TW201407164A - The coordinate transformation method, the calculating method of independent coordinate and the accelerometer detecting system - Google Patents

The coordinate transformation method, the calculating method of independent coordinate and the accelerometer detecting system Download PDF

Info

Publication number
TW201407164A
TW201407164A TW101128997A TW101128997A TW201407164A TW 201407164 A TW201407164 A TW 201407164A TW 101128997 A TW101128997 A TW 101128997A TW 101128997 A TW101128997 A TW 101128997A TW 201407164 A TW201407164 A TW 201407164A
Authority
TW
Taiwan
Prior art keywords
coordinate axis
angle
acceleration vector
vector
coordinate
Prior art date
Application number
TW101128997A
Other languages
Chinese (zh)
Other versions
TWI456202B (en
Inventor
Ming-Yih Lee
Wen-Wei Tsai
Wen-Yan Lin
Jian-Feng Li
Wen-Zheng Zhou
Original Assignee
Univ Chang Gung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chang Gung filed Critical Univ Chang Gung
Priority to TW101128997A priority Critical patent/TWI456202B/en
Publication of TW201407164A publication Critical patent/TW201407164A/en
Application granted granted Critical
Publication of TWI456202B publication Critical patent/TWI456202B/en

Links

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

This coordinate system transformation algorithm is applied on an accelerometer. It transforms the acceleration vector provided from accelerometer in a rectangular coordinate system to an independent coordinate system to retrieve the inclination information of the object. This algorithm is first to rotate the acceleration vector around 1<SP>st</SP>-axis and have its projected vector on the plane constructed from the other two axes aligned to the 2<SP>nd</SP>-axis. After that, rotate the acceleration vector on the 1<SP>st</SP>-2<SP>nd</SP>-axes plane, have it aligned on the 2<SP>nd</SP>-axis and calculate the rotation angle to get the 1<SP>st</SP> desired angle between the original acceleration vector and 1<SP>st</SP>-axis of the independent coordinate system. Based on the same concept of vector rotations, the angles between the horizontal plane, which is perpendicular to the acceleration vector, and the 2<SP>nd</SP>-axis and 3<SP>rd</SP>-axis can be calculated respectively. This algorithm can be applied on some clinical applications to detect if the patients or elderly people are trying to get out of bed. It can be also applied on the clinical evaluation of the patient's capability of dynamic posture control.

Description

座標轉換方法、獨立座標的計算方法及加速度感測系統 Coordinate conversion method, calculation method of independent coordinates and acceleration sensing system

本發明是有關於一種轉換方法,特別是指一種將一加速度向量從一直角座標系統轉換成一獨立座標系統的座標轉換方法,以計算出加速度向量與座標軸之角度關係。 The present invention relates to a conversion method, and more particularly to a coordinate conversion method for converting an acceleration vector from a right angle coordinate system to an independent coordinate system to calculate an angular relationship between the acceleration vector and the coordinate axis.

參閱圖1,現今加速規(accelerometer)所感測到的一加速度向量為落於一直角座標系統(X,Y,Z)的向量,若將該向量轉換成一獨立座標系統(φ,θ,Ψ)可求得加速規相對應於地心引力之方位,由於將加速度向量轉換為獨立座標系統中的角度係透過以下式(1)~(3) Referring to Figure 1, an acceleration vector sensed by an accelerometer is a vector that falls within the coordinate system (X, Y, Z). If the vector is converted into an independent coordinate system (φ, θ, Ψ ) The acceleration gauge can be obtained corresponding to the orientation of gravity, since the acceleration vector is converted into an angle in the independent coordinate system by the following equations (1)~(3)

然而,乘法、除法、三角函數、開根號等運算複雜會花很久時間,因此現今應用加速規之加速度感測系統判斷角度(φ,θ,Ψ)之作法主要有以下幾種:第一種方式是將加速規所感測的加速度向量加以儲存,之後再用離線的方式透過個人電腦做運算,進而轉換成角度後再做分析。此種方式的缺點在於,加速度感測系 統無法作即時(Real-time)分析及判斷。 However, the operations of multiplication, division, trigonometric function, and opening number are complicated, so the acceleration sensing system used today to calculate the angle (φ, θ, Ψ ) mainly has the following methods: the first way The acceleration vector sensed by the acceleration gauge is stored, and then the operation is performed through the personal computer in an offline manner, and then converted into an angle and then analyzed. The disadvantage of this approach is that the acceleration sensing system cannot perform real-time analysis and judgment.

第二種方式是透過一近距離無線傳輸模組與加速度感測系統相互配合,將加速規所感測之加速度向量,利用無線傳輸模組即時傳送到個人電腦、手機、或PDA等電子裝置上,利用該些裝置中具高運算性能之處理器來進行角度之計算與判斷。這使得加速度感測系統需要透過該些裝置才能實現,將會降低加速度感測系統的可攜性,且長時間不間斷的無線訊號傳輸,有電波對人體傷害之顧慮,且成本較高。 The second method is to cooperate with the acceleration sensing system through a short-distance wireless transmission module to accelerate the acceleration vector sensed by the acceleration gauge to the electronic device such as a personal computer, a mobile phone, or a PDA by using a wireless transmission module. The calculation and judgment of the angle are performed by using a processor with high computational performance in the devices. This makes the acceleration sensing system need to be realized through the devices, which will reduce the portability of the acceleration sensing system, and the long-term uninterrupted wireless signal transmission, the concern that the electric wave is harmful to the human body, and the cost is high.

第三種方式是預先將所有加速度向量所對應轉換的角度儲存於加速度感測系統中,使得當加速規感測到任一加速度向量時,加速度感測系統可利用查表之方式取得其對應的角度資訊,但此作法又會需要大量之記憶體空間,以達到所需之準確度。 The third way is to store the angles corresponding to the conversions of all the acceleration vectors in the acceleration sensing system in advance, so that when the acceleration gauge senses any acceleration vector, the acceleration sensing system can obtain the corresponding by using the look-up table. Angle information, but this approach will require a large amount of memory space to achieve the required accuracy.

因此,本發明之目的,即在提供一種可以即時(Real-time)、高準確度且低運算量的座標轉換方法,以計算出加速度向量與座標軸之角度關係,使運用加速規之加速度感測系統得以實現一即時偵測物體傾角之計算,並可延伸運用在許多臨床監測與評估之用途上。 Therefore, the object of the present invention is to provide a coordinate conversion method capable of real-time, high accuracy and low computational amount, to calculate an angular relationship between an acceleration vector and a coordinate axis, and an acceleration sensing system using an acceleration gauge. Achieving an instant detection of object tilt angles can be extended to many clinical monitoring and evaluation purposes.

於是,本發明座標轉換方法,係應用於一加速度感測系統,用以使加速規所感測之一加速度向量從一直角座標系統轉換成一獨立座標系統,該直角座標系統係由一第一座標軸、一第二座標軸及一第三座標軸所定義,該獨立座 標系統係由加速度向量與第一座標軸所夾之一第一角度,及加速度向量所垂直之平面分別與第二座標軸及第三座標軸所夾之一第二角度及一第三角度,該座標轉換方法包含以下步驟:(A)將加速度向量以第一座標軸為中心旋轉,使加速度向量投射在第二座標軸及第三座標軸所構成之平面上的分量重疊於第二座標軸,並計算加速度向量投射在第二座標軸上的分量長度,而此時,該旋轉後之加速度向量亦落於第一座標軸及第二座標軸所構成之平面上;(B)將步驟(A)中旋轉後之加速度向量再以第三座標軸為中心,於第一座標軸及第二座標軸所構成之平面上旋轉,使該加速度向量重疊於第二座標軸,並計算該加速度向量旋轉至重疊第二座標軸的角度以得第一角度;(C)將加速度向量以第二座標軸為中心旋轉,使加速度向量投射在第一座標軸及第三座標軸所構成之平面上的分量重疊於第三座標軸,並計算加速度向量重疊於第三座標軸上的分量長度;(D)將步驟(C)中旋轉後的加速度向量再以第一座標軸為中心,於第二座標軸及第三座標軸所構成之平面上旋轉,使該加速度向量重疊於第三座標軸,並計算該加速度向量旋轉至重疊第三座標軸的角度以得第二角度;(E)將加速度向量以第三座標軸為中心旋轉,使加速度向量投射在第一座標軸及第二座標軸所構成之平面上的分量重疊於第一座標軸,並計算加速度向量重疊於第一座標 軸上的分量長度;及(F)將步驟(E)中旋轉後的加速度向量再以第二座標軸為中心,於第一座標軸及第三座標軸所構成之平面上旋轉,使該加速度向量重疊於第一座標軸,並計算該加速度向量旋轉至重疊第一座標軸的角度以得第三角度。 Therefore, the coordinate conversion method of the present invention is applied to an acceleration sensing system for converting an acceleration vector sensed by an acceleration gauge from a right angle coordinate system to an independent coordinate system, wherein the orthogonal coordinate system is a first coordinate axis, Defined by a second coordinate axis and a third coordinate axis, the independent seat The standard system is a first angle between the acceleration vector and the first coordinate axis, and a plane perpendicular to the acceleration vector and a second angle and a third angle respectively of the second coordinate axis and the third coordinate axis, the coordinate conversion The method comprises the following steps: (A) rotating the acceleration vector around the first coordinate axis, causing the component of the acceleration vector projected on the plane formed by the second coordinate axis and the third coordinate axis to overlap the second coordinate axis, and calculating the acceleration vector projected on the The component length on the second coordinate axis, and at this time, the acceleration vector after the rotation also falls on the plane formed by the first coordinate axis and the second coordinate axis; (B) the acceleration vector after the rotation in the step (A) is further The third coordinate axis is centered, and rotates on a plane formed by the first coordinate axis and the second coordinate axis, so that the acceleration vector is superposed on the second coordinate axis, and the acceleration vector is rotated to overlap the angle of the second coordinate axis to obtain a first angle; (C) rotating the acceleration vector around the second coordinate axis, and projecting the acceleration vector on the first coordinate axis and the third coordinate axis The component on the surface overlaps the third coordinate axis, and calculates the component length of the acceleration vector superimposed on the third coordinate axis; (D) the acceleration vector after the rotation in step (C) is centered on the first coordinate axis, and the second coordinate axis And rotating on a plane formed by the third coordinate axis, the acceleration vector is superposed on the third coordinate axis, and the acceleration vector is rotated to overlap the angle of the third coordinate axis to obtain a second angle; (E) the acceleration vector is at the third coordinate axis For center rotation, the component of the acceleration vector projected on the plane formed by the first coordinate axis and the second coordinate axis is overlapped with the first coordinate axis, and the acceleration vector is calculated to overlap the first coordinate The length of the component on the axis; and (F) rotating the acceleration vector after the rotation in the step (E) around the second coordinate axis, and rotating on the plane formed by the first coordinate axis and the third coordinate axis, so that the acceleration vector is superimposed on The first axis is plotted and the acceleration vector is rotated to an angle that overlaps the first coordinate axis to obtain a third angle.

其中,步驟(A)與步驟(B)、步驟(C)與步驟(D),以及步驟(E)與步驟(F)的執行順序可相互對調,或是同步執行。 Wherein, the steps (A) and (B), (C) and (D), and the execution sequence of the steps (E) and (F) may be mutually reversed or performed simultaneously.

進一步說明,步驟(A)包括以下子步驟:(A-1)將加速度向量以第一座標軸為中心向靠近第二座標軸的方向旋轉一角度,並記錄一與角度有關的角度參數;(A-2)判斷加速度向量對應第二座標軸與第三座標軸的分量是否與旋轉前相同,若是,則執行步驟(A-5),若否,則執行步驟(A-3);(A-3)將加速度向量以第一座標軸為中心向靠近第二座標軸的方向旋轉一角度,該角度之tan值為前次旋轉角度之tan值的一半,並記錄一與角度有關的角度參數;(A-4)重複執行步驟(A-2)及(A-3)達一特定次數;及(A-5)將一量化因子與第二座標軸上之分量相乘而計算出旋轉後加速度向量投射在第二座標軸上的分量長度。 Further, step (A) includes the following sub-steps: (A-1) rotating the acceleration vector by an angle toward the second coordinate axis about the first coordinate axis, and recording an angle parameter related to the angle; (A- 2) It is determined whether the components of the second coordinate axis and the third coordinate axis corresponding to the acceleration vector are the same as before the rotation, if yes, step (A-5) is performed, and if not, step (A-3) is performed; (A-3) The acceleration vector is rotated by an angle from the first coordinate axis toward the second coordinate axis, the tan value of the angle is half of the tan value of the previous rotation angle, and an angle parameter related to the angle is recorded; (A-4) Repeating steps (A-2) and (A-3) for a specific number of times; and (A-5) multiplying a quantization factor by a component on the second coordinate axis to calculate a post-rotation acceleration vector projected on the second coordinate axis The component length on the top.

