TW201140123A - Locating electromagnetic signal sources - Google Patents

Locating electromagnetic signal sources Download PDF

Info

Publication number
TW201140123A
TW201140123A TW99145711A TW99145711A TW201140123A TW 201140123 A TW201140123 A TW 201140123A TW 99145711 A TW99145711 A TW 99145711A TW 99145711 A TW99145711 A TW 99145711A TW 201140123 A TW201140123 A TW 201140123A
Authority
TW
Taiwan
Prior art keywords
data
signal
locations
user
source
Prior art date
Application number
TW99145711A
Other languages
Chinese (zh)
Other versions
TWI507707B (en
Inventor
Tughrul Sati Arslan
Zankar Upendrakumar Sevak
Firas Alsehly
Original Assignee
Univ Edinburgh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Edinburgh filed Critical Univ Edinburgh
Publication of TW201140123A publication Critical patent/TW201140123A/en
Application granted granted Critical
Publication of TWI507707B publication Critical patent/TWI507707B/en

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

There is disclosed a method of estimating the location of a plurality of electromagnetic signal sources, comprising: scanning at a first plurality of locations to generate signal source position data, the signal source position data representing estimates of the position of at least one of said signal sources; scanning at a second plurality of locations using a signal detection system to generate signal detection data, the signal detection data relating to signals received at the second plurality of locations from the signal sources; processing the signal source position data in dependence on the signal detection data to correct estimation errors in the signal source position data; and outputting the processed signal source position data.

Description

201140123 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種用於估計複數個電磁信號源之定位的 方法及系統。 【先前技術】 一電磁信號源之一實例為-無線存取點,諸如一㈣ 基地台(無線存取點),該無線存取點用於藉由傳輸及接收 無線電波形式的電磁輕射而與-器件無線通信。其他的電 磁信號源可(例如)包含光學(紅外線)通信器件及各式各樣 的電磁/無線信標。 有時期望估計電磁信號源之定位。在_實例中,判定無 線存取點(WAP)、蜂巢式φπ μ & ^ 啤果式電話天線桿及其他電磁信號源之 ^立及其他屬性的細節一使用者所操作之—器件然後可 量測在該器件處偵測之電磁信號(諸如撕射頻信幻的屬 可參考先則所判定之^位及其他資料來計算該使用 者之疋位。例如’具有w“Fi能力之一智慧電話可判定鄰 近WAP之身份及信號強度,且可基於討論中之該等觀p的 已兵疋位執仃二角定位以判定該智慧電話(及因此使用者) 之定位。顯然,對該等信號源(WAp)之定位的估計越佳, 所得之使用者定位估計亦越佳。 寺定實例中,厂駕敬攻擊(贈也“叩)」係用於隨著 四處駕敬-車輛㈣定處㈣車㈣圍内之 (WAP)的定位。哕直缸士 尺仔取點 _七机 “車輛中之一全球定位系統(GPS)或類似單 凡s己錄該車^ ^ ι^τ 疋位,且信號偵測設備(包含(例如)一高方 153204.doc 201140123 向性天線及Wi-Fi介面電路)識別該等WAP之相對位置及其 他屬性。然後可使用兩筆資訊判定該等WAp之絕對位置。 行走攻擊」可完成一類似的程序,其中一人士四處攜帶 縮小型設備以達到相同的效果。 駕駛攻擊受困於可用於判定WAp及其他信號源之位置的 精度限制。信號傳播受環境因素影響,且離該信號源越 遠,諸如多路徑傳播及信號衰減之效應變得更加明顯❶一 道路上之車輛與WAP基地台(通常安裝在遠離該道路之建 築物内部)之間的必要距離可導致該等WAp定位估計之明 顯的不精確性,且在該距離下可能根本無法彳貞測其他 WAP。此等因素可降低使用自該駕駛攻擊導出之資料的— 定位服務之精度。 行走攻擊可允許攜帶偵測設備更接近該等WAP及甚至進 入建4物内部,但是在進入該建築物之後,〇1>§接收器通 常會歸因於缺少與GPS衛星之直視路線而失效。 因此,駕駛攻擊與行走攻擊兩者皆受困於對該等之 疋位估相精度限制,且在—些情況下歸因於該Gps或類 似的定位系統之失效而根本無法允許判定一定位。 【發明内容】 本發明之一第一態樣提供一種估計才复數個電磁信號源 (:如無線存取點)之定位的方法,其包括:在第一複數個 疋:立處掃描(例如使用_手持式掃描器或其他掃描器(諸如 行動電話或膝上型電腦))以產生信號源位置資料,該, 號源位置資料表示對一或多個該等信號源之位置的估二 153204.doc 201140123 使用一信號㈣系統(諸如__Wi.Fi收發器)在第二複數個定 位(其不同於該第-複數個定位)處掃描以產生信號偵測資 料,該信號读測資料係關於在該第二複數個定位處自該等 信號源接收之信號(且包含(例如)關於所接收之信號強度及 WAP基地台識別符的資料);依賴㈣㈣相資料來處 理該信號源位置資料以校正該信號源位置資料中之估計誤 差;及輸出(例如對於一資料庫中之餘存器)該經處理的信 號源位置貧料。