimize and / or eliminate LED driver damage conditions and LED array damage conditions. As discussed above, RF-enabled LMU control can be used to accurately monitor the power consumption and light output of LED-based luminaires to automatically and remotely determine when the luminaire needs maintenance and replacement. Furthermore, integrating the RF-enabled LMU and LED features together in a single module simplifies the design and manufacture of the optical fixture device and reduces the cost of the optical fixture.

上面所述的自動照明控制系統係一種複雜、非常耐用的分配系統,用以將光分配至客戶設施與區域。如上面的討論,該自動照明控制系統包含:一或更多個網路控制中心;多個路由器;以及位在特有光夾具內的大量LMU,其會控制照明元件的操作並且代替路由器及網路控制中心從該些光夾具所在的區域中收集感測器資料和其它資訊。所有此高互連性且中央管理的基礎架構能夠如上面討論般地用於許多額外的用途,其包含環境感測、安全監視、交通流量分析、以及其它此類用途。 The automatic lighting control system described above is a complex, very durable dispensing system for distributing light to customer facilities and areas. As discussed above, the automatic lighting control system includes: one or more network control centers; a plurality of routers; and a plurality of LMUs located within the unique optical fixture that control the operation of the lighting components and replace the routers and networks The control center collects sensor data and other information from the area where the optical fixtures are located. All of this highly interconnected and centrally managed infrastructure can be used for many additional purposes as discussed above, including environmental sensing, security monitoring, traffic flow analysis, and other such uses.

隨著石化燃料價格急速上升及石化燃料可取得性的下降,已經有人投入且持續大量的研究與開發電動車。重要的汽車製造商已經開發並且銷售具有合理駕駛範圍的實用電子車,其完全利用 已儲存的電能來操作。然而,電動車的廣泛接受性的潛在限制涉及電動車擁有者所遭遇的目前難題,包含在旅行時以及在他們的住所以外的地方再充電他們的電動車。在世界的幾乎每一個有人居住的區域雖然都可取得電力;但是,用於再充電電動車的方便插座卻無法廣泛地取得。在駕駛人可接近的位置中不僅需要方便的電力配送單元,還需要完全的基礎架構來提供電量配送監視,並且在可以對電動車進行方便的再充電之前還需要進行交易。 With the rapid increase in petrochemical fuel prices and the decline in the availability of fossil fuels, there has been a steady investment in research and development of electric vehicles. Important car manufacturers have developed and marketed practical electronic vehicles with a reasonable range of driving, fully utilizing them The stored electrical energy is operated. However, the potential limitations of the widespread acceptance of electric vehicles involve the current challenges encountered by electric vehicle owners, including recharging their electric vehicles while traveling and where they live. Electricity is available in almost every inhabited area of the world; however, convenient sockets for recharging electric vehicles are not widely available. Not only does the need for a convenient power distribution unit in a location accessible to the driver, but also a complete infrastructure to provide power distribution monitoring, and the need to trade before the electric vehicle can be conveniently recharged.

上面所述的自動照明控制系統在地理上及商業上被獨特地定位用以提供用於再充電電動車的普及且方便的電力分配。首先,因為LMU已經方便地被放置在街道、停車場、以及其它車輛可接近的區域附近,且因為該些LMU會接收、監視、計量、以及配送電力,所以,該自動照明控制系統已經在電動車駕駛潛在需要的每一個位置處配送電力。其次,因為該自動照明控制系統已經藉由一實用的通訊系統健全地互連並且提供通訊設施來傳輸資料給車輛可接近的地理位置以及從車輛可接近的地理位置處接收資料,所以,該自動照明控制系統基礎架構能夠被修正用以提供用於再充電電動車的電力完整服務配送。 The automatic lighting control system described above is uniquely located geographically and commercially to provide a popular and convenient power distribution for recharging electric vehicles. First, because the LMU has been conveniently placed near streets, parking lots, and other areas accessible to vehicles, and because the LMUs receive, monitor, meter, and distribute power, the automatic lighting control system is already in the electric vehicle. Distribute electricity at every location where driving is potentially needed. Secondly, because the automatic lighting control system has been physically interconnected by a practical communication system and provides communication facilities to transmit information to a geographically accessible location of the vehicle and to receive data from a geographically accessible location of the vehicle, the automatic The lighting control system infrastructure can be modified to provide full power distribution for recharging electric vehicles.

圖35所示的係目前已述照明系統的其中一個範例。如圖35中所示,一照明夾具3502由上面所述的自動照明控制系統來控制,並且已經藉由加入一自動資訊服務站(automated kiosk)3504(雷同於各種既存的自動介面,包含ATM機、售票機、以及其它此類的自動機器)來增強電力分配,用以為電動車駕駛提供一交易介面。此外,數個街道可接近或是停車場可接近的電量配送單元(例如,電量配送單元3506)會被電子連接至LMU控制功能以及供電給該照明夾具的外部電力供應器。該LMU控制功能會輕易地被調適成用以開啟、關閉、以及計量經由每一個電量配送單元來配送的電力。此外,該(些)網路控制中心及該些路由器內的資料庫管理系統與控制功能亦會輕易地被調適成用以提供電力配送交易、控制經由局部自動資訊服務站進行電力配送、以及集中付款與結帳。 Figure 35 shows an example of a lighting system that has been described so far. As shown in Figure 35, a lighting fixture 3502 is controlled by the automatic lighting control system described above and has been incorporated into an automated kiosk 3504 (consisting with various existing automated interfaces, including ATM machines). , ticket vending machines, and other such automated machines) to enhance power distribution to provide a trading interface for electric vehicle driving. In addition, a number of street accessible or car park accessible power distribution units (eg, power distribution unit 3506) may be electronically coupled to the LMU control function and an external power supply that supplies power to the lighting fixture. The LMU control function can be easily adapted to turn on, off, and meter power delivered via each of the power distribution units. In addition, the network control center(s) and the database management system and control functions in the routers can be easily adapted to provide power distribution transactions, control power distribution via local automated information service stations, and concentrate Payment and checkout.

圖36所示的係對儲存在每一個LMU內的資料所進 行的特定增強以及為提供電力分配所進行的LMU功能增強。LMU會創造與保留用以描述自動資訊服務站的資料結構3602及用以描述每一個電量配送單元的資料結構3604至3605。此些資料結構等同於圖11中所示的資料結構,其儲存和照明夾具及燈具有關的資訊。此外,LMU還被增強而包含一資訊服務站管理模組3608以及一電量配送單元管理模組3610,用於自動控制資訊服務站(圖35中的3504)以及每一個電量配送單元(圖35中的3506)。 Figure 36 shows the data stored in each LMU. Specific enhancements to the line and LMU enhancements to provide power distribution. The LMU creates and retains a data structure 3602 for describing the automated information service station and data structures 3604 through 3605 for describing each of the power distribution units. These data structures are identical to the data structures shown in Figure 11, which store information related to fixtures and fixtures. In addition, the LMU is further enhanced to include an information service station management module 3608 and a power distribution unit management module 3610 for automatically controlling the information service station (3504 in FIG. 35) and each power distribution unit (FIG. 35). 3506).