步驟(B)包括以下子步驟:(B-1)將加速度向量以第三座標軸為中心於第一座標軸及第二座標軸所構成之平面上向靠近第二座標軸的方向旋轉一角度,並記錄一與角度有關的角度參數; (B-2)判斷加速度向量對應第一座標軸的分量是否為零,若是,則執行步驟(B-5),若否,則執行步驟(B-3);(B-3)將加速度向量以第三座標軸為中心向靠近第二座標軸的方向旋轉一角度,該角度之tan值為前次旋轉角度之tan值的一半,並記錄一與角度有關的角度參數;(B-4)重複執行步驟(B-2)及(B-3)達一特定次數;(B-5)將所有紀錄的角度參數相加,以得一與第一角度有關的旋轉角度,此時再經過步驟(B)旋轉之加速度向量會落於第二座標軸上;及(B-6)以π/2減去旋轉角度而得第一角度。 Step (B) includes the following substeps: (B-1) rotating the acceleration vector by an angle on a plane formed by the first coordinate axis and the second coordinate axis about the third coordinate axis toward the second coordinate axis, and recording one An angle parameter related to the angle; (B-2) determining whether the component of the acceleration vector corresponding to the first coordinate axis is zero, and if so, performing step (B-5), if not, performing step (B-3); (B-3) performing the acceleration vector The third coordinate axis is rotated at an angle to the center of the second coordinate axis, and the tan value of the angle is half of the tan value of the previous rotation angle, and an angle parameter related to the angle is recorded; (B-4) repeating the steps (B-2) and (B-3) for a specific number of times; (B-5) add all the angle parameters of the record to obtain a rotation angle related to the first angle, and then go through step (B) The acceleration vector of the rotation will fall on the second coordinate axis; and (B-6) the first angle is obtained by subtracting the rotation angle by π/2.

補充說明的是,若需要求得加速度向量的長度,則於步驟(B-2)中,判別若是零,則停止接下來所有旋轉角度參數之記錄,但仍重複執行步驟(B-3)達一特定次數,最後再將一量化因子與第二座標軸上之分量相乘,即可計算出加速度向量的原始長度。 In addition, if you need to obtain the acceleration vector The length is in step (B-2), and if it is zero, the recording of all the following rotation angle parameters is stopped, but step (B-3) is repeatedly executed for a certain number of times, and finally a quantization factor is The original length of the acceleration vector can be calculated by multiplying the components on the second coordinate axis.

另外,步驟(C)則包括以下子步驟:(C-1)將加速度向量以第二座標軸為中心向靠近第三座標軸的方向旋轉一角度,並記錄一與角度有關的角度參數;(C-2)判斷加速度向量對應第三座標軸與第一座標軸的分量是否與旋轉前相同,若是,則執行步驟(C-5),若否,則執行步驟(C-3);(C-3)將加速度向量以第二座標軸為中心向靠近第三座標軸的方向旋轉一角度,角度之tan值為前次旋轉角度之 tan值的一半,並記錄一與角度有關的角度參數;(C-4)重複執行步驟(C-2)及(C-3)達一特定次數;及(C-5)將一量化因子與第三座標軸上之分量相乘而計算出旋轉後的加速度向量投射在第三座標軸上的分量長度。 In addition, step (C) includes the following sub-steps: (C-1) rotating the acceleration vector about an angle of the second coordinate axis toward the third coordinate axis, and recording an angle parameter related to the angle; (C- 2) Determine whether the acceleration vector corresponds to the component of the third coordinate axis and the first coordinate axis is the same as before the rotation, if yes, execute step (C-5), if not, perform step (C-3); (C-3) The acceleration vector is rotated by an angle from the second coordinate axis toward the third coordinate axis, and the tan value of the angle is the previous rotation angle. Half of the tan value, and record an angle parameter related to the angle; (C-4) repeat steps (C-2) and (C-3) for a specific number of times; and (C-5) a quantization factor The components on the third coordinate axis are multiplied to calculate the component length of the rotated acceleration vector projected on the third coordinate axis.

步驟(D)包括以下子步驟:(D-1)將加速度向量以第一座標軸為中心於第二座標軸及第三座標軸所構成之平面上向靠近第三座標軸的方向旋轉一角度,並記錄一與角度有關的角度參數;(D-2)判斷加速度向量對應第二座標軸的分量是否為零,若是,則執行步驟(D-5),若否,則執行步驟(D-3);(D-3)將加速度向量以第一座標軸為中心向靠近第三座標軸的方向旋轉一角度,角度之tan值為前次旋轉角度之tan值的一半,並記錄一與角度有關的角度參數;(D-4)重複執行步驟(D-2)及(D-3)達一特定次數;及(D-5)將所有紀錄的角度參數相加而計算得第二角度。 Step (D) includes the following sub-steps: (D-1) rotating the acceleration vector by an angle on a plane formed by the second coordinate axis and the third coordinate axis about the first coordinate axis toward the third coordinate axis, and recording one An angle parameter related to the angle; (D-2) determining whether the component of the second coordinate axis corresponding to the acceleration vector is zero, and if so, performing step (D-5), and if not, performing step (D-3); -3) rotating the acceleration vector to an angle close to the third coordinate axis centering on the first coordinate axis, the tan value of the angle is half of the tan value of the previous rotation angle, and recording an angle parameter related to the angle; -4) Repeat steps (D-2) and (D-3) for a specific number of times; and (D-5) add the angle parameters of all the records to calculate the second angle.

另外,步驟(E)則包括以下子步驟:(E-1)將加速度向量以第三座標軸為中心向靠近第一座標軸的方向旋轉一角度,並記錄一與角度有關的角度參數;(E-2)判斷加速度向量對應第一座標軸與第二座標軸的分量是否與旋轉前相同,若是,則執行步驟(E-5),若否,則執行步驟(E-3);(E-3)將加速度向量以第三座標軸為中心向靠近第一座標軸的方向旋轉一角度,角度之tan值為前次旋轉角度之 tan值的一半,並記錄一與角度有關的角度參數;(E-4)重複執行步驟(E-2)及(E-3)達一特定次數;及(E-5)將一量化因子與第一座標軸上之分量相乘而計算出旋轉後的加速度向量投射在第一座標軸上的分量長度。 In addition, step (E) includes the following sub-steps: (E-1) rotating the acceleration vector to an angle close to the first coordinate axis centering on the third coordinate axis, and recording an angle parameter related to the angle; (E- 2) judging whether the acceleration vector corresponds to the component of the first coordinate axis and the second coordinate axis is the same as before the rotation, if yes, executing step (E-5), if not, performing step (E-3); (E-3) The acceleration vector is rotated at an angle close to the first coordinate axis centering on the third coordinate axis, and the tan value of the angle is the previous rotation angle. Half of the tan value, and record an angle parameter related to the angle; (E-4) repeat steps (E-2) and (E-3) for a specific number of times; and (E-5) a quantization factor The components on the first target axis are multiplied to calculate the component length of the rotated acceleration vector projected on the first coordinate axis.

步驟(F)包括以下子步驟:(F-1)將加速度向量以第二座標軸為中心於第一座標軸及第三座標軸所構成之平面上向靠近第一座標軸的方向旋轉一角度,並記錄一與角度有關的角度參數;(F-2)判斷加速度向量對應第三座標軸的分量是否為零,若是,則執行步驟(F-5),若否,則執行步驟(F-3);(F-3)將加速度向量以第二座標軸為中心向靠近第一座標軸的方向旋轉一角度,角度之tan值為前次旋轉角度之tan值的一半,並記錄一與角度有關的角度參數;(F-4)重複執行步驟(F-2)及(F-3)達一特定次數;及(F-5)將所有紀錄的角度參數相加而計算得第三角度。 Step (F) includes the following sub-steps: (F-1) rotating the acceleration vector by an angle on a plane formed by the first coordinate axis and the third coordinate axis about the second coordinate axis toward the first coordinate axis, and recording one Angle parameter related to the angle; (F-2) determining whether the component of the acceleration coordinate vector corresponding to the third coordinate axis is zero, if yes, executing step (F-5), and if not, performing step (F-3); -3) rotating the acceleration vector to an angle close to the first coordinate axis centering on the second coordinate axis, the tan value of the angle is half of the tan value of the previous rotation angle, and recording an angle parameter related to the angle; -4) Repeat steps (F-2) and (F-3) for a specific number of times; and (F-5) add the angle parameters of all the records to calculate the third angle.

此外,本發明之另一目的,即在提供一種可執行上述座標轉換方法的加速度感測系統。 Further, another object of the present invention is to provide an acceleration sensing system that can perform the above-described coordinate conversion method.

本發明之加速度感測系統包含一感測單元(加速規)、一耦接於感測單元的向量旋轉單元,及一耦接於向量旋轉單元的計算單元。 The acceleration sensing system of the present invention comprises a sensing unit (acceleration gauge), a vector rotation unit coupled to the sensing unit, and a computing unit coupled to the vector rotation unit.

感測單元(加速規)用以根據其本身的運動而感測產生一加速度向量,加速度向量係以一直角座標系統呈現,且直角座標系統係由相互垂直的一第一座標軸、一第二座標軸及一第三座標軸所定義。 The sensing unit (acceleration gauge) is configured to generate an acceleration vector according to its own motion, the acceleration vector is presented by a right angle coordinate system, and the orthogonal coordinate system is a first coordinate axis and a second coordinate axis perpendicular to each other. And a third coordinate axis is defined.

其中,向量旋轉單元先將加速度向量以第一座標軸為中心旋轉,使加速度向量投射在第二座標軸及第三座標軸所構成之平面上的分量重疊於第二座標軸,且計算單元計算加速度向量投射在第二座標軸上的分量長度,向量旋轉單元將上述旋轉後的加速度向量再以第三座標軸為中心,於第一座標軸及第二座標軸所構成的平面上旋轉,使加速度向量重疊於第二座標軸,且計算單元計算加速度向量旋轉至重疊第二座標軸的角度,此外,加速度感測系統還包含一耦接於計算單元的角度調整單元,利用π/2減去計算單元所計算出的角度,以得加速度向量與第一座標軸所夾之一第一角度。 Wherein, the vector rotation unit first rotates the acceleration vector around the first coordinate axis, and the component of the acceleration vector projected on the plane formed by the second coordinate axis and the third coordinate axis overlaps the second coordinate axis, and the calculation unit calculates the acceleration vector to be projected on a component length on the second coordinate axis, the vector rotation unit rotates the rotated acceleration vector around the third coordinate axis, and rotates on a plane formed by the first coordinate axis and the second coordinate axis, so that the acceleration vector overlaps the second coordinate axis. And the calculating unit calculates the angle at which the acceleration vector is rotated to overlap the second coordinate axis. In addition, the acceleration sensing system further includes an angle adjusting unit coupled to the calculating unit, and subtracting the angle calculated by the calculating unit by using π/2 to obtain The first angle of the acceleration vector and the first coordinate axis.

向量旋轉單元還將加速度向量以第二座標軸為中心旋轉,使加速度向量投射在第一座標軸及第三座標軸所構成之平面上的分量重疊於第三座標軸,且計算單元計算加速度向量投射在第三座標軸上的分量長度,向量旋轉單元將上述旋轉後的加速度向量再以第一座標軸為中心,於第二座標軸及第三座標軸所構成的平面上旋轉,使加速度向量重疊於第三座標軸,且計算單元計算加速度向量旋轉至重疊第三座標軸的角度以得加速度向量所垂直之平面與第二座標軸所夾之一第二角度;向量旋轉單元還將加速度向量以第三座標軸為中心旋轉,使加速度向量投射在第一座標軸及第二座標軸所構成之平面上的分量重疊於第一座標軸,且計算單元計算加速度向量投射在第一座標軸上的分量長度,向量旋轉單元將 上述旋轉後的加速度向量再以第二座標軸為中心,於第一座標軸及第三座標軸所構成的平面上旋轉,使加速度向量重疊於第一座標軸,且計算單元計算加速度向量旋轉至重疊第一座標軸的角度以得加速度向量所垂直之平面與第三座標軸所夾之一第三角度。 The vector rotation unit also rotates the acceleration vector around the second coordinate axis, so that the component of the acceleration vector projected on the plane formed by the first coordinate axis and the third coordinate axis overlaps the third coordinate axis, and the calculation unit calculates the acceleration vector to be projected in the third The component length on the coordinate axis, the vector rotation unit rotates the above-mentioned rotated acceleration vector on the plane formed by the second coordinate axis and the third coordinate axis centering on the first coordinate axis, so that the acceleration vector is superimposed on the third coordinate axis, and the calculation is performed. The unit calculates the acceleration vector to rotate to an angle overlapping the third coordinate axis to obtain a second angle between the plane perpendicular to the acceleration vector and the second coordinate axis; the vector rotation unit also rotates the acceleration vector around the third coordinate axis to make the acceleration vector a component projected on a plane formed by the first coordinate axis and the second coordinate axis overlaps the first coordinate axis, and the calculation unit calculates a component length of the acceleration vector projected on the first coordinate axis, and the vector rotation unit The rotated acceleration vector is further rotated on a plane formed by the first coordinate axis and the third coordinate axis centered on the second coordinate axis, so that the acceleration vector is superposed on the first coordinate axis, and the calculation unit calculates the acceleration vector to rotate to overlap the first coordinate axis. The angle is a third angle between the plane perpendicular to the acceleration vector and the third coordinate axis.