在一奢你么丨士 ,. 在貫施例中,該信號源位置資料表示對 各(每個)信號源之位置的估計。 該信號源位置資料包含(例如)無線存取點(WAp)及立等 之識別符或其他電磁信號源及其等之識別符的二維或三维 且可包含另一資訊’諸如信號強度、位置精度估計 。3亥方法可在任意適當的器件或定位中執行,例如在 可能正執行該掃描操作之-可攜式手持機或其他器件中及/ 或在一遠端飼服器系統中執行。特定言之,該等處理步驟 :由但並非必需由相同的處理器、電腦、微控制器或其他 盗件執仃,且可根據需要跨不同的處理器細分及分散個 處理步驟。 藉由使用一 k號偵測系統(諸如一 m介面)在一第二組 定位處(例如,在較鄰近處於駕駛攻擊不可到達之區域中 的撕基地台之處)第二次掃描,可校正對該等信號源之 位置的估a十而無需在該第二組定位處提供類似全球定位系 :(:ps)的功能。該校正不可能在每種情況下改良對一特 定信號源之位置的估計’但是-般而言會在總體上改良對 I53204.doc 201140123 該等信號狀估計。當然可能存在可能違背此趨勢之信號 源及掃減位的特;t環境及組態(例如歸因於信號黑點中 之掃描、極端的傳播效應(諸如多路徑效應)等等)β 較佳的疋該仏號偵測資料包含信號強度、MAC位址 (對於網路化器件’若適當)或與„_信號源相關之其他識別 4 m等之至少一者。較佳的是’對該信號源位置 資料之處理包括對該信號制f料應用到達時間⑼A)、 到達時間差(TDGA)、㈣角(編)與所接收之信號強度 (RSS)的演算法之至少一者。 對該信號源位置資料之處理較佳地進—步包括使用該1 號偵測資料來估計該第二複數個— 丁〆罘一複數個疋位的位置。可(例如)调 對該第二複數個定位之位置(即,其中執行該第二組掃指 之地點)的估計呈現至操作該掃描器件之一人士以允許勃 :一視覺或其他檢查(且可(例如)對照其他資料交又參考該 專所估計之掃描定位以(例如)檢查該所估計之定位並不處 於:壁或其他不可到達及明顯不正確的定位内卜 :亥方:可進一步包括接收表示關於該第二複數個定位之 貢sfl的定位資訊資料,且虔 請且處理該㈣源位置資料可進-步 匕括使用該定位資訊資料來估 里., Τ μ第一複數個定位之位 置。例如,該定位資訊資料可包括 _ , 0括對該第二複數個定位之 广者之位置的一使用者估計。該定位資訊資料可包括 對該等電磁信號源之至少一者之相… 貝针r包括 3 者之位置的—使用者估計。較 佳的疋’該方法進一步包括經由一 一车枝4 由使用者輸入器件(諸如 手持式單元)輸入該定位資 貝凡貢枓遠方法可包括自啟 153204.doc 201140123 用或增強對該第二複數個定位之估計的一使用者接收資 料。該方法可包括自量測關於移動、方向或高度之一參數 的一或多個額外感測器(例如,一磁強計、一加速度計、 一氣塵計之一或多者)接收資料。可在估計該第二複數個 定位之位置時考慮此所接收之資料。 該定位資訊資料可改良對該第二複數個位置之至少一者 的估計°在—實例中,若近似GPS(若可用)或其他定位系 統的讀數似乎不正確,則該使用者可輸入一校正至近似 GPS(若可用)或其他定位系統的讀數。該使用者亦可(或替 代地)輸入額外參考資料(諸如一高度),該額外參考資料可 (例如)克服GPS及類似系統中之高度讀數的相對不精確 性。可以該使用者所位於之一建築物的樓層編號形式最容 易地輸入該高度;可(例如)藉由將一平均/普遍的樓層高度 (諸如5米10米或中間某處)與該樓層編號相乘且加至該定 位之一尚度基準,或使用關於討論中之該建築物的更詳細 育訊或該定位而相料似地將該樓層編號轉換為一高度, 以獲得一更精確的結果。 處理該信號源位置資料可額外地或替代地進一 一步包括:201140123 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method and system for estimating the location of a plurality of electromagnetic signal sources. [Prior Art] An example of an electromagnetic signal source is a wireless access point, such as a (four) base station (wireless access point) for transmitting and receiving electromagnetic light rays in the form of radio waves. Wireless communication with the device. Other sources of electromagnetic signals may, for example, include optical (infrared) communication devices and a wide variety of electromagnetic/wireless beacons. It is sometimes desirable to estimate the location of the electromagnetic signal source. In the _ example, the details of the wireless access point (WAP), the cellular φπ μ & ^ beer-type telephone antenna mast and other electromagnetic signal sources and other attributes are determined - the device can then Measure the electromagnetic signals detected at the device (such as the singularity of the RF illusion) and calculate the user's position by referring to the position determined by the syllabus. For example, 'the wisdom with one of the w" Fi capabilities The phone can determine the identity and signal strength of the neighboring WAP, and can determine the location of the smart phone (and thus the user) based on the position of the peers in the discussion. The better the estimation of the positioning of the signal source (WAp), the better the user's positioning estimate. In the temple setting example, the factory driving attack (give "叩") is used to drive around with the vehicle (four) (4) Vehicle (4) Positioning within the (WAP) area. 