TW201213850A - Reduced capacitance display element - Google Patents

Reduced capacitance display element Download PDF

Info

Publication number
TW201213850A
TW201213850A TW100105680A TW100105680A TW201213850A TW 201213850 A TW201213850 A TW 201213850A TW 100105680 A TW100105680 A TW 100105680A TW 100105680 A TW100105680 A TW 100105680A TW 201213850 A TW201213850 A TW 201213850A
Authority
TW
Taiwan
Prior art keywords
reflective layer
display device
layer
partially reflective
movable
Prior art date
Application number
TW100105680A
Other languages
Chinese (zh)
Inventor
William J Cummings
Brian J Gally
Original Assignee
Qualcomm Mems Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/051,258 external-priority patent/US7710632B2/en
Priority claimed from US11/155,939 external-priority patent/US8004504B2/en
Application filed by Qualcomm Mems Technologies Inc filed Critical Qualcomm Mems Technologies Inc
Publication of TW201213850A publication Critical patent/TW201213850A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

A display element, such as an interferometric modulator, comprises a transparent conductor configured as a first electrode and a movable mirror configured as a second electrode. Advantageously, the partial reflector is positioned between the transparent conductor and the movable mirror. Because the transparent conductor serves as an electrode, the partial reflector does not need to be conductive. Accordingly, a greater range of materials may be used for the partial reflector. In addition, a transparent insulative material, such as a dielectric, may be positioned between the transparent conductor and the partial reflector in order to decrease a capacitance of the display element without changing a gap distance between the partial reflector and the movable mirror. Thus, a capacitance of the display element may be reduced without changing the optical characteristics of the display element.

Description

201213850 六、發明說明: 【發明所屬之技術領域】 本發明之領域係關於微機電系統(MEMS)。 【先前技術】 微機電系統(MEMS)包括微機械元件、致動器,及電子 裝置。微機械元件可藉由使用沉積、蝕刻,及/或其它蝕 刻掉基板及/或經沉積材料層之部分或添加層以形成電氣 裝置及機電裝置的顯微機械加工方法來產生一種類型之 MEMS裝置稱為干涉調變器。如本文所用,術語干涉調變 器或干涉光調變器指藉由使用光干涉原理而選擇性地吸收 及/或反射光之裝置。於某些實施例中,干涉調變器可包 含-對導電板,其中之一個或兩個導電板之整體或部分可 為透明的及/或為反射性的,且一旦施加_適當的電訊號 便能夠相對運^於__特定實施財…個板可包含一沉 積於-基板上之穩定層,且另—板可包含—由_空氣間隙 而與穩定層相分離之金屬膜。如本文更詳細地描述,一個 板相對另板之位置可改變入射至干涉調變器之光的光學 干涉。此等裝置應用範圍廣,且於該項技術中有益於利用 及/或修正該等類型裝罟夕 圭裒置之特徵’因此該等裝置之特點可 改良現有產品及研發尚未開發之新產品。 【發明内容】 本發明之系統、方法月迪里# 裝置每—者皆具有多個方面,其 的方面疋早獨地形成其所期望屬性之斤因。 在不限制本發明之銘於μ y' u 發月之M的讀T,„衫料其較為突 154176.doc 201213850 • 出的特徵。在考慮此論述之後,且尤其在閱讀題為,,具體 實施方式”的章節之後,將理解本發明的特徵是如何提供 優於其它顯示器裝置之優勢。 於—實施例中,顯示元件包含一大體上透明之導電層、 一部分反射絕緣體及一可移動反射層,該部分反射絕緣體 係定位於該導電層與該可移動反射層之間,其中一施加於 該導電層與該可移動反射層之間的電壓促使可移動反射層 移動。 於另一貫施例中,一種製造一顯示元件之方法包含形成 一大體上透明的導電層,形成一部分反射絕緣體,及形成 一可移動反射層,該部分反射絕緣體係定位於該導電層與 該可移動反射層之間,其中一施加於該導電層與該可移動 反射層之間的電壓促使該可移動反射層移動。 於另一實施例中,一種顯示元件包含一用於導電之構 件’該導電構件大體上透明;一用於部分反射之構件,該 Φ 部分反射構件係絕緣的;及一於以反射之可移動構件,其 中該部分反射構件係定位於該導電構件與該可移動反射構 件之間’其中一施加於該導電構件與該可移動反射構件之 間的電壓促使該可移動反射構件移動。 於另一實施例中,一顯示系統包含一顯示器,該顯示器 包含複數個顯示元件。於一實施例中,每一顯示元件包含 一大體上透明的導電層、一部分反射絕緣體及一可移動反 射層,該部分反射絕緣體係定位於該導電層與該可移動反 射層之間,其中一施加於該導電層與該可移動反射層之間 154176.doc 201213850 的電壓促使該可移動反射層移動。於一實施例中,該顯示 系統進—步包含:—與該顯示器電通信之處理器,該處理 器經組態以處理寻彡推^ μ I〜像資料;及一與該處理器電通信之記憶 體裝置。 ~ 於另f施例中’-種顯示元件包含:-大體上透明的 導電層’ 電層;一部分反射層,其中該介電層係定位 於遠導電層與該部分反射層之間;及一可移動反射層,其 中一施加於該導電層與該可移動反射層之間的電壓促使該 可移動反射層移動。 於另一貫施例中,.一種顯示元件包含:一用於導電之構 件,該導電構件大體上透明;一用於絕緣之構件;一用於 部分反射之構件’其中該絕緣構件係定位於該導電構件與 該部分反射構件之間;及一用於反射之可移動構件,其中 一施加於該導電構件與該可移動反射構件之間的電壓促使 該可移動反射構件移動。 於另一實施例中’一種製造一顯示元件之方法包含:形 成一大體上透明的導電層;形成一介電層;形成一部分反 射層’該介電層係定位於該導電層與該部分反射層之間; 及形成一可移動反射層’其中一施加於該導電層與該可移 動反射層之間的電壓促使該可移動反射層移動。 於另一實施例中,一種顯示系統包含一顯示器,該顯示 器包含複數個顯示元件。於一實施例中,每一顯示元件包 含:一大體上透明的導電層;一介電層;一部分反射層, 其中該介電層係定位於該導電層與該部分反射層之間;及 154176.doc 201213850 一可移動反射層’其中一施加於該導電層與該可移動反射 層之間的電壓促使該可移動反射層移動◦於—實施例中, 該顯示系統進一步包含:一與該顯示器電通信之處理器, 該處理器經組態以處理影像資料;及一與該處理器電通作 之記憶體裝置。 於另一實施例中’一種顯示元件包含:一大體上透明的 導電層;一介電層;一部分反射層,其中該介電層係定位201213850 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The field of the invention relates to microelectromechanical systems (MEMS). [Prior Art] Microelectromechanical systems (MEMS) include micromechanical components, actuators, and electronic devices. Micromechanical components can produce one type of MEMS device by using deposition, etching, and/or other micromachining methods that etch away portions of the substrate and/or deposited material layers or add layers to form electrical and electromechanical devices. It is called an interference modulator. As used herein, the term interferometric modulator or interferometric optical modulator refers to a device that selectively absorbs and/or reflects light by using the principle of optical interference. In some embodiments, the interference modulator can include a pair of conductive plates, one or both of which can be transparent and/or reflective, and once the appropriate electrical signal is applied The plate can comprise a stabilizing layer deposited on the substrate, and the other plate can comprise a metal film separated from the stabilizing layer by an air gap. As described in more detail herein, the position of one plate relative to the other plate can change the optical interference of light incident on the interferometric modulator. These devices are widely used and are useful in the art to utilize and/or modify the characteristics of these types of devices. Therefore, the features of such devices can improve existing products and develop new products that have not yet been developed. SUMMARY OF THE INVENTION The system and method of the present invention each have a plurality of aspects, and aspects thereof form the cause of the desired attribute. Without limiting the reading of the invention in the μ y' u, the reading of the M is more pronounced. 154176.doc 201213850 • After the discussion, and especially in the reading title, specifically After the sections of the "embodiments", it will be appreciated that the features of the present invention are how to provide advantages over other display devices. In an embodiment, the display element includes a substantially transparent conductive layer, a portion of the reflective insulator, and a movable reflective layer, the partially reflective insulating system being positioned between the conductive layer and the movable reflective layer, wherein one is applied to The voltage between the conductive layer and the movable reflective layer causes the movable reflective layer to move. In another embodiment, a method of fabricating a display device includes forming a substantially transparent conductive layer, forming a portion of a reflective insulator, and forming a movable reflective layer, the partially reflective insulating system being positioned on the conductive layer and the conductive layer Between the moving reflective layers, a voltage applied between the conductive layer and the movable reflective layer causes the movable reflective layer to move. In another embodiment, a display element includes a member for conducting 'the conductive member is substantially transparent; a member for partial reflection, the Φ portion of the reflective member is insulated; and a movable portion for reflection A member, wherein the partially reflective member is positioned between the conductive member and the movable reflective member. A voltage applied between the conductive member and the movable reflective member causes the movable reflective member to move. In another embodiment, a display system includes a display that includes a plurality of display elements. In one embodiment, each display element includes a substantially transparent conductive layer, a portion of a reflective insulator, and a movable reflective layer, the partially reflective insulating system being positioned between the conductive layer and the movable reflective layer, wherein one A voltage applied between the conductive layer and the movable reflective layer 154176.doc 201213850 causes the movable reflective layer to move. In one embodiment, the display system further comprises: - a processor in electrical communication with the display, the processor configured to process the seek data, and to communicate with the processor Memory device. In another embodiment, the display element comprises: a substantially transparent conductive layer, and a portion of the reflective layer, wherein the dielectric layer is positioned between the far conductive layer and the partially reflective layer; A movable reflective layer, wherein a voltage applied between the conductive layer and the movable reflective layer causes the movable reflective layer to move. In another embodiment, a display element includes: a member for conducting electricity, the conductive member is substantially transparent; a member for insulating; and a member for partially reflecting 'where the insulating member is positioned Between the conductive member and the partially reflective member; and a movable member for reflection, wherein a voltage applied between the conductive member and the movable reflective member causes the movable reflective member to move. In another embodiment, a method of fabricating a display device includes: forming a substantially transparent conductive layer; forming a dielectric layer; forming a portion of the reflective layer, wherein the dielectric layer is positioned between the conductive layer and the portion of the reflective layer Between the layers; and forming a movable reflective layer', a voltage applied between the conductive layer and the movable reflective layer causes the movable reflective layer to move. In another embodiment, a display system includes a display that includes a plurality of display elements. In one embodiment, each display element comprises: a substantially transparent conductive layer; a dielectric layer; a portion of the reflective layer, wherein the dielectric layer is positioned between the conductive layer and the partially reflective layer; and 154176 .doc 201213850 A movable reflective layer 'one of the voltages applied between the conductive layer and the movable reflective layer causes the movable reflective layer to move" - in an embodiment, the display system further comprises: a display A processor for electrical communication, the processor configured to process image data; and a memory device electrically coupled to the processor. In another embodiment, a display element includes: a substantially transparent conductive layer; a dielectric layer; a portion of the reflective layer, wherein the dielectric layer is positioned

