TW201241722A - Sensor, dual-mode touch module and dual-mode touch electronic device - Google Patents

Sensor, dual-mode touch module and dual-mode touch electronic device Download PDF

Info

Publication number
TW201241722A
TW201241722A TW100115561A TW100115561A TW201241722A TW 201241722 A TW201241722 A TW 201241722A TW 100115561 A TW100115561 A TW 100115561A TW 100115561 A TW100115561 A TW 100115561A TW 201241722 A TW201241722 A TW 201241722A
Authority
TW
Taiwan
Prior art keywords
wire
touch
sensor
mode
antenna array
Prior art date
Application number
TW100115561A
Other languages
Chinese (zh)
Inventor
de-zhong Zhu
Original Assignee
Taiguen Tech Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44464369&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201241722(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Taiguen Tech Shenzhen Co Ltd filed Critical Taiguen Tech Shenzhen Co Ltd
Publication of TW201241722A publication Critical patent/TW201241722A/en

Links

Landscapes

  • Position Input By Displaying (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

The invention discloses a sensor, a dual-mode touch module and a dual-mode touch electronic device. The sensor comprises a first direction lead set and a second direction lead set formed by a plurality of U-shaped first direction leads and second direction leads in a combined arrangement mode. The first direction lead set and the second direction lead set are mutually crossed to form a capacitance coupling touch antenna array; the first connecting end of the opening parts of the first direction leads and the second direction leads is connected with an external control component, the second connecting end of the opening parts is connected in series with a mode switching electronic switch, and the second connecting end is connected to the external control component through the mode switching electronic switch; and the control end of the mode switching electronic switch is connected with the external control component. The sensor realizes dual touch modes of capacitance coupling and electromagnetic induction by mode switching based on the same antenna array, and has simple structure, high reliability and low cost; and when the sensor is combined on a display screen of electronic equipment, the sensor meets the requirements of users on two flexible touch inputs of electromagnetic pen and finger touch.

Description

201241722 六、發明說明: .【發明所屬之技術領域】 雙模式觸控模組及雙模 本發明係有關於一種感測器 式觸控電子裝置。 【先前技術】 目别’觸控產品主要包括手指觸控產品和 品’該等觸控產品的觸 -玉 犋式暴本上疋電容式觸控模式和 電阻式觸控模式。 中電阻式觸控主要是通過在顯示幕的觸控區域設 置上下兩層不接㈣IT0導電薄膜,以實現對觸控點的感 測。其缺點主要是:上下兩们Τ()導電薄膜容易出現接觸 故障,進而使得電阻式觸控的反應不靈敏,對手寫或筆寫 的解析度較低。 相對於電阻式觸控模式,電容式觸控模式的觸控產品 的靈敏度有一定的提高。然而’電容式觸控模式即電容耦 合觸控模式需要設置較密集排布的陣列結構,該陣列結構 需要設置能夠輸出或輸入電流信號的陣列,由此導致控制 電路或晶片的I/〇介面增加,使得觸控產品的反應速度降 低,進而導致無法較好地識別觸控點的位置資訊。 現有技術中還出現一種採用電磁感應觸控模式的觸控 產品,該電磁感應觸控模式採用感應電磁信號的方式獲取 電磁筆在電磁感應天線陣列的位置資訊,以實現電磁筆觸 控點的定位。然而該類觸控產品只能採用電磁筆書寫,無 201241722 法識別手寫模式中觸控點的識別,其適用範圍比較受限。 為此’大多觸控產品生產商將電容式觸控模式和電磁 感應觸控模式疊加在一起以實現手寫和筆寫結合的觸控模 式;該電容式觸控模式的觸控區域需要設置在電磁式觸控 模式的觸控區域之上;也就是說:需要在同一個需要觸控 的設備上設置兩套相互獨立的陣列結構,並使之相互疊 加,以便能夠實現兩種模式的位置資訊的識別。然而每 一陣列結構需要連接各自的處理電路,使得整個觸控產品 的結構複雜’體積龐大、製造成本高。並且在觸控產品的 使用過程中,還會出現電容式觸控模式和電磁感應觸控模 式的相互干擾。因此’上述任一觸控產品均無法較好地滿 足使用者的需求。 L發明内容】 本發明提供-種感測器’該感測器採用同一天線陣列 :別電磁信號和磁感應電流信號,使得感測器的結構簡 早’成本降低,並且提高感測器的反應靈敏度。 本發明的感測器包括1形第一方向導線,每根第一 不向導線依次以組合排列的方彳„ ▲糾 』的方式間隔父錯平行設置,構成 第方向導線組,任意兩根第一太&道#201241722 VI. INSTRUCTIONS: [Technical Fields of the Invention] Dual Mode Touch Module and Dual Mode The present invention relates to a sensor type touch electronic device. [Prior Art] The touch-sensitive products mainly include finger touch products and products. The touch-type jade-type touch-sensitive capacitive touch mode and resistive touch mode of the touch products. The medium-resistance touch is mainly used to set the upper and lower layers of the touch screen in the display area without the (4) IT0 conductive film to realize the sensing of the touch point. The main disadvantages are: the upper and lower Τ() conductive films are prone to contact failure, which makes the resistive touch response insensitive, and the resolution of handwriting or pen writing is low. Compared with the resistive touch mode, the sensitivity of the capacitive touch mode touch product is improved. However, the capacitive touch mode, that is, the capacitively coupled touch mode, requires a densely arranged array structure that requires an array capable of outputting or inputting a current signal, thereby causing an increase in the I/〇 interface of the control circuit or the wafer. The response speed of the touch product is reduced, which leads to the inability to better recognize the location information of the touch point. A touch product using an electromagnetic induction touch mode is also used in the prior art. The electromagnetic induction touch mode uses an electromagnetic signal to obtain position information of the electromagnetic pen in the electromagnetic induction antenna array to realize positioning of the electromagnetic pen touch point. However, such touch products can only be written by an electromagnetic pen, and the 201241722 method recognizes the recognition of touch points in the handwriting mode, and its application range is limited. To this end, most manufacturers of touch products superimpose capacitive touch mode and electromagnetic touch control mode to achieve a touch mode combining handwriting and pen writing; the touch area of the capacitive touch mode needs to be set in electromagnetic Above the touch area of the touch mode; that is, two sets of mutually independent array structures need to be placed on the same device requiring touch, and superimposed on each other so as to realize position information of the two modes. Identification. However, each array structure needs to be connected to a respective processing circuit, so that the structure of the entire touch product is complicated, and the volume is large and the manufacturing cost is high. In the process of using the touch product, mutual interference between the capacitive touch mode and the electromagnetic induction touch mode may occur. Therefore, none of the above touch products can better meet the needs of users. SUMMARY OF THE INVENTION The present invention provides a sensor that uses the same antenna array: an electromagnetic signal and a magnetic induction current signal, so that the structure of the sensor is simple and low, and the sensitivity of the sensor is improved. . The sensor of the present invention comprises a first-shaped first-directional wire, and each of the first non-guide wires is sequentially arranged in parallel with the parental error in a combined arrangement of the squares, and forms a first-direction wire group, any two of which are One too &road#