哕 缸 缸 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Bit, and signal detection equipment (including (for example) a high side 153204.doc 201140 123 directional antennas and Wi-Fi interface circuits) identify the relative positions and other attributes of the WAPs. Then two pieces of information can be used to determine the absolute position of the WAPs. The walking attack can complete a similar procedure, one person everywhere Carrying a reduced device to achieve the same effect. Driving attacks are trapped by precision limits that can be used to determine the position of WAp and other sources. Signal propagation is affected by environmental factors and is further away from the source, such as multipath propagation and signals. The effect of attenuation becomes more pronounced. The necessary distance between a vehicle on the road and a WAP base station (usually installed inside a building remote from the road) can result in significant inaccuracies in the estimation of such WAp locations, and Other WAPs may not be able to speculate at this distance. These factors can reduce the accuracy of the location service using the data derived from the driving attack. The walking attack can allow the carrying detection device to be closer to the WAP and even enter the building 4 Inside the object, but after entering the building, the 接收1> § receiver is usually attributed to the lack of direct view with GPS satellites. Therefore, both the driving attack and the walking attack are trapped in the accuracy limit of the position estimation, and in some cases, the failure of the GPS or similar positioning system cannot be allowed to be determined at all. Positioning. SUMMARY OF THE INVENTION A first aspect of the present invention provides a method of estimating a location of a plurality of electromagnetic signal sources (eg, wireless access points), including: scanning at a first plurality of locations: For example, using a handheld scanner or other scanner (such as a mobile phone or laptop) to generate source location data, the source location data representing an estimate of the location of one or more of the sources 153204.doc 201140123 uses a signal (four) system (such as a __Wi.Fi transceiver) to scan at a second plurality of locations (which are different from the first plurality of locations) to generate signal detection data, the signal reading data system Information about signals received from the sources at the second plurality of locations (and including, for example, information about received signal strength and WAP base station identifiers); relying on (four) (four) phase data to process the signals The source location data is used to correct the estimated error in the source location data; and the output (e.g., for a bank in a database) the processed source location is poor. In a case of a luxury gentleman, in the example, the source location data represents an estimate of the location of each (each) source. The source location data includes, for example, a wireless