TW201219729A - Concentrating daylight collector - Google Patents

Concentrating daylight collector Download PDF

Info

Publication number
TW201219729A
TW201219729A TW100128983A TW100128983A TW201219729A TW 201219729 A TW201219729 A TW 201219729A TW 100128983 A TW100128983 A TW 100128983A TW 100128983 A TW100128983 A TW 100128983A TW 201219729 A TW201219729 A TW 201219729A
Authority
TW
Taiwan
Prior art keywords
collector
aggregated
sunlight
daylight
degrees
Prior art date
Application number
TW100128983A
Other languages
Chinese (zh)
Other versions
TWI575205B (en
Inventor
David George Freier
Thomas Richard Johnstone Corrigan
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of TW201219729A publication Critical patent/TW201219729A/en
Application granted granted Critical
Publication of TWI575205B publication Critical patent/TWI575205B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight
    • F21S11/002Non-electric lighting devices or systems using daylight characterised by the means for collecting or concentrating the sunlight, e.g. parabolic reflectors or Fresnel lenses
    • F21S11/005Non-electric lighting devices or systems using daylight characterised by the means for collecting or concentrating the sunlight, e.g. parabolic reflectors or Fresnel lenses with tracking means for following the position of the sun
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/03Sky-lights; Domes; Ventilating sky-lights
    • E04D13/033Sky-lights; Domes; Ventilating sky-lights provided with means for controlling the light-transmission or the heat-reflection, (e.g. shields, reflectors, cleaning devices)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/422Vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/878Assemblies of spaced reflective elements in the form of grids, e.g. vertical or inclined reflective elements extending over heat absorbing elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The disclosure generally relates to concentrating daylight collectors, and in particular to concentrating daylight collectors useful for interior lighting of a building. The concentrating daylight collectors generally include a plurality of moveable reflective vanes and a Cassegrain-type concentrator section.