开… 很弟方向導線之間相互絕緣;U 式門^ 万内導線依次以組合排列的方 二方第一方向導線組,任意兩根第 導線之間相互絕緣;任—根第一方 導線均具有相互平行的第-導線和第二導線;方 4 201241722 和第二導線cr第一方向導線任一位置的第-導線 何位置相鄰兩導線二Π或後一導線的組合與其他任 方向導線任一位晋不重複;第二方向導線組的第二 線或後-導:一導線和第二導線與相鄰的前-導 重複;、的組合跟其他任何位置相鄰兩導線的組合不 第方向導線組和第二方向導線 容耦合觸控天線陣列.且m “ 又又構成電 組之間相互絕緣·上二和第二方向導線 向導線上電性連接有導線組中至少一根第一方 向導線…少觸控部件;上述第二方 耦合觸控部件; 根第一方向導線上電性連接有第二電容 —電容輕合觸控部件和第二電容輕合觸控部件在第 向導線和第二方向導線相互交叉的區域交錯疊設; 上述第—方向導線和第二方向導線開口部具有 接端和第二連接端,直φ笛.. 料其中第一連接端用於連接外部控制部 ^ 7接端串接—模式切換電子開關,上述第二連接 經上述模式切換電子開關串接到外部控制部件;上述模 式切換電子開關的控制端接外部控制部件 電子 :::合’上述第-方向導線和第二方向導線各自分= =外部控制部件形成電磁感應回路;模式切換電子開關 汗,上述天線陣列構成的電容耦合觸控陣列。 上述的感測器借助於模式切換電子開關將感測器中的 天線陣列切換為電容麵合觸控模式或者電磁感應觸控模 201241722 :’使天線陣列在任一時刻要麼工作於電容麵合觸控模 式’要麼工作於電磁感應觸控模式,因此能夠有效克服現 有技術中電容式觸控模式和電磁感應觸控模式相互干擾的 問題。進-步地,通過設置u形的第一方向導線和第二方 =導線’能夠有效減少感測器與外部控制部件之間的ι/〇 介^ ’進而使得週邊電路結構大幅簡&、便於集成,使處 理信號資料量減少、處理速度大幅度提高。1/〇介面和要 處理的資料量減少能夠使得利用該感測器的觸控產品的處 理速度提高、結構簡單、製造成本低,並能有效地滿足使 用者兼用電磁筆和手指冑摸等兩種觸控輸入的需求。 本發明還提供-種雙模式觸控模組,該雙模式觸控模 組通過將本發明中任意所述的能夠切換電容耦合觸控模式 或者電磁感應觸㈣良陣列言史置於基材上,以有效 地降低具有雙模式觸控功能基板的製造成本,同時簡化雙 模式觸控基板製備卫藝’可有效推廣該雙模式觸控模組的 適用範圍。 本發明的雙模式觸控模組包括:第一基板和感測器, 該感測器為前述的感測器,上述感測器的天線陣列設置在 上述的基板上;上述天線陣列的第一方向導線、第二方向 導線的材質為金屬箔、導電銀漿、碳漿或IT〇導電膜,採 用印刷、刻蝕的方式設置在基板上;或者於第一基板上以 印刷、蝕刻方式製成。 上述雙模式觸控模組能有效地克服現有技術中電容式 觸控模式和電磁感應觸控模式的相互干擾的問題,同時雙 6 201241722 ’使得該雙模式觸控 ’使得包含該雙模式 效地滿足使用者的需 模式觸控天線陣列社摇μλ时, 、、’°構的複雜度降低 模組製造簡單,忐太& # 間平成本低廉,集成度高 觸控模組的觸控產品更輕、更薄,有 求。 另外,本發明還提供—種雙模式觸控電子裝置,包括 、、裝置本it該本體上設有顯示幕和本發明中任意所 述的又杈式觸控杈組’以及上述的雙模式觸控模組可設置 在電子裝置顯示幕的表面,或者上述電磁感應線圈環繞設 置敷設電子裝置顯示幕周邊等。由此,該些包含有雙模式 觸控模組的雙模式觸控電早梦番,担> = 电于裝置在k咼反應靈敏度的同時 可實現電容耦合觸和+ 觸控杈式和電磁感應觸控模式相容,此 外’該雙模式觸控電子裝置的結構簡f、成本低,且維護 方便。 不付出創造性勞動的前接下啓 月】捉下,還可以根據這些附圖進行變 換而獲得其他的附圖。 對於本領域普通技術人員來講,在 為了更清楚地說明本發明 下面將對實施例或現有技術描 簡單地介紹。顯然,下面描述 些具體實施例的附圖 或現有技術中的技術方案, 述中所需要使用的附圖作一 的各個附圖僅是本發明的一 【實施方式】 為使本發明的目的、 ^ 技術方案和優點更加清楚,下面 將結合本發明實施例中的附圖,對本發明實施例中的技術 方案進行清楚、完整地描述。_,所描述的實施例只是 201241722 本發明-部分實施例,而不是全部的實施例。 本實施例中的感測器主要包括: 每根第一 υ形第一方向導線, 置,構Am ⑼方式心交錯平行設 互絕緣; 根第-方向導線之間相 u形第二方向導線’每根第二 列的方式+ 万向導線依次以組合排 間隔交錯平行設置,構成第二方向導線組,任意 兩根第一方向導線之間相互絕緣; * 任一根第一方向導線和第二方向 的第-導線和第二導線; ^導線均具有相互平行 第-方向導線組的第一方向導線任 和第二導線與相鄰的前一導線或後人導線 何位置相鄰兩導線的組合不重複;、’…與其他任 和第第^向導線組的第二方向導線任一位置的第一導線 打办® α ^ ^ 導線的組合跟其仙紅 何位置相鄰兩導線的組合不重複; 其他任 第—方向導線組和第二方向導 容輕合觸控天線陣列;且導緩:父叉,構成電 組之間相互絕緣; 弟一方向導線 上述第—方向導線組中至 連接有第一雷^ 根第一方向導線上電性 匈弟電容耦合觸控部件; 电注 上述第二方向導線組尹 連接有第二電容耗合觸控部件:M第-方向導線上電性 第-電容耗合觸控部件和第二電容叙合觸控部件在第 8 201241722 一方向導線和第二方向導線相互交叉的區域交錯疊設· 上述第-方向導線和第二方向導線 :’ 接端和第二連接端,其中第一連接端用 ;連 杜,牮_& 竭·接外部控制部 ,—連接端串接一模式切換電子開關,上 端經上述模式切換電子開關串接到外部控制料 式切換電子開關的控制端接外部控制部件;模式切換電莫 開關閉合,上述第一方向導線和第二方向導線各自分別與 所接外部控制部件形成電磁感應回路;模式切換電 斷開,上述天線陣列構成的電容耦合觸控陣列。 具體地’參照圖u至圖lc所示,圖u示出了本發明 中感測器實施例的第一種結構示意圖;圖⑺示 感測器實施例中第一方向導線的第一 、。稱不意圖,圖1C示 出了本發明中感測器實施例中第二方向導線的第—種社構 示意圖。在本實施例中’圖1A中示出的感測器結構具:為 虛線財的結構m方向導線組和第二方向導線 組相互交叉,構成電容耦合觸控天線陣列;且第—方向導 線組和第二方向導線組之間相互絕緣。 11 第一方向導線組可包括如圖1A中的U形第-方向導線 20U'隱、201c,任意兩根第—方向導線之間相互絕緣。 其中該第-方向導線組中的各第一方向導線以數學八式中 的組合排列方式進行分佈’其組合公式為【η、::於 等於4的自然數’且πκ = η,例如,n可為5、6、8、卜9、 1〇、19《32等等。也就是說’第一方向導線組的第二方 向導線任-位置的第-導線和第二導線與相鄰的前一導線 201241722 或後一導線的組合與其#秣& 複。 與其他任何位置相鄰兩導線的組合不重 相應地,第二方向導線組可包 方向導線⑻^咖⑺卜任意兩根第二…第-相互絕緣。其中該第二方向導線組中的各:方向導線之間 數學公式中的組合排列方式進行分佈,其方向導線以 "取大於等於4的自然數,且例如;t式為匕’ 8、1。、19或32等等。也就是 可為5、6、 方向導線任-位置的第—導線和第第二方向導線组的第二 線或後一導後& έ " 一導線與相鄰的前一導 重複線的組合跟其他任何位置相鄰兩導線的組合不 如圖U、1Β所示,第一方向 連接外部控制部件100的第一 二開口部具有 2。5。在本實施例中,第二連接端2。5 == 開關心該第二連接端2。5經模有模=子 夠被i車蛀5丨丨认如, v伏电十開關202能 ==部=部件m。第—方向導線"形的兩 (即第-導線和第二導線)電 容耦合觸控部件2〇3, 夕第一電 上(第-導線或者第/導峻)彳向導線的ϋ形的任-邊 合觸控部件二二I)電性連接有多個第一電容麵 ,. &第電谷耦合觸控部件203的數量、 形狀依據實際電路結構的需求設定。通常,第一電 ♦耦合觸控部件2〇3 導線组的交叉點㈣ 向導線紐和第二方向 示出的第 量相同。當然,如圖1C所示,圖ic中 的第二方向導線組的結構類同於第一方向導線组的結 201241722 構。 在圖ic中第二方向導線1〇la的開口部具有連接外部 控制邠件100的第-連接端1〇4和第二連接端。在本 實施例中,第二連接端105串接有模式切換電子開關102, 該第二連接端1G5經模式切換電子_ 1G2能夠被連接到 外4控制。P件1 〇〇。第二方向導線的U形的兩個邊上(即 第一導線和第二導線)雷、击k 士夕Μ β 電险連接有夕個第二電容耦合觸控 部件103’或者第二方向導線的υ形的任—邊上(第 線或者第二導線)電性連接有多個第二電容耗合觸控部件 103。該第二電容耗合觸控部件1G3的數量、大小、形狀依 據實際的電路結構的需求 ^ , 疋虽然,第二電容耦合觸控 邛件103的數量與第—方向導 導線組和第二方向導線組的交 又點數量相同。可以理解的β埜一兩 疋第―電容輕合觸控部件103 ,、第一電谷耦合觸控部件2 笛# — * 町数I相同,且感測器中的 向㈣^合觸控部件和第二電容耦合觸控部件在第一方 向導線和第二方向導線相互交又的區域交錯疊設。 ^:方向導線的模式切換電子開關202閉合時,該 線工作於電磁感應觸控模式,用以感應電磁筆 發出的電磁信號。當第一方向導線組: 開關202均閉合時,電磁筆 式刀換$子 移動缽^ ν 方向導線組的豎向上下 時可以通過外部控制部件測量任 出的交變存·妹 ,± 方向導線輸 的义變仏號,比較獲取輸出最大的 導線組所分佈的導線位置即可 ^在第一方向 (βρ V \ 接獲知並確定電磁筆豎向 (即y軸向)的準確位置。相 π 應地,當第二以㈣㈣ 201241722 式切換電子開關102閉合時’該第二方向導線工作於電磁 感應觸控模式,用以感應電磁筆發出的電磁信號。當第二 方向導線組的所有模式切換電子開關⑽均閉合時,電磁 筆在第二方向導線組的橫向水 γ卞移動時,可以通過外部控 制部件測量任一第二方向導綠 導線輸出的交變信號,比較獲取 輸出最大的交變信號在第-古—拔&, 在第一方向導線組所分佈的導線位置 即可直接獲知並確定電磁筆橫向( 平俠间i即X軸向)的準確位置。 由於第-方向導線組和第二方向導線組相互交叉放置 (如圖1A的虛線框中所示結構), 再J因此月b夠經由兩個方向 導線傳遞的電磁感應信號檢測出 w电磁鞏位於天線陣列的具 體位置。 ' 需要進一步說明的是,上沭笛 士二播 上这第一方向導線組和第二方 向導線組相互交又,同眭嫵士咖—1 父乂 Π時構成電容輕合觸&天線陣列•且 第一方向導線組和第二方向導蠄 _ 泽線組之間相互絕緣的。在圖 1A所示的感測器中,將所有 式切換電子開關(102和 202 )斷開,此時,第一方向 深矛第一方向導線均工作於 =麵合觸控模式。第-方向導線和第二方向導線中各自 的第一連接端與外部連接控制部件電導通。外部控制部件 接收到電容麵合信號後’經處理可獲知手指的觸控位置。 應瞭解的是,在實際設置有 本實施例感測器的電路結構 ’可將感測器中的模式切換電子開關102力202設於外 部控制部件H)。區域,以便於整個電路結構的集成控制。 上述實施例中的感測器诵禍 ^ 盗通過模式切換電子開關將感測 器中的天線陣列切換為電容鯉人 耦^觸控模式或者電磁感應觸 12 201241722 控模式,能夠有效克服現有技術中同時具有電容、電感觸 控雙模式產品中,電容耦合觸控模式和電磁感應觸控模式 相互干擾的問題。特別地,上述實施例中採用數學中組合 排列方式排布的u形的第一方向導線組和第二方向導線組 相互交叉,使得每一相鄰的第一方向導線或第二方向導線 的組合是唯一的,進而最後形成的天線陣列的交叉點的位 置是唯一的。 相對比現有電容耦合觸控技術,上述實施例中,通過 设置在U形第一方向導線和第二方向導線的第一導線和第 二導線上的第一電容耦合觸控部件103和第二電容耦合觸 控部件203與相鄰電容耦合部件的組合排列,使相同第一 導線數或第二導線數擴展了更大的觸控區域,能夠有效減 少感測器與外部控制部件之間的I / 〇介面,進而使得週邊 電路結構大幅簡化、便於集成,使處理信號資料量減少、 處理速度大幅度提高。I/O介面和要處理的資料量減少能 夠使得包含該感測器的觸控產品的處理速度提高,且使得 包含本發明感測器的觸控產品如手機、平板電腦等的結構 簡單’製造成本低,並能有效地滿足使用者兼用電磁筆和 手才曰觸摸等兩種觸控輸入的需求。 以下通過圖2A至圖2C詳細說明本發明的感測器實施 例中的天線陣列識別電磁信號的原理;其中,圖2A為第一 方向導線内識別電磁信號的強度變化的示意圖,圖2B為第 —方向導線組内識別電磁信號的強度變化的示意圖,圖2C 為天線陣列識別電磁信號的示意圖。 13 201241722 圓Μ中線圈5通有交變電流,線圈 磁場,交變磁場的磁力線穿過第— 乃圍會產生交變 氏遙魂?ηΐ Βϊ 方向導線201a,第— 向導線201a則能夠感應電磁信號 第方 λα ran r y. 〗出交變感應電Μ。〆 線圈5在第一方向導線,的上下移動時,第一二v 20 la輸出的交變感應電壓是不同的, D導線 分別位於第-方向導線的位置14、中圖2A巾,線圈5 時’通過測量得知線圈5位於第向;立置13和位置15 心時,第-方向導線2〇la輸出的交變感導=,向中 〆妙技认册 町叉變感應電壓是最大的。 二= 原理可知’在同一高度,在導線2仏内, ::移動線圈5時,第-方向導線,輸出的交變感:電 壓疋不發生變化的。 〜電 另外,如圖2B所示’第—方向導線"的第—方向導 線201a以相等間距組合排列,試驗驗證線圈5位於第一方 向導線2〇la的暨向中心時,第-方向導線2〇la輸出的交 變感應電壓U3最大;以及線圈5上移至偏向於第一方向導 線2(Ub的豎向中心時’第—方向導線2Qib輸出的交變感 應電壓U2最大;進一步地’線圈5再上移至第一方向導線 2〇lc的豎向中心時,第一方向導線2Qlc輸出的交變感應 電堅Ui最大。由上可在第一方向導線組中獲取線圈5在豎 向上的位置資訊。也就是說,平行設置多個間距相等的第 一方向導線,且使該多個平行設置的第一方向導線以組合 排列的方式分佈,進而在外部控制部件中通過比較該些第 一方向導線輸出的交變感應電壓的大小,即可獲取線圈5 在豎向上的準確位置。故,上述實施例中感測器的天線陣 14 201241722 列採用如圖2B中排列的第一方向導線以便較好地識別線 圈5在豎向(γ軸向)準確的位置資訊。 同樣原理’在圖2C中,線圈5位於第二方向導線1〇u 内的不同的水平位置,其第二方向導線101a輸出的交變感 應電壓是不同的’以便獲取線圈5在水平方向(X轴向) 上的位置資訊。 參照圖2C所示,天線陣列包括垂直交又排列的第一方 向導線組和第二方向導線組。當線圈5在天線陣列的任一 位置時’通過獲取並比較天線陣列中第一方向導線和第二 方向導線輸出的交變感應電壓’可確定線圈5在天線陣列 中的具體位置。 參考圖3A至圖3H所示,圖3A至圖3H為本發明的感測器 實施例中的電容耦合觸控模式的原理分析示意圖;其中, 導體21可相當於觸控的手指,導體23和導體24在相同層面 並彼此獨立絕緣。當導體21通過絕緣介質22貼合於彼此絕 緣的導體23和導體24上時,導體21的左側與導體23的貼合 區等效為電容Cl,導體21的右側與導體24的貼合區等效為 電谷C2由於導體21是一體結構,進而等效的電容Ci和電容 C2為串聯連接,如圖3C所示的等效電路。從3C所示的等效 電路可知導體23與導體24間可相互傳遞交變電壓。圖3(:示 出了本發明中手指觸控天線陣列中的交叉點的等效電路 圖,因手指與導體23和導體24間對一定頻率的交流電壓的 又流阻抗(包括感抗、阻抗和/或容抗等)很大,相當於絕 緣,而手指的直流阻抗較低,故手的觸摸面等效為導體21, 201241722 第一方向導線201a相當於導體23 ,第二方向導線1〇la相當 於導體24。 如圖3D所示(為後續方便說明,圖3D中僅示意了一個 第一方向導線和一個第二方向導線垂直交叉的示意圖)’ 當第二方向導線的1〇la的第—連接端1〇4通入交變信號8 時,手拍與交又點1 (圖3D中的陰影部分)接觸,以使交流 L號8的回路被導通(也就是說,圖3])中的觸控點1之間的 電容。和匕導通),由此可獲取到第一方向導線2〇1&的第一 連接端204輸出的交變信號9。當手指觸控圖3D中所示的交 叉點2、3或4時’相對應的接觸點之的^和^、接觸點3的^ 和或接觸點4w*C5被導通’進而可以檢測到上述的 交變信號9。由上所述,外部控制部件可以識別天線陣列中 的電容耦合觸控信號。 由於每一第一方向導線和第二方向導線均有四個交 點,其輸出交變信號9的位置也是相同的,上述圖汕中示出 的可能無法較好地判斷手指位於交又點(即觸控點)卜2、 3或4的具體位置,故以下結合3E至圖3H詳細說明外部控制 部件獲取電容耦合模式下的唯一位置資訊。 參照圖3E至圖3H所示,圖3E中導體21和導體 導體21和24的貼合面相等’即。和&相等,冑3f和圖 3G中導體與導體23、導體24的貼合面不相等,進而 G在圖3F和圖3G中較大,由於導體21與導體㈡和24的 貼合總面積-定’ Cl * C2串聯,故依據串聯電容 C=Cl*C2/(Cl+C2)可知,只有匕和&相等時,輸出的交變: 16 201241722 號是最強的,如圖3H所示的各實驗資料,其S1>S2>S3。 當用手指取代導體21時,其產生的結果和上述模擬實驗的 結果是一致的。 故,由於實際的感測器至少包括3根以上ϋ形第一方 向導線和第二方向導線’故具體結構中,各交又點分別由 第一電合耦。觸控部件203和第二電容耦合觸控部件1〇3 交錯疊設’且天線陣列中的各交叉點均句分佈(如下的圖 7C所不),進而可保證手指觸控的交叉點至少為兩個或兩 個以上以便使外部控制部件通過獲取和比較相鄰的各個 方向導線的第—連接端冑出的最大的交變信冑的位置,以 獲知觸控點的準確位置資訊(也就是說,借助於相鄰交叉 點輸出的《變信號在各個方向導線的第—連接端輸出的分 佈,可以準確區分圖3D中的觸控點丨、2、3和4),由此, 通過觸控點包含的至少相鄰的兩個交又點能夠唯一確定電 容耦合觸控模式下觸控點的位置資訊。 需要說明的是,人體和手的大部位與天線陣列的交叉 點之間的距離相對於手指與交叉點之間的距離要大很多, ,而人體和手的大部位與天線陣列的交叉點產生的感抗、 抗阻抗都是非常大的,故相對於手指在交叉點產生的 容抗來說,身體其他部位可等效絕緣。 ^另外,為詳細說明電容耦合觸控模式下感測器的位置 資訊的準確獲知,採用笛卡爾坐標系(XY座標)中座標點 的方式舉例說明,可將圖4A所示的天線陣列中的各交叉點 等效為座標點,如圖4B和圖4C所示的X軸和γ軸的座標點的 17 201241722 位置資訊說明。以下通過圖4A中觸控點1的上下移動舉例說 明每一觸控點的位置資訊是唯一的。 具體地’垂直交叉排列第一方向導線組和第二方向導 線組,即將第二方向導線組放置於按X軸向,第一方向導 線組放置于γ軸向。第二方向導線1〇la(A5, a5)與第一 方向導線201a ( B5,b5)的一交又處有一觸控點丨,第二 方向導線1〇la(A5,a5)上的交變電壓8通過觸控點1麵 °到第一方向導線2Gla ( B5,b5)輸出交變電壓9 ( ub5), 以及觸控點1還與第一方向導線201b ( B8,b8)重合,第 —方向導線l〇la(A5’ a5)的交變電壓8還會耦合到第一 方向導線201b ( B8 ’ b8 ) ’輸出交變電壓ub8。 右觸控點1與第一方向導線201a ( B5,b5)的貼合ί i重0面大於與第—方向導線201b ( Β8,b8)的貼合面/j 則第—方向導線l〇la(A5,a5)上的交變電壓85 厂觸控點1耦合到第-方向導線201a ( B5,b5)的交變1 _ b5大於耦合到第一方向導線201b ( B8 , b8)的交變^ 壓Ub8,如圖“彳路- 1所不,如將觸控點1逐步沿Y軸上移,ji 控點1與第_古a·»» i /h 万向導線201a (B5,b5)的貼合面會逐步; 導線2〇lb(B8’b8)的貼合面會逐步變大 坪麼第二方Θ道 妖抓,一 °導線101a ( A5 ’ a5)上的交變電壓8通過< 佐·點1輕合到笛__ ^ 方向導線201a(B5,b5)的交變電壓[ 嘗逐步減小,&人, 耦。到第一方向導線2〇lb ( B8,b8)的交I 电您Ube會逐步掸 下弒击 s大,如圖4A2所示’當觸控點1沿γ軸 砂勒時,第—古 —方向導線組輪出的交變電壓會有規律的' 18 201241722 化’這種電壓變化規律是觸控點^ γ軸的位置資訊,以 此可以準確判定出觸控點1在γ軸的位置。 同理,可以獲取觸控點在χ軸上的位置,如圖4Α3和 圖4Α4所示,確定觸控點…軸的位置資訊。由上,可 以準確狀出觸控點i幻軸、上的位置即座標點。 根據X轴和Y軸天線陣列上耦合產生的交變電壓資料可以 準確的計算出觸控點1在天㈣列有效區㈣ 置’同樣原理可以準確的計算出觸控點2、3、4在天線陣 列有效區的任意座標位置。 如圖4B和圖4C解析的觸控點i上移的位置座標點, 圖4A中的簡為電容耗合感應有效區,γ轴設置 Π1 —Υ0位置,每個位置分別設置天線陣列B4b4、、 B5b5、B2b2、B6b6、B3b3、B7b7、B4b4、B8b8、B5b5、B9b9、 廳^如分別以字母人^^^、〗、】、。 L表示第-方向導線Blbl…咖,那麼γ轴的第一方向 導線對應位置的排列表為DAEBFCGDHEIF,排列表每個字母 與相鄰子母的組合不重複,如A在排列表中的組合有議、 EAD、DEAB #,在#列表中的其他位置不會有與之一樣的Open... The wires of the younger direction are insulated from each other; the U-type gates are internally arranged in a combination of two squares of the first direction of the conductor set, and any two of the first conductors are insulated from each other; Having the first and second conductors parallel to each other; square 4 201241722 and the second conductor cr, the first conductor at any position of the first direction conductor, the position of the adjacent two conductors, or the combination of the other conductors The second line or the rear guide of the second direction wire group: the combination of one wire and the second wire and the adjacent front-guide wire; the combination of the two wires adjacent to any other position is not The first direction wire group and the second direction wire are coupled to the touch antenna array, and m “is further insulated from each other. The upper and second direction wires are electrically connected to at least one of the wire groups. Directional wire...a small touch component; the second side is coupled with the touch component; the first direction wire is electrically connected to the second capacitor-capacitor light-contacting touch component and the second capacitor light-contacting touch component is in the first line And the second direction The intersecting regions of the wires are alternately stacked; the first-directional wire and the second-directional wire opening have a connecting end and a second connecting end, and the first connecting end is used for connecting the external control portion. The serial connection-mode switching electronic switch, the second connection is connected to the external control component via the mode switching electronic switch; the control terminal of the mode switching electronic switch is connected to the external control component electronic:::the above-mentioned first-directional wire and The second direction wires are respectively divided into = external control components form an electromagnetic induction loop; the mode switches electronic switch sweat, and the antenna array constitutes a capacitively coupled touch array. The above-mentioned sensor switches the electronic switch by means of a mode switch The antenna array is switched to the capacitive touch mode or the electromagnetic touch mode 201241722: 'making the antenna array work in the capacitive touch mode at any time' or working in the electromagnetic touch mode, thus effectively overcoming the prior art The problem that the capacitive touch mode and the electromagnetic induction touch mode interfere with each other. Step by step, by setting u The first direction wire and the second square wire can effectively reduce the ι/〇 between the sensor and the external control component, thereby making the peripheral circuit structure large and simple, and facilitating integration, so that the amount of processed signal data is reduced. The processing speed is greatly improved. The 1/〇 interface and the amount of data to be processed can reduce the processing speed of the touch product using the sensor, the structure is simple, the manufacturing cost is low, and the user can effectively satisfy the electromagnetic The invention also provides a dual-mode touch module, which can switch the capacitive coupling touch mode according to any of the features of the present invention. Or electromagnetic induction touch (four) good array history on the substrate, in order to effectively reduce the manufacturing cost of the dual-mode touch function substrate, while simplifying the dual-mode touch substrate preparation Weiyi' can effectively promote the dual-mode touch mode The scope of application of the group. The dual-mode touch module of the present invention includes: a first substrate and a sensor, wherein the sensor is the aforementioned sensor, an antenna array of the sensor is disposed on the substrate; and the antenna array is first The direction wire and the second direction wire are made of metal foil, conductive silver paste, carbon paste or IT conductive film, which are disposed on the substrate by printing or etching; or are printed or etched on the first substrate. . The dual-mode touch module can effectively overcome the mutual interference problem between the capacitive touch mode and the electromagnetic induction touch mode in the prior art, and the double 6 201241722 'make the dual mode touch' enable the dual mode effect When the user's demand mode is used, the touch antenna array shakes the μλ, and the complexity of the '° structure is reduced, and the module is simple to manufacture, and the touch cost of the touch module is