此外,本發明之另一目的,即在利用一種極座標的計算方法,來應用於獨立座標的轉換上。 Furthermore, another object of the present invention is to apply to the conversion of independent coordinates using a polar coordinate calculation method.

此計算方法係於一電子裝置執行,將一位於一平面直角座標系統中的向量,計算出其極座標。該平面直角座標系統包括一第一座標軸及一第二座標軸,向量對應第一座標軸及第二座標軸形成一第一分量及一第二分量,計算方法包含以下步驟:(A)將向量以靠近第一座標軸的方向旋轉一角度,並記錄一與角度有關的角度參數;(B)判斷向量的第一分量與第二分量是否為與旋轉前相同,若是,則執行步驟(E),若否,再判斷第二分量是否為零,若是,則停止接下來所有旋轉角度參數的記錄;(C)將向量以靠近第一座標軸的方向旋轉一角度,且該角度之tan值為前次旋轉角度之tan值的一半,並記錄一與角度有關的角度參數;(D)重複執行步驟(B)及(C)達一特定次數;及(E)將所有紀錄的角度參數相加,以得向量與第一座標軸所夾之角度。 The calculation method is performed by an electronic device to calculate a polar coordinate of a vector located in a plane rectangular coordinate system. The plane rectangular coordinate system includes a first coordinate axis and a second coordinate axis, and the vector forms a first component and a second component corresponding to the first coordinate axis and the second coordinate axis, and the calculation method comprises the following steps: (A) placing the vector close to the first The direction of one of the axes is rotated by an angle, and an angle parameter related to the angle is recorded; (B) determining whether the first component and the second component of the vector are the same as before the rotation, and if so, performing step (E), if not, Further determining whether the second component is zero, and if so, stopping recording of all subsequent rotation angle parameters; (C) rotating the vector by an angle in a direction close to the first coordinate axis, and the tan value of the angle is the previous rotation angle Half of the tan value, and record an angle parameter related to the angle; (D) repeat steps (B) and (C) for a specific number of times; and (E) add all the angle parameters of the record to obtain the vector and The angle between the first axis.

本計算方法還可以包含一位於步驟(E)之後的步驟(F), 根據步驟(E)中的第一座標軸之分量而計算出向量長度。詳細地說,步驟(F)是將步驟(E)中的第一座標軸之分量與一量化因子相乘而計算出向量的原始長度。 The calculation method may further comprise a step (F) after the step (E), The length of the vector is calculated from the component of the first coordinate axis in step (E). In detail, the step (F) is to calculate the original length of the vector by multiplying the component of the first coordinate axis in the step (E) by a quantization factor.

然而,量化因子是一固定常數,所以與量化因子相乘可以拆解成一系列之位移與加減,使得本發明可透過向量旋轉的概念,以及疊代運算逼近的方式,避免掉複雜之乘除法、開根號、及三角函數之計算,達到即時、低成本、低功率消耗及低運算量之功效。 However, the quantization factor is a fixed constant, so multiplication with the quantization factor can be disassembled into a series of displacements and additions and subtractions, so that the present invention can avoid complex multiplication and division by the concept of vector rotation and the iterative operation approximation. The calculation of the root number and trigonometric functions achieves immediate, low cost, low power consumption and low computational efficiency.

特別說明的是,步驟(B)中先判斷旋轉後向量的第一與第二分量是否為與旋轉前相同,若相同,則接下來若重複的執行步驟(C),向量經過旋轉後,將會沒有變化,因此疊代運算即可停止而執行步驟(E)。如此,一方面可以提早結束疊代運算,另一方面也可以避免角度參數的繼續累加而造成最後計算的角度誤差增大。 Specifically, in step (B), it is first determined whether the first and second components of the rotated vector are the same as before the rotation. If they are the same, then if the step (C) is repeated, the vector is rotated and then There will be no changes, so the iteration operation can be stopped and step (E) is performed. In this way, on the one hand, the iterative operation can be ended early, and on the other hand, the continual accumulation of the angle parameters can be avoided, resulting in an increase in the final calculated angle error.

若判斷為不同,則再判斷旋轉後向量的第二分量是否為零,若是,則此時向量已剛好重疊於第一座標軸上,而目前所紀錄之旋轉角度參數的總和,即正好為初始向量與第一座標軸之夾角,因此就停止接下來所有旋轉角度參數的紀錄。若僅需計算向量與第一座標軸所夾之角度,即可執行步驟(E),而後計算隨即結束。但若需要計算出向量的原始長度,因於步驟(F)中,一特定之疊代次數需執行完畢才能使用該特定之量化因子,所以為避免而後疊代中的旋轉角度參數被繼續累加而造成最後於步驟(E)中所計算出夾角之誤差加大,因此就停止接下來所有旋轉角度參數的紀 錄,但疊代運算仍繼續進行,直達一特定之次數。 If the judgment is different, it is determined whether the second component of the rotated vector is zero. If so, then the vector has just overlapped on the first coordinate axis, and the sum of the currently recorded rotation angle parameters is exactly the initial vector. The angle with the first coordinate axis, so the record of all subsequent rotation angle parameters is stopped. If it is only necessary to calculate the angle between the vector and the first coordinate axis, step (E) can be performed, and then the calculation ends. However, if it is necessary to calculate the original length of the vector, since the specific number of iterations must be executed in step (F) to use the specific quantization factor, in order to avoid the rotation angle parameter in the post-heap generation is continuously accumulated. Resulting in an increase in the error of the angle calculated in the last step (E), so stop all the parameters of the rotation angle Recorded, but the iteration operation continues until a specific number of times.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一個較佳實施例的詳細說明中,將可清楚的呈現。 The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments.

參閱圖1及圖2,為本發明加速度感測系統之較佳實施例,該加速度感測系統100係利用「向量旋轉」的概念,將其所感測的一加速度向量從一直角座標系統(X,Y,Z)轉換成一獨立座標系統(φ,θ,Ψ),且利用簡單之加減法及位移運算,配合疊代運算(Iterative Operations),以逼近的方式,計算出加速度向量的長度及其轉動角度,以取得感測單元(加速規)10相對於地心引力之方位角度,如此將可避免掉複雜之乘除法、開根號、及三角函數之計算,以降低成本及運算量。 Referring to FIG. 1 and FIG. 2, a preferred embodiment of the acceleration sensing system of the present invention is an acceleration vector sensed by the concept of "vector rotation". Convert from a constant-angle coordinate system (X, Y, Z) to an independent coordinate system (φ, θ, Ψ ), and use simple addition and subtraction and displacement operations, with Iterative Operations, in an approximation manner, Acceleration vector The length and its angle of rotation to obtain the azimuth angle of the sensing unit (acceleration gauge) 10 with respect to the gravity, thus avoiding the complicated calculation of multiplication and division, opening number, and trigonometric function to reduce cost and Computation.

在本實施例中,直角座標系統係由相互垂直的一第一座標軸(Z軸)、一第二座標軸(X軸)及一第三座標軸(Y軸)所定義,獨立座標系統係由加速度向量與第一座標軸(Z軸)所夾之之一第一角度φ、加速度向量所垂直之平面與第二座標軸(X軸)所夾之一第二角度θ、加速度向量所垂直之平面與第三座標軸(Y軸)所夾之一第三角度Ψ所構成。 In this embodiment, the rectangular coordinate system is defined by a first coordinate axis (Z axis), a second coordinate axis (X axis), and a third coordinate axis (Y axis) perpendicular to each other, and the independent coordinate system is composed of an acceleration vector. One of the first angle φ and acceleration vector sandwiched by the first coordinate axis (Z axis) The second angle θ and the acceleration vector of the vertical plane and the second coordinate axis (X axis) The vertical plane is formed by a third angle Ψ between the third coordinate axis (Y axis).

第一角度φ、第二角度θ及第三角度Ψ的角度定義如下: The angles of the first angle φ, the second angle θ, and the third angle Ψ are defined as follows:

加速度感測系統100包含一感測單元10、一向量旋轉單元20、一計算單元30及一角度調整單元40。感測單元10為一加速規(accelerometer),用以根據其本身的運動而感測產生一加速度向量;向量旋轉單元20耦接於感測單元10,用以使加速度向量以任一座標軸為中心旋轉;計算單元30耦接於向量旋轉單元20,用以計算加速度向量在任一座標軸上的分量長度,以及向量旋轉單元20旋轉加速度向量的角度;角度調整單元40耦接於計算單元30,用以調整計算單元30計算出的旋轉角度,使其滿足獨立座標系統的角度範圍。 The acceleration sensing system 100 includes a sensing unit 10, a vector rotation unit 20, a calculation unit 30, and an angle adjustment unit 40. The sensing unit 10 is an accelerometer for sensing an acceleration vector according to its own motion. The vector rotation unit 20 is coupled to the sensing unit 10 for making the acceleration vector Rotating around any coordinate axis; computing unit 30 is coupled to vector rotation unit 20 for calculating acceleration vector Component length on any coordinate axis, and vector rotation unit 20 rotation acceleration vector The angle adjustment unit 40 is coupled to the calculation unit 30 for adjusting the rotation angle calculated by the calculation unit 30 so as to satisfy the angular range of the independent coordinate system.

參閱圖3,以下將詳細說明本實施例之加速度感測系統100係如何運用加減法及位移運算而達到加速度向量的座標轉換及傾角計算。 Referring to FIG. 3, how the acceleration sensing system 100 of the present embodiment uses the addition and subtraction method and the displacement operation to achieve the acceleration vector will be described in detail below. Coordinate transformation and inclination calculation.

步驟S10,感測單元10感測一根據加速規運動而產生的加速度向量,且加速度向量在直角座標系統上以(A X ,A Y ,A Z )座標表示。 In step S10, the sensing unit 10 senses an acceleration vector generated according to the acceleration gauge motion. And acceleration vector It is represented by ( A X , A Y , A Z ) coordinates on the Cartesian coordinate system.

步驟S20,向量旋轉單元20將加速度向量以第一座標軸(Z軸)為中心旋轉,如圖4所示,使得加速度向量投射在X-Y平面上的分量重疊於第二座標軸(X軸),並形成一 新的加速度向量,其位置座標為(A' X ,0,A Z ),此時,旋轉後之加速度向量會落於X-Z軸所構成之平面上,且計算單元30會計算加速度向量投射在第二座標軸(X軸)上的分量長度|A'X|。 Step S20, the vector rotation unit 20 will accelerate the vector Rotating around the first coordinate axis (Z axis), as shown in Figure 4, making the acceleration vector The component projected on the XY plane overlaps the second coordinate axis (X axis) and forms a new acceleration vector , its position coordinates are (A' X , 0, A Z ), at this time, the acceleration vector after rotation Will fall on the plane formed by the XZ axis, and the calculation unit 30 will calculate the acceleration vector The component length |A' X | projected on the second coordinate axis (X-axis).

由於加速度向量僅以第一座標軸(Z軸)軸作旋轉,其本身的向量長度並不會改變,相對地,加速度向量投射在X-Y平面上的分量長度也不會因加速度向量的旋轉而有所增減,故旋轉後的加速度向量投射在X-Y平面上的分量長度|A'X|會等於原加速度向量投射在X-Y平面上的分量長度Acceleration vector Rotating only with the first coordinate axis (Z axis) axis, its own vector length does not change, relatively, the acceleration vector The length of the component projected on the XY plane is also not affected by the acceleration vector. The rotation is increased or decreased, so the acceleration vector after rotation The component length |A' X | projected on the XY plane will be equal to the original acceleration vector Component length projected on the XY plane .

