TW201213594A - Etching of oxide materials - Google Patents

Etching of oxide materials Download PDF

Info

Publication number
TW201213594A
TW201213594A TW100129188A TW100129188A TW201213594A TW 201213594 A TW201213594 A TW 201213594A TW 100129188 A TW100129188 A TW 100129188A TW 100129188 A TW100129188 A TW 100129188A TW 201213594 A TW201213594 A TW 201213594A
Authority
TW
Taiwan
Prior art keywords
group
fluorine
oxide film
containing gas
alcohol
Prior art date
Application number
TW100129188A
Other languages
Chinese (zh)
Inventor
Takashi Teramoto
Jun Sonobe
Terukuni Toge
Nicolas Blasco
Henri Chevrel
Original Assignee
Air Liquide
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide filed Critical Air Liquide
Publication of TW201213594A publication Critical patent/TW201213594A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • H01L21/31122Etching inorganic layers by chemical means by dry-etching of layers not containing Si, e.g. PZT, Al2O3

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Oxide film deposits are removed from a film-forming apparatus. In the disclosed methods, a fluorine-containing gas, preferably plasma treated NF3, reacts with the oxide film deposits. The vapors of an organic compound, preferably t-butyl alcohol or acetylacetonate, react with the fluorinated oxide film deposits and generate volatile metal species which are easily removed from the apparatus.

Description

201213594 六、發明說明: 【相關申請案之交互參照】 本案主張基於2010年8月16日申請的美國專利臨時 申請案第61/373,952號和2011年2月20曰申請的美國專 利臨時申請案第61/444,774號的優先權,兩者的整個内容 併於此以為參考。 【發明所屬技術領域】 揭示的方法關於氧化膜沉積腔室的氣體清潔方法。 【先前技術】' 氧化物材料包括但不限於Zr02、Ta205、Hf02、Ti02, 其在先進世代的DRAM電容、金屬-絕緣體-金屬架構以及 做為閘極介電材料以取代Si〇2而用於金屬氧化物半導體 (metal oxide semiconductor,CMOS)科技等方面已吸引很大 的關注。於所提到的材料之中,Zr〇2乃廣泛用於Dram應 用,其帶有例如高介電常數(k=20〜42)和寬的能帶間隙(5〜7 電子伏特)等有利性質。 其他的氧化物材料例如Ti02、Zn02、Sn02、In2〇3、 Cu2〇3、ITO ’當中任一者皆可以摻雜以包括但不限於a卜 Ga、B、F和/或Sn的元素,其已在製造光伏薄膜電池或 面板、平面顯示器、LED等方面吸引注意以做為透明導電 氧化物(transparent conductive oxide,TCO)。光伏電池中的 TCO層用於允許光從前面進入吸光材料以及用於收集電池 201213594 兩面所產生的電流。由於環境認知增加以及政府引導之相 關電網平準政策的緣故,太陽能市場快速成長。目前雖然 基於結晶矽的太陽能電池是主流,但是基於薄膜的太陽能 電池是有競爭力的。 尚k材料或TCO典型而言是以例如物理氣相沉積 (physical vapor deposition,PVD)、濺鍍、金屬-有機化學氣 相沉積(metal-organic chemical vapor deposition , MOCVD)、低壓 CVD (low pressure CVD,LPCVD)或原子層 沉積(atomic layer deposition,ALD)的薄膜沉積技術而沉積。 於沉積過程期間’這些氧化物材料也可能沉積於腔室 硬體上。為此緣故,發展乾式清潔方法以維持氧化物沉積 腔室的潔淨便是不可避免的。 當腔室具有太多不想要的氧化物材料或者來自沉積前 驅物而可此污染基板或影響沉積參數的材料時,將會進行 清潔過程。清潔過程可以基於時間' 膜沉積的次數、沉積 之後在晶圓上偵測到的顆粒或製造處所可以發展的任何其 他時程而排定時間’以便氧化物沉積腔室製出具有高品質 的沉積物。 目前氧化物腔室清潔過程的典型I法是打開腔室而從 腔室壁擦掉不想要的沉積物,或者以乾淨的次組件來取代厂 骯髒的」(dirty)次組件。此種清潔方法費時耗力,並且須要 停止並打開腔室’而可能將工作者暴露於潛在危險的化學201213594 VI. Description of the invention: [Reciprocal reference of related applications] This case is based on the U.S. Patent Provisional Application No. 61/373,952 and the February 20, 2011 application filed on August 16, 2010. Priority 61/444, 774, the entire contents of which are hereby incorporated by reference. TECHNICAL FIELD OF THE INVENTION The disclosed method relates to a gas cleaning method for an oxide film deposition chamber. [Prior Art] 'Oxide materials include, but are not limited to, Zr02, Ta205, Hf02, Ti02, which are used in advanced generation DRAM capacitors, metal-insulator-metal structures, and as gate dielectric materials to replace Si〇2. Metal oxide semiconductor (CMOS) technology has attracted great attention. Among the materials mentioned, Zr〇2 is widely used in Dram applications with advantageous properties such as high dielectric constant (k=20~42) and wide band gap (5~7 eV). . Any of the other oxide materials such as TiO 2 , ZnO 2 , Sn 2 , In 2 〇 3 , Cu 2 〇 3 , ITO ′ may be doped with an element including, but not limited to, Ga, B, F, and/or Sn. Attention has been drawn to the manufacture of photovoltaic thin films or panels, flat panel displays, LEDs, etc. as transparent conductive oxide (TCO). The TCO layer in the photovoltaic cell is used to allow light to enter the light absorbing material from the front and to collect the current generated by both sides of the battery 201213594. The solar market has grown rapidly due to increased environmental awareness and government-led grid realignment policies. Although solar cells based on crystalline germanium are currently in the mainstream, thin film based solar cells are competitive. The material or TCO is typically, for example, physical vapor deposition (PVD), sputtering, metal-organic chemical vapor deposition (MOCVD), low pressure CVD (low pressure CVD). , LPCVD) or atomic layer deposition (ALD) thin film deposition techniques are deposited. These oxide materials may also deposit on the chamber hardware during the deposition process. For this reason, it is inevitable to develop a dry cleaning method to maintain the cleanliness of the oxide deposition chamber. The cleaning process will occur when the chamber has too much unwanted oxide material or material from the deposition precursor that can contaminate the substrate or affect deposition parameters. The cleaning process can be based on the time 'the number of times the film is deposited, the particles detected on the wafer after deposition, or any other time course that can be developed in the fabrication space' to allow the oxide deposition chamber to produce high quality deposition. Things. A typical method of the current oxide chamber cleaning process is to open the chamber to wipe off unwanted deposits from the chamber wall, or to replace the dirty (dirty) sub-assembly with a clean sub-assembly. This type of cleaning method is time consuming and laborious and requires stopping and opening the chamber' and potentially exposing workers to potentially hazardous chemicals.