low. Lighter, thinner, and more demanding. In addition, the present invention further provides a dual-mode touch electronic device, comprising: a device, a display screen on the body, and the 杈-type touch 杈 group of any of the present invention and the dual mode touch The control module can be disposed on the surface of the display screen of the electronic device, or the electromagnetic induction coil surrounds the periphery of the display screen of the electronic device. Therefore, the dual-mode touch-electricity early dreams including the dual-mode touch module can be implemented in the device while the k咼 response sensitivity is achieved, and the capacitive coupling touch + touch type and electromagnetic The inductive touch mode is compatible, and the dual-mode touch electronic device has a simple structure, low cost, and convenient maintenance. If you don't pay for creative labor, you can take it in another way. You can also change other drawings according to these drawings. The embodiments or the prior art will be briefly described below for a more clear description of the present invention. It is apparent that the drawings of the specific embodiments described below or the technical solutions of the prior art, the drawings which are used in the drawings are only one embodiment of the present invention, for the purpose of the present invention, The technical solutions and the advantages of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. The described embodiment is only the 201241722 invention - part of the embodiment, and not all of the embodiments. The sensor in this embodiment mainly comprises: each first first-shaped first-directional wire, and the Am (9) mode is staggered and parallel-insulated; the first-direction wire is in the shape of a second-direction wire. Each second column mode + 10,000 guide lines are sequentially staggered and arranged in parallel at a combined row spacing to form a second direction wire group, and any two first direction wires are insulated from each other; * any first direction wire and second a first wire and a second wire of the direction; the wire has a first direction wire which is parallel to the first direction directional wire group and a combination of the second wire and the adjacent previous wire or the rear wire and the adjacent wire Do not repeat;, '...the combination of the first wire of any position of the second direction wire of the other and the second wire group, the combination of the α ^ ^ wire and the combination of the two wires adjacent to the position of the fairy Repeating; other directional-directional wire sets and second-direction conductive accommodating light-contacting antenna arrays; and guiding: parental forks, forming electrical interconnections between each other; brother-directional wires, said first-directional wire sets to connect There is the first mine ^ The first direction of the wire is electrically connected to the Hungarian capacitive coupling touch component; the second direction of the wire group is connected to the second capacitor to consume the touch component: the M-directional wire is powered by the first capacitance-capacitance contact The control component and the second capacitive reciprocating touch component are alternately stacked in an area where the first direction wire and the second direction wire cross each other in the eighth 201241722. The first direction wire and the second direction wire: 'the terminal end and the second connection end , wherein the first connection end is used; Lian Du, 牮 _& exhausted to the external control part, the connection end is connected in series with a mode switching electronic switch, and the upper end is switched to the external control material switching electronic switch by the above mode switching electronic switch series The control terminal is connected to the external control component; the mode switching electric switch is closed, and the first direction wire and the second direction wire respectively form an electromagnetic induction circuit with the connected external control component; the mode switching is electrically disconnected, and the capacitance formed by the antenna array Coupled touch array. Specifically, referring to Figs. 5 to 1c, Fig. u shows a first structural view of the sensor embodiment of the present invention; Fig. 7 shows the first of the first direction wires in the sensor embodiment. Not to mention, Figure 1C shows a first architectural view of the second direction conductor in the sensor embodiment of the present invention. In the present embodiment, the sensor structure shown in FIG. 1A has a structure in which the m-direction wire group and the second direction wire group cross each other to form a capacitive coupling touch antenna array; and the first-direction wire group And the second direction of the wire set is insulated from each other. 11 The first direction wire group may include a U-shaped first-directional wire 20U' hidden, 201c as shown in FIG. 1A, and any two first-directional wires are insulated from each other. Wherein the first direction wires in the first direction directional wire group are distributed in a combined arrangement manner in a mathematical equation VIII, and the combination formula is [η, :: at a natural number equal to 4 and πκ = η, for example, n Can be 5, 6, 8, Bu 9, 9 〇, 19 "32 and so on. That is to say, the combination of the first-line and the second wire of the second-direction wire of the first-direction wire group and the adjacent previous wire 201241722 or the latter wire is repeated with its #秣& The combination of the two wires adjacent to any other position is not heavy. Accordingly, the second direction wire group can be wrapped with the direction wire (8), the coffee bean (7), any two, the second, and the other. Wherein the combination of the directional wires in the second direction wire group is distributed in a mathematical formula, and the direction wire is a natural number greater than or equal to 4, and for example, t is 匕'8, 1 . , 19 or 32, etc. That is, the second wire of the 5th, 6th, and directional wires may be the first wire or the second wire of the second direction wire group and the second wire and the second wire of the second wire. The combination of the two wires adjacent to any other position is not shown in FIGS. U and 1A, and the first two opening portions of the first direction connecting the external control member 100 have 2.5. In this embodiment, the second connecting end is 2. 5 == the switching center of the second connecting end 2. The 5 mode is modulo = sub-capable by the i 蛀 5 如, v v electric ten switch 202 can = = part = part m. The first-directional wire "shaped two (ie, the first wire and the second wire) capacitively couples the touch component 2〇3, and the first electric (the first wire or the first/guide) is ϋ-shaped The edge-to-edge touch component 22 is electrically connected to the plurality of first capacitive faces, and the number and shape of the first valley-coupled touch components 203 are set according to the requirements of the actual circuit structure. Typically, the intersection of the first motor-coupled touch component 2〇3 wire set (4) is the same as the wire bond and the second direction shown in the second direction. Of course, as shown in Fig. 1C, the structure of the second direction wire group in the figure ic is similar to that of the first direction wire group 201241722. The opening portion of the second direction wire 1〇1a in Fig. ic has a first connection end 1〇4 and a second connection end to which the external control element 100 is attached. In this embodiment, the second connection end 105 is connected in series with the mode switching electronic switch 102, and the second connection end 1G5 can be connected to the external 4 control via the mode switching electronic_1G2. P piece 1 〇〇. The two sides of the U-shape of the second direction wire (ie, the first wire and the second wire) are connected to each other, and the second capacitive coupling component 103' or the second direction wire is connected A plurality of second capacitors consuming the touch member 103 are electrically connected to any of the sides (the first line or the second line). The second capacitor consuming the number, size, and shape of the touch component 1G3 according to the actual circuit structure requirements, while the number of the second capacitively coupled touch elements 103 and the first-direction conductive wire group and the second direction The number of intersections of the wire sets is the same. It can be understood that the β-one-two-capacitance-capacitor light-contacting touch component 103, the first electric valley-coupled touch component 2, the flute #_*, the number of the same I, and the direction of the sensor (4) And the second capacitively coupled touch component is interleaved in a region where the first direction wire and the second direction wire intersect each other. ^: Mode switching of the directional wire When the electronic switch 202 is closed, the line operates in the electromagnetic induction touch mode to sense the electromagnetic signal emitted by the electromagnetic pen. When the first direction wire group: the switch 202 is closed, the electromagnetic pen type knife can change the vertical direction of the wire group of the 钵^ ν direction, and the alternating control device can be measured by the external control component, and the ± direction wire The meaning of the input variable nickname, the position of the wire distributed by the wire group with the largest output can be compared in the first direction (βρ V \ to know and determine the exact position of the vertical direction of the electromagnetic pen (ie y axis). Wherein, when the second (4) (4) 201241722 type switching electronic switch 102 is closed, the second direction wire operates in the electromagnetic induction touch mode to sense the electromagnetic signal emitted by the electromagnetic pen. When all modes of the second direction wire group are switched When the electronic switch (10) is closed, when the electromagnetic pen moves in the lateral water γ卞 of the second direction wire set, the alternating signal outputted by any second direction green wire can be measured by an external control component, and the maximum output alternating is obtained. The signal is in the first-guest-pull-and-out position, and the position of the wire distributed in the first direction wire group can directly know and determine the exact position of the electromagnetic pen lateral direction (the X-axis of the chi-hyun). Since the first-direction wire group and the second-direction wire group are placed at the same time (as shown in the dashed box in FIG. 1A), then J is thus detected by the electromagnetic induction signal transmitted through the two-directional wires. The specific location of the antenna array. ' It should be further explained that the first directional wire group and the second directional wire group intersect each other on the second squad, and the lighter touches the capacitance when the priest is 1 & antenna array • and the first directional wire set and the second directional wire _ wire group are insulated from each other. In the sensor shown in FIG. 1A, all the switching electronic switches (102 and 202) are broken. In this case, the first direction deep lance first direction wire works in the = face touch mode. The first connection end of the first direction wire and the second direction wire is electrically connected to the external connection control part. After the component receives the capacitive facet signal, it can be processed to know the touch position of the finger. It should be understood that the circuit structure of the sensor of the present embodiment can be automatically switched on. 102 provided in the outer portion 202 forces the control member H). Area to facilitate integrated control of the entire circuit structure. The sensor in the above embodiment can be used to effectively overcome the prior art by switching the antenna array in the sensor to the capacitive coupling mode or the electromagnetic sensing contact 12 201241722 control mode through the mode switching electronic switch. At the same time, in the capacitive and inductive touch dual mode products, the capacitive coupling touch mode and the electromagnetic induction touch mode interfere with each other. In particular, the u-shaped first direction wire group and the second direction wire group arranged in a combined arrangement in mathematics in the above embodiment intersect each other such that each adjacent first direction wire or second direction wire combination It is unique, and thus the position of the intersection of the finally formed antenna array is unique. In contrast to the existing capacitive coupling touch technology, in the above embodiment, the first capacitive coupling touch component 103 and the second capacitor are disposed on the first and second wires of the U-shaped first direction wire and the second direction wire. The combination of the coupled touch component 203 and the adjacent capacitive coupling component allows the same first wire number or the second wire number to be extended by a larger touch area, which can effectively reduce the I / between the sensor and the external control component. The interface is further simplified, and the peripheral circuit structure is greatly simplified and integrated, so that the amount of processed signal data is reduced and the processing speed is greatly improved. The reduction of the I/O interface and the amount of data to be processed can improve the processing speed of the touch product including the sensor, and make the structure of the touch product including the sensor of the present invention such as a mobile phone, a tablet computer, etc. simple. The cost is low, and the user can effectively meet the needs of both the touch input such as the electromagnetic pen and the hand touch. The principle of the antenna array identifying the electromagnetic signal in the sensor embodiment of the present invention is described in detail below with reference to FIG. 2A to FIG. 2C. FIG. 2A is a schematic diagram showing the intensity variation of the electromagnetic signal in the first direction wire, and FIG. - Schematic diagram of the change in intensity of the electromagnetic signal in the directional wire group, and Figure 2C is a schematic diagram of the antenna array identifying the electromagnetic signal. 