步驟S30,向量旋轉單元20將加速度向量再以第三座標軸(Y軸)為中心旋轉(即在X-Z平面上的加速度向量朝X軸靠近),如圖5所示,使加速度向量重疊於第二座標軸(X軸)上,並形成一新的加速度向量,其位置座標為(A" X ,0,0),且計算單元30計算該加速度向量旋轉至重疊X軸的角度δ,再經角度調整單元40,以π/2減去角度δ而求得第一角度φ。 Step S30, the vector rotation unit 20 will accelerate the vector Then rotate around the third coordinate axis (Y axis) (ie the acceleration vector on the XZ plane) Approaching the X axis), as shown in Figure 5, to make the acceleration vector Overlap on the second coordinate axis (X-axis) and form a new acceleration vector , whose position coordinates are (A" X , 0, 0), and the calculation unit 30 calculates the acceleration vector The angle δ is rotated to overlap the X-axis, and the angle δ is subtracted from the angle δ by the angle adjusting unit 40 to obtain the first angle φ.

然而,在步驟S20及S30中,計算單元30是以疊代運算逼近的方式,計算出向量的長度及其轉動角度,在二維座標中,給予一初始向量V0,其座標為[X0,Y0]。若將此向量旋轉一角度τ而成為新向量V,而其座標為[X’,Y’],可由式(1)表示,也就是說,加速度向量在X-Y平面上旋轉的角度,以及投射在第二座標軸(X軸)上的分量長度可由式(1)之陣列運算取得。 However, in steps S20 and S30, the calculation unit 30 calculates the length of the vector and its rotation angle in a manner of approximating the iteration. In the two-dimensional coordinates, an initial vector V 0 is given with a coordinate of [X 0 , Y 0 ]. If this vector is rotated by an angle τ to become a new vector V, and its coordinate is [X', Y'], it can be expressed by equation (1), that is, the acceleration vector. The angle of rotation on the XY plane and the length of the component projected on the second coordinate axis (X-axis) can be obtained by the array operation of equation (1).

在本實施例中,是設定其於第i次之疊代運算中之旋轉基本角度τ i (-π/2≦τ i ≦π/2),讓其tan值為2-i ,也就是tan(τ i )=2-i 。因此,經過i次疊代運算後,最終之向量座標值[X,Y]就如式(2)。 In this embodiment, the rotation basic angle τ i (-π/2 ≦ τ i ≦ π/2) in the iterative operation of the ith is set such that the tan value is 2 - i , that is, tan (τ i )=2 - i . Therefore, after i iterations, the final vector coordinate value [X, Y] is as in equation (2).

在式(2)之d i 值,則取決於第i次疊代中Y i 的值,若Y i <0,則d i =1,亦即將[X i ,Y i ]向量以逆時針方向旋轉角度τ i ,否則d i ==-1,亦即將[X i ,Y i ]向量以順時針方向旋轉角度τ i 。且由式(2)可知,tan(τ i )已因特殊基本角度τ i 之選定,可以將其值與原座標值之乘積,變換成以二進制之位移與加減法運算。此外,為了避免三角函數的乘法計算,於每次疊代中,僅計算式(2)中之矩陣乘積部分,如式(3)所示,而cos部分的乘積則如式(4)所示: The value of d i in equation (2) depends on the value of Y i in the i-th iteration. If Y i <0, then d i =1, that is, the [ X i , Y i ] vector is counterclockwise. Rotation angle τ i , otherwise d i == -1, that is, the [ X i , Y i ] vector is rotated by the angle τ i in a clockwise direction. It can be seen from equation (2) that tan(τ i ) has been selected by the special basic angle τ i , and the product of its value and the original coordinate value can be converted into a binary displacement and addition and subtraction. In addition, in order to avoid the multiplication of the trigonometric function, in each iteration, only the matrix product part in equation (2) is calculated, as shown in equation (3), and the product of the cos portion is as shown in equation (4). :

其中,1/K則稱為一量化因子(scaling factor),且由式(3)可知,每次之疊代運算中僅需要加減法以及二進位之位 移運算,以取代高複雜度的開根號及三角函數之計算。此外,當疊代次數夠大時,該量化因子會幾近於一個常數值,即0.6073,故只要將該量化因子分解成一系列之位移與加減法,乘進經過j次疊代後所得之向量值,即可得知新向量V。在經過j次疊代運算後,初始向量V0與X軸夾角的逼近值,即為各疊代運算中旋轉角度參數的總和,如(5)所示: Among them, 1/K is called a scaling factor, and it can be known from equation (3) that only the addition and subtraction and the binary displacement operation are needed in each iterative operation to replace the high complexity rooting. Number and trigonometric function calculation. In addition, when the number of iterations is large enough, the quantization factor will be close to a constant value, ie 0.6073, so as long as the quantization factor is decomposed into a series of displacements and additions and subtractions, the vector obtained after j iterations is multiplied. The value, you can know the new vector V. After j-time iteration operations, the approximation of the angle between the initial vector V 0 and the X-axis is the sum of the rotation angle parameters in each iteration, as shown in (5):

因此,參閱圖1、圖4及圖6,根據上述的說明,本實施例之步驟S20的細部流程如下:步驟S21,向量旋轉單元20將加速度向量以第一座標軸(Z軸)為中心向靠近第二座標軸(X軸)的方向旋轉一角度τ(起始為45度),且計算單元30記錄一與該角度有關的角度參數。特別說明的是,計算單元30是利用其內建的記憶體(圖未示)來記錄每次疊代中旋轉的固定角度參數τi,但也可以利用額外的記憶體來儲存,不以本實施例為限。 Therefore, referring to FIG. 1, FIG. 4 and FIG. 6, according to the above description, the detailed flow of step S20 of the present embodiment is as follows: step S21, the vector rotation unit 20 will accelerate the vector. An angle τ (starting at 45 degrees) is rotated toward the second coordinate axis (X axis) centering on the first coordinate axis (Z axis), and the calculation unit 30 records an angle parameter related to the angle. Specifically, the calculation unit 30 uses its built-in memory (not shown) to record the fixed angle parameter τ i of each rotation in the iteration, but it can also be stored by using additional memory. The examples are limited.

步驟S22,向量旋轉單元20判斷經旋轉後之加速度向量在第二座標軸(X軸)與第三座標軸(Y軸)的分量是否與旋轉前相同,若否,則表示向量旋轉尚未收斂,故執行步驟S23;若是,即表示向量經過旋轉後,將會沒有變化,因此疊代運算即可停止,因而跳至執行步驟S25。 In step S22, the vector rotation unit 20 determines the rotated acceleration vector. Whether the components of the second coordinate axis (X axis) and the third coordinate axis (Y axis) are the same as before the rotation, if not, it means that the vector rotation has not yet converged, so step S23 is performed; if so, it means that after the vector is rotated, There is no change, so the iterative operation can be stopped, so skip to step S25.

步驟S23,向量旋轉單元20將加速度向量以第一座標軸(Z軸)為中心向靠近第二座標軸(X軸)的方向旋轉一角 度,且該角度之tan值為前次旋轉角度之tan值的一半,且計算單元30記錄一與該角度有關的角度參數。 Step S23, the vector rotation unit 20 will accelerate the vector Rotating an angle near the second coordinate axis (X axis) about the first coordinate axis (Z axis), and the tan value of the angle is half of the tan value of the previous rotation angle, and the calculation unit 30 records one and Angle related angle parameters.

步驟S24,向量旋轉單元20判斷步驟S22及S23是否重複執行達一特定次數,若是,則執行步驟S25;否則,返回執行步驟S22。較佳地,該特定次數為8次,也就是說,向量旋轉單元20最多會進行8次疊代運算。特別說明的是,步驟S21~S24是在計算式(2)中之矩陣乘積部分。 In step S24, the vector rotation unit 20 determines whether steps S22 and S23 are repeatedly executed for a certain number of times, and if so, proceeds to step S25; otherwise, returns to step S22. Preferably, the specific number of times is eight, that is, the vector rotation unit 20 performs up to eight iteration operations. Specifically, steps S21 to S24 are the matrix product portions in the calculation formula (2).

步驟S25,計算單元30將量化因子(0.6073)與步驟S23中最後一次疊代運算所得之第二座標軸(X軸)上之分量相乘,以得旋轉後之加速度向量投射在第二座標軸(X軸)上的分量長度。 In step S25, the calculation unit 30 multiplies the quantization factor (0.6073) by the component on the second coordinate axis (X-axis) obtained by the last iteration in step S23 to obtain the acceleration vector after the rotation. The length of the component projected on the second coordinate axis (X-axis).

如此,由於每次疊代遞迴的角度之tan值都是前次的1/2,本計算單元30可透過二進制的位移器完成,可避免掉複雜之乘除法、開根號、及三角函數之計算,加速度感測系統100也不需要價格昂貴的精密控制器,以及大量的記憶體空間,故本加速度感測系統100將具有低成本、低功耗及低運算量等功效,且向量旋轉單元20設有停止疊代運算之機制(如步驟S20)以提升角度計算之準確度及避免誤差之累積。 Thus, since the tan value of the angle of each iteration is the previous 1/2, the calculation unit 30 can be completed by the binary shifter, which can avoid complicated multiplication and division, opening root number, and trigonometric function. In the calculation, the acceleration sensing system 100 does not need an expensive precision controller, and a large amount of memory space, so the acceleration sensing system 100 will have low cost, low power consumption and low computational efficiency, and the vector rotation Unit 20 is provided with a mechanism to stop the iterative operation (as in step S20) to improve the accuracy of the angle calculation and to avoid accumulation of errors.

同樣地,在步驟S30中,同樣是以疊代運算逼近的方式,計算出加速度向量旋轉至重疊第二座標軸(X軸)的角度δ,參閱圖1、圖5及圖7,本實施例之步驟S30的細部流程如下:步驟S31,向量旋轉單元20將加速度向量以第三座 標軸(Y軸)為中心於X-Z軸所構成之平面上向靠近第二座標軸(X軸)的方向旋轉一角度τ(起始為45度),且計算單元30記錄一與該角度有關的角度參數。 Similarly, in step S30, the acceleration vector is also calculated in the manner of iterative operation approximation. Rotating to the angle δ of the overlapping second coordinate axis (X axis), referring to FIG. 1, FIG. 5 and FIG. 7, the detailed flow of step S30 of this embodiment is as follows: step S31, the vector rotation unit 20 will accelerate the vector. Rotating an angle τ (starting at 45 degrees) in a direction close to the second coordinate axis (X axis) on the plane formed by the XZ axis centering on the third coordinate axis (Y axis), and the calculation unit 30 records the angle The relevant angle parameters.

步驟S32,向量旋轉單元20判斷旋轉後的加速度向量在第一座標軸(Z軸)的分量是否為零,若否,則表示加速度向量尚未重疊於第二座標軸(X軸),故執行步驟S33;若是,則執行步驟S35。補充說明的是,當轉後的加速度向量在第一座標軸(Z軸)的分量為零時,則已重疊於X軸上,目前所紀錄之旋轉角度參數之總和,已為加速度向量與第二座標軸(X軸)的角度δ,即可停止疊代運算而執行步驟S35。 In step S32, the vector rotation unit 20 determines the acceleration vector after the rotation. Whether the component of the first coordinate axis (Z axis) is zero, and if not, the acceleration vector Since it is not overlapped with the second coordinate axis (X axis), step S33 is performed; if yes, step S35 is performed. Supplementary note is the acceleration vector after the turn When the component of the first coordinate axis (Z axis) is zero, then Overlapped on the X-axis, the sum of the currently recorded rotation angle parameters has been the acceleration vector With the angle δ of the second coordinate axis (X-axis), the iterative operation can be stopped and step S35 is executed.

步驟S33,向量旋轉單元20將加速度向量以第三座標軸(Y軸)為中心向靠近第二座標軸(X軸)的方向旋轉一角度,且該角度之tan值為前次旋轉角度之tan值的一半,且計算單元30記錄一與該角度有關的角度參數。 Step S33, the vector rotation unit 20 will accelerate the vector Rotating an angle near the second coordinate axis (X axis) about the third coordinate axis (Y axis), and the tan value of the angle is half of the tan value of the previous rotation angle, and the calculation unit 30 records one and Angle related angle parameters.

步驟S34,向量旋轉單元20判斷步驟S42及S43是否重複執行達一特定次數(同樣為8次)。若達該特定次數,則執行步驟S35;若未達該特定次數,則返回執行步驟S32。 In step S34, the vector rotation unit 20 determines whether steps S42 and S43 are repeatedly executed for a certain number of times (again, 8 times). If the specific number of times is reached, step S35 is performed; if the specific number of times is not reached, step S32 is returned.

步驟S35,計算單元30將所有紀錄的角度參數相加,以得到與第一角度φ有關的旋轉角度δ,此時再經過步驟S31~S34旋轉之加速度向量會落於第二座標軸(X軸)上。 In step S35, the calculating unit 30 adds all the recorded angle parameters to obtain the rotation angle δ related to the first angle φ, and then the acceleration vector rotated through the steps S31 to S34. Will fall on the second coordinate axis (X axis).