物質(殘留的前驅物/酸類/溶劑/沉赭札3 .太切— B / /儿積物和清潔溶液之間 的反應產物…等)。從腔室壁手動渣昤 初β除不想要的沉積物之 201213594 後,關閉腔室並且柚亩允 , . + 抽真空。由於殘餘的清潔溶液從腔室壁 蒸發的緣故,這種「爷 丨 果口」(pump-down)的過程可能很久。整 個清潔過程對於製程工且 3 衣往工具而s疋無生產力的時間因此任 何減少停機時間的方法老合 幻万凌都會文到歡迎,以便減少氧化物沉 積膜的製造成本。 氣相(乾式)清潔方法將減少操作員暴露於危險的化學 物質以及減少製程工具停機時間。於氣相清潔方法,腔室 壁上之所有不想要的沉積材料乃經過化學轉換而變成揮發 性的’並且經由乾式幫浦而從沉積腔室抽到工廠排放線。 氣相清潔方法乃廣泛用於許多半導體製程,例如 PECVD沉積腔室或低k沉積腔室。氣相清潔在商業上則未 用於同k氧化物或氧化鋅沉積腔室,此乃因為尚未發展出 正確的氣體化學來揮發腔室壁上的材料。 關於提議之高k沉積後的乾式清潔方法,歐洲專利申 清案第1,382,716號利用氣化合物(Bcl3、c〇cl2)於熱和或電 衆的過程以移除氯化錯。日本專利申請案公開第 2009/188198號提倡使用BC13加A電漿的清潔方法,其中 硼元素乃做為Zr〇2的還原劑。美國專利第5,7〇9,757號提 出於電漿清潔過程中使用NCI3 〇加州大學洛杉磯分校 (UCLA)揭示以BC丨3/Ci2電漿來蝕刻,而韓國大學教示使 用BCh/Ar電漿(「BC13/Ci2f漿中之汾〇2對⑴的電漿蝕 刻選擇性」,UCLA,·/嫌⑽/ 〇/, 第2丨(6)期,第1915頁(2003年);「論Zr〇2薄膜於感應搞 合之BCI3 / Ar電漿的蝕刻機制」,韓國大學, 201213594 ⑴·以五《gkaWwg,85,348(2008))。幾乎所有 提出的乾式清潔方法都依賴氯化學性質,因為氯化鍅和氣 化給的揮發性高於氟化鍅和氟化铪。然而,因為C1、電聚 來源、腔至材料之間的材料相容性,所以電漿中使用C12或 BCh的製程可能難以實施。此外,高度反應性的氯化化合 物如NCI3可能引起安全性的問題。 另一種做法已由ASM於美國專利申請案公開第 2010/099264號提出。ASM於循環的製程中以氣相還原劑和 揮發性蝕刻劑來依序接觸高k材料。 仍需要減少氧化膜製程工具停機時間的方法,以便減 少氧化物沉積膜的製造成本。尤其想要有使用氟化化學的 乾式清潔方法。 【標記和命名】 .以下的敘述和申請專利範圍普遍使用特定的縮寫、符 號、詞彙,其包括: 如在此所使用的,縮寫「IT0」是指氧化銦錫(indium Ηη oxide)或摻雜錫之氧化銦的膜。 如在此所使用的’「烧基」(alkyi gr0Up)一詞是指只包含 碳和氫原子的飽和官能基,而「氟烷基」(flu〇r〇alkyl gr〇up) 一詞是指包含碳、氟和/或氫原子的飽和官能基。再者,厂 烧基」和Γ H烧基」二詞可以指線性的、分支的或環狀基。線 性烷基的實施例包括而不限於曱基、乙基、丙基、丁基… 等。分支烧基的實施例包括而不限於異丙基、三級丁基… 201213594 等。環炫基的貫施例包括而不限於環丙基、環戊基、環己 基…等。發明所屬領域中具有通常知識者會體認出等效之 線性的、分支的或環狀的氟烷基。 如在此所使用的,縮寫「Me」是指甲基;縮寫「Et」是指 乙基;縮寫「iPr」是指異丙基;以及縮寫「t_Bu」是指三級丁 基。 如在此所使用的,「獨立地」(indepen(jentiy) 一詞當用於 描述R基的上下文時應該了解是指該R基不僅相對於其他 帶有相同或不同之下標或上標的尺基而獨立地選擇,並且 也相對於相同R基的任何額外物種而獨立地選擇。舉例而 言,於化學式MR〗X(NR2R3)4_X,其中x是2或3,則二或三 個R1基可以相對於彼此、相對於R2或R3而為相同但不須 要相同。再者,應該了解除非另外特定陳述,當用於不同 的化學式時’ R基的值係彼此獨立的。 在此使用來自元素週期表的標準元素縮寫。應該了解 元素可以用這些縮寫來指稱(譬如Hf是指铪、Zr是指锆、 Pd是指鈀、Co是指鈷…等 【發明内容】 揭不的是從形成膜的設備移除氧化膜沉積物的清潔方 法。含氟氣體引入設備。含氟氣體與氧化膜沉積物反應。 氟化的氧化膜沉積物暴露於有機化合物的蒸氣,其產生揮 發性金屬物種。揭示的方法可以包括以下一或更多個方面: 重複/月潔方法直到所有的氧化膜沉積物已從設備移 201213594 除為止; •含氟氣體選自· 曰 NF3、F2、HF、XeF2、XeF4、COF, 、、c3F8、C4F1()及其組合所組成 NOF、SF6、SF4、cf 的群組; •含氟氣體為NF3 ; •添加NO到含氟氣體; •電漿處理含氟氣體; 丨步驟和暴露步驟之間引入惰性沖洗氣體; •有機化合物為醇; .有機化合物為三級醇; •有機化合物為三級丁醇; •醇由載氣所引入; 有機化合物選自胺類、/5 -二酮酸鹽及其組合所組成 的群組; 胺/、有化學式HXNR3_X,其中x是從1到2的整數而 R是烧基; •胺選自二甲胺、二乙胺及其組合所組成的群組; •石-二酮酸鹽具有化學式RC(〇)CH2C(〇)R,而每個r 獨立地選自Cl〜C6烷基或氟烷基; ./3-一酮酸鹽選自四曱基庚二酮、四甲基辛二酮、乙 酿丙g同、1,1,1,5,5,5-六氟乙醯丙酮及其組合所組成的群組; •該方法在約50°C到約5001之間的溫度下進行; •該方法在約180°C到約30(TC之間的溫度下進行; •該方法在約1毫托耳(πιΤ〇ιτ)(0·133帕(pa))到約4〇〇 201213594 托耳(Torr)(53千帕(kPa))之間的壓力下進行; •邊方法在約1托耳(13 3帕)到約3 0 〇托耳(4 0千帕)之 間的壓力下進行; •氧化沉積物主要包括Zr、Hf、Ta、Ti、Sn、Zn、in、 O、Si當中至少一者;以及 經由設備的排放線而從設備移除揮發性金屬 亦揭不從形成膜的設備移除氧化膜沉積物的清潔方 法。含氟氣體引入設備以與氧化膜沉積物反應。引入惰性 沖:氣體。揮發性金屬物種乃藉由將氟化的氧化膜沉積物 暴路於有機化合物的蒸氣而產生。揮發性金屬物種從設備 移除。揭示的方法可以包括以下一或更多個方面: •含 I氣體選自 NF3、F2、HF、XeF2、XeF4、c〇F2、 Ν〇Ρϋ、队、他、从、⑽及其組合所組成 的群組; 有的氧化膜沉積物已從設備移 含乳氣體為NF3 ; 添加NO到含氟氣體 電漿處理含氟氣體; 重複清潔方法直到所 除為止 •有機化合物為醇; 有機化合物為三級醇; •有機化合物為三級丁醇; •醇由載氣所%入; •有機化合物選 胺類、万-二鲷酸鹽及其組合所組成 9 201213594 的群組; 胺八有化學式HXNR3_X ’其中X是從1到2的整數而 R是烷基; 選自一甲胺、一乙胺及其組合所組成的群組; •石-二S同酸鹽具有化學式RC(〇)CH2C(〇)R,而每個r 獨立地選自Cl〜C6烷基或氟烷基。 •冷_二_酸鹽選自四曱基庚二酮、四曱基辛二酮、乙 醯丙酮、1,1,1,6,6,6_六氟乙醯丙酮酸鹽及其組合所組成的群 組; •該方法在約501到約500t之間的溫度下進行; •該方法在約i 8〇t到約300t之間的溫度下進行; • 5亥方法在約1毫托耳(0.133帕)到約400托耳(53千帕) 之間的壓力下進行; •该方法在約1托耳(133帕)到約300托耳(40千帕)之 間的壓力下進行; •氧化沉積物主要包括Zr、Hf、Ta、Ti、Sn、Zn、In、 0、Si當中至少一者。 【實施方式】 揭示的疋形成膜的設備在氧化膜沉積之後的表面清潔 方法’該方法包括把含氟氣體引入設備以與氧化膜沉積物 反應’並且把氟化的氧化膜沉積物暴露於有機化合物的蒸 氣以產生揮發性金屬物種。揭示的方法導致以適當的钮刻 速率來均勻|虫刻氧化物材料。 10 201213594 說明書全篇使用「之後」(after)、「後續再」(subsequent t〇)、「接著」(foliowed by)等詞是指有機化合物並未在相同於 電t處理的時間就引入形成膜的設備。有機化合物的引入 反而是接在移除含氟氣體之後。 揭示的方法均勻地移除遺留在形成膜的設備表面上之 不想要的氧化物材料。揭示的方法能夠維持乾淨的沉積腔 室’並且使下一製程步驟有較少的停機時間。 舉例而言,形成氧化膜的設備包括薄膜氣相沉積腔室 ⑽如CVD、M0CVD、PECVD或ALD反應腔室)和相關的 氣體引入和排放線(管線)。設計用於握持上面要形成氧化膜 之半導體晶圓的構件(舉例而纟,批次型之形成膜的設備令 的晶舟,或是單一晶圓/基板型之形成膜的設備中的承接 器)乃安排於形成膜的設備裡。形成膜的設備之構件包括反 應腔室、附接於反應腔室的管線、設計用於握持半導體晶 圓的構件。形成膜的設備可以用於形成氧化膜。 -般而言,無論是批次型或單一晶圓/基板型之形成 膜的,備’反應腔室的壁舉例而言可以由石英、鋼、不鏽 鋼、%極處理的铭、裸銘或氧化|g(Al2〇3)所形成。設計用 ;握持半導體aa圓/基板的構件一般而言是由石英、碳化 二C)或表面披覆了碳切的碳材料所形成。於某些應用 積加膜),該構件可以是㉝。管線經常是由石英 …:主所形成。揭示的方法不會侵蝕這些腔室材料。 400°Γ ; I潔過^期間’腔室的溫度範圍可以從約5〇t:到約 C,較佳從約戰到約3⑽。C。腔室可以維持在從… 11 201213594 毫托耳(0· 133帕)到約4〇〇托耳(53千帕)的壓力範圍,較隹 從約1托耳(1 33帕)到約300托耳(40千帕)。 可以在沉積氧化膜之前或之後來利用揭示的清潔方 法。適合的氧化膜包括但不限於ZnO、Zn02、Sn02、Cu2〇3、 ^2〇3 ' ITO、Zr〇2、Ta2〇5、Hf〇2、Ti〇2 及其組合。前述任 何氧化膜可能摻雜以其他元素,其包括但不限於A卜Ga、 B、F和/或Sn。較佳而言,氧化膜是Zn〇、Hf〇2或Zr〇2, 其有捧雜或未摻雜。由於氧化膜具有不同的反應性和揮發 陡特色的緣故’發明所屬技術領域具有通常知識者將體認 可能需要不同於在此揭示的參數(譬如溫度、壓力、流動 率.·.等)以移除非Zn0、Hf〇2或Zr〇2的氧化膜。揭示的 繁方法可以基於時間、膜沉積的次數、沉積之後在晶圓 貞則到顆粒或製造處所可以發展的任何其他時程而排定 間’以便氧化物沉積腔室製出高品質的沉積物。 於揭示之清潔方法的第一步驟,丨氣氣體引入設備 且與殘餘的氧化膜沉積物反應。含敦氣體可以是_、ρ |。或其組合。於-替代方案,含氟氣體是NF” NO (―氧化氮)可以添加到含氟氣體。申請 :::幫助含氣氣體與殘餘的沉積物反應,特別二 匕β摻雜劑(例如Ab Ga、B、f # NO J.X Λ η. X ^ / 或 Sn)時。含氟 的是含氣氣料=可以選: 樣,匕和恥引入設備以 ^備。於—具體) 、軋化膘,几積物反應。於另一具, 12 201213594 態樣,NF3和NO引入設備以與氧化膜沉積物反應。於又另 一具體態樣,XeFz和NO引入設備以與氧化膜沉積物反應。 雖然這些混合物可以包含二種氣體的反應產物,但是不含 其他的添加氣體。 含氟氣體和可選用的NO可以受到電漿處理。發明所屬 技術領域中具有通常知識者將體認電漿處理的含氟氣體可 以包括原始氣體分子及其自由基和離子。舉例而言,電漿 處理的NF3可以包括NF3、氮自由基、氟自由基以及正和負 離子。含氟氣體和可選用的NO可以在引入反應腔室之前或 之後加以電漿處理。含氟氣體和可選用的Ν〇可以採用此技 藝已知的方法來做電漿處理。 舉例而言,把含氟氣體引入設備可以包括引入NF3和 於設備中產生電漿處理的NF3,舉例來說可以用Tri〇n科技 公司所製造的TitanTMPECVD系統來為之。NF3可以在電漿 處理之則就引入並保持於腔室裡。另外可以選擇的是電漿 處理與引入NF3同時發生。原位電漿典型而言是13.56百萬 赫餘射頻的電容耦合電漿,其產生於噴淋頭和基板握持器 之間。基板或噴淋頭可以是供電的電極,此視是否發生正 離子衝擊而定。原位電漿產生器中的典型施加功率是從約 100瓦到約1000瓦。使用原位電漿所解離的NF3典型而言 乃少於使用遠端電漿來源在相同功率輸入下所達成的,因 此原位電衆在Nh解離方面不如遠端電毁系統來得有效 率。然而’如果氧化膜沉積步驟已經利用電漿,則原位電 聚可以有效地使用NF3,而僅需要_個電聚產生器來進行沉 13 201213594 積和清潔步驟。 另外可以選擇的是含氟氣體引入設備包括引入遠端產 生之電漿處理的NFs。在NF3通入反應腔室之前,可以使用 MKS儀器公司的ASTRON®i反應性氣體產生器以處理 NF"3。枯作於2.45十億赫茲、7千瓦的電漿功率、壓力範園 從約3托耳到約1 〇托耳,則NF3可以分解成三個F-自由基 而有大於96%的分解效率。發明所屬技術領域具有通常知 識者將體認電漿處理的NF3離開電漿設備之後將不會維持 在96%的分解效率。引入反應腔室之電漿處理的NF3將包 括NF3、氮自由基、氟自由基以及正和負離子,此乃因為自 由基和離子於從設備轉移到反應腔室的期間將會反應。較 佳而言,遠端電漿可以用功率範圍從約i千瓦到約1〇千瓦 而產生,更佳是從約2_5千瓦到約7 5千瓦。遠端電漿處理 的NF;可以在每分鐘約25〇標準立方公分(sccm)到約㈧ SCCm (每分鐘1標準公升(slm))之間的流動速率和約i秒和 約60秒之間的持續時間而引入腔室。 申請人相信電漿處理的含氟氣體中之氟自由基和離子 與形成膜的設備中留下的氧化膜沉積物反應。舉例而言, 對於zr〇2的氧化膜沉積物,電漿處理的NFs可以反應而形 成ZrF1M或氧氟化鍅物種。申請人相信類似的反應發生於 Hf02沉積物。然而,這些反應產物並未呈現揮發性,因為 測試結果顯示:雖㈣的外表改變可能指出某種反應,但 是Zr〇2膜厚度在引人電聚處理的NF3之前和之後並未改 14 201213594 惰性氣體沖洗可以接在引入電漿處理的含氟氣體之 後。可選用的沖洗氣體例如可以是Nr Ar或二者的混合物。 可選用的沖洗氣體可以在約250 sccm> 2 slm之間的3流動 速率而引入。可選用的氣體沖洗可以持續約1秒到約W秒。 有機化合物則後續引入形成膜的設備。有機化合物可 以是醇、胺、/3 -二酮酸鹽及其混合物。 氣態的有機化合物可以直接引入形成膜的設備。如果 有機化合物是液體’則有機化合物可以饋入氣化器,使之 在引入形成膜的设備之前先氣化。另外可以選擇的是夢由 將載氣通入包含液態有機化合物的容器或者藉由使載氣在 液態的有機化合物中發泡’而使有機化合物氣化。載氣和 有機化合物然後以氣態而引入形成膜的設備。載氣可以包 括但不限於Ar、He、A及其混合物。於另—替代方案,液 態有機化合物的容器可以加熱到足以產生有機化合物之蒸 氣的溫度’而不使用載氣便引入形成膜的設備。於任一替 代方案,容器皆可以加熱到允許有機化合物呈液相以及有 足夠蒸氣壓的溫度。舉例而言,容器可以維持在約〇(=c和約 150°C之間的溫度。熟於此技藝者將體認容器的溫度可以用 已知的方式來調整以控制有機化合物的氣化量。 醇較佳是三級醇,更佳是三級丁醇。醇可以在約5 sccm 到約50 seem之間的流動速率和約1秒和約6〇秒之間的持 續時間而引入腔室。雖然下面實施例具有相同的引入時 間’但是發明所屬技術領域具有通常知識者將體認電梁處 理的NF3和醇的引入時間可以不同。 15 201213594 4果醇展現低蒸氣壓,例如三級丁醇的情況,則惰性 氣體(例如氮、氬或其混合物)可以與醇引入。於此種情況, ° 約5〇 SCCm到約250 seem之間的流動速率而與醇 同時引入達到相同的持續時間。 胺可以疋選自具有化學式hxnr3.x的化合物,其中X是 從1到2的整激而p a — # 数而R疋燒基。實施例性的胺類包括甲胺、 乙胺、異丙胺、-审咬 _ 一 胺、一乙胺、二異丙胺及其混合物。 較佳而言’胺可以選自二甲胺或二乙胺。胺可以在約5⑽ 到、力5 0 seem之間的流動速率和約】秒和約6〇秒之間的持 續夺間而引入腔室。雖然下面實施例具有相同的引入時 間但疋發明所屬技術領域具有通常知識者將體認電漿處 理的NFS和胺的引入時間可以不同。 冷·二酮酸鹽可以是選自化學式為RC(0)CH2C(0)R的 化合物,而每個R獨立地選自C1〜C6烷基或氟烷基。實施 例性的/5-二酮酸鹽包括四甲基庚二酮、四曱基辛二酮、乙 醯丙酮、1,1,1’5,5,5-六氟乙醢丙酮及其混合物。召_二酮酸 鹽可以在約5 seem到約50 seem之間的流動速率和約1秒 和約60秒之間的持續時間而引入腔室。雖然下面實施例具 有相同的引入時間,但是發明所屬技術領域具有通常知識 者將體認電漿處理的NF3和召·二酮酸鹽的引入時間可以不 同。 申請人相信第一方法步驟之反應產物中的氟離子進一 步與有機化合物反應而產生揮發性金屬物種。 揮發性金屬物種經由腔室的排放線而從腔室移除。於 16 201213594 具體態樣’有機化合物的流動速率和腔室的壓力迫使揎 發性金屬物種從腔室經由出口璋而離開。有效而言= 化口物仃μ腔至而載著揮發性金屬物種,經由腔室出口痒 離開力另-具體態樣,有機化合物可以引入並且 於腔室裡達一段眛Μ ^ ^ 4呆持 運&時間。ϋ由真空或沖洗氣體(例如氮 助,腔室然後可以在其壓力下排空,藉此從腔室移除有機 化合物和揮發性金屬物種。 這過程可以是足以從設備移除氧化膜沉積物,或者可 以重複該過程直到氧化膜沉積物已移除為止。另外,揭示 的方法並不侵蝕腔室材料。揭示的方法每次循環能夠移: 大於50A (5000皮米(pm))的金屬氧化物,每次循環較佳是 移,大於1〇〇A(10,_pm)的金屬氧㈣,並且每次循環更 佳疋移除大於200A (20,000 pm)的金屬氧化物。 揭,示的方法可以在類似於圖i〜5所揭示的設備中進 行。然而,於圖3所提供的實施例,含氟氣體和有機化合 物在引入沉積腔室之前就反應。所得的氣體混合物不會從 腔室移除氧化沉積物。 於圖1和4,含氟氣體顯示為NR,其在引入遠端電漿 系統之前與氬氣混合。可以使用在此揭示的任何其他含氟 氣體來代替NF3 ^於引入含氟氣體期間,閥V1和V2保持 開啟而閥V3則關閉。閥V2關閉時閥VI仍保持開啟,如 此則氬持續流入設備以便維持電漿。於圖1,氮流經有機化 合物的圓筒’其顯示為乙醯丙酮。於圖4,有機化合物再次 顯示為乙醯丙酮’乃在引入設備之前先氣化。發明所屬技 17 201213594 術領域具有通常知識者將體認可以使用氬、氦或者氮、氬、 氦的任何組合以取代氮。另外,可以使用在此揭示的任何 其他有機化合物來取代乙醯丙酮。於引入有機化合物期 間,閥VI和V3保持開啟而閥V2則關閉。重複該過程直 到氧化沉積物從腔室移除為止。 圖2和5類似於圖1和4,例外之處在於含氟氣體(顯 示為NF3)在引入遠端電漿系統之前並未與氬氣混合。結 果,於方法的第二步驟期間,含氟氣體經由閥VI而轉去排 放。含氟氣體通過電漿系統並且經由閥V2而引入設備。於 引入有機化合物期間,閥V2是關閉的而閥v 1和V3是開 啟的。重複該過程直到獲得想要的結果為止。 於圖3,含氟氣體(顯示為NF3)和有機化合物(顯示為乙 醯丙酮)疋在引入設備之前便混合。換言之,閥v丨和都 是開啟的。所得的氣體混合物並未從腔室移除氧化沉積物。 實施例 提供以下非限制性的實施例以進一步示範本發明的具 體態樣。然而,實施例並不是要完全涵括的,並且不是要 限制在此所述的發明範圍。 實施例1Substance (residual precursor / acid / solvent / sinking 3 3. Tai cut - B / / reaction product between the baby and the cleaning solution ... etc.). Manually dross from the chamber wall. After the initial β is removed from the unwanted deposits of 201213594, the chamber is closed and the pomelo is allowed to. This "pump-down" process can take a long time as the residual cleaning solution evaporates from the chamber wall. The entire cleaning process is time-consuming for the process and the tool is not productive. Therefore, any method to reduce the downtime is welcome, so as to reduce the manufacturing cost of the oxide deposited film. Gas phase (dry) cleaning methods will reduce operator exposure to hazardous chemicals and reduce process tool downtime. In the gas phase cleaning process, all of the unwanted deposition material on the walls of the chamber is chemically converted to become volatile' and is pumped from the deposition chamber to the factory discharge line via a dry pump. Gas phase cleaning methods are widely used in many semiconductor processes, such as PECVD deposition chambers or low-k deposition chambers. Gas phase cleaning is not commercially used in the same k-oxide or zinc oxide deposition chamber because the correct gas chemistry has not been developed to volatilize the material on the chamber walls. With regard to the proposed dry cleaning method after high-k deposition, European Patent Application No. 1,382,716 utilizes a gas compound (Bcl3, c〇cl2) in a heat and/or electricity process to remove chlorination. Japanese Patent Application Laid-Open No. 2009/188198 proposes a cleaning method using BC13 plus A plasma in which boron is used as a reducing agent for Zr〇2. U.S. Patent No. 5,7,9,757 proposes the use of NCI3 in the plasma cleaning process. UCLA reveals etching with BC丨3/Ci2 plasma, while Korean universities teach the use of BCh/Ar plasma (" Plasma etching selectivity of 对2 pair (1) in BC13/Ci2f pulp, UCLA,·//(10)/ 〇/, 2nd (6), 1915 (2003); “On Zr〇2 The etching mechanism of BCI3 / Ar plasma in the induction of film", Korea University, 201213594 (1) · 5 "gkaWwg, 85, 348 (2008)). Almost all of the proposed dry cleaning methods rely on chlorine chemistry because cesium chloride and gasification give higher volatility than cesium fluoride and cesium fluoride. However, processes using C12 or BCh in the plasma may be difficult to implement because of the material compatibility between the C1, the electropolymer source, and the cavity to material. In addition, highly reactive chlorinated compounds such as NCI3 may cause safety problems. Another approach has been proposed by ASM in U.S. Patent Application Publication No. 2010/099264. ASM is in sequential contact with high-k materials with a vapor-phase reducing agent and a volatile etchant in a cyclic process. There is still a need to reduce the down time of the oxide film process tool in order to reduce the manufacturing cost of the oxide deposited film. In particular, there is a need for a dry cleaning method using fluorination chemistry. [Marking and Nomenclature] The following descriptions and patent applications generally use specific abbreviations, symbols, and vocabulary, including: As used herein, the abbreviation "IT0" refers to indium Ηn oxide or doping. A film of indium oxide of tin. As used herein, the term "alkyi gr0Up" refers to a saturated functional group containing only carbon and hydrogen atoms, and the term "flu〇r〇alkyl gr〇up" means A saturated functional group containing carbon, fluorine and/or hydrogen atoms. Furthermore, the terms "burning" and "hydrogen" may refer to linear, branched or cyclic groups. Examples of linear alkyl groups include, without limitation, sulfhydryl, ethyl, propyl, butyl, and the like. Examples of branched alkyl groups include, but are not limited to, isopropyl, tertiary butyl... 201213594 et al. Examples of cyclospores include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, and the like. Equivalent linear, branched or cyclic fluoroalkyl groups will be recognized by those of ordinary skill in the art. As used herein, the abbreviation "Me" means methyl; the abbreviation "Et" means ethyl; the abbreviation "iPr" means isopropyl; and the abbreviation "t_Bu" means a tertiary butyl group. As used herein, the term "indepen" (jentiy), when used to describe the context of an R-base, shall mean that the R-base is not only relative to other feet with the same or different subscripts or superscripts. The base is independently selected and is also independently selected with respect to any additional species of the same R group. For example, in the chemical formula MR X(NR2R3)4_X, where x is 2 or 3, then two or three R1 groups They may be the same, but need not be the same with respect to each other, with respect to R2 or R3. Again, it should be understood that the values of the 'R bases are independent of each other when used for different chemical formulas unless otherwise specifically stated. The abbreviations of the standard elements of the periodic table. It should be understood that the elements can be referred to by these abbreviations (for example, Hf means yttrium, Zr means zirconium, Pd means palladium, Co means cobalt, etc.) [Explanation] Uncovering is from forming a film A method of cleaning an oxide film deposit. A fluorine-containing gas is introduced into the apparatus. The fluorine-containing gas reacts with the oxide film deposit. The fluorinated oxide film deposit is exposed to a vapor of the organic compound, which produces a volatile metal species. The method shown may include one or more of the following: a repeat/month cleaning method until all oxide film deposits have been removed from the device 201213594; • the fluorine-containing gas is selected from the group consisting of 曰NF3, F2, HF, XeF2, XeF4 , COF, , , c3F8, C4F1 () and combinations thereof constitute a group of NOF, SF6, SF4, cf; • fluorine-containing gas is NF3; • add NO to fluorine-containing gas; • plasma treatment of fluorine-containing gas; An inert flushing gas is introduced between the step and the exposing step; • the organic compound is an alcohol; the organic compound is a tertiary alcohol; • the organic compound is a tertiary butanol; • the alcohol is introduced by a carrier gas; the organic compound is selected from an amine, / a group consisting of 5-diketonates and combinations thereof; amines /, having the formula HXNR3_X, wherein x is an integer from 1 to 2 and R is an alkyl group; • the amine is selected from the group consisting of dimethylamine, diethylamine and a group consisting of combinations; • a stone-diketonate having the formula RC(〇)CH2C(〇)R, and each r is independently selected from a Cl~C6 alkyl group or a fluoroalkyl group; ./3-one The acid salt is selected from the group consisting of tetradecylheptanedione, tetramethyloctanedione, ethylene propylene glycol, 1,1,1,5,5,5-hexafluoroacetic acid a group of combinations thereof; • the method is carried out at a temperature between about 50 ° C and about 5001; • the method is carried out at a temperature between about 180 ° C and about 30 (TC); Between about 1 mTorr (πιΤ〇ιτ) (0·133 Pa (pa)) to about 4〇〇201213594 Torr (53 kPa); From about 1 Torr (13 3 Pa) to about 30 Torr (40 kPa); • Oxidation deposits mainly include Zr, Hf, Ta, Ti, Sn, Zn, in, O At least one of Si, and the removal of volatile metals from the device via the discharge line of the device also reveals a cleaning method that does not remove oxide film deposits from the film forming device. The fluorine-containing gas is introduced into the apparatus to react with the oxide film deposit. Introducing inert rush: gas. Volatile metal species are produced by venting fluorinated oxide film deposits to the vapor of organic compounds. Volatile metal species are removed from the equipment. The disclosed method may include one or more of the following aspects: • The I-containing gas is selected from the group consisting of NF3, F2, HF, XeF2, XeF4, c〇F2, Ν〇Ρϋ, 、, 、, 、, (10), and combinations thereof. Group; some oxide film deposits have been transferred from the equipment containing emulsified gas to NF3; add NO to the fluorine-containing gas plasma to treat the fluorine-containing gas; repeat the cleaning method until it is removed • the organic compound is alcohol; the organic compound is three-stage Alcohol; • Organic compounds are tertiary butanol; • Alcohols are entrained by carrier gas; • Organic compounds are selected from amines, phenanthrenates, and combinations thereof. 