於3玄導電層與该部分反射層之間;及—可移動反射層,1 可移動反射層係藉由一間隙與該部分反射層分離,其中者 該顯示元件處於一致動狀態時,該顯示元件向觀察者呈現 白色,且處於一釋放狀態時,該顯示元件向觀察者呈現非 白色。 【實施方式】 下文詳細說明係關於本發明之某些特定實施例。然而, 本發明可以諸多不同方式來實施。在本說明書中,參看附 圖,其中貫穿全文以類似數字表示類似部件。自下文說明 將顯而易I ’本發明可在任何經經態以運動地(例如,視 訊)或靜止地(例如,靜態影像)及文本或圖片的形式顯示— :像之裝置中實施。更特定言之’吾人預期該等實施例可 貫施於各種電子裝置巾或與各種f子裝置_聯,諸如 (但不限於)行動電話、無線裝置、個人資料助理(PM)、 手持或攜帶型電腦、GPS接收器/導航器、攝相機、购播 放器、攝錄像機、遊戲控制臺、手錶、時鐘、計算器、電 視監視器、平板顯示器、電腦監視器、汽車顯示器(例 154176.doc 201213850 如,里程表顯示器等)、駕駛艙 烏駛艙控制态及/或顯示器、相機 視圖顯示器(例如,車•中之後視攝像機顯示器)、電子昭 片、電子廣告牌或符號、投影儀、建築結構、封裝及審美 結構(例如,一件珠寶上之影傻銪 〜像顯不)。與本文所描述之彼 等裝置具有類似結構之純⑽裝置亦可用於如電子開關裝 置之非顯示應用中。 w說明-包含干㈣聽顯^元件之干涉調變器顯示 器實施例。於該等裝置中’像素處於明亮或黑暗狀態。在 明亮「開"或”開啟”)狀態下’顯示元件將大部分入射可見 光反射至使用者。當於黑暗("關"或"關閉")狀態下時,顯 示元件幾乎未將入射可見光反射至使用者。取決於不同實 施例,"開"及"關"狀態之光反射性質可相反。mems像素 可組態來主要反射選定顏色,從而允許除顯示黑色及白色 外而顯示彩色。 圖1為描述一視覺顯示器之一系列像素中的兩個相鄰像 素的等角視圖’其中每一像素包含一 MEMS干涉調變器。 於某些實施例中,干涉調變器顯示器包含該等干涉調變器 之一列/行陣列。每一干涉調變器包括一對置於彼此相距 一可變及可控制距離處以形成一具有至少一可變尺寸之光 學諧振腔之反射層。於一實施例中’反射層之一者可於兩 個位置之間移動。於第一位置上(本文稱其為鬆弛位置), 可移動反射層係定位於距一固定之部分反射層相對較遠之 距離處。於第二位置上(本文稱其為致動位置),可移動反 射層係定位於較緊密鄰近該部分反射層處。自兩個層反射 154176.doc -8 - 201213850 《人射光視可移動反射層之位置而發生干涉相長或干涉相 消’以產生每—像素之全部反射(overall reflective)狀態或 非反射狀態。 圖1中的像素陣列之所述部分包括兩個相鄰干涉調變器 12a及12b。於左邊之干涉調變器⑶中,可移動反射層A 於離光學堆疊16a—預定距離之鬆弛位置上說明,該光學 堆疊包括。p分反射層。於右邊之干涉調變器⑶中,可 移動反射層14b在與光學堆疊16b相鄰之致動位置上說明。 如本文所參考之光學堆疊16a及16b (總稱作光學堆疊Μ) 通常包含若干溶融層,該等炼融層可包括-諸如氧化銦錫 (ITO)之電極層、一諸如鉻之部分反射層、及一透明介電 質。因此,光學堆疊16為導電的、部分透明的及部分反射 的,且可(例如)藉由將一或多個上述層沉積至透明基板20 上來製造。於某些實施例中,將該等層圖案成平行條紋, 且可如下文進一步描述形成顯示裝置中之列電極。可移動 修層14a、14b可形成為沉積於柱18頂部上的_沉積金屬層或 若干沉積金屬層(與列電極16a、16b正交)及沉積於該等柱 18之間的介入犧牲材料之一系列平行條紋。當蝕刻掉犧牲 材料時,可移動反射層14a、14b藉由一經界定之間隙19而 與光學堆疊16a、16b分離。一諸如鋁之高導電性及反射材 料可用於反射層14,且該等條紋可形成—顯示裝置中之行 電極。 如圖1中之像素12a所述,未施加電壓時,腔19保持於可 移動反射層14a與光學堆疊16a之間’且可移動反射層 154176.doc 201213850 處於機械鬆他狀態。然而,當將電位差施加至-選定列及 行時於相應像素的列及行電極之相交處形成之電容器得 以,電’且靜電力將該等電極相互吸引在一起。若電麼足 夠高,則可移動反射層14變形且被迫抵靠光學堆疊μ。如 =右邊之像素m所述,光學堆疊16内之介電層(於該圖 未說明)可防止短路且控制層14與16之間的分離距離。 無論所施加電位差之極性如何,此行為均相同。以此方 式,可控制反射與非反射像素狀態之列/行致動於諸多方 面與習知LCD及其它顯示技術中所用之列/行致動類似。 圖2至圖戰明—在—顯示器應用中使用—干涉調變器 陣列之例示性方法及系統。 圖2為說明m本發明之若干態樣之電子裝置的一 實施例之系統方塊圖。於例示性實施例中,電子裝置包括 處理器21,其可為任一通用單晶片或多晶片微處理器,諸 'ARM、Pentiu,、PentiumII、pentiumin@、— IV > Pentium® Pro . 8051 . MIPS® ^ Power PC® . ALPHA® 或任-專用微處理器,諸如數位訊號處理器、微控制器或 可程式化閘極陣列。如於該項技術中習知的’處理器^可 經組態以執行-或多個軟體模組。除了執行操作系統之 外’處理器可經組態以執行一或多個軟體應用程式,其包 括網路劉覽器、電話應用程式、電子郵件程式或任一其它 軟體應用程式。 於一實施例中,處理器21亦經組態以與陣列驅動器㈣ 信。於-實施例中’陣列驅動器22包括將訊號提供至顯示 154176.doc -10· 201213850 ^車^或面㈣之-列驅動器電路24及—行驅動器電路%。 調變n所之截面由㈣線卜如。對於MEMS干涉 署夂:,、δ,列/行致動協定可利用圖种所說明的該等裝 =綠質。舉例而言,需要難特電位差來使可移動 :自氣、弛狀態變為致動狀態。然而,當電塵自該值減少 夺’可移動層在電壓降回職特以下時仍維持其狀態。於 =3之例示性實施财,可移動層直至電料低至小㈣犬 時才完全鬆他。因此,存在-電屋範圍(在圖3中所說明 之實例t該範圍為約3伏特至7伏特),其巾存在—所施加 電屋之窗口,在該窗口中裝置可穩定於鬆他或致動狀態 下。本文稱該窗口為"磁滯窗口,,或"穩定窗口”。對於具有 圖3之磁滯特徵之顯示陣列而言,列/行致動協定可經設計 以使得在列選通過程中,往& h >、西4 1 待致動之選通列中的像素曝露至 約1〇伏特之電壓差,且待鬆弛之像素曝露至-接近零伏特 之電壓差。選通之後’像素曝露至約5伏特之穩態電壓 差’以使得像素保持於列選通使其處於的任何狀態。被寫 入之後’於該實例中,每-像素經歷-在3伏特至7伏特之 "穩定窗口”内之電位差。此特徵使得圖1中說明的像素設 計於施加相同電壓的條件下穩定在一預先存在之致動狀態 或釋放狀態中。由於干涉調變器之無論處於致動或鬆弛狀 態的每-像素大體上為一由固定及移動反射層形成之電容 器,故該穩定狀態可保持於一在滯後窗口内的電壓下,而 幾乎無功率耗散。若所施加電位固定,則大體上無電流流 入像素。 154176.doc 201213850 於典型應用中’可藉由根據第一列中之所要致動像素組 確定行電極組來形成顯示圖框。隨後,將—列脈衝施加至 m電極,以致動對應於衫行線之像素。隨後改變確定 之行電極組為對應於第二列中所要之致動像素組。隨後, 將脈衝施加至列2電極,以根據已確定行電極致動列2中之 適當的像素。列!像素未受列2脈衝影響,且保持於立在列 m衝期㈣設定之狀態。可針對所㈣狀列以順次方 式重複以上過程來產生圖框。一般而言,藉由以每秒某一 所要圖框數目連續重複該過程,來利㈣㈣μ㈣# 及/或更新圖框。用以驅動像素陣列之列及行電極以產生 顯示圖框之各種類型協定亦係眾所周知的,且其可與本發 明一同使用。 圖4、圖5Α及圖5Β說明一用以於圖2之3χ3陣列上創建顯 不圖框之可能的致動協定。圖4說明可用於顯示圖3之磁滞 曲線之像素的一組可能之行及列電壓位準。於圖4之實施 例中,致動像素涉及將適當的行設定為_Vbias且將適當的 列設定為+ΔΥ,其可分㈣應於_5伏特及+5伏彳卜鬆弛像 素係藉由將適當的行設定為+¥1)1^且將適當的列設定成相 同的+AV以在整個像素上產生零伏特電位差而達成。於其 中列電壓保持於零伏特之該等列十,無論行是否為 或-Vbias,像素皆穩定於其原先所在之任一狀態下。亦如 於圖4中所說明,應瞭解,可使用與上文所述之電壓相反 極性之電壓,例如,致動像素可涉及將適當的行設定為 +Vbias,且將適當的列設定成-AV。於該實施例中,釋放 154176.doc -12- 201213850 像素係藉由將適當的行設定為_Vbias且將適當的列設定成 相同的-AV以在整個像素上產生零伏特電位差而達成。亦 如於圖4中所說明,應瞭解,可使用與上文所述之電壓相 反極性之電壓,例如,致動像素可涉及將適當的行設定為 +Vbias ’且將適當的列設定成_Δν ^於該實施例中,釋放 像素係藉由將適當的行設定為_Vbias且將適當的列設定成 相同的-Δν以在整個像素上產生零伏特電位差而達成。Between the 3 Xuan conductive layer and the partially reflective layer; and - the movable reflective layer, 1 the movable reflective layer is separated from the partially reflective layer by a gap, wherein the display element is in an unsteady state, the display The component presents a white color to the viewer, and when in a released state, the display element presents a non-white color to the viewer. [Embodiment] The following detailed description refers to certain specific embodiments of the invention. However, the invention can be implemented in a multitude of different ways. In the present specification, reference is made to the drawings, in which like reference numerals It will be apparent from the following description that the present invention can be implemented in any apparatus that is displayed in a moving (e.g., video) or stationary (e.g., still image) and text or picture format. More specifically, 'we expect that such embodiments can be applied to or in conjunction with various electronic device devices such as, but not limited to, mobile phones, wireless devices, personal data assistants (PM), handheld or portable Computer, GPS receiver/navigator, camera, purchased player, camcorder, game console, watch, clock, calculator, TV monitor, flat panel display, computer monitor, car display (example 154176.doc 201213850 For example, odometer display, etc., cockpit control mode and / or display, camera view display (for example, car / rear view camera display), electronic display, electronic billboard or symbol, projector, building structure , packaging and aesthetic structure (for example, a piece of jewelry on the shadows ~ like not shown). Pure (10) devices having similar construction to the devices described herein can also be used in non-display applications such as electronic switching devices. w Description - An embodiment of an interference modulator display that includes a dry (four) listening component. In such devices, the pixels are in a bright or dark state. In the bright "open" or "on" state, the display component reflects most of the incident visible light to the user. When in the dark ("off" or "close") state, the display component is almost The incident visible light is reflected to the user. Depending on the embodiment, the light reflection properties of the "open" and "off" states can be reversed. The mems pixels can be configured to primarily reflect the selected color, allowing for the display of black and White shows color. Figure 1 is an isometric view depicting two adjacent pixels in a series of pixels of a visual display, each of which includes a MEMS interferometric modulator. In some embodiments, the interferometric modulation The transducer display includes a column/row array of one of the interference modulators. Each of the interference modulators includes a pair disposed at a variable and controllable distance from each other to form an optical resonant cavity having at least one variable size. a reflective layer. In one embodiment, one of the 'reflective layers' can be moved between two positions. In the first position (referred to herein as a relaxed position), the movable reflective layer is positioned. At a relatively distant distance from a fixed portion of the reflective layer. In the second position (referred to herein as the actuated position), the movable reflective layer is positioned closer to the partially reflective layer. 154176.doc -8 - 201213850 "The human illuminates the interference constructively or interferes with the position of the movable reflective layer" to produce an overall reflective state or a non-reflective state for each pixel. The portion of the array includes two adjacent interferometric modulators 12a and 12b. In the left interfering modulator (3), the movable reflective layer A is illustrated at a relaxed position from the optical stack 16a a predetermined distance, the optical stack Including the p-reflective layer. In the interference modulator (3) on the right, the movable reflective layer 14b is illustrated at an actuating position adjacent to the optical stack 16b. Optical stacks 16a and 16b as referred to herein (collectively referred to as The optical stack Μ) typically comprises a plurality of fused layers, which may include an electrode layer such as indium tin oxide (ITO), a partially reflective layer such as chrome, and a transparent dielectric. Thus, the optical stack 16 is Conductive, partially transparent, and partially reflective, and can be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20. In some embodiments, the layers are patterned into parallel stripes, and The column electrodes in the display device can be further described as follows. The movable repair layers 14a, 14b can be formed as a deposited metal layer or a plurality of deposited metal layers (orthogonal to the column electrodes 16a, 16b) deposited on top of the pillars 18 and A series of parallel strips of intervening sacrificial material deposited between the pillars 18. When the sacrificial material is etched away, the movable reflective layers 14a, 14b are separated from the optical stacks 16a, 16b by a defined gap 19. A highly conductive and reflective material such as aluminum can be used for the reflective layer 14, and the stripes can form the row electrodes in the display device. As shown by the pixel 12a in Fig. 1, the cavity 19 is held between the movable reflective layer 14a and the optical stack 16a when no voltage is applied, and the movable reflective layer 154176.doc 201213850 is in a mechanically relaxed state. However, when a potential difference is applied to the selected column and row, the capacitor formed at the intersection of the column of the corresponding pixel and the row electrode is electrically and electrostatically attracted to the electrodes. If the power is sufficiently high, the movable reflective layer 14 is deformed and forced against the optical stack μ. As described for pixel m on the right side, the dielectric layer (not illustrated in this figure) within optical stack 16 prevents shorting and separates the separation distance between layers 14 and 16. This behavior is the same regardless of the polarity of the applied potential difference. In this manner, the column/row actuation of the reflective and non-reflective pixel states can be controlled in many respects similar to the column/row actuations used in conventional LCD and other display technologies. Figure 2 to Figure XI - an exemplary method and system for using an interferometric modulator array in a display application. 2 is a system block diagram illustrating an embodiment of an electronic device in accordance with aspects of the present invention. In an exemplary embodiment, the electronic device includes a processor 21, which can be any general purpose single or multi-chip microprocessor, 'ARM, Pentiu, Pentium II, pentiumin@, -IV > Pentium® Pro. 8051 MIPS® ^ Power PC® . ALPHA® or any-specific microprocessor such as a digital signal processor, microcontroller or programmable gate array. Processors as conventional in the art can be configured to execute - or multiple software modules. In addition to executing the operating system, the processor can be configured to execute one or more software applications, including a web browser, a phone application, an email program, or any other software application. In one embodiment, processor 21 is also configured to communicate with the array driver (4). In the embodiment, the array driver 22 includes a column driver circuit 24 and a row driver circuit % for providing signals to the display 154176.doc -10·201213850^car or face (4). The section of the modulation n is determined by the (four) line. For the MEMS Intervention Agency:, δ, column/row actuation protocol can use the equipment described in the figure = green. For example, a hard potential difference is required to make the movable: self-gas, relax state to an actuated state. However, when the electric dust is reduced from this value, the movable layer maintains its state when the voltage drops below the duty. In the example implementation of =3, the movable layer is completely loose until the electric material is low to small (four) dogs. Thus, there is a range of electricity houses (the range t illustrated in Figure 3 is about 3 volts to 7 volts), the towel is present - the window of the applied electricity house, in which the device can be stabilized in loose or In the actuated state. This window is referred to herein as a "hysteresis window, or "stabilization window." For a display array having the hysteresis feature of Figure 3, the column/row actuation protocol can be designed to be in the column gating process , the pixels in the gate row to be & h >, west 4 1 are exposed to a voltage difference of about 1 volt, and the pixel to be relaxed is exposed to a voltage difference close to zero volts. After the strobe' The pixel is exposed to a steady-state voltage difference of about 5 volts 'to keep the pixel in any state where the column strobe is placed. After being written 'in this example, every - pixel experienced - at 3 volts to 7 volts &quot The potential difference in the "stability window". This feature allows the pixel illustrated in Figure 1 to be designed to settle in a pre-existing actuated or released state under the same voltage application. Since each pixel of the interferometric modulator in an actuated or relaxed state is substantially a capacitor formed by a fixed and moving reflective layer, the steady state can be maintained at a voltage within the hysteresis window with little Power dissipation. If the applied potential is fixed, substantially no current flows into the pixel. 154176.doc 201213850 In a typical application, a display frame can be formed by determining a row electrode group according to the desired pixel group in the first column. Subsequently, a column pulse is applied to the m electrode to actuate the pixel corresponding to the row line. The determined row electrode group is then changed to correspond to the desired actuation pixel group in the second column. Subsequently, a pulse is applied to the column 2 electrodes to actuate the appropriate pixels in column 2 in accordance with the determined row electrode. Column! The pixel is not affected by the column 2 pulse and remains in the state set by the column m period (4). The above process can be repeated in a sequential manner for the (four) sequence to generate a frame. In general, (iv) (four) μ (four) # and/or update the frame by continuously repeating the process at a desired number of frames per second. Various types of protocols for driving the columns and row electrodes of the pixel array to produce a display frame are also well known and can be used with the present invention. Figures 4, 5A and 5B illustrate a possible actuation protocol for creating a display frame on the 3χ3 array of Figure 2. Figure 4 illustrates a set of possible row and column voltage levels that can be used to display the pixels of the hysteresis curve of Figure 3. In the embodiment of FIG. 4, actuating the pixels involves setting the appropriate row to _Vbias and setting the appropriate column to +ΔΥ, which can be divided into (4) by _5 volts and +5 volts. The appropriate row is set to +¥1)1^ and the appropriate column is set to the same +AV to achieve a zero volt potential difference across the pixel. The columns in which the column voltage is maintained at zero volts, regardless of whether the row is or -Vbias, the pixels are stable in either of their original states. As also illustrated in FIG. 4, it will be appreciated that a voltage of a polarity opposite to the voltages described above can be used, for example, actuating a pixel can involve setting the appropriate row to +Vbias and setting the appropriate column to - AV. In this embodiment, the release of 154176.doc -12 - 201213850 pixels is achieved by setting the appropriate row to _Vbias and setting the appropriate column to the same -AV to produce a zero volt potential difference across the pixel. As also illustrated in FIG. 4, it will be appreciated that a voltage of opposite polarity to the voltages described above can be used, for example, actuating a pixel can involve setting the appropriate row to +Vbias ' and setting the appropriate column to _ Δν ^ In this embodiment, the release of the pixel is achieved by setting the appropriate row to _Vbias and setting the appropriate column to the same -Δν to produce a zero volt potential difference across the pixel.