特別說明的是,由圖5可知,將加速度向量旋轉至重疊第二座標軸(X軸)的角度δ與構成獨立座標系統的第一角度φ相加為π/2,故步驟S36,角度調整單元40利用π/2減 去旋轉角度δ,即可計算得第一角度φ。此外,若需要求得加速度向量的長度,則於步驟S32中,判別若是零,則停止接下來所有旋轉角度參數之記錄,但仍重複執行步驟S33達一特定次數,最後再利用計算單元30將量化因子(0.6073)與步驟S33中最後一次疊代運算所得之X軸上之分量相乘,即可計算出加速度向量的原始長度。 In particular, as shown in Figure 5, the acceleration vector will be known. The angle δ rotated to overlap the second coordinate axis (X axis) is added to the first angle φ constituting the independent coordinate system to be π/2, so that the angle adjusting unit 40 subtracts the rotation angle δ by π/2 in step S36. The first angle φ is calculated. In addition, if you need to obtain the acceleration vector In the step S32, if it is zero, the recording of all the rotation angle parameters is stopped, but the step S33 is repeated for a certain number of times, and finally the calculation unit 30 is used to calculate the quantization factor (0.6073) and the step S33. The acceleration vector can be calculated by multiplying the components on the X-axis obtained by the last iteration. The original length.

此外,步驟S22的判別,在向量旋轉已經收斂時(即旋轉前後之座標分量相同),可以提早結束疊代運算,另一方面也可以避免角度參數的繼續累加而造成最後計算的角度誤差增大。另外,即使旋轉尚未收斂,在向量經旋轉後剛好重疊於第一座標軸(Z軸)時(即步驟S32),即停止接下來所有旋轉角度參數的紀錄或停止疊代運算,以得最準確的向量與第一座標軸(Z軸)所夾之角度 In addition, the discrimination of step S22, when the vector rotation has converged (ie, the coordinate components before and after the rotation are the same), the iterative operation can be ended early, and on the other hand, the continual accumulation of the angle parameters can be avoided to cause the final calculated angle error to increase. . In addition, even if the rotation has not yet converged, just after the vector is rotated and overlapped with the first coordinate axis (Z axis) (ie, step S32), the recording of all the rotation angle parameters or the stop iteration operation is stopped, so as to obtain the most accurate. The angle between the vector and the first coordinate axis (Z axis)

回歸參閱圖1及圖3,獨立座標系統的第二角度θ也可以透過步驟S40及步驟S50取得。 Referring back to FIGS. 1 and 3, the second angle θ of the independent coordinate system can also be obtained through steps S40 and S50.

步驟S40,向量旋轉單元20將加速度向量以第二座標軸(X軸)為中心旋轉,使得加速度向量投射在Y-Z平面上的分量重疊於第三座標軸(Y軸),並形成一新的加速度向量,其位置座標為(A X ,A'Y,0),此時,旋轉後之加速度向量會落於X-Y軸所構成之平面上,且計算單元30會計算加速度向量投射在第三座標軸(Y軸)上的分量長度|A'Y|。 Step S40, the vector rotation unit 20 will accelerate the vector Rotating around the second coordinate axis (X axis), making the acceleration vector The component projected on the YZ plane overlaps the third coordinate axis (Y axis) and forms a new acceleration vector , its position coordinates are (A X , A ' Y , 0), at this time, the acceleration vector after rotation Will fall on the plane formed by the XY axis, and the calculation unit 30 will calculate the acceleration vector The component length |A' Y | projected on the third coordinate axis (Y axis).

步驟S50,向量旋轉單元20將加速度向量再以第一座標軸(Z軸)為中心旋轉(即在X-Y平面上的加速度向量朝Y軸靠近),使加速度向量重疊於第三座標軸(Y軸) 上,並形成一新的加速度向量,其位置座標為(0,A"Y,0),且計算單元30計算該加速度向量旋轉至重疊第三座標軸(Y軸)的角度而求得第二角度θ。 In step S50, the vector rotation unit 20 will accelerate the vector. Rotate around the first coordinate axis (Z axis) (ie, the acceleration vector on the XY plane) Approaching the Y axis), making the acceleration vector Overlap on the third coordinate axis (Y-axis) and form a new acceleration vector , whose position coordinates are (0, A" Y , 0), and the calculation unit 30 calculates the acceleration vector The second angle θ is obtained by rotating to an angle overlapping the third coordinate axis (Y axis).

第二角度θ同樣是利用疊代運算,以逼近的方式,計算出加速度向量的長度及其轉動角度。因此,參閱圖1及圖8,本實施例之步驟S40的細部流程如下:步驟S41,向量旋轉單元20將加速度向量以第二座標軸(X軸)為中心向靠近第三座標軸(Y軸)的方向旋轉一角度τ(起始為45度),且計算單元30記錄一與該角度有關的角度參數。 The second angle θ also uses the iterative operation to calculate the acceleration vector in an approximation manner. The length and its angle of rotation. Therefore, referring to FIG. 1 and FIG. 8, the detailed flow of step S40 of this embodiment is as follows: step S41, the vector rotation unit 20 will accelerate the vector. An angle τ (starting at 45 degrees) is rotated toward the third coordinate axis (Y axis) centering on the second coordinate axis (X axis), and the calculation unit 30 records an angle parameter related to the angle.

步驟S42,向量旋轉單元20判斷經旋轉後之加速度向量在第三座標軸(Y軸)與第一座標軸(Z軸)的分量是否與旋轉前相同,若否,則表示向量旋轉尚未收斂,故執行步驟S43;若是,即表示向量經過旋轉後,將會沒有變化,因此疊代運算即可停止,因而跳至執行步驟S45。 In step S42, the vector rotation unit 20 determines the rotated acceleration vector. Whether the components of the third coordinate axis (Y axis) and the first coordinate axis (Z axis) are the same as before the rotation, if not, it means that the vector rotation has not converged, so step S43 is performed; if so, it means that after the vector is rotated, There is no change, so the iterative operation can be stopped, and the process jumps to step S45.

步驟S43,向量旋轉單元20將加速度向量以第二座標軸(X軸)為中心向靠近第三座標軸(Y軸)的方向旋轉一角度,且該角度之tan值為前次旋轉角度之tan值的一半,且計算單元30記錄一與該角度有關的角度參數。 Step S43, the vector rotation unit 20 will accelerate the vector Rotating an angle near the third coordinate axis (Y axis) about the second coordinate axis (X axis), and the tan value of the angle is half of the tan value of the previous rotation angle, and the calculation unit 30 records one and Angle related angle parameters.

步驟S44,向量旋轉單元20判斷步驟S42及S43是否重複執行達一特定次數(8次)。若達該特定次數,則執行步驟S45;若未達該特定次數,則返回執行步驟S42。 In step S44, the vector rotation unit 20 determines whether steps S42 and S43 are repeatedly executed for a certain number of times (eight times). If the specific number of times is reached, step S45 is performed; if the specific number of times is not reached, step S42 is returned.

步驟S45,計算單元30將量化因子(0.6073)與步驟S43中最後一次疊代運算所得之第三座標軸(Y軸)上之分量相 乘,以得旋轉後之加速度向量投射在第三座標軸(Y軸)上的分量長度。 In step S45, the calculating unit 30 multiplies the quantization factor (0.6073) by the component on the third coordinate axis (Y-axis) obtained by the last iteration in step S43 to obtain the rotated acceleration vector. The component length projected on the third coordinate axis (Y axis).

參閱圖1及圖9,步驟S50的細部流程如下:步驟S5l,向量旋轉單元20將加速度向量以第一座標軸(Z軸)為中心於X-Y軸所構成之平面上向靠近第三座標軸(Y軸)的方向旋轉一角度τ(起始為45度),且計算單元30記錄一與該角度有關的角度參數。 Referring to FIG. 1 and FIG. 9, the detailed flow of step S50 is as follows: in step S51, the vector rotation unit 20 will accelerate the vector. Rotating an angle τ (starting at 45 degrees) in a direction near the third coordinate axis (Y axis) on the plane formed by the XY axis centering on the first coordinate axis (Z axis), and the calculation unit 30 records the angle The relevant angle parameters.

步驟S52,向量旋轉單元20判斷旋轉後的加速度向量在第二座標軸(X軸)的分量是否為零,若否,則表示加速度向量尚未重疊於第三座標軸(Y軸),故執行步驟S53;若是,則執行步驟S55。補充說明的是,當轉後的加速度向量在第二座標軸(X軸)的分量為零時,則已重疊於Y軸上,目前所紀錄之旋轉角度參數之總和,已為加速度向量與第三座標軸(Y軸)的角度,即可停止疊代運算而執行步驟S55。 In step S52, the vector rotation unit 20 determines the acceleration vector after the rotation. Whether the component of the second coordinate axis (X axis) is zero, if not, the acceleration vector Since it is not overlapped with the third coordinate axis (Y axis), step S53 is performed; if yes, step S55 is performed. Supplementary note is the acceleration vector after the turn When the component of the second coordinate axis (X axis) is zero, then Overlapped on the Y-axis, the sum of the currently recorded rotation angle parameters is already the acceleration vector With the angle of the third coordinate axis (Y axis), the iterative operation can be stopped and step S55 is performed.

步驟S53,向量旋轉單元20將加速度向量以第一座標軸(Z軸)為中心向靠近第三座標軸(Y軸)的方向旋轉一角度,且該角度之tan值為前次旋轉角度之tan值的一半,且計算單元30記錄一與該角度有關的角度參數。 Step S53, the vector rotation unit 20 will accelerate the vector Rotating an angle near the third coordinate axis (Y axis) about the first coordinate axis (Z axis), and the tan value of the angle is half of the tan value of the previous rotation angle, and the calculation unit 30 records one and Angle related angle parameters.

步驟S54,向量旋轉單元20判斷步驟S52及S53是否重複執行達一特定次數(8次)。若達該特定次數,則執行步驟S55;若未達該特定次數,則返回執行步驟S52。 In step S54, the vector rotation unit 20 determines whether steps S52 and S53 are repeatedly executed for a certain number of times (eight times). If the specific number of times is reached, step S55 is performed; if the specific number of times is not reached, the process returns to step S52.

步驟S55,計算單元30將所有紀錄的角度參數相加而計算得第二角度θ。 In step S55, the calculation unit 30 adds all the recorded angle parameters to calculate the second angle θ.

回歸參閱圖1及圖3,獨立座標系統的第三角度Ψ也可以透過步驟S60及步驟S70取得。 Referring back to FIGS. 1 and 3, the third angle Ψ of the independent coordinate system can also be obtained through steps S60 and S70.

步驟S60,向量旋轉單元20將加速度向量以第三座標軸(Y軸)為中心旋轉,使得加速度向量投射在X-Z平面上的分量重疊於第一座標軸(Z軸),並形成一新的加速度向量,其位置座標為(0,A Y,A'Z),此時,旋轉後之加速度向量會落於Y-Z軸所構成之平面上,且計算單元30會計算加速度向量投射在第一座標軸(Z軸)上的分量長度|A'Z|。 In step S60, the vector rotation unit 20 will accelerate the vector. Rotate around the third coordinate axis (Y axis) to make the acceleration vector The component projected on the XZ plane overlaps the first coordinate axis (Z axis) and forms a new acceleration vector , its position coordinates are (0, A Y , A ' Z ), at this time, the acceleration vector after rotation Will fall on the plane formed by the YZ axis, and the calculation unit 30 will calculate the acceleration vector The component length |A' Z | projected on the first coordinate axis (Z axis).

步驟S70,向量旋轉單元20將加速度向量再以第二座標軸(X軸)為中心旋轉(即在Y-Z平面上的加速度向量朝Z軸靠近),使加速度向量重疊於第一座標軸(Z軸)上,並形成一新的加速度向量,其位置座標為(0,0,A"Z),且計算單元30計算該加速度向量旋轉至重疊第一座標軸(Z軸)的角度而求得第三角度ΨStep S70, the vector rotation unit 20 will accelerate the vector Then rotate around the second coordinate axis (X axis) (ie, the acceleration vector on the YZ plane) Approaching the Z axis), making the acceleration vector Overlap on the first coordinate axis (Z axis) and form a new acceleration vector , whose position coordinates are (0, 0, A" Z ), and the calculation unit 30 calculates the acceleration vector The third angle Ψ is obtained by rotating to an angle overlapping the first coordinate axis (Z axis).