圖37所示的係路由器及/或網路控制中心內的已儲存資料及功能的增強。此些增強包含儲存用以描述電力分配客戶的關聯型表格或其它資料結構3702以及用以描述特有電力分配交易的關聯型表格或其它資料結構3704。該些路由器及/或網路控制中心進一步包含額外的電量分配模組3706、付款與結帳模組3708、以及客戶管理模組3710。額外模組中的已儲存資訊可用於針對電力分配的客戶預訂、信用卡鑑別與驗證、交易管理與自動付款,以及用於自動資訊服務站和電力分配交易的即時控制。 Figure 37 shows an enhancement of stored data and functions in a router and/or network control center. Such enhancements include an associated form or other data structure 3702 that is stored to describe the power distribution customer and an associated form or other data structure 3704 that is used to describe the unique power distribution transaction. The routers and/or network control centers further include an additional power distribution module 3706, a payment and checkout module 3708, and a customer management module 3710. The stored information in the additional modules can be used for customer bookings for credit distribution, credit card authentication and verification, transaction management and automatic payments, and instant control for automated information service stations and power distribution transactions.

圖38A至C所示的係代表性電力分配交易。此些圖式分成三行:左邊行3802對應於客戶/自動資訊服務站;中間行3804對應於LMU控制功能;以及右邊行3806對應於路由器/控制中心功能。參考圖38A,當客戶輸入一交易起始輸入至該自動資訊服務站時(通常藉由如資訊服務站顯示器所示般地按押按鈕或觸碰螢幕),交易會在步驟3810中被起始。當接收客戶輸入時,在步驟3811中,該資訊服務站會傳送一起始訊號給LMU內的資訊服務站管理模組。該資訊服務站管理模組會在步驟3812中接收該起始訊號並且開始收集用以實行電力分配交易所需要的資料。在步驟3813至3814中,該資訊服務站管理模組會傳送用於該資訊服務站的各種資料輸入畫面或指示以便顯示各種輸入要求畫面,並且該資訊服務站會顯示該些輸入要求畫面並且接收適當的客戶輸入。一但該資訊服務站管理模組已經收集用以進行電力分配交易所需要的資訊之後,該資訊服務站管理模組會在步驟3815中準備一交易起始訊息並且將該訊息傳送至一路由器或網路控制中心。路由器或網路控制中心會在步驟3816中接收該交 易起始訊息;在步驟3817中利用一信用卡授權服務來授權該交易,比較輸入資訊和被儲存在該客戶的關聯型表格(圖37中的3702)之中的資訊,以及藉由其它此類手段;並且在步驟3818中回傳該授權和燃料供給允許訊息給LMU。在步驟3819中,LMU會從一燃料供給允許訊息中接收該授權,並且在步驟3820至3821中透過該資訊服務站所顯示的資訊來實行燃料供給指令之顯示與燃料供給過程之監視、電力分配計量與監視、以及其它類型的測試與監視。 Figures 38A through C are representative power distribution transactions. These patterns are divided into three rows: the left row 3802 corresponds to the client/automatic information service station; the middle row 3804 corresponds to the LMU control function; and the right row 3806 corresponds to the router/control center function. Referring to Figure 38A, when a customer enters a transaction initiation input to the automated information service station (usually by pressing a button or touching the screen as shown by the information service station display), the transaction is initiated in step 3810. . When receiving the customer input, in step 3811, the information service station transmits a start signal to the information service station management module in the LMU. The information service station management module receives the start signal in step 3812 and begins collecting the data needed to perform the power distribution transaction. In steps 3813 to 3814, the information service station management module transmits various data input screens or instructions for the information service station to display various input request screens, and the information service station displays the input request screens and receives Proper customer input. Once the information service station management module has collected the information needed to perform the power distribution transaction, the information service station management module prepares a transaction start message in step 3815 and transmits the message to a router or Network Control Center. The router or network control center will receive the payment in step 3816. An easy start message; in step 3617, a credit card authorization service is utilized to authorize the transaction, comparing the input information with the information stored in the customer's associated form (3702 in Figure 37), and by other such Means; and in step 3818, the authorization and fueling permission message is returned to the LMU. In step 3819, the LMU receives the authorization from a fuel supply permission message, and in steps 3820 to 3821, the display of the fuel supply command and the monitoring of the fuel supply process and power distribution are performed by the information displayed by the information service station. Metering and monitoring, as well as other types of testing and monitoring.

現在參考圖38B,一旦客戶已經在步驟3822中開始實行電動車再充電且電量配送單元和LMU在步驟3823與3824中已經合作以監視且完成電力分配操作,一燃料供給完成訊號便會在步驟3825中產生(由客戶和資訊服務站互動而產生;由LMU感測纜線中斷連接、充電完成、或是其它事件而產生;或是藉由特定其它方式產生),從而導致在步驟3826中傳送一燃料供給完成訊號給LMU。在步驟3827中,LMU會接收該燃料供給完成訊號,以及在步驟3828中,LMU會準備要發送給路由器及/或網路控制中心的電力分配交易完成訊息。在步驟3829中,路由器及/或網路控制中心會接收該交易完成訊息,更新交易表格及其它已儲存的資料庫資訊,並且在步驟3831中回傳承認訊息給LMU。在步驟3832中,LMU會接收承認訊息,並且前往圖38C,在步驟3833中傳送任何最終指令及承認訊息給該自動資訊服務站。在步驟3834中,該自動資訊服務站會顯示該些最終指令及承認訊息,以及在步驟3835中重新初始化資訊服務站顯示器,準備實行另一次電力分配交易。 Referring now to Figure 38B, once the customer has initiated the recharging of the electric vehicle in step 3822 and the power distribution unit and the LMU have cooperated in steps 3823 and 3824 to monitor and complete the power distribution operation, a fuel supply completion signal will be in step 3825. Generated (generated by interaction between the customer and the information service station; generated by the LMU sensing cable disconnection, charging completion, or other event; or by some other means), resulting in a transmission in step 3826 The fuel supply completion signal is sent to the LMU. In step 3827, the LMU will receive the fuel supply completion signal, and in step 3828, the LMU will prepare a power distribution transaction completion message to be sent to the router and/or the network control center. In step 3829, the router and/or network control center receives the transaction completion message, updates the transaction table and other stored database information, and returns an acknowledgement message to the LMU in step 3831. In step 3832, the LMU will receive the acknowledgement message and proceed to Figure 38C where any final command and acknowledgement message is transmitted to the automated information service station. In step 3834, the automated information service station displays the final instructions and the acknowledgement message, and reinitializes the information service station display in step 3835 to prepare for another power distribution transaction.