圖5Β為展示施加至圖2之3x3陣列之一系列之列及行訊號 的時序圖,其導致形成圖5Α中所說明之顯示排列,其中致 動像素為非反射的。於寫入圖5Α中所說明圖框之前像素 可處於任一狀態,且於該實例中,所有列均為0伏特且所 有行均為+5伏特.在該等所施加電壓,所有像素穩定於其 現有致動或鬆弛狀態下。 於圖5Α之圖框中,致動像素(u)、〇,2)、(2,2)、 及(3,3)。為了達成該操作,於用於列i之"線時間⑴加 the)”期間,將行!及行2設定為·5伏特,且將行3設定㈣ 伏特。因為所有像素保持於3伏特至7伏特之穩定窗口甲, 所以上述操作未改變任何像素之狀態。隨後,利用一自。 增加至5伏特且再返回至零伏特之脈衝選通列卜此致動 ^及7像素且鬆弛(1,3)像素。陣列中其它像素未受到 /需設定列2’將行2設^至-5伏特,且將行1 :丁…伏特。隨後,施加至列2之相同選通致動像 素(2,2)且秦他像素⑽及…卜陣列之其它像素亦未典到 影響。錯由將行2及行3設定成·5伏特且將行㈣成+5伏 154I76.doc 201213850 特而類似地設定列3。如m s λ由& - *,。 J 如圖5A中所不,列3之選通設定列3 像素。寫入圖框之後,列電位為零且行電位可保持於+5 或·5伏特,且隨後穩定顯示圖从中之排列。應瞭解,相同 程序可用於數十或數百之列及行陣列。亦應瞭解,用以執 行列及行致動之時序、序列及電塵之位準可於上文概述之 基本原理内發生很大變化,且上述實例僅為例示性的,任 -致動電壓方法可與本文所述之系統及方法—同使用。 圖6A及圖⑽為-說明顯示裝置4〇之實施例之系統方塊 圖。顯示裝置40可為(例如)蜂巢式或行動電話。然而,顯 示裝置40之相同組件或其微小變化亦說明各種類型之顯示 裝置’諸如電視及攜帶型媒體播放器。 顯示裝置40包括一外殼41、一顯示器3〇、一天線43、一 揚聲器45輸入裝置48及-麥克風46。外殼41通常由熟 習該項技術輕熟知之諸多#製造方法中之任一種形成, 該等方法包括(但不限於)射出成形及真空成形。此外,外 殼可由多種材料之任一種構成,該等材料包括(但不限 於)塑料、金屬、玻璃、橡膠、陶究或其組合物。於一實 施例中,外殼41包括可移動部分(未展示),該部分可與不 同顏色或含有不同標諸、圖片或符號之其它可移動部分互 換。 例示性顯示裝置40之顯示器3〇可為包括本文所述雙穩態 顯示器之多種顯示器中之任一種。於其它實施例中,顯示 器30包括如上文所述之平板顯示器,如電漿、、 OLED、STN LCD或TFT LCD ’或包括非平板顯示器,如 154176.doc •14- 201213850 CRT或其它顯像管裝置’其為熟習此項技術者所熟知。然 而’為了描述本實施例之目的,顯示器3〇包括如本文所述 之干涉調變器顯示器。 圖6B示意性說明例示性顯示裝置40之一實施例之組件。 所說明例示性顯示裝置4〇包括一外殼4丨,且可包括至少部 为地封閉於該外殼中之額外組件。舉例而言,於一實施例 中’例示性顯示裝置40包括一網路介面27,該介面包括一 耦接至收發器47之天線43。收發器47連接至處理器21,該 處理器連接至調節硬體52。調節硬體w可經組態以調節訊 唬(例如’過濾訊號)。調節硬體52連接至揚聲器45及麥克 風46。處理器21亦連接至輸入裝置48及驅動器控制器29。 驅動器控制器2 9輕接至圖框緩衝器2 8,且搞接至陣列驅動 器22,該陣列驅動器亦耦接至顯示陣列30。電源50視特定 例示性顯示裝置40之設計需要而將電力提供至所有組件。 網路介面27包括天線43及收發器47,因此例示性顯示裝 置40可經由一網路而與一或多個裝置通信。於一實施例 中,網路介面27亦可具有某些處理能力以降低對處理器21 要求。天線43為任一熟習該項技術者所熟知之用以發射及 接收訊號之天線。於一實施例中,天線根據IEEE 8〇2丨i標 準(包括IEEE 802.11(a)、(b)或(g))發射及接收射頻(RF)訊 號。於另一貫施例中,天線根據藍芽(bluetooth)標準 發射及接收RF訊號。於蜂巢式電話之情況下,天線經設計 以接收CDMA、GSM、AMPS或用以在無線蜂巢電話網路 内通信之其它熟知訊號。收發器47預處理自天線43接收之 154176.doc 15 201213850 訊號,使得該等訊號可由處理器21接收及進一步處理。收 發器47亦預處理自處理器21接收之訊號,以使得可經由天 線43自例示性顯示裝置4〇發射該等訊號。 於一替代實施例中,收發器47可由接收器替代。於另— 替代貫施例中,網路介面27可由影像源替代該影像源可 儲存或產生待料至處理⑽之料㈣。舉例而言,影 像源可為含有影像資料之數位影音光碟(DVD)或硬碟 機、或一產生影像資料之軟體模組。 處理器21通常控制例示性顯示裝置4〇之整體操作。處理 器21接收諸如自網路介面27或影像源之壓縮影像資料的資 料,且將該資料處理成原始影像資料或成為易於處理成原 始影像資料之格式。隨後,處理器21將已處理資料發送至 驅動器控制器29或圖框緩衝器28以便儲存。原始資料通常 指於識別影像内之每一位置上之影像特徵的資訊。舉例而 言,此等影像特徵可包括顏色、飽和度,及灰度級。 於一實施例中,處理器21包括一微處理器、cpu或邏輯 單元以控制例示性顯示裝置4〇之操作。調節硬體52通常包 括用以將訊號傳輸至揚聲器45且接收來自麥克風^之訊號 的放大态及過濾器。調節硬體52可為例示性顯示裝置彻 之離散組件’或可併入處理器21或其它組件内。 驅動器控制器29直接自處理器21或自圖框緩衝器28獲取 ―⑽產生之原料像資料,且適當地將原始影像資料 重新格式化,以高速傳輸至陣列驅動器22。具體令之,驅 動器控制器29將原始影像資料重新格式化成具有類似光柵 154176.doc 201213850 格式之資料流,以使里具有— 、兴有適於掃描整個顯示陣列3 0之 時間次序。隨後,驅動器批击丨 勒益徑制器29將已格式化資訊發送至 陣列驅動器22。儘管驅動器於制 初窃控制斋29 (諸如LCD控制器)經 常作為獨立積體電路(IC)而盥牟 ^ μ系统處理益21相關聯,但該 等控制Θ可以諸多方法來實施。該等控制器可作為硬體嵌 入處理器21中’作為軟體嵌入處理器21中或以硬體形式與 陣列驅動器22完全整合在一起。Figure 5A is a timing diagram showing the series and row signals applied to a series of 3x3 arrays of Figure 2, which results in the formation of the display arrangement illustrated in Figure 5, wherein the actuation pixels are non-reflective. The pixels can be in either state before writing the frame illustrated in Figure 5, and in this example, all columns are 0 volts and all rows are +5 volts. At these applied voltages, all pixels are stable at It is currently in an actuated or relaxed state. In the frame of Figure 5, the pixels (u), 〇, 2), (2, 2), and (3, 3) are actuated. To achieve this, during row "line time(1) plus the), set row! and row 2 to 5 volts, and set row 3 to (4) volts. Since all pixels remain at 3 volts to 7 volts stabilizes the window A, so the above operation does not change the state of any pixel. Then, using a self-increase to 5 volts and back to zero volts, the pulse strobe column is activated and 7 pixels and slack (1, 3) Pixels. Other pixels in the array are not subjected to / need to be set column 2' to set row 2 to -5 volts, and row 1 : butyl ... volts. Subsequently, the same strobe-actuated pixel applied to column 2 (2 2) and other pixels of Qin (10) and ... array are not affected. The error is set to line 5 and line 3 to 5 volts and line (four) to +5 volts 154I76.doc 201213850 Set column 3. If ms λ is & - *, J As shown in Figure 5A, the strobe of column 3 sets the column 3 pixels. After writing the frame, the column potential is zero and the row potential can be maintained at +5 or • 5 volts, and then stabilize the display from which the map is arranged. It should be understood that the same procedure can be used for tens or hundreds of columns and row arrays. It will be appreciated that the timing, sequence, and dust levels used to perform the column and row actuations can vary widely within the basic principles outlined above, and the above examples are merely illustrative, any-actuation voltage methods. It can be used in conjunction with the systems and methods described herein. Figures 6A and 10(10) are system block diagrams illustrating an embodiment of a display device 4. The display device 40 can be, for example, a cellular or mobile phone. The same components of the device 40 or minor variations thereof also illustrate various types of display devices, such as televisions and portable media players. The display device 40 includes a housing 41, a display 3, an antenna 43, a speaker 45 input device 48, and - Microphone 46. The outer casing 41 is typically formed from any of a number of manufacturing methods that are well known in the art, including, but not limited to, injection molding and vacuum forming. Further, the outer casing may be constructed of any of a variety of materials. The materials include, but are not limited to, plastic, metal, glass, rubber, ceramics, or combinations thereof. In one embodiment, the outer casing 41 includes a movable portion ( The portion may be interchanged with different colors or other movable portions containing different numbers, pictures or symbols. The display 3 of the exemplary display device 40 may be any of a variety of displays including the bi-stable display described herein. In other embodiments, display 30 includes a flat panel display such as a plasma, OLED, STN LCD or TFT LCD as described above or includes a non-flat panel display such as 154176.doc • 14-201213850 CRT or other picture tube The device 'is well known to those skilled in the art. However, for the purposes of describing the present embodiment, the display 3 includes an interferometric modulator display as described herein. FIG. 6B schematically illustrates components of one embodiment of an exemplary display device 40. The illustrated exemplary display device 4 includes a housing 4 and may include additional components at least partially enclosed within the housing. For example, in an embodiment, the exemplary display device 40 includes a network interface 27 that includes an antenna 43 coupled to the transceiver 47. Transceiver 47 is coupled to processor 21, which is coupled to conditioning hardware 52. The adjustment hardware w can be configured to adjust the signal (e.g., 'filter signal'). The adjustment hardware 52 is connected to the speaker 45 and the microphone 46. Processor 21 is also coupled to input device 48 and driver controller 29. The driver controller 29 is lightly coupled to the frame buffer 2 and coupled to the array driver 22, which is also coupled to the display array 30. Power source 50 provides power to all components as needed for the design of a particular exemplary display device 40. The network interface 27 includes an antenna 43 and a transceiver 47 such that the exemplary display device 40 can communicate with one or more devices via a network. In one embodiment, the network interface 27 may also have some processing power to reduce the processor 21 requirements. Antenna 43 is an antenna known to those skilled in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives radio frequency (RF) signals in accordance with the IEEE 8 〇 2 丨 i standard (including IEEE 802.11 (a), (b) or (g)). In another embodiment, the antenna transmits and receives RF signals in accordance with the Bluetooth standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other well-known signals for communication within the wireless cellular telephone network. The transceiver 47 preprocesses the 154176.doc 15 201213850 signals received from the antenna 43 such that the signals can be received and further processed by the processor 21. The transceiver 47 also preprocesses the signals received from the processor 21 such that the signals can be transmitted from the exemplary display device 4 via the antenna 43. In an alternate embodiment, the transceiver 47 can be replaced by a receiver. Alternatively, instead of the embodiment, the network interface 27 can be replaced by an image source to store or generate material (4) to be processed (10). For example, the image source may be a digital video disc (DVD) or a hard disk drive containing image data, or a software module for generating image data. The processor 21 typically controls the overall operation of the exemplary display device 4. The processor 21 receives the compressed image data, such as from the network interface 27 or the image source, and processes the data into raw image data or into a format that is easily processed into the original image data. The processor 21 then sends the processed data to the drive controller 29 or the frame buffer 28 for storage. Raw material is usually used to identify information about image features at each location within the image. By way of example, such image features may include color, saturation, and gray levels. In one embodiment, processor 21 includes a microprocessor, cpu or logic unit to control the operation of exemplary display device 4. The adjustment hardware 52 typically includes an amplification state and a filter for transmitting signals to the speaker 45 and receiving signals from the microphones. The conditioning hardware 52 can be a discrete component of an exemplary display device or can be incorporated into the processor 21 or other components. The drive controller 29 directly acquires the raw material image data generated by the (10) from the processor 21 or from the frame buffer 28, and reformats the original image data as appropriate to transfer to the array driver 22 at a high speed. Specifically, the drive controller 29 reformats the original image data into a data stream having a format similar to the raster 154176.doc 201213850 so that there is a time sequence suitable for scanning the entire display array 30. The drive hacker 29 then sends the formatted information to the array driver 22. Although the driver is associated with the system control circuit (IC), which is often used as an independent integrated circuit (IC), the control unit can be implemented in a number of ways. The controllers can be embedded in the processor 21 as hardware embedded in the processor 21 or fully integrated with the array driver 22 in hardware.