Description

201219729 六、發明說明: 【先前技術】 穿過一建築之可見光之長距離輸送可使用利用全内反射 之大的内襯反射鏡之管道或較小之固體光纖。内襯反射鏡 之管道包含以下優點:大剖面面積及大數值孔隙(達成具 有較小聚集度之較大通量)、引起較低衰減及較長壽命兩 者之一穩健且透明的傳播介質(亦即,空氣),及每單位所 輸送光通量之一可能較低重量。固體光纖包含組態靈活性 之優點,其可產生具有低光損失之相對緊密彎曲。雖然内 襯反射鏡之管道之優勢可能看來係壓倒性的,然而由於以 與管道工程極其相同之方式組裝光導管之實用價值而常常 選擇光纖。不論用於有效輸送光之技術如何,需要亦可聚 集所收集光之一實用且高效之日光收集器。 【發明内容】 本發明大體而言係關於聚集日光收集器’且特定而言係 關於對-建築之室内照明有用之聚集日光收集器。料聚 集曰光收集器通常包含複數個可移動之反射葉片及一卡塞 格倫(cassegrain)型聚集器區段。在一個態樣中,—種聚= 曰光收集器包含一收集區段,其具有一第一開口以用於接 收陽光及一相對第二開口以用於傳輸陽光。該聚集曰光收 =進-步包含複數個可移動反射葉片,其經安置而田比鄰 该第一開口用於將所接收陽光引導至該相對第二開口。該 聚集曰光收集器進一步包含一抛 趑兮低止今上 叫久町益’其經安置以 主要部分反射通過該相對第二開口至經安置 158149.doc 201219729 而晚鄰該抛物面反射器之一焦點之一雙曲面反射器;及一 輸出孔隙’其經安置以接受自該雙曲面反射器反射之陽 光。 在另一態樣中’一種聚集曰光收集器包含一陽光收集區 段,其經組態以透過一輸入區接收一第一陽光束且朝向一 第一輸出區引導一經反射第二陽光束,該經反射第二陽光 束實質上平行於該陽光收集區段之一中心軸。該聚集曰光 收集器進一步包含一陽光聚集區段,其經安置而毗鄰該第 一輸出區且經組態以接收該經反射第二陽光束,自一第一 聚集器表面反射,且自一第二聚集器表面反射,藉此形成 被引導至比該第一輸出區小之一輸出孔隙之一經聚集陽光 束0 上述發明内容並非意欲闡述本發明之每一揭示實施例或 每一實施方案《以下圖及實施方式更具體地例示說明性實 施例。 【實施方式】 該等圖不必按比例繪製。該等圖中所用之相同數字指代 相同組件。然^ ’應理解,在一給定圖中使用數字心代 一組件並不意欲限制在另-圖中以相同數字標記之該組 件。 貫穿於本說明書 之附圖。 參考其中相同元件符號表示相同元件 照明一建築之内 集曰光收集器將 本發明大體而言係關於可用於藉助陽光 部空間之聚集日光收集器。大體而言,聚 158149.doc 201219729 陽光引導至一内襯反射鏡之管道中,該内襯反射鏡之管道 可用於透過一光分佈内襯反射鏡之管道來將貫穿整個建築 之陽光分佈至該光之一提取點。在某些情形下,所揭示之 聚集曰光收集器可替代地更習用地(諸如)用於將陽光引導 至用於產生電力之一光伏打電池,或用於提取熱能之一吸 收表面上。 與多數替代方案相比,該收集器每單位面積覆蓋區可收 穫更多通量。該收集器可以比任一已知替代方案(達成小 光分佈管道)高之一聚集度且以極其適於具有側壁提取之 中空導光系統之一準直度來遞送此通量。在某些情形下, 該等聚集日*收集胃可經定位於-建築之-屋頂或向陽側 上。一般而言,一聚集日光收集器之屋頂放置可更容易提 供I個日光時間内之太陽之一暢通視野;然而,在某些情 形下,安裝在該建築之側上可係較佳的。 該收集器可係穩健的,其中其光學組件與自然力隔離, 且具有一小風力負載。 聚集日光收集器可係全天追蹤太陽位置之—太陽能收集 器/聚集器聚集日光收集器自__大面積收穫經高度準直 之太陽通量且藉助經控制(且經必要減小)之準直將其沈積 :更J、區域内。聚集日光聚集器可包括兩個區段,該兩 個區奴協作以聚集且引導陽光。一第一區段可闡述為一收 集區奴’且一第2區段可闡述為—聚集區段。 中 在:項特;t實施例中,收集區段可包含可安裝於一框架 之若干長列平行反射鏡區段。該框架可經調適以圍繞針 158149.doc 201219729 對-屋頂定向而通常經引導朝向天頂之一第一轴旋轉。在 某些情形下,該枢架可經調適以圍繞針對一側壁定向而通 常經引導朝向水平方向之一第一軸旋轉。該等反射鏡長列 中之每-者沿貫穿該等反射鏡中之每一者之一第二軸一起 旋轉。反射鏡之整個收集然後可圍繞大體正交於該第二轴 之該第—軸旋轉。所得收集系統係易於設計、建造及控 制,且與其他當前可用設計相比,能夠每單位面積集合^ 多光。 諸多日光聚集方案依賴於使日光來自—已知方向。包含 ^射料列之本收集區段可替代地用於追蹤太陽且藉由沿 1·疋方向之反射來使光重定向。該光可然後藉由聚集區 段中之其他光學元件來聚集且將其引導至(舉例而言)一内 襯反射鏡之導管系統中以用於貫穿建築分佈。 在—項特定實_中’可將U標稱矩形反射鏡安裝 於一框架中,該框架可定位於一旋轉外殼中,諸如在一旋 轉圓柱體内。可使該等反射鏡藉由一系列枢車由在該框架内 敎轉。可藉由热習此項技術者已知之各種技術來將該旋轉 動作(在彼框架内)限制於一單個自由度(單個旋轉輸入), 該等技術包含(舉例而言):跨越該等反射鏡之頂部定位之 一剛性搞合臂及一非常簡單之圓柱形接頭(諸如-孔甲之 一栓)’或接近個別反射鏡樞軸之端部之一系列小時序滑 輪及皮帶。 該旋轉外殼可提供相對於太陽對準該等反射鏡所需之第 -自由度。舉例而言,可使用_鏈及鏈輪或藉由使用在該 158149.doc 201219729 外殼上推進之一簡單輪來進行該外殼之旋轉。在某些情形 下’右該外殼具有相對於驅動系統(亦即,—簡單輪驅動) 滑動之-趨勢,則可繞該外殼之外徑包覆一相當低解析度 之編碼器帶。 在一項特定實施例中,該聚集區段可包含熟習此項技術 者已知之一卡塞格倫望遠鏡型聚集器。此一聚集器通常包 含一拋物面鏡與一雙曲面鏡之一組合。一般而言,該拋物 面鏡之焦點與該雙曲面鏡之焦點之一者經放置以使得其接 近一共同焦點。該雙曲面鏡之第二焦點可經定位而毗鄰沿 拋物線之軸置於該拋物面鏡中之一孔。以此方式,自該抛 物面鏡反射平行於該拋物面軸進入之光線,將其引導朝向 該共同焦點且再次將其自該雙曲面鏡反射。該等光線然後 可穿過置於該拋物面鏡中之一孔而出射該聚集器。 可在所期望緯度(諸如例如’緯度30度' 45度或6〇度)處 於冬至、春分及秋分、以及夏至全天描繪太陽之位置。世 界之大城市之大多數存在於北緯3〇度與北緯6〇度之間。此 等描繪位置可表示全年日間太陽位置中之極值(二至點)與 平均值(二分點)兩者。針對介於23度與67度之間的緯度, 以下各項適用:1)太陽在秋分與春分之間一直東南升起西 南降落,在春分與秋分之間東北升起西北降落,且在春分 與秋分正東升起正西降落;2)在冬至與夏至之間晝長單調 地增加,且3)最高太陽仰角發生在正午,且在夏至等於 (90°-當地緯度+23°),在二分點等於(90。-當地緯度),且在 冬至等於(90。-當地緯度-23。)。 158149.doc 201219729 然後可描繪緯度3〇度、45度及60度中之每一者處之太陽 方向與正南方之間的角之機率密度。此等密度關於在一年 所有天上所求平均之日間小時。每一密度一般而言展現在 冬至之正午發生之等於9〇、當地緯度_23。之一最小角間 距。每一者亦展現在夏至由於太陽移動之逆轉所致之達 90 g地緯度+23。之一尖點,且在反映在春分與秋分之間 沿接近日升及日落之太陽方向之一北向分量之約〇 2之機 率隋況下,每一者擴大超過90度。太陽方向與天頂之間的 角之機率捃度展現在夏至之正午發生之等於列。當地 緯度+23。)之-最小角間距、在冬至由於太陽移動之逆轉 所致之達90。-(90。-當地緯度_23。)之一尖點,且由於太陽全 天高於地平面而不擴大超過9〇度。 入射於經齊平安裝於一建築之向南側上之一反射鏡陣列 上之太陽通量係與太陽相對於正南方之角之餘弦成正比。 此餘弦之年日平均值在緯度3〇度處之〇31至緯度6〇度處之 0.47之間變化》入射於經齊平安裝於屋頂上之一陣列上之 通量係與相對於該天頂之角之餘弦成比例。此餘弦之年日 平均值在緯度60度處之0.35至緯度3〇度處之〇 54之間變 化。未連續傾斜以減小其表面法線與太陽方向之間的角間 距之一收集器由於太陽位置之可變性而遭受可二 之一約50%至70%之損失。 ’、‘、、、又 如熟習此項技術者所已知,入射於經傾斜反射鏡陣列上 之太陽通量係與太陽相對於該陣列之向外 r忐線之角之餘弦 成正比。針對具有-經傾斜20度之陣列(亦即,自垂直方 158149.doc 201219729 向傾斜20度,或自水平方向傾斜7〇度)之一南側安裝之收 集器,此餘弦之年曰平均值在緯度3〇度處之〇 53至緯度6〇 度處之0.63之間變化。針對具有一經傾斜2〇度之陣列(亦 即,自水平方向傾斜20度,或自垂直方向傾斜7〇度)之一 屋頂女裝之收集器,此餘弦之年日平均值在緯度6〇度處之 〇·63至緯度30度處之0,76之間變化。 該陣列之旋轉(其係一活動百葉窗陣列所需,而不論其 傾斜如何)可減小該陣列之法線與太陽之方向之間的角間 距。一般而言,該經傾斜旋轉陣列之效能係介於具有一靜 止收集區域(例如,未經傾斜之陣列)之一收集器之效能與 維持收集區域-直垂直⑨太陽方向全追蹤收集器之Z 能之間的中間。該經傾斜陣列之效能將繼續針對大於別度 (諸如’ 30度、40度或更多)之傾斜而改良;然❿,一般而 吕不大於約20度之一傾斜可避免經挖空之圓柱體形狀之一 難處理深度。 日光照明系、統之諸多使用|可能偏好在白天期間不經歷 因間歇雲覆蓋之系統輸出之波動’且亦可能偏好避免因多 雲天及夜間對一單獨照明系統之需要。就使用者可能偏好 日光而非傳統形式之人造光而言,該等使用者可能亦偏好 本質上不能與日光區分開之加強人造光。可將具有具有類 似準直之一發射光譜之一太陽品質光源引入至毗鄰於該太 陽通量之光分佈管道。可使用一可程式化光控制系統,其 以使用者選定之一方式來調整該源之輸出以補償太: 中所感測之改變。-適合錢、可擁有類似於太陽之光譜發 158149.doc -10- 201219729 射之。一光譜發射之重要屬性(由—高現色指數與接近 〇 κ之& a兩者指示),且—小實體範圍,從而達成 在(舉例而言)-6英寸x6英寸區域上之均句準直通量之形 成在項特疋實施例中,一 RF栗送電衆源擁有此等屬性 之兩者,以及—高發光效率之額外所期望屬性。 圖1A展不根據本發明之—個態樣之一聚集日光收集器 1〇0之一剖面示意圖。聚集日光收集器1〇〇可經定位於二建 築之-屋頂或一向陽側上,如在別處所闡述。聚集日光收 集器100包3 —收集區段110及一聚集區段134,每一者繞 八同軸115女置。在某些情形下,收集區段110可包含一 圓柱形形狀外殼、—矩形形狀外殼或可如下文所閣述經定 位並旋轉之任一適合形狀之外殼。在某些情形下,收集區 段110可具有一固定位置,且可使-支撐結構(未展示)在其 下方旋轉。 收集區段110包含用於接收陽光之一第一開口 114及用於 穿過至聚集區段134傳輸陽光之一第二開口 116。第一開口 114可經定位與收集區段11〇之一共同軸115成一傾斜角㊀。 在某些情形下,該傾斜角Θ之範圍可自約〇度至約9〇度,或 自約20度至約70度,或自約60度至約70度》收集區段i 1〇 之共同軸115可針對一屋頂安裝收集器而經引導朝向天 頂’且針對一建築側安裝收集器而可經引導朝向水平方 向。所使用之傾斜角Θ可取決於聚集日光收集器ι〇〇之放 置’包含(舉例而言)緯度、暢通視野、最佳日光照明之持 續時間及時間以及諸如此類,如別處所闡述。複數個可移 158149.doc • 11 - 201219729 且用於將所接 動反射葉片120經安置而眺鄰第一開口 i丄4 收陽光引導至聚集區段134中。該複數個可移動反射葉片 120中之每一者平行於毗鄰葉片,且每—者包含每一可移 動反射葉片120圍繞旋轉之一葉片軸125。在某些情形下, 每一葉片軸125可經定位於每一可移動反射葉片12〇之中間 中(如所示)’或其可經定位於每一葉片之端部之一者處。 在某些情形下,收集區段110可圍繞共同軸115以一旋轉 方向117移動,且聚集區段134可保持靜止。在某些情形 下,收集區段11〇與聚集區段兩者可一起圍繞共同軸115旋 轉。 聚集區段134包含一抛物面反射器13〇,其具有介於拋物 面反射器130與一雙曲面反射器14〇之間的一共同焦點 136。雙曲面反射器140包含經定位接近一輸出孔隙15〇之 一第二焦點13 7。輸出孔隙1 5 0係通常沿共同軸丨丨5經定位 於抛物面反射器130中之一孔。在某些情形下,輸出孔隙 150可係經定位於抛物面反射器13〇中自共同軸U5去除之 一位置處之一孔’此可藉由改變雙曲面反射器14〇之相對 焦點位置(如熟習此項技術者可容易判定)來實現。平行於 共同軸115進入之光線自拋物面反射器130反射且經引導朝 向共同焦點136。以一類似方式’經引導朝向共同焦點ι36 之光線自雙曲面反射器140反射且經引導朝向第二焦點 137,如熟習此項技術者所已知。 現在將透過聚集日光收集器100追蹤一對光線^經定向 與共同軸115成一角φΐ之一第一對光線160a、160b經引導 158149.doc 12 201219729 朝向第一開口 114且分別自—第一反射葉片ι21及一第二反 射葉片122反射。第一反射葉片121及第二反射葉片122經 定向與收集區段110之共同軸115成一第一葉片角δΐ,以使 得第一對光線160a、160b變成第一對經反射光線161a、 161b。第一對經反射光線161a、161b沿平行於共同軸115 之一方向進入聚集區段134’且自抛物面反射器no朝向共 同焦點136經反射作為第二對經反射光線162a、i62b。第 二對經反射光線162a、162b然後自雙曲面反射器】4〇反射 且經引導朝向第二焦點137,其中其出射輸出孔隙i5〇作為 具有α度之一準直半角之輸出聚集陽光17〇。 經相對適當準直之光可更有效地用於内襯反射鏡之管道 系統以用於輸送光。當陽光被聚集時,準直角將自陽光之 輸入準直角增加約%度。一般而言,通過輸出孔隙i5〇之所 聚集陽光之準直半角α應限於不大於約3〇度,或不大約25 度,或不大於約20度。在一項特定實施例中,準直角〇1可 係約23度。追蹤太陽之準確度以及各種光學組件之準確度 (例如,反射葉片之平坦度及放置、拋物面反射器形狀、 及雙曲面反射器形狀)皆影響所得準直角舉例而言,旋 轉117、傾斜角Θ、葉片傾斜角δΐ及太陽方位角中丨之準確度 可影響輸入光區域與輸出光區域之聚集比與輸出準直半角 ct兩者。 圖1B展示根據本發明之一個態樣之以一不同太陽方位角 cp2之圖1A之聚集曰光收集器1〇〇之一剖面示意圖。圖以與 圖1B—起證實藉由使用圍繞共同軸璉轉與葉片傾斜角之一 158149.doc -13- 201219729201219729 VI. Description of the Invention: [Prior Art] Long-distance transport of visible light through a building may use a large lining mirror or a smaller solid fiber that utilizes total internal reflection. Pipes lined with mirrors include the following advantages: large cross-sectional area and large numerical aperture (to achieve a larger flux with less concentration), a propagating and transparent propagation medium that causes both lower attenuation and longer life ( That is, air), and one of the luminous fluxes delivered per unit may be lower weight. Solid fiber contains the advantage of configuration flexibility that produces relatively tight bends with low light loss. While the advantages of the conduits that line the mirrors may appear to be overwhelming, fiber optics are often chosen because of the practical value of assembling light pipes in much the same way as pipeline engineering. Regardless of the technology used to efficiently deliver light, it is desirable to have a practical and efficient daylight collector that collects the collected light. SUMMARY OF THE INVENTION The present invention is generally directed to an aggregated daylight collector' and in particular to an aggregated daylight collector useful for indoor lighting of a building. The charge collection collector typically includes a plurality of movable reflective vanes and a cassegrain type concentrator section. In one aspect, the concentrating light collector includes a collection section having a first opening for receiving sunlight and a second opening for transmitting sunlight. The aggregated light-receiving step comprises a plurality of movable reflective vanes disposed to correspond to the first opening for directing the received sunlight to the opposite second opening. The aggregated twilight collector further comprises a throwing squatting squat on the shoji shoji, which is placed with the main portion reflected through the opposite second opening to the 158149.doc 201219729 and is adjacent to the parabolic reflector One of the focal points of the hyperbolic reflector; and an output aperture 'which is positioned to receive sunlight reflected from the hyperboloid reflector. In another aspect, an aggregated light collector includes a sunlight collection section configured to receive a first beam of sunlight through an input zone and to direct a second beam of sunlight toward a first output zone, The reflected second solar beam is substantially parallel to a central axis of the sunlight collecting section. The aggregated light collector further includes a sunlight gathering section disposed adjacent to the first output zone and configured to receive the reflected second solar beam, reflected from a first collector surface, and The second concentrator surface reflects, thereby forming a concentrated solar beam that is directed to one of the output apertures that is smaller than the first output region. The above summary is not intended to illustrate each disclosed embodiment or each embodiment of the present invention. The following figures and embodiments more particularly illustrate illustrative embodiments. [Embodiment] The drawings are not necessarily to scale. The same numbers used in the figures refer to the same components. It should be understood that the use of a digital core in a given figure is not intended to limit the components labeled with the same numerals in the other figures. Throughout the drawings of the present specification. References to the same elements denote the same elements. Illumination within a building. Collection of light collectors The present invention relates generally to an aggregated daylight collector that can be used to utilize the sun's space. In general, the 158149.doc 201219729 sunlight is directed into a conduit of a lining mirror that can be used to distribute the sunlight throughout the building through a conduit that illuminates the mirror. One of the light extraction points. In some cases, the disclosed focused phosphor collector may alternatively be used more conventionally, such as to direct sunlight to one of the photovoltaic cells used to generate electricity, or to extract one of the thermal energy absorption surfaces. The collector receives more flux per unit area of coverage than most alternatives. The collector can deliver this flux more than one of the known alternatives (achieving a small light distribution conduit) and with a degree of collimation that is well suited for a hollow light guide system with sidewall extraction. In some cases, the gathering days* collection stomach may be located on the roof of the building or on the sunny side. In general, a roof placement of a concentrated daylight collector can more easily provide a clear view of the sun in one daylight; however, in some cases, mounting on the side of the building may be preferred. The collector can be robust with its optical components isolated from natural forces and with a small wind load. The concentrating daylight collector can track the position of the sun throughout the day - the solar collector/aggregator gathers the daylight collector from the __ large area to harvest the highly collimated solar flux and with the control (and necessary reduction) collimation Deposit it: more J, within the area. The gathered daylight concentrator can include two sections that cooperate to gather and direct sunlight. A first segment can be illustrated as a collection slave and a second segment can be illustrated as an aggregation segment. In the embodiment, the collection section can include a plurality of long columns of parallel mirror segments mountable to a frame. The frame can be adapted to orient around the needle 158149.doc 201219729 and is typically guided to rotate toward a first axis of the zenith. In some cases, the hub can be adapted to rotate about a first axis oriented generally toward one of the horizontal directions. Each of the long columns of mirrors rotates along a second axis extending through one of each of the mirrors. The entire collection of mirrors can then be rotated about the first axis that is generally orthogonal to the second axis. The resulting collection system is easy to design, build, and control, and is capable of collecting more light per unit area than other currently available designs. Many daylighting schemes rely on making daylight come from a known direction. The present collection section containing the ^ejector column can alternatively be used to track the sun and redirect the light by reflection in the direction of 1 · 。. The light can then be collected by other optical elements in the gathering section and directed into, for example, a conduit system of a liner mirror for distribution throughout the building. The U-represented rectangular mirror can be mounted in a frame that can be positioned in a rotating housing, such as in a rotating cylinder. The mirrors can be rotated within the frame by a series of pivots. The rotational motion (inside the frame) can be limited to a single degree of freedom (single rotational input) by a variety of techniques known to those