一般來說,該自動資訊服務站能夠同步實行和該LMU相關聯的電量分配單元一樣多的電力分配交易。該些電量分配單元可以包含具有相容於電動車的一或更多個轉接器的可延長電線。於本文所述照明系統的許多範例中,電量配送單元能夠被控制(藉由送至資訊服務站的客戶輸入以及可能藉由電量配送單元內的感測器)用以輸出相容於該電動車的一特殊電壓與電流。許多不同額外類型的電量配送單元、自動資訊服務站、以及用於實行電力分配交易的其它自動系統亦能夠被設計成本文所述照明系統的替代範例。 In general, the automated information service station is capable of simultaneously performing as many power distribution transactions as the power distribution unit associated with the LMU. The power distribution units can include extendable wires having one or more adapters that are compatible with the electric vehicle. In many examples of the illumination system described herein, the power distribution unit can be controlled (by input to a customer of the information service station and possibly by a sensor within the power distribution unit) for output compatible with the electric vehicle A special voltage and current. Many different additional types of power distribution units, automated information service stations, and other automated systems for implementing power distribution transactions can also be designed to be an alternative to the lighting systems described herein.

根據本揭示內容的另一觀點,一種用於產生照明事件的系統或設備可以配合一照明控制系統來使用或是併入一照明控制系統中,舉例來說,如針對圖3A至38C所示及所述。 In accordance with another aspect of the present disclosure, a system or apparatus for generating a lighting event can be used with a lighting control system or incorporated into a lighting control system, for example, as shown in Figures 3A through 38C. Said.

根據本揭示內容的照明控制系統能夠回應諸如運動、警示、日光偵測、以及類似事件。感測器能夠用於轉送關於該些事件(例如,日光與運動偵測;安全、氣象、以及交通監視;以及危險事件偵測...等)的資訊給一照明控制系統,即時監視此些事件能夠提供好處給感興趣的團體。舉例來說,日光感測器能夠被用來偵測光位準,其能夠表示晚上或白天、黃昏或黎明,並且發送適當的事件命令給照明控制系統。其它感測器能夠以雷同方式操作,用以轉送資訊給照明控制系統。 A lighting control system in accordance with the present disclosure is capable of responding to such events as motion, alerting, daylight detection, and the like. The sensor can be used to forward information about the events (eg, daylight and motion detection; safety, weather, and traffic monitoring; and dangerous event detection, etc.) to a lighting control system to monitor such Events can provide benefits to interested parties. For example, a daylight sensor can be used to detect light levels, which can represent night or day, dusk or dawn, and send appropriate event commands to the lighting control system. Other sensors can operate in the same way to transfer information to the lighting control system.

如前面的討論,各種類型的感測器輸入除了主要可用於提供照明系統操作的有效控制之外,還可於特定的情況中在局部性、地區性、及大型地理區層級中提供各式各樣不同類型的監視任務。舉例來說,如圖5中所示,小型水平條體(例如,水平條體514)表示當各種不同事件發生時應該如何操作該些照明元件。 As discussed earlier, various types of sensor inputs can be used in a variety of local, regional, and large geographic area levels, in addition to being primarily useful for providing effective control of lighting system operation. Different types of monitoring tasks. For example, as shown in Figure 5, a small horizontal strip (e.g., horizontal strip 514) indicates how the lighting elements should be operated when various different events occur.

此些感測器雖然實用,卻也容易故障。該些感測器可能造成某個事件未被感測器偵測到並且接著未被轉送至照明控制系統。因此,可能發生各種問題,例如,浪費資源、沒有對特定事件進行控制、以及該些夾具無法正確操作。 Although these sensors are practical, they are also prone to failure. The sensors may cause an event to be undetected by the sensor and then not forwarded to the lighting control system. Therefore, various problems may occur, such as wasting resources, not controlling specific events, and the jigs fail to operate properly.

為解決此些問題,可以使用一事件合成器來替代或置換該感測器,用以提供必要的命令/訊號(對應於能夠從一或更多個感測器處被接收作為輸出訊號的一或更多個特殊「事件」)給照明控制系統。一事件合成器可用於達到診斷目的,並且能夠引入刺激至照明系統,該刺激接著會被該系統處理。此事件合成器可以軟體、硬體、及/或韌體來施行,並且可以被定位在任何位置處以及在照明系統之任何合宜點或部分處引入輸入(舉例來說,合成事件)。舉例來說,場所管理器(site manager),或是被連接至照明系統之控制網路(功能)的任何其它單元或器件,可以作為或被配置成包含作為事件合成器的功能。該事件合成器可以計算一事件何時可能發生。舉例來說,發生在 特定時間的日光事件能夠根據一給定位置的日出與日落的詳細資訊來計算,舉例來說,提供在用於一特殊地理位置的日出/日落計算器或表格中,該表格會併入時區、緯度與經度、日光節約、以及類似的細節/參數。使用此事件合成器以及所產生的事件能夠在照明控制系統中有更大的彈性。舉例來說,倘若一感測器被一物體阻擋,或者倘若天氣陰暗,倘若發生日蝕,或者倘若感測器故障的話,該事件合成器便能夠轉送關於該日光事件之時間的資訊,以便傳送至已經發生一事件的照明夾具,且因而據以控制該照明系統的各種器件與功能。此事件合成亦可,或是替代,用於照明系統的校正及/或效能測試。 To address these issues, an event synthesizer can be used in place of or in place of the sensor to provide the necessary commands/signals (corresponding to one that can be received as one of the output signals from one or more sensors) Or more special "events") to the lighting control system. An event synthesizer can be used for diagnostic purposes and can introduce stimulation into the illumination system, which is then processed by the system. This event synthesizer can be implemented in software, hardware, and/or firmware, and can be positioned at any location and introduce input (eg, a synthetic event) at any suitable point or portion of the lighting system. For example, a site manager, or any other unit or device connected to a control network (function) of a lighting system, can be configured or configured to include functionality as an event synthesizer. The event synthesizer can calculate when an event may occur. For example, what happened Daylight events at specific times can be calculated based on detailed information on sunrise and sunset at a given location, for example, in a sunrise/sunset calculator or table for a particular geographic location, which will be incorporated Time zone, latitude and longitude, daylight savings, and similar details/parameters. Using this event synthesizer and the resulting events can be more flexible in the lighting control system. For example, if a sensor is blocked by an object, or if the weather is dark, if the eclipse occurs, or if the sensor fails, the event synthesizer can transfer information about the time of the daylight event for transmission to An illumination fixture has occurred for an event and thus controls various devices and functions of the illumination system. This event synthesis can also be used, alternatively or alternatively, for calibration and/or performance testing of the lighting system.