▲通Φ ’陣列驅動器22自驅動器控制器Μ接收已格式化資 訊,且將視訊資料重新格式化成_組平行波形,其每秒多 次地將被施加至來自顯示器之"像素矩陣的數百且有時 為數千條之引線。 於實施例中,驅動器控制器29、陣列驅動器22及顯示 車歹Π0適α用於本文所述之任—類型顯示器。舉例而言, 於只把例中,驅動器控制器29為習知顯示控制器或雙穩 態顯示控制器(例如’干涉調變器控制器)。於另一實施例 中,陣列驅動器22為-習知驅動器或雙穩態顯示驅動器 (例如’干涉調變器顯示器)。於-實施例中,驅動器控制 器29係與陣列驅動器22整合為—體。該實施例於諸如蜂巢 式電話、手錶及其它小面積顯示器之高度整合系統中係普 通的。於另-實施例中’顯轉列3()為—典型顯示陣列或 雙穩態顯示陣列(例如,—包括干涉調變器陣列之顯示 器)〇 輸入裝置48允許使用者控制例示性顯示裝置4()之操作。 於一實施例中’輸入裝置48包括一小鍵盤(諸如qwerty 154176.doc 17 201213850 開關、一觸控式螢幕、 ,麥克風46為—用於例 鍵盤或電話小鍵盤)、一按鈕、— 一壓敏膜或熱敏膜。於一實施例中 示性顯示裝置40之輸入裝置。當麥克風46用以將資料輸入 至裝置時,使用者可提供音訊指令以控制例示性顯示裝置 40之操作。 、 電源50可包括該項技術中熟知之各種能量儲存裝置。舉 例而言,於-實施例中,電源50為一諸如錄鉻電池或鐘離 子電池之可再充電電池。於另一實施例中電源$ 〇為一可 再生能源、-電容器或一包括塑膠太陽能電池及太陽能電 池塗料之太陽能電池。於另一實施例中,電源5〇經組態以 自一壁式插座接收能量。 於某些實施例中,如上所述,控制可程式化性存在於一 可位於電子顯示系統中之若干位置上之驅動器控制器中。 於某些情況下,控制可程式化存在於陣列驅動器22。熟習 該項技術者應瞭解,上述最佳化可於任一數目之硬體及/ 或軟體組件且以各種組態來實施。 根據上述原理操作之干涉調變器之結構細節可顯著變 化。舉例而言,圖7A至圖7E說明可移動反射層14及其支 撐結構之五個不同實施例。圖7A為圖i之實施例的截面 圖,其中金屬材料14之條紋沉積於正交延伸之支撐物18 上。於圖7B中’可移動反射層14僅借助於系繩32附著至支 撐物之端角處。於圖7(:中,可移動反射層14懸掛於一可包 含可挽性金屬之可變形層34。可變形層34繞其周邊而直接 或間接連接至圍的基板20。本文將該等連接件稱作支撐 154176.doc 201213850 柱。圖7D中所說明之實施例具有支撐柱塞42,可變形層34 係位於支撐柱塞上。如圖7A至圖7(:中,可移動反射層“ 保持懸掛於腔上,但可變形層34不會藉由填充可變形層“ 與光學堆疊16之間的孔而形成支撐柱。相反’支撐柱係由 用以形成支撐柱塞42之平坦化材料形成。圖7E中所說明之 實施例以圖7D中所示之實施例為基礎,但亦可適合與圖 7A至圖7C中說明之實施例之任一者及未展示之額外實施 例一同作用。於圖7E中所示之實施例中,金屬或其它導電 材料之額外層業已用來形成匯流排結構44。該方式容許訊 號沿著干涉調變器之背面投送,以去除在其它情況下必須 形成於基板20上之多個電極。 於諸如圖7中所示之實施例中,干涉調變器充當直視型 顯不裝置,其中自透明基板2〇之前側觀察影像,該側與配 置調變器之側相對。於該等實施例中,反射層丨4在視覺上 遮蔽在該反射層之與基板20相對之側面上的干涉測量調變 器之某些部分,該等部分包括可變形層34〇此允許屏蔽區 域在不對影像品質產生負面影響的情況下組態及操作。此 屏蔽允許圖7E中之匯流排結構44提供將調變器之光學性質 與該調變器之機電性質分離之能力,諸如定址及該定址所 導致之移動。該分離的調變器架構允許選擇用於調變器之 機電態樣與光學態樣之結構設計及材料且彼此獨立起作 用。此外,圖7C至圖7E中所示實施例具有將反射層14之光 學性質與其機械性質分離所得之額外益處,該操作由可變 形層34執行。此允許相對光學性質而優化用於反射層14之 154176.doc -19· 201213850 結構設計及材料,且相對所要機械性質優化用於可變形層 34之結構設計及材料。 圖8為例示性干涉調變器1〇〇之截面圖。干涉調變器1〇〇 包含一基板120、一透明導體140、一部分反射器116、一 介電質112、一可移動鏡114及支撐物118。於圖8之實施例 中’支撐物118支撐可移動鏡114且界定介電層112與可移 動鏡之間的空氣間隙119。於一有利實施例中,氣隙119之 大小根據所要干涉調變器之光學特徵而定。舉例而言,可 為達成自干涉調變器反射所要顏色來定氣隙119之大小。 如上文相對圖7A、圖7B及圖7C之描述’通常將電壓差 施加於可移動鏡14及部分反射器16上以致動干涉調變器。 因此,於圖7A、圖7B及圖7C之實施例中,(例如)可移動鏡 14及部分反射器16至少部分導電,以使得它們可連接至顯 示裝置之列及行線。於其中部分反射器16亦為一干涉調變 器之電極例示性的實施例中(例如,圖7A '圖7B及圖7C), 部分反射器可包含鉻、鈦及/或鉬。 於例示性干涉調變器100中,展示透明導體14〇定位於部 分反射器116與基板120之間。於該實施例中,透明導體 140係組態為干涉調變器之一電極,因此干涉調變器ι〇〇可 藉由在可移動鏡114與透明導體14〇之間施加適當的電壓差 (例如’ 10伏特)而得以致動。於例示性實施例中,透明導 體140包含氧化銦錫(IT〇)、氧化鋅、摻鹼氧化辞、氧化錢 錫、摻鋁氧化辞、摻鹼氧化錫及/或摻有鎵、硼或銦之氧 化鋅。於該實施例中,部分反射器116無需具有導電性, 154176.doc •20- 201213850 且因此部分反射器116可包含任一適當的導電或不導電之 部分反射材料。 於某些干涉調變器之實施例中,部分反射器116之反射 率在約30-36°/。之範圍内。舉例而言,於一實施例中,部分 反射器116之反射率為約31%。於其它實施例中,其它反射 率與本文所述之系統及方法可一同使用。於其它實施例 中’根據用於干涉調變器100之所要輸出標準,部分反射▲ pass Φ 'Array driver 22 receives the formatted information from the driver controller and reformats the video data into a set of parallel waveforms that are applied multiple times per second to the "pixel matrix from the display. And sometimes thousands of leads. In an embodiment, the driver controller 29, the array driver 22, and the display panel are used for any of the types of displays described herein. For example, in the example only, the driver controller 29 is a conventional display controller or a bistable display controller (e.g., an 'interference modulator controller'). In another embodiment, array driver 22 is a conventional driver or a bi-stable display driver (e.g., an 'interferometric modulator display). In the embodiment, the driver controller 29 is integrated with the array driver 22 as a body. This embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays. In another embodiment, the 'display column 3' is a typical display array or a bi-stable display array (eg, a display including an array of interferometric modulators). The input device 48 allows the user to control the exemplary display device 4 () operation. In one embodiment, the input device 48 includes a keypad (such as qwerty 154176.doc 17 201213850 switch, a touch screen, microphone 46 for - for example keyboard or telephone keypad), a button, - a pressure Sensitive film or heat sensitive film. In an embodiment, an input device of the display device 40 is shown. When microphone 46 is used to input data to the device, the user can provide audio commands to control the operation of exemplary display device 40. The power source 50 can include various energy storage devices well known in the art. For example, in the embodiment, the power source 50 is a rechargeable battery such as a chrome-plated battery or a clock-ion battery. In another embodiment, the power source is a renewable energy source, a capacitor, or a solar cell including a plastic solar cell and a solar cell coating. In another embodiment, the power source 5 is configured to receive energy from a wall outlet. In some embodiments, as described above, control programmability exists in a driver controller that can be located at several locations in an electronic display system. In some cases, control can be programmed to exist in array driver 22. Those skilled in the art will appreciate that the above optimizations can be implemented in any number of hardware and/or software components and in a variety of configurations. The structural details of the interference modulator operating in accordance with the principles described above can vary significantly. For example, Figures 7A-7E illustrate five different embodiments of the movable reflective layer 14 and its supporting structure. Figure 7A is a cross-sectional view of the embodiment of Figure i with strips of metallic material 14 deposited on orthogonally extending supports 18. In Fig. 7B, the movable reflective layer 14 is attached to the end corners of the support only by means of the tether 32. In Figure 7 (wherein, the movable reflective layer 14 is suspended from a deformable layer 34 which may comprise a levisable metal. The deformable layer 34 is connected directly or indirectly to the surrounding substrate 20 around its periphery. The piece is referred to as a support 154176.doc 201213850. The embodiment illustrated in Figure 7D has a support plunger 42 that is attached to the support plunger. Figure 7A-7 (in, movable reflective layer) Staying suspended from the cavity, but the deformable layer 34 does not form a support post by filling the deformable layer "with the aperture between the optical stack 16. Instead the support column is formed by a planarizing material used to form the support plunger 42. The embodiment illustrated in Figure 7E is based on the embodiment illustrated in Figure 7D, but may also be adapted to function with any of the embodiments illustrated in Figures 7A-7C and additional embodiments not shown. In the embodiment shown in Figure 7E, additional layers of metal or other conductive material have been used to form the bus bar structure 44. This mode allows signals to be routed along the back side of the interference modulator to remove in other cases. a plurality of electrodes that must be formed on the substrate 20 In an embodiment such as that shown in Figure 7, the interferometric modulator acts as a direct-view display device in which the image is viewed from the front side of the transparent substrate 2, which side is opposite the side on which the modulator is disposed. In these embodiments The reflective layer 4 is visually shielded from portions of the interferometric modulator on the side of the reflective layer opposite the substrate 20, the portions including the deformable layer 34, which allows the shielded area to be inferior to image quality. Configuration and operation in the event of a negative impact. This shielding allows the busbar structure 44 of Figure 7E to provide the ability to separate the optical properties of the modulator from the electromechanical properties of the modulator, such as addressing and location. The separate modulator architecture allows for the selection of the structural design and materials for the electromechanical and optical aspects of the modulator and functions independently of each other. Furthermore, the embodiment shown in Figures 7C to 7E has a reflection The additional benefit of separating the optical properties of layer 14 from its mechanical properties is performed by deformable layer 34. This allows for the relative optical properties to be optimized for reflective layer 14 154176.doc -19· 20121385 0 Structural design and material, and optimized for the structural design and material of the deformable layer 34 with respect to the desired mechanical properties. Figure 8 is a cross-sectional view of an exemplary interferometric modulator 1 干涉. The interferometric modulator 1 〇〇 includes a substrate 120, a transparent conductor 140, a portion of the reflector 116, a dielectric 112, a movable mirror 114, and a support 118. In the embodiment of FIG. 8, the support 118 supports the movable mirror 114 and defines the dielectric layer 112. An air gap 119 with the movable mirror. In an advantageous embodiment, the size of the air gap 119 depends on the optical characteristics of the interfering modulator. For example, the desired color can be achieved by self-interference modulator reflection. The size of the air gap 119 is determined. As described above with respect to Figures 7A, 7B, and 7C, a voltage difference is typically applied to the movable mirror 14 and the partial reflector 16 to actuate the interference modulator. Thus, in the embodiment of Figures 7A, 7B, and 7C, for example, the movable mirror 14 and the partial reflector 16 are at least partially electrically conductive such that they are connectable to the columns and rows of display devices. In an exemplary embodiment in which the partial reflector 16 is also an electrode of an interferometric modulator (e.g., Fig. 7A 'Fig. 7B and Fig. 7C), the partial reflector may comprise chromium, titanium and/or molybdenum. In the exemplary interferometric modulator 100, the transparent conductor 14 is shown positioned between the partial reflector 116 and the substrate 120. In this embodiment, the transparent conductor 140 is configured as one of the electrodes of the interference modulator, so the interference modulator ι can be applied with an appropriate voltage difference between the movable mirror 114 and the transparent conductor 14〇 ( For example, '10 volts' is activated. In an exemplary embodiment, the transparent conductor 140 comprises indium tin oxide (IT〇), zinc oxide, alkali-doped oxidized, oxidized oxidized tin, aluminum-doped oxidized, alkali-doped tin oxide, and/or doped with gallium, boron or indium. Zinc oxide. In this embodiment, the partial reflector 116 need not be electrically conductive, 154176.doc • 20-201213850 and thus the partial reflector 116 may comprise any suitable conductive or non-conductive partially reflective material. In some embodiments of the interference modulator, the partial reflector 116 has a reflectivity of between about 30 and about 36 degrees. Within the scope. For example, in one embodiment, the reflectivity of the partial reflector 116 is about 31%. In other embodiments, other reflectivities can be used with the systems and methods described herein. In other embodiments, the partial reflection is based on the desired output standard for the interferometric modulator 100.