access point (WAp) and an identifier of the et al. or other electromagnetic signal source and its identifiers in two or three dimensions and may contain another information such as signal strength, location Accuracy estimation. The 3H method can be performed in any suitable device or location, such as in a portable handset or other device that may be performing the scanning operation and/or in a remote feeder system. In particular, the processing steps are: but not necessarily required to be performed by the same processor, computer, microcontroller or other pirate, and the processing steps can be subdivided and distributed across different processors as needed. Corrected by using a k-th detection system (such as an m-interface) for a second scan at a second set of locations (eg, at a location closer to the tearing base in an unreachable area of the driving attack) Estimating the position of the signal sources does not require providing a similar global positioning system: (: ps) function at the second set of locations. This correction is not likely to improve the estimation of the position of a particular source in each case 'but generally, the signal estimates are generally improved for I53204.doc 201140123. Of course, there may be special sources and configurations that may violate this trend; t environment and configuration (eg due to scanning in signal black points, extreme propagation effects (such as multipath effects), etc.) The nickname detection data includes at least one of a signal strength, a MAC address (if appropriate for a networked device) or other identification 4 m associated with a __signal source. Preferably, 'this The processing of the source location data includes applying at least one of an algorithm for arrival time (9) A), time difference of arrival (TDGA), (four) angle (code), and received signal strength (RSS) for the signal. Preferably, the processing of the source location data further comprises using the detection data No. 1 to estimate the location of the second plurality of digits - a plurality of digits of the digits, for example, to adjust the second plurality of locations An estimate of the location (i.e., where the second set of swabs are performed) is presented to a person operating the scanning device to allow for a visual or other inspection (and may, for example, refer to other information and refer to the Estimated scan position to For example, checking that the estimated location is not in a wall or other unreachable and significantly incorrect location: the white side: may further include receiving location information indicating a sfl of the second plurality of locations, and The request and processing of the (4) source location data may further include using the location information to estimate the location of the first plurality of locations. For example, the location information may include _, 0 including the A user estimate of the location of the plurality of locations that are located. The location information may include at least one of the sources of the electromagnetic signals. The pin r includes a user estimate of the