圖39所示的係用於合成事件產生的系統3900,其包含:一事件合成器3904,用於合成一事件;以及一照明控制系統3902。照明夾具控制系統3902可以含有一或更多個照明元件3901,舉例來說,如前面在圖3A至38C中所示與所述。該些照明元件3901能夠包含基於LED的照明元件或是任何其它照明元件。於某些範例中,該些照明元件3901能夠以任何電子裝置來取代,舉例來說,馬達元件、風扇元件或是家電元件。一照明夾具管理單元可以配合該照明夾具被併入。舉例來說,可以使用如圖3A至B中所示的一或更多個射頻(RF)致能橋接照明夾具管理單元(LMU)320至332。如上面所示,事件合成器3904可被用來計算一事件已經發生。當計算該事件已經發生時,事件合成器3904接著可以產生一對應於已被計算發生之事件的合成事件(舉例來說,藉由一適當的輸出訊號,例如,用以表示觀察到之環境光的位準的訊號)。事件合成器3904可以接著發送一訊號(對應於該合成事件)給照明控制系統3902,其接著會彷彿該事件已真實發生般地回應該合成事件。 The system 3900 for synthesizing event generation is shown in FIG. 39, comprising: an event synthesizer 3904 for synthesizing an event; and a lighting control system 3902. The lighting fixture control system 3902 can include one or more lighting elements 3901, for example, as previously described and illustrated in Figures 3A-38C. The lighting elements 3901 can comprise LED-based lighting elements or any other lighting elements. In some examples, the lighting elements 3901 can be replaced with any electronic device, such as a motor component, a fan component, or a home appliance component. A lighting fixture management unit can be incorporated with the lighting fixture. For example, one or more radio frequency (RF) enabled bridged lighting fixture management units (LMUs) 320-332 can be used as shown in Figures 3A-B. As shown above, event synthesizer 3904 can be used to calculate that an event has occurred. When it is calculated that the event has occurred, the event synthesizer 3904 can then generate a synthetic event corresponding to the event that has been calculated to occur (for example, by an appropriate output signal, for example, to indicate the observed ambient light) The level of the signal). The event synthesizer 3904 can then send a signal (corresponding to the composite event) to the lighting control system 3902, which then responds to the composite event as if the event had actually occurred.

繼續說明操作,照明控制系統3902可以處理來自事件合成器3904的訊號,彷彿其被接收自一感測器般,舉例來說,具有光二極體形式的光感測器/計量表。舉例來說,於日光偵測的情況中,事件合成器3904計算日光(或是缺少日光)何時發生,並且發送一訊號給照明控制系統3902。如前面所述,事件合成器3904可以使用一預設的資料庫,例如,一給定位置以及一給定日期的日出時間與日 落時間的圖表或電子儲存表格。在從事件合成器3904處接收該合成事件時,照明控制系統3902的表現接著會彷彿一真實的日光感測器偵測到該事件般,並且接著回應該合成事件。此回應可以包含根據一事先定義的程式來控制照明夾具3901,如前面針對圖6所示及所述針對一給定LMU經由一路由器所轉送的程式。 Continuing with the operation, the lighting control system 3902 can process the signal from the event synthesizer 3904 as if it were received from a sensor, for example, a photosensor/meter in the form of a photodiode. For example, in the case of daylight detection, event synthesizer 3904 calculates when daylight (or lack of daylight) occurs and sends a signal to lighting control system 3902. As mentioned previously, the event synthesizer 3904 can use a predetermined database, for example, a given location and sunrise time and day for a given date. Fall time chart or electronic storage form. Upon receiving the composite event from event synthesizer 3904, illumination control system 3902 will then behave as if a real daylight sensor detected the event and then respond to the composite event. This response may include controlling the lighting fixture 3901 according to a predefined program, as previously described with respect to Figure 6 and described for a given LMU via a router.

事件合成器3904可以被定位在一場所管理器3906中,或者,可以被排列成具有被附接至照明控制系統3902的任何其它裝置。舉例來說,事件合成器3904可以被設置在遠端。被設置在遠方的事件合成器3904會直接發送合成事件資訊給和該照明控制系統3902相關聯的照明夾具3901。視情況,被設置在遠方的事件合成器3904可以發送合成事件資訊給場所管理器3906(其可以和一特殊的照明/照明夾具(例如,3901)整合或是遠離),其接著會將該資訊傳送至照明控制系統3902。 The event synthesizer 3904 can be located in a venue manager 3906, or can be arranged to have any other device attached to the lighting control system 3902. For example, event synthesizer 3904 can be placed at the far end. The event synthesizer 3904, which is placed remotely, directly sends the synthetic event information to the lighting fixture 3901 associated with the lighting control system 3902. Optionally, event synthesizer 3904, located remotely, can send synthetic event information to venue manager 3906 (which can be integrated or remote from a particular lighting/lighting fixture (eg, 3901)), which in turn will post the information Transfer to the lighting control system 3902.

於其它實施例中,該用於合成事件產生的系統3900可以包含如3908所示的一或更多個真實感測器以及如3904所示的一或更多個合成事件產生器(或事件合成器)的各種組合。舉例來說,如上面的討論,如果感測器3908發生問題無法偵測事件,事件合成器3904可以充當感測器3908的備援並且產生對應訊號以輸入至照明控制系統3902。於某些範例中,因為該用於合成事件產生的系統3900的操作的關係,系統3900能夠產生模擬日光感測器、運動感測器、溫度感測器、...等的事件,而不必在系統3900中有真實的感測器。舉例來說,日光時間會被計算用以合成日光或夜間事件。此些事件和它們的真實對應事件完全相同,而系統3900會據以回應。 In other embodiments, the system 3900 for synthetic event generation may include one or more real sensors as shown at 3908 and one or more synthetic event generators as shown at 3904 (or event synthesis) Various combinations of devices. For example, as discussed above, if the sensor 3908 has a problem that cannot detect an event, the event synthesizer 3904 can act as a backup to the sensor 3908 and generate a corresponding signal for input to the lighting control system 3902. In some examples, because of the operational relationship of the system 3900 for synthesizing event generation, the system 3900 can generate events that simulate daylight sensors, motion sensors, temperature sensors, etc. without having to There are real sensors in system 3900. For example, daylight hours are calculated to synthesize daylight or night events. These events are exactly the same as their actual counterparts, and the system 3900 responds accordingly.