器116之反射率可設定為其它等級。於典型干涉調變号 中,當部分反射器之厚度增大時,部分反射器之反射率亦 增大’因此降低黑暗狀態之有效性且限制干涉調變器之對 比度。因此,為了達成部分反射器之所要反射率,於諸多 實施例中’需要降低部分反射器之厚度。 於圖8之實施例中,歸因於透明導體14〇用作電極之事 實,部分反射器116較薄時有利。因此,由於透明導體用 作電極,故部分反射器無需具有導電性。因此,於包括— 透明導體(諸如透明導體140)之實施例中,為了達成所要反 射率’可減少部分反射器之厚度。於—實施例中,部分反 射器116具有約75埃之厚度。於另—實施例中,部分反射 器116具有在約60-100埃範圍内之厚度。於另一實施例 中,部分反射器116具有在約40_15〇埃範圍内之厚度广] 於-實施例中,部分反射器包含氮切,其為非導電之 部分反射㈣。於其它實施財,使祕氧化物, (但不限於)Cr〇2、Cr〇3、Cr2〇3、㈣及。於某此 實施例中’將低傳導率介電材料用作部分反射器。今等「 154176.doc 201213850 傳導率介電材料通常稱作’'高-k介電質",其中”高_k介電質” 指具有一大於或等於約3.9之介電常數的材料《高-k介電質 可包括(例如)Si〇2、Si3N4、Al2〇3、γ2〇3、La203、Ta205、The reflectivity of the device 116 can be set to other levels. In a typical interferometric modulation number, as the thickness of the partial reflector increases, the reflectivity of the partial reflector also increases' thus reducing the effectiveness of the dark state and limiting the contrast of the interferometric modulator. Therefore, in order to achieve the desired reflectivity of the partial reflector, it is desirable in many embodiments to reduce the thickness of the partial reflector. In the embodiment of Fig. 8, due to the fact that the transparent conductor 14 is used as an electrode, the partial reflector 116 is advantageous when it is thin. Therefore, since the transparent conductor is used as an electrode, the partial reflector does not need to have conductivity. Thus, in embodiments including a transparent conductor (such as transparent conductor 140), the thickness of the partial reflector can be reduced in order to achieve the desired reflectance. In the embodiment, the partial reflector 116 has a thickness of about 75 angstroms. In another embodiment, partial reflector 116 has a thickness in the range of about 60-100 angstroms. In another embodiment, the partial reflector 116 has a wide thickness in the range of about 40-15 angstroms. In an embodiment, the partial reflector comprises a nitrogen cut, which is a non-conductive partial reflection (four). In other implementations, the secret oxides, (but not limited to) Cr〇2, Cr〇3, Cr2〇3, (4) and. In some embodiments, a low conductivity dielectric material is used as a partial reflector. " 154176.doc 201213850 Conductivity dielectric materials are commonly referred to as ''high-k dielectrics', where "high-k dielectric" means a material having a dielectric constant greater than or equal to about 3.9. The high-k dielectric may include, for example, Si〇2, Si3N4, Al2〇3, γ2〇3, La203, Ta205,