skilled in the art, including, for example, crossing the reflections The top of the mirror is positioned with a rigid engagement arm and a very simple cylindrical joint (such as a plug of a hole) or a series of small timing pulleys and belts close to the end of the individual mirror pivot. The rotating housing provides the first degree of freedom required to align the mirrors with respect to the sun. For example, the rotation of the housing can be performed using a _ chain and a sprocket or by using a simple wheel that is advanced on the 158149.doc 201219729 housing. In some cases, the right outer casing has a tendency to slide relative to the drive system (i.e., - simple wheel drive), and a relatively low resolution encoder belt can be wrapped around the outer diameter of the outer casing. In a particular embodiment, the gathering section can comprise a Cassegrain telescope type concentrator known to those skilled in the art. This concentrator typically includes a combination of a parabolic mirror and a pair of curved mirrors. In general, the focus of the parabolic mirror and one of the focal points of the hyperbolic mirror are placed such that they are close to a common focus. The second focus of the hyperbolic mirror can be positioned adjacent one of the holes in the parabolic mirror adjacent the axis along the parabola. In this manner, light entering parallel to the parabolic axis is reflected from the parabolic mirror, directed toward the common focus and again reflected from the hyperboloid mirror. The light can then exit the concentrator through a hole placed in the parabolic mirror. The position of the sun can be depicted at the desired latitude (such as, for example, 'latitude 30 degrees' 45 degrees or 6 degrees) in the winter solstice, the spring equinox and the autumn equinox, and the summer solstice all day. Most of the world's largest cities exist between 3 degrees north latitude and 6 degrees north latitude. These depicted locations represent the extreme (two to the point) and the average (two points) of the annual solar position throughout the year. For the latitude between 23 and 67 degrees, the following applies: 1) The sun rises southeast between the autumn equinox and the vernal equinox, and rises northwest between the spring equinox and the autumn equinox, and in the vernal equinox. The autumn equinox rises to the west and falls; 2) the monotonous increase between the winter solstice and the summer solstice, and 3) the highest sun elevation angle occurs at noon, and in the summer solstice equals (90° - local latitude +23°), at the dichotomy Equal to (90. - local latitude), and equal to (90. - local latitude - 23.) in winter solstice. 158149.doc 201219729 Then the probability density of the angle between the sun direction and the positive south at each of the latitudes 3, 45 and 60 degrees can be depicted. These densities are the hourly hours averaged on all days of the year. Each density is generally expressed as 9〇 at the noon of the winter solstice and _23 at the local latitude. One of the minimum angular distances. Each also shows a latitude of 90 g +23 due to the reversal of the sun's movement during the summer solstice. One of the sharp points, and reflected in the spring equinox and the autumn equinox, is about a 90% increase in the northward direction of one of the sun's directions toward the rising sun and the sunset. The probability of the angle between the sun's direction and the zenith is shown in the equal column of the noon of the summer solstice. Local latitude +23. ) - the minimum angular separation, up to 90 in the winter solstice due to the reversal of the sun's movement. - (90. - local latitude _23.) One of the sharp points, and does not expand more than 9 degrees because the sun is above the ground level throughout the day. The solar flux incident on a mirror array mounted flush on a south side of a building is proportional to the cosine of the sun relative to the corner of the south. The annual average of the cosine varies between 〇31 at a latitude of 3 degrees and 0.47 at a latitude of 6 degrees. The flux is incident on an array of flush mounted on an array on the roof and relative to the zenith The cosine of the corner is proportional. The average annual date of this cosine varies between 0.35 at latitude 60 degrees and 〇 54 at latitude 3 degrees. One of the collectors that are not continuously inclined to reduce the angular separation between their surface normals and the direction of the sun suffers from a loss of about 50% to 70% due to the variability of the position of the sun. As is known to those skilled in the art, the solar flux incident on the array of tilted mirrors is proportional to the cosine of the angle of the sun relative to the outer r 忐 line of the array. For the collector mounted on the south side of one of the arrays with a tilt of 20 degrees (ie, 20 degrees from the vertical 158149.doc 201219729, or 7 degrees from the horizontal), the average value of the cosine is The latitude is between 〇53 at 3 degrees and 0.63 at 6 degrees latitude. For a roof-mounted women's collector with an array of 2 degrees of inclination (ie, 20 degrees from the horizontal direction or 7 degrees from the vertical), the average daily value of this cosine is at 6 degrees latitude. From 63·63 to 0,76 at 30 degrees latitude. The rotation of the array, which is required for a moving louver array, regardless of its tilt, reduces the angular separation between the normal of the array and the direction of the sun. In general, the performance of the tilted rotating array is between the performance of one of the collectors having a stationary collection area (eg, an untilted array) and the maintenance of the collection area - the vertical vertical 9 solar direction full tracking collector Z The middle between can. The performance of the tilted array will continue to be improved for tilts greater than other degrees (such as '30 degrees, 40 degrees or more); then, generally, the slope is not greater than about 20 degrees to avoid hollowed out cylinders One of the body shapes is difficult to handle depth. Many uses of daylighting systems, etc. | may prefer not to experience fluctuations in system output due to intermittent cloud coverage during the day' and may also prefer to avoid the need for a separate lighting system due to multiple days and nights. In the case of artificial light that the user may prefer daylight rather than conventional forms, such users may also prefer enhanced artificial light that is not substantially distinguishable from daylight. A solar quality light source having one of the emission spectra of one of the collimations can be introduced into the light distribution conduit adjacent to the solar flux. A programmable light control system can be used that adjusts the output of the source in a manner selected by the user to compensate for the change in the sense: - Suitable for money, can have a spectrum similar to the sun 158149.doc -10- 201219729 shot. An important property of a spectral emission (indicated by the -high color rendering index and the proximity of 〇κ & a), and - a small entity range, thereby achieving a uniform sentence on, for example, a -6 inch x 6 inch area Formation of Collimated Flux In an embodiment of the invention, a RF pumping source has both of these attributes, as well as an additional desirable attribute of high luminous efficiency. Figure 1A is a schematic cross-sectional view showing one of the solar collectors 1 〇 0 in accordance with one of the aspects of the present invention. The gathered daylight collector 1 can be positioned on the roof or on the male side of the second building, as explained elsewhere. The daylight collector 100 is assembled - a collection section 110 and a collection section 134, each of which is placed around an eight-axis 115. In some cases, collection section 110 can comprise a cylindrically shaped outer casing, a rectangular shaped outer casing or an outer casing of any suitable shape that can be positioned and rotated as described below. In some cases, the collection section 110 can have a fixed position and the support structure (not shown) can be rotated thereunder. The collection section 110 includes a first opening 114 for receiving sunlight and a second opening 116 for transmitting sunlight through the gathering section 134. The first opening 114 can be positioned at an oblique angle of one to the common axis 115 of the collection section 11〇. In some cases, the angle of inclination 可 can range from about 〇 to about 9 degrees, or from about 20 degrees to about 70 degrees, or from about 60 degrees to about 70 degrees. The common shaft 115 can be directed toward the zenith for a roof mounted collector and can be guided to a horizontal direction for a building side mounted collector. The tilt angle 使用 used may depend on the placement of the collected daylight collector ι including, for example, latitude, clear view, duration and time of optimal daylight illumination, and the like, as set forth elsewhere. A plurality of movable 158149.doc • 11 - 201219729 are used to position the coupled reflecting vane 120 to be adjacent to the first opening i丄4 to receive sunlight into the gathering section 134. Each of the plurality of movable reflective vanes 120 is parallel to the adjacent vanes and each includes a movable vane shaft 125 about each of the movable reflective vanes 120. In some cases, each vane shaft 125 can be positioned in the middle of each movable reflective vane 12 (as shown) or it can be positioned at one of the ends of each vane. In some cases, the collection section 110 can be moved about a common axis 115 in a rotational direction 117, and the accumulation section 134 can remain stationary. In some cases, both the collection section 11〇 and the accumulation section may rotate together about a common axis 115. The gathering section 134 includes a parabolic reflector 13A having a common focus 136 between the parabolic reflector 130 and a hyperbolic reflector 14A. The hyperbolic reflector 140 includes a second focus 137 that is positioned proximate to an output aperture 15A. The output aperture 150 is typically positioned along one of the parabolic reflectors 130 along a common axis 丨丨5. In some cases, the output aperture 150 can be positioned in one of the locations in the parabolic reflector 13 that is removed from the common axis U5. This can be done by changing the relative focus position of the hyperbolic reflector 14 (eg, Those skilled in the art can easily determine this to achieve. Light entering parallel to the common axis 115 is reflected from the parabolic reflector 130 and directed toward the common focus 136. Light directed toward the common focus ι 36 in a similar manner is reflected from the hyperbolic reflector 140 and directed toward the second focus 137, as is known to those skilled in the art. A pair of rays will now be tracked through the focused daylight collector 100 at an angle φ to the common axis 115. The first pair of rays 160a, 160b are directed 158149.doc 12 201219729 toward the first opening 114 and respectively from the first reflection The blade ι21 and a second reflecting blade 122 reflect. The first reflecting vane 121 and the second reflecting vane 122 are oriented at a first vane angle δΐ with the common axis 115 of the collecting section 110 such that the first pair of rays 160a, 160b become the first pair of reflected rays 161a, 161b. The first pair of reflected rays 161a, 161b enter the gathering section 134' in a direction parallel to the common axis 115 and are reflected from the parabolic reflector no toward the common focus 136 as the second pair of reflected rays 162a, i62b. The second pair of reflected rays 162a, 162b are then reflected from the hyperbolic reflector and directed toward the second focus 137, wherein its exit output aperture i5 is used as an output of concentrated sunlight at one of the alpha degrees. . Light that is relatively properly collimated can be more effectively used in the piping system of the lining mirror for conveying light. When the sunlight is concentrated, the collimation angle will increase by about 100% from the input angle of the sunlight. In general, the collimation half angle α of the concentrated sunlight through the output aperture i5〇 should be limited to no more than about 3 degrees, or no more than about 25 degrees, or no more than about 20 degrees. In a particular embodiment, the collimation angle 〇1 can be about 23 degrees. Tracking the accuracy of the sun and the accuracy of the various optical components (eg, the flatness and placement of the reflective blades, the shape of the parabolic reflector, and the shape of the hyperbolic reflector) all affect the resulting collimation angle. For example, rotation 117, tilt angle Θ The accuracy of the blade tilt angle δ ΐ and the solar azimuth angle may affect both the aggregation ratio of the input light region and the output light region and the output collimation half angle ct. 1B is a cross-sectional view showing one of the collected phosphor collectors 1A of FIG. 1A in a different solar azimuth angle cp2 in accordance with an aspect of the present invention. The figure is confirmed by using FIG. 1B as one of the tilt angles of the blade by using a common axis around 158149.doc -13- 201219729