圖39還圖解本技術的另一項觀點,也就是,和一目標或所希望的照明夾具3901直接通訊。圖中所示被設置在遠方的事件合成器3904可以為一無線通訊裝置(例如,保養技術人員所使用的裝置)的一部分。經由此直接通訊,各種命令可被發送至照明夾具3901,其可以回應此些命令。該些命令能夠包含和該目標照明夾具有關的位置資訊。照明夾具3901的回應會被場所管理器3906監視,場所管理器3906本身會響應於照明夾具3901的動作(或是缺少動作)而 採取動作。任何類型的通訊鏈路及/或協定皆可被用來和照明夾具3901直接通訊。於示範性實施例中可以使用紅外線(IR)通訊。舉例來說,在合宜靠近一目標照明夾具3901之握持無線通訊裝置的技術人員可以發送命令(舉例來說,藉由IR通訊)給該特殊照明夾具3901,用以讓該夾具採取所希望的動作作為診斷或保養程序的一部分。 Figure 39 also illustrates another aspect of the present technology, that is, direct communication with a target or desired illumination fixture 3901. The event synthesizer 3904, shown remotely in the figures, can be part of a wireless communication device (e.g., a device used by a maintenance technician). Through this direct communication, various commands can be sent to the lighting fixture 3901, which can respond to such commands. The commands can include location information related to the target lighting fixture. The response of the lighting fixture 3901 will be monitored by the venue manager 3906, which itself will respond to the action of the lighting fixture 3901 (or lack of action). Take action. Any type of communication link and/or protocol can be used to communicate directly with the lighting fixture 3901. Infrared (IR) communication can be used in an exemplary embodiment. For example, a technician holding a wireless communication device conveniently adjacent to a target illumination fixture 3901 can send a command (for example, by IR communication) to the special illumination fixture 3901 for the fixture to take the desired The action is part of a diagnostic or maintenance procedure.

本揭示內容還關於利用該合成事件產生的系統的方法及/或產生合成事件本身的方法。此些方法會運用上述合成事件產生的系統進行:以該事件合成器計算已發生(或是應該已發生,舉例來說,在特殊時間、特殊日期、特殊地理位置)的事件;產生對應於被計算已發生之事件的合成事件;以及將一訊號從該事件合成器處發送至照明控制系統,以便彷彿該事件已發生般地回應該合成事件。該些方法可以用於如上面所示的任何類型事件,而且不限於上述。 The present disclosure also relates to methods of utilizing the system generated by the synthetic event and/or methods of generating the synthetic event itself. These methods are performed using the system generated by the above synthetic event: the event synthesizer is used to calculate an event that has occurred (or should have occurred, for example, at a particular time, a special date, a special geographic location); A composite event that computes an event that has occurred; and sends a signal from the event synthesizer to the lighting control system to respond to the synthetic event as if the event had occurred. These methods can be used for any type of event as shown above, and are not limited to the above.

舉例來說,如圖40中所示,以合成事件產生的系統來控制一照明夾具之輸出的方法可從步驟4001計算事件開始,例如,在特殊的地理位置處,特殊日期的日光結束時(也就是,日落)。該場所管理器能夠以一年中任一天的日出時間與日落時間的資料表格為基礎來判斷是否已發生日出或日落。倘若該事件尚未發生的話,不會採取任何動作。倘若該事件發生的話,那麼該事件合成器便會在步驟4002中產生該合成事件。於該事件為日落的範例中,該事件合成器會以訊號或訊息的形式產生一合成日落事件。此合成事件接著會在步驟4003中被發送至照明控制系統。在接收該合成事件時,該照明控制系統會彷彿該事件(也就是,日落)已經真實發生般地回應。於此情況中,該照明控制系統能夠據以回應,舉例來說,藉由在其控制下開啟或提高一或更多個照明的輸出。 For example, as shown in FIG. 40, the method of controlling the output of a lighting fixture with a system for synthesizing event generation may begin with the calculation of an event from step 4001, for example, at a particular geographic location, at the end of daylight for a particular date ( That is, sunset). The location manager can determine whether a sunrise or sunset has occurred based on a data table of sunrise time and sunset time on any day of the year. If the incident has not occurred, no action will be taken. If the event occurs, the event synthesizer will generate the composite event in step 4002. In the case where the event is sunset, the event synthesizer generates a synthetic sunset event in the form of a signal or message. This synthetic event is then sent to the lighting control system in step 4003. Upon receiving the composite event, the lighting control system will respond as if the event (i.e., sunset) has actually occurred. In this case, the lighting control system can respond, for example, by turning on or increasing the output of one or more of the illuminations under its control.

此方法可用於保養一照明系統。舉例來說,不讓場所管理器如在步驟4001中計算事件是否已經發生,取而代之的係,保養技術人員可以如在步驟4002中觸發產生一合成事件,用以測試該照明系統的效能。 This method can be used to maintain a lighting system. For example, instead of letting the venue manager calculate whether an event has occurred in step 4001, the maintenance technician can trigger a synthetic event to test the performance of the lighting system as in step 4002.

如圖40的步驟4003中,該已產生的合成事件接著會當作一訊號或訊息被發送至該照明系統。於一範例中,此些合成事 件的訊號可以藉由該合成事件產生器(舉例來說,由技術人員握持)與一特殊待測照明之間的紅外線(IR)通訊鏈路來發送。技術人員接著會觀察該照明系統的回應,例如,其啟動照明的時間、或是該些照明在啟動後的強度。技術人員接著可據以動作。 In step 4003 of Figure 40, the generated synthetic event is then sent to the lighting system as a signal or message. In an example, these synthetic things The signal of the device can be transmitted by an infrared (IR) communication link between the synthetic event generator (for example, held by a technician) and a particular illumination to be tested. The technician then looks at the response of the lighting system, for example, when it starts lighting, or the intensity of the lighting after it is activated. The technician can then act accordingly.

本發明雖然已針對特殊實施例作過說明;但是,本發明並不希望受限於此些實施例。熟習本技術的人士便會明白多種修正。舉例來說,各式各樣不同的硬體配置與設計可被用來施行端末點LMU、橋接LMU、路由器、網路控制中心、及/或合成事件產生器。如上面的討論,各種不同通訊方法中的許多通訊方法可以藉由在網路控制中心硬體、路由器硬體、以及LMU硬體內引入適當的晶片組、電路系統、以及邏輯支援而被用來在根據本發明實施例的一發光控制系統中的階級式器件層之間進行通訊。如上面的討論,LMU會被配置成用以容納許多不同類型的感測器裝置並且用以控制許多類型的局部電子裝置及機電裝置,例如,加熱元件、控制視訊相機的馬達、以及其它此類裝置與器件。LMU、路由器、以及網路控制中心的軟體與邏輯器件可以藉由改變許多不同施行參數中的任何參數(其包含程式化語言、作業系統平台、控制結構、資料結構、模組式組織、以及其它此類參數)而以許多不同方式來施行。路由器和網路控制中心使用者介面可以被設計成用以提供許多不同類型的自動發光系統控制與監視功能。發光夾具操作能夠藉由排程、藉由規定特殊事件後面的操作特徵來控制;能夠經由手動控制使用者介面來控制;以及能夠在代表本發明實施例的階級式自動發光系統控制系統內的每一個不同層中被程式控制,其包含由特有LMU以相對自主的方式進行程式控制。進一步言之,任何合宜的通訊協定皆可用於本文中所述的通訊,不僅限於任何特殊的標準通訊協定。又,本文中雖然提供各種感測器的範例(舉例來說,光二極體);不過,在本揭示內容的範疇內亦可使用其它合宜的功能等效感測器。 The invention has been described with respect to particular embodiments; however, the invention is not intended to be limited to the embodiments. Those skilled in the art will appreciate a variety of modifications. For example, a wide variety of different hardware configurations and designs can be used to implement end-to-end LMUs, bridged LMUs, routers, network control centers, and/or composite event generators. As discussed above, many of the various communication methods can be used by introducing appropriate chipsets, circuitry, and logic support in the network control center hardware, router hardware, and LMU hardware. Communication between the hierarchical device layers in an illumination control system in accordance with an embodiment of the present invention. As discussed above, the LMU will be configured to accommodate many different types of sensor devices and to control many types of local electronic devices and electromechanical devices, such as heating elements, motors that control video cameras, and the like. Devices and devices. The software and logic of LMUs, routers, and network control centers can be changed by changing any of a number of different execution parameters (including stylized languages, operating system platforms, control structures, data structures, modular organizations, and others). Such parameters) are performed in many different ways. The router and network control center user interface can be designed to provide many different types of auto-lighting system control and monitoring functions. The illuminating fixture operation can be controlled by scheduling, by specifying operational characteristics following a particular event; capable of being controlled via manual control of the user interface; and capable of each of the class-type automated lighting system control systems representative of embodiments of the present invention A different layer is controlled by the program, which contains program control by a unique LMU in a relatively autonomous manner. Further, any appropriate communication protocol can be used for the communication described herein, and is not limited to any particular standard communication protocol. Also, although various examples of sensors are provided herein (for example, photodiodes); however, other suitable functionally equivalent sensors can be used within the scope of the present disclosure.