Ti02、Hf02及 Zr02。 於其它實施例中,部分反射器11 6包含一介電堆疊,該 介電堆疊具有折射率不同之介電質之交替層。如熟習該項 技術者所知’干涉調變器100之輸出特徵(例如,自干涉調 變器100反射的光之顏色)受部分反射器U6之反射率影 響。因此,為了達成所要輸出特徵,可執行對部分反射器 籲 116之反射率之調整。於一實施例中,部分反射器116之折 射率可藉由使用包含堆疊結構之介電材料組合物的部分反 射器116而微調。舉例而言,於一實施例中,部分反射器 116可包含一 si〇2層及一 CrOCN層。於一具有一包含一介 電質堆疊之部分反射器的干涉調變器之例示性實施例中, 基板120上之材料層包括一約5〇〇埃厚之IT〇層一約1〇〇〇 埃厚之Si〇2層、一約110埃厚之Cr〇C]s^、一約275埃厚之 Si〇2層、一約2000埃厚之氣隙及一 μ反射器。因此,於該 籲 例示性實施例中,部分反射器包含一約1000埃厚之Si〇2層 及約U0埃厚之CrOCN層。熟習該項技術者應瞭解,存 在可單獨或與其它材料組合用作部分反射器〗16之一部分 之諸多其它適當的導電或非導電材料。明顯涵蓋該等材料 與本文所述之系統及方法組合之使用。 於一典型顯示器中,當獨立顯示元件(例如,干涉調變 器)之電合增大時’改變顯示元件上之電壓所需的功率亦 154I76.doc •22· 201213850 曰 舉例而s ’當一干涉調變器中的任意致動顯示元件 、a大時,改變顯示器行上的電壓位準所需之電流亦 增大。因此,带Φ、士 | 而要减少的電容顯示元件。圖9及圖10之顯 示元件為具有減少的電容顯示s件之例示性實施例。 圖9為減少的電容干涉調變器2〇〇之截面圖。圖9之干涉 調k器200包含基板120、透明導體140、一介電質130、部 刀反射器116 ’丨電質112、可移動鏡114、支撲物118,及 119。於-例示性實施例中’該等層之相對厚度係經 • 選擇以使得氣隙119之厚度大於部分反射器116、介電m 及介電13G之-組合厚度。於圖9之實施例中,藉由將部分 反射咨116自透明導體14〇去耦而達成較低電容,因此增大 干涉調變器之電極(例如,可移動鏡114及透明導體14〇)之 間的距離。更特定言之,於圖9之實施例中,額外介電質 130係定位於透明導體14〇與部分反射器116之間。介電質 130之添加未改變部分反射器116與可移動鏡114之間的距 φ 離,然而確實增大了透明導體140與可移動鏡114之間的距 離。於一實施例中,介電質13〇具有約^卯埃之厚度。於 其它實施例中,介電質130具有在約800_3,〇〇〇埃範圍内之 厚度。 如上文相對圖8所描述,舉例而言,包括一透明導體“ο 之干涉調變器貫施例可藉由將電壓施加於透明導體^ 與 可移動鏡114之間而得以致動。於圖9之例示性實施例中, 當可移動鏡114向介電層112塌陷時,介電層13〇之厚度增 大了可移動鏡114與經通電之透明導體14〇之間的最終距 154176.doc • 23· 201213850 離。因為電容與藉由增大干涉調變器200的電極之間的距 離而分離之電容電極之距離成反向變化,故干涉調變器 200之電容相應減小。因此,添加介電質13〇未顯著影響干 涉調變器200之光學特徵,但確實減小了(例如)可移動鏡 114與透明導體140電極之間的電容。 圖10為一例示性減少的電容干涉調變器3〇〇之截面圖。 圖1〇之干涉調變器300包含一基板312、一透明導體31〇、 一介電質308、一部分反射器306、一介電質3〇4、一可移 動鏡302、支摟物3 1 8 ’及一氣隙303。於圖1 〇之實施例 中,可移動鏡302與部分反射器306由介電層3〇4及氣隙3〇3 分離。於該實施例中,氣隙3〇3及介電質308之大小經選定 以使得於釋放狀態(例如,圖1〇中所示之狀態)下,干涉調 變器300大體上吸收入射至基板312上之所有光,因此觀察 者觀察到干涉調變器300為黑色。當干涉調變器3〇〇被致動 (例如’可移動鏡302塌陷使得其接觸介電質3〇4)時,干涉 調變器300大體上反射所有波長之入射光,因此對於觀察 者而言’干涉調變器300呈現白色。於某些實施例中,大 體上所有波長的光之反射可提供白色光,其被稱作,,寬頻 白色”。歸因於與干涉調變器1〇〇及2〇〇相比時,干涉調變 器300以相反方式操作(例如,干涉調變器3〇〇於釋放狀態 下產生彩色或白色且於致動狀態下產生黑色)之事實,將 干涉調變器300稱作”逆干涉調變器"_。 於一實施例中,逆干涉調變器3〇〇之光學間隙(包括氣隙 303及介電質306)比於致動狀態下產生黑色或於釋放狀態 154176.doc •24· 201213850 下產生彩色或白色之干涉調變5|夕止樹 雙盗之先學間隙小得多(例 如,圖10)。舉例而言,介電質3〇4 貝υ4了具有小於約150埃之 厚度且氣隙304可具有約1,4〇〇埃之眉麻 厚度,而干涉調變器 100可具有範圍約350至850埃之介啻衍广— ° 爷& ;丨電質厚度及範圍約為 2,000-3,000埃之氣隙。因此,諸如 布如干涉調變器300之逆干 涉調變器具有比規則的干涉調變器 ΠI态小之光學間隙,且因此Ti02, Hf02 and Zr02. In other embodiments, partial reflector 116 includes a dielectric stack having alternating layers of dielectrics having different indices of refraction. As known to those skilled in the art, the output characteristics of the interferometric modulator 100 (e.g., the color of the light reflected from the interferometric modulator 100) are affected by the reflectivity of the partial reflector U6. Therefore, in order to achieve the desired output characteristics, the adjustment of the reflectivity of the partial reflector 116 can be performed. In one embodiment, the refractive index of the partial reflector 116 can be fine tuned by using a partial reflector 116 comprising a dielectric material composition of a stacked structure. For example, in one embodiment, the partial reflector 116 can include a si〇2 layer and a CrOCN layer. In an exemplary embodiment of an interference modulator having a partial reflector including a dielectric stack, the material layer on the substrate 120 includes an IT layer of about 5 angstroms thick. A thick layer of Si 〇 2 layer, a layer of about 110 angstroms of Cr 〇 C] s ^, a layer of about 275 angstroms of Si 〇 2 layer, an air gap of about 2000 angstroms thick and a μ reflector. Thus, in the exemplary embodiment, the partial reflector comprises a layer of Si〇2 of about 1000 angstroms thick and a CrOCN layer of about U0 angstrom thick. Those skilled in the art will appreciate that there are many other suitable electrically conductive or non-conductive materials that can be used alone or in combination with other materials as part of a partial reflector. The use of such materials in combination with the systems and methods described herein is expressly contemplated. In a typical display, when the power of the independent display element (for example, the interferometric modulator) increases, the power required to change the voltage on the display element is also 154I76.doc •22·201213850 曰Example and s 'When When any of the interferometric modulators is actuated, the current required to change the voltage level on the display line is also increased. Therefore, with Φ, 士 | and to reduce the capacitance of the display components. The display elements of Figures 9 and 10 are illustrative embodiments having reduced capacitance display s. Figure 9 is a cross-sectional view of the reduced capacitive interference modulator 2A. The interferometer 250 of FIG. 9 includes a substrate 120, a transparent conductor 140, a dielectric 130, a blade reflector 116', a movable 112, a movable mirror 114, and a snubber 118, and 119. In the exemplary embodiment, the relative thicknesses of the layers are selected such that the thickness of the air gap 119 is greater than the combined thickness of the partial reflector 116, the dielectric m, and the dielectric 13G. In the embodiment of FIG. 9, the lower capacitance is achieved by decoupling the partial reflection 116 from the transparent conductor 14〇, thereby increasing the electrodes of the interference modulator (eg, the movable mirror 114 and the transparent conductor 14〇). the distance between. More specifically, in the embodiment of FIG. 9, additional dielectric 130 is positioned between the transparent conductor 14A and the partial reflector 116. The addition of the dielectric 130 does not change the distance between the partial reflector 116 and the movable mirror 114, but does increase the distance between the transparent conductor 140 and the movable mirror 114. In one embodiment, the dielectric material 13 has a thickness of about 卯. In other embodiments, the dielectric 130 has a thickness in the range of about 800 Å, 〇〇〇. As described above with respect to Figure 8, for example, an interferometric modulator comprising a transparent conductor "o" can be actuated by applying a voltage between the transparent conductor and the movable mirror 114. In an exemplary embodiment of the present invention, when the movable mirror 114 collapses toward the dielectric layer 112, the thickness of the dielectric layer 13〇 increases the final distance 154176 between the movable mirror 114 and the energized transparent conductor 14〇. Doc • 23·201213850. Because the capacitance and the distance of the capacitor electrode separated by increasing the distance between the electrodes of the interferometer 200 are reversed, the capacitance of the interferometric modulator 200 is correspondingly reduced. The addition of dielectric 13 does not significantly affect the optical characteristics of the interferometric modulator 200, but does reduce the capacitance between, for example, the movable mirror 114 and the transparent conductor 140. Figure 10 is an illustratively reduced capacitance. A cross-sectional view of the interferometer modulator 3. The interferometric modulator 300 of FIG. 1 includes a substrate 312, a transparent conductor 31, a dielectric 308, a portion of the reflector 306, a dielectric 3〇4, a movable mirror 302, a support 3 1 8 ' and an air gap 303 In the embodiment of FIG. 1, the movable mirror 302 and the partial reflector 306 are separated by a dielectric layer 3〇4 and an air gap 3〇3. In this embodiment, the air gap 3〇3 and the dielectric 308 are The size is selected such that in a released state (eg, the state shown in FIG. 1A), the interferometric modulator 300 substantially absorbs all of the light incident on the substrate 312, so the observer observes that the interferometric modulator 300 is Black. When the interferometric modulator 3 is actuated (eg, 'the movable mirror 302 collapses such that it contacts the dielectric 3〇4), the interferometric modulator 300 generally reflects incident light of all wavelengths, thus The 'interference modulator 300' appears white. In some embodiments, substantially all wavelengths of light reflection can provide white light, which is referred to as "broad white." Due to the interference with the interferometric modulators 1 and 2, the interferometric modulator 300 operates in the opposite manner (eg, the interferometric modulator 3 produces a color or white in the released state and is actuated The fact that the black is generated in the state, the interference modulator 300 is referred to as an "inverse interference modulator". In one embodiment, the optical gap of the inverse interference modulator 3 (including the air gap 303 and The electrical material 306) produces a black color or a release state under the actuated state 154176.doc •24·201213850. The color of the stalk is much smaller (for example, the figure 10). For example, the dielectric 3〇4 shell 4 has a thickness of less than about 150 angstroms and the air gap 304 can have a thickness of about 1,4 angstroms, while the interference modulator 100 can have a range About 350 to 850 angstroms - & ° ° 丨 丨 丨 丨 丨 丨 丨 丨 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 Regular interference modulator ΠI state small optical gap, and therefore

逆干涉調變器之電極通常較於一起靠近。於圖狀例示性 實施例令,當干涉調變器300位於塌陷位置時,可移動鏡 3〇2與部分反射器3〇6之間的距離在約⑼至埃之範圍 内。該距離包含介電質304之厚度(於圖ι〇之實施例中約 150埃)及約〇-50埃之小間隙,存在該間隙係因為可移動鏡 3〇2及介電質3〇4於塌陷位置中彼此未能緊密地接觸。於其 它逆干涉調變器中,光學間隙及電極之間的距離可比上文 介紹之數字更大或更小。 歸因於電極之間減小的距離’逆干涉調變器之電容通常 比規則的干涉調變器大。因此,當逆干涉調變器之列及/ 或行端子上之電壓變化時,逆干涉調變器可消耗額外功 率。為了減小逆干涉調變器则之電容,介電層細係定位 於干涉調變II之端子之間。舉例而言,干涉調變器3〇〇包 括-與透明導體310相鄰之介電f則1例而|,與相對 ^所描述之方式相同,介電質则之添加未影響部分反射 器6與可移動鏡3 02之間的距離,然而確實增大透明導體 /、可移動鏡3〇2之間的距離,因此減小了干涉調變器 3〇0之電容。因此,由於在干涉調變器之電極之間添加了 154176.doc -25- 201213850 介電層308,所以逆干涉調變器3〇〇之電容可顯著減少。 干涉調變器100、200及300之每一者均包括一可移動鏡 (圖8及圖9中之鏡114及圖1〇中之鏡3〇2)。該等例示性可移 動鏡係可變形的,以使得當將適當電壓施加於干涉調變器 之端子上時,該等例示性可移動鏡向介電質112 (圖8及圖 9)及304 (圖10)塌陷。然而’熟習該項技術者應瞭解,上 文相對於圖8、圖9及圖10描述之改良可於具有不同組態可 移動鏡之干涉調變器之其它實施例中實施。舉例而言:干 涉調變器H)0、及3〇〇可經修正以具有僅(諸如)藉由系繩 (例如’圖7B)附著至支樓物端角處之可移動鏡,或可具有 懸掛於可變形層上(例如,圖7〇之可移動鏡1顯涵蓋相 對圖7、圖8及圖9所述之經改良系統及方法之使用及可移 動鏡之該等其它組態。 特 明 離 應 j業已說明本發明之各種實施例。儘管業已參考該 定實施例說明本發明,但是該說明内容意欲說明本 ,而並不用以限制性本發明 本發明之精神及範嘴的情況 用0The electrodes of the inverse interference modulator are usually closer together. In the illustrated exemplary embodiment, when the interference modulator 300 is in the collapsed position, the distance between the movable mirror 3〇2 and the partial reflector 3〇6 is in the range of about (9) to angstrom. The distance includes the thickness of the dielectric 304 (about 150 angstroms in the embodiment of Fig. ι〇) and a small gap of about 〇50 Å, which is due to the movable mirror 3〇2 and the dielectric 3〇4. They are not in close contact with each other in the collapsed position. In other inverse interference modulators, the optical gap and the distance between the electrodes can be larger or smaller than the numbers described above. Due to the reduced distance between the electrodes, the capacitance of the inverse interference modulator is typically larger than that of a regular interference modulator. Therefore, the inverse interference modulator can consume additional power when the voltage on the column of the inverse interference modulator and/or the row terminals changes. In order to reduce the capacitance of the inverse interference modulator, the dielectric layer is finely positioned between the terminals of the interference modulation II. For example, the interferometric modulator 3 includes - a dielectric f adjacent to the transparent conductor 310, for example, in the same manner as described above, and the addition of the dielectric does not affect the partial reflector 6 The distance from the movable mirror 302, however, does increase the distance between the transparent conductor/movable mirror 3〇2, thus reducing the capacitance of the interference modulator 3〇0. Therefore, since the 154176.doc -25-201213850 dielectric layer 308 is added between the electrodes of the interference modulator, the capacitance of the inverse interference modulator 3〇〇 can be significantly reduced. Each of the interferometric modulators 100, 200, and 300 includes a movable mirror (mirror 114 in Figs. 8 and 9 and mirror 3〇2 in Fig. 1). The exemplary movable mirrors are deformable such that when an appropriate voltage is applied to the terminals of the interference modulator, the exemplary movable mirrored dielectrics 112 (Figs. 8 and 9) and 304 (Fig. 10) Collapse. However, those skilled in the art will appreciate that the improvements described above with respect to Figures 8, 9, and 10 can be implemented in other embodiments of interference modulators having different configurations of movable mirrors. For example: the interference modulators H) 0, and 3〇〇 can be modified to have a movable mirror that is only attached to the corner of the branch by, for example, a tether (eg, 'FIG. 7B), or There are other configurations that are suspended from the deformable layer (e.g., the movable mirror 1 of Fig. 7) covers the use of the improved system and method described with respect to Figs. 7, 8, and 9, and the movable mirror. The present invention has been described with reference to the preferred embodiments of the present invention, which are intended to be illustrative, and not to limit the scope of the invention Use 0