編號元件11 0至17 0。舉例而言, 圖1Β之共同軸115對應於 圖1A之共同轴115,諸如此類。 現在將透過聚集日光收集器1〇〇追蹤一第二對光線 166a、166b。經定向與共同軸115成一角φ2之第二對光線 166a、166b經引導朝向第一開口 114且分別自一第一反射 葉片121及一第二反射葉片122反射。第一反射葉片121與 第二反射葉片122經定向與收集區段11〇之共同轴115成一 第二葉片角δ2,以使得第一對光線166a、166b變成第一對 經反射光線167a、167b。第一對經反射光線167a、167b沿 平行於共同軸115之一方向進入聚集區段134,且自拋物面 反射器130朝向共同焦點136經反射作為第二對經反射光線 168a、168b。第二對經反射光線168a、168b然後自雙曲面 反射器140反射且經引導朝向第二焦點137,其中其出射輸 出孔隙150作為具有01度之一準直半角之輸出聚集陽光 170。 以類似於圖1A中所闡述之第一對光線160a、160b之一方 式,圖1B之準直半角α可基於數個考量事項而變化。舉例 而言,旋轉117、傾斜角0、葉片傾斜角δ2及太陽方位角φ2 之準確度可影響輸入光區域與輸出光區域之聚集比及輸出 準直半角α兩者。 圖2展示根據本發明之一個態樣之一聚集曰光收集器2〇〇 158149.doc 14- 201219729 之一透視圖示意圖。在圖2中,收集器外殼210係經放置毗 鄰聚集器區段234之一圓柱形形狀外殼,且共用可以旋轉 方向217旋轉以追蹤太陽位置之一共同軸215»安置於第一 開口 114中之複數個反射葉片22〇係彼此平行’且每一者包 含其可圍繞旋轉之一葉片軸125。在一項特定實施例中, 收集器外殼210可係一透明圓柱形外殼,其包含第一開口 114且亦包含可保護反射葉片22〇免受環境影響之一頂部及 右干側(未展示)。 藉由相對於收集器之基面而使旋轉反射鏡陣列傾斜來實 現可收集照度之一實質增加。此處,將該反射鏡陣列附加 至相對於一靜止圓柱形基底旋轉之一經挖空圓柱體,該靜 止圓柱形基底係齊平安裝於一建築之向南側壁或屋頂上。 該經挖空圓柱體經旋轉以使得百葉板之長軸垂直於含有該 基面之向内法線(亦即,該基底之圓柱形軸)及太陽之方向 之平面。然後使该等百葉板傾斜以使得每一百葉板之法線 平分此等兩個方向。在該等百葉板經如此定向之情況下, 一單個鏡面反射將使入射陽光重定向而向内垂直於該基 面。 圖3展示根據本發明之一個態樣之具有可保護光學組件 免受自然力影響之-平面保護覆蓋物38G之-聚集日光收 集器之—剖面示意圖°為簡要起見’圖3中所示之元件 310至370中之每—者對應於先前已闡述之圖以中所示之相 同編號之元件UG至17G。舉例而言,,之共同軸315對應 於圖1A之共同軸115,光線3術、鳩對以與光線咖、 158149.doc •15· 201219729 祕對行進穿過日光"器⑽類似之—方式行進穿過曰 光收集器300,諸如此類。 圖4A展不根據本發明之—個態樣之具有可保護光學組件 免交自然力影響之-可選響曲保護覆蓋物48〇之一聚集日 光收集器40G之-剖面示意圖。為簡要起見,圖4A中所示 之7L件410至470中之每一者對應於先前已闡述之圖1A中所 示之相同編號元件110至17〇。舉例而言,圖从之共同軸 415對應於圖ία之共同軸115,光線46〇a、46〇b對以與光線 160a、160b對行進穿過日光收集器1〇〇類似之一方式行進 穿過日光收集器400,諸如此類。在一項特定實施例中, 如圖4A中所示之第一開口 414與共同旋轉軸41 5形成係9〇度 之一角Θ。 聚集日光收集器400可進一步包含安置於複數個反射葉 片420與輸出區域416之間的第二複數個反射葉片49〇。第 一複數個反射葉片490可經定位而正交於複數個反射葉片 420,如圖4A中所示,或其可以所期望之某一其他角安 置。第二複數個反射葉片490可各自平行於一毗鄰葉片’ 且各自可以類似於複數個反射葉片42〇之一方式圍繞一葉 片轴4 9 5旋轉。 在某些情形下,第二複數個反射葉片之添加可使聚集曰 光收集器4 0 0車父不易於受旋轉追縱錯誤之影響,且在竿此 情形下可完全替換旋轉追蹤。在一項特定實施例中,來自 任一空間輸入角(需要兩個變量界定)之光可經引導以在衝 擊兩個反射鏡陣列之後平行於軸415。在此實施例中,追 158149.doc -16 - 201219729 蹤太陽可僅需要兩個輸入,亦即,一個用於調整複數個反 射葉片420之角度且一個調整第二複數個反射葉片490之角 度。進一步在此實施例中,第一對經反射之光線461a、 46 lb之路徑包含在進入聚集器區段434之前的自複數個第 二反射葉片490之一額外反射。 經聚集陽光470可經引導朝向一能量轉換裝置455(諸如 一光伏打裝置或一熱轉換裝置),或引導至如別處所闡述 之一内襯反射鏡之管道中。在某些情形下,能量轉換裝置 455可替代地定位於雙曲面反射器44〇之位置處,此乃因此 等能量轉換裝置通常不需要經準直光高效起作用。 圖4B展示根據本發明之一個態樣之具有可保護光學組件 免受自然力之影響之一可選彎曲保護覆蓋物48〇之一聚集 曰光收集器400·之一剖面示意圖。為簡要起見,圖4B中所 不之元件410至470中之每一者對應於先前已闡述之圖1A* 所示之相同編號元件110至170。舉例而言,圖忉之共同軸 415對應於圖丨八之共同軸115,諸如此類。在一項特定實施 例中,如圖4时所示之第—開口叫與共同軸415形成係% 度之一角Θ。 聚集日光收集器卿可進—步包含安置於複數個反射葉 片420與輸出區域416之間的第二複數個反射葉片例,。第 二複數個反射葉片卿可經定位而平行於複數個反射葉片 420’如圖4B中所示,或其可以所期望之某一其他角安 置。第二複數個反射葉片卿可各自平行於—视鄰葉片, 且各自以類似於複數個反射葉片42〇之—方式圍繞一葉片 158149.doc -17- 201219729 轴495’旋轉。 在某些情形下,第二複數個反射葉片之添加可使聚集曰 光收集器400'較不易於受旋轉追蹤錯誤之影響,且在某些 清形下可元全替換旋轉追縱。在一項特定實施例中,來自 任一空間輸入角(需要兩個變量界定)之光可經引導以在衝 擊兩個反射鏡陣列之後平行於軸415。在此實施例中,追 縱太陽可僅需要兩個輸入,亦即,一個用於調整複數個反 射葉片420之角度且一個調整第二複數個反射葉片490之角 度°在某些情形下’第二複數個反射葉片49〇,可替代地具 有一固定位置’且外殼410及複數個葉片420之旋轉可係足 以引導光平行於轴415 ’如熟習此項技術者所已知。 現在將透過聚集日光收集器4〇〇'追縱一對光線。經定向 與共同軸415成一角φ之一第一對光線46〇a、46〇b經引導朝 向第一開口 414且分別自一第一反射葉片421及一第二反射 葉片422反射。第一反射葉片421及第二反射葉片422經定 向而與收集區段410之共同軸415成一第一葉片角δΐ,以使 得第一對光線460a、460b變成第一對經反射之光線461ai、 461b'。第一對經反射之光線461a,、461b,分別自一第三反 射葉片423及一第四反射葉片424反射且變成第二對經反射 之光線462a·、462b1。 第二對經反射之光線462a,、462b,以平行於共同軸415之 一方向進入聚集區段434 ’且分別自抛物面反射器43〇朝向 共同焦點436經反射作為第三對經反射之光線463a·、 463b'。第三對經反射之光線463ai、463b’然後自雙曲面反 158149.doc •18· 201219729 射器440反射且經引導朝向第二焦點437,其中其出射輸出 孔隙450作為具有α度之一準直半角之輸出聚集陽光47〇。 經聚集陽光470可經引導朝向一能量轉換裝置455(諸如 一光伏打裝置或一熱轉換裝置),或引導至如別處所闡述 之一内襯反射鏡之管道中。在某些情形下,能量轉換裝置 455可替代地定位於雙曲面反射器44〇之位置處,此乃因此 等能量轉換裝置通常不需要經準直光高效起作用。 建模一聚集曰光收集器以證實在選定緯度及定向條件下 之效能。圖5展示根據本發明之一個態樣之一日光收集器 陣列500。收集器陣列500包含具有寬度π及間隔$之一系列 平行之内襯反射鏡之百葉板521、522、523,其中共面旋 轉軸525平行於該等百葉板之長軸。該等百葉板經固定(舉 例而言,使用將該等百葉板連接在一起之一桿)以使得一 單個伺服機之運動將產生用以使該陣列中每一百葉板同一 地傾斜之旋轉。一第二伺服機使整個陣列圍繞垂直於該陣 列之平面(亦即’垂直於含有該等百葉板之旋轉軸之平面) 之一軸515旋轉517。以此方式,可能藉助兩個伺服機運動 之一適當組合而達成該等百葉板之向量法線6之任—定 向。 一般而言’並非所有入射至反射鏡陣列上之太陽通量將 影響聚集器可用之通量。收集器陣列5〇〇之效率可經界定 為可用通量與入射通量之比。圖6展示根據本發明之—個 態樣之曰光收集器葉片600之一示意圖。在圖6中,在該反 射鏡陣列已經旋轉以使得ώ垂直於此平面之後,鄰近葉片 158149.doc •19- 201219729 (亦即’百葉板)521、522經展示於含有基面t向内法線 (0)陽之方向⑷之平面内。圖6中所示之方向(ηΛ)對 應於旋轉平面之法線(諸如,圖5中之轴51十該等百葉板 經傾斜以使得來U之入射經重定向朝向^。需要之傾斜 係且針對此傾斜之入射與反射之角度係 ㈣+〇/2。該入射照明含有底部百葉板之平面自所照明 邊緣(區Ό向内—㈣—和彳。—觀測者沿^直接觀看 到该相同平面自相對邊緣(區⑴向内-距離。例。一 對鏡面反彈使_朵始 先線该底部百葉板平移一距離 2—小叫’其令其傳播方向無淨改變。 '°方向傳輸之光自區11離開底部百葉板522,該光係 中(單次反彈傳輸)、或在沿底部百葉板522平移 _ ”小叫之區!中(三次反彈傳輸)、或在平移 Z中(五次反彈傳輸)等到達該㈣。效率㈣所有反射 鏡)係自區I之反强夕她$ &Numbering elements 11 0 to 17 0. For example, the common axis 115 of Figure 1 corresponds to the common axis 115 of Figure 1A, and the like. A second pair of rays 166a, 166b will now be tracked through the gathered daylight collector 1 . A second pair of rays 166a, 166b oriented at an angle φ2 to the common axis 115 are directed toward the first opening 114 and are reflected from a first reflective blade 121 and a second reflective blade 122, respectively. The first reflecting vane 121 and the second reflecting vane 122 are oriented at a second vane angle δ2 with the common axis 115 of the collecting section 11〇 such that the first pair of rays 166a, 166b become the first pair of reflected rays 167a, 167b. The first pair of reflected rays 167a, 167b enter the gathering section 134 in a direction parallel to one of the common axes 115, and are reflected from the parabolic reflector 130 toward the common focus 136 as a second pair of reflected rays 168a, 168b. The second pair of reflected rays 168a, 168b are then reflected from the hyperbolic reflector 140 and directed toward the second focus 137, wherein its exit output aperture 150 concentrates the sunlight 170 as an output having a collimated half angle of 01 degrees. In a manner similar to one of the first pair of rays 160a, 160b illustrated in Figure 1A, the collimation half angle a of Figure 1B can vary based on a number of considerations. For example, the accuracy of the rotation 117, the tilt angle 0, the blade tilt angle δ2, and the solar azimuth angle φ2 may affect both the aggregation ratio of the input light region and the output light region and the output collimation half angle α. Figure 2 shows a schematic perspective view of one of the collected phosphor collectors 2 158149.doc 14-201219729 in accordance with one aspect of the present invention. In FIG. 2, the collector housing 210 is placed adjacent to one of the cylindrical shape housings of the concentrator section 234, and the common rotation direction 217 is rotated to track one of the sun positions. The common axis 215» is disposed in the first opening 114. The plurality of reflective vanes 22 are tethered parallel to one another and each includes a vane shaft 125 that is rotatable about it. In a particular embodiment, the collector housing 210 can be a transparent cylindrical housing that includes a first opening 114 and also includes a top and right stem side (not shown) that protects the reflective vanes 22 from environmental influences (not shown) . A substantial increase in one of the collectible illuminances is achieved by tilting the rotating mirror array relative to the base of the collector. Here, the mirror array is attached to a hollowed-out cylinder that is rotated relative to a stationary cylindrical base that is flush mounted to a south side wall or roof of a building. The hollowed-out cylinder is rotated such that the long axis of the louver is perpendicular to a plane containing the inward normal of the base (i.e., the cylindrical axis of the base) and the direction of the sun. The louvers are then tilted such that the normal to each louver divides the two directions. In the case where the louvers are oriented as such, a single specular reflection will redirect the incident sunlight and be perpendicular to the base inward. 3 shows a cross-sectional view of a concentrating solar collector with a planar protective cover 38G that protects the optical component from the forces of nature in accordance with an aspect of the present invention. For the sake of simplicity, the components shown in FIG. 3 Each of 310 to 370 corresponds to the same numbered elements UG to 17G as shown in the previously illustrated figures. For example, the common axis 315 corresponds to the common axis 115 of FIG. 1A, and the ray 3, 鸠 pairs are similar to the light ray, 158149.doc • 15· 201219729 secret passage through the daylight " Travel through the calender collector 300, and the like. Figure 4A is a cross-sectional view of a collection of daylight collectors 40G having an optional sinusoidal protective cover 48 可 having a protective optical component that is free of the effects of natural forces. For the sake of brevity, each of the 7L members 410 to 470 shown in Fig. 4A corresponds to the same numbered elements 110 to 17A shown in Fig. 1A which have been previously explained. For example, the common axis 415 of the figure corresponds to the common axis 115 of the figure ία, and the pair of rays 46〇a, 46〇b travel in a manner similar to the way that the rays 160a, 160b travel through the daylight collector 1〇〇. Through the daylight collector 400, and the like. In a particular embodiment, the first opening 414 as shown in Figure 4A forms a corner angle of 9 degrees with the common axis of rotation 41 5 . The concentrating daylight collector 400 can further include a second plurality of reflective vanes 49A disposed between the plurality of reflective vanes 420 and the output region 416. The first plurality of reflective vanes 490 can be positioned orthogonal to the plurality of reflective vanes 420, as shown in Figure 4A, or it can be placed at some other desired angle. The second plurality of reflective vanes 490 can each be parallel to an adjacent vane' and each can rotate about a vane shaft 495 in a manner similar to one of the plurality of reflective vanes 42. In some cases, the addition of the second plurality of reflective vanes may make the aggregated light collector 400 enthusiast less susceptible to rotational tracking errors and, in this case, completely replace the rotational tracking. In a particular embodiment, light from any spatial input angle (requiring two variable definitions) can be directed to be parallel to axis 415 after impacting the two mirror arrays. In this embodiment, chasing the sun may require only two inputs, i.e., one for adjusting the angle of the plurality of reflecting vanes 420 and one for adjusting the angle of the second plurality of reflecting vanes 490. Further in this embodiment, the path of the first pair of reflected rays 461a, 46 lb includes additional reflection from one of the plurality of second reflecting vanes 490 prior to entering the concentrator section 434. The concentrated sunlight 470 can be directed toward an energy conversion device 455 (such as a photovoltaic device or a thermal conversion device) or into a conduit of a liner mirror as set forth elsewhere. In some cases, the energy conversion device 455 can alternatively be positioned at the location of the hyperbolic reflector 44, such that the isoelectric conversion device typically does not require efficient operation by collimated light. Figure 4B shows a cross-sectional view of one of the optional curved protective covers 48, which is one of the optional curved protective covers 48, which protects the optical components from the forces of nature, in accordance with an aspect of the present invention. For the sake of brevity, each of the elements 410 through 470 shown in Figure 4B corresponds to the same numbered elements 110 through 170 shown in Figure 1A* previously set forth. For example, the common axis 415 of the figure corresponds to the common axis 115 of Figure 8, and the like. In a particular embodiment, the first opening, as shown in Figure 4, is formed at a corner of the % of the common axis 415. The concentrating solar collector may include an example of a second plurality of reflective vanes disposed between the plurality of reflective vanes 420 and the output region 416. The second plurality of reflective vanes may be positioned parallel to the plurality of reflective vanes 420' as shown in Figure 4B, or it may be placed at some other angle desired. The second plurality of reflective vanes may each be parallel to the adjacent vanes and each rotate about a vane 158149.doc -17-201219729 axis 495' in a manner similar to the plurality of reflective vanes 42〇. In some cases, the addition of the second plurality of reflective vanes may cause the aggregated pupil collector 400' to be less susceptible to rotational tracking errors and, in some clear configurations, to replace the rotational tracking. In a particular embodiment, light from any spatial input angle (requiring two variable definitions) can be directed to be parallel to axis 415 after impacting the two mirror arrays. In this embodiment, the tracking sun may only require two inputs, that is, one for adjusting the angle of the plurality of reflecting blades 420 and one for adjusting the angle of the second plurality of reflecting blades 490. In some cases, the first The second plurality of reflective vanes 49A, alternatively having a fixed position 'and the rotation of the outer casing 410 and the plurality of vanes 420, are sufficient to direct light parallel to the shaft 415' as is known to those skilled in the art. A pair of rays will now be traced through the gathered daylight collectors. The first pair of rays 46a, 46b are directed toward the first opening 414 and are reflected from a first reflecting blade 421 and a second reflecting blade 422, respectively, at an angle φ that is oriented at an angle φ with the common axis 415. The first reflective vane 421 and the second reflective vane 422 are oriented to form a first vane angle δΐ with the common axis 415 of the collection section 410 such that the first pair of rays 460a, 460b become the first pair of reflected rays 461ai, 461b '. The first pair of reflected rays 461a, 461b are reflected from a third reflecting blade 423 and a fourth reflecting blade 424, respectively, and become a second pair of reflected rays 462a, 462b1. The second pair of reflected rays 462a, 462b enter the gathering section 434' in a direction parallel to the common axis 415 and are reflected from the parabolic reflector 43 〇 toward the common focus 436 as a third pair of reflected rays 463a, respectively. ·, 463b'. The third pair of reflected rays 463ai, 463b' are then reflected from the hyperboloid 158149.doc • 18· 201219729 emitter 440 and directed toward the second focus 437, wherein its exit output aperture 450 is collimated as one of the alpha degrees The output of the half angle gathers sunlight for 47 inches. The concentrated sunlight 470 can be directed toward an energy conversion device 455 (such as a photovoltaic device or a thermal conversion device) or into a conduit of a liner mirror as set forth elsewhere. In some cases, the energy conversion device 455 can alternatively be positioned at the location of the hyperbolic reflector 44, such that the isoelectric conversion device typically does not require efficient operation by collimated light. A focused twilight collector is modeled to verify performance at selected latitude and orientation conditions. Figure 5 shows a daylight collector array 500 in accordance with one aspect of the present invention. The collector array 500 includes louvers 521, 522, 523 having a series of parallel lining mirrors of width π and spacing $, wherein the coplanar rotating axis 525 is parallel to the major axes of the louvers. The louvers are fixed (for example, using one of the louvers) to cause movement of a single servo to produce a rotation for tilting each louver in the array . A second servo rotates 517 the entire array about an axis 515 that is perpendicular to the plane of the array (i.e., perpendicular to the plane containing the axis of rotation of the louvers). In this way, it is possible to achieve the orientation of the vector normal 6 of the louvers by a suitable combination of one of the two servo motions. In general, not all solar flux incident on the mirror array will affect the flux available to the aggregator. The efficiency of the collector array 5 can be defined as the ratio of available flux to incident flux. Figure 6 shows a schematic diagram of one of the glare collector blades 600 in accordance with the present invention. In FIG. 6, after the mirror array has been rotated such that the ώ is perpendicular to the plane, adjacent blades 158149.doc • 19-201219729 (ie, 'louvers) 521, 522 are shown in the inward-containing method with the base t Line (0) in the plane of the direction of the sun (4). The direction (ηΛ) shown in Figure 6 corresponds to the normal to the plane of rotation (such as the axis 51 in Figure 5, the louvers are tilted such that the incidence of U is redirected towards ^. The angle of incidence and reflection for this tilt is (4) + 〇 / 2. The incident illumination contains the plane of the bottom louver from the illuminated edge (zone Ό inward - (four) - and 彳. - the observer directly observes the same along ^ The plane is from the opposite edge (zone (1) inward-distance. For example, a pair of mirror bounces causes the bottom slats to translate a distance of 2 - yelling 'there is no net change in the direction of propagation. '° direction transmission The light exits the bottom louver 522 from the zone 11 in the light system (single bounce transmission), or in the zone of the squatting area along the bottom louver 522! (three bounce transmissions), or in the translation Z (five The second bounce transmission) waits for the (four). Efficiency (four) all mirrors) is from the zone I's anti-strong eve her $ &