同樣地,第三角度Ψ是利用疊代運算,以逼近的方式,計算出加速度向量的長度及其轉動角度。因此,參閱圖1及圖10,本實施例之步驟S60的細部流程如下: Similarly, the third angle Ψ is to calculate the acceleration vector in an approximation manner using an iterative operation. The length and its angle of rotation. Therefore, referring to FIG. 1 and FIG. 10, the detailed process of step S60 of this embodiment is as follows:

步驟S61,向量旋轉單元20將加速度向量以第三座標軸(Y軸)為中心向靠近第一座標軸(Z軸)的方向旋轉一角度τ(起始為45度),且計算單元30記錄一與該角度有關的角度參數。 Step S61, the vector rotation unit 20 will accelerate the vector The angle τ (starting at 45 degrees) is rotated toward the first coordinate axis (Z axis) centering on the third coordinate axis (Y axis), and the calculation unit 30 records an angle parameter related to the angle.

步驟S62,向量旋轉單元20判斷經旋轉後之加速度向量在第一座標軸(Z軸)與第二座標軸(X軸)的分量是否與旋轉前相同,若否,則表示向量旋轉尚未收斂,故執行步 驟S63;若是,即表示向量經過旋轉後,將會沒有變化,因此疊代運算即可停止,因而跳至執行步驟S65。 Step S62, the vector rotation unit 20 determines the rotated acceleration vector. Whether the components of the first coordinate axis (Z axis) and the second coordinate axis (X axis) are the same as before the rotation, if not, it means that the vector rotation has not converged, so step S63 is performed; if so, it means that after the vector is rotated, There is no change, so the iterative operation can be stopped, and the process jumps to step S65.

步驟S63,向量旋轉單元20將加速度向量以第三座標軸(Y軸)為中心向靠近第一座標軸(Z軸)的方向旋轉一角度,且該角度之tan值為前次旋轉角度之tan值的一半,且計算單元30記錄一與該角度有關的角度參數。 Step S63, the vector rotation unit 20 will accelerate the vector Rotating an angle near the first coordinate axis (Z axis) about the third coordinate axis (Y axis), and the tan value of the angle is half of the tan value of the previous rotation angle, and the calculation unit 30 records one and Angle related angle parameters.

步驟S64,向量旋轉單元20判斷步驟S62及S63是否重複執行達一特定次數(8次)。若達該特定次數,則執行步驟S65;若未達該特定次數,則返回執行步驟S62。 In step S64, the vector rotation unit 20 determines whether steps S62 and S63 are repeatedly executed for a certain number of times (eight times). If the specific number of times is reached, step S65 is performed; if the specific number of times is not reached, the process returns to step S62.

步驟S65,計算單元30將量化因子(0.6073)與步驟S63中最後一次疊代運算所得之第一座標軸(Z軸)上之分量相乘,以得旋轉後之加速度向量投射在第一座標軸(Z軸)上的分量長度。 In step S65, the calculating unit 30 multiplies the quantization factor (0.6073) by the component on the first coordinate axis (Z-axis) obtained by the last iteration in step S63 to obtain the rotated acceleration vector. The length of the component projected on the first coordinate axis (Z axis).

參閱圖1及圖11,步驟S70的細部流程如下:步驟S71,向量旋轉單元20將加速度向量以第二座標軸(X軸)為中心於Y-Z軸所構成之平面上向靠近第一座標軸(Z軸)的方向旋轉一角度τ(起始為45度),且計算單元30記錄一與該角度有關的角度參數。 Referring to FIG. 1 and FIG. 11, the detailed flow of step S70 is as follows: step S71, the vector rotation unit 20 will accelerate the vector. Rotating an angle τ (starting at 45 degrees) in a direction close to the first coordinate axis (Z axis) on the plane formed by the YZ axis centering on the second coordinate axis (X axis), and the calculation unit 30 records the angle The relevant angle parameters.

步驟S72,向量旋轉單元20判斷旋轉後的加速度向量在第三座標軸(Y軸)的分量是否為零,若否,則表示加速度向量尚未重疊於第一座標軸(Z軸),故執行步驟S73;若是,則執行步驟S75。補充說明的是,當轉後的加速度向量在第三座標軸(Y軸)的分量為零時,則已重疊於Z軸上,目前所紀錄之旋轉角度參數之總和,已為加速度向 量與第一座標軸(Z軸)的角度,即可停止疊代運算而執行步驟S75。 Step S72, the vector rotation unit 20 determines the acceleration vector after the rotation Whether the component of the third coordinate axis (Y axis) is zero, and if not, the acceleration vector Since it is not overlapped with the first coordinate axis (Z axis), step S73 is performed; if yes, step S75 is performed. Supplementary note is the acceleration vector after the turn When the component of the third coordinate axis (Y axis) is zero, then Overlapped on the Z axis, the sum of the currently recorded rotation angle parameters is already the acceleration vector With the angle of the first coordinate axis (Z axis), the iterative operation can be stopped and step S75 is performed.

步驟S73,向量旋轉單元20將加速度向量以第二座標軸(X軸)為中心向靠近第一座標軸(Z軸)的方向旋轉一角度,且該角度之tan值為前次旋轉角度之tan值的一半,且計算單元30記錄一與該角度有關的角度參數。 Step S73, the vector rotation unit 20 will accelerate the vector Rotating an angle near the first coordinate axis (Z axis) about the second coordinate axis (X axis), and the tan value of the angle is half of the tan value of the previous rotation angle, and the calculation unit 30 records one and the other Angle related angle parameters.

步驟S74,向量旋轉單元20判斷步驟S72及S73是否重複執行達一特定次數(8次)。若達該特定次數,則執行步驟S75;若未達該特定次數,則返回執行步驟S72。 In step S74, the vector rotation unit 20 determines whether steps S72 and S73 are repeatedly executed for a certain number of times (eight times). If the specific number of times is reached, step S75 is performed; if the specific number of times is not reached, then step S72 is returned.

步驟S75,計算單元30將所有紀錄的角度參數相加而計算得第三角度ΨIn step S75, the calculating unit 30 adds all the recorded angle parameters to calculate the third angle Ψ .

因此,透過第一角度φ、第二角度θ及第三角度Ψ之計算,加速度感測系統100可以得知其相對應於地心引力之方位,進而可運用在醫療照護等方面,例如:病患姿態判別、頭部角度之監測、跌倒之偵測與判斷等,以即時做出適當地處置或預防。 Therefore, through the calculation of the first angle φ, the second angle θ, and the third angle Ψ , the acceleration sensing system 100 can know the orientation corresponding to the gravity, and can be applied to medical care, for example, The posture discrimination, the monitoring of the head angle, the detection and judgment of the fall, etc., can be appropriately disposed or prevented immediately.

綜上所述,加速度感測系統100利用「向量旋轉」的概念,配合疊代運算逼近的方式而得知其相對應於地心引力與水平面之方位(第一角度φ、第二角度θ及第三角度Ψ),如此可避免掉複雜之乘除法、開根號、及三角函數之計算,以降低成本、功率消耗及運算量,故確實能達成本發明之目的。 In summary, the acceleration sensing system 100 uses the concept of "vector rotation" to match the orientation of the gravity and the horizontal plane (the first angle φ, the second angle θ, and the manner of the iterative operation approximation). The third angle Ψ ) can avoid complicated calculation of multiplication and division, opening number, and trigonometric function to reduce cost, power consumption and calculation amount, so that the object of the present invention can be achieved.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 However, the above is only the preferred embodiment of the present invention, and the scope of the present invention cannot be limited thereto, that is, the patent application according to the present invention The scope of the invention and the equivalent equivalents and modifications of the invention are still within the scope of the invention.

S10~S70‧‧‧步驟 S10~S70‧‧‧Steps

S21~S25‧‧‧步驟 S21~S25‧‧‧Steps

S31~S36‧‧‧步驟 S31~S36‧‧‧Steps

S41~S45‧‧‧步驟 S41~S45‧‧‧Steps

S51~S55‧‧‧步驟 S51~S55‧‧‧Steps

S61~S65‧‧‧步驟 S61~S65‧‧‧Steps

S71~S75‧‧‧步驟 S71~S75‧‧‧Steps

100‧‧‧加速度感測系統 100‧‧‧Acceleration sensing system

10‧‧‧感測單元 10‧‧‧Sensor unit

20‧‧‧向量旋轉單元 20‧‧‧Vector Rotation Unit

30‧‧‧計算單元 30‧‧‧Computation unit

40‧‧‧角度調整單元 40‧‧‧Angle adjustment unit

圖1是說明加速度向量分別位在直角座標系統及獨立座標系統的示意圖;圖2是說明本發明加速度感測系統之較佳實施例;圖3是說明本發明傾角計算方法的流程圖;圖4是說明加速度向量以Z軸為中心旋轉,使其投射在X-Y平面上的分量重疊於X軸,以得到另一向量;圖5是說明加速度向量以Y軸為中心於X-Z平面上旋轉,使其重疊於X軸而得另一向量;圖6是說明加速度向量以Z軸為中心旋轉,使其投射在X-Y平面上的分量重疊於X軸的流程;圖7是說明加速度向量以Y軸為中心於X-Z平面上旋轉,使其重疊於X軸的流程;圖8是說明加速度向量以X軸為中心旋轉,使其投射在Y-Z平面上的分量重疊於Y軸的流程;圖9是說明加速度向量以Z軸為中心於X-Y平面上旋轉,使其重疊於Y軸的流程;圖10是說明加速度向量以Y軸為中心旋轉,使其投射在X-Z平面上的分量重疊於Z軸的流程;及圖11是說明加速度向量以X軸為中心於Y-Z平面上旋轉,使其重疊於Z軸的流程。 1 is a schematic diagram showing acceleration vectors respectively located in a rectangular coordinate system and an independent coordinate system; FIG. 2 is a preferred embodiment of the acceleration sensing system of the present invention; FIG. 3 is a flow chart illustrating a method for calculating the inclination angle of the present invention; Is the acceleration vector Rotate around the Z axis so that the component projected on the XY plane overlaps the X axis to get another vector Figure 5 is an illustration of the acceleration vector Rotating on the XZ plane centered on the Y axis, overlapping it with the X axis to get another vector Figure 6 is an illustration of the acceleration vector Rotating around the Z axis, the component whose projection on the XY plane is superimposed on the X axis; Figure 7 is an illustration of the acceleration vector The process of rotating on the XZ plane centering on the Y-axis to overlap the X-axis; Figure 8 is an illustration of the acceleration vector Rotating around the X axis, the component whose projection on the YZ plane is superimposed on the Y axis; Figure 9 is an illustration of the acceleration vector The process of rotating on the XY plane centering on the Z axis and superimposing it on the Y axis; FIG. 10 is an illustration of the acceleration vector Rotating around the Y-axis, the component whose projection on the XZ plane is superimposed on the Z-axis; and Figure 11 is an illustration of the acceleration vector The process of rotating on the YZ plane centering on the X-axis and superimposing it on the Z-axis.

S10~S70‧‧‧步驟 S10~S70‧‧‧Steps

Claims (13)