9 201213594 Group; Amines 8 have chemical formula HXNR3_X ' Wherein X is an integer from 1 to 2 and R is an alkyl group; selected from the group consisting of monomethylamine, monoethylamine, and combinations thereof; • Stone-di-S acid salt having the chemical formula RC(〇)CH2C(〇 R, and each r is independently selected from the group consisting of Cl~C6 alkyl or fluoroalkyl. • cold _ di-acid salt is selected from the group consisting of tetradecylheptanedione, tetradecyl octanedione, acetoacetone, 1,1,1,6,6,6-hexafluoroacetic acid pyruvate and combinations thereof a group consisting of: • the method is carried out at a temperature between about 501 and about 500 t; • the method is carried out at a temperature between about i 8 〇t and about 300 t; • the 5 hai method is at about 1 mTorr (0.133 Pa) to a pressure of between about 400 Torr (53 kPa); • The method is carried out at a pressure of between about 1 Torr (133 Pa) and about 300 Torr (40 kPa); • The oxidized deposit mainly includes at least one of Zr, Hf, Ta, Ti, Sn, Zn, In, 0, and Si. [Embodiment] A method for surface cleaning of an apparatus for forming a film of ruthenium after deposition of an oxide film 'This method includes introducing a fluorine-containing gas into a device to react with an oxide film deposit' and exposing the fluorinated oxide film deposit to an organic The vapor of the compound to produce a volatile metal species. The disclosed method results in uniformity of the engraved oxide material at an appropriate button rate. 10 201213594 The use of the words "after", "subsequent t", and "foliowed by" throughout the specification means that the organic compound is not introduced into the film at the same time as the electric t treatment. device of. The introduction of the organic compound is followed by the removal of the fluorine-containing gas. The disclosed method uniformly removes unwanted oxide material remaining on the surface of the device forming the film. The disclosed method is capable of maintaining a clean deposition chamber' and allows for less downtime for the next process step. For example, an apparatus for forming an oxide film includes a thin film vapor deposition chamber (10) such as a CVD, MOCVD, PECVD or ALD reaction chamber) and associated gas introduction and discharge lines (lines). A member designed to hold a semiconductor wafer on which an oxide film is to be formed (for example, a wafer type of a device for forming a film of a batch type, or a device for forming a film of a single wafer/substrate type) The device is arranged in a device for forming a film. The components of the apparatus for forming a film include a reaction chamber, a line attached to the reaction chamber, and a member designed to hold the semiconductor crystal. An apparatus for forming a film can be used to form an oxide film. In general, whether it is a batch type or a single wafer/substrate type film formation, the wall of the 'reaction chamber' can be treated by quartz, steel, stainless steel, % pole, etched or oxidized. |g(Al2〇3) is formed. For design; the member holding the semiconductor aa round/substrate is generally formed of quartz, carbonized carbon C) or a carbon material whose surface is covered with carbon. For some applications, the film may be 33. The pipeline is often formed by quartz...: the main. The disclosed method does not erode these chamber materials. The temperature of the chamber may range from about 5 〇 t: to about C, preferably from about 3 to 10 (10). C. The chamber can be maintained from a pressure range of 11 201213594 millitor (0·133 Pa) to approximately 4 Torr (53 kPa), from about 1 Torr (1 33 Pa) to approximately 300 Torr. Ear (40 kPa). The disclosed cleaning method can be utilized before or after depositing the oxide film. Suitable oxide films include, but are not limited to, ZnO, Zn02, Sn02, Cu2〇3, ^2〇3' ITO, Zr〇2, Ta2〇5, Hf〇2, Ti〇2, and combinations thereof. Any of the foregoing oxide films may be doped with other elements including, but not limited to, A, Ga, B, F, and/or Sn. Preferably, the oxide film is Zn〇, Hf〇2 or Zr〇2, which is either doped or undoped. Due to the different reactivity and volatilization characteristics of the oxide film, those skilled in the art will recognize that parameters (such as temperature, pressure, flow rate, etc.) that are disclosed herein may be required to be shifted. Unless an oxide film of Zn0, Hf〇2 or Zr〇2. The disclosed method can be based on time, the number of film depositions, any other time courses that can be developed after the deposition of the wafers to the particles or manufacturing locations, so that the oxide deposition chamber produces high quality deposits. In the first step of the disclosed cleaning method, helium gas is introduced into the apparatus and reacted with residual oxide film deposits. The gas containing can be _, ρ |. Or a combination thereof. In the alternative, the fluorine-containing gas is NF" NO ("nitrogen oxide") can be added to the fluorine-containing gas. Application::: Helps the gas-containing gas to react with residual deposits, especially di-β dopants (eg Ab Ga , B, f # NO JX Λ η. X ^ / or Sn). Fluorine-containing gas-containing gas = can be selected: sample, 匕 and shame introduced into the equipment to prepare. In - specific), rolling 膘, Several products react. In another, 12 201213594, NF3 and NO are introduced into the device to react with oxide film deposits. In yet another embodiment, XeFz and NO are introduced into the device to react with oxide film deposits. These mixtures may contain the reaction products of the two gases, but are free of other additional gases. The fluorine-containing gas and optional NO may be subjected to plasma treatment. Those of ordinary skill in the art will recognize the inclusion of plasma treatment. The fluorine gas may include the original gas molecules and their radicals and ions. For example, the plasma-treated NF3 may include NF3, nitrogen radicals, fluorine radicals, and positive and negative ions. The fluorine-containing gas and optional NO may be introduced into the reaction. Before or after the chamber Treated by plasma. The fluorine-containing gas and optional helium may be plasma treated by methods known in the art. For example, introducing fluorine-containing gas into the apparatus may include introducing NF3 and generating plasma treatment in the apparatus. The NF3 can be, for example, a TitanTM PECVD system manufactured by Tri〇n Technologies, Inc. NF3 can be introduced and held in the chamber after plasma treatment. Alternatively, plasma treatment and introduction of NF3 can be selected. Simultaneously. In-situ plasma is typically a capacitive coupling plasma of 13.56 megahertz of RF, which is generated between the showerhead and the substrate holder. The substrate or sprinkler can be a powered electrode. Depending on whether a positive ion impact occurs, the typical applied power in an in-situ plasma generator is from about 100 watts to about 1000 watts. The NF3 dissociated using in-situ plasma is typically less than the source of the remote plasma. It is achieved at the same power input, so the in-situ electricity is not as efficient as the remote electrical destruction system in terms of Nh dissociation. However, if the oxide film deposition step has utilized plasma, in-situ electropolymerization can be effective. Using NF3, only one electropolymerizer is required to perform the sinking and refrigerating steps. In addition, the fluorine-containing gas introduction device includes the introduction of the plasma-treated NFs generated at the distal end. The NF3 is introduced into the reaction chamber. Before the chamber, you can use MKS Instruments' ASTRON®i reactive gas generator to process NF"3. It is used at 2.45 billion Hz, 7 kW of plasma power, and pressure range from about 3 Torr to about 1 〇. Torr, NF3 can be decomposed into three F-radicals with a decomposition efficiency greater than 96%. Those skilled in the art will recognize that NF3 treated by plasma will not remain at 96 after leaving the plasma equipment. % decomposition efficiency. The plasma treated NF3 introduced into the reaction chamber will include NF3, nitrogen radicals, fluorine radicals, and positive and negative ions because the free radicals and ions will react during transfer from the device to the reaction chamber. Preferably, the remote plasma can be produced with a power ranging from about i kilowatts to about 1 kilowatt, more preferably from about 2 to 5 kilowatts to about 75 kilowatts. Far-end plasma treated NF; may flow between about 25 〇 standard cubic centimeters (sccm) to about (eight) SCCm (1 standard liter per minute (slm)) and between about i seconds and about 60 seconds The duration is introduced into the chamber. Applicants believe that the fluorine radicals and ions in the plasma treated fluorine-containing gas react with the oxide film deposits left in the film forming apparatus. For example, for an oxide film deposit of zr〇2, the plasma-treated NFs can react to form a ZrF1M or yttrium oxyfluoride species. Applicants believe that a similar reaction occurs in the Hf02 deposit. However, these reaction products did not exhibit volatility because the test results showed that although the appearance change of (4) may indicate a certain reaction, the Zr〇2 film thickness was not changed before and after the introduction of NF3. The gas flushing can be followed by introduction of the plasma treated fluorine-containing gas. An optional flushing gas can be, for example, Nr Ar or a mixture of the two. An optional flushing gas can be introduced at a 3 flow rate of between about 250 sccm > 2 slm. The optional gas flush can last from about 1 second to about W seconds. The organic compound is subsequently introduced into the apparatus for forming a film. The organic compound may be an alcohol, an amine, a /3-dione acid salt, and a mixture thereof. Gaseous organic compounds can be introduced directly into the device forming the film. If the organic compound is a liquid' then the organic compound can be fed to the gasifier to be vaporized prior to introduction into the film forming apparatus. Alternatively, it is desirable to vaporize the organic compound by passing a carrier gas into a vessel containing a liquid organic compound or by foaming a carrier gas in a liquid organic compound. The carrier gas and organic compound are then introduced into the device forming the film in a gaseous state. The carrier gas can include, but is not limited to, Ar, He, A, and mixtures thereof. Alternatively, the vessel of the liquid organic compound may be heated to a temperature sufficient to produce a vapor of the organic compound' without introducing a carrier gas into the apparatus for forming the membrane. In either alternative, the vessel can be heated to a temperature that allows the organic compound to be in the liquid phase and at a sufficient vapor pressure. For example, the container can be maintained at a temperature between about = (= c and about 150 ° C. Those skilled in the art will recognize that the temperature of the container can be adjusted in a known manner to control the amount of gasification of the organic compound. The alcohol is preferably a tertiary alcohol, more preferably a tertiary butanol. The alcohol can be introduced into the chamber at a flow rate of between about 5 sccm and about 50 seem and a duration of between about 1 second and about 6 seconds. Although the following examples have the same introduction time', the introduction time of NF3 and alcohol treated by the body of the invention can be different. 15 201213594 4 The alcohol exhibits a low vapor pressure, for example, a tertiary In the case of an alcohol, an inert gas such as nitrogen, argon or a mixture thereof may be introduced with the alcohol. In this case, a flow rate of between about 5 〇SCCm and about 250 seem is introduced simultaneously with the alcohol for the same duration. The amine may be selected from compounds of the formula hxnr3.x, wherein X is a stimulating radical from 1 to 2 and a number of R oximes. Examples of amines include methylamine, ethylamine, isopropylamine. ,-biting _ one amine, one ethylamine, two different Propylamine and mixtures thereof. Preferably, the amine may be selected from dimethylamine or diethylamine. The amine may have a flow rate between about 5 (10) and a force of 50 and between about sec and about 6 sec. The chamber is introduced into the chamber continuously. Although the following examples have the same introduction time, those skilled in the art to which the invention pertains will recognize that the introduction time of NFS and amine for plasma treatment may be different. Cold diketo acid salt may Is a compound selected from the group consisting of RC(0)CH2C(0)R, and each R is independently selected from a C1 to C6 alkyl group or a fluoroalkyl group. Exemplary/5-diketonates include tetramethyl groups Heptanedione, tetradecyldione, acetoacetone, 1,1,1'5,5,5-hexafluoroacetamidine and mixtures thereof. The bis-keto acid salt can be from about 5 seem to about 50. The flow rate between seem and the duration between about 1 second and about 60 seconds is introduced into the chamber. Although the following embodiments have the same introduction time, those skilled in the art will recognize the plasma treatment. The introduction time of NF3 and serotonate can be different. Applicants believe that the reaction of the first method step The fluoride ion in the solution further reacts with the organic compound to produce a volatile metal species. The volatile metal species are removed from the chamber via the discharge line of the chamber. 16 201213594 Specific Aspects 'Flow Rate of Organic Compounds and Chambers The pressure forces the burst metal species to leave the chamber from the chamber via the outlet. Effectively = the sputum 仃μ cavity to carry the volatile metal species, the itch exits through the chamber outlet, another-specific, organic compound It can be introduced and held in the chamber for a period of time ^ ^ ^ 4 to hold the & time. ϋ by vacuum or flushing gas (such as nitrogen assist, the chamber can then be emptied under its pressure, thereby removing from the chamber Organic compounds and volatile metal species. This process may be sufficient to remove the oxide film deposit from the device, or the process may be repeated until the oxide film deposit has been removed. In addition, the disclosed method does not erode the chamber material. The disclosed method is capable of shifting each cycle: a metal oxide greater than 50 A (5000 picometers (pm)), preferably shifted each time, greater than 1 〇〇A (10, _pm) of metal oxygen (four), and each time Better cycle 疋 removes metal oxides greater than 200A (20,000 pm). The method shown can be carried out in a device similar to that disclosed in Figures i to 5. However, in the embodiment provided in Figure 3, the fluorine-containing gas and organic compound react prior to introduction into the deposition chamber. The resulting gas mixture does not remove oxidic deposits from the chamber. In Figures 1 and 4, the fluorine-containing gas is shown as NR which is mixed with argon prior to introduction into the remote plasma system. Any other fluorine-containing gas disclosed herein may be used in place of NF3. During the introduction of the fluorine-containing gas, valves V1 and V2 remain open and valve V3 is closed. Valve VI remains open when valve V2 is closed, so that argon continues to flow into the device to maintain the plasma. In Fig. 1, nitrogen flows through a cylinder of an organic compound, which is shown as acetamidine. In Figure 4, the organic compound is again shown to be acetamidine's gasification prior to introduction into the apparatus. BACKGROUND OF THE INVENTION 17 201213594 Those of ordinary skill in the art will recognize that argon, helium or any combination of nitrogen, argon, helium may be used in place of nitrogen. Alternatively, any other organic compound disclosed herein may be used in place of acetamidine. During the introduction of the organic compound, valves VI and V3 remain open and valve V2 closes. This process is repeated until the oxidized deposit is removed from the chamber. Figures 2 and 5 are similar to Figures 1 and 4 with the exception that the fluorine-containing gas (shown as NF3) is not mixed with argon prior to introduction into the remote plasma system. As a result, during the second step of the process, the fluorine-containing gas is turned off via valve VI. The fluorine-containing gas passes through the plasma system and is introduced into the apparatus via valve V2. During the introduction of the organic compound, valve V2 is closed and valves v1 and V3 are open. This process is repeated until the desired result is obtained. In Figure 3, the fluorine-containing gas (shown as NF3) and the organic compound (shown as acetonitrile) are mixed prior to introduction into the apparatus. In other words, the valves v丨 and both are open. The resulting gas mixture did not remove oxidic deposits from the chamber. EXAMPLES The following non-limiting examples are provided to further illustrate the specific aspects of the invention. However, the examples are not intended to be exhaustive or to limit the scope of the invention described herein. Example 1