13 201241722 There is alternating current in the coil 5 of the circular cymbal, the magnetic field of the coil, the magnetic field line of the alternating magnetic field passes through the first - Naiwei will produce the alternating remote soul? The η ΐ directional wire 201a, the first wire 201a can sense the electromagnetic signal λα ran r y. When the coil 5 is moved up and down in the first direction, the alternating induced voltages of the first two v 20 la outputs are different, and the D wires are respectively located at the position 14 of the first-directional wire, the middle of FIG. 2A, and the coil 5 'The measurement shows that the coil 5 is in the first direction; the vertical direction 13 and the position 15 heart, the alternating sense of the output of the first-directional wire 2〇la=, and the induced voltage is the largest. The second principle is that at the same height, in the wire 2仏, :: when moving the coil 5, the first-direction wire, the output of the alternating sense: the voltage 疋 does not change. In addition, as shown in FIG. 2B, the first-directional wires 201a of the 'first-directional wires' are arranged at equal intervals, and the test-proven coil 5 is located at the center of the first-direction wire 2〇la, the first-directional wire The alternating induced voltage U3 of the output of 2〇la is the largest; and the alternating induced voltage U2 of the output of the first-directional wire 2Qib is maximized when the coil 5 is moved to the first direction of the wire 2 (the vertical center of Ub; further) When the coil 5 is moved up to the vertical center of the first direction wire 2〇lc, the alternating induction electric current Ui outputted by the first direction wire 2Qlc is the largest. The coil 5 can be obtained in the first direction wire group in the vertical direction. Position information, that is, a plurality of first-direction wires having the same pitch are arranged in parallel, and the plurality of parallel-connected first-directional wires are distributed in a combined manner, thereby comparing the numbers in the external control unit. The magnitude of the alternating induced voltage outputted by the directional wire can obtain the exact position of the coil 5 in the vertical direction. Therefore, the antenna array 14 201241722 of the sensor in the above embodiment is arranged as shown in FIG. 2B. One direction of the wire to better identify the positional information of the coil 5 in the vertical (gamma axis) accuracy. The same principle 'in Figure 2C, the coil 5 is located at a different horizontal position within the second direction wire 1〇u, the first The alternating induced voltages outputted by the two-directional wires 101a are different' in order to obtain positional information of the coils 5 in the horizontal direction (X-axis direction). Referring to FIG. 2C, the antenna array includes vertically aligned and arranged first-directional wire sets. And a second direction wire set. When the coil 5 is in any position of the antenna array, 'by acquiring and comparing the alternating induced voltage of the first direction wire and the second direction wire output in the antenna array', it can be determined that the coil 5 is in the antenna array. Referring to FIG. 3A to FIG. 3H, FIG. 3A to FIG. 3H are schematic diagrams showing the principle of capacitive coupling touch mode in the sensor embodiment of the present invention; wherein the conductor 21 can be equivalent to a touch finger. The conductor 23 and the conductor 24 are insulated at the same level and independently of each other. When the conductor 21 is attached to the conductor 23 and the conductor 24 insulated from each other by the insulating medium 22, the left side of the conductor 21 and the conductor 23 are attached. The area is equivalent to the capacitor C1, and the bonding area of the right side of the conductor 21 and the conductor 24 is equivalent to the electric valley C2. Since the conductor 21 is an integral structure, the equivalent capacitance Ci and the capacitance C2 are connected in series, as shown in FIG. 3C. Equivalent circuit. It can be seen from the equivalent circuit shown in 3C that the alternating voltage can be transmitted between the conductor 23 and the conductor 24. Figure 3 (: shows an equivalent circuit diagram of the intersection in the finger touch antenna array of the present invention, The recurrent impedance (including inductive reactance, impedance, and/or capacitive reactance) of the AC voltage between the finger and the conductor 23 and the conductor 24 is large, which is equivalent to insulation, and the DC resistance of the finger is low, so the hand The touch surface is equivalent to the conductor 21, 201241722, the first direction conductor 201a corresponds to the conductor 23, and the second direction conductor 1a corresponds to the conductor 24. As shown in FIG. 3D (for the convenience of subsequent description, only a schematic diagram of a first direction wire and a second direction wire perpendicularly intersecting is illustrated in FIG. 3D) 'When the second direction wire is 1 〇la the first connection end 1〇 4 When the alternating signal 8 is passed, the hand is touched with the point 1 (shaded in Figure 3D) so that the loop of the AC L 8 is turned on (that is, the touch point in Figure 3)) The capacitance between 1 and 1. And 匕 are turned on, whereby the alternating signal 9 outputted from the first connection terminal 204 of the first direction wire 2〇1& can be obtained. When the finger touches the intersection 2, 3 or 4 shown in FIG. 3D, 'the corresponding contact point ^ and ^, the contact point 3 and/ or the contact point 4w*C5 are turned on' and the above can be detected. The alternating signal is 9. From the above, the external control unit can identify the capacitively coupled touch signals in the antenna array. Since each of the first direction wire and the second direction wire has four intersection points, the position of the output alternating signal 9 is also the same, and the above-mentioned figure 可能 may not be able to judge that the finger is located at the intersection point (ie, The specific position of the touch point), 2, 3 or 4, so the following describes the unique position information in the capacitive coupling mode by the external control unit in conjunction with 3E to FIG. 3H. Referring to Figs. 3E to 3H, the bonding faces of the conductor 21 and the conductor conductors 21 and 24 in Fig. 3E are equal'. Equal to &, 胄3f and Fig. 3G are not equal to the bonding faces of the conductors 23 and 24, and G is larger in Figs. 3F and 3G due to the total area of bonding of the conductors 21 to the conductors (2) and 24. - Set 'Cl * C2 series, so according to the series capacitance C = Cl * C2 / (Cl + C2), only the 匕 and & are equal, the output of the alternating: 16 201241722 is the strongest, as shown in Figure 3H Each experimental data, its S1 > S2 > S3. When the conductor 21 is replaced with a finger, the result is consistent with the results of the above simulation experiment. Therefore, since the actual sensor includes at least three ϋ-shaped first directional wires and second directional wires, the specific intersections are respectively coupled by the first electrical coupling. The touch component 203 and the second capacitively coupled touch component 1〇3 are alternately stacked and the intersections of the antenna arrays are evenly distributed (as shown in FIG. 7C below), thereby ensuring that the intersection of the finger touches is at least Two or more of them so that the external control unit can obtain the accurate position information of the touch point by acquiring and comparing the position of the largest alternating signal that is extracted from the first connection end of the adjacent directional wires (ie, It can be said that by means of the distribution of the output of the first signal of the variable signal in each direction by the output of the adjacent intersection, the touch points 丨, 2, 3 and 4 in Fig. 3D can be accurately distinguished, thereby The at least two adjacent points of the control point can uniquely determine the position information of the touch point in the capacitive coupling touch mode. It should be noted that the distance between the large part of the human body and the hand and the intersection of the antenna array is much larger than the distance between the finger and the intersection, and the intersection of the large part of the human body and the hand and the antenna array is generated. The inductive and anti-impedance are very large, so the other parts of the body can be insulated relative to the capacitive reactance produced by the fingers at the intersection. ^ In addition, in order to explain in detail the accurate knowledge of the position information of the sensor in the capacitive coupling touch mode, the coordinate point in the Cartesian coordinate system (XY coordinates) is used as an example, and the antenna array shown in FIG. 4A can be used. Each intersection is equivalent to a coordinate point, as shown in Figures 4B and 4C for the X-axis and the γ-axis of the coordinate point 17 201241722 position information description. The following is an example of the up and down movement of the touch point 1 in FIG. 4A to illustrate that the position information of each touch point is unique. Specifically, the first direction wire group and the second direction wire group are vertically arranged, that is, the second direction wire group is placed in the X-axis direction, and the first direction wire group is placed in the γ-axis direction. The intersection of the second direction wire 1〇la (A5, a5) and the first direction wire 201a (B5, b5) has a touch point 丨, and the second direction wire 1〇la (A5, a5) is alternating The voltage 8 outputs an alternating voltage 9 (ub5) through the touch point 1 surface to the first direction wire 2Gla (B5, b5), and the touch point 1 also coincides with the first direction wire 201b (B8, b8), the first The alternating voltage 8 of the direction conductor l〇la (A5' a5) is also coupled to the first direction conductor 201b (B8 'b8)' output alternating voltage ub8. The right touch point 1 is bonded to the first direction wire 201a (B5, b5), and the 0 side surface is larger than the bonding surface/j of the first direction wire 201b (Β8, b8), and the first direction wire l〇la The alternating voltage at (A5, a5) 85 The alternating point 1 _ b5 of the factory touch point 1 coupled to the first-directional conductor 201a (B5, b5) is greater than the alternating coupling to the first direction conductor 201b (B8, b8) ^ Press Ub8, as shown in the figure "彳路-1, if the touch point 1 is gradually moved up along the Y axis, ji control point 1 and the first _ ancient a»»» i / h million guide line 201a (B5, b5 The bonding surface of the wire will gradually step; the bonding surface of the wire 2〇lb (B8'b8) will gradually become larger and larger, and the second party will catch the arc, and the alternating voltage 8 on the one-degree wire 101a (A5 ' a5) will pass. < 佐·点1 lightly coupled to the flute __ ^ The alternating voltage of the direction conductor 201a (B5, b5) [taste gradually reduced, & person, coupled. to the first direction wire 2〇lb (B8, b8) The intersection of I and Ube will gradually slam the slam s, as shown in Figure 4A2. 'When the touch point 1 is along the γ axis, the alternating voltage of the first-old-directional directional group will be regular. ' 18 201241722 'This voltage change law is the position information of the touch point ^ γ axis, In order to accurately determine the position of the touch point 1 on the γ axis. Similarly, the position of the touch point on the x-axis can be obtained, as shown in Fig. 4Α3 and Fig. 4Α4, the position information of the touch point...the axis is determined. The touch point i can be accurately displayed, and the position on the axis is the coordinate point. According to the alternating voltage data generated by the coupling on the X-axis and Y-axis antenna arrays, the effective area of the touch point 1 in the sky (four) column can be accurately calculated (4) The same principle can accurately calculate the arbitrary coordinates of the touch points 2, 3, and 4 in the effective area of the antenna array. The coordinate points of the touch point i moved up as illustrated in FIG. 4B and FIG. 4C, FIG. 4A It is a capacitor consuming induction active area, and the γ axis is set to Π1 - Υ0 position, and each position is set to antenna arrays B4b4, B5b5, B2b2, B6b6, B3b3, B7b7, B4b4, B8b8, B5b5, B9b9, and halls respectively. The letter person ^^^, 〗 〖, L. indicates the first-direction wire Blbl... coffee, then the row list of the corresponding position of the first direction wire of the γ-axis is DAEBFCGDHEIF, and the combination of each letter of the row list and the adjacent child is not Repeat, such as the combination of A in the list, EAD, DEAB #,Other locations in the # list will not have the same