一種座標轉換方法,係應用於一加速度感測系統,用以使該加速度感測系統所感測之一加速度向量從一直角座標系統轉換成一獨立座標系統,該直角座標系統係由一第一座標軸、一第二座標軸及一第三座標軸所定義,該獨立座標系統係由該加速度向量與該第一座標軸所夾之一第一角度,及該加速度向量所垂直之平面分別與該第二座標軸及該第三座標軸所夾之一第二角度及一第三角度,該座標轉換方法包含以下步驟:(A)將該加速度向量以該第一座標軸為中心旋轉,使該加速度向量投射在該第二座標軸及該第三座標軸所構成之平面上的分量重疊於該第二座標軸,並計算該加速度向量重疊於該第二座標軸上的分量長度;(B)將該步驟(A)中旋轉後的加速度向量再以該第三座標軸為中心,於該第一座標軸及該第二座標軸所構成之平面上旋轉,使該加速度向量重疊於該第二座標軸,並計算該加速度向量旋轉至重疊該第二座標軸的角度以得該第一角度;(C)將該加速度向量以該第二座標軸為中心旋轉,使該加速度向量投射在該第一座標軸及該第三座標軸所構成之平面上的分量重疊於該第三座標軸,並計算該加速度向量重疊於該第三座標軸上的分量長度;(D)將該步驟(C)中旋轉後的加速度向量再以該第一座標軸為中心,於該第二座標軸及該第三座標軸所構成 之平面上旋轉,使該加速度向量重疊於該第三座標軸,並計算該加速度向量旋轉至重疊該第三座標軸的角度以得該第二角度;(E)將該加速度向量以該第三座標軸為中心旋轉,使該加速度向量投射在該第一座標軸及該第二座標軸所構成之平面上的分量重疊於該第一座標軸,並計算該加速度向量重疊於該第一座標軸上的分量長度;及(F)將該步驟(E)中旋轉後的加速度向量再以該第二座標軸為中心,於該第一座標軸及該第三座標軸所構成之平面上旋轉,使該加速度向量重疊於該第一座標軸,並計算該加速度向量旋轉至重疊該第一座標軸的角度以得該第三角度。 A coordinate conversion method is applied to an acceleration sensing system for converting an acceleration vector sensed by the acceleration sensing system from a right angle coordinate system to an independent coordinate system, wherein the orthogonal coordinate system is a first coordinate axis, a second coordinate axis and a third coordinate axis defined by the first angle of the acceleration vector and the first coordinate axis, and a plane perpendicular to the acceleration vector and the second coordinate axis and the The second coordinate axis has a second angle and a third angle. The coordinate conversion method comprises the following steps: (A) rotating the acceleration vector around the first coordinate axis, and projecting the acceleration vector on the second coordinate axis And a component on a plane formed by the third coordinate axis overlaps the second coordinate axis, and calculates a component length of the acceleration vector superimposed on the second coordinate axis; (B) an acceleration vector after the rotation in the step (A) And rotating on the plane formed by the first coordinate axis and the second coordinate axis centering on the third coordinate axis, so that the acceleration vector is heavy And the second coordinate axis is calculated, and the acceleration vector is rotated to overlap the angle of the second coordinate axis to obtain the first angle; (C) the acceleration vector is rotated around the second coordinate axis, and the acceleration vector is projected on the a component on a plane formed by the first target axis and the third coordinate axis overlaps the third coordinate axis, and calculates a component length of the acceleration vector superimposed on the third coordinate axis; (D) after rotating in the step (C) The acceleration vector is further centered on the first coordinate axis, and is formed by the second coordinate axis and the third coordinate axis Rotating in a plane such that the acceleration vector is superimposed on the third coordinate axis, and calculating the acceleration vector to rotate to an angle overlapping the third coordinate axis to obtain the second angle; (E) using the acceleration vector as the third coordinate axis Center-rotating such that a component of the acceleration vector projected on a plane formed by the first coordinate axis and the second coordinate axis overlaps the first coordinate axis, and calculates a component length of the acceleration vector superimposed on the first coordinate axis; and F) rotating the acceleration vector in the step (E) further on the second coordinate axis and rotating on the plane formed by the first coordinate axis and the third coordinate axis, so that the acceleration vector is superposed on the first coordinate axis And calculating the acceleration vector to rotate to an angle overlapping the first coordinate axis to obtain the third angle. 依據申請專利範圍第1項所述之座標轉換方法,其中,該步驟(A)包括以下子步驟:(A-1)將該加速度向量以該第一座標軸為中心向靠近該第二座標軸的方向旋轉一角度,並記錄一與該角度有關的角度參數;(A-2)判斷該加速度向量對應該第二座標軸與該第三座標軸的分量是否與旋轉前相同,若是,則執行步驟(A-5),若否,則執行步驟(A-3);(A-3)將該加速度向量以該第一座標軸為中心向靠近該第二座標軸的方向旋轉一角度,該角度之tan值為前次旋轉角度之tan值的一半,並記錄一與該角度有關的角度參數; (A-4)重複執行步驟(A-2)及(A-3)達一特定次數;及(A-5)將一量化因子與該第二座標軸上之分量相乘而計算出該旋轉後的加速度向量投射在該第二座標軸上的分量長度。 The coordinate conversion method according to claim 1, wherein the step (A) comprises the following substeps: (A-1) the acceleration vector is oriented in the direction of the second coordinate axis centering on the first coordinate axis Rotate an angle and record an angle parameter related to the angle; (A-2) determine whether the acceleration vector corresponds to whether the components of the second coordinate axis and the third coordinate axis are the same as before the rotation, and if yes, perform the step (A- 5), if not, performing step (A-3); (A-3) rotating the acceleration vector by an angle toward the second coordinate axis about the first coordinate axis, the tan value of the angle is Half of the tan value of the secondary rotation angle, and record an angle parameter related to the angle; (A-4) repeating steps (A-2) and (A-3) for a specific number of times; and (A-5) multiplying a quantization factor by a component on the second coordinate axis to calculate the rotation The acceleration vector projects the component length on the second coordinate axis. 依據申請專利範圍第1或2項所述之座標轉換方法,其中,該步驟(B)包括以下子步驟:(B-1)將該加速度向量以該第三座標軸為中心於該第一座標軸及該第二座標軸所構成之平面上向靠近該第二座標軸的方向旋轉一角度,並記錄一與該角度有關的角度參數;(B-2)判斷該加速度向量對應該第一座標軸的分量是否為零,若是,則執行步驟(B-5),若否,則執行步驟(B-3);(B-3)將該加速度向量以該第三座標軸為中心向靠近該第二座標軸的方向旋轉一角度,該角度之tan值為前次旋轉角度之tan值的一半,並記錄一與該角度有關的角度參數;(B-4)重複執行步驟(B-2)及(B-3)達一特定次數;(B-5)將所有紀錄的角度參數相加,以得一與該第一角度有關的旋轉角度,且該旋轉之加速度向量會落於第二座標軸上;及(B-6)以π/2減去該旋轉角度而計算得該第一角度。 The coordinate conversion method according to claim 1 or 2, wherein the step (B) comprises the following substep: (B-1) the acceleration vector is centered on the first coordinate axis on the first coordinate axis and The plane formed by the second coordinate axis is rotated by an angle toward the second coordinate axis, and an angle parameter related to the angle is recorded; (B-2) determining whether the acceleration vector corresponds to the component of the first coordinate axis Zero, if yes, perform step (B-5), if not, perform step (B-3); (B-3) rotate the acceleration vector around the third coordinate axis toward the second coordinate axis At an angle, the tan value of the angle is half of the tan value of the previous rotation angle, and an angle parameter related to the angle is recorded; (B-4) steps (B-2) and (B-3) are repeatedly performed. a specific number of times; (B-5) adding all the angular parameters of the record to obtain a rotation angle related to the first angle, and the acceleration vector of the rotation will fall on the second coordinate axis; and (B-6 The first angle is calculated by subtracting the rotation angle by π/2. 依據申請專利範圍第1項所述之座標轉換方法,其中,該步驟(C)包括以下子步驟: (C-1)將該加速度向量以該第二座標軸為中心向靠近該第三座標軸的方向旋轉一角度,並記錄一與該角度有關的角度參數;(C-2)判斷該加速度向量對應該第三座標軸與該第一座標軸的分量是否與旋轉前相同,若是,則執行步驟(C-5),若否,則執行步驟(C-3);(C-3)將該加速度向量以該第二座標軸為中心向靠近該第三座標軸的方向旋轉一角度,該角度之tan值為前次旋轉角度之tan值的一半,並記錄一與該角度有關的角度參數;(C-4)重複執行步驟(C-2)及(C-3)達一特定次數;及(C-5)將一量化因子與該第三座標軸上之分量相乘而計算出該旋轉後的加速度向量投射在該第三座標軸上的分量長度。 According to the coordinate conversion method of claim 1, wherein the step (C) comprises the following sub-steps: (C-1) rotating the acceleration vector to an angle close to the third coordinate axis about the second coordinate axis, and recording an angle parameter related to the angle; (C-2) determining that the acceleration vector corresponds to Whether the component of the third coordinate axis and the first coordinate axis is the same as before the rotation, if yes, performing step (C-5), if not, performing step (C-3); (C-3) performing the acceleration vector The second coordinate axis is rotated at an angle to a direction close to the third coordinate axis, and the tan value of the angle is half of the tan value of the previous rotation angle, and an angle parameter related to the angle is recorded; (C-4) repeats Performing steps (C-2) and (C-3) for a specific number of times; and (C-5) multiplying a quantization factor by a component on the third coordinate axis to calculate that the rotated acceleration vector is projected on the The component length on the third coordinate axis. 依據申請專利範圍第1或4項所述之座標轉換方法,其中,該步驟(D)包括以下子步驟:(D-1)將該加速度向量以該第一座標軸為中心於該第二座標軸及該第三座標軸所構成之平面上向靠近該第三座標軸的方向旋轉一角度,並記錄一與該角度有關的角度參數;(D-2)判斷該加速度向量對應該第二座標軸的分量是否為零,若是,則執行步驟(D-5),若否,則執行步驟(D-3);(D-3)將該加速度向量以該第一座標軸為中心向靠近 該第三座標軸的方向旋轉一角度,該角度之tan值為前次旋轉角度之tan值的一半,並記錄一與該角度有關的角度參數;(D-4)重複執行步驟(D-2)及(D-3)達一特定次數;及(D-5)將所有紀錄的角度參數相加而計算得該第二角度。 The coordinate conversion method according to claim 1 or 4, wherein the step (D) comprises the following substep: (D-1) the acceleration vector is centered on the second coordinate axis on the first coordinate axis and The plane formed by the third coordinate axis is rotated by an angle close to the third coordinate axis, and an angle parameter related to the angle is recorded; (D-2) determining whether the acceleration vector corresponds to the component of the second coordinate axis Zero, if yes, perform step (D-5), if not, perform step (D-3); (D-3) approach the acceleration vector with the first coordinate axis as the center The direction of the third coordinate axis is rotated by an angle, the tan value of the angle is half of the tan value of the previous rotation angle, and an angle parameter related to the angle is recorded; (D-4) repeating the step (D-2) And (D-3) up to a specific number of times; and (D-5) adding the angle parameters of all the records to calculate the second angle. 依據申請專利範圍第1項所述之座標轉換方法,其中,該步驟(E)包括以下子步驟:(E-1)將該加速度向量以該第三座標軸為中心向靠近該第一座標軸的方向旋轉一角度,並記錄一與該角度有關的角度參數;(E-2)判斷該加速度向量對應該第一座標軸與該第二座標軸的分量是否與旋轉前相同,若是,則執行步驟(E-5),若否,則執行步驟(E-3);(E-3)將該加速度向量以該第三座標軸為中心向靠近該第一座標軸的方向旋轉一角度,該角度之tan值為前次旋轉角度之tan值的一半,並記錄一與該角度有關的角度參數;(E-4)重複執行步驟(E-2)及(E-3)達一特定次數;及(E-5)將一量化因子與該第一座標軸上之分量相乘而計算出該旋轉後的加速度向量投射在該第一座標軸上的分量長度。 The coordinate conversion method according to claim 1, wherein the step (E) comprises the following substep: (E-1) the acceleration vector is oriented in the direction of the first coordinate axis centering on the third coordinate axis Rotate an angle and record an angle parameter related to the angle; (E-2) determine whether the acceleration vector corresponds to whether the components of the first coordinate axis and the second coordinate axis are the same as before the rotation, and if yes, perform the step (E- 5), if not, performing step (E-3); (E-3) rotating the acceleration vector by an angle toward the first coordinate axis about the third coordinate axis, the tan value of the angle is Half of the tan value of the secondary rotation angle, and record an angle parameter related to the angle; (E-4) repeat steps (E-2) and (E-3) for a specific number of times; and (E-5) A quantization factor is multiplied by a component on the first coordinate axis to calculate a component length of the rotated acceleration vector projected on the first coordinate axis. 依據申請專利範圍第1或6項所述之座標轉換方法,其中,該步驟(F)包括以下子步驟: (F-1)將該加速度向量以該第二座標軸為中心於該第一座標軸及該第三座標軸所構成之平面上向靠近該第一座標軸的方向旋轉一角度,並記錄一與該角度有關的角度參數;(F-2)判斷該加速度向量對應該第三座標軸的分量是否為零,若是,則執行步驟(F-5),若否,則執行步驟(F-3);(F-3)將該加速度向量以該第二座標軸為中心向靠近該第一座標軸的方向旋轉一角度,該角度之tan值為前次旋轉角度之tan值的一半,並記錄一與該角度有關的角度參數;(F-4)重複執行步驟(F-2)及(F-3)達一特定次數;及(F-5)將所有紀錄的角度參數相加而計算得該第三角度。 The coordinate conversion method according to claim 1 or 6, wherein the step (F) comprises the following substeps: (F-1) rotating the acceleration vector about an angle of the second coordinate axis on a plane formed by the first coordinate axis and the third coordinate axis toward the first coordinate axis, and recording an angle related to the angle (F-2) determines whether the acceleration vector corresponds to the component of the third coordinate axis is zero, and if so, performs step (F-5), and if not, performs step (F-3); (F- 3) rotating the acceleration vector to an angle close to the first coordinate axis centering on the second coordinate axis, the tan value of the angle is half of the tan value of the previous rotation angle, and recording an angle related to the angle (F-4) Repeat steps (F-2) and (F-3) for a specific number of times; and (F-5) calculate the third angle by adding all the recorded angle parameters. 一種加速度感測系統,包含:一感測單元,用以根據其本身運動而感測產生一加速度向量,該加速度向量係以一直角座標系統呈現,且該直角座標系統係由相互垂直的一第一座標軸、一第二座標軸及一第三座標軸所定義;一向量旋轉單元,耦接於該感測單元;及一計算單元,耦接於該向量旋轉單元;該向量旋轉單元先將該加速度向量以該第一座標軸為中心旋轉,使該加速度向量投射在該第二座標軸及該第三座標軸所構成之平面上的分量重疊於該第二座標 軸,且該計算單元計算該加速度向量投射在該第二座標軸上的分量長度,該向量旋轉單元將上述旋轉後的加速度向量再以該第三座標軸為中心,於該第一座標軸及該第二座標軸所構成的平面上旋轉,使該加速度向量重疊於該第二座標軸,且該計算單元計算該加速度向量旋轉至重疊該第二座標軸的角度以得該加速度向量與該第一座標軸所夾之一第一角度;該向量旋轉單元還將該加速度向量以該第二座標軸為中心旋轉,使該加速度向量投射在該第一座標軸及該第三座標軸所構成之平面上的分量重疊於該第三座標軸,且該計算單元計算該加速度向量投射在該第三座標軸上的分量長度,該向量旋轉單元將上述旋轉後的加速度向量再以該第一座標軸為中心,於該第二座標軸及該第三座標軸所構成的平面上旋轉,使該加速度向量重疊於該第三座標軸,且該計算單元計算該加速度向量旋轉至重疊該第三座標軸的角度以得該加速度向量所垂直之平面與該第二座標軸所夾之一第二角度;該向量旋轉單元還將該加速度向量以該第三座標軸為中心旋轉,使該加速度向量投射在該第一座標軸及該第二座標軸所構成之平面上的分量重疊於該第一座標軸,且該計算單元計算該加速度向量投射在該第一座標軸上的分量長度,該向量旋轉單元將上述旋轉後的加速度向量再以該第二座標軸為中心,於該第一座標軸及該第三座標軸所構成的平面上旋轉,使該加速度向量重疊 於該第一座標軸,且該計算單元計算該加速度向量旋轉至重疊該第一座標軸的角度以得該加速度向量所垂直之平面與該第三座標軸所夾之一第三角度。 An acceleration sensing system includes: a sensing unit configured to generate an acceleration vector according to its own motion, the acceleration vector is presented by a right angle coordinate system, and the orthogonal coordinate system is perpendicular to each other a vector axis, a second coordinate axis, and a third coordinate axis; a vector rotation unit coupled to the sensing unit; and a computing unit coupled to the vector rotation unit; the vector rotation unit first the acceleration vector Rotating around the first coordinate axis, the component of the acceleration vector projected on the plane formed by the second coordinate axis and the third coordinate axis is overlapped with the second coordinate An axis, and the calculating unit calculates a component length of the acceleration vector projected on the second coordinate axis, and the vector rotation unit centers the rotated acceleration vector on the third coordinate axis, the first coordinate axis and the second Rotating in a plane formed by the coordinate axis, the acceleration vector is superimposed on the second coordinate axis, and the calculating unit calculates the rotation vector to rotate to an angle overlapping the second coordinate axis to obtain one of the acceleration vector and the first coordinate axis a first angle; the vector rotation unit further rotates the acceleration vector around the second coordinate axis such that a component of the acceleration vector projected on a plane formed by the first coordinate axis and the third coordinate axis overlaps the third coordinate axis And the calculating unit calculates a component length of the acceleration vector projected on the third coordinate axis, and the vector rotation unit centers the rotated acceleration vector on the first coordinate axis, the second coordinate axis and the third coordinate axis Rotating on the formed plane such that the acceleration vector is superimposed on the third coordinate axis, and the calculation Converting the acceleration vector to an angle overlapping the third coordinate axis to obtain a second angle between a plane perpendicular to the acceleration vector and the second coordinate axis; the vector rotation unit further uses the acceleration vector as the third coordinate axis For center rotation, a component of the acceleration vector projected on a plane formed by the first coordinate axis and the second coordinate axis is superposed on the first coordinate axis, and the calculation unit calculates a component of the acceleration vector projected on the first coordinate axis a length, the vector rotation unit rotates the rotated acceleration vector on the second coordinate axis and rotates on a plane formed by the first coordinate axis and the third coordinate axis to overlap the acceleration vector The first coordinate axis, and the calculation unit calculates the rotation vector to rotate to an angle overlapping the first coordinate axis to obtain a third angle between a plane perpendicular to the acceleration vector and the third coordinate axis. 依據申請專利範圍第8項所述之加速度感測系統,還包含一耦接於該計算單元的角度調整單元,該角度調整單元用以根據該加速度向量位在直角座標系統中的象限區域而調整該第一角度,使該第一角度的角度範圍滿足該獨立座標系統。 The acceleration sensing system of claim 8, further comprising an angle adjusting unit coupled to the calculating unit, wherein the angle adjusting unit is configured to adjust according to the acceleration vector position in a quadrant area in the rectangular coordinate system The first angle is such that the angular range of the first angle satisfies the independent coordinate system. 依據申請專利範圍第9項所述之加速度感測系統,其中,該向量旋轉單元還利用π/2減去該加速度向量以該第三座標軸為中心旋轉重疊至該第二座標軸的角度而得該第一角度。 The acceleration sensing system of claim 9, wherein the vector rotation unit further subtracts the acceleration vector from the third coordinate axis by an angle of π/2 to the angle of the second coordinate axis. The first angle. 一種極座標的計算方法,係於一電子裝置執行,將一位於一平面直角座標系統中的向量,計算出其極座標,該平面直角座標系統包括一第一座標軸及一第二座標軸,該向量對應該第一座標軸及該第二座標軸形成一第一分量及一第二分量,該計算方法包含以下步驟:(A)將該向量以靠近該第一座標軸的方向旋轉一角度,並記錄一與該角度有關的角度參數;(B)判斷該向量的第一分量與第二分量是否與旋轉前相同,若是,則執行步驟(E),若否,再判斷第二分量是否為零,若是,則停止接下來所有旋轉角度參數的記錄;(C)將該向量以靠近該第一座標軸的方向旋轉一角 度,且該角度之tan值為前次旋轉角度之tan值的一半,並記錄一與該角度有關的角度參數;(D)重複執行步驟(B)及(C)達一特定次數;及(E)將所有紀錄的角度參數相加,以得該向量與該第一座標軸所夾之角度。 A polar coordinate calculation method is performed by an electronic device, and a polar coordinate system is calculated by a vector located in a plane rectangular coordinate system. The planar rectangular coordinate system includes a first coordinate axis and a second coordinate axis, and the vector corresponds to The first target axis and the second coordinate axis form a first component and a second component, and the calculation method comprises the following steps: (A) rotating the vector by an angle in a direction close to the first coordinate axis, and recording an angle The relevant angle parameter; (B) determining whether the first component and the second component of the vector are the same as before the rotation, if yes, performing step (E), and if not, determining whether the second component is zero, and if so, stopping Following the recording of all rotation angle parameters; (C) rotating the vector in a direction close to the first coordinate axis Degree, and the tan value of the angle is half of the tan value of the previous rotation angle, and records an angle parameter related to the angle; (D) repeating steps (B) and (C) for a specific number of times; E) Add the angular parameters of all the records to obtain the angle between the vector and the first coordinate axis. 依據申請專利範圍第11項所述之極座標的計算方法,還包含一位於該步驟(E)之後的步驟(F),根據該步驟(E)中的該第一座標軸之分量而計算出該向量長度。 According to the calculation method of the polar coordinates described in claim 11 of the patent application, the method further includes a step (F) after the step (E), and calculating the vector according to the component of the first coordinate axis in the step (E) length. 依據申請專利範圍第12項所述之極座標的計算方法,其中,該步驟(F)係將該步驟(E)中的該第一座標軸之分量與一量化因子相乘而計算出該向量的原始長度。 According to the calculation method of the polar coordinates described in claim 12, wherein the step (F) is to multiply the component of the first coordinate axis in the step (E) by a quantization factor to calculate the original of the vector. length.
TW101128997A 2012-08-10 2012-08-10 The coordinate transformation method, the calculating method of polar coordinate and the accelerometer detecting system TWI456202B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101128997A TWI456202B (en) 2012-08-10 2012-08-10 The coordinate transformation method, the calculating method of polar coordinate and the accelerometer detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101128997A TWI456202B (en) 2012-08-10 2012-08-10 The coordinate transformation method, the calculating method of polar coordinate and the accelerometer detecting system