location of the three. The method further includes inputting the location via a user input device (such as a handheld unit) via a vehicle 4, and the method may include or enhance the second plurality An estimated user of the location receives the data. The method can include one or more additional sensors that self-measure one of the parameters of the movement, direction or height (eg, a magnetometer, Receiving data by one or more of an accelerometer, an air dust meter, may consider the received data when estimating the position of the second plurality of locations. The positioning information material may improve at least one of the second plurality of locations Estimate ° In the example, if the approximate GPS (if available) or other positioning system readings appear to be incorrect, the user can enter a correction to approximate GPS (if available) or other positioning system readings. Additional reference material (such as a height) may also be input (or alternatively) that may, for example, overcome the relative inaccuracy of height readings in GPS and similar systems. One of the buildings in which the user may be located The floor number form of the object is most easily entered into the height; for example by multiplying an average/universal floor height (such as 5 meters 10 meters or somewhere in the middle) with the floor number and adding to one of the positions The benchmark is used, or the floor number is converted to a height using a more detailed education or the location of the building in question to obtain a more accurate result. . Processing the source location data may additionally or alternatively include:

的環境模型選擇資料與表示該環境模 汁之精度。在此情況 示環境模型之一選項 型之至少一參數的一 153204.doc 201140123 選項的環境模型參數資料之至少一者,且根據該環境模型 選擇資料與該環境模型參數資料之該至少一者來處理該信 號偵測資料。 該方法可進一步包括經由一使用者輸入器件輸入環境模 型選擇資料與環境模型參數資料之該至少一者。或者,可 在其他地方輸入該選擇資料或參數資料,例如在具有適當 知識、經驗或訓練之一測量者或系統操作者已執行測量之 後輸入。在另一實施例中,可(在一適當程度上)自動導出 該模型或模型參數(例如,藉由感測器件或(例如)藉由交又 參考該所估計之掃描定位與相關的地理資料)。 可取決於某些可量測的因素而應用不同的環境模型。例 如,可取決於該掃描定位在室内或室外而應用一不同的環 境模型(諸如(例如)史丹佛大學臨時(Stanf〇rd咖〜 Interim,SUI)模型)。 、:者可在該掃描地點(例如使用—手持式器件)或名 遠端(與掃描程序一致或在一雜/么λα 士 稍後的時間/日期)在一適當程 度上輸入用於本文中所述 適當的資料。 /邵〒的基本上任意 該信號该測資料來產生表進一步包括依海 信號源位置資料。w p 原之新估計的另 之經更新的估計座標的一清 (如’WAP基地 比較該等信號源之定位的先」:(例如)經緣圖以允許視 <疋仅的先則估計& 述’可交叉參相新的估計資料、㈣心如前 G’J如)檢查該等新的 I53204.doc 201140123 計定位係可信。 較佳的是,該方法進一步包括處理該信號源位置資料及 該另一信號源位置資料以判定對該信號源位置資料之一適 當調整。任意適當處理可用於判定該適當調整,包含(例 如)最小平方估計法。 該方法亦可進—步包括處理該信㈣測資料以估計在該 第一複數個定位處未被偵測之額外的信號源之定位,且將 額外的彳5號源位置資料添加至該信號源位置資料。因此, ”亥第一掃描階段(在該第二組定位處)可(例如)揭露在該第 -掃描階段(在該第-組定位處)中未被發現之信號源(諸如 WAP基地台)。 在該第一複數個定位處之掃描較佳地包括:在該第一複 數個定位處掃描以產生初始信號㈣資料,該初始信號谓 測資料係關於在該第―複數個定位處自該等信號源接收之 信號;依賴於第一掃描位置資料來處理該初始信號偵測資 料乂產生位置估#資料,該第__掃描位置資料表示該第一 複數個定位之各者的位置。因此’該等信號源可用於兩個 階段中以促進對該等源之位置的估計。 。在該第-複數個定位處之該掃描可包括使用該(前述)信 號偵測系統來產生該初始信號偵測資料。或者,可適杏地 使用-不同的信號㈣系統。例如,較精密的車載設備可 用於該第-掃描階段,且不太精密但是更具行動性之設備 可用於該第二掃描階段。 