為達解釋之目的,前面的說明使用特定的術語以便對本發明有透澈的理解。然而,熟習本技術的人士便會明白,未必需要明確的細節方能實行本發明。本文已提出本發明之特定實施例的前 面說明以達解釋與說明之目的。它們並沒有竭盡性或是限制本發明於已揭刻板形式的意圖。依照上面的教示內容可以進行許多修正與變化。本文中已顯示及說明實施例以便最佳解釋本發明的原理及其實際應用,從而讓熟習本技術的其它人士可以最佳運用本發明及具有各種修正的各種實施例,適合經過設計的特殊用途。本文希望本發明的範疇由下面的申請專利範圍及它們的等效範為來定義。 For the purposes of explanation, the foregoing description uses specific terminology in order to provide a thorough understanding of the invention. However, it will be apparent to those skilled in the art that the present invention may be practiced without necessarily requiring a precise detail. Before the specific embodiment of the invention has been proposed The explanations are for the purpose of explanation and explanation. They do not exhaustive or limit the intent of the invention in the form of a plate. Many modifications and variations are possible in light of the above teachings. The embodiments have been shown and described in order to best explain the principles of the embodiments of the invention . The scope of the invention is intended to be defined by the scope of the following claims and their equivalents.

602‧‧‧網路控制中心 602‧‧‧Network Control Center

603‧‧‧關聯型資料庫管理伺服器 603‧‧‧Associated database management server

605‧‧‧網路伺服器 605‧‧‧Web server

606‧‧‧網路伺服器 606‧‧‧Web server

607‧‧‧網路伺服器 607‧‧‧Web server

610‧‧‧路由器 610‧‧‧ router

611‧‧‧路由器 611‧‧‧ router

612‧‧‧路由器 612‧‧‧ router

613‧‧‧路由器 613‧‧‧ router

616‧‧‧網際網路 616‧‧‧Internet

618‧‧‧射頻發射器 618‧‧‧RF transmitter

620‧‧‧基於網站的網路控制中心使用者介面 620‧‧‧Web-based network control center user interface

622‧‧‧個人電腦或是工作站 622‧‧‧Personal computer or workstation

630‧‧‧RF致能LMU 630‧‧‧RF-enabled LMU

631‧‧‧RF致能LMU 631‧‧‧RF-enabled LMU

632‧‧‧RF致能LMU 632‧‧‧RF-enabled LMU

633‧‧‧RF致能LMU 633‧‧‧RF-enabled LMU

634‧‧‧RF致能LMU 634‧‧‧RF-enabled LMU

635‧‧‧RF致能LMU 635‧‧‧RF-enabled LMU

636‧‧‧RF致能LMU 636‧‧‧RF-enabled LMU

637‧‧‧RF致能LMU 637‧‧‧RF-enabled LMU

638‧‧‧RF致能LMU 638‧‧‧RF-enabled LMU

639‧‧‧RF致能LMU 639‧‧‧RF-enabled LMU

Claims (33)