Zr〇2樣品使用在低溫下組合以醇之電漿處理的NF〗來 Ί虫刻。 遠端產生之電漿處理的NF3引入保持在2〇〇<t的腔室達 5秒。Zr〇2樣品變成氟化的,並且申請人相信形成了 (873°C下的蒸氣壓為400牦耳)。它於留在基板上的Zr〇2薄 18 201213594 層上是靜止不動的。 後續注入醇達5秒。申請人相信ZrF4與三級丁醇 (HO-CMe3)反應而形成揮發性化合物Zr-(OCMe3)4 (200。(:下 的蒸氣壓為400托耳)和/或ZrFx(OtBu)4_x,其輕易從設備 移除。最後,Zr〇2表面再次出現,並且重複該方法直到沒 有Zr02留下為止。 發明所屬技術領域具有通常知識者將體認電聚處理的 NF3和醇的注入時間不須要相同。舉例而言,對於蒸氣壓高 於ZrF4的氟化化合物而言,電漿處理的NF3可以引入達5 秒,而醇可以引入達1 〇秒。 這過程可以視需要而重複》—個過程循環花約1〇秒並 且移除約5〇Α (5000 Pm)的Zr〇2層。當電漿處理的Νϊ?3和醇 依序引入腔室時,Zr〇2薄膜便均勻地蝕刻。因此每種氣體 應該交互地注入腔室。 根據掃描式電子顯微鏡(seanning miCroscope,SEM)的顯微照片,相較於單獨只有電漿處理 的NF3來看,蝕刻Zr〇2之後的均勻度有巨大的改善。 比較性實施例1 雖然早獨之電If處理的NF3 (亦即無後續引入醇)也触 刻Zr〇2,但是其表面在蝕刻之後變得不平並且留下部分的 Zr〇2。 比較性貫施例2 如果醇與電聚處理的NF3混合在一起,無論二者混合 於遠端電聚處理裝置’或者醇在電毁處理裝置下游和腔室 19 201213594 上游混合以電漿處理的NF3,Zr02表面都不會均勻地蝕刻。 比較性實施例3 為了確認不同醇的功效,亦測試一級醇(C2H5OH),但 是沒有造成Zr02姓刻。 實施例2The Zr〇2 sample was prepared by combining NF with a plasma treatment of alcohol at a low temperature. The remotely produced plasma treated NF3 was introduced in a chamber maintained at 2 Torr for 5 seconds. The Zr〇2 sample became fluorinated and the Applicant believes that it has formed a vapor pressure of 400 牦 at 873 °C. It is stationary on the layer of Zr〇2 thin 18 201213594 left on the substrate. Subsequent injection of alcohol for 5 seconds. Applicants believe that ZrF4 reacts with tertiary butanol (HO-CMe3) to form the volatile compound Zr-(OCMe3)4 (200. (the vapor pressure is 400 Torr) and/or ZrFx(OtBu)4_x, which It is easy to remove from the device. Finally, the surface of Zr〇2 appears again, and the method is repeated until no Zr02 is left. The person skilled in the art has the knowledge that the injection time of NF3 and alcohol which are electropolymerized is not necessarily the same. For example, for fluorinated compounds with a vapor pressure higher than ZrF4, plasma treated NF3 can be introduced for up to 5 seconds, while alcohol can be introduced for up to 1 sec. This process can be repeated as needed. It takes about 1 second and removes about 5 〇Α (5000 Pm) of Zr 〇 2 layer. When the plasma treated Νϊ 3 and alcohol are sequentially introduced into the chamber, the Zr 〇 2 film is uniformly etched. The gas should be injected into the chamber interactively. According to the micrograph of the scanning electron microscope (SEM), the uniformity after etching Zr〇2 is greatly improved compared to the NF3 which is only treated by plasma. Comparative Example 1 Although the early electricity is at If NF3 (ie no subsequent introduction of alcohol) also strikes Zr〇2, but its surface becomes uneven after etching and leaves part of Zr〇2. Comparative Example 2 If the alcohol is mixed with the electropolymerized NF3 Together, whether the two are mixed in the remote electropolymerization unit' or the alcohol is mixed with the plasma treated NF3 downstream of the electrolysis treatment unit and upstream of the chamber 19 201213594, the Zr02 surface is not uniformly etched. 3 In order to confirm the efficacy of different alcohols, the primary alcohol (C2H5OH) was also tested, but did not cause the Zr02 surname. Example 2