該方法可進—步包括在該第—複數個定位之各者處使用 153204.doc 201140123 一定位系統(其可為一絕對定 疋仪系統’例如一全球導航撞 星系統(諸如㈣或AGPS、 導航衛The environmental model selects the data and indicates the accuracy of the environmental model. In this case, at least one of the environment model parameter data of a 153204.doc 201140123 option of at least one parameter of one of the environmental models is selected, and the at least one of the environment model parameter data and the environment model parameter data is selected according to the environment model. Processing the signal detection data. The method can further include inputting the at least one of the environmental model selection data and the environmental model parameter data via a user input device. Alternatively, the selection data or parameter data may be entered elsewhere, such as after one of the appropriate knowledge, experience, or training measures or the system operator has performed the measurement. In another embodiment, the model or model parameters may be automatically derived (to an appropriate extent) (eg, by sensing the device or, for example, by reference to the estimated scan location and associated geographic data) ). Different environmental models can be applied depending on certain measurable factors. For example, a different environmental model (such as, for example, the Stanford University Interim (SUI) model) may be applied depending on whether the scan is located indoors or outdoors. , at the scanning location (eg using a handheld device) or the remote end (consistent with the scanning procedure or at a later time / date) to an appropriate extent for the purpose of this article The appropriate information. / Shao Yong's basically arbitrary The signal to generate the table further includes the source information of the source of the sea. Wp Originally estimated by another newly updated estimated coordinate (eg 'WAP base compares the positioning of these sources first'): (for example) the eigenmap to allow viewing of <疋 only prior estimates & The description of 'can be cross-referenced to new estimates, (4) the heart as before G'J) check the new I53204.doc 201140123 meter positioning is credible. Preferably, the method further comprises processing the source location data and the another source location data to determine an appropriate adjustment to the source location data. Any suitable processing can be used to determine the appropriate adjustment, including, for example, a least squares estimation method. The method may further include processing the signal (4) to estimate the location of the additional signal source that is not detected at the first plurality of locations, and adding additional 彳5 source location data to the signal Source location data. Thus, the first scan phase (at the second set of locations) may, for example, expose a signal source (such as a WAP base station) that was not found in the first scan phase (at the first set of locations) The scanning at the first plurality of locations preferably includes: scanning at the first plurality of locations to generate an initial signal (four) data, the initial signal prediction data being related to the first plurality of locations a signal received by the signal source; processing the initial signal detection data according to the first scan position data, generating a position estimate data, the __scan position data indicating a position of each of the first plurality of positions. 