一種用於合成事件產生的系統,其包括:一事件合成器,用於合成一事件;以及一照明控制系統,其包括:一照明夾具,其含有一或更多個照明元件;以及一照明夾具管理單元,配合該照明夾具被併入;其中該事件合成器被配置成用以計算一事件已經發生、產生一對應於已被計算發生之事件的合成事件、以及發送一訊號給該照明控制系統用以指示該照明控制系統彷彿該事件已發生般地回應該合成事件。 A system for synthesizing event generation, comprising: an event synthesizer for synthesizing an event; and a lighting control system comprising: a lighting fixture comprising one or more lighting elements; and a lighting fixture a management unit that is incorporated with the lighting fixture; wherein the event synthesizer is configured to calculate an event that has occurred, to generate a composite event corresponding to an event that has been calculated, and to send a signal to the lighting control system Used to indicate that the lighting control system should respond to the synthetic event as if the event had occurred. 根據申請專利範圍第1項的系統,其中該照明元件係一基於發光二極體的照明元件。 The system of claim 1, wherein the lighting element is a lighting element based on a light emitting diode. 根據申請專利範圍第1項的系統,其中該照明夾具管理單元包含一燈具驅動器,並且儲存控制資訊與狀態資訊,以便根據該被儲存的控制資訊來控制含有該照明夾具管理單元的照明夾具內的照明元件所發出的光強度。 The system of claim 1, wherein the lighting fixture management unit includes a light fixture, and stores control information and status information to control the lighting fixture containing the lighting fixture management unit according to the stored control information. The intensity of light emitted by the lighting element. 根據申請專利範圍第1項的系統,其進一步包括一用於感測該事件的感測器。 The system of claim 1, further comprising a sensor for sensing the event. 根據申請專利範圍第4項的系統,其中該感測器係一日光感測器、一運動感測器或是一溫度感測器。 A system according to claim 4, wherein the sensor is a daylight sensor, a motion sensor or a temperature sensor. 根據申請專利範圍第1項的系統,其中該事件係下面所組成之群中的至少其中一者:日光偵測、運動偵測、安全監視、氣象監視、交通監視、以及危險事件偵測。 According to the system of claim 1, wherein the event is at least one of the group consisting of: daylight detection, motion detection, security surveillance, weather monitoring, traffic monitoring, and dangerous event detection. 根據申請專利範圍第1項的系統,其中該事件係日光偵測。 According to the system of claim 1, wherein the event is daylight detection. 根據申請專利範圍第1項的系統,其中由該事件合成器發送至該照明控制系統的訊號係透過一場所管理器來發送。 The system of claim 1, wherein the signal transmitted by the event synthesizer to the lighting control system is transmitted through a venue manager. 根據申請專利範圍第8項的系統,其中該事件合成器位於該場所管理器中。 A system according to claim 8 wherein the event synthesizer is located in the venue manager. 根據申請專利範圍第1項的系統,其中由該事件合成器發送至該 照明控制系統的訊號係從該事件合成器處直接被發送至該照明控制系統。 According to the system of claim 1, wherein the event synthesizer sends the The signal of the lighting control system is sent directly from the event synthesizer to the lighting control system. 根據申請專利範圍第1項的系統,其中該照明控制系統被配置成以已儲存基於時間排程或和該事件相關聯的已儲存操作特徵為基礎來計算該事件已發生。 The system of claim 1, wherein the lighting control system is configured to calculate that the event has occurred based on stored stored operating characteristics associated with the time schedule or associated with the event. 根據申請專利範圍第1項的系統,其中該事件合成器被配置成透過一電力線通訊協定來發送該訊號給該照明控制系統。 The system of claim 1, wherein the event synthesizer is configured to transmit the signal to the lighting control system via a power line protocol. 根據申請專利範圍第1項的系統,其中該照明夾具管理單元被配置成用以:從該事件合成器處接收該事件的一表示符;以及響應於已接收的該事件的表示符來修正該一或更多個照明元件中至少其中一者的光強度。 The system of claim 1, wherein the lighting fixture management unit is configured to: receive an identifier of the event from the event synthesizer; and correct the response in response to the received identifier of the event Light intensity of at least one of the one or more lighting elements. 根據申請專利範圍第1項的系統,其中該照明夾具管理單元包括一射頻致能照明夾具管理單元。 The system of claim 1, wherein the lighting fixture management unit comprises a radio frequency enabled lighting fixture management unit. 根據申請專利範圍第14項的系統,其中該射頻致能照明夾具管理單元包括一電表器件,其中該電表器件係一監視該一或更多個照明元件之電力用量的積體電路施行的電表,且其中該射頻致能照明夾具管理單元內的軟體常式會在規律的時間間隔處查詢該電表器件。 The system of claim 14, wherein the radio frequency enabled lighting fixture management unit comprises an electric meter device, wherein the electric meter device is an electric meter implemented by an integrated circuit that monitors a power usage of the one or more lighting elements, And wherein the software routine in the radio frequency enabled lighting fixture management unit queries the meter device at regular time intervals. 根據申請專利範圍第14項的系統,其中該射頻致能照明夾具管理單元包括一微處理器器件包括複數根接針,該複數根接針被耦合至外部訊號線,用以在該微處理器器件和該射頻致能照明夾具管理單元的其它器件之間提供一介面。 The system of claim 14, wherein the radio frequency enabled lighting fixture management unit comprises a microprocessor device comprising a plurality of pins coupled to an external signal line for use in the microprocessor An interface is provided between the device and other components of the RF enabled illumination fixture management unit. 根據申請專利範圍第16項的系統,其中該微處理器器件被配置成用以促成響應於透過該複數根接針中至少其中一者所收到的中斷訊號而中斷該一或更多個照明元件中至少其中一者和一電源的連接,且其中該電源包括一交流電源或一直流電源。 The system of claim 16 wherein the microprocessor device is configured to cause the one or more illumination to be interrupted in response to an interrupt signal received by at least one of the plurality of pins At least one of the components is coupled to a power source, and wherein the power source includes an AC power source or a DC power source. 根據申請專利範圍第16項的系統,其中於該微處理器器件無法控制該照明控制系統的情況中,該一或更多個照明元件直接被連接至一電源。 The system of claim 16 wherein the one or more lighting elements are directly connected to a power source if the microprocessor device is unable to control the lighting control system. 根據申請專利範圍第18項的系統,其中該一或更多個照明元件中至少其中一者響應於在該微處理器器件上執行軟體碼而與該電源中斷連接。 The system of claim 18, wherein at least one of the one or more lighting elements is disconnected from the power source in response to executing a software code on the microprocessor device. 根據申請專利範圍第1項的系統,其中該一或更多個照明元件包括一或更多個發光二極體(LED)燈具,且其中該事件包括落在該些LED燈具之最佳操作的溫度範圍內的溫度。 The system of claim 1, wherein the one or more lighting elements comprise one or more light emitting diode (LED) luminaires, and wherein the event comprises an optimum operation of the LED luminaires Temperature within the temperature range. 根據申請專利範圍第1項的系統,其進一步包括,一電力連接線,用以透過一電源供電給該一或更多個照明元件的一電子裝置,其中該照明控制系統進一步被配置成用以計量透過該電源被配送至該電子裝置的電力數額。 The system of claim 1, further comprising: a power connection line for supplying power to the one or more lighting elements via a power source, wherein the lighting control system is further configured to The amount of power that is delivered to the electronic device through the power source is metered. 根據申請專利範圍第21項的系統,其中該電子裝置係一電動車。 A system according to claim 21, wherein the electronic device is an electric vehicle. 一種非暫時性機器可讀取媒體,用於以用於合成事件產生的系統來控制一照明夾具的輸出,該用於合成事件產生的系統包括:一事件合成器,用於合成一事件;以及一照明控制系統,其包括:一照明夾具,其含有一或更多個照明元件;以及一照明夾具管理單元,配合該照明夾具被併入;該機器可讀取媒體包括機器指令,用以:以預設資訊為基礎利用該事件合成器來計算一事件已經發生,以及從該事件合成器處發送一訊號給該照明控制系統,用以發訊通知該事件已經發生。 A non-transitory machine readable medium for controlling an output of a lighting fixture for a system for synthesizing event generation, the system for synthesizing event generation comprising: an event synthesizer for synthesizing an event; A lighting control system comprising: a lighting fixture comprising one or more lighting elements; and a lighting fixture management unit incorporating the lighting fixture; the machine readable medium including machine instructions for: The event synthesizer is used to calculate an event that has occurred based on the preset information, and a signal is sent from the event synthesizer to the lighting control system for signaling that the event has occurred. 一種以用於合成事件產生的系統來控制一照明夾具的輸出的方法,該用於合成事件產生的系統包括:一事件合成器,用於合成一事件;以及一照明控制系統,其包括:一照明夾具,其含有一或更多個照明元件;以及一照明夾具管理單元,配合該照明夾具被併入;該方法包括:以預設資訊為基礎利用該事件合成器來計算一事件已經發生,以及從該事件合成器處發送一訊號給該照明控制系統,用以發訊通知該事 件已經發生。 A method for controlling an output of a lighting fixture for a system for synthesizing event generation, the system for synthesizing event generation comprising: an event synthesizer for synthesizing an event; and a lighting control system comprising: a lighting fixture comprising one or more lighting elements; and a lighting fixture management unit incorporating the lighting fixture; the method comprising: utilizing the event synthesizer to calculate an event that has occurred based on preset information, And sending a signal from the event synthesizer to the lighting control system for signaling the matter Pieces have already happened. 根據申請專利範圍第24項的方法,其中該照明元件係一基於發光二極體的照明元件。 The method of claim 24, wherein the lighting element is a lighting element based on a light emitting diode. 根據申請專利範圍第24項的方法,其中該照明夾具管理單元包含一燈具驅動器,該方法進一步包括下面步驟:儲存控制資訊與狀態資訊,以便根據該被儲存的控制資訊來控制含有該照明夾具管理單元的照明夾具內的照明元件所發出的光強度。 The method of claim 24, wherein the lighting fixture management unit comprises a lamp driver, the method further comprising the steps of: storing control information and status information to control the management of the lighting fixture according to the stored control information The intensity of light emitted by the illumination elements within the unit's lighting fixture. 根據申請專利範圍第24項的方法,其進一步包括一用於感測該事件的感測器。 The method of claim 24, further comprising a sensor for sensing the event. 根據申請專利範圍第27項的方法,其中該感測器係一日光感測器、一運動感測器、或是一溫度感測器。 The method of claim 27, wherein the sensor is a daylight sensor, a motion sensor, or a temperature sensor. 根據申請專利範圍第24項的方法,其中該事件係下面所組成之群中的至少其中一者:日光偵測、運動偵測、安全監視、氣象監視、交通監視、以及危險事件偵測。 The method of claim 24, wherein the event is at least one of the group consisting of: daylight detection, motion detection, security surveillance, weather monitoring, traffic monitoring, and dangerous event detection. 根據申請專利範圍第29項的方法,其中該事件係日光偵測。 The method of claim 29, wherein the event is daylight detection. 根據申請專利範圍第24項的方法,其中在由該事件合成器發送該訊號至該照明控制系統的步驟中,該訊號在被發送至該照明控制系統之前會被發送至一場所管理器。 The method of claim 24, wherein in the step of transmitting the signal by the event synthesizer to the lighting control system, the signal is sent to a venue manager before being sent to the lighting control system. 根據申請專利範圍第31項的方法,其中該事件合成器位於該場所管理器中。 The method of claim 31, wherein the event synthesizer is located in the venue manager. 根據申請專利範圍第24項的方法,其中由該事件合成器發送至該照明控制系統的訊號係從該事件合成器處直接被發送至該照明控制系統。 The method of claim 24, wherein the signal sent by the event synthesizer to the lighting control system is sent directly from the event synthesizer to the lighting control system.
TW102148932A 2013-01-09 2013-12-30 Lighting system control and synthetic event generation TW201440575A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361750425P 2013-01-09 2013-01-09
US13/795,848 US20130249409A1 (en) 2011-05-12 2013-03-12 Lighting System Control and Synthetic Event Generation