Zr〇2樣品在低溫下以電漿處理的NF3及醇之組合來餘 刻。 遠端產生之電漿處理的NF3引入保持在200。(:和2托耳 (267帕)的腔室達30秒。Zr〇2樣品變成氟化的,並且申請 人相信形成了 ZrF4 (873。(:下的蒸氣壓為400托耳)。它於留 在基板上的Zr〇2薄層上是靜止不動的β 後續注入醇達30秒。申請人相信ZrF4與三級丁醇 (HO-CMe3)反應而形成揮發性化合物Zr-(〇CMe3)4和/戍 ZrFx(OtBu)4_x ’其輕易從設備移除。最後,Zr〇2表面再次出 現,並且重複該方法直到沒有Zr02留下為止。 發明所屬技術領域具有通常知識者將體認電黎_處理的 NF3和醇的注入時間不須要相同。舉例而言,對於蒸氣摩古 於ZrF*的氟化化合物而言,電漿處理的NF3可以引入達5 秒,而醇可以引入達10秒。 這過程可以視需要而重複。一個過程循環花約秒並 且移除約125A (12,500 pm)的Zr〇2層。當電漿處理的NF3 和醇依序引入腔室時,Zr〇2薄膜便均勻地蝕刻。因此每種 氣體應該交互地注入腔室。 實施例3 20 201213594The Zr〇2 sample was left at a low temperature with a combination of plasma treated NF3 and alcohol. The NF3 introduction of the plasma generated by the distal end was maintained at 200. (: and 2 torr (267 Pa) chamber for 30 seconds. The Zr〇2 sample became fluorinated, and the applicant believed to have formed ZrF4 (873. (: vapor pressure below 400 Torr). On the thin layer of Zr〇2 remaining on the substrate is a stationary β followed by injection of alcohol for 30 seconds. Applicants believe that ZrF4 reacts with tertiary butanol (HO-CMe3) to form volatile compound Zr-(〇CMe3)4 And /戍ZrFx(OtBu)4_x' is easily removed from the device. Finally, the surface of Zr〇2 appears again, and the method is repeated until no Zr02 is left. The person skilled in the art will recognize the electric _ The injection time of the treated NF3 and the alcohol need not be the same. For example, for a fluorinated compound with a vapor of ZrF*, the plasma treated NF3 can be introduced for up to 5 seconds, and the alcohol can be introduced for up to 10 seconds. The process can be repeated as needed. A process cycle takes about seconds and removes about 125 A (12,500 pm) of Zr〇2 layer. When the plasma treated NF3 and alcohol are introduced into the chamber sequentially, the Zr〇2 film is evenly distributed. Etching. Therefore each gas should be injected into the chamber interactively. Example 3 20 201213594