'These signal sources can be used in two stages to facilitate estimation of the position of the sources. The scanning at the first plurality of locations can include generating the initial signal using the (described above) signal detection system Detect data. Alternatively, use a different signal (4) system. For example, more sophisticated in-vehicle equipment can be used for this first-scan phase, and less precise but more actionable equipment can be used. a second scanning phase. The method can further include using 153204.doc 201140123 a positioning system (which can be an absolute calibration system), such as a global navigation star system (for example, each of the first plurality of positionings) Such as (four) or AGPS, navigation guard

Oi^ONASS > Beidou-2 ^Oi^ONASS > Beidou-2 ^

Galhleo))以產生該第一婦 一 m罝貝科。該定位可(例如)包 含GPS/AGPS器件、基於小區 „ ^ 匕。之二角定位、慣性感測 器、地理資訊系統(GJS)或组人 ^足.,丑σ兩個或兩個以上此等子系 統之一混合系統。或者,可使用 手動方法’例如由該掃描 設備之一操作者使用鍵入之資料 批、< 貞村。習知的印刷地圖可用於 (例如)建立各定位之位置。當鈇, 、 田…、J月b視情況存在用於判 定該定位之其他程序。可提供一使用者介面以使一使用者 能夠輸入資料以啟用或增強—定位系統之效能,諸如㈣ 之GPS輔助資料(估計位置、時間、星曆表等等該方法 可包括自量測關於移動、方向或高度之一參數的一或多個 額外感測器(例如,一磁強計、一加速度計、一氣壓計之 一或多者)接收資料。 一般而言,該定位系統可能在該第一複數個定位處比在 該第二複數個定位處更有效。此外,該定位系統可能在該 第二複數個定位之至少一者中無法操作(或確實可能在該 第二複數個定位之25%、50〇/。、75〇/。、80%、90〇/〇 或 95°/〇 以 上中無法操作)。例如,該第二複數個定位可能部分(例 如,25%、50%、75°/。、80%、90%或 95°/。以上)或全部在室 内,而阻止GPS及其他絕對/全球定位系統之有效操作。 反之’該ig號偵測系統可能一般而言在該第二複數個定 位處比在3亥第一複數個定位處更有效。例如,該信號偵測 系統可能僅在相對鄰近該等信號源處或在該偵測系統與該 I53204.doc -10- 201140123 信號源之π / a1缺乏衰減材料情況下才工作(或最有效地工 作)’例如邻八 。刀(堵如 25%、50%、75%、80%、90%或 95% 以上)或全6 °丨在室内或不受牆壁阻礙。該第一複數個定位 (例如受諸如心 該* 兄許—車輛通過之需要限制)可能一般而言離 U等(大夕數)信號源過於遙遠而不允許有效的偵測。 該方法可难 止A· l 、 進—v包括在另外複數個定位處使用一信號偵 •系先進行掃描以產生另一信號偵測資料,且依賴於該另 L號偵測資料來處理該信號源位置資料。因此,可一 ' |X| -Λ? 一人、二次或更多次重複該第二掃描階段以進一步改 良該等位置估計的精度。 在另一實施例中,可在該第一或第二(或另外)複數個掃 描定位處使用一第二(或另一)信號偵測系統以補充該(第 一)仏號偵測系統且進一步改良該等定位估計之精度。無 鸹大致上同時(在同一天或在同一星期等等)執行該第一、 第二及(視情況)另外的掃描階段。 該方法可進一步包括處理該信號源位置資料以產生表示 該等信號源之一地圖的地圖資料。術語「地圖J較佳地隱 含包含編碼及/或識別至少一地理或其他定位之資料的一 資料集合。該地圖可(例如)為一組記錄,其中各記錄提供 一信號源之二維或三維座標,且亦可包含關於該信號源之 另一資料(諸如一指派名稱或識別符)❹該地圖可能體現在 —電腦可讀信號或媒體中,或可(例如)為呈一人類可讀形 式之6亥專彳5號源的一貫體表不(例如,覆疊於一習知的地 理平面圖上)。該地圖可能編碼為任意適當的格式,諸如 153204.doc •】1 · 201140123 (例如)GIS檔案標準》 該信號源可為-無線通信網路中之—無線存取點,諸如 一基地台。該信號源可為一 Wi_FutWiMax基地台、㈣ 或其他蜂巢式通信塔、—無線電傳輸器或信標或任意其他 適當的電磁信號源。例如,該信號源可促進單向(諸如一 簡單的傳輸器)或雙向(諸如—網路節點)通信。 Μ號谓測資料、该信號源位置資料與該經處理的作號 源位置資料之至少-者可經由該無線存取點傳輸。此;促 進在(例如)具備有限計算能力及储存器之手持式器件與一 遠端伺服器及資料庫之間分配對該資料的處理。或者,可 使用相同的器件執行全部的處理及掃描功能。 通常使用—手持可攜式器件執行該掃描之至少部分。例 如,可使用一經合適配備之手持式器件(諸如—經合適組 態之行動電話、膝上型電腦或對於特定應用定製的手持式 器件)執行該第二掃描階段(在該第二複數個定位處)及視^ 況亦執行該第一掃描階段(在該第一複數個定位處卜 月 額外地或替代地,可使用—車載可攜式器件執行該掃描 之至少部分。例如’可使用可具有與—手持式器件相比: :良的電源及選擇性(例如使用一方向天線)之一車載器件 執行至少該第一掃描階段。 該方法可進-步包括:儲存該經處理的信號源位置資 料,自一使用者器件(諸如一行動電話或其他的可攜式器 件)接收一使用者定位請求,該使用者定位請求包含自與 s亥使用者器件相關之一信號偵測系統(諸如一 接收器 153204.doc -12· 201140123 獲得之資料;依賴於該使用者定位請求資料來處理該已儲 存的#號源位置資料以產生表示對該使用者器件之定位的 一估計之使用者定位資料;及輸出該使用者定位資料。 因此,可將以上提及之方法整合至一使用者定位服務 中。該使用者定位方法可使用該使用者器件或遠端伺服器 (或其他地方,例如經由網際網路)中之額外的系統以輔助 估汁該使用者器件的定位。例如,可使用該使用者器件中 之内建的GPS接收器。 δ亥方法可包括識別一或多個定位,其中無法提供—使用 者定位服務或其中一使用者定位服務之精度低於一臨限 值,且定位一或多個另外的電磁信號源以便提供或改良該 所識別之定位中之一使用者定位服務的精度。然後在另一 第二組定位處掃描新的信號源。 在如前所述之該等方法的任意者中,可藉由在複數個定 位之間(諸如在該第一複數個定位之間及/或在該第二複數 個疋位之間)行進(例如,步行、經由一車輛或其中之一)的 一使用者執行該掃描。