Publications (1)

Publication Number Publication Date
TW201440575A true TW201440575A (en) 2014-10-16

Family

ID=49955505

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102148932A TW201440575A (en) 2013-01-09 2013-12-30 Lighting system control and synthetic event generation

Country Status (2)

Country Link
TW (1) TW201440575A (en)
WO (1) WO2014109885A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI816468B (en) * 2022-07-14 2023-09-21 國立臺灣大學 Array RF system
TWI816725B (en) * 2017-12-21 2023-10-01 美商亮銳公司 Road lighting
US11798406B2 (en) 2018-03-21 2023-10-24 Lumileds Llc Road lighting

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8339069B2 (en) * 2008-04-14 2012-12-25 Digital Lumens Incorporated Power management unit with power metering
US8432108B2 (en) * 2008-04-30 2013-04-30 Lsi Industries, Inc. Solid state lighting, driver circuits, and related software
US8731689B2 (en) * 2008-05-06 2014-05-20 Abl Ip Holding, Llc Networked, wireless lighting control system with distributed intelligence
US8686664B2 (en) * 2010-03-08 2014-04-01 Virticus Corporation Method and system for automated lighting control and monitoring
US8686665B2 (en) * 2010-03-08 2014-04-01 Virticus Corporation Method and system for lighting control and monitoring
US9173267B2 (en) * 2010-04-01 2015-10-27 Michael L. Picco Modular centralized lighting control system for buildings

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI816725B (en) * 2017-12-21 2023-10-01 美商亮銳公司 Road lighting
US11798405B2 (en) 2017-12-21 2023-10-24 Lumileds Llc Road lighting
US11854384B2 (en) 2017-12-21 2023-12-26 Lumileds Llc Road lighting
US11798406B2 (en) 2018-03-21 2023-10-24 Lumileds Llc Road lighting
TWI816468B (en) * 2022-07-14 2023-09-21 國立臺灣大學 Array RF system

Also Published As

Publication number Publication date
WO2014109885A2 (en) 2014-07-17
WO2014109885A3 (en) 2014-09-12

Similar Documents

Publication Publication Date Title
AU2011255516B2 (en) Method and system for lighting control and monitoring
US20130257284A1 (en) Lighting and Integrated Fixture Control
US20140028200A1 (en) Lighting and integrated fixture control
US20130015783A1 (en) Method and system for electric-power distribution
US20130253713A1 (en) Method and System for Electric-Power Distribution and Irrigation Control
US20130257289A1 (en) Light Balancing
US20130249409A1 (en) Lighting System Control and Synthetic Event Generation
TW201442616A (en) Method and system for electric-power distribution and irrigation control
US20130187552A1 (en) Light Harvesting
US10098212B2 (en) Systems and methods for controlling outdoor luminaire wireless network using smart appliance
US8954170B2 (en) Power management unit with multi-input arbitration
US10539311B2 (en) Sensor-based lighting methods, apparatus, and systems
US8339069B2 (en) Power management unit with power metering
US8866408B2 (en) Methods, apparatus, and systems for automatic power adjustment based on energy demand information
US8531134B2 (en) LED-based lighting methods, apparatus, and systems employing LED light bars, occupancy sensing, local state machine, and time-based tracking of operational modes
US8138690B2 (en) LED-based lighting methods, apparatus, and systems employing LED light bars, occupancy sensing, local state machine, and meter circuit
KR20130004494A (en) Method and system for automated lighting control and monitoring
US20120143383A1 (en) Energy-efficient utility system utilizing solar-power
US20100301773A1 (en) Fixture with Individual Light Module Dimming
US20100295474A1 (en) Power Management Unit with Modular Sensor Bus
US20100301769A1 (en) Power Management Unit with Remote Reporting
US20100301768A1 (en) Power Management Unit with Real Time Clock
WO2012064906A2 (en) Energy-efficient utility system utilizing solar-power
CN104185935A (en) Methods and apparatus for operating lighting network according to energy demand and energy supply
TW201448667A (en) Lighting and integrated fixture control