之夂弹之總和與區π之交疊除以單一區J 度,且可由以下方程式表示: ΟνThe sum of the 夂 夂 and the area π is divided by the single area J degree and can be expressed by the following equation: Ον

Smirror = ' 〔£,2,岣 +气、 ^s tan^( singL ,max 广、 Ί 〇 W_ cosd0 ] W l ’ *y sin<9. ’ "7 COS 6», ;-—-=[ |sin^#| 示線段々與 其中 °^13^4]5„^(0,池1办2,;^_111&^1,;〇)表 X3 \之交疊。 I58l49.doc -20· 201219729 度之餘弦之年日平均值。該效率之評估需要該等反射鏡之 寬度間隔比之規格。存在此規格超過一簡單固定值之諸多 可設想之方案。舉例而言,肖寬度間隔比可藉由藉助伸縮 具有可變寬度(w)之百葉板而增加相對於陣列法線之角來 增加。無論選定何種方案,當⑺吨<cos0。時,該效率等於 一,且當C〇4>C〇吨時,該效率等於COSTCO吨。「權利」效 能之特徵在於針對橫座標之每一值之此效率值。緯度30 度、45度及60度處之南側安裝收集器與屋頂收集器兩者之 值彙總於表1中。 具有一固定值^,之一反射鏡陣列不可能以單位效率使 太陽入射之每-方向轉向基面之向内法線。為判定最佳折 衷固定值,選定試驗值且評估c〇d之年日平均值, 從而導致針對一緯度45度 夏&屋頂收集态將妒/ί = ι.6作 為該最佳折衷固定值。雄械. 值雖然r/ki·6並非緯度30度、45度及 6〇度處之側安裝收集器與屋頂收集器兩者之精確最佳值, 但其足夠作為針對所有此等情形係接近最佳之一折衷。針 對W-1.6之c〇(u年曰平均值彙總於表】之第三 中0 ' 「無限伸縮百葉板(或’另-選擇係,具有-可調整間 2之百葉板)將係實現表1中所示之「權利」效能所 品的。此等百葉板在實踐中難 宠T難以5又汁,然而,預想伸縮 ,、元王收合寬度之1;5倍 ^百葉板係合理的。在某些情 下’具有調整其間隔之某一 ’、一 早此力之百葉板亦係可能的。 對緯度30度、45度及60许老 又處之具有能夠在值妒/>y = I 6 158149.doc •21· 201219729 之 u· ^ mirrors ^2.4之間伸縮之百葉板之-屋頂收集器之c。岣 年曰平均值之評估彙總於表1之第四列中。 亦已建模一雙層反射鏡陣列(諸如圖4B中所示),亦即, 兩個百葉板層之旋轉軸係平行的。該雙層反射鏡陣列包含 將光引向-中間方向之一外部構件(亦即,複數個反射葉 片420) ’及將該光往回引向所期望傳輸方向之—内部構件 (亦即,第二複數個反射葉片彻卜選定中間方向以增加兩 個陣列之個職率。已經建模數個㈣,且藉_下具體 It形適田表示.⑴將到達於陣列法線遠離所期望傳輸方向 K =-2(〇23度範圍内⑽<23。)之入射引向方向(之1一3〇 外部陣列,由下式指定: 9Ύ Cn^ /9 — = 3.0 = - cos^ s sin((^0'+^)/2) 其確保該外部陣列之最大效率,且(2)將中間方向y往回引 向Θ。=-2〇。之一妒/J = 1 4内部陣列。針對|4>23·,使該外部陣 列之百葉板轉動而平行於太陽入射之方向且藉由該内部陣 列來完全完成該引南么=_2〇。。緯度30度、45度及60度處之 側安裝收集器及屋頂收集器之值彙總於表1之最後列,中。 表1 複數個葉片之傾斜角 (圖1A、圖1B、圖3之所示90-Θ) 南側安裝 (北緯) 屋頂安裝 (緯度) 30度 45度 60度 30度 45度 60度 0度傾斜;權利 0.31 0.41 0.47 0.54 0.45 0.35 20度傾斜;權利 0.56 0.65 0.66 0.80 0.75 0.67 20度傾斜;(W/s)=1.6 0.46 0.50 0.45 0.56 0.58 0.55 158149.doc -22· 201219729 20 度傾斜;1.6<(W/s><2.4 0.52 0.58 0.54 0.67 0.66 0 61 如圖4B中之兩個平行葉片層 20度傾斜 (W/s)inner=1.4 (W/s)outer=3.0 Θ0=2;3 度 0.47 0.53 0.51 0.63 0.62 0.58 表1中之各列之比較大體而言表明··(a)使該陣列傾斜僅 僅20度增加可用通量;(b)即使最簡單之反射鏡陣列保留與 傾斜相關聯之增益之多數,仍足夠使得經傾斜陣列之實際 值超過一未傾斜陣列之「權利」;(c)複雜陣列設計可展現 增益,諸如針對兩個平行葉片層所示;然而,應證明此等 增益優於一較簡單設計之優點。提供至聚集器區段之年曰 平均可用通量(假定永久晴朗條件)係等於太陽通量(約ι〇5Smirror = '[£,2,岣+气, ^s tan^( singL , max 广, Ί 〇 W_ cosd0 ] W l ' *y sin<9. ' "7 COS 6», ;---=[ |sin^#| shows the line segment 々 with the intersection of °^13^4]5„^(0,池1办2,;^_111&^1,;〇) table X3\. I58l49.doc -20· The average daily value of the cosine of 201219729. The evaluation of this efficiency requires the width-to-space ratio of these mirrors. There are many conceivable solutions for this specification that exceed a simple fixed value. For example, the width-to-width ratio can be Increasing the angle relative to the normal to the array by stretching the louver having a variable width (w). Regardless of the solution chosen, when (7) tons <cos0, the efficiency is equal to one, and when C〇 This efficiency is equal to COSTCO ton when 4 〇 〇 。. The “right” effect is characterized by the efficiency value for each value of the abscissa. The south side installation collector and roof collection at 30, 45 and 60 degrees latitude The values of both are summarized in Table 1. With a fixed value ^, one of the mirror arrays is not possible to turn the sun's incidence into the base plane in unit efficiency. Internal normal. To determine the best compromise fixed value, the test value is selected and the annual average of c〇d is evaluated, resulting in a summer latitude of 45 degrees for a latitude and the roof collection state will be 妒/ί = ι.6 as the most Good compromise value. Male value. Although r/ki·6 is not the exact best value of the side mounted collector and roof collector at 30 degrees, 45 degrees and 6 degrees latitude, it is enough for all These situations are close to the best compromise. For the W-1.6 c〇 (u year average is summarized in the table), the third of the 0' "infinitely retractable louver (or 'other-selection system, with - can Adjusting the slats of the room 2 will achieve the "right" effect shown in Table 1. These slats are difficult to pamper T in practice and it is difficult to be 5 and juice. However, it is expected to be stretched, and the width of the yuan is folded. 1; 5 times ^ louver is reasonable. In some cases, 'the slats with the ability to adjust the interval', the early ones are also possible. For the latitudes of 30 degrees, 45 degrees and 60 old and There is a slat that can be stretched between u· ^ mirrors ^2.4 with a value 妒/>y = I 6 158149.doc •21· 201219729 - The roof collector c. The evaluation of the mean value of the year is summarized in the fourth column of Table 1. A double-layer mirror array (such as shown in Figure 4B) has also been modeled, that is, two louvers The rotation axes of the plies are parallel. The double-layer mirror array includes an outer member (i.e., a plurality of reflective vanes 420) that directs light toward the middle direction and directs the light back to the desired direction of transmission. The internal components (i.e., the second plurality of reflective vanes are selected in the middle direction to increase the odds of the two arrays. Several (4) models have been modeled, and the specific It shape is represented by (1). The incident direction of the array normal is far from the expected transmission direction K = -2 (in the range of 23 degrees (10) < 23). (1 to 3〇 external array, specified by: 9Ύ Cn^ /9 — = 3.0 = - cos^ s sin((^0'+^)/2) which ensures maximum efficiency of the external array, and ( 2) Lead the intermediate direction y back to Θ.=-2〇. One 妒/J = 1 4 internal array. For |4>23, rotate the louver of the external array parallel to the direction of sun incidence And the inner array is completely completed by the inner array. The values of the side mounted collectors and the roof collectors at the latitudes of 30 degrees, 45 degrees, and 60 degrees are summarized in the last column of Table 1. 1 Tilt angle of a plurality of blades (90-Θ shown in Figure 1A, Figure 1B, Figure 3) South side installation (north latitude) Roof installation (latitude) 30 degrees 45 degrees 60 degrees 30 degrees 45 degrees 60 degrees 0 degrees inclination; 0.31 0.41 0.47 0.54 0.45 0.35 20 degree tilt; right 0.56 0.65 0.66 0.80 0.75 0.67 20 degree tilt; (W/s) = 1.6 0.46 0.50 0.45 0.56 0.58 0.55 158149.doc -22· 201219729 20 degree tilt; 1.6 < (W / s >< 2.4 0.52 0.58 0.54 0.67 0.66 0 61 as shown in Figure 4B two parallel blade layer 20 degree tilt (W / s) inner = 1.4 (W / s)outer = 3.0 Θ0=2; 3 degrees 0.47 0.53 0.51 0.63 0.62 0.58 The comparison of the columns in Table 1 generally indicates that (a) the array is tilted by only 20 degrees to increase the available flux; (b) even the simplest reflection The mirror array retains a majority of the gain associated with the tilt, still sufficient for the actual value of the tilted array to exceed the "right" of an un-tilted array; (c) the complex array design can exhibit gain, such as shown for two parallel blade layers However, it should be demonstrated that these gains outweigh the advantages of a simpler design. The average available flux to the concentrator section (assuming permanent sunny conditions) is equal to the solar flux (approximately ι〇5)