Zr〇2樣品使用電漿處理的nf3來蝕刻而在低溫下組合 乙酿丙酉同。 遠端產生之電漿處理的NF3引入保持在200°C和2托耳 (267帕)的腔室達30秒。Zr〇2樣品變成氟化的,並且申請 人相信形成了 ZrF4。它於留在基板上的Zr〇2薄層上是靜止 不動的。 後續注入乙醯丙酮達3〇秒。申請人相信ZrF4與乙醯丙 酮反應而形成揮發性化合物,其輕易從設備移除。最後,The Zr〇2 sample was etched using plasma-treated nf3 to combine the same conditions at low temperatures. The remotely produced plasma treated NF3 was introduced into a chamber maintained at 200 ° C and 2 Torr (267 Pa) for 30 seconds. The Zr〇2 sample became fluorinated and the applicant believed that ZrF4 was formed. It is stationary on the thin layer of Zr〇2 remaining on the substrate. Subsequent injection of acetamidine for 3 。 seconds. Applicants believe that ZrF4 reacts with acetophenone to form volatile compounds that are easily removed from the device. At last,

Zr〇2表面再次出現,並且重複該方法直到沒有Zr〇2留下為 止。 發明所屬技術領域具有通常知識者將體認電漿處理的 NF3和乙醯丙酮的注入時間不須要相同。舉例而言,對於蒸 氣壓尚於ZrF4的氟化化合物而言,電漿處理的nf3可以引 入達5秒,而乙醯丙酮可以引入達1 〇秒。 這過程可以視需要而重複。一個過程循環花約6〇秒並 且移除約134A (13,400 pm)的Zr〇2層》當電漿處理的nf3 和乙醯丙酮依序引入腔室時,Zr〇2薄膜便均勻地蝕刻。因 此每種氣體應該交互地注入腔室。 實施例4The surface of Zr〇2 appears again and the method is repeated until no Zr〇2 is left. Those skilled in the art will recognize that the injection time of NF3 and acetamidine treated by plasma is not necessarily the same. For example, for fluorinated compounds with a vapor pressure of ZrF4, plasma treated nf3 can be introduced for up to 5 seconds, while acetamidine can be introduced for up to 1 sec. This process can be repeated as needed. A process cycle takes about 6 seconds and removes about 134 A (13,400 pm) of Zr〇2 layer. When the plasma-treated nf3 and acetamidine are introduced into the chamber sequentially, the Zr〇2 film is uniformly etched. Therefore each gas should be injected into the chamber interactively. Example 4

Zr〇2樣品使用電聚處理的NF3來飯刻而在低溫下組合 以二乙胺。 遠端產生之電聚處理的NF3引入保持在2〇〇°c和2托耳 (267帕)的腔室達3〇秒。Zr〇2樣品變成氟化的,並且申請 人相信形成了 ZrF4(873〇C下的蒸氣壓為400托耳)。它於留 21 201213594 在基板上的Zr02薄層上是靜止不動的。 後續注入二乙胺達3 0秒。申請人相信ZrF4與二乙胺反 應而形成揮發性化合物,其輕易從設備移除。最後,Zr〇2 表面再次出現,並且重複該方法直到沒有Zr〇2留下為止。 發明所屬技術領域具有通常知識者將體認電漿處理的 NF3和一乙胺的注入時間不須要相同。舉例而言,對於蒸氣 壓尚於ZrF4的氟化化合物而言,電漿處理的nf3可以引入 達5秒,而二乙胺可以引入達1 〇秒。 這過程可以視需要而重複。一個過程循環花約6〇秒並 且移除約240A (24,000 pm)的乙1"02層。當電漿處理的Νι?3 和乙胺依序引入腔室時,Zr〇2薄膜便均勻地蝕刻。因此每 種氣體應該交互地注入腔室。 實施例5The Zr〇2 sample was subjected to electropolymerization of NF3 for cooking and combined with diethylamine at a low temperature. The distally generated electropolymerized NF3 was introduced in a chamber maintained at 2 ° C and 2 Torr (267 Pa) for 3 sec. The Zr〇2 sample became fluorinated and the applicant believed that ZrF4 was formed (the vapor pressure at 873 〇C was 400 Torr). It stays on 21 201313594 and is stationary on the thin layer of Zr02 on the substrate. Subsequent injection of diethylamine for 30 seconds. Applicants believe that ZrF4 reacts with diethylamine to form volatile compounds that are easily removed from the equipment. Finally, the Zr〇2 surface appears again and the method is repeated until no Zr〇2 is left. Those skilled in the art will recognize that the injection time of NF3 and monoethylamine treated by plasma is not necessarily the same. For example, for fluorinated compounds with a vapor pressure of ZrF4, plasma treated nf3 can be introduced for up to 5 seconds, while diethylamine can be introduced for up to 1 sec. This process can be repeated as needed. A process cycle takes about 6 seconds and removes about 240A (24,000 pm) of B&1; When the plasma treated Νι 3 and ethylamine are introduced into the chamber in sequence, the Zr 〇 2 film is uniformly etched. Therefore each gas should be injected into the chamber interactively. Example 5

Hf〇2樣品使用在低溫下組合以醇之電漿處理的來 钮刻。 达端產生之電漿處理的NF3引入保持在2〇〇艺和2托耳 (267帕)的腔室達30秒。Hf〇2樣品變成氟化的,並且申請 人相信形成了 HfF4。它於留在基板上的Hf〇2薄層上是靜止 不動的。 後續注入醇達30秒。申請人相信HfF4與三級丁醇 (HO-CMeO反應而形成揮發性化合物Hf-(〇CMe3)4和/咬 HfFx(OtBu)4-x,其輕易從設備移除。最後,Hf〇2表面再次 出現’並且重複該方法直到沒有Hf〇2留下為止。 發明所屬技術領域具有通常知識者將體認電毁處理的 22 201213594 NF3和醇的注入時間不須要相同。舉例而言,對於蒸氣壓高 於HfF4的氟化化合物而言,電漿處理的νϊ?3可以引入達5 秒,而醇可以引入達10秒。 這過程可以視需要而重複* —個過程循環花約6〇秒並 且移除約79A (7,900 pm)的Hf〇2層。當電漿處理的nf3和 醇依序引入腔室時,Hf〇2薄膜便均勻地蝕刻。因此每種氣 體應該交互地注入腔室。 實施例6The Hf〇2 sample was used in combination with a plasma treated with an alcohol at a low temperature. The plasma-treated NF3 produced at the end was introduced in a chamber of 2 〇〇 and 2 Torr (267 kPa) for 30 seconds. The Hf〇2 sample became fluorinated and the applicant believed that HfF4 was formed. It is stationary on the thin layer of Hf〇2 remaining on the substrate. Subsequent injection of alcohol for 30 seconds. Applicants believe that HfF4 reacts with tertiary butanol (HO-CMeO to form volatile compounds Hf-(〇CMe3)4 and/or bite HfFx(OtBu)4-x, which are easily removed from the device. Finally, Hf〇2 surface Reappears 'and repeats the method until there is no Hf〇2 left. The person skilled in the art has the knowledge that the injection time of 22 201213594 NF3 and alcohol does not need to be the same. For example, for vapor pressure For fluorinated compounds above HfF4, plasma treated νϊ?3 can be introduced for up to 5 seconds, while alcohol can be introduced for up to 10 seconds. This process can be repeated as needed * a process cycle takes about 6 seconds and moves Except for the Hf〇2 layer of about 79 A (7,900 pm). When the plasma-treated nf3 and alcohol are sequentially introduced into the chamber, the Hf〇2 film is uniformly etched. Therefore, each gas should be injected into the chamber interactively. 6

Hf〇2樣品使用電漿處理的NF3來蝕刻而在低溫下組合 以乙酿丙_)。 遠端產生之電漿處理的NF3引入保持在2〇〇°C和2托耳 (267帕)的腔室達30秒。Hf〇2樣品變成氟化的,並且申請 人相信形成了 HfF4。它於留在基板上的Hf02薄層上是靜止 不動的。 後續注入乙醯丙酮達30秒。申請人相信HfF4與乙醯丙 酮反應而形成揮發性化合物,其輕易從設備移除。最後,Hf〇2 samples were etched using plasma treated NF3 and combined at low temperatures to produce propylene. The remotely produced plasma treated NF3 was introduced in a chamber maintained at 2 ° C and 2 Torr (267 Pa) for 30 seconds. The Hf〇2 sample became fluorinated and the applicant believed that HfF4 was formed. It is stationary on the thin layer of Hf02 left on the substrate. Subsequent injection of acetamidine for 30 seconds. Applicants believe that HfF4 reacts with acetophenone to form volatile compounds that are easily removed from the device. At last,

Hf〇2表面再次出現,並且重複該方法直到沒有Hf〇2留下為 止。 發明所屬技術領域具有通常知識者將體認電漿處理的 NF3和乙醯丙酮的注入時間不須要相同。舉例而言,對於蒸 氣壓高於HfF4的氟化化合物而言’電漿處理的NF3可以引 入達5秒’而乙酿丙酮可以引入達1 〇秒。 這過程可以視需要而重複。一個過程循環花約60秒並 且移除約26〇A (26,000 pm)的沿02層。當電漿處理的Nf3 23 201213594 和乙醯丙酮依序引入腔室時,Hf02薄膜便均勻地蝕刻。因 此每種氣體應該交互地注入腔室。 實施例7The surface of Hf〇2 appears again and the method is repeated until no Hf〇2 remains. Those skilled in the art will recognize that the injection time of NF3 and acetamidine treated by plasma is not necessarily the same. For example, for a fluorinated compound having a vapor pressure higher than HfF4, 'plasma treated NF3 can be introduced for 5 seconds' and ethyl acetate can be introduced for up to 1 second. This process can be repeated as needed. A process cycle takes about 60 seconds and removes approximately 26 〇A (26,000 pm) along the 02 layer. When the plasma treated Nf3 23 201213594 and acetamidine were introduced into the chamber in sequence, the Hf02 film was uniformly etched. Therefore each gas should be injected into the chamber interactively. Example 7

Hf〇2樣品使用電漿處理的NF3來蝕刻而在低溫下組合 以二乙胺。 遠端產生之電漿處理的NF3引入保持在200°c和2托耳 (267帕)的腔室達30秒。Hf02樣品變成氟化的,並且申請 人相信形成了 HfF4。它於留在基板上的Hf02薄層上是靜止 不動的。 後續注入二乙胺達30秒。申請人相信HfF4與二乙胺反 應而形成揮發性化合物,其輕易從設備移除。最後,Hf〇2 表面再次出現’並且重複該方法直到沒有Hf02留下為止。 發明所屬技術領域具有通常知識者將體認電漿處理的 NF3和二乙胺的注入時間不須要相同。舉例而言,對於蒸氣 壓高於HfF4的氟化化合物而言,電漿處理的NF3可以引入 達5秒,而二乙胺可以引入達1 〇秒。 這過程可以視需要而重複。一個過程循環花約60秒並 且移除約260A (26,000 pm)的Hf〇2層。當電漿處理的NF3 和醇依序引入腔室時,Hf02薄膜便均勻地蝕刻。因此每種 氣體應該交互地注入腔室。 實施例8The Hf〇2 sample was etched using plasma treated NF3 and combined with diethylamine at low temperature. The remotely produced plasma treated NF3 was introduced in a chamber maintained at 200 ° C and 2 Torr (267 Pa) for 30 seconds. The Hf02 sample became fluorinated and the applicant believed that HfF4 was formed. It is stationary on the thin layer of Hf02 left on the substrate. Subsequent injection of diethylamine for 30 seconds. Applicants believe that HfF4 reacts with diethylamine to form volatile compounds that are easily removed from the device. Finally, the Hf〇2 surface appears again' and the method is repeated until no Hf02 is left. It is common knowledge in the art to inject the plasma-treated NF3 and diethylamine injection time to be the same. For example, for fluorinated compounds having a vapor pressure higher than HfF4, plasma treated NF3 can be introduced for up to 5 seconds, while diethylamine can be introduced for up to 1 sec. This process can be repeated as needed. A process cycle takes about 60 seconds and removes about 260 A (26,000 pm) of Hf〇2 layers. When the plasma treated NF3 and alcohol are introduced into the chamber in sequence, the Hf02 film is uniformly etched. Therefore each gas should be injected into the chamber interactively. Example 8

ZnO樣品使用電毁處理的NF3來钮刻而在低溫下組合 以乙醢丙酮。 遠端產生之電漿處理的NF3引入保持在200°C和1.8托 24 201213594 耳(240帕)的腔室達10秒。Zn〇樣品變成氟化的,並且申 請人相信形成了 ZnFy它於留在基板上的Zn〇薄層上是靜 止不動的。 後續注入乙醯丙酮達1 〇秒。申請人相信ZnF2與乙醯丙 酮反應而形成乙醯丙酮酸鋅,其係揮發性化合物而輕易從 設備移除。最後,ZnO表面再次出現,並且重複該方法直 到沒有ZnO留下為止。 發明所屬技術領域具有通常知識者將體認電漿處理的 NF3和乙醯丙酮的注入時間不須要相同。舉例而言,對於蒸 氣壓咼於ZnFz的氟化化合物而言,電漿處理的NF3可以引 入達5秒,而乙醯丙_可以引入達1 〇秒。 這過程可以視需要而重複。如圖6a和6b所示,一個過 程循環花約20秒並且移除約243A (24,3〇〇 pm)的Zn〇層。 多次嘗試得出ZnO的平均移除速率為每分鐘1〇5〇A(每分鐘 105,000 pm)。當電漿處理的NFs和乙醯丙酮依序引入腔室 時,ZnO薄膜便均勻地蝕刻。因此每種氣體應該交互地注 入腔室。 比較性實施例4 如圖6a和6c所示,單獨只有電漿處理的Νί?3 (亦即無 後續引入乙醯丙酮)則在200t下並未蝕刻Ζη〇β暴露於 seem、1·8托耳(24〇帕)的仰3電漿2〇分鐘之後,Ζη〇膜厚 度僅從 29,900 (2,990,000 pm)改變成 28 663 (2,866,3〇〇 pm) 〇 將會了解熟於此技藝者可以對在此敘述和示範來解釋 25 201213594 本發明特性之部件的細節、 m ^ Pjr m 、V驟、安排上做出許多 頻外的改變,而仍落於如所 m ^ m W ^ ^ 甲叫專利範圍所表示之本發 月的原理和範圍裡。因此,本 和/ -¾ RM IS1 無思受限於上面實施例 矛/或附圖的特定具體態樣。 【圖式簡單說明】 為了進一步了解本發明的特 园4 A h 好性和目的,應該配合所附 圖式來參考以下的詳細敘述, .. 、〒相同的元件乃賦予相同 的或類似的參考數字,並且其中: 圖1是一種能夠執行揭示之方 <方法的設備示意圖; 圖2是能夠執行揭示之方法 戍的第二設備示意圖 圖3是無法執行揭示之方法 — J弟二设備不意圖 圖4是能夠執行揭示之方法的结 在的第四設備示意圖 圖5是能夠執行揭示之方法的货 古的第五設備示意圖 圖6a疋ZnO層在飯刻之前沾私, 』之别的掃描式電子顯微鏡(SEM) 影像; 圖6b是ZnO層在以電漿處理 的NF3和乙醯丙酮加以蚀 刻之後的SEM影像;以及 圖6c是ZnO層在單獨以雷忐 词电縱處理的NF3加以蝕刻之後 的SEM影像。 26The ZnO sample was electro-destroyed with NF3 and the acetonitrile was combined at low temperature. The distally generated plasma-treated NF3 was introduced into the chamber at 200 ° C and 1.8 Torr 24 201213594 ears (240 Pa) for 10 seconds. The Zn〇 sample became fluorinated, and the applicant believed that the formation of ZnFy was static on the Zn〇 layer remaining on the substrate. Subsequent injection of acetamidine for 1 〇 second. Applicants believe that ZnF2 reacts with acetophenone to form zinc acetyl acetonate, which is a volatile compound that is easily removed from the equipment. Finally, the ZnO surface reappears and the process is repeated until no ZnO is left. Those skilled in the art will recognize that the injection time of NF3 and acetamidine treated by plasma is not necessarily the same. For example, for fluorinated compounds with a vapor pressure of ZnFz, plasma treated NF3 can be introduced for up to 5 seconds, while acetamidine can be introduced for up to 1 sec. This process can be repeated as needed. As shown in Figures 6a and 6b, one process cycle takes about 20 seconds and removes about 243 A (24, 3 pm) of the Zn layer. Multiple attempts have been made to obtain an average removal rate of ZnO of 1〇5〇A per minute (105,000 pm per minute). When the plasma-treated NFs and acetamidine were introduced into the chamber in sequence, the ZnO film was uniformly etched. Therefore each gas should be injected into the chamber interactively. Comparative Example 4 As shown in Figures 6a and 6c, only the plasma-treated Νί?3 (i.e., without subsequent introduction of acetamidine) was not etched at 200t. Ζη〇β was exposed to seem, 1.88 Torr. After 2 〇 minutes of the ear (24 〇 Pa) of the 3 plasma, the thickness of the Ζ 〇 film is only changed from 29,900 (2,990,000 pm) to 28 663 (2,866, 3 pm) 〇 will understand that those skilled in the art can Illustrated and exemplified herein to explain the details of the components of the characteristics of the present invention 25 201213594, m ^ Pjr m , V, and many extra-frequency changes in the arrangement, but still fall as in the m ^ m W ^ ^ The scope is expressed in the scope and scope of this month. Therefore, the present and / / 3⁄4 RM IS1 are not limited to the specific embodiment of the above embodiment spear / or the drawings. BRIEF DESCRIPTION OF THE DRAWINGS In order to further understand the advantages and objectives of the present invention, the following detailed description should be referred to in conjunction with the drawings, and the same elements are given the same or similar reference. Figures, and wherein: Figure 1 is a schematic diagram of a device capable of performing the method of revealing the <method; Figure 2 is a schematic diagram of a second device capable of performing the disclosed method. Figure 3 is a method for not being able to perform the disclosure - 4 is a schematic diagram of a fourth device capable of performing the disclosed method. FIG. 5 is a schematic diagram of a fifth device capable of performing the disclosed method. FIG. 6a 疋 ZnO layer is smudged before a meal, and another scan is performed. Electron microscopy (SEM) image; Figure 6b is an SEM image of the ZnO layer after etching with plasma treated NF3 and acetamidine; and Figure 6c is a ZnO layer etched with NF3 treated with Thunderbolt alone. Subsequent SEM images. 26

Claims (1)

201213594 七、申請專利範圍: 1. 一種從形成膜的設備移除氧化膜 刊膜,儿積物的清潔方 法,其包括以下順序: (a) 把含氟氣體引入設備以與氧化膜沉積物反應;以及 (b) 把氟化的氧化膜沉積物暴露於有機化合物的蒸氣以 產生揮發性金屬物種。 … 2. 如申請專利範圍第丄項的方法,其中含氟氣體是選自 NF3、F2、HF、XeF2、XeF4、c〇f2、N〇F、SF6、A、CF4、 c2F6、c3f8、C4F1()及其組合所組成的群組,較佳是。 3. 如申請專利範圍第、或2項的方法,其進一步包㈣ 加NO到含氟氣體。 4. 如申請專利範圍第i到3項中任—項的方法,其進一 步包括電漿處理含氟氣體。 5. 如申—請專利範圍帛15_! 4項中任一項的方法,其進一 步包括重複清潔方法直到所有的氧化膜沉積物已從設備移 除為止。 6. 如申請專利範圍第5項中任—項的方法,其在引 入步驟和暴露步驟之間進—步包括引人惰性沖洗氣體的步 驟。 7·如申請專利範圍第1到6 機化合物是醇’較佳是三級醇, 8.如申請專利範圍第7項的 入0 項中任一項的方法,其中 更佳是三級丁醇。 方法’其中醇是由載氣所 有 引 9_如申請專利範圍第 到6項中任一項的方法,其中有 27 201213594 機化合物是選自胺類、点-二酮酸鹽及其組合所組成的群組。 10. 如申請專利範圍帛9項的方法,其中胺具有化學式 HXNR3_X,其中X是從1到2的整數而R是烧基。 11. 如申請專利範圍第1 〇項的方法,其中胺是選自二甲 知、二乙胺及其組合所組成的群組。 12. 如申請專利範圍第9項的方法,其中石_二酮酸鹽具 有化學式rc(o)ch2c(o)r,而每個R獨立地選自C1〜C6烷 基或氟烷基。 13. 如申請專利範圍第12項的方法,其中万·二酮酸鹽 是選自四曱基庚二酮、四曱基辛二酮、乙醯丙酮、 六氟乙醯丙酮酸鹽及其組合所組成的群組。 14_如申請專利範圍第i到6項中任一項的方法,其中 該方法是在約50。(:到約500。〇之間的溫 約赋到約灣之間,以及是在約丨毫托耳佳帕在) 到約400托耳(53千帕)之間的壓力下進行,較佳在約丄托 耳(133帕)到約300牦耳(40千帕)之間。 15. 如申請專利範圍第i到6項中任一項的方法,其中 氧化沉積物主要包括Zr、Hf、Ta、Ti、Sn、&、匕、si 當中至少一者。 16. —種從形成膜的設備移除氧化膜沉積物的清潔方 法,其包括以下順序: (a) 把含氟氣體引入設備以與氧化膜沉積物反應; (b) 在引步驟和暴露步驟之間引入情性沖洗氣體; (c) 把氟化的氧化膜沉積物暴露於有機化合物的蒸氣, 28 201213594 而產生揮發性金屬物種;以及 (d)從設備移除揮發性金屬物種。 1 7.如申請專利範圍第丨6項的方法’其中含氟氣體是選 自 NF3、F2、HF、XeF2、XeF4、COF2、NOF、SF6、SF4、 CF4、C2F6、C3F8、C4F1()及其組合所組成的群組,較佳是 NF3。 1 8.如申請專利範圍第16或17項的方法,其進一步包 括添加NO到含氟氣體。 19. 如申請專利範圍第16到18項中任一項的方法,其 進一步包括電漿處理含氟氣體。 〃 20. 如申請專利範圍第16到19項中任一項的方法,其 進-步包括重複清潔方法直到所有的氧化膜沉積物已從設 備移除為止。 21.如申請專利範 中有機化合物是醇, 圍第16到20項中任一項的方法, 較佳是三級醇,更佳是三級丁醇。 其 22.如申請專利範圍第以項的方法 引入。 其中醇是由載氣所 16到20項中任一項的方法,其 召-二酮酸鹽及其組合所組成的 23·如申請專利範圍第 中有機化合物是選自胺類 群組》 H NR :專引軏圍第23項的方法,其中胺具有化, X 3 x 、 X疋從1到2的整數而R是烷基。 胺、-乙胺及^ ^圍第24項的方法,其中胺是選自二 妝—匕胺及其纟日人〜 "、'且合所組成的群組。 29 201213594 ’其中/S -二酮酸鹽 R獨立地選自Ci~c 26.如申請專利範圍第23項的方法 具有化學式RC(0)CH2C(0)R,而每個r 烷基或氟烷基。 法’其中召-二酮酸鹽 乙酿丙酮、1,1,1,6,6,6- 27.如申請專利範圍第26項的方法, 疋選自四甲基庚一酮、四甲基辛二酮、乙酿 六氟乙醯丙酮酸鹽及其組合所組成的群組。 2 8.如申請專利範圍第16到2〇項中任一項的方法,其 中方法是在約50。(:到約500°C之間的溫度下進行,較佳在 約180°C到約300。(:之間,以及是在約1毫托耳(〇 133帕) 到約400托耳(53千帕)之間的壓力下進行,較佳在約i托 耳(133帕)到約3 00托耳(40千帕)之間° 29.如申請專利範圍第16到20項中任一項的方法,其 中氧化沉積物主要包括Zr、Hf、Ta、Ti、Sn、、in、〇、 Si當中至少一者。 八、圖式: (如次頁) 30201213594 VII. Scope of application: 1. A method for cleaning an oxide film from a film-forming device, a method for cleaning a child, comprising the following sequence: (a) introducing a fluorine-containing gas into the device to react with the oxide film deposit And (b) exposing the fluorinated oxide film deposit to a vapor of the organic compound to produce a volatile metal species. 2. The method of claim 2, wherein the fluorine-containing gas is selected from the group consisting of NF3, F2, HF, XeF2, XeF4, c〇f2, N〇F, SF6, A, CF4, c2F6, c3f8, C4F1 ( And a combination of the combinations thereof, preferably. 3. If the method of claim No. 2 or 2 is applied, further package (4) add NO to the fluorine-containing gas. 4. The method of any one of clauses i to 3 of the patent application, further comprising plasma treating the fluorine-containing gas. 5. The method of claim 1, wherein the method of any of the preceding claims further comprises repeating the cleaning method until all oxide film deposits have been removed from the apparatus. 6. The method of any of clause 5, wherein the step of introducing an inert flushing gas between the introducing step and the exposing step. 7. The method of claim 1, wherein the compound is an alcohol, preferably a tertiary alcohol, and the method of any one of the items of claim 7, wherein the third-stage butanol is more preferred. . The method wherein the alcohol is a carrier gas, and the method of any one of the inventions is as follows: wherein the compound of 201213594 is selected from the group consisting of amines, point-diketonates and combinations thereof. Group. 10. The method of claim 9, wherein the amine has the formula HXNR3_X, wherein X is an integer from 1 to 2 and R is an alkyl group. 11. The method of claim 1, wherein the amine is selected from the group consisting of metformin, diethylamine, and combinations thereof. 12. The method of claim 9, wherein the stone-diketonate has the chemical formula rc(o)ch2c(o)r, and each R is independently selected from a C1 to C6 alkyl group or a fluoroalkyl group. 13. The method of claim 12, wherein the 10,000-diketonate is selected from the group consisting of tetradecylheptanedione, tetradecyldione, acetoacetone, hexafluoroacetic acid pyruvate, and combinations thereof The group formed. The method of any one of claims 1 to 6, wherein the method is at about 50. (: to about 500. The temperature between the 〇 is given to the bay, and between about 托 耳 佳 佳 在 ) 到 到 到 到 到 到 到 约 约 约 约 约 约 约 约 , , , , , , , , , Between about Torr (133 Pa) and about 300 ( (40 kPa). 15. The method of any one of claims 1 to 6, wherein the oxidized deposit comprises at least one of Zr, Hf, Ta, Ti, Sn, & 匕, si. 16. A cleaning method for removing oxide film deposits from a film forming apparatus, comprising the steps of: (a) introducing a fluorine-containing gas into the apparatus to react with the oxide film deposit; (b) introducing and exposing steps Introducing an ambience flushing gas; (c) exposing the fluorinated oxide film deposit to the vapour of the organic compound, 28 201213594 to produce a volatile metal species; and (d) removing the volatile metal species from the device. 1 7. The method of claim 6 wherein the fluorine-containing gas is selected from the group consisting of NF3, F2, HF, XeF2, XeF4, COF2, NOF, SF6, SF4, CF4, C2F6, C3F8, C4F1() and The group consisting of combinations is preferably NF3. The method of claim 16 or 17, further comprising adding NO to the fluorine-containing gas. 19. The method of any one of claims 16 to 18, further comprising plasma treating the fluorine-containing gas. 20. The method of any one of claims 16 to 19, further comprising the step of repeating the cleaning until all oxide film deposits have been removed from the apparatus. 21. The method of any one of items 16 to 20, wherein the organic compound is an alcohol, preferably a tertiary alcohol, more preferably a tertiary butanol. 22. Introduced as described in the patent application. Wherein the alcohol is a method consisting of any one of the carrier gases of any one of items 16 to 20, wherein the organic compound is selected from the group of amines, wherein the organic compound is selected from the group consisting of amines. NR: A method of the above-mentioned item 23, wherein the amine is a compound, X 3 x , X 疋 is an integer from 1 to 2 and R is an alkyl group. Amine, -ethylamine, and the method of Item 24, wherein the amine is selected from the group consisting of two makeups - decylamine and its 纟日人~ ", 'and combination. 29 201213594 ' wherein /S-diketonate R is independently selected from Ci~c 26. The method of claim 23 has the formula RC(0)CH2C(0)R, and each r alkyl or fluoro alkyl. Method 'Callon-diketide B. Acetone, 1,1,1,6,6,6- 27. As in the method of claim 26, the hydrazine is selected from the group consisting of tetramethylheptanone and tetramethyl A group consisting of octanedione, hexafluoroacetic acid pyruvate, and combinations thereof. The method of any one of claims 16 to 2, wherein the method is at about 50. (: to a temperature between about 500 ° C, preferably between about 180 ° C to about 300. (: between, and between about 1 mTorr (〇 133 Pa) to about 400 Tor (53 Performed under pressure between kilopascals), preferably between about iTorr (133 Pa) and about 300 Tors (40 kPa). 29. As claimed in any of claims 16-20. The method, wherein the oxidized deposit mainly comprises at least one of Zr, Hf, Ta, Ti, Sn, in, 〇, Si. VIII. Schema: (such as the next page) 30
TW100129188A 2010-08-16 2011-08-16 Etching of oxide materials TW201213594A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37395210P 2010-08-16 2010-08-16
US201161444774P 2011-02-20 2011-02-20

Publications (1)

Publication Number Publication Date
TW201213594A true TW201213594A (en) 2012-04-01

Family

ID=45974758

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100129188A TW201213594A (en) 2010-08-16 2011-08-16 Etching of oxide materials

Country Status (2)

Country Link
TW (1) TW201213594A (en)
WO (1) WO2012052858A1 (en)

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509064B (en) * 2012-03-22 2015-11-21 Central Glass Co Ltd A dry cleaning method for a metal film in a film forming apparatus
US9837249B2 (en) 2014-03-20 2017-12-05 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9837284B2 (en) 2014-09-25 2017-12-05 Applied Materials, Inc. Oxide etch selectivity enhancement
US9842744B2 (en) 2011-03-14 2017-12-12 Applied Materials, Inc. Methods for etch of SiN films
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9885117B2 (en) 2014-03-31 2018-02-06 Applied Materials, Inc. Conditioned semiconductor system parts
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9978564B2 (en) 2012-09-21 2018-05-22 Applied Materials, Inc. Chemical control features in wafer process equipment
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10032606B2 (en) 2012-08-02 2018-07-24 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10062578B2 (en) 2011-03-14 2018-08-28 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10147620B2 (en) 2015-08-06 2018-12-04 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10186428B2 (en) 2016-11-11 2019-01-22 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10468285B2 (en) 2015-02-03 2019-11-05 Applied Materials, Inc. High temperature chuck for plasma processing systems
US10468276B2 (en) 2015-08-06 2019-11-05 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177002B2 (en) * 2016-04-29 2019-01-08 Applied Materials, Inc. Methods for chemical etching of silicon
US9960049B2 (en) 2016-05-23 2018-05-01 Applied Materials, Inc. Two-step fluorine radical etch of hafnium oxide
JP7338355B2 (en) * 2019-09-20 2023-09-05 東京エレクトロン株式会社 Etching method and etching apparatus
KR20220082871A (en) 2020-01-30 2022-06-17 쇼와 덴코 가부시키가이샤 Etching method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284330A (en) * 2000-03-31 2001-10-12 Hitachi Ltd Semiconductor device and method of manufacturing the same
JP4313144B2 (en) * 2003-10-07 2009-08-12 セントラル硝子株式会社 PZT film cleaning method
US20050241671A1 (en) * 2004-04-29 2005-11-03 Dong Chun C Method for removing a substance from a substrate using electron attachment
JP2006173301A (en) * 2004-12-15 2006-06-29 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Method of cleaning film forming apparatus non-silicon film
US8809195B2 (en) * 2008-10-20 2014-08-19 Asm America, Inc. Etching high-k materials

Cited By (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9842744B2 (en) 2011-03-14 2017-12-12 Applied Materials, Inc. Methods for etch of SiN films
US10062578B2 (en) 2011-03-14 2018-08-28 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
TWI509064B (en) * 2012-03-22 2015-11-21 Central Glass Co Ltd A dry cleaning method for a metal film in a film forming apparatus
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US10032606B2 (en) 2012-08-02 2018-07-24 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US11264213B2 (en) 2012-09-21 2022-03-01 Applied Materials, Inc. Chemical control features in wafer process equipment
US10354843B2 (en) 2012-09-21 2019-07-16 Applied Materials, Inc. Chemical control features in wafer process equipment
US9978564B2 (en) 2012-09-21 2018-05-22 Applied Materials, Inc. Chemical control features in wafer process equipment
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US11024486B2 (en) 2013-02-08 2021-06-01 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9837249B2 (en) 2014-03-20 2017-12-05 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9885117B2 (en) 2014-03-31 2018-02-06 Applied Materials, Inc. Conditioned semiconductor system parts
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US9837284B2 (en) 2014-09-25 2017-12-05 Applied Materials, Inc. Oxide etch selectivity enhancement
US10490418B2 (en) 2014-10-14 2019-11-26 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10707061B2 (en) 2014-10-14 2020-07-07 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10796922B2 (en) 2014-10-14 2020-10-06 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US10468285B2 (en) 2015-02-03 2019-11-05 Applied Materials, Inc. High temperature chuck for plasma processing systems
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US10607867B2 (en) 2015-08-06 2020-03-31 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10147620B2 (en) 2015-08-06 2018-12-04 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US11158527B2 (en) 2015-08-06 2021-10-26 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10468276B2 (en) 2015-08-06 2019-11-05 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10424463B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US11476093B2 (en) 2015-08-27 2022-10-18 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US11735441B2 (en) 2016-05-19 2023-08-22 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US11049698B2 (en) 2016-10-04 2021-06-29 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10541113B2 (en) 2016-10-04 2020-01-21 Applied Materials, Inc. Chamber with flow-through source
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10224180B2 (en) 2016-10-04 2019-03-05 Applied Materials, Inc. Chamber with flow-through source
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US10319603B2 (en) 2016-10-07 2019-06-11 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10770346B2 (en) 2016-11-11 2020-09-08 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10186428B2 (en) 2016-11-11 2019-01-22 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10600639B2 (en) 2016-11-14 2020-03-24 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10903052B2 (en) 2017-02-03 2021-01-26 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10529737B2 (en) 2017-02-08 2020-01-07 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10325923B2 (en) 2017-02-08 2019-06-18 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11915950B2 (en) 2017-05-17 2024-02-27 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11361939B2 (en) 2017-05-17 2022-06-14 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10593553B2 (en) 2017-08-04 2020-03-17 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US11101136B2 (en) 2017-08-07 2021-08-24 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10861676B2 (en) 2018-01-08 2020-12-08 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10699921B2 (en) 2018-02-15 2020-06-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US11004689B2 (en) 2018-03-12 2021-05-11 Applied Materials, Inc. Thermal silicon etch
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Also Published As

Publication number Publication date
WO2012052858A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
TW201213594A (en) Etching of oxide materials
TWI591198B (en) Methods for depositing group 13 metal or metalloid nitride films
US9691771B2 (en) Vanadium-containing film forming compositions and vapor deposition of vanadium-containing films
JP5491170B2 (en) Etching method
TWI299760B (en) Method for removing carbon-containing residues from a substrate
US20050238808A1 (en) Methods for producing ruthenium film and ruthenium oxide film
US20140060574A1 (en) In-situ tco chamber clean
KR100755804B1 (en) Cleaning method of apparatus for depositing Al-containing metal film and Al-containing metal nitride film
US20170204126A1 (en) Molybdenum- and tungsten-containing precursors for thin film deposition
KR20060092979A (en) Sulfur hexafluoride remote plasma source clean
TW201327672A (en) Dry etch processes
KR102492017B1 (en) Zirconium-containing film forming compositions for vapor deposition of zirconium-containing films
US9868753B2 (en) Germanium- and zirconium-containing composition for vapor deposition of zirconium-containing films
US9786671B2 (en) Niobium-containing film forming compositions and vapor deposition of niobium-containing films
CN110140193A (en) The method drifted about for realizing high-temperature process without chamber
TW201120209A (en) Chamber cleaning methods using fluorine containing cleaning compounds
CN113481487A (en) Solar cell and back surface PECVD method and application thereof
JP2010529670A (en) Non-flammable solvents for semiconductor applications
Zhang et al. Highly efficient and atomic scale polishing of GaN via plasma-based atom-selective etching
TW201233461A (en) Deposition chamber cleaning using in situ activation of molecular fluorine
US9487860B2 (en) Method for forming cobalt containing films
US9790591B2 (en) Titanium-containing film forming compositions for vapor deposition of titanium-containing films
US10106568B2 (en) Hafnium-containing film forming compositions for vapor deposition of hafnium-containing films
US7267842B2 (en) Method for removing titanium dioxide deposits from a reactor
JP2006173301A (en) Method of cleaning film forming apparatus non-silicon film