Publications (2)

Publication Number Publication Date
TW201407164A true TW201407164A (en) 2014-02-16
TWI456202B TWI456202B (en) 2014-10-11

Family

ID=50550436

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101128997A TWI456202B (en) 2012-08-10 2012-08-10 The coordinate transformation method, the calculating method of polar coordinate and the accelerometer detecting system

Country Status (1)

Country Link
TW (1) TWI456202B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494568B (en) * 2014-06-16 2015-08-01 Nat Inst Chung Shan Science & Technology Motion detection method and device
US10548788B2 (en) 2015-11-13 2020-02-04 Hill-Rom Services, Inc. Person support systems with cooling features
US10842288B2 (en) 2017-01-31 2020-11-24 Hill-Rom Services, Inc. Person support systems with cooling features
US10945679B2 (en) 2017-01-31 2021-03-16 Welch Allyn, Inc. Modular monitoring smart bed

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI605348B (en) * 2016-08-22 2017-11-11 Univ Chang Gung Tilt estimation method
TWI616271B (en) * 2017-05-09 2018-03-01 南臺科技大學 Expansion and layout methods for vector object

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8626734D0 (en) * 1986-11-08 1986-12-10 Renishaw Plc Coordinate positioning apparatus
TW452644B (en) * 2000-12-16 2001-09-01 Lin Sheng Fu Measurement method of the spatial coordinates of objects
CN1175374C (en) * 2001-10-09 2004-11-10 英业达集团(南京)电子技术有限公司 Index device having acceleration sensor
CN2746397Y (en) * 2004-09-29 2005-12-14 王国梁 Motion acceleration snesor for moving equipment
TWI443556B (en) * 2010-04-02 2014-07-01 Coordinate transformation method for touch panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494568B (en) * 2014-06-16 2015-08-01 Nat Inst Chung Shan Science & Technology Motion detection method and device
US10548788B2 (en) 2015-11-13 2020-02-04 Hill-Rom Services, Inc. Person support systems with cooling features
US10842288B2 (en) 2017-01-31 2020-11-24 Hill-Rom Services, Inc. Person support systems with cooling features
US10945679B2 (en) 2017-01-31 2021-03-16 Welch Allyn, Inc. Modular monitoring smart bed

Also Published As

Publication number Publication date
TWI456202B (en) 2014-10-11

Similar Documents

Publication Publication Date Title
TW201407164A (en) The coordinate transformation method, the calculating method of independent coordinate and the accelerometer detecting system
CN106910223B (en) A kind of Robotic Hand-Eye Calibration method based on convex loose global optimization approach
US20230294299A1 (en) Systems and methods for estimating shape, contact forces, and pose of objects manipulated by robots having compliant contact and geometry sensors
CN109523581A (en) A kind of method and apparatus of three-dimensional point cloud alignment
Ryden et al. A proxy method for real-time 3-DOF haptic rendering of streaming point cloud data
KR20140008262A (en) Robot system, robot, robot control device, robot control method, and robot control program
Brake et al. The complete solution of alt–burmester synthesis problems for four-bar linkages
JP2012519330A (en) Calibrated position conversion system and method
Sieger et al. On shape deformation techniques for simulation-based design optimization
KR20190070386A (en) Robot hand for grasping object by using visual information and tactual information and control method thereof
KR20190070385A (en) Robot hand for grasping unknown object and control method thereof
CN109788277A (en) Compensation method, device and the storage medium of the optical axis deviation of stabilization machine core
Zhao et al. Design of planar 1-DOF cam-linkages for lower-limb rehabilitation via kinematic-mapping motion synthesis framework
US20140330128A1 (en) Signal processing apparatus and method
CN108571967A (en) A kind of localization method and device
JP5273091B2 (en) 3D shape measuring apparatus and 3D shape measuring method
Lin et al. Geometric method of spatial linkages synthesis for function generation with three finite positions
CN111369640A (en) Multi-robot graph establishing method and system, computer storage medium and electronic equipment
Riemer et al. Improving net joint torque calculations through a two-step optimization method for estimating body segment parameters
JP2019027921A (en) Three-dimensional shape measuring device, robot system, and three-dimensional shape measuring method
JP2023525538A (en) Method and apparatus for determining volume of 3D images
CN110059660A (en) Mobile terminal platform 3D face registration method and device
Lin et al. Camera calibration based on Snell’s law
Dariush et al. A well-posed, embedded constraint representation of joint moments from kinesiological measurements
CN116077189A (en) Method and equipment for positioning target and surgical robot