Lm/m2 )乘以收集器之覆蓋區之面積,乘以表丄中所提供之 值。一般而言,針對一20度傾斜(亦即,θ=7〇度)上之一簡 單 陣列,對於緯度3 0度、4 5度或6 0度處之南側安裝 收集器及屋頂收集器兩者,由一 1>5米直徑經挖空圓柱體 收集器中之此陣列提供至該聚集器之年日平均可用通量將 係約 88,000 Lm。 在一項特定實施例中,如別處所闡述,聚集器區段包含 一大抛物面鏡及一小雙曲面鏡。該抛杨面之焦點駐存於基 底之頂表面之中心處,且該抛物面之直徑等於該基底之内 徑°因此該拋物面之深度係該基底之内徑之四分之一,且 其表面之最大坡度係45度。該抛物面擁有圍繞其頂點之一 圓形出射孔隙’其相對於該基底之覆蓋區之面積指定該收 集器之聚集比。 158149.doc -23· 201219729 該雙曲面之第一焦點係與該抛物面之焦點重合,第二焦 點駐存於該出射孔隙之中心處,且該基底之頂表面之平面 内之該雙曲面之直徑係等於該出射孔隙之直徑。此反射鏡 組態係一卡塞格偷望遠鏡之組態’且基本光學功能係與此 等望遠鏡之功能相同。 對於來自該反射鏡陣列之經完美準直且準確向下之入 射’在該雙曲®鏡之半徑與該基底之半徑之㈣越該基底 之頂表面之所有光將經聚焦於該出射孔隙之中心上。在一 望遠鏡中,X射方向之極小偏轉以一有序方式映射成該出 射孔隙内之焦點之小偏轉。對本聚集器而言,存在於來自 曰輪之入射中之任何偏轉皆導致該出射孔隙處之小於此孔 隙之半徑之位移。此放寬之要求之含意係光學元件之製作 及放置中所需要之精確度之實質放寬。 太陽對邊半角係約%度。若該陣列中之百葉板係完全平 坦且經完美對準則由該反射鏡陣列傳輸之準直之半角亦將 係!/4度’ j_若該等百葉板以由纟陽位置所規定之角度經準 確傾斜則此傳輸亮度之形心將準確向下。此等因素之任一 者之不精確性可導致向下引導之傳輸亮度之半角之一增 加"針對約1GG之-聚集比,由該反射鏡陣列傳輸之亮度 之半角可維持在約丨/2度至i度以維持物%之收集器效率。 所製造之反射鏡可相對於其理想拋物線或雙曲線形式而 展現各種變形。此等變形之量值及性質將取決於所使用之 製k材料及方法。針對較低聚集比,拋物線變形之影響將 較小’且不能熱成型(或以其他方式製作)成此精確度將必 I58149.doc -24- 201219729 需減小目標聚集比。減小之聚集將需要較小收集器覆蓋區 (亦即’所收集較少流明)或較大之出射孔隙(亦即,較大光 分佈管道;)。 以下係本發明之實施例之一清單。 條款1係一聚集日光收集器,其包括:—收集區段,其 具有一第一開口以用於接收陽光及一相對第二開口以用於 傳輸陽光;複數個可移動反射葉片,其經安置而毗鄰該第 —開口用於將所接收陽光引導至該相對第二開口;一拋物 面反射器,其經安置以將該陽光之一主要部分反射通過該 相對第二開口至經安置而B比鄰該拋物面反射器之一焦點之 雙曲面反射器;及一輸出孔隙,其經安置以接受自該雙 曲面反射器反射之陽光。 條款2係條款丨之聚集日光收集器,其中該收集區段包括 一圓柱體。 條款3係條款1或條款2之聚集日光收 區段與該抛物面反射器中之至少一者繞一共同轴:轉收集 條款4係條款⑴之聚集曰光收集器,其中該收集區段 繞一共同軸旋轉且該拋物面反射器係靜止的。 條款5係條款1至4之聚集日光收集器,其中該第一開口 與該收集區段之一中'心軸相交成小於9〇度之一角。 條款6係條款5之聚集日光收集器,其中該角係介於約2〇 度與約70度之間。 條款7係條款5至6之聚集日光收集器,其中該角係7〇 度。 158149.doc -25- 201219729 條款8係條款1至7之聚集日 少部分地封閉該第一開口之_ 光收集器,其進一步包括至 保護覆蓋物》 其中該保護覆蓋物包 條款9係條款8之聚集日光收集琴, 括一光學透明材料。' 條款1〇係條款8至9之聚集日光收集器,其中該保護覆蓋 物包括一平面表面或一圓頂狀表面。 條款11係條款1至10之聚集 卞口尤彳文集态,其中該拋物面 反射器及該雙曲面反射器包含介 匕s "於約2:1與約100:1之間的 一組合聚集比。 曰光收集器,其中傳輸穿過 條款12係條款1至11之聚集 該輸出孔隙之該陽光係至少部分地經準直。 條款13係條款1至12之聚隼日氺胳隹#丄 取果曰光收集器,其中傳輸穿過 該輸出孔隙之該陽光包含不大於約2〇度之一準直半角。 條款14係條款1至13之聚集日光收集器,其中該複數個 可移動反射葉片中之每一去白人 母有包含正交於該中心轴之一葉片 旋轉轴。 1 條款15係條款15_14之聚集日光收集器,其中該複數個 可移動反射葉片中之每—者平行於—视鄰葉片。 條款16係一聚集日光收集器,其包括:—陽光收集區 段,其經組態以透過一輸入區接收一第一陽光束且朝向一 第:輸出區引導一經反射第二陽光束,該經反射第二陽光 束實質上平行於該陽光收集區段之―令心軸;及—陽光聚 集區#又’其經文置而毗鄰該第一輸出區且經組態以接收該 經反射第二陽光束,自一第一聚集器表面反射,且自一第 158149.doc -26· 201219729 二聚集器表面反射,藉此形成被引導至比該第一輪出區小 之一輸出孔隙之一經聚集陽光束。 條款17係條款16之聚集日光收集器,其中該陽光收集區 段包括一圓柱形形狀。 條款18係條款16至17之聚集日光收集器,其中該第一聚 集器表面包括一反射抛物表面。 條款19係條款16至18之聚集日光收集器,其中該第二聚 集器表面包括一反射雙曲表面。 條款20係條款16至19之聚集日光收集器,其中該輸入區 包括第一複數個可移動反射葉片。 條款21係條款20之聚集日光收集器,其中該第一複數個 可移動反射葉片中之母一者包含正交於該中心軸之一第一 葉片旋轉軸。 條款22係條款20至21之聚集曰光收集器,其中該第一複 數個可移動反射葉片中之每一者平行於一田比鄰葉片。 條款23係條款16至22之聚集日光收集器,其中該輸入區 與該中心軸之間的一角係在自約2〇度至約6〇度之一範圍 中。 條款24係條款16至23之聚集日光收集器,其中該陽光收 集區段或該陽光聚集區段中之至少一者能夠圍繞該中心軸 旋轉。 條款25係條款16至,24之聚集日光收集器,其中該第一輸 出區與該輸出孔隙之一面積比大於約1 〇且小於約丨〇〇。 條#欠2 6係條放16至2 5之經聚集曰光收集器,其中該經聚 158149.doc -27- 201219729 集陽光束包括不大於約20度之一準直半角。 條款27係條款16至26之聚集日光收集器,其進一步包括 至少部分地封閉該輸入區之一保護覆蓋物。 條款28係條款16至27之聚集日光收集器,其進一步包括 安置於該輸入區與該第一輸出區之間的第二複數個可移動 葉片。 條款29係條款28之聚集日光收集器,其中該第二複數個 可移動葉片中之每-者包含正交於該中心、軸且平行於該第 一葉片旋轉軸之一第二葉片旋轉軸。 條款30係條款28之聚集收㈣,其巾該第:複數個w 動葉片中之每一者包含正交於該中心軸且正交於該第—葉 片旋轉軸之一第二葉片旋轉轴。 、 條款3H系條款U30之聚集日光收集器,其中來自該 出孔隙之該陽光係傳輸至—反射f道之-進口孔隙中。 條款32係條款1至30之聚集日光收集器,其中來自該】 出孔隙之该陽光係傳輸至一光伏打電池上。 條款33隸款丨錢之聚集日光收集器,其中來自⑷ 孔隙之该陽光係傳輸至一熱轉換裝置上。 條款34係條款31之聚集日光收集器,其中—人造光心 輸至一反射管道之一,第二進口孔隙中。 條款35係條款34之聚集日光收集器,其中該人造光❿ 铋式化以在該管道中維持一均勻光通量。 *非另有& 7F ’否則本說明書及巾請專利範圍中所使^ 之表示特徵大小、數量及物理性質之所有數值皆應理心 158l49.doc -28- 201219729 由術語「約(about)」修飾《因此’除非指示相反之情形, 否則上述說明書及隨附申請專利範圍中所闡明之數值參數 係近似值,其可依據熟習此項技術者利用本文所揭示之教 示内容來試圖獲得之期望性質而改變。 本文中引用之所有參考文獻及出版物皆以全文引用之方 式明確地併入本文中,除可能與本發明直接相矛盾之内容 以外。儘管本文中已圖解說明並闡述具體實施例,但熟習 此項技術者將瞭解,可使用各種替代及/或等效之實施方 案來替換所展示及闡述之具體實施例,而不背離本發明之 範疇。本申請案旨在涵蓋對本文中所論述之具體實施例的 任何改動或變化形式。因此,意欲使本發明僅受申請專利 範圍及其等效内容限制。 【圖式簡單說明】 圖1A展示一聚集日光收集器之一剖面示意圖; 圖1B展示一聚集曰光收集器之一剖面示意圖; 圖2展不一聚集日光收集器之一透視圖示意圖; 圖3展示一聚集曰光收集器之一剖面示意圖; 圖4A展示-聚集日光收集器之—剖面示意圖; 圖4B展示一聚集曰光收集器之一剖面示意圖; 圖5展不一日光收集器陣列之一透視圖示意圖;且 圖6展示日光收集器葉片之—示意圖。 【主要元件符號說明】 100 聚集曰光收集器 110 收集區段 158149.doc •29· 201219729 114 第一開口 115 共同軸 116 第二開口 117 旋轉方向 120 可移動反射葉片 121 第一反射葉片 122 第二反射葉片 125 葉片軸 130 抛物面反射器 134 聚集區段 136 共同焦點 137 第二焦點 140 雙曲面反射器 150 輸出孔隙 160a 光線 160b 光線 161a 光線 161b 光線 162a 光線 162b 光線 170 輸出聚集陽光 166a 光線 166b 光線 167a 光線 167b 光線 158149.doc •30- 201219729 168a 光線 168b 光線 200 聚集曰光收集器 210 收集器外殼 215 共同軸 220 反射葉片 234 聚集器區段 300 聚集曰光收集器 310 收集區段 314 第一開口 315 共同軸 316 第二開口 320 可移動反射葉片 321 第一反射葉片 322 第二反射葉片 325 葉片軸 330 抛物面反射器 334 聚集區段 336 共同焦點 337 第二焦點 340 雙曲面反射器 350 輸出孔隙 360a 光線 360b 光線 158149.doc -31- 201219729 361a 光線 361b 光線 362a 光線 362b 光線 370 輸出聚集陽光 380 平面保護覆蓋物 400 聚集日光收集器 410 收集區段 414 第一開口 415 共同軸 416 第二開口 420 可移動反射葉片 421 第一反射葉片 422 第二反射葉片 430 拋物面反射器 434 聚集區段 436 共同焦點 437 第二焦點 440 雙曲面反射器 450 輸出孔隙 460a 光線 460b 光線 461a 光線 461b 光線 158149.doc •32- 201219729 462a 光線 462b 光線 470 輸出聚集陽光 480 可選彎曲保護覆蓋物 423 第三反射葉片 424 第四反射葉片 455 能量轉換裝置 490 反射葉片 495 葉片軸 400' 聚集日光收集器 461a, 光線 461b' 光線 462a, 光線 462b' 光線 463a' 光線 463b' 光線 490' 反射葉片 495' 葉片軸 500 曰光收集器陣列 515 軸 521 百葉板 522 百葉板 523 百葉板 525 共面旋轉轴 600 曰光收集器葉片 158149.doc -33-Lm/m2) is multiplied by the area of the collector's footprint and multiplied by the value provided in the header. In general, for a simple array of 20 degree tilt (ie, θ = 7 degrees), for south side mounted collectors and roof collectors at latitudes of 30 degrees, 45 degrees, or 60 degrees The average daily available flux provided by the array in a 1> 5 meter diameter hollowed-out cylinder collector to the concentrator will be about 88,000 Lm. In a particular embodiment, the concentrator section includes a large parabolic mirror and a small hyperboloid mirror as set forth elsewhere. The focus of the throwing face resides at the center of the top surface of the substrate, and the diameter of the paraboloid is equal to the inner diameter of the substrate. Therefore, the depth of the paraboloid is one quarter of the inner diameter of the substrate, and the surface thereof The maximum slope is 45 degrees. The paraboloid has a circular exit aperture around one of its vertices' its area relative to the footprint of the substrate specifying the collection ratio of the collector. 158149.doc -23· 201219729 The first focus of the hyperboloid coincides with the focus of the paraboloid, the second focus resides at the center of the exit aperture, and the diameter of the hyperboloid in the plane of the top surface of the substrate The line is equal to the diameter of the exit aperture. This mirror configuration is a configuration of a Kaseger telescope and the basic optical function is identical to that of these telescopes. For perfectly collimated and accurately downward incidence from the mirror array, all of the light at the radius of the hyperbolic mirror and the radius of the substrate (four) above the top surface of the substrate will be focused on the exit aperture On the center. In a telescope, the very small deflection of the X-ray direction is mapped in an orderly manner to a small deflection of the focus within the exit aperture. For the present concentrator, any deflection present in the incident from the 曰 wheel results in a displacement of the exit aperture that is less than the radius of the aperture. The implication of this relaxation requirement is the substantial relaxation of the precision required for the fabrication and placement of optical components. The sun is about half the angle to the side. If the louver in the array is completely flat and the collimated half angle of the mirror array transmitted by the perfect pair of criteria will also be! /4 degrees' j_ if the louvers are at an angle specified by the position of the sun With accurate tilt, the centroid of this transmitted brightness will be exactly downward. The inaccuracy of either of these factors may result in an increase in one of the half angles of the downwardly directed transmission luminance " for an aggregation ratio of about 1 GG, the half angle of the luminance transmitted by the mirror array may be maintained at approximately 丨/ 2 degrees to i degrees to maintain the collector efficiency of %. The mirrors produced can exhibit various deformations relative to their ideal parabolic or hyperbolic form. The magnitude and nature of such deformations will depend on the materials and methods used. For lower aggregation ratios, the effect of parabolic deformation will be smaller and not thermoformed (or otherwise made). This accuracy will be reduced. I58149.doc -24- 201219729 The target aggregation ratio needs to be reduced. Reduced aggregation will require a smaller collector footprint (i.e., 'less lumens collected') or larger exit apertures (i.e., larger light distribution conduits;). The following is a list of one embodiment of the invention. Clause 1 is an aggregated daylight collector comprising: a collection section having a first opening for receiving sunlight and a second opening for transmitting sunlight; a plurality of movable reflective vanes disposed Adjacent to the first opening for directing the received sunlight to the opposite second opening; a parabolic reflector disposed to reflect a major portion of the sunlight through the opposite second opening to be disposed adjacent to the B a hyperbolic reflector of one of the focal points of the parabolic reflector; and an output aperture disposed to receive sunlight reflected from the hyperbolic reflector. Clause 2 is an aggregated daylight collector of the clauses, wherein the collection section comprises a cylinder. Clause 3 is a generalized axis of the aggregated daylight harvesting section of clause 1 or clause 2 and at least one of the parabolic reflectors: a collection of light collection collectors according to clause 4 (1), wherein the collection section is wound around a The common axis rotates and the parabolic reflector is stationary. Clause 5 is the concentrating daylight collector of clauses 1 to 4, wherein the first opening intersects the 'mandrel' in one of the collection sections to an angle of less than 9 degrees. Clause 6 is the aggregated daylight collector of clause 5, wherein the horn is between about 2 degrees and about 70 degrees. Clause 7 is an aggregated daylight collector of clauses 5 to 6, wherein the horn is 7 degrees. 158149.doc -25- 201219729 Clause 8 is a gathering day of clauses 1 to 7 that partially encloses the first opening _ light collector, which further includes a protective covering" wherein the protective covering article clause 9 is clause 8 The collection of the daylight collecting piano includes an optically transparent material. Item 1 is an aggregated daylight collector of clauses 8 to 9, wherein the protective covering comprises a planar surface or a dome-shaped surface. Clause 11 is a collection of clauses 1 to 10, wherein the parabolic reflector and the hyperbolic reflector comprise a combination of s " between about 2:1 and about 100:1. . A calender collector, wherein the sunlight that passes through the aggregate of the output apertures of clause 12, clauses 1 through 11, is at least partially collimated. Clause 13 is a combination of clauses 1 to 12 of 隼 隹 隹 丄 丄 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取Item 14 is the aggregated daylight collector of clauses 1 to 13, wherein each of the plurality of movable reflective vanes comprises a vane rotation axis orthogonal to the central axis. Clause 15 is the aggregated daylight collector of clause 15_14, wherein each of the plurality of movable reflective vanes is parallel to the adjacent vane. Clause 16 is an aggregated daylight collector comprising: a sunlight collection section configured to receive a first beam of sunlight through an input zone and to direct a reflected second beam of sunlight toward a first: output zone Reflecting the second solar beam substantially parallel to the "manipulating axis" of the sunlight collecting section; and - the sunlight collecting area #又' is placed adjacent to the first output area and configured to receive the second reflected a beam of sunlight reflected from a surface of the first concentrator and reflected from a surface of the second concentrator, thereby forming one of the output apertures that are directed to be smaller than the first wheel-out region Sunbeams. Item 17 is the concentrating daylight collector of clause 16, wherein the sunlight collecting section comprises a cylindrical shape. Clause 18 is the concentrating daylight collector of clauses 16 to 17, wherein the first collector surface comprises a reflective parabolic surface. Item 19 is the concentrating daylight collector of clauses 16 to 18, wherein the second collector surface comprises a reflective hyperbolic surface. Clause 20 is the concentrating daylight collector of clauses 16 to 19, wherein the input zone comprises a first plurality of movable reflective vanes. Clause 21 is the concentrating daylight collector of clause 20, wherein one of the first plurality of movable reflective vanes comprises a first vane rotation axis orthogonal to the central axis. Clause 22 is the aggregated light collector of clauses 20 to 21, wherein each of the first plurality of movable reflective vanes is parallel to a field adjacent vane. Item 23 is an aggregated daylight collector of clauses 16 to 22, wherein a corner between the input zone and the central axis is in a range from about 2 degrees to about 6 degrees. Item 24 is the concentrating daylight collector of clauses 16 to 23, wherein at least one of the sunlight collecting section or the sunlight collecting section is rotatable about the central axis. Clause 25 is the concentrating daylight collector of clauses 16 through 24, wherein an area ratio of one of the first output zone to the output aperture is greater than about 1 〇 and less than about 丨〇〇. Strip # 欠2 6 strips placed 16 to 2 5 by the aggregated light collector, wherein the collected 158149.doc -27- 201219729 concentrated sunlight beam includes a collimation half angle of no more than about 20 degrees. Item 27 is an aggregated daylight collector of clauses 16 to 26, further comprising at least partially enclosing one of the input areas of the protective covering. Item 28 is the concentrating daylight collector of clauses 16 to 27, further comprising a second plurality of movable vanes disposed between the input zone and the first output zone. Clause 29 is the concentrating daylight collector of clause 28, wherein each of the second plurality of movable vanes comprises a second vane axis of rotation orthogonal to the center, the axis and parallel to one of the first vane axis of rotation. Clause 30 is a collection of clauses 28, wherein each of the plurality of w-blades includes a second blade rotation axis orthogonal to the central axis and orthogonal to one of the first blade rotation axes. Clause 3H is an aggregated daylight collector of clause U30, wherein the solar system from the aperture is transported into the inlet aperture of the reflective f-channel. Item 32 is an aggregated daylight collector of clauses 1 to 30, wherein the sunlight from the aperture is transmitted to a photovoltaic cell. Clause 33 is a collection of sun-collecting daylight collectors in which the sunlight from (4) apertures is transmitted to a thermal conversion device. Item 34 is an aggregated daylight collector of clause 31, wherein - the artificial optical core is delivered to one of the reflective tubes and the second inlet aperture. Item 35 is an aggregated daylight collector of clause 34, wherein the artificial diaphragm is patterned to maintain a uniform luminous flux in the conduit. *Non-other & 7F 'Otherwise, all the values indicating the size, quantity and physical properties of ^ in this specification and the scope of the patent should be taken care of. 158l49.doc -28- 201219729 by the term "about" Modifications "Therefore, unless indicated to the contrary, the numerical parameters set forth in the above description and the accompanying claims are approximations, which are intended to obtain the desired properties in accordance with the teachings disclosed herein. And change. All references and publications cited herein are hereby expressly incorporated by reference in their entirety in their entirety in their entirety in the extent of the disclosure of the disclosure. Although specific embodiments have been illustrated and described herein, it will be understood by those skilled in the art category. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, the invention is intended to be limited only by the scope of the claims and the equivalents thereof. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1A shows a schematic cross-sectional view of one of the collected daylight collectors; Figure 1B shows a schematic cross-sectional view of one of the collected daylight collectors; Figure 2 shows a schematic view of one of the gathered daylight collectors; A schematic cross-sectional view of one of the collected concentrating collectors is shown; FIG. 4A shows a cross-sectional view of the concentrating solar collector; FIG. 4B shows a schematic cross-sectional view of one of the concentrating concentrating collectors; A schematic view of the perspective; and Figure 6 shows a schematic view of the daylight collector blades. [Main Element Symbol Description] 100 Aggregation Twilight Collector 110 Collection Section 158149.doc • 29· 201219729 114 First Opening 115 Common Axis 116 Second Opening 117 Direction of Rotation 120 Removable Reflecting Blade 121 First Reflecting Blade 122 Second Reflecting blade 125 blade axis 130 parabolic reflector 134 gathering section 136 common focus 137 second focus 140 hyperbolic reflector 150 output aperture 160a light 160b light 161a light 161b light 162a light 162b light 170 output concentrated sunlight 166a light 166b light 167a light 167b Light 158149.doc • 30- 201219729 168a Light 168b Light 200 Aggregation Twilight Collector 210 Collector Housing 215 Common Axis 220 Reflecting Blades 234 Aggregator Section 300 Aggregation Twilight Collector 310 Collection Section 314 First Opening 315 Common Shaft 316 second opening 320 movable reflective blade 321 first reflective blade 322 second reflective blade 325 blade axis 330 parabolic reflector 334 aggregating section 336 common focus 337 second focus 340 hyperbolic reflector 350 output aperture 360 a light 360b light 158149.doc -31- 201219729 361a light 361b light 362a light 362b light 370 output concentrated sunlight 380 plane protection cover 400 concentrated daylight collector 410 collection section 414 first opening 415 common axis 416 second opening 420 Moving Reflecting Blades 421 First Reflecting Blades 422 Second Reflecting Blades 430 Parabolic Reflector 434 Aggregation Section 436 Common Focus 437 Second Focus 440 Hyperbolic Reflector 450 Output Pores 460a Light 460b Light 461a Light 461b Light 158149.doc • 32- 201219729 462a Light 462b Light 470 Output concentrating sunlight 480 Optional curved protective cover 423 Third reflective blade 424 Fourth reflective blade 455 Energy conversion device 490 Reflecting blade 495 Blade axis 400' Agglomerated daylight collector 461a, Light 461b' Light 462a, Light 462b' Light 463a' Light 463b' Light 490' Reflecting blade 495' Blade axis 500 Light collector array 515 Shaft 521 Blinds 522 Blinds 523 Blinds 525 Coplanar rotating shaft 600 Twilight collector blades 158149.doc -33-