組合出現,E在排列表右/田SB 你併幻衣有兩個位置,前一位置的組合有EB、 AEB、EBF、BFEA 等,後一位置的組合有 HE、hei、eif、IFEH 等’在排列表中的其他位置也不會有與之—樣的組合出 見γ軸上母個位置的第一方向導線的設置也是以相鄰組 合不重複為原則排列,X軸# γ軸的每一方向導線的這種 不重複排列組合’成保證天線陣列中的交又點上的觸控點 19 201241722 精確判疋和識別,也可以讓具有天線陣列的感測器在電容 耦合觸控模式下實現多點觸控操作。 仰在上述實施例的基礎上,優選感測器還包括—電磁檢 二單元1¾電磁檢測單元用於控制模式切換電子開關 或102的控制端,以便檢測天線陣列感應區域的電磁信 號’本實施例中的電磁檢測單元主要用於控制上述實施例 中模式切換電子開m或102的動作即斷開或閉合。通 常可將電磁檢測單元設於外部控制部件中,進而可較好地 控制模式切換電子開關202或102。 進一步地,電磁檢測單元可設置在上述的天線陣列構 成的觸控區周邊。 優選地,電磁檢測單元由一電磁感應線圈連接放大、 整形單元及邏輯控制部件構成。通常可將邏輯控制部件輸 出連接模式切換電子開關2〇2或1〇2的控制端,以便於檢 測天線陣列的觸控區範圍内的電磁信號,$而較好地控制 模式切換電子開關斷開或閉纟;上述放大、整形單元及邏 輯控制。卩件獨立6又置或集成於上述外部控制部件中。例 如,放大、整形單元及邏輯控制部件可為位於cpu内部的 電磁類比切換處理單元,其可通過放大、整形單元連接電 磁感應線圈,以便獲取電磁感應線圈的電磁信號,使得CPU 將電容耦合觸控模式切換為電磁感應耦合模式。 參照圖5A或圖5B所示 發明中的感測器實施例的第 於上述描述的感測器,圖5A ,圖5A和圖5B分別示出了本 二種和第三種結構示意圖,基 示出的電磁感應線圈111環設 20 201241722 在上述天線陣列構成的觸控區。也 也就疋說,感測器的觸控 區設置電磁感應線圈圍成的區域内。 第要說明的是,圖5Α 顯示的天線陣列處於電容輕合觸控模式下,天線陣列輸出 的是交變信號9,天線陣列電磁感應觸控模式下天線陣 列輸出的是信號10和u ’此時電磁感應線圈⑴輸出一 個感應的電磁信號12’以便’該電磁信號12通過放大、 整形輸入至邏輯控制部件,進而可在有效地將切換天線陣The combination appears, E is in the list right / Tian SB You and the costume have two positions, the combination of the previous position has EB, AEB, EBF, BFEA, etc. The combination of the latter position has HE, hei, eif, IFEH, etc. In other places in the row list, there is no such combination. The setting of the first direction wire that sees the parent position on the γ-axis is also arranged in the principle that the adjacent combination is not repeated, and each of the X-axis #γ axes is arranged. This non-repetitive arrangement of the one-directional wires is used to ensure that the touch points 19 201241722 in the antenna array are precisely judged and recognized, and the sensor with the antenna array can also be used in the capacitive coupling touch mode. Implement multi-touch operation. On the basis of the above embodiments, preferably, the sensor further includes an electromagnetic detecting unit 12a electromagnetic detecting unit for controlling the control end of the mode switching electronic switch or 102 to detect the electromagnetic signal of the antenna array sensing region. The electromagnetic detecting unit is mainly used for controlling the action of the mode switching electronic opening m or 102 in the above embodiment, that is, opening or closing. The electromagnetic detection unit can typically be placed in an external control unit to provide better control of the mode switching electronic switch 202 or 102. Further, the electromagnetic detecting unit may be disposed around the touch area formed by the antenna array described above. Preferably, the electromagnetic detecting unit is composed of an electromagnetic induction coil connection amplification, shaping unit and logic control unit. Generally, the logic control component can output the control terminal of the connection mode switching electronic switch 2〇2 or 1〇2, so as to detect the electromagnetic signal in the range of the touch area of the antenna array, and the control mode switching electronic switch is better. Or closed; the above amplification, shaping unit and logic control. The components are independently or integrated into the above external control components. For example, the amplifying, shaping unit and the logic control component may be an electromagnetic analog switching processing unit located inside the cpu, and the electromagnetic induction coil may be connected through the amplifying and shaping unit to obtain the electromagnetic signal of the electromagnetic induction coil, so that the CPU couples the capacitive coupling. The mode is switched to the electromagnetic induction coupling mode. Referring to the sensor described above in the sensor embodiment of the invention shown in FIG. 5A or FIG. 5B, FIG. 5A, FIG. 5A and FIG. 5B respectively show the two structural diagrams and the third structural diagram. The electromagnetic induction coil 111 is provided with a ring 20 201241722 in the touch area formed by the antenna array described above. In other words, the touch area of the sensor is placed in the area enclosed by the electromagnetic induction coil. The first explanation is that the antenna array shown in Figure 5Α is in the capacitive light touch mode, the antenna array outputs the alternating signal 9, and the antenna array in the antenna array electromagnetic sensing touch mode outputs the signals 10 and u ' The electromagnetic induction coil (1) outputs an induced electromagnetic signal 12' so that the electromagnetic signal 12 is input to the logic control unit through amplification and shaping, thereby effectively switching the antenna array

列的觸控區範圍内的雷交魏人雜械H 固谷耦α觸控模式切換為電磁感應觸 控模式。 圖5Β所示的電磁感應線圈lu設於上述觸控區的多 側,電磁感應線圈與天線陣列電氣絕緣。當然,電磁感應 線圈也可設於上述觸控區的一侧,其保證電磁感應線圈與 天線陣列電氣絕、緣,使得電磁感應線圈能夠較好地感應觸 控區的電磁信號。 進一步地,上述實施例中所述的感測器的觸控區不僅 可以設置電磁感應線圈圍成的區域内,還可以設置於電磁 感應線圈的上方或下方,其保證電磁感應線圈與天線陣列 電氣絕緣即可。但需要注意的是,感測器的觸控區的邊緣 可小於或等於電磁感應線圈的邊緣,使得觸控區中任意電 磁筆的信號均能夠被電磁感應線圈感應或識別。 另外,參照圖6所示,圖6示出了本發明中感測器實 施例中的第二種結構示意圖,本實施例中的感測器主要是 在上一實施例的基礎上增加短路電子開關丨丨0或2 i 〇,以 使天線陣列構成的電容麵合觸控陣列時,該短路電子開關 21 201241722 閉合;由此可以減少天線陣 ^ ^ , 雙電壓的傳輸阻抗,想 阿本實施例中感測器在電容 杈 电谷耦《觸控模式下的線性度。 特別地,該圖6中斛;& < ^ ^ 斤的3又有短路電子開關的天線陣 列可以大幅度提高電容耦人 單 使用該感測器的較大尺寸的觸拎M b具針對 寸的觸控屏,上述短路電子開關可 大Ί1田度縮短信號傳輸距離,降 降低了天線陣列中信號傳輪的 阻抗,使得該些感測器的外 、 I。丨役刺部件的處理速度進— 提高、線性度提升。 艾 在圖U中所示天線陣列結構中至少一根第一 線201a和/或第-方&道始1Λ1 向導線1Glaf“部第-連接端(如圓 1B和圖1C中的第一連接㈣ιη>ι 〇 連接知1〇4、2〇4)與第二連接端(如 料圖K中的第-連接端1G5、2G5)之間接設有短路 電子開關(如圖6中的短路電子開關110或210)。 通常可將該短路電子開關11〇或21〇的控制端連接外 部控制部件;在模式切換電子開關斷開,且天線陣列構成 的電容麵合觸控陣列時,該短路電子開關閉合(該處的閉 口可以疋紐路電子開關11〇 $ 21〇的部分閉合或全部閉 合):在模式切換電子開關全部閉合,第一方向導線2(^ 和第-方向導線l〇la各自分別與所接外部控制部件刚形 成電磁感應回路時,該短路電子開關11G# 21G全部斷開。 參照圖7A至圖7D所示,圖7A為本發明中感測器實施例 的第一方向導線組的佈線示意圖’圖7B為本發明中感測器 實施例的第二方向導線組的佈線示意圖,圖7c為本發明中 圖7A和圖7B導線組相互交又交錯疊設的佈線結構示意圖, 22 201241722 的、培構示意 圖7D為本發明中感測器實施例的第一方向導線 圖。 其中如圖7A所示,第一方向導線組中的第一方向導 線以組合排列方式分佈以及該第—方向導線組中任意相 鄰的兩個第—方向導線間距相等以及優選設置每—第— 方向導線的u形開口部間距相等。圖7A中示出的第一方向導 線亡部電性連接有多個電容搞合觸控部件,任意兩個第一 耦口觸控部件的形狀相同。通常,上述的電容輕合觸 :P件形狀為菱形、矩形、三角形或它們之間任意組合的 形狀’圖7A中僅為實例說明。特別地’可將第一電容耦人 觸控部件與第一方向導線設為一體。 ° 人如圖胸不’第二方向導線組中的第二方向導線以組 =列方式分佈’以及該第二方向導線組中任意相鄰的兩 第二方向導線間距相等, 線的u形開口部間距相等中示每丄:向導 性 固〖1^不出的第一方向導線上電 觸"件Γ電容耗合觸控部件’任意兩個第二電容輕合 1件的形狀相同。通常’上述的電容_合觸控部件形 7B=、矩形、三角形或它們之間任意組合的形狀,圖 為貫例說明。特別地’可將第二電容麵合觸控部件 /、弟一方向導線設為一體。 如^所示的實際的感測器結構,其卜方向導線組 =導線組設置為相互垂直交叉,㈣相鄰的兩個 等,:及向導線和任意相鄰的兩個第二方向導線的間距均相 方向導線與第:方向導線的ϋ形開口部間距相 23 201241722 等。特別地,任意兩個第—電容麵合觸控部件和第 耦合觸控部件的形狀相 备 在第-方向導線和第一 ^在圈7C所不的感測器結構中, ,,良和第一方向導線相互交叉的區域中,上 第一電容耦合觸控部件與 、 、弟一電合耦合觸控部件之間的間 ’:便使任意手指的觸控點可包含兩個或兩個以上 二:電容耦合觸控部件和/或第二電容耦合觸控部件,進 而使传母個方向的導_结έ 士 的導線組中最少兩個以上的電容耦合部件 包含觸控點的交變資却,、士 這種,,且S能夠較好地識別交變 訊所對應觸控點的位置。 優選地’參照圖7D所示,在上述實施例的基礎上,第 -電容雜合觸控部件還可設置為使第一方向導線的等效電 磁與第—方向導線方向重叠或者平行的分佈;以及第二電 容麵合觸控部件也可%署或Μ # 丨什也Lx置為使第二方向導線的等效電磁與 第二方向導線方向重疊或者平行的分佈。圖7d中僅示出了 第一方向導線的示意圖,在此不限定。 通常,在實際的感測器結構中,第一導線和第二導線 均設置為直線,且第-方向導線上的任一第一電容麵合觸 控部件在第一方向導線兩側分佈的形狀對稱或者具有— 致的比例關係;以及’第二方向導線上的任一第二電容轉 合觸控部件在第二方向導線兩側分佈的形狀對稱(即沿第 :導線/第二導線的上下對稱)’或者具有一致的比例關 係’以便該實施例中第-方向導線的等效電磁和與第_方 向導線方向重疊或者平行的分佈’第二方向導線的等效電 磁和與第二方向導線方向重叠或者平行的分佈。該感測器 24 201241722 中的天線陣列 出的信號與上 一致,以便可 模式下的觸控 制部件的内部 合觸控部件在 取的等效電磁 別的信號雜亂 以及可能存在 施例中優選將 一方向導線和 的等效電磁在 第二方向導線組輸 列輸出的信號等效 式或電容耦合觸控 天線陣列的外部控 能存在第一電容耗 形狀不對稱,但獲 致外部控制部件識 算的複雜性提高, 體位置,故在本實 置為直線,以使第 導線和第二導線上 能夠使第一方向導線組和 述圖7C中示出的天線陣 準確獲知電磁感應觸控模 點的位置資訊,且使連接 運鼻簡單。舉例來說,可 第一方向導線兩侧分佈的 不在一條直線上,其易導 ’進而使外部控制部件計 無法準確定位觸控點的具 第一導線和第二導線均設 第一方向導線各自的第一 一直線上。 根據本發明的另一方面,本發明還提供一種雙模式觸 控模組包括第一基板和感測器’該處的感測器可為還 是本發明中任意實施例所述的感測器,上述感測器的天線 陣列設置在上述的基板上。 如圖8所示,圖8示出了本發明中雙模式觸控模組實 施例的結構示意圖。其中,感測器的具體結構介紹參照圖 1A的描述,將感測器設於基板3〇〇上,以便實現雙模式觸 控天線陣列結構的複雜度降低,使得該雙模式觸控模組製 造簡單,成本低廉,集成度高。當然,雙模式觸控模組能 有效地克服現有技術中電容式觸控模式和電磁感應觸控模 式的相互干擾的問題。圖8中只是示意性顯示雙模式觸控 模組的結構,當然,該雙模式觸控模組的結構不限定為圖 25 201241722 中的結構《其基板和感測器的 求設定。 位置關係依據實際 的產品需 優選地,感測器中天線陣列的第一 中的201a)、第二方向導線(如 ° 、 圖8 万门導線(如圖8中的1〇la)的材 金屬箔、導電銀漿、碳漿、 灭菜1TO導電膜或其他導體。其 第-方向導線和第二方向導線可採用印刷、刻蝕的方式嗖 置在基板上;或者於第一基板上以银刻、印刷方式製成。 當然,基於上述感測器實施例的描述,該雙模式觸控 模組的電磁檢測單元也可由一電磁感應線圈連接放大、整 形及邏輯控制部件構成,里中雷 χ - ψ電磁感應線圈與天線陣列 電氣絕緣,邏輯控制部件輸出接模式切換電子開關控制 端’用於檢測天線陣列的觸控區範圍内的電磁信號,控制 模式切換電子開關開閉。 本實施例中的電磁感應線圈也可環設天線陣列構成的 觸控區,或設於上述觸控區的一側或多側。具體設置可參 照上述圖5Α和圖5Β中示出的位置關係圖。 優選地’電磁感應線圈環設上述天線陣列構成的觸控 區’觸控區設置電磁感應線圈圍成的區域内。在優選實施 例中,電磁感應線圈還可設置在第一基板上,如上述的圖 5Α所示’將電磁感應線圈和天線陣列通過刻姓的方式設置 在第一基板上。當然該處電磁感應線圈的具體位置依據實 際的產品需求設定。 需要說明的是,本發明中的該雙模式觸控模組還可包 括一第二基板,上述電磁感應線圈設置第二基板上,第二 26 201241722 基板覆設或框設在第一基板上表面和/或下表面,第一基板 與第二基板構成基板組。也就是說,天線陣列的觸控區即 有效區不僅可以設置電磁感應線圈圍成的區域内,還可以 设置於電磁感應線圈的上方或下方。 如圖9所示’圖9示出了本發明中雙模式觸控模組實 施例的另一種結構示意圖。其中,感測器可設置於圖9中 第一基板302中,該處的感測器結構參照上述感測器實施 例中的任一描述。在本實施例中,將電磁感應線圈3〇3設 於第一基板301上,且該處的第二基板位於第一基板3〇2 的下方,可以在第二基板3〇1上全部設置電磁感應線圈 3〇3,也可以將感測器中天線陣列的觸控區對應的部位設置 電磁感應線圈303。本實施例不對其限定。特別地,上述 任意實施例中所述的電磁感應線圈可採用漆包線或者為 上述所述的通過㈣、印刷的導電體,例如金屬羯、導電 銀漿、碳漿或ITO導電膜的等。 另外,上述任意實施例中所述的第一基板和/或第二基 板均可為玻璃、塑膠或其他硬質絕緣材料,當然第一基板 和/或第二基板還可為柔性絕緣材料。 土 進—步地’本發明還提供—種雙模式觸控電子裝置 ==置本體,該本體上設有顯示幕,以及還… :月中任意所述的雙模式觸控模組。在實際的結構中,, 模式觸控模組可設置在電子裝置顯示幕的表面; 地’該雙模式觸控模組設置在電子裝置顯示幕的 : 上述電磁感應線圈可環繞設置敷設電子裝置顯示㈣邊。 27 201241722 舉例來說 觸控手機等, 子裝置更輕、 ’上述雙模式觸㈣子裝置可為平板電腦、 其採用上冑雙模式觸控模組的雙模式觸控電 更薄。 最後應說明的是:以上實施例僅用以說明本發明的技 術方案,而非對其限制;儘管參照前述實施例對本發明進 行了詳細的說明,本領域的普通技術人員應當理解:其依 然可以對前述各實施例所記載的技術方案進行修改,或者 對其中部分技術特徵進行等同替換;而這些修改或者替 換’並不使相應技術方案的本質脫離本發明各實施例技術 方案的精神和範圍。 【圖式簡單說明】 圖1A示出了本發明中感測器實施例的第一種結構示竟 圖; 圖1B示出了本發明感測器實施例中第一方向導線的第 一結構示意圖; 圖1C示出了本發明中感測器實施例中第二方向導線的 第一種結構示意圖; 圖2A至圖2C為本發明的感測器實施例中的電磁感應觸 控模式的原理分析示意圖; 圖3A至圖3H為本發明的感測器實施例中的電容輕合觸 控模式的原理分析示意圖; 圖4A至圖4C為本發明的感測器實施例中天線陣列_ m 坐標系位置的分析示意圖; 28 201241722 圖5A和圖5B為本發明中的感測器實施例的另一種結構 示意圖; 圖6為本發明中感測器實施例的一種結構示意圖; 圖7 A為本發明中感測器實施例的第一方向導線組的佈 線示意圖; 圖7B為本發明中感測器實施例的第二方向導線組的佈 線示意圖; 圖7C為本發明中圖7A和圖7B組成天線陣列的佈線結構 示意圖; 圖7D為本發明中感測器實施例的第一方向導線的結構 示意圖; 、Ό 圖9為本發明中雙模式觸控模組實施例的另—種結構 圖8為本發明中雙模式觸控模組實施例的結構示意圖; 不意圖 主要元件符號說明】 1 0 0〜外部控制部件; 2〇la、201b、201c 〜U形第 ; 1〇la、1〇lb、1〇lc〜U形第二方向導線; 102、202〜模式切換電子開關; 203第電谷麵合觸控部件. 103〜第二電容叙合觸控部件. 104、 204~第一連接端; 105、 205〜第二連接端; 29 201241722 21、23、24〜導體; 22〜絕緣介質; 301~第二基板; 302~第一基板; 303~電磁感應線圈。In the range of the touch area of the column, the Rayleigh Weihe H-Gugu coupling α touch mode is switched to the electromagnetic induction touch mode. The electromagnetic induction coil lu shown in Fig. 5A is disposed on the plurality of sides of the touch area, and the electromagnetic induction coil is electrically insulated from the antenna array. Of course, the electromagnetic induction coil can also be disposed on one side of the touch area, which ensures that the electromagnetic induction coil and the antenna array are electrically insulated, so that the electromagnetic induction coil can better sense the electromagnetic signal of the touch control area. Further, the touch area of the sensor described in the above embodiment may be disposed not only in the area enclosed by the electromagnetic induction coil but also above or below the electromagnetic induction coil, which ensures the electromagnetic induction coil and the antenna array are electrically connected. Insulation can be. It should be noted that the edge of the touch area of the sensor may be less than or equal to the edge of the electromagnetic induction coil, so that the signal of any electromagnetic pen in the touch area can be sensed or recognized by the electromagnetic induction coil. In addition, referring to FIG. 6, FIG. 6 shows a second structural schematic diagram of the sensor embodiment of the present invention. The sensor in this embodiment mainly adds short-circuit electrons based on the previous embodiment. When the switch 丨丨0 or 2 i 〇 is used to make the capacitance of the antenna array face the touch array, the short-circuit electronic switch 21 201241722 is closed; thereby reducing the transmission impedance of the antenna array and the dual voltage, In the example, the sensor is coupled to the linearity of the touch mode in the capacitor. In particular, the antenna array of the short-circuit electronic switch of the 斛; &< ^ ^ 斤 3 in FIG. 6 can greatly improve the capacitive coupling of the larger size of the sensor using the sensor. Inch touch screen, the short-circuit electronic switch can shorten the signal transmission distance by 1 field, and reduce the impedance of the signal transmission wheel in the antenna array, so that the sensors are external, I. The processing speed of the smashing parts is improved, and the linearity is improved. At least one first line 201a and/or the first-party & track start 1Λ1 to the conductor 1Glaf "partial-connected end" (such as the first connection in circle 1B and FIG. 1C) in the antenna array structure shown in FIG. (4) ιη> ι 〇 connection knows 1〇4, 2〇4) and the second connection end (such as the first connection end 1G5, 2G5 in the material drawing K) is connected with a short-circuit electronic switch (such as the short-circuit electronic switch in Figure 6) 110 or 210). The control terminal of the short-circuit electronic switch 11〇 or 21〇 can usually be connected to an external control component; when the mode switching electronic switch is turned off, and the capacitor array is formed by a capacitive touch surface array, the short-circuit electronic switch Closed (the closed position at this point can be closed or fully closed by the electronic switch 11〇21〇): in the mode switching electronic switch is fully closed, the first direction wire 2 (^ and the first direction wire l〇la respectively When the electromagnetic induction circuit is formed with the external control component, the short-circuit electronic switch 11G# 21G is completely disconnected. Referring to FIGS. 7A to 7D, FIG. 7A is a first direction wire group of the sensor embodiment of the present invention. Schematic diagram of wiring FIG. 7B is a sensor in the present invention FIG. 7c is a schematic diagram of the wiring structure of the wire bundle of the second direction of the embodiment, FIG. 7c is a schematic diagram of the wiring structure of the wire bundles of FIG. 7A and FIG. 7B intersecting and staggered in the present invention, and FIG. The first direction wire diagram of the embodiment of the device, wherein as shown in FIG. 7A, the first direction wires in the first direction wire group are distributed in a combined arrangement and any two adjacent first directions in the first direction wire group The spacing of the wires is equal, and the spacing of the u-shaped openings of each of the wires in the first direction is preferably equal. The first direction of the wire in the first direction of the wire is electrically connected with a plurality of capacitors to engage the touch components, any two first The shape of the coupling touch member is the same. Generally, the above-mentioned capacitance is lightly touched: the shape of the P piece is a diamond shape, a rectangle, a triangle, or a shape of any combination therebetween. FIG. 7A is merely an example. In particular, the A capacitively coupled human touch component is integrated with the first direction wire. ° The human figure is not 'the second direction wire in the second direction wire group is distributed in a group=column manner' and the second direction wire group The spacing between the adjacent two second-direction wires is equal, and the spacing of the u-shaped opening portions of the line is equal to each other: the guiding force is fixed on the first-direction wire of the conductor θ1^ The component 'any two second capacitors are lightly combined and the shape of one piece is the same. Usually, the above-mentioned capacitance_contacting touch part shape 7B=, rectangle, triangle or any combination of shapes therebetween, the figure is a general description. 'The second capacitor can be combined with the touch component / the other direction of the conductor is integrated. As shown in the actual sensor structure, the direction of the conductor group = wire group is set to cross each other vertically, (four) adjacent The two equals, and the distance between the guide line and any two adjacent second-direction wires, the spacing direction of the direction-direction wire and the first-direction wire, the meandering opening interval 23 201241722 and the like. In particular, any two of the first capacitive-capacitive touch members and the second coupled touch member are shaped in the sensor structure of the first-directional wire and the first coil 7C, and the first and the first In the region where the directional wires cross each other, the first capacitive coupling between the touch component and the MEMS-coupled touch component can make two or more touch points of any finger include two or more : a capacitively coupled touch component and/or a second capacitively coupled touch component, such that at least two of the capacitive coupling components of the conductor group of the pass-through direction include a touch point exchange , , and so, and S can better identify the location of the touch point corresponding to the alternating signal. Preferably, referring to FIG. 7D, on the basis of the above embodiments, the first-capacitance hybrid touch component may be further disposed such that the equivalent electromagnetic direction of the first direction wire overlaps or parallels the direction of the first-direction wire; And the second capacitive surface-contacting touch component can also be used or Μ # L L Lx is also set to make the equivalent electromagnetic direction of the second direction wire overlap or parallel to the direction of the second direction wire. Only a schematic view of the first direction wire is shown in Fig. 7d, which is not limited herein. Generally, in an actual sensor structure, the first wire and the second wire are both disposed in a straight line, and any of the first capacitors on the first-direction wire is in contact with the shape of the touch component on both sides of the first direction wire. Symmetrical or have a proportional relationship; and the shape of any of the second capacitively-switched touch members on the second-direction conductor is symmetrically distributed on both sides of the second-direction conductor (ie, along the top of the wire: the second wire Symmetrical) 'or have a uniform proportional relationship' so that the equivalent electromagnetic of the first-directional wire and the direction of the directional wire overlap or parallel in this embodiment 'the equivalent electromagnetic and second-directional wire of the second-directional wire Directional overlap or parallel distribution. The signal from the antenna array in the sensor 24 201241722 is consistent with the above, so that the internal touch component of the touch control component in the mode can preferably be one in the signal of the equivalent electromagnetic signal and possibly the embodiment. The directional wire and the equivalent electromagnetic are output in the second direction of the wire group output signal equivalent or the external control energy of the capacitively coupled touch antenna array has a first capacitive shape asymmetry, but the complexity of the external control component is obtained. The position is improved, the position of the body is set to a straight line, so that the position of the electromagnetic induction touch mode can be accurately obtained by the first direction directional wire group and the antenna array shown in FIG. 7C on the first wire and the second wire. Information and make the connection easy. For example, the first direction of the wire may be distributed on both sides of the wire, which is not easy to conduct, and thus the external control component can not accurately locate the touch point. The first wire and the second wire are respectively provided with the first direction wire. The first straight line. According to another aspect of the present invention, the present invention further provides a dual-mode touch module including a first substrate and a sensor. The sensor at the location may be a sensor as described in any of the embodiments of the present invention. The antenna array of the above sensor is disposed on the above substrate. As shown in FIG. 8, FIG. 8 is a schematic structural diagram of an embodiment of a dual mode touch module in the present invention. Referring to the description of FIG. 1A , the sensor is disposed on the substrate 3 , to reduce the complexity of the dual-mode touch antenna array structure, so that the dual-mode touch module is manufactured. Simple, low cost and high integration. Of course, the dual-mode touch module can effectively overcome the mutual interference problem between the capacitive touch mode and the electromagnetic induction touch mode in the prior art. In Fig. 8, only the structure of the dual mode touch module is schematically shown. Of course, the structure of the dual mode touch module is not limited to the structure of the substrate and the sensor in Fig. 25 201241722. The positional relationship depends on the actual product. Preferably, the first metal of the antenna array in the sensor is 201a), and the second direction wire (such as °, Fig. 8 million wire (such as 1〇la in Fig. 8) a foil, a conductive silver paste, a carbon paste, a 1TO conductive film or other conductor. The first-direction wire and the second-direction wire may be printed or etched on the substrate; or silver on the first substrate The electromagnetic detection unit of the dual-mode touch module can also be composed of an electromagnetic induction coil connection amplification, shaping and logic control components, and is based on the above description of the sensor embodiment. - The electromagnetic induction coil is electrically insulated from the antenna array, and the logic control unit outputs the mode switching electronic switch control terminal 'for detecting electromagnetic signals in the range of the touch area of the antenna array, and the control mode switches the electronic switch to open and close. The electromagnetic induction coil can also be connected to the touch area formed by the antenna array, or can be disposed on one or more sides of the touch area. For specific settings, refer to the above-mentioned FIG. 5A and FIG. Preferably, the 'electromagnetic induction coil ring is provided with the touch area formed by the antenna array', and the touch area is disposed in an area surrounded by the electromagnetic induction coil. In a preferred embodiment, the electromagnetic induction coil may also be disposed on the first substrate. In the above, as shown in FIG. 5A above, the electromagnetic induction coil and the antenna array are disposed on the first substrate by means of a surname. Of course, the specific position of the electromagnetic induction coil is set according to actual product requirements. The dual-mode touch module of the present invention may further include a second substrate, the electromagnetic induction coil is disposed on the second substrate, and the second 26 201241722 substrate is disposed or framed on the upper surface and/or the lower surface of the first substrate. The first substrate and the second substrate constitute a substrate group. That is to say, the touch area of the antenna array, that is, the effective area, can be disposed not only in the area enclosed by the electromagnetic induction coil but also above or below the electromagnetic induction coil. FIG. 9 is a schematic diagram showing another structure of the dual mode touch module embodiment of the present invention. The sensor can be disposed in FIG. In a substrate 302, the sensor structure at the location is described with reference to any of the above sensor embodiments. In this embodiment, the electromagnetic induction coil 3〇3 is disposed on the first substrate 301, and The second substrate is located below the first substrate 3〇2, and the electromagnetic induction coils 3〇3 may be all disposed on the second substrate 3〇1, or the electromagnetic induction may be disposed on the corresponding portion of the touch area of the antenna array in the sensor. The coil 303 is not limited in this embodiment. In particular, the electromagnetic induction coil described in any of the above embodiments may use an enamel wire or the above-mentioned pass (four), printed electrical conductors, such as metal iridium, conductive silver paste, carbon. In addition, the first substrate and/or the second substrate described in any of the above embodiments may be glass, plastic or other hard insulating materials, of course, the first substrate and/or the second substrate are further It can be a flexible insulating material. The present invention also provides a dual mode touch electronic device == a body, the body is provided with a display screen, and also ...: any of the dual mode touch modules described in the month. In the actual structure, the mode touch module can be disposed on the surface of the display screen of the electronic device; the ground dual-mode touch module is disposed on the display screen of the electronic device: the electromagnetic induction coil can be displayed around the set electronic device (4) Side. 27 201241722 For example, for touch phones, etc., the sub-devices are lighter. The above-mentioned dual-mode touch (four) sub-devices can be thinner for a tablet computer, which uses a dual-mode touch control module with a dual-mode touch module. It should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, and are not limited thereto; although the present invention has been described in detail with reference to the foregoing embodiments, those skilled in the art should understand that The technical solutions described in the foregoing embodiments are modified, or the equivalents of the technical features are replaced by the equivalents of the technical solutions of the embodiments of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a view showing a first structure of a sensor embodiment of the present invention; FIG. 1B is a view showing a first structure of a first direction wire in the sensor embodiment of the present invention; FIG. 1C is a schematic view showing the first structure of the second direction wire in the sensor embodiment of the present invention; FIG. 2A to FIG. 2C are schematic diagrams showing the principle of the electromagnetic induction touch mode in the sensor embodiment of the present invention; FIG. 3A to FIG. 3H are schematic diagrams showing the principle of the capacitive light touch mode in the sensor embodiment of the present invention; FIG. 4A to FIG. 4C are diagrams showing the antenna array _ m coordinate system in the sensor embodiment of the present invention; 28 201241722 FIG. 5A and FIG. 5B are schematic diagrams showing another structure of a sensor embodiment of the present invention; FIG. 6 is a schematic structural view of an embodiment of a sensor according to the present invention; FIG. 7B is a schematic diagram of the wiring of the second direction wire group of the sensor embodiment of the present invention; FIG. 7C is a schematic diagram of the antenna of FIG. 7A and FIG. 7B according to the present invention; Array wiring structure FIG. 7D is a schematic structural view of a first direction wire of the sensor embodiment of the present invention; FIG. 9 is another structure of the dual mode touch module embodiment of the present invention. FIG. Schematic diagram of the embodiment of the mode touch module; not intended for the main component symbol description] 1 0 0~ external control component; 2〇la, 201b, 201c~U-shaped; 1〇la, 1〇lb, 1〇lc~ U-shaped second direction wire; 102, 202~ mode switching electronic switch; 203 electric grid surface touch component. 103~ second capacitor recombination touch component. 104, 204~ first connection end; 105, 205~ Second connection end; 29 201241722 21, 23, 24~ conductor; 22~ insulating medium; 301~ second substrate; 302~ first substrate; 303~ electromagnetic induction coil.

Claims (1)

201241722 七、申請專利範圍: 1' 種感測器,其特徵在於包括: 列二Γ方向導線,每根第—方向導線依次以組合排 兩根第——^向導線組’任意 方向導線之間相互絕緣; 开夕第二方向導線,每根第-&播& 列的方 母㈣-方向導線依:欠以組合排 飞間隔交錯平行設置,構虑坌_ &摘笛_ 稱成第—方向導線組,任意 一方向導線之間相互絕緣; 的第-導L第:方向導線和第二方向導線均具有相互平行 導線和第二導線; 第-方向導線組的第一方向導線任一位置的第一導線 -導線與相鄰的前—導線或後—導線的組合與其他任 何位置相鄰兩導線的組合不重複; 第二方向導線組的第二方向導線任一位置的第一導線 矛第導線與相鄰的前—導線或後—導線的組合跟其他任 何位置相鄰兩導線的組合不重複; $方向導線組和第二方向導線組相互交叉,構成電 容耗合觸控天繞瞌而丨.n & 線車列’且第一方向導線組和第二方向導線 組之間相互絕緣; 上述第一方向導線組中至少一根第一方向導線上電性 連接有第-電容耦合觸控部件; 、上述第—方向導線組中至少一根第二方向導線上電性 連接有第二電容耦合觸控部件; 電谷輕口觸控部件和第二電容耦合觸控部件在第 31 201241722 一方向導線和第二方向導線相互交叉的區域交錯疊設; 上述第一方向導線和第二方向導線開口部具有第一連 接端和第一連接端,其中第一連接端用於連接外部控制部 ?第一連接端串接一模式切換電子開關,上述第二連接 端經上述模式切換電子開關串接到外部控制部件;上述模 式切換電子開關的控制端接外部控制部件;模式切換電子 開關閉合,上述第一方向導線和第二方向導線各自分別與 斷ΐ,卜:Ϊ制。P件形成電磁感應回路;模式切換電子開關 汗,述天線陣列構成的電容耦合觸控陣列。 -電利範圍第1項所述的感測器,其中還包括 的=用該電磁檢測單元控制模式切換電子開關 =二用於檢測天線陣列感應區域的電磁信號,控制 模式切換電子開關動作。 + 如申明專利範圍第1或2項所述的感測器,1中至 夕―根上述第一方、 主 ^ ^ Λ ° " 或第二方向導線開口部第— 連接端與第二連接端之間接設有短路電子 W 子開關的控制端接外部控制 Μ丑路電 開,上述夭始陆, 丨仵,在杈式切換電子開關斷 子門關門人' 歹1構成的電容耦合觸控陣列時,該短路電 :開關閉合;在模式切換電子開關閉 = 線和第二方向導線夂上边第方向導 4處 自刀別與所接外部控制部件形成f* g 感應回路時,該短路電子開關斷開。 ““成電磁 (如申請專利範圍第J或2 述第一方向導綠如v 4 W蛾撕器,其中上 域 導線中任意相鄰的兩個第一方6M 專,和/或上述第二方向 方向導線間距相 ,、,,中任意相鄰的兩個第二方向 32 201241722 導線間距相等;和/十L & 或上述第一方向導線與上述第二方向導 線的u形開口部間距相等。 。導 一如申身專利範圍第1或2項所述的感測器,其中第 向導線組和第二方向導線組設置為相互垂直交又。 6·如申吻專利範圍第1或2項所述的感測器,其中 述第一電容耦合觸控 具中上 啊!。卩件為兩個以上’任意兩個第—六 輕合觸控部件的形妝 谷 波也 狀相同;和/或上述第二電容耦合觸控部 1午為兩個以上,杯音工/ 同 仕荩兩個第二電容耦合觸控部件的形狀相 — 中請專利範Μ 6項所述的感測器,其中上述第 —電容輕合觸控部件與上述第二電容麵合觸控部件形狀相 同。 8. 如申請專利範圍帛6項所述的感測器,其中上述的 電容麵合觸控部件形狀為菱形、矩形、三角形或它們之間 任意組合的形狀。 9. 如申請專利範圍第6項所述的感測器,其中在第— 方向導線和第二方向導線相互交叉的區域中’上述第一電 ^耦合觸控部件與第二電容耦合觸控部件之間的間距相 33 1 〇,如申請專利範圍第6項所述的感測器,其中第一電 谷耦合觸控部件與第一方向導線設為一體,和/或第二電容 耦合觸控部件與第二方向導線設為一體。 u .如申請專利範圍第7、8、9或10項所述的感測器, 其中上述第一電容耦合觸控部件設置為使第一方向導線的 201241722 效電:與第一方向導線方向重疊或者平行的分佈;上述 第-電谷輕合觸控部件設置為使第二方向導線的等效電磁 與第-方向導線方向重疊或者平行的分佈。 12.如申明專利範圍第! i項所述的感測器,其中上述 第-導線和第二導線均設置為直線,且第一方向導線上的 任一第—電容耦合觸控部件在第—方向導料侧分佈的形 狀對稱,或者具有-致的比例關係; 第一方向導線上的任一第二電容耦合觸控部件在第二 方向導線兩側分佈的形狀對稱,或者具有一致的比例關係。 13·如申明專利範圍第2或3項所述的感測器,其中電 磁檢測單元&置在上述的天線陣列構成的觸控區周邊。 1/ ·如申明專利範圍第丨3項所述的感測器其中電磁 檢測單元由一電磁感應線圈連接邏輯控制部件構成,邏輯 控制部件輸出連接模式切換f子㈣控制端,用於檢測天 線陣列的觸控區範圍内的電磁信號,控制模式切換電子開 關斷開或閉纟;上述邏輯控制部件獨丨設置或集成於上述 外部控制部件中。 15. 如申請專利範圍第丨4項所述的感測器其中電磁 感應線圈環設在上述天線陣列構成的觸控區,或設於上述 觸控區的一側或多側,電磁感應線圈與天線陣列電氣絕緣。 16. 如申請專利範圍第15項所述的感測器,其中上述 的觸控區設置電磁感應線圈圍成的區域内。 17. —種雙模式觸控模組,包括第一基板和感測器,其 特徵在於:上述的感測器為申請專利範圍第丨至丨3項中任 34 201241722 項所述的感測器,上述感測器的天線陣列設置在上述的 基板上;上述天線陣列的第一方向導線、第二方向導線的 材質為金屬络、導電銀漿、碳漿或IT0導電膜,採用印刷、 刻蝕的方式設置在基板上;或者於第一基板上以印刷、蝕 刻方式製成。 18. 如申請專利範圍第17項所述的模組,其中上述感 測益的電磁檢測單元由一電磁感應線圈連接邏輯控制部件 構成,電磁感應線圈與天線陣列電氣絕緣,邏輯控制部件 輪出接模式切換電子開關控制端,用於檢測天線陣列的觸 控區範圍内的電磁信號,控制模式切換電子開關開閉。 19. 如申請專利範圍第18項所述的模組,其中上述電 磁感應線圈環設上述天線陣列構成的觸控區,或設於上述 觸控區的一側或多側。 20. 如申請專利範圍第19項所述的模組,其中上述電 磁感應線圈環設上述天線陣列構成的觸控區觸控區設置 電磁感應線圈圍成的區域内。 21. 如申請專利範圍第17、18、19或20項所述的模組, 其中上述感測器的電磁感應線圈設置在第一基板上。 22. 如申請專利範圍第17、18、19或2〇項所述的模組, /、中還包括一第二基板,上述感測器的電磁感應線圈設置 土板上’第一基板覆設或框設在第一基板上表面和/ 或下表面’第一基板與第二基板構成基板組。 23. 如申請專利範圍第22項所述的模組,其中上述第 基板和/或第二基板為玻璃、塑膠。 35 201241722 其中上述第 从如申請專利範圍第22項所述的模組 一基板和/或第二基板為柔性絕緣材料。 π如申請專利範圍第17,,或2〇項所述的模組 其中上述感測器的電磁感應線圈為漆包線、金屬落、導 銀漿、碳漿或I το導電膜。 26·-種雙模式觸控電子裝置’包括電子裝置本體,驾 2上設有顯示幕’其特徵在於:還包括—如中請專利範 17至24項巾任-項所述的模組,上述的模組設置在 電子裝置顯示幕的表面。 27.種雙核式觸控電子裝£,包括電子裝置本體,該 本體上設有顯示幕’其特徵在於:還包括-如申請專利範 圍第25項所述的模組,上述的模組設置在電子裝置顯示幕 的表面,上述電磁感應線圈環繞設置敷設電子裝置顯示幕 周邊。 ^ 36201241722 VII. Patent application scope: 1' kind of sensor, which is characterized by: column two-direction directional wires, each of the first-directional wires are sequentially arranged in two rows - ^ guide wire group 'between wires in any direction Insulating each other; the second direction of the wire, the square of each of the first & broadcast & column (four) - directional wire according to: owing to the parallel arrangement of the combined flight interval, the structure _ _ _ _ _ _ _ The first direction directional wire group, the wires of any one direction are insulated from each other; the first guide L: the directional wire and the second directional wire each have parallel wires and a second wire; the first direction wire of the first direction directional wire group The combination of the first wire-conductor at one location and the adjacent front-wire or back-wire is not repeated with the combination of two adjacent wires at any other location; the second direction of the second-direction wire bundle is at any position anywhere in the wire The combination of the wire spear wire and the adjacent front wire or the rear wire is not repeated with the combination of the two wires adjacent to any other position; the $directional wire group and the second direction wire group cross each other to form a capacitor In conjunction with the touch, the .n & line train 'and the first direction wire group and the second direction wire group are insulated from each other; at least one first direction wire powering in the first direction wire group A first capacitive coupling touch component is connected; at least one second direction wire of the first directional wire group is electrically connected to the second capacitive coupling touch component; the electric valley light touch component and the second capacitive coupling The first component and the second direction wire opening portion have a first connection end and a first connection end, wherein the first connection is The end is connected to the external control unit? The first connection end is connected in series with a mode switching electronic switch, and the second connection end is connected to the external control component via the mode switching electronic switch; the control terminal of the mode switching electronic switch is connected to the external control component The mode switching electronic switch is closed, and the first direction wire and the second direction wire are respectively broken and broken. P-piece forms an electromagnetic induction loop; mode-switching electronic switch Khan, a capacitively coupled touch array composed of an antenna array. - The sensor of claim 1, further comprising = controlling the mode switching electronic switch with the electromagnetic detecting unit = two for detecting an electromagnetic signal of the antenna array sensing area, and controlling the mode switching electronic switching action. + The sensor according to claim 1 or 2, wherein the first one, the first ^^ Λ ° " or the second direction wire opening portion - the second connection The control terminal of the short-circuit electronic W sub-switch is connected between the terminals, and the external control is ugly. The above-mentioned 夭 陆 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , In the case of the array, the short circuit is: the switch is closed; when the mode switching electronic opening and closing = line and the second direction wire 夂 the first direction guide 4 forms a f* g induction circuit from the external control component connected, the short circuit electron The switch is open. ""Electromagnetic (as in the scope of application of the patent scope J or 2, the first direction is green, such as the v 4 W moth, where any two adjacent first-party 6M in the upper-domain wire, and/or the second The direction direction conductor spacing phase,,,, any two adjacent second directions 32 201241722 conductor spacing are equal; and / ten L & or the first direction conductor is equal to the u-shaped opening of the second direction conductor The sensor of claim 1 or 2, wherein the first wire group and the second direction wire group are disposed perpendicularly to each other. 6·Shen Kiss Patent Range No. 1 or 2 The sensor described in the above, wherein the first capacitive coupling is in the middle of the touch device; the component is the same as the shape wave of two or more 'any two sixth-six-light touch components; and / or the second capacitive coupling touch part 1 is more than two in the afternoon, the shape of the two capacitive coupling touch parts of the cup sounder / the same — — — — — 请 请 专利 专利 专利 专利 专利The first capacitor-contacting touch component is in contact with the second capacitor The touch sensor has the same shape. 8. The sensor of claim 6, wherein the capacitive touch surface is in the shape of a diamond, a rectangle, a triangle, or any combination therebetween. The sensor of claim 6, wherein in the region where the first-directional wire and the second-directional wire cross each other, between the first electrically-coupled touch component and the second capacitive-coupled touch component The sensor of claim 6, wherein the first valley-coupled touch component is integrated with the first direction wire, and/or the second capacitively coupled touch component and the second The sensor of the invention of claim 7, wherein the first capacitively coupled touch component is configured to make the 201241722 of the first direction conductor active: a distribution overlapping or parallel with the direction of the first direction of the wire; the first-electric valley light-contacting touch member is disposed such that the equivalent electromagnetic direction of the second direction wire overlaps or is parallel to the direction of the first-direction wire. The sensor of item i, wherein the first wire and the second wire are both disposed in a straight line, and any of the first capacitive coupling touch members on the first direction wire is on the first direction side The shape of the distribution is symmetrical, or has a proportional relationship; any second capacitive coupling touch member on the first direction conductor is symmetrically distributed on both sides of the second direction conductor, or has a uniform proportional relationship. The sensor of claim 2, wherein the electromagnetic detecting unit & is disposed around the touch area formed by the antenna array described above. 1 / · sensing as described in claim 3 The electromagnetic detecting unit is composed of an electromagnetic induction coil connected to the logic control unit, and the logic control unit outputs a connection mode switch f (four) control end for detecting electromagnetic signals in the range of the touch area of the antenna array, and the control mode switches the electronic switch. Open or closed; the above logic control unit is separately disposed or integrated in the above external control unit. 15. The sensor of claim 4, wherein the electromagnetic induction coil ring is disposed in the touch area formed by the antenna array, or is disposed on one or more sides of the touch area, and the electromagnetic induction coil is The antenna array is electrically insulated. 16. The sensor of claim 15, wherein the touch area is disposed in an area enclosed by the electromagnetic induction coil. 17. A dual-mode touch module comprising a first substrate and a sensor, wherein the sensor is a sensor as described in any of claims 34 201241722. The antenna array of the sensor is disposed on the substrate; the first direction wire and the second direction wire of the antenna array are made of metal, conductive silver paste, carbon paste or IT0 conductive film, and are printed and etched. The method is disposed on the substrate; or is formed on the first substrate by printing or etching. 18. The module of claim 17, wherein the electromagnetic detecting unit of the sensing benefit is composed of an electromagnetic induction coil connected to a logic control component, the electromagnetic induction coil is electrically insulated from the antenna array, and the logic control component is wheeled out. The mode switching electronic switch control end is used for detecting electromagnetic signals in the range of the touch area of the antenna array, and the control mode switches the electronic switch to open and close. 19. The module of claim 18, wherein the electromagnetic induction coil is provided with a touch area formed by the antenna array or on one or more sides of the touch area. 20. The module of claim 19, wherein the electromagnetic induction coil ring is disposed in a region surrounded by the electromagnetic induction coil in the touch area formed by the antenna array. 21. The module of claim 17, 18, 19 or 20, wherein the electromagnetic induction coil of the sensor is disposed on the first substrate. 22. The module of claim 17, 18, 19 or 2, further comprising a second substrate, wherein the electromagnetic induction coil of the sensor is disposed on the soil plate on the first substrate Or being disposed on the upper surface and/or the lower surface of the first substrate. The first substrate and the second substrate constitute a substrate group. 23. The module of claim 22, wherein the first substrate and/or the second substrate are glass or plastic. The module one substrate and/or the second substrate described in the above-mentioned Patent Application No. 22 is a flexible insulating material. π. The module of claim 17, wherein the electromagnetic induction coil of the sensor is an enameled wire, a metal drop, a silver paste, a carbon paste or an I τ conductive film. 26·- a dual-mode touch electronic device 'including an electronic device body, the display screen is provided on the driver 2', and the method further comprises: a module as described in the patent application No. 17 to 24, respectively. The above module is disposed on the surface of the display screen of the electronic device. 27. A dual-core touch electronic device comprising: an electronic device body, wherein the body is provided with a display screen, wherein the module further comprises: a module according to claim 25, wherein the module is disposed at The surface of the display screen of the electronic device, the electromagnetic induction coil is disposed around the display screen of the electronic device. ^ 36
TW100115561A 2011-04-07 2011-05-04 Sensor, dual-mode touch module and dual-mode touch electronic device TW201241722A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110086828.XA CN102163112B (en) 2011-04-07 2011-04-07 Sensor, dual-mode touch module and dual-mode touch electronic device