。熟習該項技術者可在不背 下對本發明進行各種修正及 【圖式簡單說明】 圖1為描述干涉調變器顯示器之一實施例之一部分的等 角視圖’纟中-第—干涉調變器之_可移動反射層位 =置,且一第二干涉調變器之一可移動反射層位於致動 示器之電子裝置之 圖2為說明併入一個3x3干涉調變器顯 154176.doc • 26 - 201213850 一實施例的系統方塊圖; 器之一例示性實施例之可移動 圖3為用於圖1的干涉調變 鏡位置與施加電壓的圖; 示器之一組列及行電 圖4說明可用以驅動干涉調變器顯 壓; 圖5A說明一圖2之3x3干涉調變器顯示器中的顯示資料 之例示性圖框;. A person skilled in the art can make various modifications to the present invention and a brief description of the drawings. FIG. 1 is an isometric view of a portion of an embodiment of an interference modulator display. The movable reflective layer is set, and one of the second interference modulators is located at the electronic device of the actuator. FIG. 2 is an illustration of incorporating a 3x3 interference modulator. • 26 - 201213850 System block diagram of an embodiment; movable diagram of one exemplary embodiment FIG. 3 is a diagram for the position and voltage applied to the interferometric mirror of FIG. 1; Figure 4 illustrates an exemplary display of the display data in a 3x3 interferometric modulator display of Figure 2;

圖5B說明-用於列及行訊號之例示性時序圖,該等訊號 可用以寫入圖5A之圖框; 圖6A及6B為說明包含複數個干涉調變器之視覺顯示裝 置之實施例的系統方塊圖; 圖7A為圖1之裝置的截面圖; 圖7B為干涉調變器之替代實施例之截面圖; 圖7C為干涉調變器之另一替代實施例之截面圖; 圖7D為干涉調變器之又一替代實施例之截面圖; 圖7E為干涉調變器之一額外替代實施例之截面圖; 圖8為一具有一透明導體之例示性干涉調變器之截面 園, 圖9為一例示性減少的電容干涉調變器之截面圖;及 圖10為另一例示性減少的電容干涉調變器之截面圖。 【主要元件符號說明】 1、2、3 行/列 12a、12b 干涉調變器 14 反射層 154176.doc -27· 201213850 14a、14b 16、16a、16b 18 19 20 21 22 24 26 27 28 29 30 32 34 40 41 42 43 44 45 46 47 48 可移動反射層 光學堆疊 支撐物 界定間隙 基板 處理器 陣列驅動器 列驅動器電路 行驅動器電路 網路介面 圖框缓衝器 驅動器控制器 顯示陣列 系繩 可變形層 顯示裝置 外殼 支撐柱塞 天線 匯流排結構 揚聲器 麥克風 收發器 輸入裝置5B illustrates an exemplary timing diagram for column and row signals, which may be used to write the frame of FIG. 5A; FIGS. 6A and 6B are diagrams illustrating an embodiment of a visual display device including a plurality of interferometric modulators. Figure 7A is a cross-sectional view of an alternative embodiment of the interferometric modulator; Figure 7C is a cross-sectional view of another alternate embodiment of the interferometric modulator; Figure 7D is a cross-sectional view of an alternate embodiment of the interferometric modulator; FIG. 7E is a cross-sectional view of an alternative embodiment of an interferometric modulator; FIG. 8 is a cross-sectional view of an exemplary interferometric modulator having a transparent conductor, 9 is a cross-sectional view of an exemplary reduced capacitive interference modulator; and FIG. 10 is a cross-sectional view of another exemplary reduced capacitive interference modulator. [Description of main component symbols] 1, 2, 3 rows/columns 12a, 12b Interference modulator 14 Reflective layer 154176.doc -27· 201213850 14a, 14b 16, 16a, 16b 18 19 20 21 22 24 26 27 28 29 30 32 34 40 41 42 43 44 45 46 47 48 Movable Reflective Layer Optical Stacking Support Defining Gap Substrate Processor Array Driver Column Driver Circuit Row Driver Circuit Network Interface Frame Buffer Driver Controller Display Array Tether Deformable Layer Display device housing supporting plunger antenna busbar structure speaker microphone transceiver input device

154176.doc -28· 201213850154176.doc -28· 201213850

50 52 100 112 114 116 118 119 120 130 140 200 ' 300 302 303 304 306 308 310 312 318 電源 調節硬體 干涉調變器 介電質 可移動鏡 部分反射器 支撐物 氣隙 基板 介電質 透明導體 干涉調變器 可移動鏡 氣隙 介電 部分反射器 介電質 透明導體 基板 支撐物 154176.doc -29-50 52 100 112 114 116 118 119 120 130 140 200 ' 300 302 303 304 306 308 310 312 318 Power supply adjustment hardware interference modulator dielectric movable mirror part reflector support air gap substrate dielectric transparent conductor interference Modulator movable mirror air gap dielectric partial reflector dielectric transparent conductor substrate support 154176.doc -29-

Claims (1)