Claims (1)

201219729 七、申請專利範圍: 1. 一種聚集曰光收集器,其包括: 收集區段,其且右一笛 »〇 八有第一開口以用於接收陽光及一 相對第二開口以用於傳輸陽光; 複數個可移動反射葉片,其經安置而田比鄰該第一開口 用於將所接收陽光引導至該相對第二開口; 一拋物面反射器’其經安置以將該陽光之—主要部分 。。射通過4相對第—開口至經安置而她鄰該抛物面反射 器之—焦點之一雙曲面反射器:及 輸出孔隙’其經安置以接受自該雙曲面反射器反射 之陽光。 2· "°請㈣1之聚集日Μ集器,其中該收集區段包括- 圓柱體。 月求項1之聚集日光收集器,其中該收集區段與該抛 物=反射器中之至少一者繞-共同軸旋轉。 4·如π求項1之聚集日光收集器,其中該收集區段繞一共 同軸旋轉且該抛物面反射器係靜止的。 5. t :求項1之聚集日光收集器,其中該第一開口與該收 集區段之—中心軸相交成小於90度之一角。 如叫求項5之聚集曰光收集器,其中該角係介於約20度 與約70度之間。 士印求項S之聚集日光收集器,其中該角係70度》 8 ·如§青求項〗夕瓦 之聚集曰先收集器,其進一步包括至少部分 地封閉該第-開口之-保護覆蓋物。 158149.doc 201219729 其中該保護覆蓋物包括 其中該保護覆蓋物包括 9. 如凊求項8之聚集日光收集器 一光學透明材料。 10. 如:求項8之$集日光收集器 一平面表面或一圓頂狀表面。 12. 如請求们之聚集曰光 ^ ^ /、甲得W穿過該輸出子 隙之該%光係至少部分地經準直。 13. t請求項1之聚集日光收集器,纟中傳輸穿過該輸出子 隙之5亥陽光包含不大於約20度之一準直半角。 h求項5之聚集日光收集器’其中該複數個可移動反 射葉片中之每一者包含正交於該中心軸之一葉片旋轉 轴。 14. 15·如請求们之聚集日光收集器’其中該複數個可移動反 射葉片中之每一者平行於一毗鄰葉片。 16. —種聚集曰光收集器,其包括: 一陽光收集區段,其經組態以透過一輸入區接收一第 一陽光束且朝向一第一輸出區引導一經反射第二陽光 束’该經反射第二陽光束實質上平行於該陽光收集區段 之一中心軸;及 一陽光聚集區段,其經安置而毗鄰該第一輸出區且經 組態以接收該經反射第二陽光束,自一第一聚集器表面 反射’且自一第二聚集器表面反射,藉此形成被引導至 158149.doc -2- 201219729 輸出孔隙之一經聚集陽光束。 收集器,其中該陽光收集區段 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 包 比該第一輸出區小之_ 如請求項16之聚集日光 括一圓柱形形狀。 =求:聚集曰光收集器,其中該第-聚集器表面 包括一反射拋物表面。 如請求項16之聚集曰光收集器,其中該第二聚集器表面 包括一反射雙曲表面。 如清求項16之聚集日光收集器,其中該輸人區包括第一 複數個可移動反射葉片。 U項20之聚集日光收集器,其中該第一複數個可移 動反射葉片中之每—者包含正交於該中心軸之一第一葉 片旋轉軸。 月袁項21之聚集日光收集器,其中該第一複數個可移 動反射葉片中之每—者平行於―她鄰葉片。 汝β求項16之聚集日光收集器,其中該輸入區與該中心 軸之間的一角係在自約20度至約60度之一範圍中。 如π求項16之聚集日光收集器,其中該陽光收集區段或 邊陽光聚集區段中之至少一者能夠圍繞該中心轴旋轉。 如凊求項16之聚集曰光收集器,其中該第一輸出區與該 輸出孔隙之一面積比大於約10且小於約1 00。 如凊求項16之聚集日光收集器,其中該經聚集陽光束包 括不大於約20度之一準直半角。 如清求項16之聚集日光收集器,其進一步包括至少部分 地封閉該輸入區之一保護覆蓋物。 158149.doc 201219729 請求項16之聚集日光收集器,其進—步包括安置㈣ 輸入區與該第一輸出區之間的第二複數個可移/ 29.如請求項28之聚集日光收集器,其一。 動荦片中之备^人 〇第一複數個可移 勖案片中之母一者包含正交於該中心 葉片旋轉轴之一第二葉片旋轉轴。 订於該第一 3〇·如請求項28之聚集收集器’其甲該第二複數個可移動葉 片中之每-者包含正交於該中心軸且正交於該第一葉片 旋轉軸之一第二葉片旋轉軸。 ' 31.如請求項1或請求項16之聚集日光收集器,其中來自該 輸出孔隙之該陽光係傳輸至一反射管道之一進口孔隙 中。 32·如請求項1或請求項 \項16之聚集日光收集器,其中來自該 輸出孔隙之該陽光係傳輸至一光伏打電池上。 33·如請求項1或請求項16之聚集日光收集器,其中來自該 輸出孔隙之該陽光係傳輸至-熱轉換裝置上。 34·如請求項31之聚集日光收集器,其中-人造光源傳輸至 一反射管道之一第二進口孔隙中。 印求項34之聚集日光收集器’其中該人造光係可程式 化以在該管道中維持一均勻光通量。 158149.doc201219729 VII. Patent Application Range: 1. An aggregated twilight collector comprising: a collection section, and the right one has a first opening for receiving sunlight and a second opening for transmission Sunlight; a plurality of movable reflective vanes disposed to correspond to the first opening for directing the received sunlight to the opposite second opening; a parabolic reflector 'which is disposed to provide the main portion of the sunlight. . A hyperbolic reflector that passes through the 4 opposite first opening to the focal point that is placed adjacent to the parabolic reflector: and the output aperture ' is placed to receive sunlight reflected from the hyperbolic reflector. 2· "°Please (4) 1 gather the sundial collector, where the collection section includes - a cylinder. The aggregated daylight collector of item 1, wherein the collection section rotates about a common-axis with at least one of the parabolic=reflector. 4. The concentrating solar collector of π, wherein the collection section rotates coaxially and the parabolic reflector is stationary. 5. t. The aggregated daylight collector of claim 1, wherein the first opening intersects the central axis of the collection section at an angle of less than 90 degrees. An aggregated calender collector of claim 5, wherein the horn is between about 20 degrees and about 70 degrees. The concentrating solar collector of the item S, wherein the horn is 70 degrees, and the concentrating collector of the wattage is further included, at least partially closing the first opening - protective cover Things. 158149.doc 201219729 wherein the protective covering comprises wherein the protective covering comprises 9. an aggregated solar collector of an item 8 as an optically transparent material. 10. For example: Item 8 of the Sunlight Collector A planar surface or a dome-shaped surface. 12. If the requester gathers the light ^ ^ /, the % of the light passing through the output slot is at least partially collimated. 13. The aggregated daylight collector of claim 1 wherein the 5 ray of sunlight transmitted through the output slot comprises a collimation half angle of no more than about 20 degrees. h. The aggregated daylight collector of claim 5, wherein each of the plurality of movable reflective blades comprises a blade rotation axis orthogonal to the central axis. 14. 15. As gathered by the requester, the daylight collector' wherein each of the plurality of movable reflective vanes is parallel to an adjacent vane. 16. An aggregated twilight collector comprising: a sunlight collection section configured to receive a first beam of sunlight through an input zone and to direct a reflected second beam of sunlight toward a first output zone The reflected second solar beam is substantially parallel to a central axis of the sunlight collecting section; and a sunlight collecting section disposed adjacent to the first output zone and configured to receive the reflected second solar beam Reflecting from a first concentrator surface and reflecting from a second concentrator surface, thereby forming a concentrated solar beam that is directed to one of the output apertures of 158149.doc -2- 201219729. a collector, wherein the sunlight collection section is 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. The package is smaller than the first output zone _ as in the aggregated sunlight of claim 16 Cylindrical shape. = seeking: an aggregated light collector, wherein the first-aggregator surface includes a reflective parabolic surface. The aggregated light collector of claim 16, wherein the second concentrator surface comprises a reflective hyperbolic surface. The aggregated daylight collector of claim 16, wherein the input zone comprises a first plurality of movable reflective vanes. The concentrating solar collector of U item 20, wherein each of the first plurality of movable reflective vanes comprises a first vane rotation axis orthogonal to the central axis. The concentrating daylight collector of the moon item 21, wherein each of the first plurality of movable reflecting blades is parallel to the neighboring blade. The concentrating solar collector of 汝β ref. 16, wherein a corner between the input region and the central axis is in a range from about 20 degrees to about 60 degrees. An concentrating solar collector of π, wherein the at least one of the sunlight collecting section or the edge sunlight collecting section is rotatable about the central axis. An aggregated photo collector of claim 16, wherein an area ratio of the first output region to the output aperture is greater than about 10 and less than about 100. An aggregated daylight collector of claim 16, wherein the concentrated solar beam comprises a collimated half angle of no more than about 20 degrees. The aggregated daylight collector of claim 16, further comprising at least partially enclosing one of the input areas of the protective covering. 158149.doc 201219729 The aggregated daylight collector of claim 16, further comprising: arranging (d) a second plurality of movable regions between the input region and the first output region, 29. an aggregated daylight collector as claimed in claim 28, One of them. The parent of the first plurality of movable segments includes a second blade rotation axis orthogonal to one of the central blade rotation axes. The first collector of the first item, such as the aggregate collector of claim 28, wherein each of the second plurality of movable vanes comprises an orthogonal to the central axis and orthogonal to the first vane rotation axis A second blade rotates the shaft. 31. The aggregated daylight collector of claim 1 or claim 16, wherein the sunlight from the output aperture is transmitted to an inlet aperture of a reflective conduit. 32. The aggregated daylight collector of claim 1 or claim 1 wherein the sunlight from the output aperture is transmitted to a photovoltaic cell. 33. The aggregated daylight collector of claim 1 or claim 16, wherein the sunlight from the output aperture is transmitted to the thermal conversion device. 34. The aggregated daylight collector of claim 31, wherein the artificial light source is transmitted to a second inlet aperture of one of the reflective tubes. The aggregated daylight collector of claim 34 wherein the artificial light system is programmable to maintain a uniform luminous flux in the conduit. 158149.doc
TW100128983A 2010-08-13 2011-08-12 Concentrating daylight collector TWI575205B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US37335710P 2010-08-13 2010-08-13