Publications (1)

Publication Number Publication Date
TW201241722A true TW201241722A (en) 2012-10-16

Family

ID=44464369

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100115561A TW201241722A (en) 2011-04-07 2011-05-04 Sensor, dual-mode touch module and dual-mode touch electronic device

Country Status (2)

Country Link
CN (1) CN102163112B (en)
TW (1) TW201241722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486855B (en) * 2012-11-09 2015-06-01 昆盈企業股份有限公司 An input device and signal detection method for switching a capacitive sensing and electromagnetic
CN107293841A (en) * 2016-04-08 2017-10-24 宏达国际电子股份有限公司 Radio communication device

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375612B (en) * 2011-10-18 2014-07-09 台均科技(深圳)有限公司 Touch-control array, touch-control sensor, touch-control display screen and touch-control device
CN102426503B (en) * 2011-10-28 2014-05-07 台均科技(深圳)有限公司 Sensor, dual-mode touch module and dual-mode touch electronic device
TWI451316B (en) * 2011-12-16 2014-09-01 E Ink Holdings Inc Touch panel
TWI455004B (en) * 2011-12-20 2014-10-01 Wistron Corp Touch display panel and driving method thereof
TWI467453B (en) * 2012-01-18 2015-01-01 Chunghwa Picture Tubes Ltd Dual-mode touch sensing apparatus
CN102541384B (en) * 2012-02-10 2015-02-11 福建华映显示科技有限公司 Dual-mode touch control sensor
US11314368B2 (en) 2012-09-14 2022-04-26 Samsung Display Co., Ltd. Display device and method of driving the same in two modes
KR102061569B1 (en) * 2013-05-16 2020-01-03 삼성디스플레이 주식회사 Display device and driving mathod of the same
US9389737B2 (en) 2012-09-14 2016-07-12 Samsung Display Co., Ltd. Display device and method of driving the same in two modes
WO2015083196A1 (en) * 2013-12-03 2015-06-11 ニューコムテクノ株式会社 Designated position detection device
CN103809821A (en) * 2012-11-15 2014-05-21 昆盈企业股份有限公司 Input device with capacitor induction and electromagnetic induction and signal detecting switching method
CN103914192B (en) * 2013-01-09 2017-03-01 宏碁股份有限公司 Portable electron device and its combined touch control module
CN103279273B (en) * 2013-06-19 2016-08-10 广州视源电子科技股份有限公司 A kind of electromagnetism and the touch-control changing method of capacitive dual-mode touch screen
CN103941951B (en) * 2013-07-10 2016-10-05 上海天马微电子有限公司 Inductance touch-screen, inductance touch display panel and inductance touch display unit
CN103543899B (en) 2013-10-23 2016-08-17 合肥京东方光电科技有限公司 Electromagnetic touch control display and preparation method thereof
CN103677470B (en) * 2013-11-25 2017-03-08 泰凌微电子(上海)有限公司 Electric capacity and electromagnetism dual-mode touch system
US9690397B2 (en) * 2014-05-20 2017-06-27 Synaptics Incorporated System and method for detecting an active pen with a matrix sensor
CN104090680B (en) * 2014-07-23 2017-07-25 上海天马微电子有限公司 A kind of contact panel and its driving method and electronic equipment
CN104484071B (en) 2014-12-25 2018-01-02 上海天马微电子有限公司 A kind of contact panel and contactor control device and its driving method
CN104699317B (en) * 2015-04-01 2017-10-13 上海中航光电子有限公司 Array base palte, display panel and display device
JP6503275B2 (en) * 2015-10-09 2019-04-17 株式会社ジャパンディスプレイ Sensor and display device with sensor
CN105529539B (en) * 2016-01-26 2018-06-05 广东欧珀移动通信有限公司 A kind of aerial array and mobile terminal
CN105630248B (en) * 2016-02-23 2018-03-30 深圳市华鼎星科技有限公司 A kind of Variable Array difunctional touch-control sensor, control detecting system, touch module and touch control display apparatus
JP7091963B2 (en) * 2018-09-14 2022-06-28 オムロン株式会社 Object detection sensor and object detection system
CN109491555A (en) * 2019-01-16 2019-03-19 北京汉王鹏泰科技股份有限公司 A kind of double touch-control sensing mould groups, double touch control display apparatus and method
CN111324242A (en) * 2020-01-13 2020-06-23 江西华创触控科技有限公司 Touch device with two touch modes of electromagnetic capacitor
CN113358012B (en) * 2020-03-06 2022-12-02 深圳普赢创新科技股份有限公司 Electromagnetic induction type coordinate positioning device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582002B (en) * 2008-05-16 2011-12-14 群康科技(深圳)有限公司 Capacitive touch screen
CN101315590B (en) * 2008-07-16 2010-11-10 友达光电股份有限公司 Touch control panel device and circuit thereof
CN202049470U (en) * 2011-04-07 2011-11-23 台均科技(深圳)有限公司 Sensor, dual-mode touch module and dual-mode touch electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486855B (en) * 2012-11-09 2015-06-01 昆盈企業股份有限公司 An input device and signal detection method for switching a capacitive sensing and electromagnetic
CN107293841A (en) * 2016-04-08 2017-10-24 宏达国际电子股份有限公司 Radio communication device
CN107293841B (en) * 2016-04-08 2020-07-17 宏达国际电子股份有限公司 Wireless communication device

Also Published As

Publication number Publication date
CN102163112B (en) 2014-07-23
CN102163112A (en) 2011-08-24

Similar Documents

Publication Publication Date Title
TW201241722A (en) Sensor, dual-mode touch module and dual-mode touch electronic device
EP2904478B1 (en) Touch sensors and touch sensing methods
CN102103447B (en) Capacitive touch panel and driving method thereof
TWI417777B (en) Capacitive touch panel with high touching sensitivity
CN104714707B (en) Electromagnetism electric capacity one touch-screen, touch display panel and touch display unit
CN106249973B (en) A kind of In-cell touch panel, its driving method and display device
JP2005513575A (en) Touch-controlled display with a thin film antenna array built into the inductive layer in a grid pattern
TW201248481A (en) Electrode structure of the touch panel, method thereof and touch panel
TW200813797A (en) Two-dimensional position sensor
JP2008217784A (en) Touch panel
TW201120717A (en) Touch display device and touch sensing device
TW200937273A (en) Touch panel and driving method of touch panel
TW201044051A (en) Micro-matrix electrode and the touch panel thereof
TWM423302U (en) Sensor, dual-mode touch module and dual-mode touch type electronic device
JP5487240B2 (en) Conductive pattern structure of capacitive touch panel and method for configuring the same
TW201007516A (en) Touch screen and method for positioning coordinate
TWM428420U (en) Touch panel
KR101668225B1 (en) A pressure sensing device using a touch screen panel
CN106293188A (en) A kind of contact panel
CN104885043B (en) Touch-sensing device and method
TW201250541A (en) Touch sensing layer and manufacturing method thereof
CN103902132A (en) Inductance-type touch screen, display panel and display device
TWI436257B (en) Surface capacitive touch panel and driving method and display and electrical device using same
TW201241718A (en) Sensor, touch-control module and touch-control electronic device
CN104077000B (en) Touch panel and its driving method, display device