201213850 七、申請專利範圍: 1. 一種顯示裴置,其包含: 一大體上透明之導電層,其經組態為一第一電極; 一可移動反射層;及 分反射層’其定位於該透明導電層與該可移動反 射層之間’該部分反射層與該透明導電層去耦。 2. 如晴求項1之顯示裝置,其中該部分反射層之光學功能 與該透明導電層之電子功能去耦。201213850 VII. Patent Application Range: 1. A display device comprising: a substantially transparent conductive layer configured as a first electrode; a movable reflective layer; and a sub-reflective layer 'positioned thereon The partially reflective layer is decoupled from the transparent conductive layer between the transparent conductive layer and the movable reflective layer. 2. The display device of claim 1, wherein the optical function of the partially reflective layer is decoupled from the electronic function of the transparent conductive layer. 3. 如请求項2之顯示裝置,其中該可移動反射層經組態為 一第二電極。 如請求項3之顯示裝置’其中該去耦部分反射層 昍道Φ β . 明導電層允許在該第-與該第二電極間之一距離中之 增加,3日夺維持該顯示裝置之一期K學性質。 5.如凊求項4之顯示裝置’其中在該第—與該第二電極間 之該距離中之該增加產生該顯示裝置之—減少的電容。 .如凊求項1之顯示裝置’ JL中今邱八G 八甲該。P分反射層包含一非導 电層。3. The display device of claim 2, wherein the movable reflective layer is configured as a second electrode. The display device of claim 3, wherein the decoupling portion reflects the layer Φβ. The conductive layer allows an increase in the distance between the first and the second electrode, and the one of the display devices is maintained for three days. The nature of K. 5. The display device of claim 4 wherein the increase in the distance between the first and the second electrode produces a reduced capacitance of the display device. Such as the display device of the item 1 'JL Zhongjin Qiu G G Bajia. The P-reflective layer contains a non-conductive layer. “項6之顯示裝置,其中與該透明導電層去麵之, 部分反射層獨立於該透 匕以用於一期望光學性質。 8. 如請求項7之顯示裝 其反射率隨其厚度之 9. 如請求項8之顯示裝置 在30-36%之一範圍内。 置,其中該部分反射層 一增加而增加。 其中該部分反射層 經、纟且態而使 之該反射率 154176.doc 201213850 ΐ〇·如清求項8之顯示裝置,其中該部分反射層之該厚度在 40-150埃之一範圍内。 11. 如研求項1之顯示裝置,其中施加於該透明導電層與一 第二電極間之一電子訊號促使該可移動反射層之移動。 12. 如請求項1之顯示裝置,其進一步包含: 一定位於該部分反射層與該可移動反射層之間的介電 層。 13·如請求項1之顯示裝置,其進一步包含: 定位於該導電層與該部分反射層之間的介電層。 1如明求項13之顯示裝置,其中該介電層包含選自包含 Si〇2、八丨2〇3及氮化石夕之群中的材料。 a如請求項13之顯示裝置,其中該介電層具有一在8〇〇埃 至3,00〇埃之間的厚度。 16. 如請求項12之顯示裝置,纟中該部分反射層係導電的。 17. 如請求項1之顯示裝置,#中該部分反射層包含選自包 含氣化石夕、⑽、⑽、Cr2〇3'Cr2〇及Cr0CN之群的 18. 如請求項}之顯示裝置, _ 丹甲田該顯不兀件處於一致童 狀態時,該顯示裝置向—觀察者呈現白色,且處於一華 放狀態時,該顯示元件向該觀察者呈現非白色。 19. 如請求項18之顯示裝置, 以* S其中當該顯示裝置處於該致3 ,增興該可移動反射層之間的一距| 小於200埃。 20. 如請求項19之顯示裝置’ 丹甲田該顯不裝置處於該釋; 154176.doc 201213850 狀態時,該部分反射層與該可移動 小於1,550埃。 反射層之間的一距離 21.如請求項1之顯示裝置,其進—步包含: 動該可移動反射層之一 一與該導電層及一經組態以移 第二電極中之至少一者電通信 態以處理影像資料;及 之處理器,該處理器經組 一與該處理器電通信之記憶體裝置。 22.The display device of item 6, wherein the transparent layer is opposite to the transparent conductive layer, the partially reflective layer is independent of the lens for a desired optical property. 8. The display of claim 7 has a reflectance of 9 The display device of claim 8 is in the range of 30-36%, wherein the partially reflective layer is increased and increased. wherein the partially reflective layer is subjected to the 纟 纟 state and the reflectance is 154176.doc 201213850 The display device of claim 8, wherein the thickness of the partially reflective layer is in the range of 40 to 150 angstroms. 11. The display device of claim 1, wherein the transparent conductive layer is applied to the transparent conductive layer An electronic signal between the second electrodes causes movement of the movable reflective layer. 12. The display device of claim 1, further comprising: a dielectric layer necessarily located between the partially reflective layer and the movable reflective layer. The display device of claim 1, further comprising: a dielectric layer positioned between the conductive layer and the partially reflective layer. The display device of claim 13, wherein the dielectric layer comprises a component selected from the group consisting of Si〇2, gossip A material of the group of claim 3, wherein the dielectric layer has a thickness of between 8 Å and 30,000 Å. The display device of 12, wherein the reflective layer is electrically conductive. 17. The display device of claim 1, wherein the partially reflective layer comprises a gas phase comprising: (10), (10), Cr2〇3'Cr2, and 18. The display device of the group of Cr0CN, such as the display device of the request item _, the display device is white when the display device is in the state of the child, and the display device is in a state of being in a state of being released The observer exhibits a non-white color. 19. The display device of claim 18, wherein: * when the display device is in the third direction, a distance between the movable reflective layers is increased by less than 200 angstroms. The display device of claim 19, wherein the display device is in the state of 154176.doc 201213850, the partially reflective layer and the movable portion are less than 1,550 angstroms. A distance between the reflective layers is 21. The display device of 1, the further step comprises: moving the movable reflection One of the layers is electrically coupled to the conductive layer and configured to move at least one of the second electrodes to process the image data; and the processor is configured to receive a memory in electrical communication with the processor Device. 如請求項21之顯示裝置,其進 少一訊號發送至該導電層及該 驅動器電路。 —步包含一經組態以將至 第二電極中之至少一者的 23.如請求項22之顯示裝置,其進—牛 丹退步包含一經組態以將該 影像資料之至少一部分發送至嗜脏叔。。办a 通艇動态電路之控制器。 24_如請求項21之顯示裝置,其進_ + ,处 六逍步包含一經組態以將該 影像資料發送至該處理器之影像源模組。 25.如請求項24之顯示裝置,其中該爭 六丁必衫像源模組包含—接收In the display device of claim 21, a signal is sent to the conductive layer and the driver circuit. The step includes a display device configured to pass to at least one of the second electrodes. The display device of claim 22, wherein the step-by-step includes configuring to transmit at least a portion of the image data to the dirty uncle. . A controller for the dynamic circuit of a boat. 24_ The display device of claim 21, wherein the hexadecimal step comprises a video source module configured to transmit the image data to the processor. 25. The display device of claim 24, wherein the contention module comprises - receiving 器、一收發器及一發射器之至少—者。 26·如請求項2i之顯示裝置,其進一步包含一經組態以接收 輸入資料且將該輸入資料傳遞至該處理器之輸入裝置。 27.如請求項丨之顯示裝置,其中該顯示裝置包含一干涉調 變器。 28. —種顯示系統,其具有請求項丨至27任一項之該特徵。 29. —種製造一顯示裝置之方法,該方法包含: 形成一大體上透明的導電層; 形成一部分反射層,其與該導電層去耦;及 154176.doc 201213850 形成-可移動反射層,該部分反射層係定位於該導電 層與該可移動反射層之間。 30. 如。月求項29之方法’其中該去搞包含將該部分反 光學功能與該導電層之電子功能去麵。 31. 如响求項3〇之方法,其令該去麵允許在該導電層與該可 移動反射制之-距離中之—增加,同時維持該顯示裝 置之一期望光學性質。 如-月求項31之方法’其中在該距離中之該增加產生該顯 示裝置之一減少的電容。 如月长項29之方法,其中該部分反射層包含一絕緣層。 34·如請求項33之方法,其十該去麵允許該部分反射層獨立 於該導電層而經組態以用於一期望光學性質。 月求項34之方法’其中該部分反射層之該形成係使該 部分反射層之反射率隨其厚度之一增加而增加。 36%之一範圍内。 37. 如请求項35之方法 150埃之一範圍内。 38. 如請求項33之方法 化矽、Cr〇2、Cr03 料。 39. 如請求項29之方法 36·如請求項35之方法’其中該部分反射層之該反射率在30- 其中該部分反射層之該厚度在40- 其中該部分反射層包含選自包含氮 Ci*2〇3、Cr2〇及cr〇CN之群中的材 其中當該顯示元件處於一致動狀態 時,該顯示裝置向一觀察者3目 佛帑考呈現白色,且處於一釋放狀 態時,該顯示裝置向該觀察者呈現非白色。 154176.doc 201213850 40. 如請求項39之方法,其中當該顯示裝置處於該致動狀態 時,該部分反射層與該可移動反射層之間的一距離小於 約200埃。 41. 如請求項40之方法,其中當該顯示裝置處於該釋放狀態 時,該部分反射層與該可移動反射層之間的一距離小於 約1,5 50埃。 42·如請求項29之方法,其進一步包含形成一定位於該導電 層與該部分反射層之間的介電層。 鲁 43·如請求項42之方法,其中該介電層包含選自包含Si〇2、 Al2〇3及氮化矽之群中的材料。 44.如晴求項42之方法,其中該介電層具有一在800埃至 3,0〇〇埃之間的厚度。 45·如請求項42之方法’其中該部分反射層係導電的。 46. —種藉由請求項29至45任一項中之方法形成之顯示裝 置。 ^ 47. 一種顯示裝置,其包含: 一用於調變一光學訊號之構件,該調變構件包含一可 移動反射層及一部分反射層;及 一用於促使該可移動反射層之相對於該部分反射層移 動之構件,其中該調變構件之該可移動反射層及該部分 反射層之至少一者與該移動促使構件去耦。 48.如請求項47之顯示裝置,其中該移動促使構件包含一經 組態為一第一電極之大體上導電的層,及該經組態為— 第一電極之可移動反射層,以使得該部分反射層與該移 154176.doc 201213850 動促使構件去耦。 49. 一種干涉調變器,其包含一部分反射層,該部分反射層 與若干促使一可移動反射層之移動的電極電去粞。 50. —種干涉調變器,其經組態以使得其若干光學訊號調變 尺寸與若干電極無關。 51. 如請求項50之干涉調變器,纟中該#光學訊號調變尺寸 小於任何與該等電極相關聯之間距。At least one of a transceiver, a transceiver, and a transmitter. 26. The display device of claim 2i, further comprising an input device configured to receive input data and to communicate the input data to the processor. 27. A display device as claimed in claim 1, wherein the display device comprises an interference modulator. 28. A display system having the feature of any one of the claims 丨 to 27. 29. A method of fabricating a display device, the method comprising: forming a substantially transparent conductive layer; forming a portion of a reflective layer that is decoupled from the conductive layer; and 154176.doc 201213850 forming a movable reflective layer, A partially reflective layer is positioned between the conductive layer and the movable reflective layer. 30. For example. The method of claim 29, wherein the de-emphasis comprises removing the portion of the counter-optical function from the electronic function of the conductive layer. 31. The method of claim 3, wherein the exiting surface allows for an increase in the distance between the conductive layer and the movable reflection while maintaining desired optical properties of one of the display devices. The method of claim 31, wherein the increase in the distance produces a reduced capacitance of one of the display devices. The method of Moon Length 29, wherein the partially reflective layer comprises an insulating layer. 34. The method of claim 33, wherein the portion of the reflective layer allows the partially reflective layer to be configured for a desired optical property independent of the conductive layer. The method of claim 34 wherein the formation of the partially reflective layer increases the reflectivity of the partially reflective layer as one of its thickness increases. Within one of 36%. 37. In the range of 150 angstroms of claim 35. 38. The method of claim 33 is 矽, Cr〇2, Cr03. 39. The method of claim 29, wherein the method of claim 35, wherein the reflectance of the partially reflective layer is at 30 - wherein the thickness of the partially reflective layer is 40 - wherein the partially reflective layer comprises a selected from the group consisting of nitrogen a material in the group of Ci*2〇3, Cr2〇, and cr〇CN, wherein when the display element is in an intermeshing state, the display device presents a white color to an observer, and when in a released state, The display device presents a non-white color to the viewer. The method of claim 39, wherein a distance between the partially reflective layer and the movable reflective layer is less than about 200 angstroms when the display device is in the actuated state. 41. The method of claim 40, wherein a distance between the partially reflective layer and the movable reflective layer is less than about 1,5 50 angstroms when the display device is in the released state. 42. The method of claim 29, further comprising forming a dielectric layer between the conductive layer and the partially reflective layer. The method of claim 42, wherein the dielectric layer comprises a material selected from the group consisting of Si〇2, Al2〇3, and tantalum nitride. 44. The method of claim 42, wherein the dielectric layer has a thickness between 800 angstroms and 3 angstroms. 45. The method of claim 42, wherein the partially reflective layer is electrically conductive. 46. A display device formed by the method of any one of claims 29 to 45. 47. A display device comprising: a member for modulating an optical signal, the modulating member comprising a movable reflective layer and a portion of the reflective layer; and a means for causing the movable reflective layer to be opposite to the A member in which the partially reflective layer moves, wherein at least one of the movable reflective layer and the partially reflective layer of the modulation member is decoupled from the movement promoting member. 48. The display device of claim 47, wherein the movement urging member comprises a substantially electrically conductive layer configured as a first electrode, and the movable reflective layer configured as a first electrode such that The partially reflective layer and the move 154176.doc 201213850 motivate the component to be decoupled. 49. An interference modulator comprising a portion of a reflective layer electrically decoupled from a plurality of electrodes that cause movement of a movable reflective layer. 50. An interference modulator configured to have a number of optical signal modulation sizes independent of a number of electrodes. 51. The interferometric modulator of claim 50, wherein the # optical signal modulation size is less than any of the distances associated with the electrodes. 154176.doc 6·154176.doc 6·
TW100105680A 2004-09-27 2005-09-23 Reduced capacitance display element TW201213850A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US61348804P 2004-09-27 2004-09-27
US61354204P 2004-09-27 2004-09-27
US11/051,258 US7710632B2 (en) 2004-09-27 2005-02-04 Display device having an array of spatial light modulators with integrated color filters
US11/155,939 US8004504B2 (en) 2004-09-27 2005-06-17 Reduced capacitance display element

Publications (1)

Publication Number Publication Date
TW201213850A true TW201213850A (en) 2012-04-01

Family

ID=35447360

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100105680A TW201213850A (en) 2004-09-27 2005-09-23 Reduced capacitance display element
TW094133186A TW200638061A (en) 2004-09-27 2005-09-23 Reduced capacitance display element

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW094133186A TW200638061A (en) 2004-09-27 2005-09-23 Reduced capacitance display element

Country Status (7)

Country Link
EP (1) EP1800167A1 (en)
CN (2) CN102012559A (en)
AU (1) AU2005289996A1 (en)
BR (1) BRPI0516050A (en)
IL (1) IL181905A0 (en)
TW (2) TW201213850A (en)
WO (1) WO2006036495A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
WO1999052006A2 (en) 1998-04-08 1999-10-14 Etalon, Inc. Interferometric modulation of radiation
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835255A (en) * 1986-04-23 1998-11-10 Etalon, Inc. Visible spectrum modulator arrays
JPH0791089B2 (en) * 1988-12-13 1995-10-04 セントラル硝子株式会社 Heat ray reflective glass
US5500761A (en) * 1994-01-27 1996-03-19 At&T Corp. Micromechanical modulator
JP4431196B2 (en) * 1995-11-06 2010-03-10 アイディーシー エルエルシー Interferometric modulation

Also Published As

Publication number Publication date
IL181905A0 (en) 2007-07-04
CN101027592B (en) 2011-02-23
CN102012559A (en) 2011-04-13
TW200638061A (en) 2006-11-01
AU2005289996A1 (en) 2006-04-06
CN101027592A (en) 2007-08-29
WO2006036495A1 (en) 2006-04-06
EP1800167A1 (en) 2007-06-27
BRPI0516050A (en) 2008-08-19

Similar Documents

Publication Publication Date Title
TWI402536B (en) Microelectromechanical device with optical function separated from mechanical and electrical function
KR101299616B1 (en) A capacitor and an rf device
US8004504B2 (en) Reduced capacitance display element
JP5600755B2 (en) Interfering pixel with patterned mechanical layer
TWI391317B (en) Method and device of electromechanical systems and displays
TWI474963B (en) Microelectromechanical device with optical function separated from mechanical and electrical function
TW201105568A (en) Display device with openings between sub-pixels and method of making same
KR101195100B1 (en) Method and device for a display having transparent components integrated therein
JP5499175B2 (en) Interference display device with interference reflector
TW200903125A (en) Method and apparatus for providing a light absorbing mask in an interferometric modulator display
JP2008542843A (en) Interferometric modulator with internal polarization and driving method
TW200900347A (en) Microelectromechanical device and method utilizing conducting layers separated by stops
TW201003592A (en) Edge shadow reducing methods for prismatic front light
JP2006099070A (en) Display device with array of spatial light modulators comprising integrated color filter
TW201140414A (en) Coated light-turning feature with auxiliary structure
TW201227137A (en) Display having an embedded microlens array
JP5123198B2 (en) MEMS switch with set and latch electrodes
TW201213850A (en) Reduced capacitance display element
TW201333530A (en) Electromechanical systems variable capacitance device
TWI481897B (en) Multi-state imod with rgb absorbers, apparatus including the same, and method of fabricating the same
CN104024915A (en) Display device and dual-sided process for forming light turning features and display elements
JP2013033260A (en) Mems switch with set and latch electrodes
MXPA05010247A (en) Device having a conductive light absorbing mask and method for fabricating same