Publications (2)

Publication Number Publication Date
TW201219729A true TW201219729A (en) 2012-05-16
TWI575205B TWI575205B (en) 2017-03-21

Family

ID=45568150

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100128983A TWI575205B (en) 2010-08-13 2011-08-12 Concentrating daylight collector

Country Status (7)

Country Link
US (1) US8743462B2 (en)
EP (1) EP2603933A4 (en)
JP (1) JP6092774B2 (en)
KR (1) KR101840497B1 (en)
BR (1) BR112013002946A2 (en)
TW (1) TWI575205B (en)
WO (1) WO2012021471A2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140318531A1 (en) * 2011-12-29 2014-10-30 Evgeny Vyacheslavovich KOMRAKOV Device for concentrating energy
US9335015B2 (en) * 2012-01-23 2016-05-10 3M Innovative Properties Company Off-axis cassegrain solar collector
CN104736927B (en) 2012-10-30 2016-12-14 3M创新有限公司 The light tunnel of bending is extracted
WO2014070603A1 (en) 2012-10-30 2014-05-08 3M Innovative Properties Company Light concentrator alignment system
JP2015533021A (en) 2012-10-30 2015-11-16 スリーエム イノベイティブ プロパティズ カンパニー Rectangular light duct extraction
US9304287B2 (en) 2012-12-18 2016-04-05 Suncentral, Inc. Light concentrating apparatus
US9739991B2 (en) 2013-02-28 2017-08-22 1930106 Ontario Limited Light-concentrating lens assembly for a solar energy recovery system
US10510914B2 (en) * 2013-03-21 2019-12-17 Board Of Trustees Of Michigan State University Transparent energy-harvesting devices
US9746148B2 (en) * 2013-04-24 2017-08-29 The University Of British Columbia Sunlight redirector with fixed mirror segments
US9275448B2 (en) * 2013-08-27 2016-03-01 Xerox Corporation Flash/no-flash imaging for binarization
WO2015188260A1 (en) 2014-06-12 2015-12-17 SunCentral Inc. Light distribution systems and methods
JP2016038954A (en) * 2014-08-06 2016-03-22 ユーヴィックス株式会社 Sunlight condensing device
US10228104B2 (en) * 2016-05-26 2019-03-12 Sunportal Co., Ltd. Sunlight transmitter
DE202017006810U1 (en) * 2016-11-03 2018-07-27 Basf Se The daylight lighting system
US10830405B2 (en) * 2017-02-28 2020-11-10 Coelux S.R.L. Sunlight-based large area light source and large area luminaire
EP3635793A4 (en) 2017-05-09 2021-01-20 Ubiqd Inc. Luminescent optical elements for agricultural applications
US10900638B2 (en) 2018-04-19 2021-01-26 AGrow-Ray Technologies, Inc. Shade and shadow minimizing luminaire

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1254520A (en) * 1916-10-14 1918-01-22 Daniel M Macduff Combined light and air transmitting apparatus.
US3988166A (en) * 1975-01-07 1976-10-26 Beam Engineering, Inc. Apparatus for enhancing the output of photovoltaic solar cells
US4148295A (en) * 1977-08-09 1979-04-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Horizontally mounted solar collector
US4195620A (en) * 1978-02-28 1980-04-01 Rudolph Rust Large area parabolic concentrating solar collector
IT1098721B (en) * 1978-08-31 1985-09-07 Ente Naz Energia Elettrica DEVICE TO USE SOLAR ENERGY FOR THE PURPOSE OF LIGHTING ENVIRONMENTS NOT ACCESSIBLE TO SUNLIGHT
CH657443A5 (en) 1982-06-16 1986-08-29 Atlantis Energie Ag DEVICE FOR AUTOMATICALLY ADJUSTING SUN RADIATION CONCENTRATED BY A REFLECTOR.
US4519384A (en) * 1984-05-14 1985-05-28 Murtha R Michael Concentrating solar beam collector
US4561423A (en) 1984-06-11 1985-12-31 Blasey Dennis R Solar parabolic collector
US4890900A (en) 1989-02-23 1990-01-02 Walsh James H Solar corrugation with shield
JPH0727425A (en) * 1991-02-25 1995-01-27 Showa Device Plant Kk Solar concentrator and thermal storage apparatus
US5285315A (en) 1992-09-25 1994-02-08 Synertech Systems Corporation Apparatus and method for optimizing useful sunlight reflected into a room
US5493824A (en) 1993-03-29 1996-02-27 Webster; Lee R. Rotatably mounted skylight having reflectors
JPH0734616A (en) * 1993-07-26 1995-02-03 Takenaka Komuten Co Ltd Lighting device
JPH08222017A (en) * 1995-02-10 1996-08-30 Kentaro Seto Sunlight condensing device
JPH10280625A (en) 1997-03-31 1998-10-20 Takeshi Uchida Natural lighting system
JPH1125726A (en) * 1997-06-30 1999-01-29 Toshiba Lighting & Technol Corp Light guide apparatus and illuminating system
US6128135A (en) 1998-05-01 2000-10-03 Synertech Systems Corporation Three-reflection collection system for solar and lunar radiant energy
JP2000057820A (en) * 1998-08-11 2000-02-25 Sanyo Electric Co Ltd Daylighting device
US6299317B1 (en) * 1999-12-13 2001-10-09 Ravi Gorthala Method and apparatus for a passive solar day lighting system
US6498290B1 (en) 2001-05-29 2002-12-24 The Sun Trust, L.L.C. Conversion of solar energy
JP2003240356A (en) * 2002-02-18 2003-08-27 Seishiro Munehira Sun tracking system
US7352509B2 (en) 2003-05-20 2008-04-01 Dan Pagel Method and apparatus attenuating direct sun light while providing a view of the sky through a light tunnel in a skylight system
US20080000516A1 (en) * 2004-09-14 2008-01-03 Aerosun Technologies Ag Solar Energy Utilization Unit and Solar Energy Utilization System
US7639423B2 (en) 2005-08-10 2009-12-29 University of Central Florida, Research Foundation, Inc. Direct beam solar lighting system
CN1983642A (en) * 2006-02-09 2007-06-20 易斌宣 Superhigh multiplying-power focusing solar battery
US7339739B1 (en) * 2007-03-30 2008-03-04 Kinney Laurence F Active daylighting and active solar heating system and method
US20080266664A1 (en) * 2007-04-24 2008-10-30 Roland Winston Liquid light pipe with an aplanatic imaging system and coupled non-imaging light concentrator
KR101114664B1 (en) 2007-06-22 2012-03-13 더 유니버시티 오브 브리티쉬 콜롬비아 Adaptive sunlight redirector
US8766091B2 (en) * 2007-06-29 2014-07-01 Oliver J. Edwards Solar power harvester
KR100880683B1 (en) * 2007-08-27 2009-02-02 주식회사 엔에스넷 Condensing system of solar light
US9127822B2 (en) 2008-10-10 2015-09-08 Sunflower Corporation Afocal optical concentrator
KR100951737B1 (en) * 2009-06-19 2010-04-08 오세대 Day lighting device and hybrid lighting system using it
DE102009039136A1 (en) 2009-07-31 2011-02-03 Christian Bartenbach light guide
KR20090105899A (en) 2009-09-13 2009-10-07 정재헌 A Sun tracker using two blind
AU2011100500A4 (en) 2010-05-05 2011-06-16 Marvels Solar Co., Ltd. Sunlight collecting system for illumination

Also Published As

Publication number Publication date
KR20130108284A (en) 2013-10-02
US20130120844A1 (en) 2013-05-16
EP2603933A2 (en) 2013-06-19
WO2012021471A3 (en) 2012-04-05
EP2603933A4 (en) 2017-03-29
TWI575205B (en) 2017-03-21
JP2013535799A (en) 2013-09-12
BR112013002946A2 (en) 2018-07-03
WO2012021471A2 (en) 2012-02-16
JP6092774B2 (en) 2017-03-08
KR101840497B1 (en) 2018-03-20
US8743462B2 (en) 2014-06-03

Similar Documents

Publication Publication Date Title
TW201219729A (en) Concentrating daylight collector
US9127823B2 (en) Daylight collection systems and methods
US8101855B2 (en) Optical concentrator, especially for solar photovoltaics
US7688525B2 (en) Hybrid primary optical component for optical concentrators
EP0636232B1 (en) Faceted totally internally reflecting lens with curved faces
US9709771B2 (en) Light concentrator alignment system
Canavarro et al. Simultaneous Multiple Surface method for Linear Fresnel concentrators with tubular receiver
US20060249143A1 (en) Reflecting photonic concentrator
TW201337186A (en) Off-axis cassegrain solar collector
US20160079461A1 (en) Solar generator with focusing optics including toroidal arc lenses
CN104221280A (en) Concentrating photovoltaic collector
Kumar et al. Efficient sunlight harvesting with combined system of large Fresnel lens segmented mirror reflectors and compound parabolic concentrator without tracking sun for indoor daylight illumination
US4382434A (en) Prismatic tracking insolation collector
US20150370054A1 (en) Electromagnetic radiation system
KR100420867B1 (en) Solar asymmetric compound parabolic concentrator with a tubular absorber or flat plate absorber
WO2017178863A1 (en) System comprising sun ray collimating central mirror and heliostat
CN114543039A (en) Light supplementing system and light supplementing array for global three-dimensional planting
KR200259130Y1 (en) Solar asymmetric compound parabolic concentrator with a tubular absorber or flat plate absorber
US20140247498A1 (en) Compact concentrator assembly
Brunotte et al. Doubling the concentration of one-axis tracking parabolic trough collectors by a new second-stage design
AU2014202493A1 (en) A compact concentrator assembly

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees