TW201209407A - Microfluidic device with reagent mixing proportions determined by number of active outlet valves - Google Patents

Microfluidic device with reagent mixing proportions determined by number of active outlet valves Download PDF

Info

Publication number
TW201209407A
TW201209407A TW100119254A TW100119254A TW201209407A TW 201209407 A TW201209407 A TW 201209407A TW 100119254 A TW100119254 A TW 100119254A TW 100119254 A TW100119254 A TW 100119254A TW 201209407 A TW201209407 A TW 201209407A
Authority
TW
Taiwan
Prior art keywords
reagent
meniscus
microfluidic device
amplification
probe
Prior art date
Application number
TW100119254A
Other languages
Chinese (zh)
Inventor
Matthew Taylor Worsman
Kia Silverbrook
Mehdi Azimi
Original Assignee
Geneasys Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46552736&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201209407(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Geneasys Pty Ltd filed Critical Geneasys Pty Ltd
Publication of TW201209407A publication Critical patent/TW201209407A/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A microfluidic device for testing a fluid, the microfluidic device having an inlet for receiving the fluid, a reservoir containing a reagent, a flow-path extending from the inlet, a plurality of outlet valves for fluid communication between the flow-path and the reservoir, each of the outlet valves having an actuator for opening the outlet valve in response to an activation signal, wherein during use, a number of the outlet valves are selectively opened such that the reagent flows into the flow-path to combine with the fluid from the inlet to produce a combined flow having a proportion of the reagent, the proportion of the reagent in the combined flow being determined by the number of the outlet valves opened.

Description

201209407 六、發明說明: 【發明所屬之技術領域】 本發明關於使用微系統技術(MST)之診斷裝置。特別 是,本發明關於用於分子診斷之微流體及生化處理以及分 析。 【先前技術】 分子診斷已用於:可於病徵顯現之前,提供早期疾病 檢測預示之領域。分子診斷試驗係用於檢測: •遺傳病症 •後天病症 •傳染性疾病 •與健康有關情況之基因易致病因素 因高準確度及快速處理時間,分子診斷試驗得以減少 無效健康照護的發生、增進病患預後(patient outcome)、 改進疾病管理及個體化患者照護。分子診斷的許多技術係 基於自生物樣本(諸如血液或唾液)萃取及擴增之特定核酸( 去氧核糖核酸(DNA)以及核糖核酸(RNA)兩者)的檢測及辨 識。核酸鹼基的互補特徵使得經合成DNA(寡核苷酸)短序 列結合(雜交)至用於核酸試驗之特定核酸序列。若發生雜 交,則互補序列存在於樣本中。此使得例如預測個人未來 會得到的疾病、判定感染性病原體的種類及病原體,或判 定個人對藥物的反應成爲可能。 201209407 以核酸爲基礎之分子診斷試驗 以核酸爲基礎之試驗具有四個獨立步驟: 1. 樣本製備 2. 核酸萃取 3. 核酸擴增(任意的) 4. 檢測 許多樣本類型,諸如血液、尿液、痰和組織樣本,係 用於基因分析。診斷試驗判定所需的樣本類型,因並非所 有樣本代表疾病進程。這些樣本具有各種組分,但通常只 有其中之一受到關注。例如,在血液中,高濃度的紅血球 可抑制致病微生物的檢測。因此,於開始時經常需要純化 及/或濃縮步驟。 血液爲較常請求的樣本類型之一。其具有三種主要組 分:白血球、紅血球及血栓細胞(血小板)。血栓細胞促進 凝集且在體外維持活性。爲抑制凝聚作用,在純化及濃縮 之前令試樣與諸如乙二胺四乙酸(EDTA)之試劑混合。通常 自樣本移除紅血球以濃縮標靶細胞。在人體中,紅血球佔 細胞物質之約99%但其不帶有DNA,因彼不具細胞核。此 外,紅血球含有諸如血紅素之可能干擾下游核酸擴增程序 (描述於下)的成分。可藉由示差(differentially)溶胞於溶 胞液中之紅血球來移除紅血球,而留下剩餘的完整細胞物 質,可接著使用離心而自樣本將其分離。此提供自彼萃取 核酸之濃縮標靶細胞。 用於萃取核酸之確切規程取決於樣本及待實施之診斷 -6 - 201209407 分析。例如,用於萃取病毒RNA之規程與用於萃取基因 組DN A之規程相當不同。然而,自標靶細胞萃取核酸通 常包含細胞溶胞步驟及接續的核酸純化。細胞溶胞步驟使 細胞及細胞核膜破裂,而釋放出遺傳物質。此經常使用溶 胞清潔劑來完成,溶胞清潔劑係諸如十二烷基硫酸鈉,其 亦使存在於細胞中之蛋白質大量變性。 接著以酒精(通常爲冰乙醇或異丙醇)沉澱步驟純化核 酸,或是經由固相純化步驟,於清洗之前在高濃度的離液 鹽(chaotropic salt)存在下,通常於分餾塔中的氧化矽基質 、樹脂或順磁性珠上,接著以低離子強度緩衝液進行洗提 。核酸沉澱之前之任意的步驟爲添加剪切蛋白質之蛋白酶 ,以進一步純化樣本。 其他的溶胞方法包括經由超聲振動之機械式溶胞以及 將樣本加熱至94°C以破壞細胞膜之熱溶胞。 標靶DNA或RNA可以極小量存在於經萃取之物質中 ,尤其是若標靶來自病原體來源。核酸擴增提供選擇性擴 增(即,複製)特定標靶(就可檢測程度而言爲低濃度者)的 能力。 最常使用之核酸擴增技術爲聚合酶鏈反應(PCR)。PCR 係業界已知悉,以及於E. van Pelt-Verkuil等人之Principles and Technical Aspects of PCR Amplification, Springer, 2008中提供此類反應之綜合理解性描述。 PCR爲有用的技術,其相對複雜DNA背景而擴增標 靶DNA序列。若欲(藉由PCR)擴增RNA,則首先必須使 201209407 用名爲反轉錄酶之酵素將之轉錄爲cDNA(互補DNA)。隨 後,藉由PCR擴增得到的cDNA。 PCR爲指數型方法,只要維持反應的條件爲可接受的 則其可繼續進行。反應之成分爲:201209407 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a diagnostic apparatus using microsystem technology (MST). In particular, the present invention relates to microfluidic and biochemical treatments and assays for molecular diagnostics. [Prior Art] Molecular diagnosis has been used to provide an area for early detection of disease before the onset of symptoms. Molecular diagnostic tests are used to detect: • genetic disorders • acquired diseases • infectious diseases • genes associated with health-related genetic factors due to high accuracy and rapid processing time, molecular diagnostic tests can reduce the occurrence and improvement of ineffective health care Patient outcome, improved disease management, and individualized patient care. Many techniques for molecular diagnostics are based on the detection and identification of specific nucleic acids (both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)) extracted and amplified from biological samples such as blood or saliva. The complementary nature of the nucleobases allows the short sequence of synthetic DNA (oligonucleotides) to bind (hybridize) to a particular nucleic acid sequence for use in nucleic acid assays. If a hybrid occurs, the complementary sequence is present in the sample. This makes it possible, for example, to predict the disease that an individual will get in the future, to determine the type and pathogen of the infectious pathogen, or to determine the individual's response to the drug. 201209407 Nucleic Acid-Based Molecular Diagnostic Tests Nucleic acid-based assays have four separate steps: 1. Sample preparation 2. Nucleic acid extraction 3. Nucleic acid amplification (optional) 4. Detection of many sample types, such as blood, urine , sputum and tissue samples are used for genetic analysis. Diagnostic tests determine the type of sample required, as not all samples represent disease progression. These samples have various components, but usually only one of them is of interest. For example, in the blood, high concentrations of red blood cells can inhibit the detection of pathogenic microorganisms. Therefore, purification and/or concentration steps are often required at the outset. Blood is one of the more frequently requested sample types. It has three main components: white blood cells, red blood cells, and thrombocytes (platelets). Thrombotic cells promote agglutination and maintain activity in vitro. To inhibit coacervation, the sample is mixed with a reagent such as ethylenediaminetetraacetic acid (EDTA) prior to purification and concentration. Red blood cells are typically removed from the sample to concentrate the target cells. In the human body, red blood cells account for about 99% of the cellular material but they do not carry DNA because they do not have a nucleus. In addition, red blood cells contain components such as heme that may interfere with downstream nucleic acid amplification procedures (described below). The red blood cells can be removed by differentially lysing the red blood cells in the lysate, leaving the remaining intact cellular material, which can then be separated from the sample using centrifugation. This provides a concentrated target cell from which the nucleic acid is extracted. The exact procedure used to extract nucleic acids depends on the sample and the diagnosis to be performed -6 - 201209407 Analysis. For example, the protocol used to extract viral RNA is quite different from the protocol used to extract the genome DN A. However, self-targeting cell extraction of nucleic acids typically involves a cell lysis step and subsequent nucleic acid purification. The cell lysis step ruptures the cell and nuclear membrane and releases the genetic material. This is often accomplished using a lyophilized detergent such as sodium lauryl sulfate, which also denatures a large amount of protein present in the cells. The nucleic acid is then purified in a precipitation step with alcohol (usually ice ethanol or isopropanol) or via a solid phase purification step prior to washing in the presence of a high concentration of chaotropic salt, usually in a fractionation column. The matrix, resin or paramagnetic beads are then eluted with a low ionic strength buffer. Any step prior to precipitation of the nucleic acid is the addition of a protein-cleaving protease to further purify the sample. Other lysis methods include mechanical lysis via ultrasonic vibration and heating of the sample to 94 °C to disrupt thermal lysis of the cell membrane. The target DNA or RNA can be present in the extracted material in very small amounts, especially if the target is from a pathogen source. Nucleic acid amplification provides the ability to selectively amplify (i.e., replicate) a particular target (in the case of a low concentration in terms of detectability). The most commonly used nucleic acid amplification technique is the polymerase chain reaction (PCR). The PCR is known in the art and provides a comprehensive comprehensible description of such reactions in E. van Pelt-Verkuil et al., Principles and Technical Aspects of PCR Amplification, Springer, 2008. PCR is a useful technique for amplifying a target DNA sequence relative to a complex DNA background. If RNA is to be amplified (by PCR), it is first necessary to transcribe 201209407 into cDNA (complementary DNA) using an enzyme called reverse transcriptase. Subsequently, the obtained cDNA was amplified by PCR. PCR is an exponential method which can be continued as long as the conditions for maintaining the reaction are acceptable. The composition of the reaction is:

1. 引子對-具有約1〇_3〇個與毗鄰(flanking)標靶序列 區互補之核苷酸的短單股DNA 2. DNA聚合酶-合成DNA之熱穩定性酶 3. 去氧核糖核苷三磷酸(dNTP)-提供整合至新合成之 DNA股之核苷酸 4. 緩衝液-提供DN A合成之最佳化學環境 PCR普通包含將這些反應物置於含有經萃取之核酸的 小管(〜10-50微升)。將管放置於聚合酶鏈反應器(thermal cycler)中;一種令反應經受一連串不等量時間之不同溫度 的儀器。各熱循環的標準規程(protocol)包括變性相、黏 著相及延伸相。延伸相有時代表引子延伸相。除了此三-步驟規程外,可採用二-步驟熱規程,於其中黏著及延伸 相合倂。變性相普通包含將反應溫度升溫至90-95 °C以使 DNA股變性:於黏著相中,將溫度降低至〜50-60 °C以供 引子黏著;接著於延伸相中,將溫度升溫至最佳DNA聚 合酶活性溫度60-72 °C,以供引子延伸。此方法重複循環 約20-40次,最終結果爲產生數百萬拷貝之引子間的標靶 序列。 已發展出用於分子診斷之許多標準PCR規程之變體, 其中包括諸如多引子組PCR、聯結子引發(linker-primed 201209407 )PCR、直接PCR、串接重複序列(tandem)PCR、即時PCR 以及反轉錄酶PCR。 多引子組PCR使用單一 PCR混合物中之多重引子組 以產生對不同DNA序列具特異性之不同大小之擴增子。 藉由一次標靶多個基因,由單一試驗可得到額外的資訊( 以其他方式則需要數次試驗)。最佳化多引子組PCR更爲 困難,因其需要選取具近似黏著溫度之引子及具近似長度 與鹼基組成之擴增子以確保各擴增子之擴增效率相等。 聯結子引發(linker-primed)PCR,又稱爲接合接合子 (ligation adaptor)PCR,爲用於致能複雜DNA混合物中實 質上所有DNA序列之核酸擴增的方法,而不需要標靶-特 異性引子。此方法首先以合適的限制性內核酸酶(enzyme) 來剪切(digest)標靶DNA群體。使用接合酶酵素,具有合 適的懸伸(overhanging)端之雙股寡核苷酸聯結子(亦稱爲 接合子)接著與標靶DNA片段之端子接合。接下來使用對 聯結子序列具有特異性之寡核苷酸引子實施核酸擴增。藉 此,可擴增毗鄰聯結子寡核苷酸之DNA來源的所有片段 〇 直接PCR描述一種直接於樣本上實施PCR而不需要 任何核酸萃取(或最少核酸萃取)之系統。長久以來認爲, PCR反應受到存在於未純化的生物樣本中之許多成分的抑 制,諸如血液中的原血紅素成分。傳統上,於製備反應混 合物之前,PCR需要加強純化標靶核酸。然而,利用化學 性質的適當變化及樣本濃縮,可以最少化DNA純化而進 201209407 行PCR或進行直接PCR。用於直接PCR之PCR化學性質 的調整包括加強緩衝液強度、使用高活性及進行性( processivity)之聚合酶及與潛在聚合酶抑制劑螯合之添加 物。 串接重複序列PCR利用兩次獨立的核酸擴增以增進擴 增正確擴增子的機率。串接重複序列PCR中的一類型爲巢 式PCR,其中使用兩對PCR引子,以於分別的核酸擴增進 行單一基因座擴增。第一對引子與標靶核酸序列外部區域 的核酸序列雜交。第二次擴增中所使用的第二對引子(巢 式引子)結合於第一PCR產物中並且產生含有標靶核酸的 第二PCR產物(較第一 PCR產物爲短)。此策略所運用的 論理爲:若於第一次核酸擴增期間因失誤而擴增錯誤的基 因座,由第二對引子再次擴增錯誤的基因座的機率非常低 ,因此確保了特異性。 使用即時PCR或定量PCR以即時量測PCR產物之量 。藉使用含有探針或螢光染料之螢光團以及反應中的參考 標準,可測定樣本中之核酸的最初含量。此特別有用於分 子診斷,其中治療選擇可能取決於樣本中所載病原體而有 所不同。1. Primer pair - a short single strand of DNA having approximately 1〇_3〇 nucleotides complementary to the flanking target sequence region 2. DNA polymerase-synthesis of DNA thermostable enzymes 3. Deoxyribose Nucleoside triphosphate (dNTP) - provides nucleotides for integration into newly synthesized DNA strands. 4. Buffer - the best chemical environment for DN A synthesis. PCR typically involves placing these reagents in small tubes containing extracted nucleic acids ( ~10-50 microliters). The tube is placed in a polymerase chain cycler; an instrument that subjects the reaction to a series of different temperatures for varying amounts of time. The standard protocols for each thermal cycle include the denaturing phase, the adhesive phase, and the extended phase. The extension phase sometimes represents the primer extension phase. In addition to this three-step procedure, a two-step thermal procedure can be employed in which the adhesion and extension are combined. The denaturation phase generally involves heating the reaction temperature to 90-95 ° C to denature the DNA strand: in the adhesive phase, the temperature is lowered to ~50-60 ° C for adhesion of the primer; then in the extended phase, the temperature is raised to The optimal DNA polymerase activity temperature is 60-72 °C for extension of the primer. This method repeats the cycle for about 20-40 times, with the end result being a target sequence between millions of copies of the primer. Variants of many standard PCR protocols for molecular diagnostics have been developed, including, for example, multi-initiator PCR, linker-primed 201209407 PCR, direct PCR, tandem PCR, real-time PCR, and Reverse transcriptase PCR. Multiple primer set PCR uses multiple primer sets in a single PCR mix to generate different sizes of amplicons specific for different DNA sequences. Additional information can be obtained from a single experiment by targeting multiple genes at once (in other ways, several trials are required). It is more difficult to optimize multi-primer PCR because it requires the selection of primers with approximate adhesion temperature and amplicon with approximate length and base composition to ensure equal amplification efficiency of each amplicon. Linker-primed PCR, also known as ligation adaptor PCR, is a method for enabling nucleic acid amplification of virtually all DNA sequences in complex DNA mixtures without the need for target-specific Sexual introduction. This method first digests the target DNA population with a suitable restriction endonuclease. Using a zymase enzyme, a double-stranded oligonucleotide linker (also known as a zygote) having a suitable overhanging end is then ligated to the terminal of the target DNA fragment. Nucleic acid amplification is then carried out using oligonucleotide primers specific for the linker sequence. By this, all fragments of the DNA source adjacent to the linker oligonucleotide can be amplified. 〇 Direct PCR describes a system that performs PCR directly on the sample without any nucleic acid extraction (or minimal nucleic acid extraction). It has long been believed that PCR reactions are inhibited by many components present in unpurified biological samples, such as the protohemoglobin component in the blood. Traditionally, PCR requires enhanced purification of target nucleic acids prior to preparation of the reaction mixture. However, with appropriate changes in chemical properties and sample concentration, DNA purification can be minimized and PCR can be performed at 201209407 or direct PCR. Modifications in PCR chemistry for direct PCR include potentiation of buffer strength, use of high activity and processivity polymerases, and additions to potential polymerase inhibitors. Tandem repeat PCR utilizes two independent nucleic acid amplifications to increase the probability of amplifying the correct amplicon. One type of tandem repeat PCR is nested PCR in which two pairs of PCR primers are used to perform single locus amplification for separate nucleic acid amplification. The first pair of primers hybridize to the nucleic acid sequence of the outer region of the target nucleic acid sequence. The second pair of primers (nested primers) used in the second amplification binds to the first PCR product and produces a second PCR product (short in the first PCR product) containing the target nucleic acid. The rationale used in this strategy is that if the wrong genomic locus is amplified due to a mistake during the first nucleic acid amplification, the probability of re-amplifying the erroneous locus by the second pair of primers is very low, thus ensuring specificity. The amount of PCR product was measured in real time using either real-time PCR or quantitative PCR. The initial amount of nucleic acid in a sample can be determined by using a fluorophore containing a probe or a fluorescent dye and a reference standard in the reaction. This is especially useful for molecular diagnostics where treatment options may vary depending on the pathogen contained in the sample.

反轉錄酶PCR(RT-PCR)係用於自RNA來擴增DNA» 反轉錄酶爲將RNA反轉錄成互補DNA(cDNA)之酵素,接 著藉由 PCR擴增 cDNA。RT-PCR廣泛地用於表現型態( expression profiling)以判定基因的表現或辨識RNA轉錄 本(包括轉錄起始及終止位址)之序列。其亦用於擴增R N A -10- 201209407 病毒,諸如人類免疫缺乏病毒或c型肝炎病毒。 恆溫擴增爲另一種類型的核酸.擴增,其不依靠擴增 反應期間之標靶DN A的熱變性,因此不需要複雜的機械 。恆溫核酸擴增方法可因此於原始位置進行或於實驗室 環境外易於被操作。包括股取代擴增(Strand Displacement Amplification)、轉錄介導擴增(Transcription Mediated Amplification)、依賴核酸序列擴增(Nucleic Acid Sequence Based Amplification)、重組酵素聚合酶擴增(Recombinase Polymerase Amplification)、滾動循環擴增(Rolling Circle Amplification)、分枝型擴增(Ramification Amplification) 、解旋恒溫 DN A 擴增(Helicase-Dependent Isothermal DNA Amplification)及環形恒溫擴增(Loop-Mediated Isothermal Amplification)之一些恆溫核酸擴增方法已被敘述。 恆溫核酸擴增法不依賴模板DNA之持續加熱變性來 產生作爲進一步擴增之模板的單股分子,而是依賴諸如於 常溫下藉由特異性限制內核酸酶之DNA分子的酵素性切 割,或是利用酵素分開DNA股之其他方法》 股取代擴增(SDA)依賴特定限制性酵素的能力以切割 半修飾(hemi-modified)DNA之未經修飾股,及依賴5’-3’ 外核酸酶-缺乏之聚合酶的能力以延伸並取代下游股。然 後藉由偶合義(sense)與反義(antisense)反應而達成指數性 核酸擴增,其中來自義反應之股取代作爲反義反應之模板 。使用不以普通方式切割DNA而是於DNA之一股上產生 切口之切口酶(諸如N. Alwl,N. BstNBl及Mlyl)係有用於 -11 - 201209407 此反應。藉使用熱穩定限制性酵素Μναΐ)及熱穩定性外-聚 合酶聚合酶)之組合已改進SDA。此組合顯現出使反 應的擴增效率由1〇8倍擴增增加至1〇1()倍擴增,以致可使 用此技術來擴增獨特的單拷貝分子。 轉錄介導擴增(ΤΜΑ)及依賴核酸序列擴增(NASBA)使 用RNA聚合酶以複製RNA序列而非對應之基因組DNA 。此技術使用兩種引子及兩或三種酵素、RNA聚合酶、反 轉錄酶及任意的RNase Η(若反轉錄酶不具有RNase活性) 。一種引子含有供RNA聚合酶之啓動子序列。在核酸擴 增的第一步驟中,此引子於限定的位置與標靶核糖體 RNA(rRNA)雜交。藉由自啓動子引子的3'端開始延伸,反 轉錄酶產生標靶rRN A之DN A拷貝。若存在另外的RNase Η,則所得的RNA : DNA雙股中的RNA經由反轉錄酶之 RNase活性而被分解。接著,第二引子結合至DNA拷貝 。藉反轉錄酶自此引子的末端合成新的DNA股而產生雙 股DNA分子。RNA聚合酶辨識DNA模板中的啓動子,並 開始轉錄。各個新合成的RNA擴增子再進入過程中並作 爲新的複製之模板。 於重組酵素聚合酶擴增(RPA)中,藉結合相對的寡核 苷酸子至模板DNA並且由DNA聚合酶將之延伸而達成特 定DNA片段之恆溫擴增。使雙股DNA(dsDNA)模板變性 不需要熱。反之,RPA利用重組酵素-引子錯合體來掃描 dsDNA及促進同源(cognate)位置處的股交換。藉由單股 DNA結合蛋白與經取代模板股的交互作用來穩定所得到的 -12- 201209407 結構’因此防止引子因分支遷移而放出。重組酵素分解離 開可接近股取代 DNA聚合酶(諸如Pol I(hM)的大片段)之寡核苷酸的y端,且引子接著開始延伸 。藉循環重複此步驟而達到指數性核酸擴增。 解旋酶擴增(HDA)模擬活體內系統,於活體內系統中 使用DNA解旋酶來產生用於引子雜交之單股模板並接著 以DNA聚合酶延伸引子。於HDA反應的第一步驟中,解 旋酶穿過標靶DNA,破壞聯結兩股的氫鍵,此二股隨後由 單股結合蛋白所結合。由解旋酶所暴露之單股標靶區域使 引子得以黏著。DN A聚合酶使用自由的去氧核糖核苷三磷 酸(dNTP)以接著延伸各引子的3’端,以產生兩個DNA複 製(replicate)。兩個複製的 dsDNA股獨立地進入下一個 HDA循環’造成標靶序列之指數性核酸擴增。 其他的基於DNA之恆溫技術包括滾動循環擴增(RCA) ’於其中DNA聚合酶繞環狀DNA模板持續地延伸引子而 產生由許多環狀重複拷貝所組成之長的DNA產物。藉由 終止反應,聚合酶產生數千拷貝之環狀模板,其具有栓繫 至原始標靶DNA的拷貝鏈。此致使標靶之空間解析度及 信號之快速核酸擴增。於1小時內至多可產生1〇12拷貝之 模板。分枝型擴增爲RCA之變體,並利用封閉的環狀探 針(C-探針)或扣鎖探針及具高進行性之DNA聚合酶,以於 常溫情況下指數地擴增C-探針。 環形恆溫擴增(LAMP)提供高選擇性且利用DNA聚合 酶及含有四個特別設計的引子之引子組,引子組辨識標靶 -13- 201209407 DNA上總共六個不同的序列。含有標靶DNA之義股及反 義股序列的內引子起始LAMP。由外引子引發之後續股取 代DNA合成釋出單股DNA。 此作爲由第二內及外引子 所引發之DNA合成的模板,第二內及外引子與標靶之另 —端雜交,產生莖-環(stem-loop)DNA結構。於接續的 LAMP循環中,內引子與產物上的環形雜交並起始取代 DNA合成’產生原始莖-環DNA及具有兩倍莖長度之新 莖-環DNA。於一小時內持續循環反應而聚積1〇9拷貝之 標靶。最終產物爲,具有數個反相重複標靶之莖-環DNA 以及具有多個環形(交替黏著相同股中之反相重複標靶所 形成)之花椰菜狀結構。 於完成核酸擴增之後,必須分析擴增的產物以判定是 否產生預期的擴增子(標靶核酸之擴增量)。分析產物的方 法有透過膠體電泳簡單測定擴增子的大小、使用DNA雜 交以識別擴增子之核苷酸組成。 膠體電泳爲檢查核酸擴增步驟使否產生預期之擴增子 之最簡單方式之一。膠體電泳利用施加至膠體基質之電場 來分離DNA片段。帶負電的DNA片段將以不同速率(主 要取決於其大小)移動通過基質。於電泳完成之後,可染 色膠體中的片段使其成爲可見。於UV光下發螢光之溴化 乙菲錠爲最常用的染劑。 藉由與DNA大小標記(DNA標準片段(DNA ladder))相 比較來判定片段的大小’ D N A大小標記含有已知大小的 DNA片段,其與擴增子一同跑膠。因寡核苷酸引子結合至 -14- 201209407 毗鄰標靶DNA之特定位置,經擴增之產物的大小可被預 測且利用膠體上已知大小的帶(band)來檢測。爲確認擴增 子爲何或若產生數種擴增子時,常利用DNA探針與擴增 子雜交。 DNA雜交意指藉由互補鹼基配對而形成雙股DNA。 用於特定擴增產物之正面識別的DNA雜交需使用長度爲 約20個核苷酸的DNA探針。若探針具有與擴增子(標靶 )DNA序列互補的序列,則雜交將於有利的溫度、pH及離 子濃度條件下發生。若發生雜交,則表示關注的基因或 DNA序列出現於原始樣本中。 光學檢測爲最常見之檢測雜交的方法。標記擴增子或 是探針以經由發螢光或電致化學發光而發光。這些方法之 引發產光部分之激發態的方式不同,但兩者同樣致能核苷 酸股之共價標記。於電致化學發光(ECL),當以電流刺激 時,由發光團分子或錯合體產生光。於發螢光時,以造成 發射之激發光來發光》 使用發光源以檢測螢光,發光源提供波長爲螢光分子 吸收之激發光以及檢測單元。檢測單元包含光感測器(諸 如光電倍增管或電荷耦合裝置(CCD)陣列)以檢測發射的信 號’以及防止激發光被包含於光感測器輸出之機制(諸如 波長·選擇濾波器)。回應激發光,螢光分子發射史托克斯 轉換光(Stokes-shifted light),以及此發射的光由檢測單元 收集。史托克斯轉換爲發射的光與吸收的激發光之間之頻 率差或波長差。 -15- 201209407 使用光感測器來檢測ECL發射,光感測器對於所採用 之ECL種類之發射波長爲敏感。例如,過渡金屬配位錯合 體發射可見波長的光,因而採用傳統光二極體及CCD作 爲光感測器。ECL之優勢爲,若排除周圍光線,ECL發射 可爲檢測系統中唯一存在的光,因而增進靈敏度。 微陣列使數十萬的DNA雜交試驗得以同時進行。微 陣列爲有用的分子診斷工具,其可篩檢數千種遺傳疾病或 於單一試驗中檢測是否存在數種感染性病原體。微陣列由 許多不同的固定於基板上且呈點狀之DNA探針所組成。 首先以螢光或發光分子標記標靶DNA(擴增子)(於核酸擴 增期間或之後),然後將其施加至探針陣列。於經控制的 溫度下、潮濕的環境中培養微陣列數小時或數天,此時探 針及擴增子之間發生雜交。於培養後,必須以一連串緩衝 液清洗微陣列以移除未經結合股。一旦清洗後,以氣流( 通常爲氮)乾燥微陣列表面。雜交及清洗的嚴格度很重要 。不夠嚴格可能導致高度非特異性結合。過度嚴格可能導 致無法適當進行結合而造成減低的靈敏度。藉由檢測來自 經標記之與互補探針形成雜交的擴增子之光發射而辨識雜 交。 使用微陣列掃描器檢測來自微陣列的螢光,微陣列掃 描器通常爲經電腦控制的反相掃描式螢光共軛焦顯微鏡, 其一般使用激發螢光染料的雷射及光感測器(諸如光電倍 增管或CCD)以檢測發射的信號。螢光分子發射經史托克 斯轉換的光(如上述),而光被檢測單元收集。 -16- 201209407 發射的螢光必須被收集、與未經吸收的激發波長分離 ,並被傳送至檢測器。於微陣列掃描器中常使用共軛焦配 置以藉由位於影像平面的共軛焦針孔來刪除失焦資訊。此 使得僅檢測光的聚焦部分。防止於物之焦點平面之上方或 下方的光進入檢測器,藉此增加信號對雜訊比。檢測器將 經檢測的螢光光子轉換成電能,電能並接著被轉換成數位 信號。此數位信號轉變成代表來自給定像素之螢光強度的 數字。陣列的各特徵係由一或多個此像素所構成。掃描的 最終結果爲陣列表面影像。由於已知微陣列上每一個探針 的確切序列及位置,因此可同時識別及分析雜交的標靶序 列。 可於下列找到更多有關螢光探針之資訊: http : //www.premierbiosoft.com/tech_notes/FRET_probe.html 以及 http : //www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance-Energy-Transfer-FRET.html 就地醫護分子診斷 儘管分子診斷試驗提供了優勢,臨床檢驗中此類型試 驗的成長不如預期且仍僅占檢驗醫學之實施的小部分。此 主要歸因於,與基於非關核酸方法之試驗相比,核酸試驗 相關之複雜度與成本。分子診斷試驗之於臨床處理的廣泛 適用性係與可顯著降低成本、自始(樣本處理)至終(產生結 果)之快速及自動化分析,以及不需大量人爲操作之儀器 -17- 201209407 發展息息相關。 用於醫師診所、鄰近的或基於使用者的醫院、家中之 就地醫護技術提供以下優點: •快速得到結果而致能快速促進治療及改進照護品質。 •經由試驗極少量樣本而得到檢驗値的能力。 •減少臨床工作量。 •減少實驗室工作量並因減少管理工作而增進工作效率。 •因減少住院時間、門診病人於首次就診得知結果,及 簡化樣本的處理、儲存及運送而改善每個病人所需成本》 •促進臨床管理決策,諸如接種控制及抗生素使用。 以晶片上實驗室(LOC)爲基礎之分子診斷 基於爲流體技術之分子診斷系統提供自動化及加速分 子診斷分析的方法。較短的檢測時間主要歸因於微流體裝 置中之診斷方法步驟使用極少用量、自動化及內建低開銷 串級。奈升與微升級用量亦降低試劑消耗及成本。晶片上 實驗室(LOC)裝置爲微流體裝置之常見形式。晶片上實驗 室裝置於MST層中具有MST結構以將流體處理整合至單 —支撐基板(通常爲矽)。使用半導體產業之VLSI(超大型 積體電路)技術之製造,使各LOC裝置的單元成本非常低 。然而,控制流體流經LOC裝置、添加試劑、控制反應 條件等需要大體積的外部管路及電子裝置。將LOC裝置 連接至這些外部裝置實際上將用於分子診斷之LOC裝置 之用途限制爲檢驗處理。外部設備的成本及其操作上的複 -18- 201209407 雜度排除了利用以LOC爲基礎的分子診斷作爲就地醫護 處理的實用選擇。 鑒於上述’需要一種用於就地醫護之基於LOC裝置 之分子診斷系統。 【發明內容】 於以下的標號段落將描述本發明的各種面向。 GB S0 02.1本發明之此面向提供一種微流體裝置,其 包含: 支撐基板; 覆蓋支撐基板之微系統技術(MST)層,MST層界定供 流體流動於MST層內之MST通道; 覆蓋MST層之蓋,蓋界定供流體流動於蓋內之蓋通 道,以及用於保持流體之貯槽;其中, MST通道與蓋通道呈流體連通。 GBS002.2較佳地,貯槽與MST通道呈流體連通。 GBS002.3 較佳地,至少一個貯槽係經組態以藉由 固定彎液面而使液體保持於貯槽內,使得於使用期間內, 液體被保持於貯槽中直至MST通道中之流體流接觸並移 除彎液面。 GBS002.4較佳地,蓋具有下密封以封閉蓋通道,下 密封具有複數的開口以提供蓋通道與MST通道間之流體 連通。 GBS0 02.5較佳地,至少一些開口係經組態以固定彎 -19- 201209407 液面直至彎液面與流體流接觸而被移除爲止。 GBS002.6較佳地,微流體裝置亦具有於支撐基板與 MST層之間的CMOS電路,CMOS電路具有反饋感測器以 感測經過MST通道之流體流之特徵。 GBS002.7較佳地,MST層具有加熱器元件以加熱流 體流。 GBS002.8較佳地,蓋具有形成外層之上密封,上密 封具有經尺寸化以貯槽清空液體時(但仍保持液體於貯槽 內)允許空氣流入之通孔。 GBS002.9較佳地,微流體裝置亦具有致動器閥,其 具有入口及出口,入口及出口係組態成沿著流動方向藉由 毛細作用而自入口吸引流體流至出口:以及, 致動器閥亦具有位於入口及出口中間的可移動構件, 可移動構件係經組態以用於靜態位置與致動位置(自靜態 位置移動)之間的移動;以及, 孔口係經組態以藉由固定彎液面於孔口處而停止液體 流;其中於使用時, 位移可移動構件至致動位置來產生壓力脈衝以破壞彎 液面並迫使液體經過孔口。 GBS002.1 0較佳地,可移動構件至少部分地界定孔口 〇 GBS002.il較佳地,致動器閥具有用於移動可移動構 件之致動器,致動器具有電阻式元件以引發示差熱膨脹而 移動可移動構件。 -20- 201209407 GBS 00 2.12較佳地,致動器閥使可移動構件往返動於 靜置及移位位置之間,直至緊鄰孔口下游之出口經充分塡 充以供毛細作用重新建立流動方向之液體流爲止。 GBS002.13較佳地,CMOS電路操作性地控制致動器閥。 GBS002.1 4較佳地,微流體裝置亦具有用於擴增生物 樣本中之標靶核酸序列之核酸擴增部。 GBS002.1 5較佳地,微流體裝置亦具有用於根據細胞 大小而自生物樣本移除一些細胞之透析部。 GBS002.1 6較佳地,微流體裝置亦具有用於與標靶合 酸序列雜交之探針陣列以形成探針-標靶雜交。 GBS002.17較佳地,CMOS電路具有用於檢測探針-標靶雜交之光二極體陣列。 GBS 002.1 8較佳地,貯槽儲存選自下列之分析試劑: 抗凝劑; 溶胞試劑; dNTP、緩衝液及引子; 聚合酶;以及, 水。 GBS002.19較佳地,致動器閥位於PCR部的下游端 ,使得於藉由加熱器元件進行預定熱循環時,CMOS電路 開啓致動器閥而使得流進入探針陣列。 GBS002.20較佳地,CMOS電路具有記憶體,其係用 於儲存載入貯槽中之一系列試劑,及探針類型於其位於探 針陣列內的位置。 -21 - 201209407 表面微加工層提供高密度之較小特徵。蓋提供所需之 較大特徵。表面微加工層及蓋一起提供必要之複數特徵。 GVA000.1本發明之此面向提供一種微流體裝置,其 包含: 用於容納試劑之貯槽; 與主槽呈流體連通之出口閥,出口閥具有彎液面固定 器及致動器,彎液面固定器係經組態以形成將試劑保持於 貯槽中之彎液面,致動器係用於接收啓動信號且回應於啓 動信號而致動,使得自彎液面固定器釋放彎液面且使得試 劑流出貯槽。 GVA006.2較佳地,出口閥具有用於接觸試劑之可移 動構件,以及致動器爲熱膨脹致動器,其係用於位移可移 動構件而於試劑中產生脈衝以移動彎液面。 GVA006.3較佳地,可移動構件係經組態以用於靜態 位置與致動位置(自靜態位置移動)之間的移動,以及彎液 面固定器係組態成藉由固定彎液面於孔口而停止液體流動 之孔口。 GVA006.4較佳地,可移動構件至少部分地界定孔口。 GVA006.5較佳地,熱致動器具有電阻式元件以引發 示差熱膨脹而移動可移動構件。 GVA006.6較佳地,於使用期間,啓動信號爲一連串 的電脈衝,並且回應於使可移動構件於靜置與位移位置間 往返運動之致動器閥。 GVA006.7較佳地,可移動構件係經組態以自靜置位 -22- 201209407 置移動至致動位置,使得自可移動構件至致動位置之位移 致使彎液面延伸而與出口閥下游之表面接觸,因而毛細作 用驅動試劑流出貯槽。 GVA006.8較佳地,出口閥下游之表面爲毛細作用起始 特徵,其係用於重組彎液面以及移動彎液面離開出口閥。 GVA006.9較佳地,熱膨脹致動器係組態成引發示差 熱膨脹而移動可移動構件。 GVA006.1 0較佳地,致動器具有用於加熱彎液面之閥 加熱器,以由彎液面固定器釋放彎液面。 GVA00 6. 1 1較佳地,彎液面固定器係組態成藉由固定 彎液面於孔口而停止試劑流出貯槽之孔口,以及閥繞孔口 周邊而延伸。 GVA006.1 2較佳地,閥加熱器係經組態以使彎液面處 之試劑沸騰而自彎液面固定器釋放彎液面。 GVA00 6.1 3較佳地,申請專利範圍第1項之微流體裝 置進一步包含液體感測器以感測鄰接出口閥之液體存在與 否。 GVA006.14較佳地,申請專利範圍第13項之微流體 裝置進一步包含支撐基板及支撐基板上之CMOS電路以操 作性地控制出口閥》 GVA006.1 5較佳地,感測器提供反饋予CMOS電路以 用於操作性控制出口閥。 易於使用、可大量製造且便宜之微流體裝置接收液體 樣本以進行處理及分析。視需要,藉由一些主動閥而添加 -23- 201209407 試劑至液體以利用儲存於裝置之試劑貯槽中的試劑。試劑 貯槽係整合至裝置以提供用於自身之試劑儲存,因此提供 低系統組件量及簡單的製程,得到便宜的分析系統。 GVA008.1本發明之此面向提供一種用於測試流體之 微流體裝置,微流體裝置包含: 用於接收流體之入口; 含有試劑之貯槽: 自入口延伸之流路; 用於流路與貯槽間之流體連通之複數個出口閥,各出 口閥具有用於回應啓動信號而打開出口閥之致動器;其中 於使用時, 選擇性地開啓一些閥,使得試劑流入流路以與來自入 口的流體合倂而產生具有試劑比例之合倂流,合倂流中之 試劑比例係以開啓之出口閥的數目所決定。 GVA008.2較佳地,微流體裝置亦具有於貯槽與流路 間延伸之複數個通道,出口閥係設置於各通道中,通道係 組態成藉由毛細作用而自貯槽吸引試劑至流路,其中出口 閥各具有彎液面固定器,於彎液面固定器處,朝向流路之 毛細作用驅動試劑流被停止且形成彎液面^ GVA008.3較佳地,各通道中具有多於一個出口閥。 GVA008.4較佳地’致動器爲加熱器以回應於啓動信 號而自彎液面固定器釋放彎液面。 GVA008.5較佳地,各出口閥具有用於接觸試劑之可 移動構件,以及致動器爲熱膨脹致動器,其係用於位移可 24 - 201209407 移動構件而於試劑中產生脈衝以移動可移動構件,使得恢 復朝向流路之試劑流。 GVA008.6較佳地,可移動構件係經組態以用於靜態 位置與致動位置(自靜態位置移動)之間的移動,以及彎液 面固定器係組態成藉由固定彎液面於孔口而停止試劑流之 孔口,熱致動器係經組態以使可移動構件往返運動於靜態 位置與致動位置之間而迫使試劑通過孔口。 GVA008.7較佳地,孔口係界定於可移動構件中。 GVA0 0 8.8較佳地,彎液面固定器係組態成藉由固定 彎液面於孔口而停止試劑流之孔口,以及熱致動器係經組 態以使孔口處之部分試劑沸騰而自彎液面固定器釋放彎液 面。 GVA0 0 8.9較佳地,各出口閥具有用於接觸試劑之可 移動構件,以及致動器爲熱膨脹致動器,其係用於位移可 移動構件而移動彎液面成與彎液面固定器下游之表面接觸 ,藉此彎液面固定器釋放彎液面而恢復朝向流路之毛細作 用驅動流。 GVA008.1 0較佳地,彎液面固定器下游之表面爲毛細 作用起始特徵,其係經組態以將彎液面導向通道壁。 GVA00 8.1 1較佳地,申請專利範圍第1項之微流體裝 置進一步包含供貯槽、出口閥、入口及流路之支撐基板, 以及包含用於操作性控制出口閥之CMO S電路。 GVA008.1 2較佳地,申請專利範圍第11項之微流體 裝置進一步包含至少一個回應液體的感測器以提供反饋給 -25- 201209407 CMOS電路而用於分別閥之操作性控制。 GVA008.1 3較佳地,至少一個感測器係液體感測器, 用於感測彼等通道之一者中之位置的液體存在與否。 GVA008.1 4較佳地,申請專利範圍第 1項之微流體 裝置進一步包含複數個貯槽,其各含有不同的試劑及各具 有複數個貯槽與個別流路之間之出口閥,其中合倂流中之 任何不同試劑的比例相關於對應之閥配置中開啓之分別的 閥之數目。 GVA008.15較佳地,CMOS電路根據不同試劑類型及 彼等於合倂流中所欲之比例,選擇針對各貯槽開啓的出口 閥數目。 GVA008.1 6較佳地,申請專利範圍第1 5項之微流體 裝置進一步包含用於擴增流體中之標靶核酸序列之聚合酶 鏈反應(PCR)部》 GVA008.1 7 較佳地,貯槽中不同的試劑包括下列之 一或多者: 聚合酶; 限制酵素; 緩衝液中之dNTP及引子; 溶胞試劑;以及, 抗凝劑。 GVA008.1 8較佳地,申請專利範圍第15項之微流體 裝置進一步包含雜交部,雜交部具有用於與流體中之標靶 核酸序列雜交之探針陣列,其中CMOS電路具有用於檢測 -26- 201209407 探針陣列內任何探針雜交之感測器陣列。 易於使用、可大量製造且便宜之微流體裝置接收液體 樣本以進行處理及分析。視需要,藉由一些主動閥而添加 試劑至液體以利用儲存於裝置之試劑貯槽中的試劑。 於裝置操作期間,藉由打開的閥之數目,決定試劑與 其他液體組分之必須混合比,因此可製成且可靠地達成微 流體內容之難以控制目標。 【實施方式】 總論 此總論指明包含本發明之具體例之分子診斷系統之主 要組件。於以下說明書中討論系統結構及操作之綜合細節 0 參照圖1、2、3、104及105 ’系統具有下列最重要的 組件: 試驗模組10及11爲普通USB隨身碟的大小且可便 宜製造。試驗模組10及11各含有微流體裝置,其普通呈 晶片上實驗室(LOC)裝置30形式並預載有試劑,且普通具 有1000個以上之用於分子診斷分析之探針(見圖1及104) 。圖1中所槪示的試驗模組10使用基於螢光之檢測技術 以辨識標靶分子,而圖104中之試驗模組11使甩基於電 致化學發光之檢測技術。LOC裝置30具有用於螢光或電 致化學發光檢測之整合的光感測器44(於以下詳細描述)。 試驗模組10及11均使用了用於電力、數據及控制之標準 -27- 201209407 微型- USB接頭14、均具有印刷電路板(PCB)57’及均具有 外部供電之電容器32及感應器15。試驗模組10及11均 爲僅供大量製造之單一用途且以可供使用之無菌包裝分銷 〇 外殻13具有用於接收生物樣本之大容器24及可移除 之無菌密封帶2 2,其較佳具低黏性黏著劑,以於使用前覆 蓋大容器。具有膜防護件410之膜密封件408形成部份外 殼1 3以減少試驗模組中之抗濕性,而由小氣壓變動提供 釋壓作用。膜防護件410保護膜密封件40 8免於損傷。 經由微型-USB埠1 6,試驗模組閱讀器1 2供電給試驗 模組1 〇或1 1。試驗模組閱讀器1 2可爲許多不同形式,及 其選擇係描述於後。圖1、3及104中所示之閱讀器12版 本爲智慧型電話之具體例。閱讀器12之方塊圖係示於圖3 中。處理器42執行來自程式儲存器43的應用軟體。處理 器42亦與顯示螢幕18及使用者界面(UI)觸控螢幕17及 按鈕1 9、蜂巢式無線電2丨、無線網路連接23,以及衛星 導航系統2 5界接。蜂巢式無線電2 1及無線網路連接2 3 係用於通訊。衛星導航系統25係用於以位置資料更新流 行病學資料庫。替代性地,能夠以觸控螢幕17或按鈕19 人爲輸入位置資料。資料儲存器27保有遺傳及診斷資訊 ' ^ M is m '患、者資訊、用於識別各探針之分析及探針數 據及其陣列位置。資料儲存器27及程式儲存器43可共享 於共同記憶體設備。試驗模組閱讀器12中安裝的應用軟 體提供結果分析與另外的試驗及診斷資訊。 -28- 201209407 爲執行診斷試驗,將試驗模組1〇(或試驗模組11)插入 至試驗模組閱讀器12上的微型-USB埠16。將無菌密封帶 22翻起並將生物樣本(呈液體形式)載入至樣本大容器24 中。按下開始按鈕20以藉由應用軟體來起始試驗。樣本 流進LOC裝置30且在裝置中分析萃取、培養、擴增及以 預合成的雜交-反應性寡核苷酸探針與樣本核酸(標靶)雜交 。於試驗模組1 〇的情況中(其使用基於螢光的檢測),探針 係經螢光標記且置於殼1 3中的LED 26提供必要激發光以 誘發自經雜交探針的螢光發射(見圖1及2)。於試驗模組 11中(其使用基於電致化學發光(ECL)的檢測),LOC裝置 30載有ECL探針(如上述)且LED 26對於產生光致發射螢 並非必要。反之,電極8 60及8 70提供激發電流(見圖 105)。使用與各LOC裝置上之CMOS電路整合的光感測 器44來檢測發射(螢光或光致發光)。擴增所檢測的信號並 將其轉換成藉由試驗模組閱讀器12分析之數位輸出。閱 讀器接著顯示結果。 可本地儲存數據及/或將數據上傳至含有患者記錄之 網路伺服器》自試驗模組閱讀器12移除試驗模組10或11 並將彼等適當處理。 圖1 ' 3及1 〇4顯示組態成行動電話/智慧型電話2 8 之試驗模組閱讀器1 2。於其他形式中,試驗模組閱讀器爲 醫院、私人診所或實驗室中使用之膝上型電腦/筆記型電 腦101、專用閱讀器103、電子書閱讀器107、平板電腦 109或桌上型電腦105(見圖106)。閱讀器可與一些額外的 -29- 201209407 應用程式界接,諸如病患記錄、帳務、線上資 用者環境。其亦可與一些本地或遠端周邊設備 印表機及病患智慧卡。 參照圖107,透過閱讀器12及網路125, 1〇產生之資料可用來更新用於流行病學資料1 統所保有之流行病學資料庫、用於遺傳資料1 統所保有之遺傳資料庫、用於電子化健康記 之主機系統所保有之電子化健康記錄、用於電 錄(EMR)121之主機系統所保有之電子化醫療 用於個人健康記錄(PHR)123之主機系統所保 康記錄。相反地,經由網路1 25及閱讀器1 2, 學資料1 1 1之主機系統所保有之流行病學資料 資料1 1 3之主機系統所保有之遺傳資料、用於 記錄(EHR)l 15之主機系統所保有之電子化健 於電子化醫療記錄(EMR)121之主機系統所保 醫療記錄,以及用於個人健康記錄(PHR) 123 所保有之個人健康記錄可用以更新試驗模組1 0 之數位記憶體。 再次參照圖1、2、104及105,於行動電 閱讀器1 2使用電池電力。行動電話閱讀器含 的試驗及診斷資訊。經由一些網路或接觸界面 上傳資料以致能與週邊裝置、電腦或線上伺服 置微型-USB埠16以連接電腦或主要電力供應 池。 料庫及多使 界接,諸如 由試驗模組 1 1之主機系 1 3之主機系 錄(EHR)l 15 子化醫療記 記錄,以及 有之個人健 用於流行病 、用於遺傳 電子化健康 康記錄、用 有之電子化 之主機系統 LOC 30 中 話組態中, 有所有預載 亦可載入或 器連通。設 以再充電電 -30- 201209407 圖78顯示試驗模組1 0之具體例,其係用於僅需要得 知特定標靶存在與否之試驗,諸如試驗個人是否受到例如 Α型流行性感冒病毒Η1Ν1感染。僅作爲內建之僅供USB 電力/指示器之模組47爲適當的。不需要其他閱讀器或應 用軟體。僅供USB電力/指示器之模組47上之指示器45 示出正或負結果。此組態非常適於大量篩檢。 供應給系統的額外物件可包括含有供預處理特定樣本 之試劑的試驗管,及包含供樣本收集之壓舌板及刺血針。 爲便利之故,圖78顯示之具體例的試驗模組包括有簧壓 式可伸縮刺血針3 90及刺血針釋出按鈕392。可於遠端地 區使用衛星電話。 試驗模組電子裝置 圖2和1 05分別爲試驗模組1 0和1 1中之電子組件的 方塊圖。整合於LOC裝置30之CMOS電路具有USB裝置 驅動器36、控制器34、USB相容LED驅動器29、時鐘 3 3、電源調節器3 1、RAM 3 8和程式及資料快閃記憶體40 。此等提供用於包括光感測器44、溫度感測器1 70、液體 感測器174和各種加熱器152、154、182、234之試驗模 組1 0或1 1整體以及關聯的驅動器3 7和3 9以及暫存器3 5 和41的控制和記憶體。僅LED 26(在試驗模組10的情況 中)、外部電源電容器32和微型-USB接頭14在LOC裝置 30的外部。LOC裝置30包括用於連接至這些外部組件的 黏合墊。RAM 3 8及程式和資料快閃記憶體40具有用於超 201209407 過1 000個探針之應用軟體和診斷與試驗資訊(快閃/保全儲 存,例如經由加密)。在針對E C L檢測所組態之試驗模組 11的情況中’無LED 26(見圖104和105)。資料由LOC 裝置30加密以供保全儲存及與外部裝置之安全通訊。 LOC裝置30以電化學發光探針及雜交室加載’其各具有 ECL激發電極對860和870。 以一些試驗形式製造許多類型的試驗模組10 ’其爲準 備好可現成使用者。試驗形式之不同在於機載分析(on board assay)之試劑和探針。 快速以此系統識別的感染性疾病的一些實例包括: .流行性感冒·流行性感冒病毒A、B、C、傳染性鮭 魚貧血病毒、托高土病毒 •肺炎-呼吸道融合病毒(RSV)、腺病毒、間質肺炎病 毒、肺炎雙球菌、金黃色葡萄球菌 •結核病-結核分枝桿菌、牛型分枝桿菌、非洲分枝 桿菌、卡氏分枝桿菌和田鼠分枝桿菌 •惡性瘧原蟲、弓漿蟲和其他寄生性原生蟲病 •傷寒-傷寒桿菌 •依波拉病毒 •人類免疫不全病毒(HIV) •登革熱-黃熱病毒 •肝炎(A到E) •醫源性感染-例如難養芽孢梭菌、抗萬古黴素腸球 菌以及抗藥性金黃色葡萄球菌 -32- 201209407 •單純泡疹病毒(HSV) •巨大細胞病毒(CMV) •愛彼斯坦-巴爾病毒(EBV) •腦炎-日本腦炎病毒、章地埔拉病毒 •百日咳-百日咳菌 •麻疹-副黏液病毒 •腦膜炎-肺炎鏈球菌和腦膜炎雙球菌 •炭疽病-炭疽桿菌 以此系統識別的遺傳性疾病的一些實例包括: •囊性纖維變性 •血友病 •鐮狀細胞貧血病 •黑矇性白癡病 •血色素沉著症 •腦動脈病 •克隆氏病 •多囊性腎臟病 •先天性心臟病 •蕾特氏症 由診斷系統識別之癌症的少數選擇包括: •卵巢癌 •結腸癌 •多發性內分泌腫瘤 •視網膜母細胞瘤 -33- 201209407 •透克氏症(Turcot syndrome) 上述清單並非窮舉的,且診斷系統可經組態以使用核 酸和蛋白質體分析來檢測許多不同疾病以及症狀。 系統組件的詳細結構 LOC裝置 LOC裝置30爲診斷系統之中心。其使用微流體平台 快速實施以核酸爲基礎之分子診斷分析的四個主要步驟, 即樣本準備、核酸萃取、核酸擴增和檢測。LOC裝置亦具 有替代的用途,並將詳述於下。如上述討論,試驗模組10 及1 1可採取許多不同組態以檢測不同的標靶。同樣地, LOC裝置30具有很多針對關注的標靶打造之不同實施例 。LOC裝置30之一種形式爲用於全血樣本之病原體中的 標靶核酸序列之螢光檢測之LOC裝置301。爲了閬述的目 的,LOC裝置301的結構和操作係參考圖4至26及27至 5 7而詳細描述。 圖4爲LOC裝置301結構之圖式槪要。爲了便利性 ,顯示於圖4的處理階段係以相應於實施處理階段之LO C 裝置301的功能部之元件符號表示。與各個以核酸爲基礎 的分子診斷分析的主要步驟有關的處理階段亦表示:樣本 輸入及製備288、萃取290、培養291、擴增292以及檢測 294。LOC裝置301之各種貯槽、室、閥以及其他組件將 於以下更仔細的描述。Reverse transcriptase PCR (RT-PCR) is used to amplify DNA from RNA. » Reverse transcriptase is an enzyme that reverse transcribes RNA into complementary DNA (cDNA), followed by PCR amplification of cDNA. RT-PCR is widely used in expression profiling to determine the expression of a gene or to identify sequences of RNA transcripts, including transcription initiation and termination sites. It is also used to amplify the R N A -10- 201209407 virus, such as the human immunodeficiency virus or the hepatitis C virus. Constant temperature amplification for another type of nucleic acid. Amplification, which does not rely on thermal denaturation of the target DN A during the amplification reaction, does not require complex machinery. The thermostatic nucleic acid amplification method can thus be performed at the original location or easily outside the laboratory environment. Including Strand Displacement Amplification, Transcription Mediated Amplification, Nucleic Acid Sequence Based Amplification, Recombinase Polymerase Amplification, Rolling Cycle Expansion Some thermostated nucleic acid amplifications of Rolling Circle Amplification, Ramification Amplification, Helicase-Dependent Isothermal DNA Amplification, and Loop-Mediated Isothermal Amplification The method has been described. The constant temperature nucleic acid amplification method does not rely on the continuous heat denaturation of the template DNA to produce a single strand of the molecule as a template for further amplification, but relies on an enzymatic cleavage such as a DNA molecule which specifically limits the endonuclease at a normal temperature, or Other methods of using enzymes to separate DNA strands" The ability of femoral substitution amplification (SDA) to rely on specific restriction enzymes to cleave unmodified strands of hemi-modified DNA, and to rely on 5'-3' exonuclease - Lack of ability of the polymerase to extend and replace downstream stocks. Exponential nucleic acid amplification is then achieved by a reaction between sense and antisense, wherein the strand of the sense reaction is substituted as a template for the antisense reaction. Use a nicking enzyme (such as N.) that does not cut DNA in the usual way but produces a nick on one of the strands of DNA.  Alwl, N.  BstNBl and Mlyl) are available for -11 - 201209407. SDA has been improved by the combination of heat stable restriction enzyme Μναΐ and thermostable exo-polymerase polymerase. This combination appears to increase the amplification efficiency of the reaction from 1-8 fold amplification to 1〇1 (fold fold) amplification so that this technique can be used to amplify unique single copy molecules. Transcription-mediated amplification (ΤΜΑ) and nucleic acid sequence-dependent amplification (NASBA) use RNA polymerase to replicate RNA sequences rather than corresponding genomic DNA. This technique uses two primers and two or three enzymes, RNA polymerase, reverse transcriptase, and any RNase Η (if the reverse transcriptase does not have RNase activity). One primer contains a promoter sequence for RNA polymerase. In the first step of nucleic acid amplification, the primer hybridizes to a target ribosomal RNA (rRNA) at a defined location. The reverse transcriptase produces a DN A copy of the target rRN A by extension from the 3' end of the promoter primer. If another RNase is present, the RNA in the obtained RNA:DNA double strand is decomposed by the RNase activity of the reverse transcriptase. Next, the second primer binds to the DNA copy. A double-stranded DNA molecule is produced by synthesizing a new DNA strand from the end of the primer by reverse transcriptase. RNA polymerase recognizes the promoter in the DNA template and initiates transcription. Each newly synthesized RNA amplicon re-enters the process and serves as a template for new replication. In recombinant enzyme polymerase amplification (RPA), constant temperature amplification of a specific DNA fragment is achieved by binding the opposite oligonucleotide to the template DNA and extending it by the DNA polymerase. Denaturation of the double-stranded DNA (dsDNA) template does not require heat. Conversely, RPA uses recombinant enzyme-primer mismatches to scan dsDNA and promote share exchange at cognate locations. The resulting -12-201209407 structure is stabilized by the interaction of a single strand of DNA binding protein with a substituted template strand' thus preventing primers from being released due to branch migration. The recombinant enzyme decomposes close to the y-end of the oligonucleotide that replaces the DNA polymerase (such as a large fragment of Pol I (hM)), and the primer then begins to extend. This step is repeated by cycling to achieve exponential nucleic acid amplification. Helicase amplification (HDA) mimics the in vivo system, using DNA helicase in an in vivo system to generate a single strand template for primer hybridization and then extending the primer with a DNA polymerase. In the first step of the HDA reaction, the helicase traverses the target DNA, destroying the hydrogen bonds that bind the two strands, which are then bound by a single-stranded binding protein. The single-strand target area exposed by the helicase allows the primer to adhere. DN A polymerase uses free deoxyribonucleoside triphosphate (dNTP) to subsequently extend the 3' end of each primer to create two DNA replicas. Two replicated dsDNA strands enter the next HDA cycle independently' resulting in exponential nucleic acid amplification of the target sequence. Other DNA-based thermostating techniques include rolling cycle amplification (RCA) in which a DNA polymerase continuously extends a primer around a circular DNA template to produce a long DNA product consisting of a number of circular repeat copies. By terminating the reaction, the polymerase produces thousands of copies of the circular template with a copy strand tethered to the original target DNA. This results in a spatial resolution of the target and rapid nucleic acid amplification of the signal. A template of up to 1〇12 copies can be produced in one hour. Branch-type amplification is a variant of RCA, and a circular probe (C-probe) or a latching probe and a highly progressive DNA polymerase are used to exponentially expand C at room temperature. - Probe. Circular Thermostat Amplification (LAMP) provides high selectivity and utilizes DNA polymerase and a primer set containing four specially designed primers. The primer set identifies a total of six different sequences on the target -13-201209407 DNA. The inner primer, which contains the sense strand of the target DNA and the antisense strand sequence, initiates the LAMP. The subsequent strand-derived DNA synthesis initiated by the external primer releases a single strand of DNA. This serves as a template for DNA synthesis initiated by the second internal and external primers, and the second internal and external primers hybridize to the other end of the target to produce a stem-loop DNA structure. In the subsequent LAMP cycle, the inner primer hybridizes to the loop on the product and initiates the replacement of DNA synthesis' to produce the original stem-loop DNA and the new stem-loop DNA with twice the stem length. The cycle reaction was continued for one hour to accumulate 1 〇 9 copies of the target. The final product is a stem-loop DNA with several inverted repeat targets and a broccoli-like structure with a plurality of loops (formed alternately with inverted repeat targets in the same strand). After completion of the nucleic acid amplification, the amplified product must be analyzed to determine whether the expected amplicon (amplification amount of the target nucleic acid) is produced. The method of analyzing the product is to simply measure the size of the amplicon by colloidal electrophoresis and use DNA hybridization to identify the nucleotide composition of the amplicon. Colloidal electrophoresis is one of the simplest ways to check the nucleic acid amplification step to produce the desired amplicon. Colloidal electrophoresis utilizes an electric field applied to a colloidal matrix to separate DNA fragments. Negatively charged DNA fragments will move through the matrix at different rates (mainly depending on their size). After the electrophoresis is completed, the fragments in the colloid can be made visible. Brominated fluorinated fluorene fluorene under UV light is the most commonly used dye. The size of the fragment is judged by comparison with a DNA size marker (DNA ladder). The D N A size marker contains a DNA fragment of a known size which is run along with the amplicon. Since the oligonucleotide primer binds to a specific position adjacent to the target DNA of -14-201209407, the size of the amplified product can be predicted and detected using a band of a known size on the colloid. In order to confirm why an amplicon or a plurality of amplicons are generated, a DNA probe is often used to hybridize with an amplicon. DNA hybridization means the formation of double-stranded DNA by complementary base pairing. DNA hybridization for the positive recognition of a particular amplification product requires the use of a DNA probe of about 20 nucleotides in length. If the probe has a sequence complementary to the amplicon (target) DNA sequence, hybridization will occur under conditions of favorable temperature, pH and ion concentration. If hybridization occurs, the gene or DNA sequence of interest is present in the original sample. Optical detection is the most common method of detecting hybridization. The amplicon or probe is labeled to emit light via fluorescing or electrochemiluminescence. These methods have different ways of inducing the excited state of the luminescent moiety, but both are equally capable of covalent labeling of the nucleoside stock. In electrochemiluminescence (ECL), when excited by an electric current, light is generated by a luminophore molecule or a complex. When the fluorescent light is emitted, the excitation light is emitted to emit light. The fluorescent light source is used to detect the fluorescent light, and the light emitting source provides the excitation light having the wavelength absorbed by the fluorescent molecules and the detecting unit. The detection unit includes a photo sensor (such as a photomultiplier tube or a charge coupled device (CCD) array) to detect the transmitted signal' and a mechanism to prevent excitation light from being included in the photosensor output (such as a wavelength selective filter). Back to stress luminescence, the fluorescent molecules emit Stokes-shifted light, and the emitted light is collected by the detection unit. Stokes converts the frequency difference or wavelength difference between the emitted light and the absorbed excitation light. -15- 201209407 Use a light sensor to detect ECL emissions, and the light sensor is sensitive to the emission wavelength of the ECL type used. For example, a transition metal coordination complex emits light of a visible wavelength, and thus a conventional photodiode and a CCD are used as photosensors. The advantage of ECL is that if ambient light is excluded, the ECL emission can be the only light present in the detection system, thus increasing sensitivity. Microarrays allow hundreds of thousands of DNA hybridization experiments to be performed simultaneously. Microarrays are useful molecular diagnostic tools that can screen thousands of genetic diseases or detect the presence of several infectious pathogens in a single assay. The microarray consists of a number of different DNA probes that are fixed to the substrate and are spotted. The target DNA (amplicon) is first labeled with fluorescent or luminescent molecules (during or after nucleic acid amplification) and then applied to the probe array. The microarray is cultured for several hours or days at a controlled temperature in a humid environment where hybridization occurs between the probe and the amplicon. After incubation, the microarray must be washed with a series of buffers to remove unbound strands. Once cleaned, the surface of the microarray is dried with a stream of air (usually nitrogen). The stringency of hybridization and cleaning is important. Less stringent may result in highly non-specific binding. Excessive rigor may result in inability to combine properly resulting in reduced sensitivity. The hybridization is identified by detecting the light emission from the labeled amplicon that hybridizes with the complementary probe. Fluorescence from the microarray is detected using a microarray scanner, typically a computer-controlled, inverting scanning fluorescent conjugated focus microscope that typically uses a laser and photosensor that excites the fluorescent dye ( Such as a photomultiplier tube or CCD) to detect the emitted signal. The fluorescent molecules emit light converted by Stokes (as described above), and the light is collected by the detecting unit. -16- 201209407 The emitted fluorescence must be collected, separated from the unabsorbed excitation wavelength, and transmitted to the detector. A conjugate focal configuration is often used in microarray scanners to remove out-of-focus information by conjugated focal pinholes located in the image plane. This makes it possible to detect only the focused portion of the light. Light that is prevented above or below the focal plane of the object enters the detector, thereby increasing the signal-to-noise ratio. The detector converts the detected fluorescent photons into electrical energy, which is then converted into a digital signal. This digital signal is converted to a number representing the intensity of the fluorescence from a given pixel. Each feature of the array consists of one or more of these pixels. The final result of the scan is an image of the surface of the array. Since the exact sequence and position of each probe on the microarray is known, the hybrid target sequence can be identified and analyzed simultaneously. More information about fluorescent probes can be found below: http : //www. Premierbiosoft. Com/tech_notes/FRET_probe. Html and http : //www. Invitrogen. Com/site/us/en/home/References/Molecular-Probes-The-Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance-Energy-Transfer-FRET. Html In-situ Nursing Molecular Diagnostics Despite the advantages offered by molecular diagnostic tests, this type of test in clinical tests has grown less than expected and still accounts for only a small portion of the implementation of laboratory medicine. This is mainly due to the complexity and cost associated with nucleic acid testing compared to experiments based on non-amino acid methods. The broad applicability of molecular diagnostic tests to clinical treatment is associated with rapid and automated analysis that can significantly reduce costs, from initial (sample processing) to end (resulting in results), and instruments that do not require extensive human intervention. -17- 201209407 Development It is closely related. Local healthcare technologies for physicians' clinics, proximity or user-based hospitals, and homes offer the following benefits: • Quickly get results that quickly promote treatment and improve care quality. • Ability to test sputum by testing a very small number of samples. • Reduce clinical workload. • Reduce lab workload and increase productivity by reducing management effort. • Improve the cost per patient by reducing hospital stays, getting results from outpatient visits at the first visit, and simplifying the handling, storage, and delivery of samples • Promoting clinical management decisions such as vaccination control and antibiotic use. On-wafer laboratory (LOC)-based molecular diagnostics is based on methods for providing automated and accelerated molecular diagnostic analysis for molecular diagnostic systems for fluid technology. The shorter detection time is mainly due to the use of very small amounts of automation, built-in and low overhead cascades in the diagnostic method steps in the microfluidic device. The use of nanoliters and micro-upgrades also reduces reagent consumption and cost. On-wafer laboratory (LOC) devices are a common form of microfluidic devices. The on-wafer laboratory apparatus has an MST structure in the MST layer to integrate fluid processing into a single-support substrate (usually helium). The manufacture of VLSI (Ultra Large Integrated Circuit) technology in the semiconductor industry makes the unit cost of each LOC device very low. However, controlling the flow of fluid through the LOC device, adding reagents, controlling reaction conditions, etc. requires a large volume of external tubing and electronics. Connecting the LOC device to these external devices actually limits the use of the LOC device for molecular diagnostics to inspection processing. The cost of external equipment and its operational complexity -18-201209407 eliminates the use of LOC-based molecular diagnostics as a practical option for in-situ treatment. In view of the above, there is a need for a molecular diagnostic system based on LOC devices for in situ care. SUMMARY OF THE INVENTION Various aspects of the present invention will be described in the following paragraphs. GB S0 02. 1 This invention provides a microfluidic device comprising: a support substrate; a microsystem technology (MST) layer covering the support substrate, the MST layer defining an MST channel for fluid flow in the MST layer; a cover covering the MST layer, The cover defines a cover passage for fluid to flow within the cover, and a sump for retaining fluid; wherein the MST passage is in fluid communication with the cover passage. GBS002. 2 Preferably, the sump is in fluid communication with the MST channel. GBS002. Preferably, at least one of the sump is configured to retain liquid in the sump by securing the meniscus such that during use, the liquid is retained in the sump until fluid flow in the MST channel contacts and is removed Meniscus. GBS002. Preferably, the cover has a lower seal to close the cover passage and the lower seal has a plurality of openings to provide fluid communication between the cover passage and the MST passage. GBS0 02. Preferably, at least some of the openings are configured to hold the bend -19-201209407 level until the meniscus is removed from contact with the fluid stream. GBS002. Preferably, the microfluidic device also has a CMOS circuit between the support substrate and the MST layer, the CMOS circuit having a feedback sensor to sense the characteristics of the fluid flow through the MST channel. GBS002. Preferably, the MST layer has heater elements to heat the fluid stream. GBS002. Preferably, the lid has a seal formed over the outer layer and the upper seal has a through hole that is dimensioned to allow the air to flow in when the tank empties the liquid (but still retains liquid in the sump). GBS002. Preferably, the microfluidic device also has an actuator valve having an inlet and an outlet configured to draw fluid from the inlet to the outlet by capillary action along the flow direction: and, the actuator The valve also has a movable member intermediate the inlet and the outlet, the movable member being configured for movement between the static position and the actuated position (moving from the static position); and the orifice is configured to lend The flow of liquid is stopped by the fixed meniscus at the orifice; wherein, in use, the movable member is displaced to the actuating position to create a pressure pulse to break the meniscus and force the liquid through the orifice. GBS002. Preferably, the movable member at least partially defines the aperture 〇 GBS002. Il Preferably, the actuator valve has an actuator for moving the movable member, the actuator having a resistive element to initiate differential thermal expansion to move the movable member. -20- 201209407 GBS 00 2. Preferably, the actuator valve reciprocates the movable member between the rest and displacement positions until the outlet immediately downstream of the orifice is sufficiently filled for capillary action to reestablish the flow of liquid in the direction of flow. GBS002. Preferably, the CMOS circuit operatively controls the actuator valve. GBS002. Preferably, the microfluidic device also has a nucleic acid amplification portion for amplifying a target nucleic acid sequence in the biological sample. GBS002. Preferably, the microfluidic device also has a dialysis section for removing some cells from the biological sample depending on the size of the cells. GBS002. Preferably, the microfluidic device also has a probe array for hybridization to the target acid sequence to form probe-target hybridization. GBS002. Preferably, the CMOS circuit has an array of photodiodes for detecting probe-target hybridization. GBS 002. Preferably, the storage tank stores an analytical reagent selected from the group consisting of: an anticoagulant; a lysis reagent; dNTP, a buffer and a primer; a polymerase; and, water. GBS002. Preferably, the actuator valve is located at the downstream end of the PCR portion such that upon predetermined thermal cycling by the heater element, the CMOS circuit opens the actuator valve to cause flow into the probe array. GBS002. Preferably, the CMOS circuit has a memory for storing a series of reagents in the loading reservoir and a probe type at its location within the probe array. -21 - 201209407 The surface micromachined layer provides a small feature of high density. The cover provides the larger features required. The surface micromachined layer and cover together provide the necessary plural features. GVA000. 1 This invention provides a microfluidic device comprising: a reservoir for containing a reagent; an outlet valve in fluid communication with the main reservoir, the outlet valve having a meniscus holder and an actuator, a meniscus holder Configured to form a meniscus that holds the reagent in the sump, the actuator is configured to receive an activation signal and actuate in response to the activation signal such that the meniscus is released from the meniscus holder and the reagent is allowed to flow out Storage tank. GVA006. Preferably, the outlet valve has a moveable member for contacting the reagent, and the actuator is a thermal expansion actuator for displacing the moveable member to generate a pulse in the reagent to move the meniscus. GVA006. Preferably, the movable member is configured for movement between the static position and the actuated position (moving from the static position), and the meniscus holder is configured to secure the meniscus to the hole Stop the mouth of the liquid flow. GVA006. 4 Preferably, the movable member at least partially defines the aperture. GVA006. Preferably, the thermal actuator has a resistive element to initiate differential thermal expansion to move the movable member. GVA006. Preferably, during use, the activation signal is a series of electrical pulses and is responsive to an actuator valve that moves the movable member back and forth between the rest and displacement positions. GVA006. Preferably, the movable member is configured to move from the rest position -22-201209407 to the actuated position such that displacement from the movable member to the actuating position causes the meniscus to extend and downstream of the outlet valve The surface contacts, so capillary action drives the reagent out of the sump. GVA006. Preferably, the surface downstream of the outlet valve is a capillary action initiation feature for reconstituting the meniscus and moving the meniscus away from the outlet valve. GVA006. Preferably, the thermal expansion actuator is configured to initiate differential thermal expansion to move the movable member. GVA006. Preferably, the actuator has a valve heater for heating the meniscus to release the meniscus by the meniscus holder. GVA00 6.  Preferably, the meniscus holder is configured to stop the flow of reagent out of the reservoir by fixing the meniscus to the orifice and the valve extends around the periphery of the orifice. GVA006. Preferably, the valve heater is configured to cause the reagent at the meniscus to boil and release the meniscus from the meniscus holder. GVA00 6. Preferably, the microfluidic device of claim 1 further comprises a liquid sensor to sense the presence or absence of liquid adjacent the outlet valve. GVA006. Preferably, the microfluidic device of claim 13 further comprises a support substrate and a CMOS circuit on the support substrate to operatively control the outlet valve" GVA006. Preferably, the sensor provides feedback to the CMOS circuit for operative control of the outlet valve. The easy to use, mass-produced and inexpensive microfluidic device receives liquid samples for processing and analysis. If necessary, add -23-201209407 reagent to the liquid with some active valves to utilize the reagents stored in the reagent reservoir of the device. The reagent sump is integrated into the unit to provide reagent storage for itself, thus providing a low system component volume and a simple process for an inexpensive analytical system. GVA008. 1 The present invention is directed to a microfluidic device for testing a fluid, the microfluidic device comprising: an inlet for receiving a fluid; a reservoir containing a reagent: a flow path extending from the inlet; and a fluid between the flow path and the storage tank a plurality of outlet valves connected, each outlet valve having an actuator for opening the outlet valve in response to the activation signal; wherein, in use, selectively opening the valves such that the reagent flows into the flow path to merge with the fluid from the inlet The resulting turbulent flow with the reagent ratio is determined by the number of open outlet valves. GVA008. 2 Preferably, the microfluidic device also has a plurality of channels extending between the sump and the flow path, and the outlet valve is disposed in each channel, and the channel is configured to attract the reagent to the flow path from the sump by capillary action, wherein The outlet valves each have a meniscus holder, and at the meniscus holder, the capillary flow toward the flow path drives the reagent flow to be stopped and forms a meniscus ^ GVA008. Preferably, there is more than one outlet valve in each channel. GVA008. Preferably, the actuator is a heater to release the meniscus from the meniscus holder in response to the activation signal. GVA008. 5 Preferably, each outlet valve has a movable member for contacting the reagent, and the actuator is a thermal expansion actuator for displacing the movable member 24 to 201209407 to generate a pulse in the reagent to move the movable member In order to restore the flow of reagents towards the flow path. GVA008. Preferably, the movable member is configured for movement between the static position and the actuated position (moving from the static position), and the meniscus holder is configured to secure the meniscus to the hole The orifice of the reagent flow is stopped and the thermal actuator is configured to move the movable member back and forth between the static position and the actuated position to force the reagent through the orifice. GVA008. Preferably, the aperture is defined in the movable member. GVA0 0 8. Preferably, the meniscus holder is configured to stop the orifice of the reagent stream by fixing the meniscus to the orifice, and the thermal actuator is configured to cause a portion of the reagent at the orifice to boil. The meniscus is released from the meniscus holder. GVA0 0 8. Preferably, each outlet valve has a movable member for contacting the reagent, and the actuator is a thermal expansion actuator for displacing the movable member to move the meniscus to be downstream of the meniscus holder The surface is in contact whereby the meniscus holder releases the meniscus and resumes the capillary action drive flow toward the flow path. GVA008. Preferably, the surface downstream of the meniscus holder is a capillary action initiation feature configured to direct the meniscus to the channel wall. GVA00 8. Preferably, the microfluidic device of claim 1 further comprises a support substrate for the sump, the outlet valve, the inlet and the flow path, and a CMO S circuit for operatively controlling the outlet valve. GVA008. Preferably, the microfluidic device of claim 11 further comprises at least one liquid responsive sensor to provide feedback to the -25-201209407 CMOS circuit for operative control of the respective valves. GVA008. Preferably, at least one of the sensors is a liquid sensor for sensing the presence or absence of liquid at a location in one of the channels. GVA008. Preferably, the microfluidic device of claim 1 further comprises a plurality of storage tanks each containing different reagents and outlet valves each having a plurality of storage tanks and individual flow paths, wherein the combined flow is The ratio of any different reagents is related to the number of separate valves that are open in the corresponding valve configuration. GVA008. Preferably, the CMOS circuit selects the number of outlet valves that are open for each sump based on the type of reagent and the ratio desired for the turbulent flow. GVA008. 16. Preferably, the microfluidic device of claim 15 further comprises a polymerase chain reaction (PCR) portion for amplifying a target nucleic acid sequence in a fluid" GVA008. Preferably, the different reagents in the sump comprise one or more of the following: a polymerase; a restriction enzyme; a dNTP and a primer in the buffer; a lysis reagent; and an anticoagulant. GVA008. Preferably, the microfluidic device of claim 15 further comprises a hybridization portion having a probe array for hybridizing to a target nucleic acid sequence in the fluid, wherein the CMOS circuit has a detection -26- 201209407 Sensor array for hybridization of any probe within the probe array. The easy to use, mass-produced and inexpensive microfluidic device receives liquid samples for processing and analysis. Reagents are added to the liquid by some active valves to utilize the reagents stored in the reagent reservoir of the device, as needed. During the operation of the apparatus, the necessary mixing ratio of the reagent to the other liquid components is determined by the number of valves that are opened, so that it is possible to reliably and reliably achieve the difficult control target of the microfluidic contents. [Embodiment] This general specification indicates a main component of a molecular diagnostic system including a specific example of the present invention. The details of the system structure and operation are discussed in the following description. 0 Referring to Figures 1, 2, 3, 104 and 105, the system has the following most important components: Test modules 10 and 11 are of the size of a conventional USB flash drive and can be manufactured inexpensively. . The test modules 10 and 11 each contain a microfluidic device, which is generally in the form of a laboratory on-wafer (LOC) device 30 and preloaded with reagents, and generally has more than 1000 probes for molecular diagnostic analysis (see Figure 1). And 104). The test module 10 illustrated in Figure 1 uses a fluorescence-based detection technique to identify target molecules, while the test module 11 of Figure 104 is based on electrochemiluminescence detection techniques. The LOC device 30 has an integrated photosensor 44 (described in detail below) for fluorescence or electrochemiluminescence detection. The test modules 10 and 11 all use the standard for power, data and control -27-201209407 micro-USB connector 14, each has a printed circuit board (PCB) 57' and a capacitor 32 and an inductor 15 both having external power supply . The test modules 10 and 11 are both for single use for mass production and are distributed in sterile packaging for use. The outer casing 13 has a large container 24 for receiving biological samples and a removable sterile sealing strip 2 2 It is preferred to have a low viscosity adhesive to cover the large container prior to use. The membrane seal 408 having the membrane guard 410 forms part of the outer casing 13 to reduce the moisture resistance in the test module, while the pressure drop is provided by the small pressure fluctuation. The membrane guard 410 protects the membrane seal 40 8 from damage. The test module reader 1 2 is powered to the test module 1 〇 or 1 1 via the micro-USB 埠1. The test module reader 12 can be in many different forms, and its selection is described below. The version of the reader 12 shown in Figures 1, 3 and 104 is a specific example of a smart phone. A block diagram of the reader 12 is shown in FIG. The processor 42 executes application software from the program storage 43. The processor 42 is also interfaced with a display screen 18 and a user interface (UI) touch screen 17 and button 19, a cellular radio 2, a wireless network connection 23, and a satellite navigation system 25. Honeycomb radio 2 1 and wireless internet connection 2 3 are used for communication. The satellite navigation system 25 is used to update the epidemiological database with location data. Alternatively, the position data can be input by the touch screen 17 or the button 19. The data store 27 holds genetic and diagnostic information ' ^ M is m ' information about the patient, the analysis used to identify each probe and the probe data and its array position. The data store 27 and the program store 43 can be shared by a common memory device. The application software installed in the test module reader 12 provides results analysis and additional test and diagnostic information. -28- 201209407 To perform a diagnostic test, the test module 1〇 (or test module 11) is inserted into the micro-USB port 16 on the test module reader 12. The sterile sealing strip 22 is turned up and the biological sample (in liquid form) is loaded into the large sample container 24. The start button 20 is pressed to initiate the test by applying the software. The sample is flowed into the LOC device 30 and analyzed for extraction, culture, amplification, and hybridization of the pre-synthesized hybrid-reactive oligonucleotide probe to the sample nucleic acid (target). In the case of the test module 1 ( (which uses fluorescence-based detection), the probe is fluorescently labeled and the LED 26 placed in the housing 13 provides the necessary excitation light to induce fluorescence from the hybridized probe. Launch (see Figures 1 and 2). In test module 11 (which uses electrochemiluminescence (ECL) based detection), LOC device 30 carries an ECL probe (as described above) and LED 26 is not necessary to produce a photoluminescent firefly. Conversely, electrodes 8 60 and 8 70 provide an excitation current (see Figure 105). A light sensor 44 integrated with a CMOS circuit on each LOC device is used to detect the emission (fluorescence or photoluminescence). The detected signal is amplified and converted to a digital output analyzed by the test module reader 12. The reader then displays the results. The test module 10 or 11 can be removed from the test module reader 12 by locally storing the data and/or uploading the data to a web server containing the patient record and processing them appropriately. Figure 1 '3 and 1 〇 4 show the test module reader 1 2 configured as a mobile phone/smart phone 2 8 . In other forms, the test module reader is a laptop/notebook 101, a dedicated reader 103, an e-book reader 107, a tablet 109, or a desktop computer used in a hospital, private clinic, or laboratory. 105 (see Figure 106). The reader can interface with some additional -29-201209407 applications, such as patient records, accounting, and online actor environments. It can also be used with some local or remote peripheral printers and patient smart cards. Referring to FIG. 107, the data generated by the reader 12 and the network 125 can be used to update the epidemiological database maintained by the epidemiological data system and the genetic database retained by the genetic data system. The electronic health record maintained by the host system for the electronic health record, and the electronic system for the electronic medical record (PHR) 123 maintained by the host system for the electronic record (EMR) 121 recording. On the contrary, through the network 1 25 and the reader 12, the genetic data held by the host system of the epidemiological data held by the host system of the data 1 1 1 is used for recording (EHR) 15 The medical record maintained by the host system and the personal medical record maintained by the electronic medical record (EMR) 121 and the personal health record maintained by the personal health record (PHR) 123 can be used to update the test module 10 Digital memory. Referring again to Figures 1, 2, 104 and 105, battery power is used in the mobile power reader 12. Test and diagnostic information contained in the mobile phone reader. Data is uploaded via some network or contact interface to enable connection to a peripheral or device, computer or online mini-USB port 16 to connect a computer or main power supply pool. The library and the multi-connection, such as the host system of the test module 1 1 (EHR) l 15 medical record, and some individuals for epidemics, for genetic electronic In the health configuration record, in the electronic configuration of the host system LOC 30, all preloads can also be loaded or connected. Recharger -30- 201209407 Figure 78 shows a specific example of the test module 10 for testing that only needs to know the presence or absence of a specific target, such as whether the test individual is exposed to, for example, a sputum influenza virus. Η1Ν1 infection. It is only suitable as a built-in module 47 for USB power/indicator only. No other readers or application software is required. The indicator 45 on the module 47 of the USB power/indicator only shows a positive or negative result. This configuration is ideal for large screenings. Additional items supplied to the system may include test tubes containing reagents for pre-treating a particular sample, and a tongue depressor and lancet containing sample collection. For convenience, the test module of the specific example shown in Fig. 78 includes a spring-loaded retractable lancet 3 90 and a lancet release button 392. Satellite phones can be used in remote areas. Test Module Electronics Figure 2 and Figure 05 are block diagrams of the electronic components in test modules 10 and 11. The CMOS circuit integrated in LOC device 30 has USB device driver 36, controller 34, USB compatible LED driver 29, clock 3 3, power conditioner 3 1 , RAM 3 8 and program and data flash memory 40. These are provided for test module 10 or 1 1 integral and associated driver 3 including light sensor 44, temperature sensor 170, liquid sensor 174, and various heaters 152, 154, 182, 234 7 and 3 9 and the control and memory of registers 3 5 and 41. Only LED 26 (in the case of test module 10), external power supply capacitor 32 and micro-USB connector 14 are external to LOC device 30. The LOC device 30 includes an adhesive pad for attachment to these external components. RAM 3 8 and program and data flash memory 40 have application software and diagnostic and experimental information (flash/guaranteed storage, such as via encryption) for over 200009407 over 1 000 probes. In the case of the test module 11 configured for E C L detection, there is no LED 26 (see Figs. 104 and 105). The data is encrypted by the LOC device 30 for secure storage and secure communication with external devices. The LOC device 30 is loaded with electrochemiluminescent probes and hybridization chambers each having an ECL excitation electrode pair 860 and 870. Many types of test modules 10' are manufactured in a number of test formats that are ready for ready-to-use users. The test format differs in the reagents and probes of the on board assay. Some examples of infectious diseases that are quickly identified by this system include: Influenza and influenza viruses A, B, C, infectious salmon anemia virus, tocovirus, pneumonia-respiratory fusion virus (RSV), adenovirus, interstitial pneumonia, pneumococci, Staphylococcus aureus • Tuberculosis - Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium africana, Mycobacterium vaccae and Mycobacterium vaccae • Plasmodium falciparum, Toxoplasma gondii and other parasitic protozoa • Typhoid-cold typhoid • Ebola virus • Human immunodeficiency virus (HIV) • Dengue fever – Yellow fever virus • Hepatitis (A to E) • Iatrogenic infections – such as Clostridium difficile, vancomycin-resistant enterococci and drug-resistant golden yellow Staphylococcus aureus-32- 201209407 • Herpes simplex virus (HSV) • Giant cell virus (CMV) • Epstein-Barr virus (EBV) • Encephalitis - Japanese encephalitis virus, Zhangdipula virus • Pertussis-B. pertussis • Measles-paramyxovirus • Meningitis – Streptococcus pneumoniae and meningococcus • Anthracnose – Some examples of hereditary diseases identified by this system include: • Cystic fibrosis • Hemophilia • Sickle cell anemia • Black Mongolian idiots • Hemochromatosis • Cerebral arterial disease • Crohn's disease • Polycystic kidney disease • Congenital heart disease • A few options for the disease identified by the diagnostic system : • Ovarian cancer • Colon cancer • Multiple endocrine neoplasms • Retinoblastoma - 33 - 201209407 • Turcot syndrome The above list is not exhaustive and the diagnostic system can be configured to use nucleic acids and protein bodies Analyze to detect many different diseases and symptoms. Detailed Structure of System Components LOC Device The LOC device 30 is the center of the diagnostic system. It uses a microfluidic platform to rapidly perform the four main steps of nucleic acid-based molecular diagnostic analysis, ie sample preparation, nucleic acid extraction, nucleic acid amplification and detection. The LOC device also has alternative uses and will be described in more detail below. As discussed above, test modules 10 and 11 can take many different configurations to detect different targets. As such, the LOC device 30 has a number of different embodiments for targeting the target of interest. One form of LOC device 30 is a LOC device 301 for fluorescence detection of a target nucleic acid sequence in a pathogen of a whole blood sample. For the purpose of the description, the structure and operation of the LOC device 301 are described in detail with reference to Figs. 4 to 26 and 27 to 57. 4 is a schematic diagram showing the structure of the LOC device 301. For convenience, the processing stages shown in FIG. 4 are represented by the component symbols corresponding to the functional portions of the LO C device 301 that implements the processing stage. The processing stages associated with the major steps in each of the nucleic acid-based molecular diagnostic assays also represent: sample input and preparation 288, extraction 290, culture 291, amplification 292, and detection 294. The various reservoirs, chambers, valves, and other components of the LOC device 301 will be described more closely below.

圖5爲LOC裝置301之透視圖。其使用高容積CMOS -34- 201209407 和MST(微系統技術)製造技術而製造。LOC裝置301之層 狀構造以圖1 2之槪要部分剖面圖(非按比例)闡述》LOC 裝置301具有支持COMS + MST晶片48之矽基板84,包含 CMOS電路86和MST層87,以蓋46覆蓋MST層87。爲 了本專利說明書目的,術語“MST層”關於以不同試劑處理 樣本之結構和層之集合。因此,這些結構和組件經組態以 定義具有特性尺寸的流動路徑,其支持具處理期間之物理 性質與樣本之物理性質相似之毛細作用驅動之液體流。據 此,MST層和組件通常使用面型微加工技術和/或體型微 加工技術製造。然而,其他製造方法亦可製造針對毛細作 用驅動之液體流及加工非常小容積而尺寸化的結構和組件 。描述於本說明書之特定實施例顯示MST層爲支持在 CMOS電路86上之結構和主動組件,但排除蓋46之特徵 。然而,熟此技藝者將理解MST層不需要下方的CMOS 或甚至不需要上覆的蓋來使其處理該樣本。 顯示於下列圖式的LOC裝置之整體尺寸爲1760微米 χ58 24微米。當然,爲了不同應用而製造的LOC裝置可具 有不同的尺寸。 圖6顯示與蓋特徵疊置之MST層87的特徵。顯示於 圖6中之插圖AA至AD、AG和AH個別放大於圖13、14 、35、56、55和63中,且對LOC裝置301內之各個結構 的充分了解詳細描述於下。當圖11獨立顯示CM0S + MST 裝置48結構時,圖7至10獨立顯示蓋46的特徵。 -35- 201209407 層狀結構 圖12和22爲圖形性顯示CMOS + MST裝置48、蓋46 以及彼等之間的流體交互作用之層狀構造之略圖。圖式因 闡述目的而未依比例繪製。圖12爲通過樣本入口 68之槪 要剖面圖且圖22爲通過貯槽54之槪要剖面圖。如最佳顯 示於圖12,CMOS+ MST裝置48具有矽基板84,其支持著 操作上述MST層87內之主動元件之CMOS電路86。鈍化 層88密封且保護CMOS層86免於流體流過MST層87。 流體分別流過於蓋層46及MST通道層100中之蓋通 道94及M ST通道90兩者(例如見圖7及16)。當在較小 的MST通道90實施生化處理時,細胞輸送發生在於蓋46 中製造之較大的通道94中。細胞輸送通道係按尺寸製作 以便能輸送樣本中之細胞至MST通道90中之預定位置。 輸送尺寸大於20微米的細胞(例如,某些白血球)需要通道 尺寸大於20微米,且因此橫越流的截面積大於400平方 微米。特別在不需要輸送細胞的LOC中的位置之MST通 道可以顯著地較小。 將理解的是蓋通道94和MST通道90爲普通參考且 特別的M S Τ通道9 0亦可因其特定的功能而爲(例如)經加 熱的微通道或透析MST通道。MST通道90藉由蝕刻通過 在鈍化層88上沉積且以光阻劑圖案化之MST通道層100 而形成。MST通道90由頂部層66環繞’頂部層形成 CMOS + MST裝置48之頂部(相對於顯示於圖中之方位)。 儘管有時作爲獨立的層顯示,蓋通道層80和貯槽層 -36- 201209407 78係由單一材料片所形成。當然,材料片亦可爲非單一性 。自兩邊蝕刻材料片以形成蓋通道層80與貯槽層78,在 蓋通道層80中蝕刻蓋通道94,在貯槽層78中蝕刻貯槽 54、56、58、60和02。替代性地,貯槽和蓋通道由微成 形法形成。蝕刻和微成形技術兩者皆用以製造具有橫越流 體的至大爲2〇,〇〇〇平方微米且至小爲8平方微米之的通 道。 於LOC裝置中不同位置有針對橫越流體之通道的截 面積之適當的選擇。其中大量的樣本或具有大組分的樣本 係容納於通道中,至多20,000平方微米之截面積(例如, 在100微米厚之層中的200微米寬的通道)是適合的。其 中少量的液體或無大細胞存在的混合物係容納於通道中, 較佳者係橫越流體之非常小的截面積。 下密封64環繞蓋通道94且上密封層82環繞貯槽54 、56、58、60 和I 62 » 五個貯槽54、56、58、60和62係預載特定分析之試 劑。於此描述的實施例中,貯槽預載有下列試劑,但可簡 易的以其他試劑取代: •貯槽54 :抗凝血劑,其選擇性包括紅血球溶胞緩 衝液 •貯槽5 6 :溶胞試劑 •貯槽58:限制性酵素、接合酶和聯結子(用於聯結 子引發 PCR(見圖 77,節錄自 T. . Staehan et al.,Human Molecular Genetics 2,Garland Science, NY and London, -37- 201209407 1999)) •貯槽60:擴增混合物(去氧核糖核苷三磷酸(dNTP) 、引子、緩衝液),以及 •貯槽62 : DNA聚合酶。 蓋46和CMOS + MST層48經由在下密封64和頂部層 66中之相應的開口而呈流體連通。依據流體是否自MST 通道90流至蓋通道94或反向而代表開口爲上管道96及 下管道92。 LOC裝置操作 LOC裝置301的操作係參考在血液樣本中之分析病原 體(pathogenic)DNA而逐步描述於下。當然,其他生物或 非生物流體的種類亦使用適當的套組或試劑、試驗規程、 LOC變體和檢測系統之組合來分析。參考圖4,分析生物 樣本涉及五個主要步驟,包含:樣本輸入和製備288、核 酸萃取290、核酸培養291、核酸擴增292和檢測及分析 294 ° 樣本輸入和製備步驟2 8 8係混合血液與抗凝血劑1 1 6 且接著利用病原體透析部70使病原體與白血球及紅血球 分開。如最佳顯示於圖7和1 2中者,血液樣本經由樣本 入口 68進入裝置。毛細作用吸引血液樣本沿著蓋通道94 而到達貯槽5 4。當樣本血液流開啓其表面張力閥1 1 8時, 抗凝血劑自貯槽54釋出(見圖15和22)。抗凝血劑防止形 成會阻塞流動的血凝塊。 -38- 201209407 如最佳顯示於圖22中者,抗凝血劑116藉由毛細作 用自貯槽54被抽出且經由下管道92進入MST通道90 ^ 下管道92具有毛細作用起始特徵(CIF) 102以形成彎液面 幾何,使其不固定在下管道92的邊緣。當抗凝血劑116 自貯槽54被抽出時,在上密封82中之通氣孔122允許空 氣取代抗凝血劑116。 顯示於圖22之MST通道90爲表面張力閥118的一 部分。抗凝血劑116塡充表面張力閥118且固定至上管道 96之彎液面120於彎液面固定器98。在使用前,彎液面 120保持固定於上管道96,使得抗凝血劑不會流入蓋通道 94。當血液流經蓋通道94至上管道96時,移除彎液面 1 20且將抗凝血劑吸入流體中。 圖15至21顯示插圖AE,其爲顯示於圖13之插圖 AA之一部分。如顯示於圖15、16和17中者,表面張力 閥1 18具有三個分開的MST通道90延伸於個別的下管道 92及上管道96之間。在表面張力閥中之這些MST通道 90可變化以改變進入樣本混合物之試劑的流速。當樣本混 合物以及試劑藉由擴散而混合時,離開貯槽之流速決定在 樣本流中之試劑的濃度。因此,各貯槽的表面張力閥係組 態以符合所需之試劑濃度。 血液通入病原體透析部70(見圖4和15),其中使用根 據預定閥値制定大小之孔口 1 64的陣列自樣本濃縮標靶細 胞。小於閥値的細胞通過孔口,而大細胞不能通過孔口。 在標靶細胞持續作爲分析的一部分之同時,非所欲之細胞 -39- 201209407 重新被導入廢料單元76。非所欲之細胞爲經由孔口 164陣 列阻擋之大細胞或爲通過孔口之小細胞。 在描述於此之病原體透析部70中,來自全血樣本之 病原體被濃縮以供微生物DNA分析。孔口之陣列藉由流 體性連通蓋通道94中之輸入流至標靶通道74的多個3微 米直徑的孔口 1 64所形成。3微米直徑的孔口 1 64和用於 標靶通道74之透析汲取孔168係由一系列的透析MST通 道2 04連接(最佳顯示於圖1 5和2 1)。病原體小到足以經 由透析MST通道2 04通過3微米直徑孔口 164且塡充標 靶通道74。諸如紅血球和白血球之大於3微米的細胞留在 蓋46之廢料通道72中,蓋通向廢料儲器76(見圖7)。 其他孔口形狀、大小和長寬比可用以分離特定病原體 或其他標靶細胞,諸如用於人DNA分析的白血球。後面 提供透析部和透析變體之更詳細的詳情。 再次參照圖6和7,流體被吸入通過標靶通道74而到 達溶胞試劑貯槽56中之表面張力閥128。表面張力閥128 具有七個MST通道90延伸於溶胞試劑貯槽56和標靶通 道74之間。當彎液面由樣本流脫除時,所有的七個MST 通道90之流速將大於抗凝血劑貯槽54之流速,其中表面 張力閥118具有三個MST通道90 (假設流體的物理特性爲 大致相等的)。因此在樣本混合物中之溶胞試劑的比例係 大於抗凝血劑之比例。 溶胞試劑和標靶細胞在化學溶胞部1 3 0內之標靶通道 74中藉由擴散而混合。沸騰引動閥1 26使流動停止直到擴 -40- 201209407 散和溶胞進行了足夠的時間,自標靶細胞釋放遺傳物質( 見圖6和7)。參考圖3 1和3 2,於下詳細描述沸騰引動閥 之結構和操作。其他主動閥類型(與被動閥相反,諸如表 面張力閥118)亦已由申請人開發,其可用於此以替代沸騰 引動閥。這些替代閥設計亦描述於下。 當開啓沸騰引動閥126時,經溶胞之細胞流入混合部 131以預擴增限制酶剪切(restriction digestion)以及聯結子 接合(linker ligation)。 參考圖13,當流體移除在混合部131起始處之表面張 力閥1 32上的彎液面時,限制酵素、聯結子和接合酶自貯 槽58釋放。爲了擴散混合,混合物流過混合部131的長 度。在混合部131的末端爲通到培養部114之培養器入口 通道133的下管道134(見圖13)。培養器入口通道133將 混合物饋入經加熱之微通道210的蜿蜒結構,其提供在限 制酶剪切以及聯結子接合期間用來保留樣本之培養室(見 圖13及1 4)。 圖23、24、25、26、27、28及29顯示在圖6之插圖 AB內的LOC裝置301之層。各圖顯示連續疊加(addition) 形成CM0S+MST層48和蓋46結構之層。插圖AB顯示培 養部114的末端和擴增部112的起始。如最佳顯示於圖14 及23中者,流體塡充培養部114之微通道210直到抵達 沸騰引動閥1 06,其中流體在擴散發生時停止。如上所討 論,沸騰引動閥106上游之微通道210成爲含有樣本、限 制酵素、接合酶和聯結子的培養室。加熱器154接著啓動 -41 - 201209407 且維持於穩定溫度以使限制酶剪切和聯結子接合發生一段 特定時間。 熟此技藝者將理解此培養步驟291(見圖4)爲任意的且 僅爲一些核酸擴增分析類型所需要。再者,在一些例子中 ,可能需要在培養期間結束時具有加熱步驟以將溫度增高 到超過培養溫度。在進入擴增部1 1 2前,溫度增高使限制 酵素和接合酶失活。當使用等溫合酸擴增時,限制酵素和 接合酶的失活具有特定影響。 培養之後’沸騰引動閥106啓動(打開)且流體再進入 擴增部112。參考圖31及32,混合物塡充經加入微通道 1 58之蜿蜒結構直到到達沸騰引動閥1 〇8,微通道形成一 或更多擴增室。如最佳顯示於圖30之剖面示意圖,擴增 混合物(dNTP、引子、緩衝液)自貯槽60釋放且聚合酶接 著自貯槽62釋放而進入連接培養部和擴增部(分別爲1 1 4 及112)之中間MST通道212。 圖35至51顯示在圖6之插圖AC中的LOC裝置301 之層。各圖顯示連續疊加形成CMOS + MST裝置48和蓋46 結構之層。插圖AC顯示擴增部112的末端和雜交及檢測 部5 2的起始。經培養的樣本、擴增混合物和聚合酶流經 微通道1 5 8而至沸騰引動閥1 08。在擴散混合經足夠時間 後,啓動在微通道1 5 8中之加熱器1 54以供熱循環或等溫 擴增。擴增混合物經歷預定數目的熱循環或預設之擴增時 間以擴增充分的標靶DNA。在核酸擴增程序之後’沸騰引 動閥1 08開啓且流體再進入雜交及檢測部52。沸騰引動閥 -42- 201209407 之操作更詳細描述於下。 如顯示於圖52,雜交及檢測部52具有雜交室之陣列 110。圖52、53、54及56詳細顯示雜交室陣列11〇和個 別雜交室180。雜交室180的入口爲擴散屏障175,其在 雜交期間防止標靶核酸、探針股和雜交探針於雜交室180 之間擴散,以防止錯誤的雜交檢測結果。擴散屏障175之 流動路徑長度足夠長以在探針和核酸雜交以及檢測信號的 時間內,防止標靶序列和探針擴散出一個室且污染另一室 ,因此避免錯誤的結果。 另一防止錯誤讀取的機制是在一些雜交室中具有相同 的探針。CMOS電路86自對應於包含相同的探針之雜交 室180之光二極體184導出單一結果。導出的單一結果中 之異常的結果可被忽略或給予不同權重。 用於雜交所需的熱能係由CMOS控制的加熱器182所 提供(更詳細描述於下)。在啓動加熱器後,雜交發生於互 補標靶探針序列之間。CM〇S電路86中之LED驅動器29 傳送訊息使位於試驗模組1 〇中之LED 26發光。這些探針 僅於當雜交發生時發螢光,從而免除移除未結合的股時經 常需要之清洗和乾燥步驟。雜交強制FRET探針186之莖 與環結構打開,其允許螢光團發射螢光能量以回應LED 激發光,詳述於下。螢光由位於各雜交室180下之CMOS 電路86中之光二極體184所檢測(見以下之雜交室的敘述) 。用於所有雜交室之光二極體184以及相關的電子裝置共 同形成光感測器44(見圖70)。在其他實施例,光感測器可 -43- 201209407 爲電荷耦合裝置陣列(CCD陣列)。自光二極體1 84所檢測 之信號被放大且轉換成可以由試驗模組閱讀器12分析的 數位輸出。檢測方法進一步的細節係描述於下。 LOC裝置之其他詳細說明 模組化設計 LOC裝置301具有許多功能部,包括試劑貯槽54、 56' 58、60及62、透析部70、溶胞部130、培養部114 及擴增部1 1 2、閥類型、增濕器及濕度感測器》於其他具 體例之LOC裝置中,可省略此等功能部,然可附加另外 的功能部或與上述裝置之用途不同的功能部。 例如,可使用培養部1 1 4作爲串接重複序列擴增分析 系統之第一擴增部112,且使用溶胞試劑貯槽56來加入引 子、dNTP及緩衝液的第一擴增混合,並且使用試劑貯槽 58來添加反轉錄酶及/或聚合酶。若樣本需進行化學溶胞 ,亦可添加化學溶胞試劑(連同擴增混合)至貯槽56,或替 代性地,可藉由加熱樣本一段預定的時間以在培養部中發 生熱溶胞。在一些具體例中,若需要化學溶胞並使化學溶 胞試劑與此混合分離,可在用於引子、dNTP及緩衝液的 混合之貯槽58之毗連上游合倂另外的貯槽。 於一些情況中,欲省略諸如培養步驟291之步驟。於 此情況中,可特別地製造LOC裝置以免去試劑貯槽5 8及 培養部1 1 4或是貯槽可僅載有試劑,或存在主動閥時,其 不被啓動來分配試劑至樣本流中,及培養部單純成爲將樣 -44- 201209407 本自溶胞部130傳送至擴增部112之通道。加熱器係獨立 地操作,因此當反應仰賴熱時,諸如熱溶胞,令加熱器不 於此步驟期間啓動,確保熱溶胞不會發生在不需熱溶胞之 LOC裝置中。透析部70可位於微流體裝置內之流體系統 的開端,如圖4中所示者,或可位於微流體裝置內之任何 其他位置。於一些情況中,例如,於擴增階段292之後, 雜交及檢測步驟294之前,進行透析以移除細胞碎片係有 利者。替代性地,可於LOC裝置上任何位置合倂二或多 個透析部。同樣地,可合倂另外的擴增部112以致能在雜 交室陣列1 1 0中利用特定核酸探針進行檢測之前之多標靶 的同時或連續擴增。爲分析例如其中不需要進行透析之全 血液的樣本,簡單地於LOC設計之樣本輸入及製備部288 省略透析部70。於一些情況中,即便分析不需要進行透析 ,不必要於LOC裝置省略透析部70 »若透析部的存在不 會造成幾何性阻礙,仍可使用於樣本輸入及製備部具有透 析部70之LOC而不會損失所需之功能。 此外,檢測部294可包括蛋白質體室陣列,其係與雜 交室陣列相同但載有設計成與存在於非擴增之樣本中之蛋 白質共軛或雜交之探針,而不是設計用來與標靶核酸序列 雜交之核酸探針。 將了解的是,爲用於此診斷系統而製造之LOC裝置 係不同於根據特別LOC應用而選擇的功能部之組合。絕 大部分之功能部對於許多LOC裝置而言爲普通,而針對 新應用之額外的LOC裝置之設計,有關於自現存LOC裝 -45- 201209407 置中所使用之大幅功能部選項中組構適當組合之功能部。 本說明中僅顯示少數LOC裝置’並顯示一些其他者 以闡述爲此系統所製造之LOC裝置的設計彈性。熟此技 藝者將可輕易地明白本文所示之LOC裝置並非窮舉’且 許多另外的LOC設計係關於組構適當功能部之組合。 樣本類型 LOC變體可接受及分析各種呈液體形式之樣本類型之 核酸或蛋白質內容,液體形式包括,但不限於,血液及血 液產物、唾液、腦脊髓液、尿液、精液、羊膜液、臍帶血 、母乳、汗液、肋膜積液、淚液、心囊液、腹腔液、環境 水樣本及飲料樣本。亦可使用LOC裝置分析得自巨觀核 酸擴增之擴增子;於此情況中,所有試劑貯槽將爲空的或 是係組態成不釋出其內容物,並僅使用透析、溶胞、培養 及擴增部來將樣本從樣本入口 68傳送至供核酸檢測之雜 交室1 8 0,如上所述。 針對一些樣本類型,需要預處理步驟,例如於輸入至 LOC裝置中之前,可能需要使精液液化及可能需以酵素預 處理黏液以減低黏性。 樣本輸入 參照圖1及12,添加樣本至試驗模組10之大容器24 。大容器24爲截錐,其係藉毛細作用而饋入LOC裝置 301之入口 68。於此,其流至64μπι寬χ60μιη深之蓋通道 -46 - 201209407 94中並亦藉由毛細作用而被吸引至抗凝劑貯槽54。 試劑貯槽 使用微流體裝置,諸如LOC裝置301,之分析系統所 需之小量試劑使得試劑貯槽含有生化處理之所有必須試劑 ’且各試劑貯槽爲小體積。此體積確實小於1,〇 〇 〇, 〇 〇 〇, 〇 〇 〇 立方微米,於絕大多數的情況中係小於300,〇〇〇,〇〇〇立方 微米,普通小於70,000,00〇立方微米,及於圖式中顯示的 LOC裝置301的情況中係小於20,0〇〇,〇〇〇立方微米。 透析部 參照圖15至21、33及34,病原體透析部70係經設 計以濃縮來自樣本之病原體標靶細胞。如前述者,頂部層 66中呈直徑爲3微米之孔口 164之複數個孔口,過濾來自 大量樣本之標靶細胞。當樣本流經直徑爲3微米之孔口 164,微生物病原體通過孔而進入一系列透析MST通道 204並經由16μιη透析汲取孔168回流至標靶通道74中( 見圖33及34)。剩餘的樣本(紅血球等)滯留於蓋通道94 中。於病原體透析部70之下游,蓋通道94成爲通往廢料 儲器76之廢料通道72。針對產生相當廢物量之生物樣本 類型,試驗模組10之外殻13內之泡沫體(foam)插圖或其 他多孔元件49係組態成與廢料儲器76呈流體連通(見圖 1)。 病原體透析部70係皆以流體樣本之毛細作用運作。 -47- 201209407 位於病原體透析部7〇上游端之直徑爲3微米之孔口 164 具有毛細作用起始特徵(CIF)166(見圖33),以致流體被向 下拉至下方的透析MST通道204之中。用於標靶通道74 之第一汲取孔198亦具有CIF 202(見圖15)以防止流體輕 易地固定彎液面於透析汲取孔168之上。 於圖8 2中槪要顯示之小組分透析部6 8 2可具有類似 於病原體透析部70之結構。藉由尺寸化(且成形,若必要) 適於允許小標靶細胞或分子通向標靶通道並繼續進一步分 析之孔口,小組分透析部分離來自樣本之任何小標靶細胞 或分子。大尺寸的細胞或分子被移除至廢料儲器766。因 此,LOC裝置30(見圖1及104)並不受限於分離尺寸小於 3 μπι之病原體,而可用於分離任何所欲尺寸之細胞或分 子。 溶胞部 再次參照圖7、11及13,藉化學溶胞處理,樣本中之 遺傳物質自細胞釋出。如上述者,來自溶胞貯槽56之溶 胞試劑與用於溶胞貯槽56之表面張力閥128下游之標靶 通道74中流動的樣本混合。然而,一些診斷分析較佳使 用熱溶胞處理,或甚至是標靶細胞之化學及熱溶胞的組合 。LOC裝置301容納此及培養部1 14之加熱的微通道210 。樣本流塡充培養部114並停止於沸騰引動閥106。培養 微通道210將樣本加熱至細胞膜破裂之溫度。 於一些熱溶胞應用中,化學溶胞部130中不需要酵素 -48- 201209407 反應,且熱溶胞全然取代化學溶胞部130中之酵素反應。 沸騰引動閥 如以上討論者,LOC裝置301具有三個沸騰引動閥 126、106及108。於圖6中顯示這些閥的位置。圖31爲 擴增部112之加熱的微通道158側之獨立的沸騰引動閥 108之放大的平面圖。 藉由毛細作用,樣本流1 1 9沿加熱的微通道1 5 8被吸 引直至到達沸騰引動閥1 08爲止。樣本流之前沿的彎液面 120固定於閥入口 146之彎液面固定器98。彎液面固定器 98幾何使彎液面停止前進而阻止毛細作用流。如圖3 1及 32中所示者,彎液面固定器98係藉由自MS T通道90至 蓋通道94之上管道開口而設置之孔口上管道。彎液面120 之表面張力使閥保持閉合。環形加熱器152位於閥入口 1 46的周圍。環形加熱器1 52經由沸騰引動閥加熱器接點 153而受CMOS控制。 爲打開閥,CMOS電路86發送電脈衝至閥加熱器接 點153。環形加熱器152電阻式地進行加熱直到液體樣本 119沸騰爲止。沸騰使彎液面120自閥入口 146脫除並開 始濕潤蓋通道94。一但開始濕潤蓋通道94,毛細作用恢 復。流體樣本119塡充蓋通道94且流經閥下管道150而 至閥出口 148,其中毛細作用驅動之液體流沿擴增部出口 通道160前進至雜交及檢測部52之中。液體感測器174 置於用於診斷的閥之前及之後。 -49- 201209407 將能了解的是,一但沸騰引動閥被打開,則不可能再 關上。然而,因LOC裝置301及試驗模組10爲單一用途 裝置,不需要再關閉閥。 培養部及核酸擴增部 圖 6、 7、 13、 14、 23、 24、 25、 35 至 45、 50 及 51 顯示培養部114及擴增部112。培養部114具有單一的、 加熱的培養微通道2 1 0,其係經蝕刻而成爲自下管道開口 134至沸騰引動閥106之MST通道層100中的蜿蜒圖案( 見圖13及14)。控制培養部114的溫度致能更有效的酵素 性反應。同樣地,擴增部112具有從沸騰引動閥106通向 沸騰引動閥108之呈蜿蜒結構之加熱的擴增微通道158(見 圖6及14)。於混合、培養及核酸擴增發生時,此等閥中 止流動以將標靶細胞保留於加熱的培養或擴增微通道2 1 0 或158中。微通道之蜿蜒圖案亦促進(在某種程度上)標靶 細胞與試劑混合。 於培養部114及擴增部112中,樣本細胞及試劑經由 使用脈衝寬度調變(PWM)之CMOS電路86所控制的加熱 器154而被加熱》加熱的培養微通道210及擴增微通道 158之蜿蜒結構之每一個曲折具有三個獨立地可操作加熱 器154(延伸於彼之個別加熱器接點156之間(見圖14))’ 其提供輸入熱通量密度之二維控制。如最佳顯示於圖5 1 中者,加熱器154係支撐於頂部層66上並埋入下密封64 中。加熱器材料爲TiAl,但許多其他的傳導性金屬也適用 -50- 201209407 。伸長的加熱器154平行於形成蜿蜒狀的寬曲流之各通道 部的縱向長度。於擴增部1 1 2中,經由個別加熱器控制, 可操作各寬曲流以作爲獨立的PCR室。 使用微流體裝置,諸如LOC裝置301,之分析系統所 需之小體積的擴增子允許於擴增部1 1 2中擴增使用小體積 的擴增混合物。此體積大槪小於400奈升,於絕大多數情 況中小於170奈升,普通.小於70奈升,及於LOC裝置 301的情況中,此體積係介於2奈升與30奈升之間。 加熱速率增加及較佳擴散混合 各通道部的小截面積增加擴增流體混合物的加熱速率 。所有流體與加熱器154保持相當短的距離。減少通道截 面積(即擴增微通道158截面)至小於1 00,000平方微米, 而較“大規模”設備具有顯著較高之加熱速率。微影製造技 術使得擴增微通道158具有橫越小於1 6,000平方微米之 實質上提供較高的加熱速率之截面。以微影製造技術輕易 地獲致1微米級尺寸特徵。若僅需要非常小量的擴增子( 如LOC裝置301中的情況),可使截面縮小至小於2,500 平方微米。針對以LOC裝置上之1,000至2,000個探針進 行且於1分鐘內之“樣本入,答案出”所需之診斷分析,橫 越流體之適當的截面積爲400平方微米及1平方微米之間 〇 擴增微通道158中之加熱器元件以每秒大於80絕對 溫度(K)之速率加熱核酸序列,於大多數的情況中爲每秒 -51 - 201209407 大於100 K之速率》普通地,加熱器元件以每秒大於1000 Κ之速率加熱核酸序列,以及於許多情況中,加熱器元件 以每秒大於10,000 κ之速率加熱核酸序列。通常’基於 分析系統的需求,加熱器元件以每秒大於1 00,000 Κ、每 秒大於 1,000,000 Κ、每秒大於 1 0,000,000 Κ、每秒大於 20.000. 000 Κ、每秒大於 40,000,000 Κ、每秒大於 80.000. 000 Κ及每秒大於1 60,000,000 Κ之速率加熱核酸 序列。 小截面積通道亦有益於任何試劑與樣本流體之擴散性 混合。於擴散性混合完成之前,靠近兩液體間之界面處, 一種液體擴散至另一液體之擴散現象最顯著。現象發生密 度隨遠離界面距離而減少。使用具相當小截面積之橫越流 體方向之微通道,而保持兩流體靠界面流動以快速擴散混 合。縮小通道截面至小於1 00,000平方微米,獲致較“大 規模”設備具有顯著較高之擴散速率。微影製造技術使得 微通道具有橫越小於1 6,000平方微米之實質上提供較高 的混合速率之截面。若僅需要非常小量的擴增子(如LOC 裝置3 0 1中的情況),可使截面縮小至小於2,5 0 0平方微米 。針對以LOC裝置上之1,〇〇〇至2,000個探針進行且於1 分鐘內之“樣本入,答案出”所需之診斷分析,橫越流體之 適當的截面積爲400平方微米及1平方微米之間。 短的熱循環時間 使樣本混合物保持接近加熱器且使用極小流體量,致 •52- 201209407 使核酸擴增法期間之快速熱循環。針對至高150 (bp)長之標靶序列,於30秒內完成各個熱循環(即 、黏著及引子延伸)。在絕大多數之診斷分析中, 循環時間小於1 1秒,且大部分小於4秒。針對至 鹼基對(bp)長之標靶序列,用於一些最常見診斷 LOC裝置30的熱循環時間爲〇·45秒至1.5秒之間 度之熱循環使得試驗模組能在遠少於1 〇分鐘之內 酸擴增程序;經常爲220秒之內。針對大多數分析 部於80秒之內由進入樣本入口的樣本流體產生充 增子。針對大部分的分析,於30秒內產生充足的 〇 於完成預定數目擴增循環時,經由沸騰引動閥 擴增子饋入雜交及檢測部5 2。 雜交室 圖52、53、54、56及57顯示雜交室陣列11〇 交室180。雜交及檢測部52具有雜交室180之24 > 列1 10 ’其各具有雜交-反應性FRET探針186、加 件182及整合的光二極體184。倂入光二極體184 得自標靶核酸序列或蛋白質與FRET探針186雜交 。藉由CMOS電路86獨立地控制各光二極體U4 射的光而言,FRET探針186及光二極體184之間 物質必須爲透明。因此,探針186及光二極體184 壁部97亦必須對發射的光呈光學透明。於l〇C裝 鹼基對 ,變性 個別熱 高 150 分析之 。此速 完成核 ,擴增 足的擴 擴增子 108將 中的雜 45陣 熱器元 以檢測 之螢光 。對發 的任何 之間的 置301 -53- 201209407 中,壁部97爲二氧化矽之薄層(約〇·5微米) 於各雜交室180之下直接地併入光二極 用極小體積之探針-標靶雜交,卻仍產生可 號(見圖5 4)。因爲小量而能使用小體積的雜 之前,可檢測的探針-標靶雜交量所需之探 270微微克(picogram)(對應至900,000立方ί 數的情況中小於60微微克(對應至200,000 ; 通小於12微微克(對應至40,000立方微米) 中所示之LOC裝置301的情況中爲小於2. 至體積爲9,000立方微米之室)。當然,縮小 容許較高的室密度及因此更多的LOC裝置 LOC裝置301中,於1,5 00微米乘1,500微 雜交部具有超過1,〇〇〇個室(即,每個室小於 米)。較小的體積亦減少反應時間,使得雜 速。各個室需求之小量探針的另一優點爲, 製造期間,僅需要配置極小量的探針溶液至 據本發明之LOC裝置之具體例可配置有1 之探針溶液。 於核酸擴增之後,沸騰引動閥108被啓 流路176流動並流進各雜交室180(見圖52及 體感測器1 7 8指示雜交室1 8 0塡充有擴增子 器182之時點。 於充分雜交時間後,啓動LED 26(見圖 180中之開口設有光學窗136以將FRET探g 體1 8 4允許使 檢測的螢光信 交室。於雜交 針量大槪小於 数米),於大多 δ:方微米),普 ρ並且於附圖 7微微克(對應 雜交室的尺寸 上的探針。於 米的面積內, 2,250平方微 交及檢測更快 於LOC裝置 各個室中。根 奈毫升或更少 動且擴增子沿 :56)。端點液 及可啓動加熱 2)。各雜交室 叶1 8 6暴露於 -54- 201209407 激發輻射(見圖52、54及56)。LED 26發光持續充分長的 時間以誘發自探針之高強度的螢光信號。於激發期間,光 二極體184短路(shorted)。經預編程延遲3 00(見圖2)之後 ,於無激發光下,致能光二極體184及檢測螢光發射。將 光二極體184之主動區185上之入射光(見圖54)轉換成可 使用CMOS電路86測量之光電流。 各雜交室180載有用於檢測單一標靶核酸序列之探針 。若希望,則各雜交室180可載有檢測超過1,000種不同 標靶的探針。替代性地,許多或全部雜交室可載有重複地 檢測相同標靶核酸之相同探針。於雜交室陣列1 1 0中以此 方式複製探針使得所得結果之可信度增加,以及若希望, 可藉由相鄰雜交室之光二極體來合併所有結果以得到單一 結果。熟此技藝者將了解,依據分析明細,於雜交室陣列 110上可具有1至超過1,000種不同的探針。 增濕器及濕度感測器 圖6的插圖AG指示增濕器196的位置。增濕器免於 LOC裝置3 0 1操作期間之試劑及探針的蒸發。如最佳顯示 於圖55之放大圖中者,水貯槽188係流體地連接至三個 蒸發器190。水貯槽188塡充有分子生物等級用水且於製 造期間爲密封的。如最佳顯示於圖55及75中者,藉由毛 細作用,水被抽拉至三個下管道1 94且沿著個別水供應通 道丨92而到達蒸發器190之三個上管道193組。彎液面固 定於各個上管道193以保持水。蒸發器具有環形加熱器 -55- 201209407 191’其環繞上管道193。藉由導熱柱3 76,環形加熱器 191係連接至CMOS電路86而至頂金屬層195(見圖37)。 於啓動時,環形加熱器1 9 1加熱水而致使水蒸發並濕潤周 圍的裝置。 於圖6中亦顯示濕度感測器232的位置。然而,最佳 如顯示於圖63.中之插圖AH的放大圖者,濕度感測器具 有電容式梳狀結構。經微影地蝕刻之第一電極296及與經 微影地蝕刻之第二電極298彼此相對,使得彼等之齒交插 。相對的電極形成電容器,其具有可藉由CMOS電路86 來監測之電容。隨濕度增加,電極間之空氣隙的介電常數 增加,致使電容亦增加。濕度感測器2 3 2鄰接雜交室陣列 1 1 〇(最主要之濕度測量位置),以減緩含有暴露的探針之溶 液蒸發。 反饋感測器 溫度及液體感測器係併入LOC裝置301整體以於裝 置操作期間提供反饋及診斷。參照圖3 5,將九個溫度感測 器170分配至擴增部112之全部。同樣地,培養部114亦 具有九個溫度感測器1 70。這些感測器各使用2x2陣列之 雙極接面電晶體(BjT)以監測流體溫度及提供反饋至CMOS 電路86。CMOS電路86利用此以準確地控制核酸擴增期 間的熱循環以及熱溶胞及培養期間之任何加熱。 於雜交室180中,CMOS電路86使用雜交加熱器182 作爲溫度感測器(見圖56)。雜交加熱器182之電阻係溫度 -56 - 201209407 相依,且CMOS電路86利用此以驅動各雜交室 度讀取。 LOC裝置301亦具有一些MST通道液體感 及蓋通道液體感測器208。圖35顯示於經加熱 158中之每間隔曲折之一端的MST通道液體感測 線。最佳如顯示於圖37中者,MST通道液體感 爲藉由CMOS結構86中之頂金屬層195之暴露 形成之一對電極。液體封閉電極間的電流以指示 感測器的位置。 圖25顯示蓋通道液體感測器208之放大透 對的TiAl電極對218及220係沉積於頂部層66 2 1 8及220之間爲間隙222,以於缺少液體的情 電路爲開路。液體存在時使電路閉合及CMOS電 用此反饋以監測流動。 重力自主(GRAVITATIONAL INDEPENDENCE) 試驗模組10爲方向自主。其不需被緊固至 而操作。因毛細作用驅動之流體流以及缺少至輔 外部管路,使得模組確實爲可攜式並可簡易地插 的可攜式手持閱讀器,諸如行動電話。重力自主 試驗模組亦加速度性地獨立於所有實用範圍。其 振動並能於移動的載具上或是於攜帶的行動電話_ 閥之選擇 1 8 0之溫 測器174 的微通道 器174之 測器174 的區域所 其存在於 視圖。相 上。電極 況中保持 路86利 平穩表面 助設備之 入至類似 操作代表 耐衝擊及 匕操作。 -57- 201209407 熱彎曲致動閥變體1 圖64及65顯示熱彎曲致動閥的第一變體 熱彎曲致動之壓力脈衝閥。圖65爲圖64中 70-70的截面示意圖。第一變體熱彎曲致動閥 TiAl、TiN或類似的電阻加熱器材料構成之呈 之熱彎曲致動器3 04的形式之可移動構件。 MST通道90中之閥入口 146,然而於彎液面 孔口 306時停止。圖64及65中所示之實施例 構件外部的孔口,但其亦可由可移動構件至少 。於此狀態下,閥關閉。CMOS電路86傳送 衝至熱彎曲致動器304以打開閥。CMOS啓動 動器304係接合至頂層66(於入口端爲固定及 自由)之懸臂部162。示差熱膨脹彎曲了懸臂部 朝鈍化層8 8快速移動。流體牽引防止液體樣3 ,而液體1 1 9係經由孔口 3 06而射出至蓋通這 懸臂部1 62往返移動於靜態及位移的位置持續 確保彎液面120自孔口 306釋放。樣本1 19聚 94中,直至其表面被濕潤且毛細作用驅動流恢 本塡充蓋通道94,然後經過閥下管道150而 148 ° 熱彎曲致動閥變體2 圖66及67顯示熱彎曲致動閥308的第二 熱彎曲致動之表面張力閥。圖67爲圖66中 ί 302 ,其係 所示之沿線 3 02具有由 CMOS啓動 樣本流進入 1 20固定於 顯示可移動 部分地界定 一連串電脈 之熱彎曲致 於孔口端呈 162使得其 长1 1 9回流 :94中。使 一段時間^ 積於蓋通道 復爲止。樣 流至閥出口 變體,其係 所示之沿線 -58- 201209407 72-72的截面示意圖。第二變體熱彎曲致動閥308具有由 TiAl、TiN或類似的電阻加熱器材料構成之CMOS啓動之 熱彎曲致動器304。樣本沿MST通道90流動且流進閥上 管道151之閥入口 146。液體樣本119塡充蓋通道94,但 停止於彎液面120固定於孔口 306之時。於此狀態下,閥 關閉。爲打開閥,CMOS電路86傳送一連串電脈衝至熱 彎曲致動器304 «CMOS啓動之熱彎曲致動器304係接合 至頂層66(於入口端爲固定及於孔口端呈自由)之懸臂部 162。示差熱膨賬彎曲了懸臂部162使得孔口 306朝鈍化 層88移動。孔口 306自蓋通道94吸引彎液面120進入 MST通道90以重新建立毛細作用流。爲重新建立毛細作 用流,通道之相對側壁收斂成緊鄰可移動構件下游的窄部 ,使得當可移動構件移動至致動位置時,彎液面接觸窄部 。液體感測器1 74係置於偵錯閥之前或之後。 熱彎曲致動閥變體3 圖68及69顯示熱彎曲致動閥312的第三變體,‘其係 熱彎曲致動之表面張力閥’及用於液體樣本被保持於蓋通 道94中之時。圖69爲圖68中所示之沿線74_74的截面 示意圖。熱彎曲致動閥312的第三變體類似第二變體熱彎 曲致動閥3 08,除了閥入口 146係位於蓋通道94中以外。 樣本沿著蓋通道94流動且流進緊鄰CM0S啓動之熱彎曲 致動器304上游之閥入口 146°液體樣本119塡充蓋通道 94,但停止於彎液面120固定於孔口 3〇6之時。於此狀態 -59- 201209407 下,閥關閉。爲打開閥,CMOS電路86傳送 衝至熱彎曲致動器3 〇4。熱彎曲致動器3〇4係 66 (於入口端爲固定及於孔口端呈自由)之懸臂部 差熱膨脹彎曲了懸臂部162使得孔口 306朝鈍 動。孔口 306自蓋通道94吸引彎液面120進入 90以沿著閥出口 148重新建立毛細作用流。名 174係置於偵錯閥之後。FIG. 5 is a perspective view of the LOC device 301. It is manufactured using high volume CMOS -34-201209407 and MST (Microsystem Technology) manufacturing technology. The layered configuration of the LOC device 301 is illustrated in a partial cross-sectional view (not to scale) of FIG. 12. The LOC device 301 has a germanium substrate 84 supporting a COMS + MST wafer 48, including a CMOS circuit 86 and an MST layer 87, to cover 46 covers the MST layer 87. For the purposes of this patent specification, the term "MST layer" relates to a collection of structures and layers of a sample treated with different reagents. Accordingly, these structures and components are configured to define a flow path having a characteristic size that supports a capillary action driven liquid stream having physical properties similar to the physical properties of the sample during processing. Accordingly, MST layers and components are typically fabricated using surface micromachining techniques and/or bulk micromachining techniques. However, other manufacturing methods can also produce structures and components that are sized for liquid flow driven by capillary action and that are processed to very small volumes. The particular embodiment described in this specification shows that the MST layer is a structure and active component supported on CMOS circuitry 86, but excludes the features of cover 46. However, those skilled in the art will appreciate that the MST layer does not require the underlying CMOS or even the overlying cover to handle the sample. The overall dimensions of the LOC device shown in the following figures are 1760 microns χ 58 24 microns. Of course, LOC devices made for different applications can have different sizes. Figure 6 shows the features of the MST layer 87 overlaid with the cover features. The illustrations AA to AD, AG and AH shown in Fig. 6 are individually enlarged in Figs. 13, 14, 35, 56, 55 and 63, and a sufficient understanding of the respective structures in the LOC device 301 will be described in detail below. When FIG. 11 independently shows the structure of the CMOSS + MST device 48, FIGS. 7 through 10 independently show the features of the cover 46. -35- 201209407 Layered Structure Figures 12 and 22 are schematic representations of the layered construction of the CMOS + MST device 48, the cover 46 and the fluid interaction therebetween. The drawings are not drawn to scale for the purpose of illustration. Figure 12 is a cross-sectional view through the sample inlet 68 and Figure 22 is a cross-sectional view through the sump 54. As best shown in FIG. 12, CMOS+MST device 48 has a germanium substrate 84 that supports CMOS circuitry 86 that operates the active components within MST layer 87 described above. Passivation layer 88 seals and protects CMOS layer 86 from fluid flow through MST layer 87. The fluid flows through both the cap layer 46 and the MST channel layer 100 and the M ST channel 90 (see, for example, Figures 7 and 16). When biochemical treatment is performed on the smaller MST channel 90, cell delivery occurs in the larger channel 94 made in the cover 46. The cell delivery channels are sized to deliver cells in the sample to predetermined locations in the MST channel 90. Cells that deliver a size greater than 20 microns (e. g., certain white blood cells) require channel sizes greater than 20 microns, and thus cross-sectional areas across the flow are greater than 400 square microns. The MST channel, particularly at locations in the LOC that do not require delivery of cells, can be significantly smaller. It will be understood that the cover channel 94 and the MST channel 90 are common references and that the particular M S channel 90 can also be, for example, a heated microchannel or a dialysis MST channel due to its particular function. The MST channel 90 is formed by etching through the MST channel layer 100 deposited on the passivation layer 88 and patterned with a photoresist. The MST channel 90 is formed by the top layer 66 around the top layer forming the top of the CMOS + MST device 48 (relative to the orientation shown in the figure). Although sometimes shown as a separate layer, the cover channel layer 80 and the sump layer -36 - 201209407 78 are formed from a single piece of material. Of course, the piece of material can also be non-unitary. The sheets of material are etched from both sides to form a cover channel layer 80 and a sump layer 78, and a cover channel 94 is etched in the cover channel layer 80, and sumpes 54, 56, 58, 60 and 02 are etched in the sump layer 78. Alternatively, the sump and cover channel are formed by a micro-formation process. Both etching and microforming techniques are used to fabricate channels having traverse fluids of up to 2 Å, 〇〇〇 square microns and up to 8 s 2 microns. There are suitable choices for the cross-sectional area of the passage across the fluid at different locations in the LOC device. A large number of samples or samples having a large component are accommodated in the channel, and a cross-sectional area of up to 20,000 square micrometers (e.g., a 200 micrometer wide channel in a layer of 100 micrometers thick) is suitable. A small amount of liquid or a mixture free of large cells is contained in the channel, preferably a very small cross-sectional area across the fluid. The lower seal 64 surrounds the lid passage 94 and the upper seal layer 82 surrounds the sump 54, 56, 58, 60 and I 62 » five tanks 54, 56, 58, 60 and 62 are preloaded with the reagent of the particular analysis. In the embodiments described herein, the reservoir is preloaded with the following reagents, but can be easily replaced with other reagents: • Storage tank 54: anticoagulant, the selectivity of which includes red blood cell lysis buffer • storage tank 5 6 : lysis reagent • Slot 58: Restriction enzymes, ligases, and junctions (for junction initiation PCR) (see Figure 77, excerpt from T.  .  Staehan et al. , Human Molecular Genetics 2, Garland Science, NY and London, -37- 201209407 1999)) • Storage tank 60: amplification mixture (deoxyribonucleoside triphosphate (dNTP), primer, buffer), and • storage tank 62: DNA polymerase. Cover 46 and CMOS + MST layer 48 are in fluid communication via respective openings in lower seal 64 and top layer 66. The upper conduit 96 and the lower conduit 92 are representative of whether the fluid flows from the MST passage 90 to the cover passage 94 or vice versa. LOC Device Operation The operation of LOC device 301 is described step by step with reference to the analysis of pathogenic DNA in a blood sample. Of course, other types of biological or non-biological fluids are also analyzed using a suitable kit or combination of reagents, test protocols, LOC variants, and detection systems. Referring to Figure 4, analyzing a biological sample involves five major steps, including: sample input and preparation 288, nucleic acid extraction 290, nucleic acid culture 291, nucleic acid amplification 292, and detection and analysis 294 ° sample input and preparation steps 2 8 8 mixed blood The pathogen is separated from the white blood cells and red blood cells by the anticoagulant 1 16 and then by the pathogen dialysis unit 70. As best shown in Figures 7 and 12, blood samples enter the device via sample inlet 68. The capillary action draws the blood sample along the lid channel 94 to the sump 54. When the sample blood stream opens its surface tension valve 1 18, the anticoagulant is released from the reservoir 54 (see Figures 15 and 22). Anticoagulants prevent the formation of blood clots that can block flow. -38- 201209407 As best shown in Figure 22, the anticoagulant 116 is withdrawn from the sump 54 by capillary action and enters the MST channel 90 via the lower conduit 92. The conduit 92 has a capillary action initiation feature (CIF). 102 to form a meniscus geometry that is not fixed to the edge of the lower duct 92. When the anticoagulant 116 is withdrawn from the reservoir 54, the vents 122 in the upper seal 82 allow air to replace the anticoagulant 116. The MST channel 90 shown in Figure 22 is part of the surface tension valve 118. The anticoagulant 116 is filled with a surface tension valve 118 and secured to the meniscus 120 of the upper conduit 96 to the meniscus holder 98. Prior to use, the meniscus 120 remains fixed to the upper conduit 96 such that the anticoagulant does not flow into the lid passage 94. As the blood flows through the cover channel 94 to the upper conduit 96, the meniscus 110 is removed and the anticoagulant is drawn into the fluid. Figures 15 through 21 show an inset AE which is part of the inset AA shown in Figure 13. As shown in Figures 15, 16 and 17, the surface tension valve 18 has three separate MST passages 90 extending between the individual lower conduits 92 and the upper conduits 96. These MST channels 90 in the surface tension valve can be varied to vary the flow rate of the reagent entering the sample mixture. When the sample mixture and reagents are mixed by diffusion, the flow rate away from the sump determines the concentration of the reagent in the sample stream. Therefore, the surface tension valve of each tank is configured to meet the desired reagent concentration. Blood is passed to the pathogen dialysis section 70 (see Figures 4 and 15), wherein the target cells are concentrated from the sample using an array of orifices 1 64 of a predetermined size. Cells smaller than the valve stomata pass through the orifice, while large cells cannot pass through the orifice. While the target cells continue to be part of the analysis, the undesired cells -39 - 201209407 are reintroduced into the waste unit 76. Undesired cells are large cells blocked by an array of orifices 164 or small cells that pass through the orifice. In the pathogen dialysis section 70 described herein, the pathogen from the whole blood sample is concentrated for microbial DNA analysis. The array of orifices is formed by a plurality of 3 micron diameter orifices 1 64 that fluidly communicate with the input flow in the lid passage 94 to the target passage 74. The 3 micron diameter orifice 1 64 and the dialysis extraction orifice 168 for the target channel 74 are connected by a series of dialysis MST channels 206 (best shown in Figures 15 and 21). The pathogen is small enough to pass through the dialysis MST channel 206 through the 3 micron diameter orifice 164 and to fill the target channel 74. Cells larger than 3 microns, such as red blood cells and white blood cells, are retained in the waste channel 72 of the lid 46, which leads to the waste reservoir 76 (see Figure 7). Other orifice shapes, sizes, and aspect ratios can be used to isolate specific pathogens or other target cells, such as white blood cells for human DNA analysis. More detailed details of the dialysis section and the dialysis variant are provided later. Referring again to Figures 6 and 7, fluid is drawn through target channel 74 to surface tension valve 128 in lysis reagent reservoir 56. The surface tension valve 128 has seven MST channels 90 extending between the lysis reagent reservoir 56 and the target channel 74. When the meniscus is removed from the sample stream, the flow rate of all seven MST channels 90 will be greater than the flow rate of the anticoagulant reservoir 54, wherein the surface tension valve 118 has three MST channels 90 (assuming the physical properties of the fluid are approximately equal). Therefore, the proportion of the lysis reagent in the sample mixture is greater than the ratio of the anticoagulant. The lysis reagent and the target cells are mixed by diffusion in the target channel 74 within the chemical lysis unit 130. The boiling priming valve 126 stops the flow until the expansion and lysis are performed for a sufficient time to release the genetic material from the target cells (see Figures 6 and 7). Referring to Figures 31 and 3, the structure and operation of the boiling pilot valve will be described in detail below. Other active valve types (as opposed to passive valves, such as surface tension valve 118) have also been developed by the applicant, which can be used in place of the boiling pilot valve. These alternative valve designs are also described below. When the boiling pilot valve 126 is turned on, the lysed cells flow into the mixing portion 131 to pre-amplify restriction digestion and linker ligation. Referring to Figure 13, when the fluid is removed from the meniscus on the surface tension valve 1 32 at the beginning of the mixing portion 131, the restriction enzyme, linker and ligase are released from the reservoir 58. The mixture flows through the length of the mixing portion 131 for diffusion mixing. At the end of the mixing portion 131 is a lower duct 134 (see Fig. 13) leading to the incubator inlet passage 133 of the culture portion 114. The incubator inlet channel 133 feeds the mixture into the crucible structure of the heated microchannel 210, which provides a culture chamber for retaining the sample during restriction enzyme cleavage and junction ligation (see Figures 13 and 14). Figures 23, 24, 25, 26, 27, 28 and 29 show the layers of the LOC device 301 in the inset AB of Figure 6. The figures show successive layers to form a layer of CM0S+MST layer 48 and cover 46 structures. The inset AB shows the end of the culture section 114 and the start of the amplification section 112. As best shown in Figures 14 and 23, the fluid fills the microchannel 210 of the culture portion 114 until it reaches the boiling pilot valve 106, where the fluid stops when diffusion occurs. As discussed above, the microchannel 210 upstream of the boiling pilot valve 106 becomes a culture chamber containing a sample, a restriction enzyme, a ligase, and a linker. Heater 154 then activates -41 - 201209407 and maintains at a stable temperature for the restriction enzyme shear and junction bonding to occur for a specific period of time. Those skilled in the art will appreciate that this incubation step 291 (see Figure 4) is arbitrary and is only required for some types of nucleic acid amplification assays. Further, in some instances, it may be desirable to have a heating step at the end of the incubation period to increase the temperature above the culture temperature. The temperature is increased to inactivate the restriction enzyme and ligase before entering the amplification unit 112. Limiting the inactivation of enzymes and ligases has a specific effect when amplified with isothermal acid. After the incubation, the boiling start valve 106 is activated (opened) and the fluid re-enters the amplifying portion 112. Referring to Figures 31 and 32, the mixture is filled with the structure of the microchannels 1 58 until it reaches the boiling pilot valve 1 〇 8, which forms one or more amplification chambers. As best shown in the cross-sectional view of Fig. 30, the amplification mixture (dNTP, primer, buffer) is released from the storage tank 60 and the polymerase is then released from the storage tank 62 to enter the junction culture section and the amplification section (1 1 4 and 112) The intermediate MST channel 212. Figures 35 through 51 show the layers of the LOC device 301 in the inset AC of Figure 6. The figures show layers that are continuously stacked to form the CMOS + MST device 48 and cover 46 structures. The illustration AC shows the end of the amplification section 112 and the onset of the hybridization and detection section 52. The cultured sample, amplification mixture, and polymerase flow through the microchannel 1 58 to the boiling pilot valve 108. After diffusion mixing for a sufficient time, the heater 1 54 in the microchannel 1 58 is activated for thermal cycling or isothermal amplification. The amplification mixture undergoes a predetermined number of thermal cycles or a predetermined amplification time to amplify sufficient target DNA. After the nucleic acid amplification procedure, the boiling pilot valve 108 is turned on and the fluid re-enters the hybridization and detection portion 52. The operation of the boiling pilot valve -42- 201209407 is described in more detail below. As shown in Figure 52, hybridization and detection portion 52 has an array 110 of hybridization chambers. Figures 52, 53, 54 and 56 show the hybridization chamber array 11 and individual hybridization chambers 180 in detail. The entrance to hybridization chamber 180 is a diffusion barrier 175 that prevents diffusion of the target nucleic acid, probe strands, and hybridization probes between hybridization chambers 180 during hybridization to prevent erroneous hybridization assay results. The flow path length of the diffusion barrier 175 is long enough to prevent the target sequence and probe from diffusing out of one chamber and contaminating the other during the time the probe and nucleic acid hybridize and detect the signal, thus avoiding erroneous results. Another mechanism to prevent erroneous reading is to have the same probe in some hybridization chambers. The CMOS circuit 86 derives a single result from the photodiode 184 corresponding to the hybridization chamber 180 containing the same probe. The results of the anomalies in the derived single result can be ignored or given different weights. The thermal energy required for hybridization is provided by a CMOS controlled heater 182 (described in more detail below). Hybridization occurs between the complementary target probe sequences after the heater is activated. The LED driver 29 in the CM〇S circuit 86 transmits a message to cause the LED 26 located in the test module 1 to emit light. These probes only fluoresce when hybridization occurs, thereby eliminating the cleaning and drying steps that are often required to remove unbound strands. The stem and loop structure of the hybrid forced FRET probe 186 is opened, which allows the fluorophore to emit fluorescent energy in response to the LED excitation light, as detailed below. Fluorescence is detected by photodiode 184 located in CMOS circuitry 86 under each hybridization chamber 180 (see the description of the hybridization chamber below). The photodiode 184 and associated electronics for all of the hybridization chambers collectively form a photosensor 44 (see Figure 70). In other embodiments, the photosensor can be a charge coupled device array (CCD array) from -43 to 201209407. The signal detected by the photodiode 1 84 is amplified and converted to a digital output that can be analyzed by the test module reader 12. Further details of the detection method are described below. Other Detailed Description of the LOC Device The modular design LOC device 301 has a number of functional components including reagent reservoirs 54, 56' 58, 60 and 62, dialysis section 70, lysis section 130, culture section 114, and amplification section 1 1 2 In the LOC device of another specific example, the functional portions may be omitted, but another functional portion or a functional portion different from the use of the above-described device may be added. For example, the culture portion 1 14 can be used as the first amplification portion 112 of the tandem repeat amplification analysis system, and the lysis reagent reservoir 56 can be used to add the first amplification mixture of the primer, the dNTP, and the buffer, and use The reagent reservoir 58 is used to add reverse transcriptase and/or polymerase. If the sample is to be chemically lysed, a chemical lysis reagent (along with amplification mix) may be added to the sump 56, or alternatively, the sample may be heated for a predetermined period of time to cause thermal lysis in the culture. In some embodiments, if chemical lysis is required and the chemical lysis reagent is mixed and separated therefrom, additional sump may be combined upstream of the adjacent sump 58 for the introduction of the primer, dNTP, and buffer. In some cases, steps such as incubation step 291 are omitted. In this case, the LOC device may be specially manufactured to avoid the reagent storage tank 58 and the culture portion 1 14 or the storage tank may only carry the reagent, or when the active valve is present, it is not activated to dispense the reagent into the sample stream. The culture unit is simply a passage for transferring the sample-44-201209407 from the lysis unit 130 to the amplification unit 112. The heaters operate independently, so when the reaction relies on heat, such as hot lysis, the heater is not activated during this step, ensuring that hot lysis does not occur in LOC devices that do not require hot lysis. The dialysis section 70 can be located at the beginning of the fluid system within the microfluidic device, as shown in Figure 4, or can be located at any other location within the microfluidic device. In some cases, for example, after amplification phase 292, prior to hybridization and detection step 294, dialysis is performed to remove cell debris. Alternatively, two or more dialysis sections can be combined at any location on the LOC device. Similarly, additional amplifications 112 can be combined to enable simultaneous or sequential amplification of multiple targets prior to detection using a particular nucleic acid probe in the hybrid array 110. To analyze, for example, a sample of whole blood in which dialysis is not required, the dialysis portion 70 is simply omitted from the sample input and preparation portion 288 of the LOC design. In some cases, even if the analysis does not require dialysis, it is not necessary to omit the dialysis section 70 from the LOC device. » If the presence of the dialysis section does not cause geometrical obstruction, the sample input and preparation section can have the LOC of the dialysis section 70. Will not lose the required functionality. In addition, the detection portion 294 can include a protein body array array that is identical to the hybrid chamber array but carries a probe that is designed to conjugate or hybridize to a protein present in the non-amplified sample, rather than being designed to A nucleic acid probe that hybridizes to a target nucleic acid sequence. It will be appreciated that the LOC device manufactured for use with this diagnostic system is different from the combination of functional components selected for the particular LOC application. Most of the functional parts are common to many LOC devices, and the design of additional LOC devices for new applications is well organized in the large functional options used in the existing LOC installations -45-201209407. The functional part of the combination. Only a few LOC devices are shown in this description and some others are shown to illustrate the design flexibility of the LOC devices manufactured for this system. Those skilled in the art will readily appreciate that the LOC devices shown herein are not exhaustive' and that many additional LOC designs are related to the combination of appropriate functional components. Sample Type LOC Variants can accept and analyze a variety of nucleic acid or protein contents in liquid form, including, but not limited to, blood and blood products, saliva, cerebrospinal fluid, urine, semen, amniotic fluid, umbilical cord Blood, breast milk, sweat, pleural effusion, tears, pericardial fluid, peritoneal fluid, environmental water samples and beverage samples. Amplicon derived from meganucleic acid amplification can also be analyzed using a LOC device; in this case, all reagent reservoirs will be empty or configured to not release their contents, and only use dialysis, lysis The culture and amplification section is used to transfer the sample from the sample inlet 68 to the hybridization chamber for nucleic acid detection 180, as described above. For some sample types, a pre-treatment step is required, for example, prior to input into the LOC device, it may be necessary to liquefy the semen and possibly pre-treat the mucus with enzyme to reduce stickiness. Sample Input Referring to Figures 1 and 12, a sample is added to the large container 24 of the test module 10. The large container 24 is a truncated cone that is fed into the inlet 68 of the LOC unit 301 by capillary action. Here, it flows into the 64 μπι χ 60 μιη deep cover channel -46 - 201209407 94 and is also attracted to the anticoagulant sump 54 by capillary action. Reagent Tanks A microfluidic device, such as LOC unit 301, is used to analyze the system with a small amount of reagent such that the reagent reservoir contains all of the necessary reagents for biochemical treatment and each reagent reservoir is in a small volume. This volume is indeed less than 1, 〇〇〇, 〇〇〇, 〇〇〇 cubic micron, in most cases less than 300, 〇〇〇, 〇〇〇 cubic micron, usually less than 70,000,00 〇 cubic micron, And in the case of the LOC device 301 shown in the drawings, it is less than 20,0 〇〇, 〇〇〇 cubic micron. Dialysis section Referring to Figures 15 to 21, 33 and 34, the pathogen dialysis section 70 is designed to concentrate the pathogen target cells from the sample. As previously described, a plurality of apertures in the top layer 66 are apertures 164 having a diameter of 3 microns, filtering the target cells from a large number of samples. As the sample flows through a 3 micron diameter orifice 164, the microbial pathogen passes through the well into a series of dialysis MST channels 204 and is returned to the target channel 74 via a 16 [mu] dialysis extraction well 168 (see Figures 33 and 34). The remaining sample (red blood cells, etc.) is retained in the cover channel 94. Downstream of the pathogen dialysis section 70, the cover channel 94 becomes a waste channel 72 to the waste reservoir 76. Foam illustrations or other porous elements 49 in the outer casing 13 of the test module 10 are configured to be in fluid communication with the waste reservoir 76 (see Figure 1) for a biological sample type that produces a substantial amount of waste. The pathogen dialysis unit 70 operates with the capillary action of the fluid sample. -47- 201209407 A 3 micron diameter orifice 164 located at the upstream end of the pathogen dialysis section 7 has a capillary action initiation feature (CIF) 166 (see Figure 33) such that fluid is pulled down to the dialysis MST channel 204 below. in. The first extraction aperture 198 for the target channel 74 also has a CIF 202 (see Figure 15) to prevent fluid from easily securing the meniscus over the dialysis extraction aperture 168. The small component dialysis section 682 shown in Fig. 8 2 may have a structure similar to that of the pathogen dialysis section 70. The small component dialysis section separates any small target cells or molecules from the sample by size (and shaping, if necessary) suitable for the orifices that allow the small target cells or molecules to pass to the target channel and continue to be further analyzed. Large size cells or molecules are removed to the waste reservoir 766. Therefore, the LOC device 30 (see Figures 1 and 104) is not limited to isolation of pathogens having a size of less than 3 μm, but can be used to separate cells or molecules of any desired size. Lysis section Referring again to Figures 7, 11 and 13, the chemical species in the sample are released from the cells by chemical lysis. As described above, the cytolytic reagent from the lysis tank 56 is mixed with the sample flowing in the target channel 74 downstream of the surface tension valve 128 of the lysis tank 56. However, some diagnostic assays preferably use hot lysis, or even a combination of chemical and thermal lysis of the target cells. The LOC device 301 houses the heated microchannels 210 of the culture portion 1 14 . The sample stream is flooded with the culture portion 114 and stopped at the boiling pilot valve 106. The culture microchannel 210 heats the sample to the temperature at which the cell membrane ruptures. In some hot lysis applications, the enzyme -48-201209407 reaction is not required in the chemical lysis unit 130, and the hot lysis completely replaces the enzyme reaction in the chemical lysis unit 130. Boiling Pilot Valve As discussed above, LOC unit 301 has three boiling pilot valves 126, 106 and 108. The position of these valves is shown in Figure 6. Figure 31 is an enlarged plan view of the independent boiling pilot valve 108 on the heated microchannel 158 side of the amplifying portion 112. By capillary action, the sample stream 1 1 9 is drawn along the heated microchannel 1 58 until it reaches the boiling pilot valve 108. The meniscus 120 at the leading edge of the sample stream is secured to the meniscus holder 98 of the valve inlet 146. The meniscus holder 98 geometry stops the meniscus from moving forward and prevents capillary flow. As shown in Figures 31 and 32, the meniscus holder 98 is a conduit on the orifice provided by the opening of the pipe from the MS T passage 90 to the cover passage 94. The surface tension of the meniscus 120 keeps the valve closed. Ring heater 152 is located around valve inlet 1 46. The ring heater 1 52 is CMOS controlled by boiling the valve heater contact 153. To open the valve, CMOS circuit 86 sends an electrical pulse to valve heater contact 153. The ring heater 152 is resistively heated until the liquid sample 119 is boiled. Boiling removes meniscus 120 from valve inlet 146 and begins to wet cover passage 94. Once the lid passage 94 is wetted, the capillary action is restored. The fluid sample 119 is filled with the passage 94 and flows through the valve down conduit 150 to the valve outlet 148, wherein the capillary driven liquid flow advances along the expansion outlet passage 160 into the hybridization and detection portion 52. The liquid sensor 174 is placed before and after the valve for diagnosis. -49- 201209407 It will be understood that once the boiling pilot valve is opened, it is impossible to close it again. However, since the LOC device 301 and the test module 10 are single-purpose devices, it is not necessary to close the valve. Culture section and nucleic acid amplification section The culture section 114 and the amplification section 112 are shown in Figs. 6, 7, 13, 14, 23, 24, 25, 35 to 45, 50, and 51. The culture portion 114 has a single, heated culture microchannel 210 that is etched to form a serpentine pattern in the MST channel layer 100 from the lower conduit opening 134 to the boiling pilot valve 106 (see Figures 13 and 14). Controlling the temperature of the culture section 114 enables a more efficient enzyme reaction. Similarly, the amplifying portion 112 has a heating microchannel 158 that is heated from the boiling pilot valve 106 to the boiling pilot valve 108 (see Figs. 6 and 14). Upon mixing, culture, and nucleic acid amplification, the valves stop flow to retain the target cells in the heated culture or amplification microchannels 2 1 or 158. The microchannel 蜿蜒 pattern also promotes (to some extent) the target cells to mix with the reagents. In the culture unit 114 and the amplification unit 112, the sample cells and reagents are heated by the heater 154 controlled by the pulse width modulation (PWM) CMOS circuit 86. The heated culture microchannel 210 and the amplification microchannel 158 are heated. Each of the turns has three independently operable heaters 154 (extending between the individual heater contacts 156 (see Figure 14)) which provide two-dimensional control of the input heat flux density. As best shown in Figure 51, heater 154 is supported on top layer 66 and buried in lower seal 64. The heater material is TiAl, but many other conductive metals are also available -50- 201209407. The elongated heater 154 is parallel to the longitudinal length of each channel portion forming a wide meandering meandering flow. In the amplification unit 1 1 2, each wide stream is operated as an independent PCR chamber via individual heater control. The use of a microfluidic device, such as the LOC device 301, requires a small volume of amplicons required by the analysis system to allow for the amplification of a small volume of amplification mixture in the amplification portion 1 1 2 . This volume is less than 400 nanoliters, and in most cases less than 170 nanoliters, ordinary. Less than 70 nanoliters, and in the case of LOC device 301, this volume is between 2 nanoliters and 30 nanoliters. Increased heating rate and better diffusion mixing The small cross-sectional area of each channel portion increases the heating rate of the amplification fluid mixture. All fluids are kept at a relatively short distance from the heater 154. The channel cross-sectional area (i.e., the cross section of the augmented microchannel 158) is reduced to less than 100,000 square microns, while the "high scale" equipment has a significantly higher heating rate. The lithography manufacturing technique allows the amplifying microchannel 158 to have a cross-section that provides a higher heating rate across less than 1 6,000 square microns. The 1 micron size feature is easily achieved with lithography manufacturing techniques. If only a very small amount of amplicons are required (as is the case in LOC device 301), the cross section can be reduced to less than 2,500 square microns. For the diagnostic analysis required for "sample entry, answer out" in 1 minute on a LOC device, the appropriate cross-sectional area across the fluid is 400 square microns and 1 square micron. The heater element in the 〇 amplification microchannel 158 heats the nucleic acid sequence at a rate greater than 80 absolute temperatures (K) per second, in most cases a rate of -51 - 201209407 per second greater than 100 K. The heater element heats the nucleic acid sequence at a rate greater than 1000 Torr per second, and in many cases, the heater element heats the nucleic acid sequence at a rate greater than 10,000 κ per second. Typically, based on the needs of the analytical system, the heater element is greater than 100,000 sec per second, greater than 1,000,000 sec per second, greater than 1,000,000 sec per second, and greater than 20. per second. 000.  000 Κ, greater than 40,000,000 每秒 per second, greater than 80 per second. 000.  The nucleic acid sequence is heated at a rate of 000 Κ and greater than 1 60,000,000 每秒 per second. A small cross-sectional area channel is also beneficial for the diffusive mixing of any reagent with the sample fluid. The diffusion of one liquid to another is most pronounced near the interface between the two liquids before the diffusion mixing is completed. The density of the phenomenon decreases with distance from the interface. A microchannel with a relatively small cross-sectional area across the direction of the fluid is used while maintaining the flow of the two fluids at the interface for rapid diffusion mixing. Reducing the channel cross-section to less than 100,000 square microns results in a significantly higher diffusion rate for "large scale" equipment. The lithography manufacturing technique allows the microchannels to have cross sections that traverse less than 1 6,000 square microns and substantially provide a higher mixing rate. If only a very small amount of amplicons are required (as in the LOC device 310), the cross section can be reduced to less than 2,500 square microns. For a diagnostic analysis of 1 to 2,000 probes on a LOC device and "sample entry, answer out" within 1 minute, the appropriate cross-sectional area across the fluid is 400 square microns and 1 Between square microns. Short thermal cycle time keeps the sample mixture close to the heater and uses a very small amount of fluid, resulting in a rapid thermal cycle during the nucleic acid amplification process. Each thermal cycle (i.e., adhesion and primer extension) is completed in 30 seconds for a target sequence of up to 150 (bp) in length. In most diagnostic analyses, the cycle time is less than 11 seconds and most is less than 4 seconds. For some of the base pair (bp) long target sequences, the thermal cycle time for some of the most common diagnostic LOC devices 30 is 〇·45 seconds to 1. A thermal cycle of between 5 seconds allows the test module to be acid-expanded for much less than 1 minute; often within 220 seconds. For most of the analysis, an accumulator is generated by the sample fluid entering the sample inlet within 80 seconds. For most of the analysis, sufficient yield is generated in 30 seconds. Upon completion of the predetermined number of amplification cycles, the amplicon is fed to the hybridization and detection portion 52 via the boiling priming valve. Hybridization Chambers Figures 52, 53, 54, 56 and 57 show hybridization chamber array 11 compartments 180. The hybridization and detection unit 52 has 24 > column 1 10 ' of the hybridization chamber 180 each having a hybrid-reactive FRET probe 186, an addition member 182, and an integrated photodiode 184. The intrusion photodiode 184 is derived from a target nucleic acid sequence or protein that hybridizes to the FRET probe 186. The material between the FRET probe 186 and the photodiode 184 must be transparent by independently controlling the light emitted by each photodiode U4 by the CMOS circuit 86. Therefore, the probe 186 and the wall portion 97 of the photodiode 184 must also be optically transparent to the emitted light. At l〇C, the base pair was denatured and the individual heat was 150. At this rate, the nucleus is amplified, and the amplified amplicon 108 is amplified by the fluorescent element in the fluorescent device. Between 301 - 53 - 201209407, the wall portion 97 is a thin layer of cerium oxide (about 5 μm) directly incorporated into each of the hybrid chambers 180. The needle-target hybridization still produces a plaque (see Figure 5 4). A small amount of detectable probe-target hybridization requires 270 picograms (corresponding to 900,000 cubic milligrams less than 60 picograms (corresponding to 200,000) ; less than 2. in the case of the LOC device 301 shown in less than 12 picograms (corresponding to 40,000 cubic micrometers).  To a volume of 9,000 cubic microns). Of course, shrinking allows for higher chamber densities and therefore more LOC devices in LOC device 301, having more than 1, 1 room at 1,500 microns by 1,500 micro-hybrids (ie, each room is less than meters) . The smaller volume also reduces the reaction time, making the speed faster. Another advantage of the small number of probes required for each chamber is that during manufacture, only a very small amount of probe solution needs to be configured to a probe solution that can be configured with a specific example of the LOC device of the present invention. After the nucleic acid amplification, the boiling priming valve 108 is flowed by the opening flow path 176 and flows into each of the hybridization chambers 180 (see FIG. 52 and the body sensor 187 indicating that the hybridization chamber is filled with the amplicon 182). After a sufficient hybridization time, the LED 26 is activated (see the opening in Fig. 180 to provide an optical window 136 to allow the FRET probe 1 8 4 to allow the detected fluorescent signal to pass through the chamber. The amount of the hybrid needle is less than a few meters. ), in most δ: square micron), ρ and picogram in Figure 7 (probe corresponding to the size of the hybridization chamber. Within the area of the meter, 2,250 square micro-crossing and detection is faster in each chamber of the LOC device) Genner ML or less and the amplicon along: 56). End point fluid and startable heating 2). Each hybrid cell leaf 186 was exposed to -54-201209407 excitation radiation (see Figures 52, 54 and 56). The LED 26 emits light for a sufficient period of time to induce a high intensity fluorescent signal from the probe. The photodiode 184 is shorted during excitation. After a preprogrammed delay of 300 (see Figure 2), the photodiode 184 is enabled and the fluorescent emission is detected in the absence of excitation light. The incident light on the active region 185 of the photodiode 184 (see Figure 54) is converted to a photocurrent that can be measured using the CMOS circuit 86. Each hybridization chamber 180 carries a probe for detecting a single target nucleic acid sequence. If desired, each hybridization chamber 180 can carry probes that detect more than 1,000 different targets. Alternatively, many or all of the hybridization chambers may carry the same probe that repeatedly detects the same target nucleic acid. Copying the probes in this manner in the hybridization chamber array 110 increases the confidence in the results obtained, and if desired, all results can be combined by photodiodes in adjacent hybridization chambers to obtain a single result. Those skilled in the art will appreciate that there may be from 1 to over 1,000 different probes on the hybrid chamber array 110, depending on the analytical details. Humidifier and Humidity Detector The inset AG of Figure 6 indicates the position of the humidifier 196. The humidifier is free of evaporation of reagents and probes during operation of the LOC device. As best shown in the enlarged view of Fig. 55, the water sump 188 is fluidly connected to the three evaporators 190. The water storage tank 188 is filled with molecular biological grade water and is sealed during manufacture. As best shown in Figures 55 and 75, by capillary action, water is drawn to the three lower tubes 1 94 and along the individual water supply channels 92 to the three upper tubes 193 of the evaporator 190. The meniscus is fixed to each of the upper ducts 193 to retain water. The evaporator has a ring heater -55 - 201209407 191' which surrounds the upper pipe 193. The annular heater 191 is connected to the CMOS circuit 86 to the top metal layer 195 (see Fig. 37) by the heat conducting column 3 76. At startup, the annular heater 191 heats the water causing the water to evaporate and wet the surrounding device. The position of the humidity sensor 232 is also shown in FIG. However, the best is shown in Figure 63. In the magnified image of the illustration AH in the middle, the humidity sensing device has a capacitive comb structure. The lithographically etched first electrode 296 and the lithographically etched second electrode 298 are opposed to each other such that their teeth are interleaved. The opposing electrodes form a capacitor having a capacitance that can be monitored by CMOS circuitry 86. As the humidity increases, the dielectric constant of the air gap between the electrodes increases, causing the capacitance to increase. Humidity Sensor 2 3 2 Adjacent to the hybridization chamber array 1 1 〇 (most important humidity measurement location) to slow the evaporation of the solution containing the exposed probe. The feedback sensor temperature and liquid sensors are integrated into the LOC device 301 as a whole to provide feedback and diagnostics during device operation. Referring to Fig. 35, nine temperature sensors 170 are assigned to all of the amplifying portion 112. Similarly, the culture portion 114 also has nine temperature sensors 170. These sensors each use a 2x2 array of bipolar junction transistors (BjT) to monitor fluid temperature and provide feedback to CMOS circuitry 86. The CMOS circuit 86 utilizes this to accurately control thermal cycling during nucleic acid amplification as well as thermal lysis and any heating during incubation. In the hybridization chamber 180, the CMOS circuit 86 uses the hybridization heater 182 as a temperature sensor (see Figure 56). The resistance of the hybrid heater 182 is -56 - 201209407 dependent, and the CMOS circuit 86 uses this to drive each hybrid chamber read. The LOC device 301 also has some MST channel liquid sensation and cover channel liquid sensors 208. Figure 35 shows the MST channel liquid sensing line at one end of each of the spaced turns in the heating 158. Preferably, as shown in Figure 37, the MST channel liquid sense is formed by the exposure of the top metal layer 195 in the CMOS structure 86 to form a counter electrode. The liquid closes the current between the electrodes to indicate the position of the sensor. Figure 25 shows that the enlarged transmissive TiAl electrode pairs 218 and 220 of the cap channel liquid sensor 208 are deposited between the top layers 66 2 18 and 220 as a gap 222 to open the circuit lacking liquid. The circuit is closed when the liquid is present and the CMOS is used to monitor the flow. The GRAVITATIONAL INDEPENDENCE test module 10 is self-directed. It does not need to be fastened to operate. The fluid flow driven by the capillary action and the lack of access to the auxiliary external conduit make the module a portable and easily portable portable reader such as a mobile phone. The gravity autonomous test module is also acceleration independent of all practical ranges. The area of the detector 174 that vibrates and can be used on a moving vehicle or on a mobile phone that is carried by the carrier _ valve is selected from the field of the detector 174 of the microchannel 174 of the temperature detector 174 of the 180. In contrast. Maintaining the 86 in the electrode condition smooth surface Help the device into a similar operation Resistant to impact and tampering. -57- 201209407 Hot Bend Actuated Valve Variant 1 Figures 64 and 65 show the first variation of the hot bend actuated valve. The hot bend actuated pressure pulse valve. Figure 65 is a schematic cross-sectional view taken along line 70-70 of Figure 64. The first variant hot bending actuated valve TiAl, TiN or similar electrically resistive heater material is constructed as a movable member in the form of a thermal bending actuator 404. The valve inlet 146 in the MST passage 90, however, stops at the meniscus orifice 306. The embodiment shown in Figures 64 and 65 has an orifice outside the member, but it can also be at least a movable member. In this state, the valve is closed. The CMOS circuit 86 is rushed to the thermal bending actuator 304 to open the valve. The CMOS actuator 304 is coupled to the cantilever portion 162 of the top layer 66 (fixed and free at the inlet end). The differential thermal expansion bends the cantilever portion toward the passivation layer 88 to move rapidly. The fluid draw prevents the liquid sample 3, and the liquid 119 is ejected to the cover via the orifice 306. The cantilever portion 1 62 moves back and forth to the static and displaced position to ensure that the meniscus 120 is released from the orifice 306. Sample 1 19 is in 94, until its surface is wetted and capillary action drives the flow to the top cover channel 94, then passes through the valve down tube 150 and 148 ° hot bends to actuate the valve variant 2 Figures 66 and 67 show thermal bending A second thermal bending actuated surface tension valve of the movable valve 308. 67 is an ί 302 in FIG. 66, which is shown along line 032 having a CMOS start sample stream entering 120 fixed to the display movable portion to define a series of electrical pulses that are thermally bent at the end of the aperture to be 162 such that they are long 1 1 9 reflux: 94. Allow a period of time to accumulate in the cover channel. The sample flow to the valve outlet variant is shown in cross section along the line -58- 201209407 72-72. The second variant hot bend actuated valve 308 has a CMOS activated thermal bending actuator 304 constructed of TiAl, TiN or similar resistive heater material. The sample flows along the MST passage 90 and flows into the valve inlet 146 of the valve 151. The liquid sample 119 is filled with the passage 94 but stops when the meniscus 120 is fixed to the orifice 306. In this state, the valve closes. To open the valve, the CMOS circuit 86 transmits a series of electrical pulses to the thermal bending actuator 304. The CMOS activated thermal bending actuator 304 is coupled to the top layer 66 (which is fixed at the inlet end and free at the orifice end). 162. The differential thermal spread bends the cantilever portion 162 such that the aperture 306 moves toward the passivation layer 88. The orifice 306 attracts the meniscus 120 from the lid channel 94 into the MST channel 90 to reestablish the capillary flow. To reestablish the capillary flow, the opposing sidewalls of the channel converge into a narrow portion immediately downstream of the movable member such that when the movable member is moved to the actuated position, the meniscus contacts the narrow portion. The liquid sensor 1 74 is placed before or after the debug valve. Hot Bend Actuated Valve Variant 3 Figures 68 and 69 show a third variation of the hot bend actuated valve 312, 'which is a hot bend actuated surface tension valve' and for the liquid sample to be retained in the cover channel 94 Time. Figure 69 is a schematic cross-sectional view along line 74_74 shown in Figure 68. The third variation of the thermal bend actuated valve 312 is similar to the second variant hot bend actuated valve 308 except that the valve inlet 146 is located in the cover passage 94. The sample flows along the cover channel 94 and flows into the valve inlet 146° upstream of the CMOS-activated thermal bending actuator 304. The liquid sample 119 is filled with the channel 94, but stops at the meniscus 120 and is fixed to the orifice 3〇6. Time. In this state -59- 201209407, the valve is closed. To open the valve, the CMOS circuit 86 is transferred to the thermal bending actuator 3 〇4. The cantilever portion of the thermal bending actuator 3〇4 (66 is fixed at the inlet end and free at the orifice end) thermally expands the cantilever portion 162 such that the orifice 306 is blunt. The orifice 306 draws the meniscus 120 from the lid passage 94 into the 90 to reestablish the capillary flow along the valve outlet 148. The name 174 is placed behind the debug valve.

核酸擴增變體 直接PCR 傳統上,於製備反應混合物之前,PCR需要 標靶DNA。然而,適當地改變化學及樣本濃度, 少量的DNA純化實施核酸擴增,或進行直接擴 PCR進行核酸擴增時,此方法便稱做直接PCR 裝置中經控制的於常溫下實施核酸擴增時,此方 恆溫擴增。當用於LOC裝置時,尤其是關於所 計的簡化時,直接核酸擴增技術具相當多的優 PCR或是直接恆溫擴增之擴增化學調整包括增加 度、使用高活性及高進行性之聚合酶及與潛在聚 劑螯合之添加物。稀釋樣本中之抑制劑亦爲重要 爲利用直接核酸擴增技術,LOC裝置設計倂 外的特徵。第一特徵爲試劑貯槽(例如,圖8中的 ,其經適當地尺寸化以供應充分量之擴增反應混 劑,使得可能影響擴增化學之樣本成分的最終濃 連串電脈 合至頂層 162。示 :層88移 MST通道 體感測器 大量純化 可利用最 增。當以 。於 LOC 法爲直接 需流體設 勢。直接 緩衝液強 合酶抑制 的。 入兩個額 ]貯槽5 8 ) 合或稀釋 度足夠低 -60- 201209407 以成功地進行核酸擴增。非細胞樣本成分的所欲稀釋度爲 5倍至20倍。當適度確認標靶核酸序列的濃度被維持於足 夠高以用於擴增及檢測時,使用不同的LO C結構,例如 圖4中的病原體透析部70。於此具體例中(進一步於圖6 中說明),於樣本萃取部290之上游使用有效地濃縮足夠 小而得以進入擴增部292之病原體的濃度並將較大細胞排 出至廢料容器76之透析部。於另外的具體例中,使用透 析部以選擇性地去除血漿中之蛋白質及鹽而保留關注的細 胞。 支持直接核酸擴增之第二LOC結構性特徵爲設計通 道的深寬比以調整樣本及擴增混合成分之間的混合比。例 如,爲確保經由單一混合步驟之相關於樣本之抑制劑的稀 釋爲較佳的5倍-20倍範圍中,設計樣本及試劑通道之長 度與截面,以使混合起始位置之上游的樣本通道構成之流 組抗較試劑混合物流動之通道的流組抗高出4倍-19倍。 經由控制設計幾合而容易地控制微通道中之流組抗。針對 恆定截面積,微通道之流組抗隨通道長度而線性地增加。 對於混合設計而言爲重要的是,微通道中之流組抗較多取 決於最小截面積尺寸。例如,當深寬比極爲不均一時,方 形截面之微通道的流組抗與最小垂直尺寸之立方成反比》 反轉錄酶PCR(RT-PCR) 當分析或萃取之樣本核酸種類爲RNA時,諸如來自 RNA病毒或信使RNA,於PCR擴增之前必須先將RNA反 -61 - 201209407 轉錄爲互補DNA(cDNA)。可於與PCR相同之室中實施反 轉錄反應(一步驟RT-PCR),或是其可爲分別的起始反應( 二步驟RT-PCR)。於此所述之LOC變體中,可藉由添加 反轉錄酶及聚合酶至試劑貯槽62以及程式化加熱器1 54 以先循環反轉錄步驟並接續進行核酸擴增步驟,而簡單地 實施一步驟RT-PCR。藉由利用試劑貯槽58來儲存及分配 緩衝液、引子、dNTP及反轉錄酶,以及利用培養部114 以用於反轉錄步驟,接著於擴增部112中以普通方式進行 擴增’亦可簡單地完成二步驟RT-PCR。 恆溫核酸擴增 針對一些應用,較佳之核酸擴增方法爲恆溫核酸擴增 ’因此不需於各種溫度循環重複地循環反應成分,而是將 擴增部維持於常溫下,普通爲約37°C至41。(:。已描述一 些恆溫核酸擴增方法,包括股取代擴增(SDA)、轉錄介導 擴增(TMA)、依賴核酸序列擴增(NASBA)、重組酵素聚合 酶擴增(RPA)、解旋恆溫DNA擴增(HDA)、滾動循環擴增 (RCA)、分枝型擴增(RAM)及環形恆溫擴增(LAMP) ’以及 此等之任何或其他恆溫擴增方法可特別用於本文之LOC 裝置之具體例中。 爲實施恆溫核酸擴增,鄰接擴增部之試劑貯槽60及 62將載有用於特定恆溫方法之適當的試劑而不是載有Pcr 擴增混合及聚合酶。例如,針對SDA,試劑貯槽60含有 擴增緩衝液、引子及dNTP,以及試劑貯槽62含有適當的 -62- 201209407 核酸內切酶及外切-DNA聚合酶。針對RPA,試劑貯槽60 含有擴增緩衝液、引子、dNTP及重組酶蛋白,及試劑貯 槽62含有股取代DNA聚合酶,諸如。同樣地,針對 HDA,試劑貯槽60含有擴增緩衝液、引子及dNTP,以及 貯槽62含有適當的DNA聚合酶及解旋酶(而非使用熱)以 解開雙股DNA。熟此技藝者將了解以任何適用於核酸擴增 法之方式,可將必要試劑分配於兩個試劑貯槽。 針對自RNA病毒,諸如HIV或C型肝炎病毒之病毒 核酸的擴增,NASBA或TMA係適當的因其不需先將RNA 轉錄成cDNA。於此實例中,試劑貯槽60塡充有擴增緩衝 液、引子及dNTP,以及試劑貯槽62塡充有RNA聚合酶 、反轉錄酶及任意的RNase Η。 針對一些恆溫核酸擴增類型,於維持恆溫核酸擴增之 溫度以利反應續行之前,必須採用初始變性循環以分開雙 股DNA模板。因可藉擴增微通道158中之加熱器154嚴 密地控制擴增部1 1 2中之混合的溫度,於本文中描述之 LOC裝置之所有具體例中均.可輕易完成此變性循環(見圖 14) ° 恆溫核酸擴增對於樣本中潛在的抑制劑之耐受性較高 ,因而通常適用於自所欲樣本之直接核酸擴增。因此,恆 溫核酸擴增尤其有用於分別顯示於圖83、84及85中之 LOC 變體 XLIII 67 3、LOC 變體 XLIV 674 及 LOC 變體 XLVII 677。直接恆溫擴增亦可與如圖83及85中所示之 —或多個預擴增透析步驟7〇、686或682及/或如圖84中 -63- 201209407 所示之預-雜交透析步驟682組合,以分別於核酸擴 前有助於樣本中之標靶細胞的部份濃縮或是於樣本進入 交室陣列110前移除不想要的細胞碎片。熟此技藝者將 解可使用預-擴增透析及預-雜交透析之任何組合。 亦可以平行的擴增部,諸如,圖79、80及81中所 述者,實施恆溫核酸擴增。多工及一些恆溫核酸擴增方 ,諸如LAMP,係與初始反轉錄步驟相容以擴增RNA。 其他設計變體 具有主動(機械性)閥之試劑貯槽 LOC裝置之特定實施例使用熱彎曲致動閥(見圖64 69),而非表面張力閥(見圖15及22),來將試劑保持於 槽中。圖71顯示經由圖68及69中所示之第三變體設 312的三個熱彎曲致動閥而與標靶通道74呈流體連通之 劑貯槽344。試劑貯槽344塡充有試劑,其流入蓋通道 而至熱彎曲致動閥312之第三變體,其中彎液面係形成 各CMOS致動之熱彎曲致動器304之孔口 306。流體樣 沿標靶通道74流動通過汲取孔96。在樣本流抵達汲取 96之前,熱彎曲致動閥3 1 2的第三變體打開以及試劑流 MST通道90而至汲取孔96。當樣本流到達汲取孔96 ,試劑開始塡充標靶通道74。合倂流沿標靶通道74續 流動。 螢光檢測系統之另外的細節 之 雜 了 槪 法 至 貯 計 試 94 於 本 孔 經 時 行 -64- 201209407 圖58及59顯示雜交-反應性FRET探針236。此等經 常被稱爲分子信標及係爲由單股核酸產生之莖-及-環探針 ,並於與互補核酸雜交時發螢光。圖58顯示於與標靶核 酸序列23 8雜交之前之單一FRET探針236。探針具有環 240、莖242、於5'端之螢光團2M及於3'端之淬熄劑24 8 。環240包含與標靶核酸序列23 8互補之序列。探針序列 兩側的互補序列黏著在一起以形成莖242。 於缺少互補標靶序列時,如圖5 8中所示者,探針維 持閉合。莖242保持螢光團-淬熄劑對彼此相當接近,使 得大量的共振能量可於彼此間傳輸,而當以激發光244照 射時實質地消除螢光團發營光團的能力。 圖59顯示呈開放或經雜交組態的FRET探針236.。於 與互補標靶核酸序列238雜交時,莖-及-環結構被破壞, 螢光團及淬熄劑於空間上分離,因此恢復螢光團246發螢 光的能力。光學檢測地螢光發射250以作爲探針已雜交的 指標。 探針以極高專一性與互補標靶雜交,因探針之莖螺旋 係設計成較具單一不互補核苷酸之探針-標靶螺旋穩定。 因雙股DNA相對堅固’立體上探針-標靶螺旋與莖螺旋不 可能共存。 引子-聯結的探針Nucleic Acid Amplification Variants Direct PCR Traditionally, PCR requires target DNA prior to preparation of the reaction mixture. However, when the chemical and sample concentrations are appropriately changed, a small amount of DNA is purified to perform nucleic acid amplification, or a direct amplification PCR is used for nucleic acid amplification, the method is referred to as a controlled direct nucleic acid amplification at a normal temperature in a direct PCR device. This side is thermostatically amplified. When used in LOC devices, especially with regard to the simplification of the calculations, the direct nucleic acid amplification technique has considerable optimization PCR or direct constant temperature amplification. The amplification chemical adjustment includes increased degree, high activity and high progress. A polymerase and an additive that chelate with a potential polymeric agent. Inhibitors in diluted samples are also important for the design of LOC devices using direct nucleic acid amplification techniques. The first feature is a reagent reservoir (eg, in Figure 8, which is appropriately sized to supply a sufficient amount of amplification reaction mixture such that the final connotation of the sample components that may affect the amplification chemistry is pulsed to the top layer 162. Show: layer 88 shift MST channel body sensor can be used in the largest amount of purification. When the LOC method is directly required for fluid potential. Direct buffer strong enzyme inhibition. Into two amounts] storage tank 5 8 The combination or dilution is sufficiently low -60-201209407 to successfully perform nucleic acid amplification. The desired dilution of the non-cellular sample component is 5 to 20 times. When the concentration of the target nucleic acid sequence is moderately confirmed to be sufficiently high for amplification and detection, a different LO C structure, such as the pathogen dialysis section 70 of Figure 4, is used. In this specific example (further illustrated in Figure 6), dialysis is performed upstream of the sample extraction section 290 by effectively concentrating the concentration of the pathogen that is sufficiently small to enter the amplification section 292 and discharging the larger cells to the waste container 76. unit. In another embodiment, a dialysis unit is used to selectively remove proteins and salts in the plasma to retain the cells of interest. A second LOC structural feature that supports direct nucleic acid amplification is to design the aspect ratio of the channel to adjust the mixing ratio between the sample and the amplified mixture. For example, to ensure that the dilution of the inhibitor associated with the sample via a single mixing step is in the range of preferably 5 to 20 times, the length and cross section of the sample and reagent channels are designed such that the sample channel upstream of the mixing start position The composition of the flow group is 4 to 19 times higher than that of the channel through which the reagent mixture flows. The flow group resistance in the microchannel is easily controlled by controlling the design. For a constant cross-sectional area, the flow resistance of the microchannel increases linearly with the length of the channel. It is important for the hybrid design that the flow group resistance in the microchannel is more dependent on the minimum cross-sectional area size. For example, when the aspect ratio is extremely heterogeneous, the flow resistance of the microchannel of the square cross section is inversely proportional to the cube of the smallest vertical dimension. Reverse transcriptase PCR (RT-PCR) When the sample nucleic acid species analyzed or extracted is RNA, For example, from RNA virus or messenger RNA, RNA trans-61 - 201209407 must be transcribed into complementary DNA (cDNA) prior to PCR amplification. The reverse transcription reaction (one-step RT-PCR) can be carried out in the same chamber as the PCR, or it can be a separate initial reaction (two-step RT-PCR). In the LOC variant described herein, the reverse transcription step and the subsequent step of performing the nucleic acid amplification step can be performed by adding a reverse transcriptase and a polymerase to the reagent storage tank 62 and the stylized heater 1 54 to simply perform a nucleic acid amplification step. Step RT-PCR. The storage and distribution of the buffer, the primer, the dNTP, and the reverse transcriptase by the reagent storage tank 58 and the use of the culture portion 114 for the reverse transcription step, followed by amplification in the ordinary portion of the amplification portion 112 may be simple. The two-step RT-PCR was completed. Constant temperature nucleic acid amplification For some applications, the preferred nucleic acid amplification method is constant temperature nucleic acid amplification'. Therefore, it is not necessary to repeatedly circulate the reaction components in various temperature cycles, but the amplification portion is maintained at normal temperature, usually about 37 ° C. To 41. (: Some thermostatic nucleic acid amplification methods have been described, including strand-substituted amplification (SDA), transcription-mediated amplification (TMA), nucleic acid-dependent sequence amplification (NASBA), recombinant enzyme polymerase amplification (RPA), and solutions. Spin-regulated DNA amplification (HDA), rolling-cycle amplification (RCA), branched-type amplification (RAM), and circular thermostat amplification (LAMP)', and any or other isothermal amplification methods of this type can be specifically used in this paper. In a specific example of the LOC device, in order to perform constant temperature nucleic acid amplification, the reagent storage tanks 60 and 62 adjacent to the amplification unit will carry an appropriate reagent for a specific constant temperature method instead of carrying the PCR amplification mix and the polymerase. For example, For SDA, reagent reservoir 60 contains amplification buffer, primers, and dNTPs, and reagent reservoir 62 contains the appropriate -62-201209407 endonuclease and exo-DNA polymerase. For RPA, reagent reservoir 60 contains amplification buffer , primer, dNTP and recombinase protein, and reagent reservoir 62 contain a stock-substituted DNA polymerase, such as, for HDA, reagent reservoir 60 contains amplification buffer, primers, and dNTPs, and reservoir 62 contains the appropriate DNA polymerase. Reconciliation The rotase (rather than the heat) is used to unravel the double-stranded DNA. Those skilled in the art will appreciate that the necessary reagents can be dispensed into two reagent reservoirs in any manner suitable for nucleic acid amplification. For self-RNA viruses, such as HIV Or amplification of viral nucleic acid of hepatitis C virus, NASBA or TMA is suitable because it does not need to first transcribe RNA into cDNA. In this example, reagent storage tank 60 is filled with amplification buffer, primer and dNTP, and The reagent storage tank 62 is filled with RNA polymerase, reverse transcriptase and any RNase Η. For some types of thermostatic nucleic acid amplification, an initial denaturation cycle must be used to separate the double before the temperature of the constant temperature nucleic acid amplification is maintained to facilitate the reaction. Strand DNA template. Since the temperature of the mixing in the amplification section 1 1 2 can be tightly controlled by the heater 154 in the amplification microchannel 158, this can be easily accomplished in all of the specific examples of the LOC apparatus described herein. Denaturation cycle (see Figure 14) ° Constant temperature nucleic acid amplification is more tolerant to potential inhibitors in the sample and is therefore generally suitable for direct nucleic acid amplification from a desired sample. Therefore, thermostatic nucleic acid amplification is especially useful. LOC variant XLIII 67 3, LOC variant XLIV 674 and LOC variant XLVII 677 shown in Figures 83, 84 and 85, respectively. Direct thermostatic amplification can also be as shown in Figures 83 and 85 - or multiple The preamplification dialysis step 7〇, 686 or 682 and/or the pre-hybridization dialysis step 682 shown in Fig. 84-63-201209407 is combined to facilitate the expansion of the nucleic acid to facilitate the portion of the target cell in the sample. The fractions are concentrated or the unwanted cell debris is removed before the sample enters the chamber array 110. Those skilled in the art will be able to use any combination of pre-amplification dialysis and pre-hybrid dialysis. Thermostatic nucleic acid amplification can also be performed in parallel amplifications, such as those described in Figures 79, 80 and 81. Multiplex and some thermostatic nucleic acid amplifications, such as LAMP, are compatible with the initial reverse transcription step to amplify RNA. Other Design Variants A specific embodiment of a reagent sump LOC device with active (mechanical) valves uses a hot bend actuated valve (see Figure 64 69) instead of a surface tension valve (see Figures 15 and 22) to hold the reagents In the slot. Figure 71 shows the agent sump 344 in fluid communication with the target channel 74 via the three thermal bend actuated valves of the third variant 312 shown in Figures 68 and 69. The reagent reservoir 344 is filled with reagents that flow into the cover channel to a third variant of the thermal bend actuated valve 312, wherein the meniscus forms an aperture 306 of each CMOS actuated thermal bending actuator 304. The fluid sample flows through the extraction aperture 96 along the target channel 74. Before the sample stream reaches the draw 96, the third variant of the hot bend actuated valve 3 1 2 opens and the reagent flow MST channel 90 to the draw hole 96. When the sample stream reaches the extraction well 96, the reagent begins to fill the target channel 74. The merged flow continues along the target channel 74. Additional details of the fluorescence detection system are complicated by the enthalpy method to the storage test. 94 - 201209407 Figure 58 and 59 show the hybridization-reactive FRET probe 236. These are often referred to as molecular beacons and are stem-and-loop probes produced from single-stranded nucleic acids and fluoresce when hybridized to complementary nucleic acids. Figure 58 shows a single FRET probe 236 prior to hybridization to the target nucleic acid sequence 238. The probe has a ring 240, a stem 242, a fluorophore 2M at the 5' end, and a quencher 24 8 at the 3' end. Loop 240 comprises a sequence that is complementary to the target nucleic acid sequence 238. The complementary sequences flanking the probe sequence are joined together to form stem 242. In the absence of a complementary target sequence, as shown in Figure 58, the probe remains closed. The stems 242 maintain the fluorophore-quenching agents relatively close to each other such that a large amount of resonant energy can be transmitted between each other, while substantially eliminating the ability of the fluorophore to emit light rays when illuminated by the excitation light 244. Figure 59 shows the FRET probe 236. in an open or hybridized configuration. Upon hybridization to the complementary target nucleic acid sequence 238, the stem-and-loop structure is disrupted, and the fluorophore and quencher are spatially separated, thereby restoring the ability of the fluorophore 246 to fluoresce. The fluorescent emission 250 is optically detected as an indicator that the probe has hybridized. The probe hybridizes to the complementary target with very high specificity, since the stem helix of the probe is designed to be stable to the probe-target helix with a single non-complementary nucleotide. Because the double-stranded DNA is relatively robust, the stereoscopic probe-target helix and the stem helix cannot coexist. Primer-coupled probe

引子-聯結的莖-及-環探針及引子-聯結的線性探針, 亦稱作蠍子型探針,爲分子信標之替代物且可用於LOC -65- 201209407 裝置之即時及定量核酸擴增。及時擴增可直接實施於LOC 裝置之雜交室中。使用引子-聯結的探針之優點爲探針元 件實體地聯結至引子,因此於核酸擴增其間僅需單次雜交 而不需要分別的引子雜交及探針雜交。此確保即時有效地 反應並產生更強的信號、更短的反應時間,且當使用分別 的引子及探針時具有更佳的識別度。於製造期間,探針( 與聚合酶及擴增混合)將沉積於雜交室180中且不需LOC 裝置上之獨立的擴增部。替代性地,擴增部未被使用或用 於其他反應。 引子-聯結的線性探針 圖86及87分別顯示首輪核酸擴增期間之引子-聯結 的線性探針692及於後續核酸擴增期間之雜交的組態。參 照圖86,引子-聯結的探針692具有雙股莖區段242。其 中一股結合引子聯結的探針序列696,其係與標靶核酸 696上的區域同源且以螢光團246標記其5'端,以及經由 擴增阻斷物694聯結其3’端至寡核苷酸引子700。以淬熄 劑部分248標記莖242之另外一股的3’端。於完成首輪核 酸擴增之後,利用目前爲互補的序列698,探針可環繞且 雜交至延伸的股。於首輪核酸擴增期間,寡核苷酸引子 700黏著至標靶DNA 23 8(圖86)並接著延伸而形成含有探 針序列及擴增產物兩者之DNA股。擴增阻斷物6P4防止 聚合酶之讀取通過及拷貝探針區域696。於接續的變性時 ,雜交之延伸的寡核苷酸引子700/模板及引子-聯結的線 -66- 201209407 性探針之雙股莖242分離’因此釋出萍熄劑248。—但用 於黏著及延伸步驟的溫度降低’引子-聯結的線性探針之 引子聯結的探針序列696捲曲並與延伸的股上之擴增的互 補序列698雜交,以及檢測出的螢光指出標靶DNA存在 。未延伸的引子-聯結的線性探針保留其雙股莖且螢光保 持淬熄。此檢測方法特別適於快速檢測系統’因其依賴單 一分子製程。 引子-聯結的莖-及-環探針 圖88A至88F顯示引子-聯結的莖-及-環探針704之 操作。參照圖88A,引子-聯結的莖-及-環探針704具有互 補雙股DNA之莖242及合倂探針序列的環240。以螢光團 246標記其中一個莖股708之5'端。以3'-端淬熄劑248標 記另一股71〇,且另一股710帶有擴增阻斷物694及寡核 苷酸引子700兩者。於初始變性相(見圖8 8B),標靶核酸 23 8之股及引子-聯結的莖242分開莖-及-環探針704。當 溫度冷卻以用於黏著相時(見圖88C),引子-聯結的莖-及-環探針704上之寡核苷酸引子700與標靶核酸序列23 8雜 交。於延伸期間(見圖88D),合成標靶核酸序列238之互 補706以形成含有探針序列704及擴增的產物兩者之DNA 股。擴增阻斷物694防止聚合酶之讀取通過及拷貝探針區 域7〇4。變性之後,當接著黏著探針時,引子-聯結的莖-及-環探針之環區段240之探針序列(見圖88F)黏著至延伸 的股上之互補序列7 0 6。此組態使得螢光團2 4 6與淬熄劑 -67- 201209407 248相距甚遠,造成螢光發射的顯著增強。 控制探針 雜交室陣列1 1 〇包括具有用於分析品質控制之正及陰 性對照探針之一些雜交室180。圖100及1〇1槪要說明無 螢光團796之陰性對照探針,以及圖1〇2及103描述無淬 熄劑798之陽性對照探針。正及陰性對照探針具有如前述 FRET探針之莖-及-環結構。然而,不論探針雜交成爲開 放組態或保持封閉,將永遠自陽性對照探針798發射螢光 信號25〇且陰性對照探針796從不發射螢光信號250。 參照圖1〇〇及101,陰性對照探針796不具螢光團(及 可具有或不具有淬熄劑248)。因此,不論標靶核酸序列 23 8與探針雜交(見圖101)或是探針保持其莖-及-環組態( 見圖100),可忽略對激發光244之回應。替代性地,可設 計陰性對照探針7 96使得其永遠保持淬熄。例如,藉由合 成環240而得到將不會與所硏究的樣本中之任何核酸序列 .雜交之探針序列,探針分子之莖242將與其自身重新雜交 ,及螢光團及淬熄劑將保持緊密相鄰且將不會發射可見的 螢光。此負控制信號對應於來自雜交室1 8 0的低階發射, 於雜交室1 8 0中探針未經雜交但是淬熄劑未淬熄來自報導 劑的所有發射。 相反地,建構無淬熄劑之陽性對照探針798,如圖 102及103中所示者。回應激發光244,不論陽性對照探 針7 98是否與標靶核酸序列2 3 8雜交,無物質使來自螢光 -68- 201209407 團246之螢光發射250淬熄。 圖52顯示雜交室陣列110中的正及陰性對照探針(分 別爲3 78及3 80)之可行分佈。控制探針378及3 80係置於 雜交室180中並定位成橫越雜交室陣列110之線。然而, 陣列內之控制探針的配置係任意的(如同雜交室陣列 Π 0 之組態)。 螢光團設計 需要具長螢光壽命之螢光團以允許激發光具足夠時間 以衰變至較致能光感測器44時之螢光發射的強度爲低之 強度,藉此提高充分的信號對雜訊比。而且,較長的螢光 壽命代表較大之整合的螢光子計數。 螢光團246(見圖59)之螢光壽命大於100奈秒、經常 大於200奈秒、更常見爲大於300奈秒,以及於大多數的 情況中爲大於4〇〇奈秒。 以過渡金屬或鑭系金屬爲底的金屬-配位子錯合物具 長壽命(自數百奈秒至毫秒)、適當的量子產率,以及高熱 、化學及光化學穩定性,此等特性均爲相關於螢光檢測系 統需求之有利特性。 以過渡金屬離子釕(Ru(II))爲底之經特別地徹底硏究 之金屬-配位子錯合物爲參(2,2’-聯吡啶)釕(II)([Ru(bpy)3]2 + ), 彼之壽命爲約1μ§。此錯合物可購自Biosearch Technologies, 其商品名爲Pulsar 650。 -69- 201209407 表1 : Pulsar 65 0(釕螯合物)之光物理性質Primer-linked stem-and-loop probes and primer-linked linear probes, also known as scorpion-type probes, are alternatives to molecular beacons and can be used for real-time and quantitative nucleic acid amplification in LOC-65-201209407 devices. increase. Timely amplification can be performed directly in the hybridization chamber of the LOC device. The advantage of using a primer-ligated probe is that the probe element is physically linked to the primer, so that only a single hybridization is required during nucleic acid amplification without the need for separate primer hybridization and probe hybridization. This ensures an immediate and efficient response and produces a stronger signal, shorter reaction times, and better discrimination when using separate primers and probes. During manufacture, the probe (mixed with the polymerase and amplification) will be deposited in the hybridization chamber 180 without the need for a separate amplification portion on the LOC device. Alternatively, the amplification portion is not used or used for other reactions. Primer-Linked Linear Probes Figures 86 and 87 show the configuration of the primer-ligated linear probe 692 during the first round of nucleic acid amplification and the hybridization during subsequent nucleic acid amplification, respectively. Referring to Figure 86, the primer-coupled probe 692 has a double stem section 242. One of the probe sequences 696, which binds to the primer, is homologous to the region on the target nucleic acid 696 and is labeled with its 5' end by fluorophore 246, and its 3' end is coupled via amplification blocker 694 to Oligonucleotide primer 700. The other 3' end of the stem 242 is labeled with a quencher portion 248. After completion of the first round of nucleic acid amplification, using the currently complementary sequence 698, the probe can wrap around and hybridize to the extended strand. During the first round of nucleic acid amplification, oligonucleotide primer 700 is attached to target DNA 23 8 (Fig. 86) and then extended to form a DNA strand containing both the probe sequence and the amplification product. The amplification blocker 6P4 prevents the reading of the polymerase through and copying the probe region 696. Upon subsequent denaturation, the hybridized extended oligonucleotide primer 700/template and the primer-linked strand-66-201209407 probe of the double stem 242 are separated' thus releasing the butyl 248. - but the temperature for the adhesion and extension steps is lowered 'the primer-linked linear probe primer-linked probe sequence 696 is curled and hybridized to the amplified complementary sequence 698 on the extended strand, and the detected fluorescent indicator Target DNA is present. The unextended primer-linked linear probe retains its double stem and the fluorescence remains quenched. This test method is particularly suitable for rapid detection systems' because it relies on a single molecular process. Primer-Linked Stem-and-Ring Probes Figures 88A through 88F show the operation of the primer-coupled stem-and-loop probes 704. Referring to Fig. 88A, the primer-ligated stem-and-loop probe 704 has a stem 240 that complements the double stranded DNA and a loop 240 of the combined probe sequence. The 5' end of one of the stem strands 708 is labeled with a fluorophore 246. Another 71 标 is labeled with the 3'-end quencher 248, and the other 710 carries both the amplification blocker 694 and the oligonucleotide primer 700. In the initial denaturing phase (see Figure 8B), the strands of the target nucleic acid 23 and the primer-coupled stem 242 separate the stem-and-loop probe 704. When the temperature is cooled for the adhesive phase (see Figure 88C), the oligonucleotide primer 700 on the primer-linked stem-and-loop probe 704 is hybridized to the target nucleic acid sequence 23 8 . During extension (see Figure 88D), complement 706 of the target nucleic acid sequence 238 is synthesized to form a DNA strand containing both the probe sequence 704 and the amplified product. Amplification blocker 694 prevents the polymerase from reading through and copying the probe region 7〇4. After denaturation, the probe sequence of the loop-coupled stem-and-loop probe loop segment 240 (see Figure 88F) is adhered to the complementary sequence of the extended strand 766 when the probe is subsequently attached. This configuration makes the fluorophore 246 far removed from the quencher -67-201209407 248, resulting in a significant increase in fluorescence emission. Control Probes The hybridization chamber array 1 1 includes some hybridization chambers 180 with positive and negative control probes for analytical quality control. Figures 100 and 1B illustrate negative control probes without fluorophore 796, and Figures 1A and 103 depict positive control probes without quencher 798. The positive and negative control probes have a stem-and-loop structure as described above for the FRET probe. However, whether the probe hybridizes to an open configuration or remains closed, the fluorescent signal 25 will always be emitted from the positive control probe 798 and the negative control probe 796 will never emit the fluorescent signal 250. Referring to Figures 1A and 101, the negative control probe 796 does not have a fluorophore (and may or may not have a quencher 248). Thus, regardless of whether the target nucleic acid sequence 23 8 hybridizes to the probe (see Figure 101) or the probe maintains its stem-and-loop configuration (see Figure 100), the response to excitation light 244 can be ignored. Alternatively, the negative control probe 7 96 can be designed such that it remains quenched forever. For example, by synthesizing loop 240, a probe sequence will be obtained that will not hybridize to any of the nucleic acid sequences in the sample in question, and stem 242 of the probe molecule will rehybridize with itself, and the fluorophore and quencher Will remain close to each other and will not emit visible fluorescence. This negative control signal corresponds to a low order emission from the hybridization chamber 180, where the probe is not hybridized but the quencher does not quench all of the emission from the reporter. Conversely, a positive control probe 798 without quenching agent was constructed, as shown in Figures 102 and 103. Back to stress luminescence 244, regardless of whether positive control probe 7 98 hybridizes to target nucleic acid sequence 238, no material quenches the fluorescent emission 250 from fluoro-68-201209407 cluster 246. Figure 52 shows a possible distribution of positive and negative control probes (3 78 and 380, respectively) in hybridization chamber array 110. Control probes 378 and 380 are placed in hybridization chamber 180 and positioned across the line of hybridization chamber array 110. However, the configuration of the control probes within the array is arbitrary (like the configuration of the hybrid chamber array Π 0). The fluorophore design requires a fluorophore with a long fluorescence lifetime to allow the excitation light to have sufficient time to decay to a lower intensity than the intensity of the fluorescent emission when the photosensor 44 is enabled, thereby increasing the sufficient signal. For the noise ratio. Moreover, a longer fluorescence lifetime represents a larger integrated fluorescence count. Fluorescence lifetime 246 (see Figure 59) has a fluorescence lifetime greater than 100 nanoseconds, often greater than 200 nanoseconds, more typically greater than 300 nanoseconds, and in most cases greater than 4 nanoseconds. Metal-coordination complexes based on transition metals or lanthanide metals have long lifetimes (from hundreds of nanoseconds to milliseconds), appropriate quantum yields, and high thermal, chemical, and photochemical stability. Both are advantageous features related to the needs of fluorescent detection systems. The particularly complex metal-coordination complex based on the transition metal ion ruthenium (Ru(II)) is ginseng (2,2'-bipyridyl) ruthenium (II) ([Ru(bpy) 3] 2 + ), and its lifetime is about 1 μ§. This complex is commercially available from Biosearch Technologies under the trade name Pulsar 650. -69- 201209407 Table 1: Photophysical properties of Pulsar 65 0 (钌 chelate)

參數 符號 値 單元 吸收波長 ^abs 460 nm 發射波長 λβπι 650 nm 吸光係數 Ε 14800 M·1 cm·1 螢光壽命 Xf 1.0 μδ 量子產率 Η 1(去氧的) N/A 鑭系金屬-配位子錯合物,铽螯合物,已成功地顯示 作爲FRET探針系統中的螢光報導劑,且具有Ι600μ5之長 壽命。 表2:鉞螯合物之光物理性質Parameter symbol 値 unit absorption wavelength ^abs 460 nm emission wavelength λβπι 650 nm absorption coefficient Ε 14800 M·1 cm·1 fluorescence lifetime Xf 1.0 μδ quantum yield Η 1 (deoxidized) N/A lanthanide metal-coordination The sub-complex, ruthenium chelate, has been successfully shown as a fluorescent reporter in the FRET probe system and has a long lifetime of Ι600μ5. Table 2: Photophysical properties of ruthenium chelate

參數 符號 値 單元 吸收波長 ^abs 330-350 nm 發射波長 λέπι 548 nm 吸光係數 Ε 13800 (Xabs,及配位子相依,可高至 30000 (fll λβ=340ηηι) M.W1 螢光壽命 Tf 1600 (雜交的探針) μδ 量子產率 Η 1 (配位子相依) N/A LOC裝置3 0 1所使用的螢光檢測系統不利用過濾來移 除不想要的背景螢光。若淬熄劑2 4 8無天然發射以增加信 號-對-雜訊比,則因此具有優勢。無天然發射,則淬熄劑 24 8不貢獻至背景螢光。高淬熄效率亦爲重要者,此使得 雜交發生前沒有營光。購自加州Novato市之Biosearch -70- 201209407Parameter symbol 値 unit absorption wavelength ^abs 330-350 nm emission wavelength λέπι 548 nm absorption coefficient Ε 13800 (Xabs, and ligand-dependent, up to 30000 (fll λβ=340ηηι) M.W1 fluorescence lifetime Tf 1600 (hybridization Probes) μδ Quantum Yield Η 1 (Coordination Dependent) N/A LOC Device 3 0 1 The fluorescence detection system used does not use filtering to remove unwanted background fluorescence. If quencher 2 4 8 There is no natural emission to increase the signal-to-noise ratio, so it has an advantage. Without natural emission, the quencher 24 does not contribute to background fluorescence. High quenching efficiency is also important, which makes hybridization happen before No camp light. Biosearch from Novato, California -70- 201209407

Technologies,Inc.的黑洞淬熄劑(BHQ)不具有天然發射及 具有高淬熄效率,以及係用於系統之合適的淬熄劑》 BHQ-1之最大吸收値發生於534 nm及淬熄範圍爲480-580 nm,使得其爲用於Tb-螯合螢光團之合適的淬熄劑。BHQ-2之最大吸收値發生於579 nm及淬熄範圍爲560-670 nm 使得其爲用於Pulsar 650之合適的淬熄劑。 購自愛荷華州 Coralville 市之 Integrated DNA Technologies 的愛荷華黑淬熄劑(Iowa Black FQ及RQ)爲適合的具有少 許或無背景發射之替代性淬熄劑。Iowa Black FQ之淬熄 範圍爲420-620 nm,於531 nm具有最大吸收値,並因此 爲用於Tb-螯合螢光團之合適的淬熄劑。Iowa Black RQ於 656 nm具有最大吸收値及淬熄範圍爲500-700 nm,使得 其爲用於Pulsar 650之理想淬熄劑。 於本文所述之具體例中,淬熄劑248爲初始時即附著 於探針之功能部分,但於其他具體例中,淬熄劑可爲游離 於溶液中之分離的分子。 激發源 在本文描述之螢光檢測爲基礎的具體例中,因爲低功 率消耗、低成本和小尺寸而選擇LED替代雷射二極體、 高功率燈或雷射的激發源。參照圖89,LED 26係直接安 置於LOC裝置301之外部表面上之雜交室陣列110上。 在雜交室陣列110之對側爲光感測器44,其由自各室之用 於檢測螢光信號之光二極體1 84的陣列所組成(見圖5 3、 -71 - 201209407 54 及 70)。 圖90、91及92槪略說明用於將探針暴露於激發光之 其他具體例。在顯示於圖90之LOC裝置30中,由激發 LED 26所產生之激發光244係由透鏡2 54導向雜交室陣 列1 10之上。脈衝激發LED 26且由光感測器44檢測螢光 發射。 在圖91所顯示之LOC裝置30中,由激發LED 26所 產生之激發光2 44係由透鏡254、第一光稜鏡712和第二 光稜鏡714導向雜交室陣列110之上。脈衝激發LED 2 6 且由光感測器44檢測螢光發射。 同樣地,顯示於圖92中之LOC裝置30,由激發LED 26所產生之激發光2 44係由透鏡254、第一鏡716和第二 鏡718導向雜交室陣列110之上。再次脈衝激發LED 26 且由光感測器44檢測螢光發射。 LED 26的激發波長係取決於螢光染料的選擇。 Philips LXK2-PR1 4-R00 爲針對 P u 1 s a r 6 5 0 染料之合適的 激發源。SET UVT0P 3 3 5 T039BL LED係針對铽螯合物標 記之合適的激發源。 表 3 : Philips LXK2-PR14_R00 LED 規格Technologies, Inc.'s black hole quencher (BHQ) does not have natural emission and high quenching efficiency, and is suitable for the system's quenching agent. The maximum absorption of BHQ-1 occurs at 534 nm and quenching range. It is 480-580 nm, making it a suitable quencher for Tb-chelating fluorophores. The maximum absorption enthalpy of BHQ-2 occurs at 579 nm and the quenching range is 560-670 nm making it a suitable quencher for Pulsar 650. Iowa Black FQ and RQ from Integrated DNA Technologies, Coralville, Iowa, are suitable alternative quenchers with little or no background emission. The Iowa Black FQ has a quenching range of 420-620 nm with a maximum absorption enthalpy at 531 nm and is therefore a suitable quencher for Tb-chelating fluorophores. Iowa Black RQ has a maximum absorption enthalpy at 656 nm and a quenching range of 500-700 nm, making it an ideal quencher for Pulsar 650. In the specific examples described herein, the quencher 248 is a functional portion that is attached to the probe initially, but in other embodiments, the quencher can be a separate molecule that is free of solution. Excitation Sources In the specific example based on the fluorescence detection described herein, LEDs are selected to replace laser diodes, high power lamps, or laser excitation sources because of low power consumption, low cost, and small size. Referring to Figure 89, LEDs 26 are placed directly on hybrid array 110 on the exterior surface of LOC device 301. Opposite the hybridization cell array 110 is a photosensor 44 consisting of an array of photodiodes 1 84 from each chamber for detecting fluorescent signals (see Figures 5 3, -71 - 201209407 54 and 70). . Figures 90, 91 and 92 illustrate other specific examples for exposing the probe to excitation light. In the LOC device 30 shown in Fig. 90, the excitation light 244 generated by the excitation LED 26 is directed by the lens 2 54 over the hybrid array 810. The LED 26 is pulsed and the fluorescent emission is detected by the photo sensor 44. In the LOC device 30 shown in Fig. 91, the excitation light 2 44 generated by the excitation LED 26 is directed by the lens 254, the first aperture 712 and the second aperture 714 over the hybridization chamber array 110. The LED 2 6 is pulsed and the fluorescent emission is detected by the photo sensor 44. Similarly, the LOC device 30 shown in FIG. 92, the excitation light 2 44 generated by the excitation LED 26 is directed by the lens 254, the first mirror 716, and the second mirror 718 over the hybridization chamber array 110. The LED 26 is pulsed again and the fluorescent emission is detected by the photo sensor 44. The excitation wavelength of LED 26 is dependent on the choice of fluorescent dye. Philips LXK2-PR1 4-R00 is a suitable excitation source for the P u 1 s a r 6 5 0 dye. SET UVT0P 3 3 5 T039BL LED is a suitable excitation source for the ruthenium chelate label. Table 3: Philips LXK2-PR14_R00 LED Specifications

參數 符號 値 單元 波長 λεχ 460 nm 發射頻率 Vem 6,52(10)14 Hz 輸出功率 Pi 0.515(min)@ ΙΑ W 發射模式 Lambertian數據圖 N/A -72- 201209407 表 4 : SET UVT0P334T039BL LED 規格Parameter Symbol 値 Element Wavelength λεχ 460 nm Transmit frequency Vem 6,52(10)14 Hz Output power Pi 0.515(min)@ ΙΑ W Transmit mode Lambertian data sheet N/A -72- 201209407 Table 4 : SET UVT0P334T039BL LED Specifications

參數 符號 値 單元 波長 λβ 340 nm 發射頻率 Ve 8.82(10)14 Hz 功率 Pi 0.000240(min)(% 20mA W 脈衝順向電流 I 200 mA 發射模式 Lambertian N/A 紫外激發光 矽在UV光譜中吸收少量光。因此,使用UV激發光 是有利的。可使用UV LED激發源,但LED 26之寬光譜 降低此方法之效果。針對於此,可使用經過濾的UV LED 。隨意地,UV雷射可爲激發源,除非因雷射相當高的花 費而對於特定的測試模組市場不實用。 LED驅動器 LED驅動器29針對所需的持續時間在固定電流下驅 動該LED 26。低功率USB 2.0認證裝置可在至多1單位負 載(10 0毫安培)以最小操作電壓4.4伏特得到。標準電力 調節電路係用於此目的。 光二極體 圖54顯示光二極體184,其合倂於LOC裝置301之 CMOS電路86。光二極體184係在沒有額外遮罩或步驟下 製成CMOS電路86之部分。這是CMOS光二極體優於 -73- 201209407 CCD之一項顯著的優點,CCD爲另一種感測技術,其可使 用非標準式加工步驟整合到同一晶片上或者製於相鄰晶片 上。晶片上檢測係花費低廉且縮小陣列系統的尺寸。較短 光學路徑長度降低來自週遭環境的雜訊以有效收集螢光信 號’以及減少對於透鏡及濾鏡之傳統光學總成之需求。 光二極體184之量子效率爲光子衝撞其活性區域185 之分率,光子係有效轉換成光電子。對於標準矽處理,可 見光之量子效率根據處理參數(諸如覆蓋層之數量及吸收 特性)係在0.3至0.5的範圍中。 光二極體1 84之檢測閥値決定可被檢測之螢光信號的 最小強度。檢測閥値亦決定光二極體1 84的尺寸大小以及 在雜交及檢測部52中之雜交室180的數目(見圖52)。室 的尺寸大小和數量爲技術參數,係由 LOC裝置的尺寸 (LOC裝置301的實例中,其尺寸爲1*760微米 X 58 24 微米)所限制,且受合倂其他功能性模組(諸如病原體透析 部70及擴增部1 12)之後可用之不動物件的尺寸所限制。 對於標準矽處理,光二極體184檢測最低5個光子。 然而,爲了確認可信賴的檢測’最小値可設爲1 〇個光子 。因此量子效率範圍在〇·3至〇.5(如上所討論),自探針之 螢光發射爲最小17個光子’而30個光子包含針對可靠檢 測的誤差的合適餘裕。 校準室 光二極體184的不均勻電學特性、自動蛋光和尙未完 -74- 201209407 全衰減之剩餘激發光子通量將背景雜訊引入並偏移至輸 信號。使用一或多種校準信號將背景自各輸出信號移除 藉由將在陣列中之一或多種校準光二極體1S4暴露於各 的校準源而產生校準信號。低校準源用來判斷標靶尙未 探針反應之負結果。高校準源代表自探針-標靶複合物 正結果。在本文所描述的具體例中,低校準光源由在雜 室陣列110中之校準室3 82所提供,其: 不含任何探針; 包含不具有螢光報導劑的探針;或 包含具有報導劑的探針和組態成永遠預期發生淬熄 淬熄劑。 自此種校準室3 8 2之輸出信號非常接近來自LOC 置中之所有雜交室的輸出信號中的雜訊和偏差。自其他 交室所產生的輸出信號減去校準信號,實質上移除了背 和留下由螢光發射產生的信號(若有產生任何信號的話) 自室陣列之區域中的環境光線產生的信號亦被去除。 可理解的是參考圖1 00至1 03之上述負控制組探針 用於校準室。然而,如圖94及95所示,其爲顯示於圖 之LOC變體X 728的插圖DG和DH之放大圖,另一選 爲將校準室3 82與擴增子流體性隔離。當雜交由流體隔 阻止時,背景雜訊和偏差可由將流體性隔離之室淨空或 由包含缺少報導劑的探針或確實具有報導劑與淬熄劑兩 的任何“標準”探針來判斷。 校準室3 82可提供高校準源以產生高信號於對應的 出 〇 白 與 的 交 的 裝 雜 景 可 93 項 離 藉 者 光 -75- 201209407 二極體。高信號對應在已雜交之室中的所有探針。以報導 劑且無淬熄劑或僅以報導劑點樣探針,將一致地提供近似 雜交室中大量探針已於雜交室內雜交之信號。亦可理解校 準室3 82可用以代替控制探針或加至控制探針上。 整個雜交室陣列的校準室3 82的數量和安排是隨意的 。然而,若光二極體184由相對近的校準室382校準,校 準較準確。參考圖56,雜交室陣列110針對每八個雜交室 « 180具有一個校準室382。也就是說,校準室382係安置 於每個三乘三之正方形雜交室180的中間。在此組態中, 雜交室180係由緊鄰的校準室382所校準。 由於從周圍雜交室180之自螢光信號的激發光,圖99 顯示用以自對應校準室3 82之光二極體184減除信號的示 差成像器電路7 8 8。示差成像器電路7 8 8自像素790和“ 虛擬”像素792取樣信號。在一個具體例中,“虛擬”像 素792係被遮住以防光照射,所以其輸出信號提供暗參考 。或者,“虛擬”像素792可和陣列的其餘部分暴露於激 發光。在“虛擬”像素792是可以接受光的具體例中,自 室陣列之區域中的環境光線產生的信號亦被減除。來自像 素7 9 0的信號是微弱的(例如.,接近暗信號),且因沒有參 考暗信號位準而很難分辨背景値與非常微弱的信號。 在使用期間,啓動“讀取_列” 794和“讀取—列_d” 795 且開啓M4 797和MD4 80 1電晶體。關閉開關807和 809使得來自像素790及“虛擬”像素792的輸出分別地 儲存在像素電容器803及虛擬像素電容器805上。在像素 -76- 201209407 信號被儲存後,停用開關807和809。然後關閉該“讀取_ 行”開關81 1和虛擬“讀取_行”開關813,且在輸出之經切 換的電容器放大器815放大示差信號817。 光二極體之抑制及致能 於LED 26激發期間必須抑制光二極體184及於螢光 期間必須致能光二極體1 84。圖73爲單一光二極體1 84之 電路圖及圖74爲光二極體控制信號之時序圖。電路具有 光二極體184及六個MOS電晶體,Mshunt 394、Mtx 396、 Mreset 3 98、Msf 40 0、Mread 402 及 Mbias 404。於激發循環 開始時,藉由拖曳(pulling)Mshunt閘極384及重設鬧極 3 8 8爲高而開啓tl、電晶體Mshunt 394及Mreset 398。於此 期間,激發光子於光二極體184中產生載子。當產生的載 子量可充分使光二極體184飽和時,此等載子必須被移除 。於此循環期間,因電晶體的洩漏或因基板中之激發-產 生的載子擴散,Mshunt 394直接地移除光二極體184中所 產生的載子,而Mreset 3 98重設累積於節點‘NS’ 406之任 何載子。於激發之後,於t4開始俘獲循環。於此循環中 ,來自螢光團之發射的回應被俘獲並整合入節點WS’ 406 上的電路。此藉由拖曳tx閘極386爲高而達成,此開啓 電晶體Mtx 396及轉移光二極體184上任何累積的載體至 節點WS’ 406。俘獲循環期間可如螢光發射般長。來自雜 交室陣列110中之所有光二極體184的輸出同時被俘獲。 於結束俘獲循環t5與開始讀取循環t6之間具有延遲 -77- 201209407 。此延遲肇因於,在俘獲循環之後’分別讀取雜交室陣列 110中之各光二極體184的需求(見圖52)。待讀取的第一 光二極體184於讀取循環之前將具有最短的延遲’而最後 光二極體184於讀取循環之前將具有最長的延遲。於讀取 循環期間,藉由拖曳閘極393爲高而開啓電晶體 Mread 402。使用源極-隨耦器電晶體Msf 400來緩衝及讀出‘NS’ 節點406之電壓。 以下討論另外之任意的致能或抑制光二極體之方法: 1 .抑制方法Parameter symbol 値cell wavelength λβ 340 nm emission frequency Ve 8.82(10)14 Hz power Pi 0.000240(min) (% 20mA W pulse forward current I 200 mA emission mode Lambertian N/A ultraviolet excitation pupil absorbs a small amount in the UV spectrum Light. Therefore, it is advantageous to use UV excitation light. A UV LED excitation source can be used, but the broad spectrum of LED 26 reduces the effect of this method. For this, a filtered UV LED can be used. Optionally, UV laser can be used. The excitation source is not practical for a particular test module market due to the relatively high cost of the laser. The LED driver LED driver 29 drives the LED 26 at a fixed current for the desired duration. The low power USB 2.0 certified device can A maximum operating voltage of 4.4 volts is obtained at a maximum of 1 unit load (10 mA). A standard power conditioning circuit is used for this purpose. Photodiode Figure 54 shows photodiode 184, which is integrated into the CMOS circuit of LOC device 301. 86. The photodiode 184 is part of the CMOS circuit 86 without additional masking or steps. This is a significant advantage of the CMOS photodiode over the -73-201209407 CCD, CCD Another sensing technique that can be integrated onto the same wafer or fabricated on an adjacent wafer using non-standard processing steps. On-wafer inspection is inexpensive and reduces the size of the array system. Shorter optical path lengths are reduced from the surrounding environment. The noise is used to efficiently collect the fluorescent signal' and reduce the need for conventional optical assemblies for lenses and filters. The quantum efficiency of the photodiode 184 is the fraction of photons colliding with its active region 185, and the photon is efficiently converted into photoelectrons. In standard 矽 processing, the quantum efficiency of visible light is in the range of 0.3 to 0.5 depending on the processing parameters (such as the number of cladding layers and absorption characteristics). The detection threshold of the photodiode 1 84 determines the minimum intensity of the fluorescent signal that can be detected. The detection valve 値 also determines the size of the photodiode 184 and the number of hybrid chambers 180 in the hybridization and detection portion 52 (see Figure 52). The size and number of chambers are technical parameters and are determined by the size of the LOC device. (In the example of LOC device 301, its size is 1*760 microns X 58 24 microns), and it is subject to other functional modules (such as diseases) The body dialysis unit 70 and the amplification unit 1 12) are limited by the size of the non-animal parts that can be used. For the standard 矽 treatment, the photodiode 184 detects a minimum of 5 photons. However, in order to confirm the reliable detection, the minimum 値 can be set to 1 光 a photon. Therefore the quantum efficiency range is 〇·3 to 〇.5 (as discussed above), the fluorescence emission from the probe is a minimum of 17 photons' and the 30 photons contain a suitable margin for the error of reliable detection. Calibration Room Photodiode 184 Inhomogeneous Electrical Characteristics, Automated Egg Light, and Unfinished -74- 201209407 The residual attenuated photon flux of full attenuation introduces and shifts background noise to the output signal. The background is removed from each output signal using one or more calibration signals. A calibration signal is generated by exposing one or more of the calibration photodiodes 1S4 in the array to respective calibration sources. A low calibration source is used to determine the negative result of the target 尙 non-probe reaction. A high calibration source represents a positive result from the probe-target complex. In the specific example described herein, the low calibration source is provided by a calibration chamber 382 in the array of cells 110, which: does not contain any probes; includes probes that do not have a fluorescent reporter; or contains reports The probe is configured and configured to expect quenching quenching agents to occur forever. The output signal from such a calibration chamber 382 is very close to the noise and bias in the output signal from all of the hybrid chambers in the LOC. The output signal from the other chambers is subtracted from the calibration signal, substantially removing the back and leaving the signal generated by the fluorescent emission (if any signal is generated) from the ambient light in the area of the chamber array. Was removed. It will be appreciated that the negative control group probe described above with reference to Figures 1 00 through 031 is used in the calibration chamber. However, as shown in Figures 94 and 95, which are enlarged views of the inset DG and DH of the LOC variant X 728 shown in the figure, the other is selected to fluidly isolate the calibration chamber 382 from the amplicons. When hybridization is prevented by fluid barriers, background noise and bias can be judged by a chamber that is fluidly isolated or by a probe containing a lack of reporter or any "standard" probe that does have both a reporter and a quencher. The calibration chamber 3 82 provides a high calibration source to produce a high signal at the corresponding output of the intersection of the white and the illuminator. 93 - 201209407 Diode. The high signal corresponds to all probes in the chamber that has been hybridized. Reporting with no quenching agent or only with a reporter spotting probe will consistently provide a signal that a large number of probes in the hybridization chamber have hybridized within the hybridization chamber. It is also understood that the calibration chamber 382 can be used in place of or in addition to the control probe. The number and arrangement of calibration chambers 382 for the entire array of hybrid chambers is arbitrary. However, if the photodiode 184 is calibrated by a relatively close calibration chamber 382, the calibration is more accurate. Referring to Figure 56, hybridization chamber array 110 has one calibration chamber 382 for every eight hybridization chambers «180. That is, the calibration chamber 382 is disposed in the middle of each of the three by three square hybrid chambers 180. In this configuration, the hybridization chamber 180 is calibrated by the immediately adjacent calibration chamber 382. Due to the excitation light from the fluorescent signal from the surrounding hybridization chamber 180, Figure 99 shows a differential imager circuit 878 for subtracting the signal from the photodiode 184 of the corresponding calibration chamber 382. The differential imager circuit 7 8 8 samples the signal from the pixel 790 and the "virtual" pixel 792. In one embodiment, the "virtual" pixel 792 is shielded from light illumination, so its output signal provides a dark reference. Alternatively, the "virtual" pixel 792 can be exposed to the laser with the remainder of the array. In the specific example where the "virtual" pixel 792 is light accommodating, the signal produced by ambient light in the region of the self-chamber array is also subtracted. The signal from pixel 709 is weak (for example, close to a dark signal), and it is difficult to distinguish between background 非常 and very weak signals because there is no reference to dark signal levels. During use, the "read_column" 794 and "read-column_d" 795 are enabled and the M4 797 and MD4 80 1 transistors are turned on. Turning off switches 807 and 809 causes the outputs from pixel 790 and "virtual" pixel 792 to be stored on pixel capacitor 803 and virtual pixel capacitor 805, respectively. After the pixel -76-201209407 signal is stored, switches 807 and 809 are disabled. The "read_row" switch 81 1 and the virtual "read_row" switch 813 are then turned off, and the outputted switched capacitor amplifier 815 amplifies the differential signal 817. The suppression and enabling of the photodiode must be such that the photodiode 184 must be inhibited during excitation of the LED 26 and the photodiode 184 must be enabled during the fluorescence period. Figure 73 is a circuit diagram of a single photodiode 1 84 and Figure 74 is a timing diagram of an optical diode control signal. The circuit has a photodiode 184 and six MOS transistors, Mshunt 394, Mtx 396, Mreset 3 98, Msf 40 0, Mread 402 and Mbias 404. At the beginning of the excitation cycle, tl, transistor Mshunt 394, and Mreset 398 are turned on by pulling the Mshunt gate 384 and resetting the gate 3 8 8 high. During this period, the photons are excited to generate carriers in the photodiode 184. When the amount of carriers generated is sufficient to saturate the photodiode 184, the carriers must be removed. During this cycle, Mshunt 394 directly removes the carriers generated in photodiode 184 due to leakage of the transistor or due to excitation-generated carrier diffusion in the substrate, while Mreset 3 98 resets to accumulate at the node' Any carrier of NS' 406. After excitation, the capture cycle begins at t4. In this loop, the response from the emission of the fluorophore is captured and integrated into the circuitry on node WS' 406. This is achieved by dragging the tx gate 386 high, which turns on the transistor Mtx 396 and any accumulated carrier on the transfer photodiode 184 to the node WS' 406. The capture cycle can be as long as a fluorescent emission. The output from all of the photodiodes 184 in the array of hybrid cells 110 is simultaneously captured. There is a delay between the end capture cycle t5 and the start of the read cycle t6 -77- 201209407. This delay is due to the need to read the respective photodiodes 184 in the hybridization cell array 110 after the capture cycle (see Figure 52). The first photodiode 184 to be read will have the shortest delay before the read cycle and the last photodiode 184 will have the longest delay before the read cycle. During the read cycle, the transistor Mread 402 is turned on by dragging the gate 393 high. The source-slaffer transistor Msf 400 is used to buffer and read the voltage of the 'NS' node 406. Any other method of enabling or suppressing a photodiode is discussed below: 1. Inhibition method

圖96、97及98顯示用於Mshunt電晶體394之可行的 組態778、780、782。於激發期間被致能之最大値|FC5|=5 V 時,Mshunt電晶體394具有非常高的關閉比。如圖96中所 示者,Mshunt閘極3 84係組態成位於光二極體184之緣上 。任意地,如圖97中所示者,Mshunt閘極3 84係可組態成 環繞光二極體184。第三個選擇爲將Mshunt閘極3 84組構 於光二極體184之內,如圖98中所示者。依此第三選擇 ,光二極體主動區185較少。 這三種組態778、780及782降低自光二極體184中 所有位置至Mshunt閘極3 84之平均路徑長度。於圖96中 ,Mshunt閘極3 84係於光二極體184之一側上。此爲用以 製造之最簡單且對於光二極體主動區1 85衝擊最小的組態 。然而,滯留於光二極體184遠端之任何載子需要較長時 間以擴散通過Mshunt閘極384。 -78- 201209407 於圖97中,Mshunt閘極384環繞光二極體184。此進 一步降低光二極體184中之載子至Mshunt閘極3 84之平均 路徑長度。然而,繞光二極體184周圍而延伸Mshunt閘極 384造成光二極體主動區185大幅縮減。於圖98中之組態 7 82將Mshunt閘極384定位於主動區185中。此提供了至 Mshunt閘極3 84的最短平均路徑及因此得到最短過渡時間 。然而,對於主動區185之衝擊最大。其亦造成較寬的洩 漏路徑。 2.致能方法 a. 觸發器光二極體以固定的延遲來驅動並聯電晶體。 b. 觸發器光二極體以可程控的延遲來驅動並聯電晶體。 c. 由LED驅動脈衝以固定的延遲來驅動並聯電晶體。 d. 如2 c般但以可程控的延遲來驅動並聯電晶體。 圖76爲透過雜交室180顯示埋入於CMOS電路86中 之光二極體184及觸發器光二極體187之槪略視圖。以觸 發器光二極體187取代光二極體184之角落中的小面積。 因相較於螢光發射時激發光的強度爲高,具小面積之觸發 器光二極體187係充分的。觸發器光二極體187係對激發 光244爲敏感。觸發器光二極體187顯示激發光244已熄 滅並於短暫延遲At 300之後啓動光二極體184(見圖2)。 此延遲使得螢光光二極體1 84得以於沒有激發光244時檢 測來自FRET探針1 8 6之螢光發射。此致能檢測及增進信 號對雜訊比。 -79- 201209407 於各雜交室180下,光二極體184及觸發器光二極 187兩者均位於CMOS電路86中。光二極體陣列與適 電子組件合倂以形成光感測器4 4 (見圖7 0)。光二極體】 爲CMOS結構製造期間所製成的pn接面而不需另外的 罩或步驟。於MST製造期間,光二極體184之上的介 層(未顯示)係利用標準MST光蝕刻技術而任意地薄化以 更多螢光照射光二極體184的主動區185。光二極體] 具有視場,使得來自雜交室180內之探針-標靶雜交的 光信號入射至感測器表面上。轉換螢光成爲接著可使 CMOS電路86而被測量的光電流。 替代性地,一或多個雜交室180可僅專用於觸發器 二極體187。可使用這些選擇於此等與上述之2a及2b 組合中。 螢光之延遲檢測 下述推導說明係針對上述之LED/螢光團組合使用 壽命螢光團的螢光延遲檢測。在由圖60顯示之時間~ ί2之間的固定強度[e之理想脈衝激發之後,螢光強度係 導爲時間的函數。 令[Sl](〇於時間t等於激發態的強度,然後在激發 間及之後,每單位體積每單位時間的激發態數量由下面 分方程式描述= d[S\] { [^1](〇 _ Iesc dt tf ~ hve 體 當 84 遮 電 使 84 螢 用 光 的 長 和 推 期 微 -80- -(1) 201209407 其中C爲螢光團的莫耳濃度,ε爲莫耳淬熄係數,Ve爲激 發頻率,且h = 6.62606896(10)·34 Js爲普朗克常數。 此微分方程式具有一般式: 其有解法: y(x) = J e^p(x)dx q{^x)dx + k ^p{x)dx ...(2) 現在使用此來解答式(1), [S\m = I^TL + ke-'^ ...(3) hve 然後於時間h, [S1]⑺)= 〇,且自(3): k = J^LLe,'lTf ...(4) hve 將(4)代入(3): [sm=Figures 96, 97 and 98 show possible configurations 778, 780, 782 for Mshunt transistor 394. Mshunt transistor 394 has a very high turn-off ratio when the maximum 値|FC5|=5 V is enabled during excitation. As shown in Figure 96, the Mshunt Gate 3 84 is configured to be located on the edge of the photodiode 184. Optionally, as shown in Figure 97, the Mshunt Gate 3 84 can be configured to surround the photodiode 184. A third option is to place the Mshunt gate 3 84 within the photodiode 184, as shown in FIG. According to the third option, the photodiode active region 185 is less. These three configurations 778, 780, and 782 reduce the average path length from all locations in the photodiode 184 to the Mshunt gate 3 84. In Fig. 96, the Mshunt gate 3 84 is attached to one side of the photodiode 184. This is the simplest configuration to make and the smallest impact on the active region of the photodiode 1 85. However, any carrier remaining at the distal end of the photodiode 184 requires a longer time to diffuse through the Mshunt gate 384. -78- 201209407 In Figure 97, the Mshunt gate 384 surrounds the photodiode 184. This further reduces the average path length of the carriers in the photodiode 184 to the Mshunt gate 3 84. However, extending the Mshunt gate 384 around the photodiode 184 causes the photodiode active region 185 to be substantially reduced. The configuration 7 82 in Figure 98 positions the Mshunt gate 384 in the active region 185. This provides the shortest average path to the Mshunt gate 3 84 and thus the shortest transition time. However, the impact on the active zone 185 is greatest. It also creates a wide leak path. 2. Enabling method a. The flip-flop photodiode drives the parallel transistor with a fixed delay. b. The flip-flop photodiode drives the shunt transistor with a programmable delay. c. The parallel drive transistor is driven by the LED drive pulse with a fixed delay. d. Drive the shunt transistor as a 2 c but with a programmable delay. Fig. 76 is a schematic view showing the photodiode 184 and the flip-flop photodiode 187 buried in the CMOS circuit 86 through the hybridization chamber 180. The small area in the corner of the photodiode 184 is replaced by the trigger photodiode 187. Since the intensity of the excitation light is higher than that of the fluorescent emission, the photodiode 187 having a small area is sufficient. The flip-flop photodiode 187 is sensitive to excitation light 244. The flip-flop photodiode 187 shows that the excitation light 244 has extinguished and activates the photodiode 184 (see Fig. 2) after a brief delay of At 300. This delay allows the fluorescent photodiode 1 84 to detect the fluorescent emission from the FRET probe 186 without the excitation light 244. This enables detection and enhancement of the signal to noise ratio. -79- 201209407 In each hybrid cell 180, both photodiode 184 and flip-flop photodiode 187 are located in CMOS circuit 86. The photodiode array is combined with an appropriate electronic component to form a photosensor 4 4 (see Figure 70). Photodiode] A pn junction made during the fabrication of a CMOS structure without the need for additional masks or steps. During MST fabrication, the dielectric layer (not shown) over the photodiode 184 is arbitrarily thinned by standard MST photolithography techniques to illuminate the active region 185 of the photodiode 184 with more phosphor. The photodiode has a field of view such that an optical signal from the probe-target hybridization within the hybridization chamber 180 is incident on the surface of the sensor. The converted fluorescence becomes the photocurrent that can then be measured by the CMOS circuit 86. Alternatively, one or more of the hybridization chambers 180 may be dedicated only to the trigger diode 187. These choices can be used in combination with 2a and 2b above. Fluorescence Delay Detection The following derivation is based on the above-mentioned LED/fluorescent combination using the fluorescence luminescence detection of the lifetime fluorophore. Fluorescence intensity is a function of time after an ideal pulse excitation of the fixed intensity [e] between time and ί2 shown in Figure 60. Let [Sl] (when the time t is equal to the intensity of the excited state, and then between and after the excitation, the number of excited states per unit volume per unit time is described by the following equation = d[S\] { [^1] (〇 _ Iesc dt tf ~ hve body 84 when the electricity is used to make 84 the length of the fire and the light of the micro-80--(1) 201209407 where C is the molar concentration of the fluorophore, ε is the molar quenching coefficient, Ve To excite the frequency, and h = 6.62606896(10)·34 Js is the Planck constant. This differential equation has the general formula: It has a solution: y(x) = J e^p(x)dx q{^x)dx + k ^p{x)dx ...(2) Now use this to solve equation (1), [S\m = I^TL + ke-'^ ...(3) hve then at time h, [ S1](7))= 〇, and from (3): k = J^LLe, 'lTf ...(4) hve Substituting (4) into (3): [sm=

IeSCTf IeSCTf 广!'、丨” hve hve 於時間ί2,: -81 - 201209407 [增2) 8gCT/ (5) hve hve 於/ 2 G,激發態以指數衰減且以式(6)描述 將(5)代入(6): -(7) l.SCX r [剛=」^[1- hve 該螢光強度由下列等式得到: j {t) = _d[srmhv t (8) αχ 其中V/爲該螢光頻率,η爲量子產率,且1爲光學路徑長度 於是自(7): <^[51](^) _ Iesc _,^-(t-i2)/Tf ( 9 ) ""dt~ ~h^~ 將(9)代入(8): -82- 201209407 因爲 4 〇〇,I εαΙηΥΑίιντ’ τί ve 因此’我們可以寫出下列的近似式,此式描述在充分 長的激發脈衝(Q-hATf)後之螢光強度衰減: 對於 /^,(0 = 7e£c/^^-e-(,-,j)/r/ …(1 1)IeSCTf IeSCTf 广!',丨" hve hve at time ί2,: -81 - 201209407 [增2) 8gCT/ (5) hve hve at / 2 G, the excited state is exponentially decayed and described by equation (6) (5 Substituting (6): -(7) l.SCX r [just ="^[1- hve The fluorescence intensity is obtained by the following equation: j {t) = _d[srmhv t (8) αχ where V/ is The fluorescence frequency, η is the quantum yield, and 1 is the optical path length from (7): <^[51](^) _ Iesc _,^-(t-i2)/Tf ( 9 ) ""dt~ ~h^~ Substituting (9) into (8): -82- 201209407 Because 4 〇〇, I εαΙηΥΑίιντ' τί ve Therefore 'we can write the following approximation, which is described in full-length excitation Fluorescence intensity decay after pulse (Q-hATf): For /^, (0 = 7e£c/^^-e-(,-,j)/r/ ...(1 1)

K 在上一節,我們針對作的情況做總結, 而對於 t t ti If{f) = Iεεα1η丄e%1、1 ”。 從上述的等式,我們可以導出下列式子: nf{t) = nesc^e~{t'hVTf …(12) 其中 h•⑺爲每單位面積每單位時間之螢光光子數且 hvf 屺爲每單位面積每單位時間之激發光子數° kVe 因此, 〇0 iif{t) = \nf{t)dt ...(13) -83- 201209407 二極體開啓的 其中七爲每單位面積之螢光光子數且^爲光 時間點。將(12)代入(13): 〇〇 af = jyiesclne-“-h、lr/dt ... ( 1 4) ti 極體之螢光光 目前,每單位面積每單位時間到達光二 子數,Η·,(〇,係由下式獲得: ns(t) = nfm -(15) 其中么爲光學系統之光收集效率。 將(12)代入(15)我們發現 ηί{ί) = φϋηίεαΙηβ'(,~,ι)ΙΤ/ ...(16) 體之螢光光子 同樣地,每單位螢光面積乂到達光二極 數將如下述: 〇〇 圮=ί\(〇Α且代入(16)並積分: ns =φ^ηΐεοΙητ fe(h~hVlf 因此, η,^ΦΧεοΙητ〆611” …(17) -84 - 201209407 ί3的理想値係於當因螢光光子該光二極體184內之產 生的電子率等於由激發光子於光二極體184內之產生的電 子率時,因爲激發光子通量衰減比螢光光子通量衰減快更 多。 由於螢光之每單位螢光面積的感測器輸出電子率爲: 糾)=㈣) 其中0 /爲在螢光波長之感測器的量子效率。 代入(17)我們得到: έ·ί{ί) = φίφΰηΐεοΙηβ-{ί-,ι),^ ...(1 8) 同樣地,由於激發光子之每單位螢光面積的輸出電子 率爲: «咖· ...(19) 其中么爲在激發波長之感測器的量子效率,且爲相對於 激發LED之『切斷』特性的時間常數。在時間t2之後, LED之衰減光子通量增加螢光信號的強度且延長其衰減時 間,但我們假設此對If(t)爲可忽略的影響,因此我們採取 保守(conservative)的方法。 -85 - 201209407 目前,如先前所提及,g的理想値爲當: 4⑹=¾⑹ 因此,由(18)和(19)我們得到: 並且重整之後我們得到: ...(20) \η{εαΙη^φ-) τ/ 由上面兩段,我們得到下列兩個運算式 (kKFi -Δί/ι At =K In the previous section, we summarize the situation, and for tt ti If{f) = Iεεα1η丄e%1,1 ”. From the above equation, we can derive the following expression: nf{t) = nesc ^e~{t'hVTf (12) where h•(7) is the number of fluorescent photons per unit area per unit time and hvf 屺 is the number of excitation photons per unit area per unit time ° kVe Therefore, 〇0 iif{t ) = \nf{t)dt ...(13) -83- 201209407 Seven of the diodes are turned on as the number of fluorescent photons per unit area and ^ is the light time point. Substituting (12) into (13): 〇〇af = jyiesclne-"-h, lr/dt ... ( 1 4) ti The fluorescent light of the polar body currently reaches the number of sub-numbers of light per unit area per unit time, Η·, (〇, by the following formula Obtain: ns(t) = nfm -(15) where is the light collection efficiency of the optical system. Substituting (12) into (15) we find that ηί{ί) = φϋηίεαΙηβ'(,~,ι)ΙΤ/ ... (16) Fluorescent photons of the body Similarly, the unit of light per unit of fluorescence area 乂 reaches the number of light poles as follows: 〇〇圮=ί\(〇Α and substituting (16) and integrating: ns =φ^ηΐεοΙητ fe(h ~hVlf Therefore, η,^ΦΧ εοΙητ〆611" (17) -84 - 201209407 ί3 is ideal when the electron rate generated in the photodiode 184 due to the fluorescent photon is equal to the electron rate generated by the excitation photon in the photodiode 184 Because the excitation photon flux attenuation is much faster than the fluorescence photon flux decay. The output electron rate of the sensor per unit of fluorescence area of the fluorescence is: )) = (4)) where 0 / is at the wavelength of the fluorescence Quantum efficiency of the sensor. Substituting (17) we get: έ·ί{ί) = φίφΰηΐεοΙηβ-{ί-,ι),^ (1 8) Similarly, due to the per-unit fluorescence area of the excited photons The output electron ratio is: «咖·(19) where is the quantum efficiency of the sensor at the excitation wavelength and is the time constant relative to the "off" characteristic of the excited LED. After time t2, The attenuated photon flux of the LED increases the intensity of the fluorescent signal and extends its decay time, but we assume that this is a negligible effect on If(t), so we take a conservative approach. -85 - 201209407 Currently, As mentioned earlier, the ideal g of g is: 4(6)=3⁄4(6) From (18) and (19) we get: and after reforming we get: ...(20) \η{εαΙη^φ-) τ/ From the above two paragraphs, we get the following two expressions (kKFi - Δί/ι At =

τί Te ...(2 1 ) -(22) 其中尸=«τ/;;且Δί = ί3 -ί2 ’我們亦了解,實際上,q » Γ/。 用於螢光檢測的理想時間及使用Ρ h i 1 i ρ s L X Κ 2 - Ρ R 1 4 -R00 LED和Pulsar 650染料所檢測的螢光光子數決定如 下。 -86- 201209407 理想檢測時間係使用式(22)決定: 回想擴增子的濃度,且假設所有擴增子雜交,則發螢 光的螢光團濃度爲:c = 2.89(10)_6mol/L。 室的高度爲光學路徑長度l = 8(l〇)_6m。 已將螢光區域視爲等同於光二極體區域,然而實際的 螢光區域實質上大於光二極體區域;因此可大槪假設 九=0.5爲光學系統之光採集效率。光二極體的特性,| = 10 <Pe 爲在螢光波長之該光二極體量子效率對在激發波長之光二 極體的量子效率之比的極保守値。 以典型的LED衰減壽命re = 0.5奈秒和使用Pulsar650 規格,可決定Δί : F = [1.48(10)6 ][2.89(10广][8(10)"6 ](1) =3.42(10)5 ln([3.42(10)-5](10)(0.5)) 1 1 1(10)-6 ~ 0.5(10)-9 -4.34(10)-9 s 偵測到的光子數目係使用等式(2 1 )決定。首先,每單 位時間發射的激發光子數目大係由檢驗照明幾何而決定。Ίί Te ...(2 1 ) -(22) where corpse = «τ/;; and Δί = ί3 - ί2 ‘We also know that, in fact, q » Γ/. Ideal time for fluorescence detection and use Ρ h i 1 i ρ s L X Κ 2 - Ρ R 1 4 -R00 The number of fluorescent photons detected by the LED and Pulsar 650 dye is determined as follows. -86- 201209407 The ideal detection time is determined by equation (22): Recall the concentration of the amplicon, and assuming that all the amplicons are hybridized, the fluorescence concentration of the fluorescing is: c = 2.89(10)_6mol/L . The height of the chamber is the optical path length l = 8 (l 〇) _ 6 m. The fluorescent region has been regarded as equivalent to the photodiode region, but the actual fluorescent region is substantially larger than the photodiode region; therefore, it can be assumed that nine = 0.5 is the optical collection efficiency of the optical system. The characteristic of the photodiode, | = 10 < Pe is the extremely conservative ratio of the quantum efficiency of the photodiode at the fluorescence wavelength to the quantum efficiency of the photodiode at the excitation wavelength. With a typical LED decay lifetime re = 0.5 nanoseconds and using the Pulsar650 specification, it is possible to determine Δί : F = [1.48(10)6 ][2.89(10广][8(10)"6 ](1) =3.42( 10)5 ln([3.42(10)-5](10)(0.5)) 1 1 1(10)-6 ~ 0.5(10)-9 -4.34(10)-9 s Number of detected photons It is determined using equation (2 1 ). First, the number of excitation photons emitted per unit time is largely determined by examining the illumination geometry.

Philips LXK2-PR14-R00 LED 具有 Lambertian 發射模 式,因此: -87- ... (23) 201209407 其中&爲與LED的順向軸線方向之角度爲Θ之每單位立體 角每單位時間發射的光子數目,且&爲^,在順向軸線方向 之値。 由該LED每單位時間所發射的光子之總數爲:The Philips LXK2-PR14-R00 LED has a Lambertian emission mode, so: -87- ... (23) 201209407 where & is the photon emitted per unit time per unit solid angle from the direction of the forward axis of the LED The number, and & is ^, in the direction of the forward axis. The total number of photons emitted by the LED per unit time is:

ή[ = j h'/dQ Ω (24)ή[ = j h'/dQ Ω (24)

=I nIQ cos(0)dQ Ω 現在, △Ω = 2;r[l - cos(0 + Δ0)] - 2;r[l - cos(0)] ΔΩ = 2n[cos{0) ~ cos(^ + Δ0)] (Αθλ . —sin l 2 J l 2 J H-4^cos(^)sin2 =4;rsin(0)cos dQ = 2π3ΐη(θ)άθ 代入(24广 2ml0 cos(0)sin(0)d9=I nIQ cos(0)dQ Ω Now, △Ω = 2;r[l - cos(0 + Δ0)] - 2;r[l - cos(0)] ΔΩ = 2n[cos{0) ~ cos( ^ + Δ0)] (Αθλ . —sin l 2 J l 2 J H-4^cos(^)sin2 =4;rsin(0)cos dQ = 2π3ΐη(θ)άθ Substitute (24 wide 2ml0 cos(0)sin (0)d9

重新排列,我們得到: …(26) -88- ...«/ n!0: — 201209407 LED的輸出功率爲0.515瓦且 ve = 6.52(10)14赫茲 因此:Rearranged, we get: ...(26) -88- ...«/ n!0: — 201209407 The output power of the LED is 0.515 watts and ve = 6.52 (10) 14 Hz.

Pi Ave ... (27) _0.515_ [6.63(10)-34][6.52(10)14] = 1.19(10)18 光子 / 秒 將此値帶入(26)我們得到: ... 1.19(10)18 ”/〇=- π = 3.79(10)17光子/秒/球面度 參照圖61,光學中心2 52和LED 26之透鏡254係槪 略顯示。光二極體爲16微米χ16微米,且對於在陣列中間 的光二極體,自LED 26發射至光二極體184的光錐的立 體角(Ω)係大約: Ω =感測器面積/r2 [16 (10广][16(10)-6] 2.825(10)-3 f =3.21(1〇)·5 球面度 將理解光二極體陣列44之中央光二極體184爲用於 這些計算之用途。位於陣列邊緣的感測器在雜交事件時僅 -89 - 201209407 接收低2%之光子用於Lambertian激發源強度分佈。 每單位時間發射的激發光子數: he = «;Ω ...(2 8) =[3.79(10)17][3.21(10)-5] =1 .22(10)13 光子 /秒 現在參考等式(29): / · -t—t —Δί I τ f ns =(0.5)[1.22(10)13][3.42(10)-5][l(10)-6]e'434(1〇r9/1(1°)'6 = 208光子/感測器 因此,使用 Philips LXK2-PR14-R00 LED 和 Pulsar 650螢光團,我們可以輕易地檢測任何造成此等數目之光 子被激發的雜交事件。 SET LED照明幾何係顯示於圖62中。ID = 20毫安培時 ,LED具有最小光學功率輸出ρι = 240微瓦,波長中心於 λβ = 340奈米(铽螯合物之吸收波長)。驅動LED於Id = 200 毫安培,線性增加輸出功率至p1 = 2.4毫瓦。藉由將LED 的光學中心252置於離雜交室陣列11〇距離17.5毫米處 ’我們大約將輸出通量集中於具有最大直徑爲2毫米的圓 點大小。 在雜交陣列平面之2毫米直徑點中的光子通量由等式 -90- 201209407 2 7得到。 «/=Pi Ave ... (27) _0.515_ [6.63(10)-34][6.52(10)14] = 1.19(10)18 Photons/sec Bring this 値 into (26) We get: ... 1.19 (10)18 ”/〇=- π = 3.79(10)17 photons/sec/sphericity Referring to Fig. 61, the optical center 2 52 and the lens 254 of the LED 26 are shown schematically. The photodiode is 16 micrometers χ 16 micrometers. And for the photodiode in the middle of the array, the solid angle (Ω) of the light cone emitted from the LED 26 to the photodiode 184 is approximately: Ω = sensor area / r2 [16 (10 wide) [16 (10) -6] 2.825(10)-3 f =3.21(1〇)·5 Sphericality It will be understood that the central photodiode 184 of the photodiode array 44 is used for these calculations. The sensors at the edge of the array are hybridized. Event only -89 - 201209407 Receive low 2% photons for Lambertian excitation source intensity distribution. Number of excitation photons emitted per unit time: he = «;Ω ...(2 8) =[3.79(10)17] [3.21(10)-5] =1 .22(10)13 Photon/sec Now refer to equation (29): / · -t—t —Δί I τ f ns =(0.5)[1.22(10)13] [3.42(10)-5][l(10)-6]e'434(1〇r9/1(1°)'6 = 208 Photon/Sensor So, use Philips LXK2-PR14-R00 LED and With the Pulsar 650 fluorophore, we can easily detect any hybridization events that cause these numbers of photons to be excited. The SET LED illumination geometry is shown in Figure 62. The LED has a minimum optical power output when ID = 20 mA. 240 microwatts with a wavelength center at λβ = 340 nm (absorption wavelength of ruthenium chelate). Drive the LED at Id = 200 mA, linearly increasing the output power to p1 = 2.4 mW. By placing the optical center of the LED 252 Placed at a distance of 17.5 mm from the array of hybridization chambers 11 'We concentrated the output flux on a dot size with a maximum diameter of 2 mm. The photon flux in the 2 mm diameter point of the hybrid array plane is determined by the equation - 90- 201209407 2 7Get. «/=

Pi hVe 2.4(10)-3 [6.63(10)-34][8.82(10)14] = 4.10(10)15 光子 /秒 使用等式2 8,我們得到 he = η,Ω 4.10(10)15 [16(10)-6]2 4i(i〇)·3]2 :3.34(10)11 光子 /秒 現在,回到等式22及使用先前列舉的Tb螯合物 特性, ln[(6.94(10)-5)(10)(0.5)] _1___1_ 1(10)-3 ~ 0.5(10)-9 = 3.98(10)-9 秒 現在自等式21 : ns = (0.5)[3.34(10)1,][6.94(10)-5][1(10)-3>-3'98(,0>',/1(>〇)'3 =11,600光子/感測器。 由雜交事件使用SET LED和铽螯合物系統發射之光 -91 - 201209407 子理論數値係可簡單的檢測且遠超過30個光子數之低限 値,其爲以用於由上述所指示之光感測器之可信賴的檢測 所需。 探針與光二極體間之最大間隔 雜交之晶片上檢測避免以共軛焦顯微鏡(見先前技術) 檢測之需要。此背離傳統檢測技術在與系統有關的時間和 成本節省中爲重要的因素。傳統檢測需要必須使用透鏡和 彎曲鏡面之成像光學。藉由採用非成像光學,診斷系統避 免複雜及笨重的光學元件串之需求。將光二極體放置於非 常靠近探針具有極高收集效率的優點。當在探針和光二極 體間的材料厚度爲1微米級時,發射光之收集角係高達 173°。此角度藉由考慮自最靠近光二極體之雜交室表面中 心的探針發射的光來計算,該光二極體具有平行於室表面 的平面主動表面區。於光可以於其內由光二極體吸收之發 射角錐係定義爲:在其頂點和在其平面之周圍上的感測器 角落具有發射探針。對於16微米χ16微米的感測器,此 錐體的頂角爲1 70° ;在光二極體經擴展使得其面積符合該 29微米χ19· 75微米之雜交室面積的限制例中,該頂角爲 1?3°。在室表面和光二極體主動表面之間的分隔爲丨微米 或更小是容易達成的。 應用非成像光學方法需要光二極體184非常靠近雜交 室以收集螢光發射之充分的光子。光二極體和探針之間的 最大間隔係參照如下圖54所決定。 92 - 201209407Pi hVe 2.4(10)-3 [6.63(10)-34][8.82(10)14] = 4.10(10)15 photons/second using equation 2 8, we get he = η, Ω 4.10(10)15 [16(10)-6]2 4i(i〇)·3]2 : 3.34(10)11 Photons/sec Now, return to Equation 22 and use the previously listed Tb chelate properties, ln[(6.94( 10)-5)(10)(0.5)] _1___1_ 1(10)-3 ~ 0.5(10)-9 = 3.98(10)-9 seconds Now from the equation 21: ns = (0.5)[3.34(10) 1,][6.94(10)-5][1(10)-3>-3'98(,0>', /1(>〇)'3 = 11,600 photon/sensor. By hybridization The event uses the SET LED and the ytterbium chelate system to emit light -91 - 201209407 The sub-theoretical number system can be easily detected and far exceeds the lower limit of 30 photons, which is used for the light sensation indicated by the above The reliable detection required by the detector. The on-wafer detection of the maximum spacing between the probe and the photodiode avoids the need for detection by a conjugate focal microscope (see prior art). This departure from conventional detection techniques is system dependent. Time and cost savings are important factors. Traditional inspection requires the use of lens and curved mirror imaging optics. By using non-imaging optics, diagnosis The break system avoids the need for complex and cumbersome strings of optical components. The placement of the photodiode in close proximity to the probe has the advantage of extremely high collection efficiency. When the material thickness between the probe and the photodiode is 1 micron, the emission The light collection angle is as high as 173. This angle is calculated by considering the light emitted from the probe closest to the center of the surface of the hybrid chamber of the photodiode, which has a planar active surface area parallel to the chamber surface. The cone of emission in which light can be absorbed by the photodiode is defined as having a transmitting probe at its apex and at the sensor corners around its plane. For a 16 micron χ 16 micron sensor, this cone The apex angle is 1 70°; in the case where the photodiode is expanded such that its area conforms to the 29 micron χ19·75 micron hybrid chamber area, the apex angle is 1 to 3°. On the chamber surface and the photodiode It is easy to achieve a separation between the active surfaces of 丨 micron or less. Applying a non-imaging optical method requires the photodiode 184 to be very close to the hybridization chamber to collect sufficient photons of the fluorescent emission. Photodiodes and probes Maximum interval-based decision reference to the following FIG. 54 92--. 201209407

利用铽螯合物螢光團和 SET UVTOP3 3 5T039BL LED ,我們計算自個別雜交室180到達16微米xl6微米之光 二極體184的116 00個光子。在實施此計算時,我們假設 雜交室180之光收集區域具有與光二極體主動區185相同 的底面積,且雜交光子之總數的一半到達光二極體184。 即光學系統之光收集效率爲九=0.5。 更精確,我們可以寫出九=[(雜交室之光收集區域的底 面積)/(光二極體面積)][Ω/4π],其中Ω =立體角其對向於在 雜交室之基底上之代表點之光二極體。對於正確的(right) 正方錐幾何: 0 = 4^^402/(4(1()2 + 32)),其中 d0=在室與光二極體之間 的距離,且α爲光二極體尺寸。 各雜交室釋放23200個光子,經選擇的光二極體之檢 測低限値爲1 7個光子,因此,所需的最小光學效率爲: ^0=1 7/23200 = 7.33 χ1〇·4 雜交室180之光收集區域的底面積爲29微米χ19.75 微米。 解出do,將得到在雜交室及光二極體184之間的最大 限制距離爲dG = 249微米。在此限制中,如上所定義之收 集錐角僅爲0.8°。應注意的是此分析忽略了折射之可忽略 的影響。 -93- 201209407Using the ruthenium chelate fluorophore and the SET UVTOP3 3 5T039BL LED, we calculated 16,000 photons from individual hybridization chambers 180 to 16 micron x 16 micron light diodes 184. In carrying out this calculation, we assume that the light collection region of the hybridization chamber 180 has the same bottom area as the photodiode active region 185, and that half of the total number of hybrid photons reaches the photodiode 184. That is, the light collection efficiency of the optical system is nine = 0.5. More precisely, we can write nine = [(the bottom area of the light collection area of the hybridization chamber) / (photodiode area)] [Ω / 4π], where Ω = solid angle is opposite to the substrate of the hybridization chamber The light diode of the representative point. For the right square pyramid geometry: 0 = 4^^402/(4(1()2 + 32)), where d0 = the distance between the chamber and the photodiode, and α is the photodiode size . Each hybrid cell releases 23,200 photons, and the selected photodiode has a lower detection limit of 17 photons. Therefore, the minimum optical efficiency required is: ^0=1 7/23200 = 7.33 χ1〇·4 Hybridization chamber The bottom area of the light collection area of 180 is 29 microns χ 19.75 microns. Solving do, the maximum limit distance between the hybridization chamber and the photodiode 184 is dG = 249 microns. In this limitation, the collection cone angle as defined above is only 0.8°. It should be noted that this analysis ignores the negligible effect of refraction. -93- 201209407

LOC變體V 圖72中顯示之LOC變體V 362萃取290、培養291 、擴增292及檢測294(抑使用白血球透析部3 28)人類 DNA。試劑貯槽54、56、58、60及62於彼等之出口使用 第三變體之熱彎曲致動閥312。 結論 本文所述之裝置、系統及方法促進以低成本與高速度 及就地醫護之分子診斷試驗。 上述之系統及其成分僅爲說明用途,且在不背離本發 明的精神及廣義發明槪念的範圍下,此領域中之熟知技藝 者將輕易地了解許多變化及修飾。 【圖式簡單說明】 藉由僅參照隨附圖式之實施例將說明本發明之較佳具 體例,其中: 圖1顯示經組態而用於螢光檢測之試驗模組以及試驗 模組閱讀器; 圖2爲經組態而用於螢光檢測之試驗模組中之電子組 件之圖式槪要; 圖3爲試驗模組閱讀器中之電子組件之圖式槪要; 圖4爲表示LOC裝置之結構之圖式槪要; 圖5爲LOC裝置之透視圖; 圖6爲具有彼此疊置之所有層結構及特徵之LOC裝 •94- 201209407 置之平面圖; 圖7爲具有獨立顯示之蓋結構之LOC裝置之平面圖 » 圖8爲具有以虛線顯示之內通道及貯槽之頂面透視圖 9 圖9爲具有以虛線顯示之內通道及貯槽之爆炸頂面透 視圖> 圖10爲顯示上方通道組態之蓋之底面透視圖; 圖11爲獨立顯示CMOS + MST裝置結構之LOC裝置 之平面圖; 圖12爲LOC裝置之樣本入口處之槪要圖; 圖13爲圖6中所示之插圖AA之放大圖; 圖14爲圖6中所示之插圖AB之放大圖; 圖15爲圖13中所示之插圖AE之放大圖; 圖丨6爲闡述插圖AE中之LOC裝置之層合結構之部 份透視圖; 圖17爲闡述插圖AE中之LOC裝置之層合結構之部 份透視圖; 圖18爲闡述插圖AE中之L0C裝置之層合結構之部 份透視圖; 圖19爲闡述插圖AE中之L0C裝置之層合結構之部 份透視圖; 圖20爲闡述插圖AE中之L0C裝置之層合結構之部 份透視圖; -95- 201209407 圖21爲闡述插圖AE中之LOC裝置之層合結構之部 份透視圖; 圖22爲圖2 1中所示之溶胞試劑貯槽之圖式槪要; 圖23爲闡述插圖AB中之LOC裝置之層合結構之部 份透視圖; 圖24爲闡述插圖AB中之LOC裝置之層合結構之部 份透視圖; 圖25爲闡述插圖AI中之LOC裝置之層合結構之部 份透視圖; 圖26爲闡述插圖AB中之LOC裝置之層合結構之部 份透視圖: 圖27爲闡述插圖AB中之LOC裝置之層合結構之部 份透視圖; 圖28爲闡述插圖AB中之LOC裝置之層合結構之部 份透視圖: 圖29爲閫述插圖AB中之LOC裝置之層合結構之部 份透視圖; 圖30爲擴增混合貯槽及聚合酶貯槽之圖式槪要; 圖31顯示獨立之沸騰引動閥的特徵; 圖32爲圖31中所示之沿線3 3 - 3 3所取得之沸騰引動 閥之圖式槪要; 圖33爲圖15中所示之插圖AF之放大圖; 圖34爲圖33中所示之沿線3 5 -3 5所取得之透析部上 游端之圖式槪要; 96 - 201209407 圖35爲圖6中所示之插圖AC之放大圖; 圖36爲插圖AC中顯示擴增部之進一步放大圖; 圖37爲插圖AC中顯示擴增部之進一步放大圖; 圖38爲插圖AC中顯示擴增部之進一步放大圖; 圖39爲圖38中所示之插圖AK內之進一步放大圖; 圖40爲插圖AC中顯示擴增部之進一步放大圖; 圖41爲插圖AC中顯示擴增部之進一步放大圖; 圖42爲插圖AC中顯示擴增部之進一步放大圖; 圖43爲圖42中所示之插圖AL內之進一步放大圖; 圖44爲插圖AC中顯示擴增部之進一步放大圖; 圖45爲圖44中所示之插圖AM內之進一步放大圖; 圖46爲插圖AC中顯示擴增部之進一步放大圖; 圖47爲圖46中所示之插圖AN內之進一步放大圖; 圖48爲插圖AC中顯示擴增部之進一步放大圖; 圖49爲插圖AC中顯示擴增部之進一步放大圖; 圖50爲插圖AC中顯示擴增部之進一步放大圖; 圖51爲擴增部之圖式槪要; 圖52爲雜交部之放大的平面圖; 圖53爲兩個獨立雜交室之進一步放大圖; 圖54爲單一雜交室之圖式槪要; 圖55爲圖6中所示之插圖AG中闡述之增濕器之放 大圖; 圖56爲圖52中所示之插圖AD之放大圖; 圖57爲插圖AD內之LOC裝置之爆炸透視圖; -97- 201209407 圖58爲呈封閉組態之FRET探針之圖; 圖59爲呈開放及雜交組態之FRET探針之圖; 圖60爲激發光對時間之作圖; 圖 61爲雜父室陣列之激發光照幾何(excitation illumination geometry)之圖; 圖62爲感測器電子技術LED光照幾何之圖; 圖63爲圖6之插圖AH中所示之濕度感測器之放大 的平面圖: 圖64顯示熱彎曲致動閥之第一變體的特徵; 圖65爲沿圖64之線70-70之熱彎曲致動閥的第一變 體之示意圖; 圖66顯示熱彎曲致動閥之第二變體的特徵; 圖67爲沿圖66之線72-72之熱彎曲致動閥的第二變 體之示意圖; 圖68顯示熱彎曲致動閥之第三變體的特徵; 圖69爲沿圖68之線74-74之熱彎曲致動閥的第三變 體之示意圖; 圖7 0爲顯示部分光感測器之部分光二極體陣列之示 在回 · 蒽圖* 圖71爲具有熱彎曲致動閥的試劑貯槽之平面圖; 圖72係第五LOC變體的結構之圖形表示; 圖73爲單一光二極體之電路圖; 圖7 4爲光二極體控制信號之時間圖; 圖75爲圖55中所示之蒸發器AP之放大圖: •98- 201209407 圖76爲雜交室與檢測光二極體及觸發器光二極體之 示意圖; 圖77爲聯結子-引發PCR之圖; 圖7 8爲具有刺血針之測試模組之示意表示; 圖79爲LOC變體VII之結構之圖形表示; 圖80爲LOC變體VIII之結構之圖形表示; 圖81爲LOC變體XIV之結構之圖形表示; 圖82爲LOC變體XLI之結構之圖形表示; 圖83爲LOC變體XLIII之結構之圖形表示; 圖84爲LOC變體XLIV之結構之圖形表示; 圖85爲LOC變體XLVII之結構之圖形表示; 圖86爲初次擴增期間之引子-聯結的線性螢光探針之 圖, 圖87爲後續擴增循環期間之引子-聯結的線性螢光探 針之圖; 圖88A至88F圖形性地說明引子-聯結的螢光莖_及_ 環探針之熱循環; 圖89爲相關於雜交室陣列及光之二極體激發LED之 槪要說明; 圖90爲用於將光導至LOC裝置之雜交室陣列上之激 發LED以及光學透鏡之槪要說明: 圖91爲用於將光導至LOC裝置之雜交室陣列上之激 發LED、光學透鏡以及光稜鏡之槪要說明; 圖92爲用於將光導至LOC裝置之雜交室陣列上之激 99 · 201209407 發LED、光學透鏡以及鏡配置之槪要說明; 圖93爲顯示彼此疊置之所有特徵之平面圖,並顯示 插圖DA至DK之位置; 圖94爲圖93中所示之插圖DG的放大圖; 圖95爲圖93中所示之插圖DH的放大圖; 圖96顯示用於光二極體之並聯電晶體之實施例; 圖97顯示用於光二極體之並聯電晶體之實施例; 圖98顯示用於光二極體之並聯電晶體之實施例; 圖99爲示差成像器之電路圖; 圖1〇〇槪略地描述呈莖-及-環結構之負控制螢光探針LOC Variant V The LOC variant V 362 shown in Figure 72 was extracted 290, cultured 291, expanded 292, and tested 294 (using the leukocyte dialysis unit 3 28) human DNA. The reagent reservoirs 54, 56, 58, 60 and 62 use the third embodiment of the thermal bending actuated valve 312 at their outlets. Conclusion The devices, systems, and methods described herein facilitate molecular diagnostic testing at low cost and high speed and in situ care. The above-described system and its components are merely illustrative, and many variations and modifications will be readily apparent to those skilled in the art without departing from the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Preferred embodiments of the present invention will be described with reference to the accompanying drawings, in which: FIG. 1 shows a test module configured for fluorescence detection and a test module read. Figure 2 is a schematic diagram of the electronic components in the test module configured for fluorescence detection; Figure 3 is a schematic view of the electronic components in the test module reader; Figure 4 is a representation Figure 5 is a perspective view of the LOC device; Figure 6 is a plan view of the LOC device 94-201209407 with all layer structures and features superimposed on each other; Figure 7 is an independent display Plan view of the LOC device of the cover structure» Fig. 8 is a perspective view of the top surface of the inner passage and the sump shown by the broken line. Fig. 9 is a perspective view of the exploded top surface of the inner passage and the sump shown by the broken line. Fig. 10 is a view A bottom perspective view of the cover of the upper channel configuration; Figure 11 is a plan view of the LOC device showing the structure of the CMOS + MST device; Figure 12 is a schematic view of the sample inlet of the LOC device; Figure 13 is a view of the sample shown in Figure 6. An enlarged view of the illustration AA; Figure 14 is a representation of Figure 6. Figure 15 is an enlarged view of the illustration AE shown in Figure 13; Figure 6 is a partial perspective view illustrating the laminated structure of the LOC device in the illustration AE; Figure 17 is an illustration of the illustration AE Partial perspective view of the laminated structure of the LOC device; Figure 18 is a partial perspective view illustrating the laminated structure of the L0C device in the illustration AE; Figure 19 is a portion illustrating the laminated structure of the L0C device in the illustration AE Figure 20 is a partial perspective view illustrating the laminated structure of the LOC device in the illustration AE; -95-201209407 Figure 21 is a partial perspective view illustrating the laminated structure of the LOC device in the illustration AE; Figure 23 is a schematic view of the lysing reagent sump shown in Figure 21; Figure 23 is a partial perspective view illustrating the laminated structure of the LOC device in the illustration AB; Figure 24 is a elaboration of the lamination of the LOC device in the illustration AB Partial perspective view of the structure; Figure 25 is a partial perspective view illustrating the laminated structure of the LOC device in the illustration AI; Figure 26 is a partial perspective view illustrating the laminated structure of the LOC device in the illustration AB: Figure 27 is Explain a partial perspective view of the laminated structure of the LOC device in the illustration AB; Figure 28 illustrates the insertion Partial perspective view of the laminated structure of the LOC device in AB: Figure 29 is a partial perspective view of the laminated structure of the LOC device in the illustration AB; Figure 30 is a schematic diagram of the amplified mixing tank and the polymerase storage tank Figure 31 shows the characteristics of the independent boiling pilot valve; Figure 32 is a schematic view of the boiling pilot valve taken along line 3 3 - 3 3 shown in Figure 31; Figure 33 is the same as shown in Figure 15. Figure 34 is a schematic view of the upstream end of the dialysis section taken along line 3 5 - 3 5 shown in Figure 33; 96 - 201209407 Figure 35 is an enlarged view of the illustration AC shown in Figure 6. Figure 36 is a further enlarged view showing the amplification portion in the illustration AC; Figure 37 is a further enlarged view showing the amplification portion in the illustration AC; Figure 38 is a further enlarged view showing the amplification portion in the illustration AC; Further enlarged view of the illustration AK shown in Fig. 38; Fig. 40 is a further enlarged view showing the amplification portion in the illustration AC; Fig. 41 is a further enlarged view showing the amplification portion in the illustration AC; A further enlarged view of the amplification section is shown; FIG. 43 is a further enlargement of the illustration AL shown in FIG. Figure 44 is a further enlarged view showing the amplification portion in the illustration AC; Figure 45 is a further enlarged view of the illustration AM shown in Figure 44; Figure 46 is a further enlarged view showing the amplification portion in the illustration AC; 47 is a further enlarged view of the illustration AN shown in FIG. 46; FIG. 48 is a further enlarged view showing the amplification section in the illustration AC; FIG. 49 is a further enlarged view showing the amplification section in the illustration AC; Further enlarged views of the amplification section are shown in AC; Fig. 51 is a schematic view of the amplification section; Fig. 52 is an enlarged plan view of the hybridization section; Fig. 53 is a further enlarged view of two independent hybridization chambers; Figure 5 is an enlarged view of the humidifier illustrated in the inset AG shown in Figure 6; Figure 56 is an enlarged view of the inset AD shown in Figure 52; Explosive perspective view of the LOC device; -97- 201209407 Figure 58 is a diagram of the FRET probe in a closed configuration; Figure 59 is a diagram of the FRET probe in an open and hybrid configuration; Figure 60 is the excitation light versus time Figure 61; Excitation illumination geo of the parent-parent array Figure 62 is a diagram of the LED illumination geometry of the sensor electronics; Figure 63 is an enlarged plan view of the humidity sensor shown in the inset AH of Figure 6: Figure 64 shows the thermal bending actuation valve Figure 65 is a schematic illustration of a first variation of the thermal bending actuated valve taken along line 70-70 of Figure 64; Figure 66 shows the features of a second variant of the thermal bending actuated valve; A schematic view of a second variant of the thermally bent actuated valve taken along line 72-72 of Figure 66; Figure 68 shows the features of a third variant of the hot bend actuated valve; Figure 69 is taken along line 74-74 of Figure 68. Schematic diagram of a third variant of the thermal bending actuated valve; Fig. 70 shows a partial photodiode array of a portion of the photosensor shown in Fig. 71. Fig. 71 shows a reagent reservoir with a hot bending actuated valve. Figure 72 is a graphical representation of the structure of the fifth LOC variant; Figure 73 is a circuit diagram of a single photodiode; Figure 7 is a time diagram of the photodiode control signal; Figure 75 is the evaporator shown in Figure 55 Magnified view of AP: •98- 201209407 Figure 76 is a schematic diagram of hybridization chamber and detection photodiode and flip-flop photodiode; Figure 7 is a schematic representation of a test module with a lancet; Figure 79 is a graphical representation of the structure of the LOC variant VII; Figure 80 is a graphical representation of the structure of the LOC variant VIII Figure 81 is a graphical representation of the structure of the LOC variant XIV; Figure 82 is a graphical representation of the structure of the LOC variant XLI; Figure 83 is a graphical representation of the structure of the LOC variant XLIII; Figure 84 is the structure of the LOC variant XLIV Graphical representation; Figure 85 is a graphical representation of the structure of the LOC variant XLVII; Figure 86 is a diagram of the primer-linked linear fluorescent probe during initial amplification, and Figure 87 is the linearity of the primer-join during the subsequent amplification cycle. Figure of the fluorescent probe; Figures 88A to 88F graphically illustrate the thermal cycling of the primer-linked fluorescent stem_and _ring probe; Figure 89 is related to the hybrid chamber array and the light diode excitation LED Figure 90 is a schematic illustration of an excitation LED and an optical lens for directing light onto a hybrid chamber array of a LOC device: Figure 91 is an excitation LED, optical lens for directing light onto a hybrid chamber array of a LOC device And the light is to be explained; Figure 92 is used to light guide A schematic diagram of LEDs, optical lenses, and mirror configurations on the array of hybrid chambers of the LOC device; Figure 93 is a plan view showing all features superimposed on each other and showing the positions of the insets DA to DK; An enlarged view of the inset DG shown in Fig. 93; Fig. 95 is an enlarged view of the inset DH shown in Fig. 93; Fig. 96 shows an embodiment of a parallel transistor for the photodiode; Fig. 97 shows an example for the photodiode Embodiment of a parallel parallel transistor; FIG. 98 shows an embodiment of a parallel transistor for a photodiode; FIG. 99 is a circuit diagram of the differential imager; FIG. 1 schematically depicts a stem-and-ring structure Negative control fluorescent probe

I 圖101槪略地描述呈開放結構之圖100之負控制螢光 探針; 圖102槪略地描述呈莖-及-環結構之正控制螢光探針 » 圖103槪略地描述呈開放結構之圖102之正控制螢光 探針; 圖1 04顯示經組態以與EC L檢測倂用之試驗模組以 及試驗模組閱讀器: 圖105爲與ECL檢測一起使用之試驗模組中之電子 組件之圖式槪要; 圖1 06顯示試驗模組以及替代性試驗模組閱讀器;及 圖1 07顯示試驗模組以及替代性試驗模組閱讀器與儲 存各種資料庫的主機系統。 -100- 201209407 【主要元件符號說明】 I 〇:試驗模組 II :試驗模組 1 2 :試驗模組閱讀器 1 3 :外殻 14 :微型-USB接頭 15 :感應器 1 6 :微型-USB埠 17 :觸控螢幕 18 :顯示螢幕 19 :按鈕 20 :開始按鈕 2 1 :蜂巢式無線電 22 :無菌密封帶 23 :無線網路連接 24 :大容器 2 5 :衛星導航系統 26 :發光二極體 27 :資料儲存器 2 8 :電話 29 : LED驅動器 30 : LOC裝置 3 1 :電源調節器 -101 201209407 32 :電容器 33 :時鐘 34 :控制器 35 :暫存器 36: USB裝置驅動器 3 7 :驅動器 3 8 :隨機存取記憶體 39 :驅動器 40 :快閃記憶體 41 :暫存器 42 :處理器 43 :程式儲存器 44 :光感測器 45 :指示器 46 :蓋 47 :模組 48 : CMOS + MST 裝置 49 :多孔元件 52 :檢測部 54 :貯槽 56、 56.1、 56.2、 56.3:貯槽 5 7 :印刷電路板 58、 58.1、 58.2:貯槽 60、: 60.1-60.12、60.X:貯槽 -102 201209407 62,: 62.1、 62.2、 62.3、 62.4、 62.X:貯槽 6 4 :下密封 66 :頂部層 6 8 :樣本入口 70 :透析部 72 :廢料通道 74 :標靶通道 76 :廢料儲器 7 8 :貯槽層 80 :蓋通道層 8 2 :上密封層 84 :矽基板 86: CMOS 電路 87 : MST 層 8 8 :鈍化層 90 : MST通道 92 :下管道 94 :蓋通道 96 :上管道 97 :壁部 98:彎液面固定器 1 00 : MST通道層 101 :膝上型電腦/筆記型電腦 102 :毛細作用起始特徵 -103- 201209407 103 :專用閱讀器 105 :桌上型電腦 106 :沸騰引動閥 107 :電子書閱讀器 108 :沸騰引動閥 109 :平板電腦 110、110.1-110.12、110.X:雜交室陣列 1 1 1 :流行病學資料 112、 112.1-112.12、 112.X:擴增部 1 1 3 :遺傳資料 114.1-114.4:培養部 1 1 5 :電子化健康記錄 1 1 6 :抗凝血劑 1 1 8 :表面張力閥 1 1 9 :液體樣本 1 2 0 :彎液面 1 2 1 :電子化醫療記錄 1 2 2 :通孔 1 2 3 :個人健康記錄 125 :網路 126 :沸騰引動閥 128、 128.2、 128.3:表面張力閥 130、130.1-130.3:溶胞部 1 3 1 :混合部 -104- 201209407 132、132.1、132.3:表面張力閥 1 3 3 :培養器入口通道 134 :下管道 136 :光學窗 138、138.1、138.2、138.X:表面張力閥 140、140.1、140.2、140.X:表面張力閥 146 :閥入口 1 48 :閥出口 150 :閥下管道 1 5 1 :閥上管道 152 :環形加熱器 1 5 3 :閥加熱器接點 1 5 4 :加熱器 1 5 6 :加熱器接點 158 :微通道 160 :出口通道 162 :懸臂部 1 64 :孔口 166 :毛細作用起始特徵 1 6 8 :透析汲取孔 170 :溫度感測器 174 :液體感測器 175 :擴散屏障 176 :流路 -105- 201209407 1 7 8 :液體感測器 180 :雜交室 1 8 2 :加熱器 1 84 :光二極體 1 85 :主動區 1 86 :探針 187 :光二極體 1 8 8 :水貯槽 190 :蒸發器 1 9 1 :環形加熱器 192 :水供應通道 193 :上管道 194 :下管道 1 9 5 :頂金屬層 196 :增濕器 1 9 8 :汲取孔 202 :毛細作用起始特徵 204 : MST 通道 206 :沸騰引動閥 207 :沸騰引動閥 208 :液體感測器 210 :微通道 2 1 2 : MST 通道 2 1 8 :電極 -106- 201209407 220 :電極 222 :間隙 23 2 :濕度感測器 2 3 4 :加熱器 236 : FRET 探針 23 8 :標靶核酸序列 240 :環 242 :莖 244 :激發光 246 :螢光團 2 4 8 :淬熄劑 25 0 :螢光信號 2 5 2 :光學中心 254 :透鏡 28 8 :樣本輸入及製備 290 :萃取階段 291 :培養階段 292 :擴增階段 293 :預-雜交過濾純化階段 294 :檢測階段 296 :第一電極 298 :第二電極 3 0 0 :延遲 301 : LOC 裝置 -107 201209407 302 :變體 3 04 :致動器 306 :孔口 3 08 :閥 3 1 2 :閥 328:白血球透析部 344 :貯槽 3 62 : LOC 變體 3 76 :導熱柱 3 78 :陽性對照探針 3 8 0 :陰性對照探針 3 82 :校準室 384 :閘極 3 8 6 :閘極 3 8 8 :閘極 3 9 0 :可伸縮刺血針 3 92 :刺血針釋出按鈕 3 9 3 :聞極 394: MOS電晶體 396: MOS電晶體 398: MOS電晶體 400: MOS電晶體 402: MOS電晶體 404: MOS電晶體 201209407 4 0 6 :節點 408 :膜密封件 4 1 0 :膜防護件 492 : LOC 變體 5 1 8 : L Ο C 變體 594 :界面層 600 :旁路通道 602 :界面標靶通道 604 :廢料通道 6 3 8 :熱溶胞部 641 : LOC 變體 673 : LOC 變體 674 : LOC 變體 6 8 2 :透析部 6 8 6 :透析步驟 692 :引子-聯結的線性探針 694 :擴增阻斷物 6 9 6 :探針區域 698 :互補序列 700 :寡核苷酸引子 704 :莖-及-環探針 706 :互補序列 708 :莖股 7 1 0 :股 -109- 201209407 7 1 2 :第一光稜鏡 7 1 4 :第二光稜鏡 7 1 6 :第一鏡 7 1 8 :第二鏡 740 :流速感測器 746 : LOC 變體 75 8 : LOC 變體 7 6 0 :大組分通道 7 6 2 :小組分通道 764 :開口 766 :肓終端 7 6 8 :盲終端 7 7 8 :組態 7 8 0 :組態 7 8 2 :組態 788:示差成像器電路 7 9 0 :像素 7 9 2 :虛擬像素 7 94 :讀取—列 795 :讀取—列 796 :陰性對照探針 797 :(電晶體) 798 :陽性對照探針 8 0 1 :(電晶體) -110- 201209407 8 03 :像素電容器 805:虛擬像素電容器 807 :開關 8 0 9 :開關 8 1 1 :開關 8 1 3 :開關 815:電容器放大器 8 1 7 :示差信號 8 60 : ECL激發電極 8 70 : ECL激發電極I Figure 101 schematically depicts the negative control fluorescent probe of Figure 100 in an open configuration; Figure 102 schematically depicts a positive control fluorescent probe in the stem-and-loop configuration. Figure 103 is a brief description of the open The positive control fluorescent probe of Figure 102 of the structure; Figure 1 04 shows the test module and test module reader configured for use with EC L detection: Figure 105 shows the test module used with ECL detection The schematic diagram of the electronic components; Figure 1 06 shows the test module and the alternative test module reader; and Figure 1 07 shows the test module and the alternative test module reader and the host system for storing various databases. -100- 201209407 [Explanation of main component symbols] I 〇: Test module II: Test module 1 2 : Test module reader 1 3 : Case 14 : Micro-USB connector 15 : Sensor 1 6 : Micro-USB埠17: Touch screen 18: Display screen 19: Button 20: Start button 2 1 : Honeycomb radio 22: Aseptic sealing tape 23: Wireless network connection 24: Large container 2 5: Satellite navigation system 26: Light-emitting diode 27 : Data storage 2 8 : Telephone 29 : LED driver 30 : LOC device 3 1 : Power conditioner - 101 201209407 32 : Capacitor 33 : Clock 34 : Controller 35 : Register 36 : USB device driver 3 7 : Driver 3 8 : Random Access Memory 39 : Driver 40 : Flash Memory 41 : Register 42 : Processor 43 : Program Memory 44 : Light Sensor 45 : Indicator 46 : Cover 47 : Module 48 : CMOS + MST device 49: porous element 52: detection portion 54: sump 56, 56.1, 56.2, 56.3: sump 5 7: printed circuit board 58, 58.1, 58.2: sump 60, 60.1-60.12, 60.X: sump - 102 201209407 62,: 62.1, 62.2, 62.3, 62.4, 62.X: sump 6 4 : lower seal 66: top layer 6 8 : Present inlet 70: dialysis section 72: waste channel 74: target channel 76: waste reservoir 7 8: sump layer 80: cover channel layer 8 2: upper sealing layer 84: 矽 substrate 86: CMOS circuit 87: MST layer 8 8 : Passivation layer 90 : MST channel 92 : Lower pipe 94 : Cover channel 96 : Upper pipe 97 : Wall 98 : Meniscus holder 1 00 : MST channel layer 101 : Laptop / Notebook 102 : Capillary action Starting feature -103 - 201209407 103 : Dedicated reader 105 : Desktop computer 106 : Boiling pilot valve 107 : E-book reader 108 : Boiling pilot valve 109 : Tablet computer 110 , 110.1-110.12, 110.X: Hybrid room Array 1 1 1 : Epidemiological data 112, 112.1-112.12, 112.X: Amplification section 1 1 3 : Genetic data 114.1-114.4: Culture section 1 1 5: Electronic health record 1 1 6 : Anticoagulant 1 1 8 : Surface tension valve 1 1 9 : Liquid sample 1 2 0 : Meniscus 1 2 1 : Electronic medical record 1 2 2 : Through hole 1 2 3 : Personal health record 125 : Network 126 : Boiling pilot valve 128, 128.2, 128.3: Surface tension valve 130, 130.1-130.3: Lysis part 1 3 1 : Mixing section -104- 201209407 132, 132.1, 132.3: Surface tension valve 1 3 3 : incubator inlet channel 134: lower tube 136: optical window 138, 138.1, 138.2, 138.X: surface tension valve 140, 140.1, 140.2, 140.X: surface tension valve 146: valve inlet 1 48: valve outlet 150: valve under the pipe 1 5 1 : valve upper pipe 152: ring heater 1 5 3 : valve heater contact 1 5 4 : heater 1 5 6 : heater contact 158 : micro channel 160 : outlet channel 162 : Cantilever portion 1 64 : orifice 166 : capillary action initiation feature 1 6 8 : dialysis extraction aperture 170 : temperature sensor 174 : liquid sensor 175 : diffusion barrier 176 : flow path -105 - 201209407 1 7 8 : liquid Sensor 180: hybridization chamber 1 8 2 : heater 1 84 : photodiode 1 85 : active region 1 86 : probe 187 : photodiode 1 8 8 : water storage tank 190 : evaporator 1 9 1 : annular heating 192: water supply channel 193: upper pipe 194: lower pipe 1 9 5: top metal layer 196: humidifier 1 9 8 : extraction hole 202: capillary action starting feature 204: MST channel 206: boiling pilot valve 207: Boiling start valve 208: liquid sensor 210: microchannel 2 1 2 : MST channel 2 1 8 : electrode -106 - 201209407 220 : electrode 222 : gap 23 2 : humidity sensing 2 3 4 : Heater 236 : FRET probe 23 8 : Target nucleic acid sequence 240 : Ring 242 : Stem 244 : Excitation light 246 : Fluorescent group 2 4 8 : Quencher 25 0 : Fluorescence signal 2 5 2 : Optical Center 254: Lens 28 8 : Sample Input and Preparation 290: Extraction Stage 291: Culture Stage 292: Amplification Stage 293: Pre-Hybridization Filtration Purification Stage 294: Detection Phase 296: First Electrode 298: Second Electrode 3 0 0 : Delay 301 : LOC device - 107 201209407 302 : Variant 3 04 : Actuator 306 : Port 3 08 : Valve 3 1 2 : Valve 328 : Leukocyte dialysis unit 344 : Slot 3 62 : LOC Variant 3 76 : Heat conduction Column 3 78 : Positive control probe 3 80 0 : Negative control probe 3 82 : Calibration chamber 384 : Gate 3 8 6 : Gate 3 8 8 : Gate 3 9 0 : Retractable lancet 3 92 : Sting Blood needle release button 3 9 3 : Wenji 394: MOS transistor 396: MOS transistor 398: MOS transistor 400: MOS transistor 402: MOS transistor 404: MOS transistor 201209407 4 0 6 : Node 408: film Seal 4 1 0 : Membrane guard 492 : LOC variant 5 1 8 : L Ο C Variant 594 : Interfacial layer 600 : Bypass channel 602 : Interface target channel 604 : Scrap channel 6 3 8: hot lysate 641 : LOC variant 673 : LOC variant 674 : LOC variant 6 8 2 : dialysis section 6 8 6 : dialysis step 692 : primer-linked linear probe 694 : amplification blocker 6 9 6 : probe region 698 : complementary sequence 700 : oligonucleotide primer 704 : stem-and-loop probe 706 : complementary sequence 708 : stem 7 1 0 : strand -109 - 201209407 7 1 2 : first light稜鏡 7 1 4 : second aperture 7 1 6 : first mirror 7 1 8 : second mirror 740 : flow velocity sensor 746 : LOC variant 75 8 : LOC variant 7 6 0 : large component channel 7 6 2 : Small component channel 764 : Opening 766 : 肓 Terminal 7 6 8 : Blind terminal 7 7 8 : Configuration 7 8 0 : Configuration 7 8 2 : Configuration 788: Differential imager circuit 7 9 0 : Pixel 7 9 2 : Virtual Pixel 7 94 : Read - Column 795 : Read - Column 796 : Negative Control Probe 797 : (Crystal) 798 : Positive Control Probe 8 0 1 : (Crystal) -110- 201209407 8 03 : Pixel capacitor 805: Virtual pixel capacitor 807: Switch 8 0 9 : Switch 8 1 1 : Switch 8 1 3 : Switch 815: Capacitor amplifier 8 1 7 : Differential signal 8 60 : ECL excitation electrode 8 70 : ECL excitation electrode

Claims (1)

201209407 七、申請專利範圍: 1. 一種用於測試流體之微流體裝置,該微流體裝置包 含: 用於接收流體之入口; 含有試劑之貯槽; 自入口延伸之流路; 用於流路與貯槽間之流體連通之複數個出口閥,各出 口閥具有用於回應啓動信號而打開出口閥之致動器;其中 於使用時, 選擇性地開啓一些出口閥,使得試劑流入流路以與來 自入口的流體合倂而產生具有試劑比例之合倂流,合倂流 中之試劑比例係以開啓之出口閥的數目所決定》 2 ·如申請專利範圍第1項之微流體裝置,其進一步包 含於貯槽與流路間延伸之複數個通道,出口閥係設置於各 通道中,通道係組態成藉由毛細作用而自貯槽吸引試劑至 流路,其中出口閥各具有彎液面固定器,於彎液面固定器 處,朝向流路之毛細作用驅動試劑流被停止且形成彎液面 〇 3 .如申請專利範圍第2項之微流體裝置,其中各通道 中具有多於一個出口閥。 4.如申請專利範圍第2項之微流體裝置’其中致動器 爲加熱器以回應於啓動信號而自彎液面固定器釋放彎液面 〇 5 .如申請專利範圍第4項之微流體裝置,其中各出口 -112- 201209407 閥具有用於接觸試劑之可移動構件,以及致動器爲熱膨脹 致動器’其係用於位移可移動構件而於試劑中產生脈衝以 移動彎液面,使得恢復朝向流路之試劑流。 6 ·如申請專利範圍第5項之微流體裝置,其中可移動 構件係經組態以用於靜態位置與致動位置(自靜態位置移 動)之間的移動,以及彎液面固定器係組態成藉由固定彎 液面於孔口而停止試劑流之孔口,熱致動器係經組態以使 可移動構件往返運動於靜態位置與致動位置之間而迫使試 劑通過孔口。 7. 如申請專利範圍第6項之微流體裝置,其中孔口係 界定於可移動構件中。 8. 如申請專利範圍第4項之微流體裝置,其中彎液面 固定器係組態成藉由固定彎液面於孔口而停止試劑流之孔 口,以及熱致動器係經組態以使孔口處之部分試劑沸騰而 自彎液面固定器釋放彎液面。 9. 如申請專利範圍第4項之微流體裝置,其中各出口 閥具有用於接觸試劑之可移動構件,以及致動器爲熱膨脹 致動器,其係用於位移可移動構件而移動彎液面成與彎液 面固定器下游之表面接觸,藉此釋放彎液面而恢復朝向流 路之毛細作用驅動流》 1 0 .如申請專利範圍第4項之微流體裝置,其中彎液 面固定器下游之表面爲毛細作用起始特徵,其係經組態以 將彎液面導向通道壁。 1 1 .如申請專利範圍第1項之微流體裝置’其進一步 -113- 201209407 包含供貯槽、出口閥、入口及流路之支撐基板’以及包含 用於操作性控制出口閥之CMOS電路。 1 2 .如申請專利範圍第1 1項之微流體裝置,其進一步 包含至少一個回應液體的感測器以提供反饋給CMOS電路 而用於分別的閥之操作性控制。 1 3 .如申請專利範圍第1 2項之微流體裝置,其中至少 一個感測器係液體感測器,用於感測彼等通道之一者中之 位置的液體存在與否。 I4·如申請專利範圍第1項之微流體裝置,其進一步 包含複數個貯槽’其各含有不同的試劑及各具有貯槽與流 路間之複數個出口閥,其中合倂流中之任何不同試劑的比 例相關於對應之閥配置中開啓之分別的閥之數目。 1 5 ·如申請專利範圍第1 4項之微流體裝置,其中 CMOS電路根據·不同試劑類型及彼等於合倂流中所欲之比 例,選擇針對各貯槽開啓的出口閥數目。 1 6 .如申請專利範圍第1 5項之微流體裝置,其進一步 包含用於擴增流體中之標靶核酸序列之聚合酶鏈反應 (PCR)部。 17.如申請專利範圍第16項之微流體裝置,其中貯槽 中之不同的試劑包括下列之一或多者: 聚合酶; 限制酵素; 緩衝液中之dNTP及引子; 溶胞試劑:以及, -114- 201209407 抗凝劑。 1 8 .如申請專利範圍第1 5項之微流體裝置,其進一步 包含雜交部,雜交部具有用於與流體中之標靶核酸序列雜 交之探針陣列,其中CMOS電路具有用於檢測探針陣列內 任何探針雜交之感測器陣列。 -115-201209407 VII. Patent application scope: 1. A microfluidic device for testing a fluid, the microfluidic device comprising: an inlet for receiving a fluid; a storage tank containing a reagent; a flow path extending from the inlet; and a flow path and a storage tank a plurality of outlet valves in fluid communication, each outlet valve having an actuator for opening the outlet valve in response to the activation signal; wherein, in use, selectively opening some of the outlet valves such that the reagent flows into the flow path to and from the inlet The fluid is combined to produce a turbulent flow having a ratio of reagents, and the proportion of the reagents in the combined turbulent flow is determined by the number of open outlet valves. 2 The microfluidic device of claim 1 is further included in a plurality of channels extending between the storage tank and the flow path, the outlet valve is disposed in each channel, and the channel is configured to attract the reagent to the flow path from the storage tank by capillary action, wherein the outlet valves each have a meniscus fixer, At the meniscus holder, the capillary action toward the flow path drives the reagent flow to be stopped and forms a meniscus 〇3. The microflow as in claim 2 It means, wherein each channel has more than one outlet valve. 4. The microfluidic device of claim 2, wherein the actuator is a heater to release the meniscus from the meniscus holder in response to the activation signal. 5. The microfluid according to claim 4 Means, wherein each outlet-112-201209407 valve has a movable member for contacting the reagent, and the actuator is a thermal expansion actuator 'which is used to displace the movable member to generate a pulse in the reagent to move the meniscus, This allows the reagent flow towards the flow path to be restored. 6. The microfluidic device of claim 5, wherein the movable member is configured for movement between a static position and an actuated position (moving from a static position), and a meniscus holder set The state stops the orifice of the reagent stream by fixing the meniscus to the orifice, and the thermal actuator is configured to move the movable member back and forth between the static position and the actuated position to force the reagent through the orifice. 7. The microfluidic device of claim 6, wherein the orifice is defined in the movable member. 8. The microfluidic device of claim 4, wherein the meniscus holder is configured to stop the reagent flow orifice by fixing the meniscus to the orifice, and the thermal actuator is configured The meniscus is released from the meniscus holder by boiling a portion of the reagent at the orifice. 9. The microfluidic device of claim 4, wherein each outlet valve has a movable member for contacting the reagent, and the actuator is a thermal expansion actuator for displacing the movable member and moving the meniscus The surface is in contact with the surface downstream of the meniscus holder, thereby releasing the meniscus and restoring the capillary action driving flow toward the flow path. The microfluidic device of claim 4, wherein the meniscus is fixed The surface downstream of the device is a capillary action initiation feature that is configured to direct the meniscus to the channel wall. 1 1. A microfluidic device as claimed in claim 1 further comprising - 113 - 201209407 comprising a support substrate for a sump, an outlet valve, an inlet and a flow path' and a CMOS circuit for operatively controlling the outlet valve. 12. The microfluidic device of claim 11, further comprising at least one liquid responsive sensor to provide feedback to the CMOS circuit for separate valve operability control. 13. The microfluidic device of claim 12, wherein at least one of the sensors is a liquid sensor for sensing the presence or absence of a liquid at a location in one of the channels. The microfluidic device of claim 1, further comprising a plurality of storage tanks each containing different reagents and a plurality of outlet valves each having a storage tank and a flow path, wherein any different reagents in the combined flow The ratio is related to the number of separate valves that are open in the corresponding valve configuration. 1 5 . The microfluidic device of claim 14, wherein the CMOS circuit selects the number of outlet valves that are opened for each of the storage tanks according to a different reagent type and a ratio equal to that of the combined flow. 16. The microfluidic device of claim 15, further comprising a polymerase chain reaction (PCR) portion for amplifying a target nucleic acid sequence in the fluid. 17. The microfluidic device of claim 16, wherein the different reagents in the sump comprise one or more of the following: a polymerase; a restriction enzyme; a dNTP and a primer in the buffer; a lysis reagent: and, - 114- 201209407 Anticoagulant. 18. The microfluidic device of claim 15, further comprising a hybridization portion having a probe array for hybridizing to a target nucleic acid sequence in the fluid, wherein the CMOS circuit has a probe for detecting A sensor array that hybridizes to any probe within the array. -115-
TW100119254A 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves TW201209407A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35601810P 2010-06-17 2010-06-17
US43768611P 2011-01-30 2011-01-30

Publications (1)

Publication Number Publication Date
TW201209407A true TW201209407A (en) 2012-03-01

Family

ID=46552736

Family Applications (22)

Application Number Title Priority Date Filing Date
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section

Family Applications After (20)

Application Number Title Priority Date Filing Date
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer

Country Status (1)

Country Link
TW (22) TW201209404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI804560B (en) * 2018-01-11 2023-06-11 美商奈諾卡福有限責任公司 Microfluidic cellular device and methods of use thereof

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150247190A1 (en) * 2012-10-05 2015-09-03 California Institute Of Technology Methods and systems for microfluidics imaging and analysis
TWI512286B (en) * 2013-01-08 2015-12-11 Univ Nat Yunlin Sci & Tech Microfluidic bio-sensing system
US11318479B2 (en) 2013-12-18 2022-05-03 Berkeley Lights, Inc. Capturing specific nucleic acid materials from individual biological cells in a micro-fluidic device
CA2991918A1 (en) * 2014-07-11 2016-01-14 Advanced Theranostics Inc. Point of care polymerase chain reaction device for disease detection
JP2016148574A (en) * 2015-02-12 2016-08-18 セイコーエプソン株式会社 Electronic component carrier device and electronic component inspection apparatus
TWI712686B (en) * 2015-04-22 2020-12-11 美商柏克萊燈光有限公司 Culturing station for microfluidic device
EP3275992A1 (en) * 2016-07-29 2018-01-31 Bayer Aktiengesellschaft Adapter for cell-culture vessel
JP2019050798A (en) * 2017-07-05 2019-04-04 株式会社Screenホールディングス Sample container
US11441701B2 (en) * 2017-07-14 2022-09-13 Hewlett-Packard Development Company, L.P. Microfluidic valve
TWI671397B (en) * 2017-07-14 2019-09-11 國立中興大學 Granular body extraction device
CA3082898C (en) * 2017-11-17 2023-03-14 Siemens Healthcare Diagnostics Inc. Sensor assembly and method of using same
JP7172988B2 (en) 2018-02-01 2022-11-16 東レ株式会社 Apparatus for evaluating particles in liquid and method for operating the same
EP3560593B1 (en) * 2018-04-25 2024-06-05 OPTOLANE Technologies Inc. Cartridge for digital real-time pcr
US11366109B2 (en) * 2018-12-06 2022-06-21 Winmems Technologies Co., Ltd. Encoded microflakes
TWI711822B (en) * 2019-10-18 2020-12-01 國立成功大學 Miniature and intelligent urine sensing system
TWI739318B (en) * 2020-02-24 2021-09-11 國立陽明交通大學 An impedance-type chip for measuring instantaneous sweat pressure, a micro-control system for sweat pressure measurement, and a measuring method of instantaneous sweat pressure
US20240002928A1 (en) * 2020-04-21 2024-01-04 Roche Sequencing Solutions, Inc. High-throughput nucleic acid sequencing with single-molecule-sensor arrays
TWI795735B (en) * 2021-02-26 2023-03-11 行政院農業委員會水產試驗所 Automatic portable detection system for pathogenic bacteria
CN115494833A (en) * 2021-06-18 2022-12-20 广州视源电子科技股份有限公司 Robot control method and device
TWI793671B (en) * 2021-07-09 2023-02-21 中國醫藥大學 Tumor microenvironment on chip and production method thereof
TWI814499B (en) * 2021-07-22 2023-09-01 中央研究院 Device for continuously producing and analyzing rna, and methods of producing rna by using the device
TWI800964B (en) * 2021-10-29 2023-05-01 宏碁股份有限公司 Power supply device and electronic system
TWI805205B (en) * 2022-01-26 2023-06-11 國立中正大學 High stability waveguide analog resonance biosensing system with self-compensation
TWI818596B (en) * 2022-06-22 2023-10-11 嘉碩生醫電子股份有限公司 Shear-mode liquid-phase sensor having groove structure and methods of manufacturing and using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI804560B (en) * 2018-01-11 2023-06-11 美商奈諾卡福有限責任公司 Microfluidic cellular device and methods of use thereof

Also Published As

Publication number Publication date
TW201211533A (en) 2012-03-16
TW201211532A (en) 2012-03-16
TW201211540A (en) 2012-03-16
TW201211538A (en) 2012-03-16
TW201209159A (en) 2012-03-01
TW201209158A (en) 2012-03-01
TW201219115A (en) 2012-05-16
TW201211243A (en) 2012-03-16
TW201209402A (en) 2012-03-01
TW201209405A (en) 2012-03-01
TW201219770A (en) 2012-05-16
TW201209403A (en) 2012-03-01
TW201211244A (en) 2012-03-16
TW201211534A (en) 2012-03-16
TW201211240A (en) 2012-03-16
TW201209404A (en) 2012-03-01
TW201211242A (en) 2012-03-16
TW201209406A (en) 2012-03-01
TW201219776A (en) 2012-05-16
TW201211241A (en) 2012-03-16
TW201211539A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
TW201209407A (en) Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW201213798A (en) Microfluidic thermal bend actuated surface tension valve
CN100503838C (en) Microflow system for analyzing nucleic acid
JP2009529883A (en) Integrated nucleic acid assay
JP2023520936A (en) Hyplex guide pooling for nucleic acid detection