該使用者可與任意硬體類型互動以 促進上文(或下文)提及之其他方法步驟的任意者。 在本發明之另一態樣中,提供一種估計複數個電磁信號 源之定位的方法,該方法包括··輸入信號源位置資料,該 信號源位置資料表示藉由在第—複數個定位處掃福而獲得 之對-或多個該等信號源之位置的估計;輸人信號谓測資 料,該信號偵測資料係關於在第二複數個定位處自該等信 號源接收之信號;依賴於該信號偵測資料來處理該信號源 153204.doc 201140123 位置資料以校正該信號源位置資料中之估計誤差;及輸出 該經處理的信號源位置資料。此方法可找到(例如)關於可 操作以經由一網路或其他通信鏈路與一掃描定位處之一使 用者器件通信的一伺服器的電腦程式碼之特定應用。 在本發明之另一態樣中,提供一種以電腦程式碼程式化 之可攜式單元’該電腦程式碼用於引起該可攜式單元執行 如前所述之一方法。 在本發明之又一態樣中,提供一種以電腦程式碼程式化 之伺服器,該電腦程式碼用於引起該可攜式單元執行如前 所述之一方法。 雖然上文參考圖式所述之本發明之該等實施例包括藉由 電腦裝置執行之方法且φ包括電腦冑置,但是本發明亦延 伸至程式指令,尤其是在經調適用於執行本發明之程序或 用於引起一電腦執行作為本發明之該電腦裝置之一载體上 或該載體中的程式指令。程式可呈原始程式碼、目的碼、 一程式碼中間源(諸如呈經部分編譯的形式)之形式或適用 於根據本發明之該等程序的實施方案中之任意其他的形 式。該載體可為能夠冑帶該等程式指♦之任意實體或器 件。 一 例如,該載體可包括一儲存媒體(諸如一R〇M(例如—cD ROM或-半$體R〇M)或一磁性記錄媒體(例& 一軟碟、硬 碟)或快閃記憶體、光學記憶體等等卜此外,該載體可為 可經由電,€或域或藉由無線電或其他方式傳送之一可傳 輸載體(諸如1信號或光信號)。當m包含於可藉 I53204.doc 201140123 由纜線直接傳送之一信號中時’該載體可能由此種纜線或 其他的器件或構件構成。 雖然上文已單獨描述本發明之各種態樣及實施例,但是 本發明之该等態樣及特徵之任意者可在適當的情況下結合 任意其他的態樣、實施例或特徵而使用。例如,裝置特徵 可在適當的情況下與方法特徵互換。 【實施方式】 現在參考下列圖式繪示本發明之一實例實施例。 心述-種用於位電磁信號源之方法及系統,其對用於 藉由交又參考在使用者II件處接收之信號及使用上文提及 之方法及系統先前收集的資料而定位一使用者器件之—種 系、’先具有-特疋(而非詳盡性)應用。因此,估計靜止的電 、七5虎源之S位。板正對該等靜止的電磁信號源之該定位 :估十中的誤差。稍後將該等靜止的電磁信號源之所得的 疋位用作為用於定位_(通常為行動)使用者器件的參考 在一特定實施例中,描述—種關於動態地判定基於無線 技術之定㈣統中之無線存取點(WAP)或無線信標之定位 (諸如位置座;的方法。此文件中所述之無線標準主要為 Wl:Fl_’且該定位系統主要為-基於Wi-Fi之系統,但是此 方法冋樣可應用於其他相關的標準’諸如藍芽與 及其他系統。此外,+ 士 + ; 此方法亦可應用於判定其他通信技術 (邊如仃動通信(例如,諸如㈣及鳴)、㈣ 中之基地台的定位中。 I53204.doc 15 201140123 在一基於Wi-Fi的定位系統中,WAp之座標/定位連同其 他的信號處理演算法一起用於估計無線區域網(WLAN)中 之使用者定位。此處,該等使用者可在WLAN内為行動或 靜止,且具有具備内建或外部Wi_Fi能力之任意器件。此 器件亦可具有連接至網際網路以與中心伺服器交換參數 (例如Wi-Fi系統參數,諸如MAC位址、信號強度、其等之 座標等等)的-能力。一實例係具有使用内建的Wi Fi連接 至網際網路之-行動電話的一使用者。因此,在此定位方 法中,一使用者的定位精度在很大程度上取決於各自的 WLAN中之該等WAP的已知位置的精度。 上文所述之駕駛攻擊及行走攻擊係用於判定及/或映射 一 WAP之位置的一些技術。 圖1繪不使用Wi-Fi無線存取點(WAp)信號源來定位一使 用者器件之一實例系統的概觀。一使用者器件102係由一 使用者(未展示)操#且含有一 Wi_Fi適配器(亦未展示)。許 多無線存取點(WAP)1G4、1G6、⑽、11()、112位於兩個建 築物114、116内之該使用者之緊鄰處。由於信號衰減、傳 輸功率限制及其他因素,該使用者器件H)2中之該Wi_Fi適 配器僅可谓測到爾104、1〇6、11〇、112。該使用者器件 1〇2未们則到該WAP 108。亦可能存在-GSM(行動電話)天 線桿118及其他,且亦可量測此等及其他電磁信號源之屬 性,且將其等用於定位尋找系統中。 該使用者器件102可量測該等信號在信號品質方面(諸如 信號強度、入射角等等)或在該信號所携帶之資料方面(諸 153204.doc 201140123 如MAC位址或與傳輸WAP相關之其他識別符)之某些特 性。 該系統處理各種信號特性且比較該等特性與一資料庫中 之資料。如下文更詳細地描述,該定位系統可使用關於相 關的WAP 1G4、1〇6、11()、112之—些或全部的已儲存資料 以三角定位(或以其他方式判定)該使用者器件1〇2之位置及 因此亦三角定位該使用者之位置。 現在描述-種方法及系統,其中可大致上克服駕敬攻擊 與行走攻擊方法兩者之缺點,其使用一多階段程序且使用 動態及自校正遞歸技術以精確地判定建築物内部及困難環 境(例如具有許多障礙物)中之若干WAp的定位座標。此處 先將搜尋與判SWAp之定位座標分別稱為「掃描」與「映 射」。 圖2讀示用於定位用於圖i之該系統中之無線存取點 (WAP)的位置的一程序之一流程圖。 在步驟S200中,在該處理之一第一階段中,在一第—且 :位處掃描信號源(來自該等WAp之信號)。可使用各種掃 描程序’例如使用-手持式器件(諸如—行動電話、智慧 電話或其他器件)及在一建築物(在本實施例中)外部或内 部ϋ代實施例中,該第—线位係由執行-駕歇攻 擊程序之—車㈣路徑形成。如上文及下文(例如關於圖7) 所述’在㈣描程序期間收集之資料係用於產生對該等信 號源(WAP)之位置的估計。然後儲存此等估計的位置(步驟 S202中在該第一掃描階段中,通常(但是並非必需)藉由 153204.doc •17- 201140123 組合一全球或絕對定位系統(諸如Gps或AGPS)之輸出與一 相對定位系統之結果(諸如使用WAP信號強度之三角定位 (下文再更詳細地描述))而估計該等WAP之位置。在另一實 施例中,可(例如)純粹自該建築物之一地圖或平面圖或區 域(其中發生該掃描)提取該第一組估計的位置,且可由使 用者使用器件的使用者介面直接輸入該第一組估計的位置 至處理軟體。因此,在此一情況下,可相當廣泛地解譯術 語「掃描」。 在步驟S204中,在該程序之一第二階段中,在一第二組 定位處再次掃描信號源(該等WAp信號)。在一較佳實施例 中,該第二組定位係一般在已藉由駕駛攻擊於階段丨中在 遠處掃描之建築物内部或中間操作之一掃描的路徑。在其 他實施例中,該掃描係自動完成且可藉由相同或一經不同 之駕駛攻擊設定執行1等掃描定位可由—操作者 「當場」選取或由於對在階段丨中收集之該等結果的一分 折而即時判定或在該掃描操作之前判定(例如參考關於該 降描環境與該等建築物及其中的其他結構之地理及/或商 裳資料)。在步驟S2〇6t記錄該等掃描結果。 如下文更詳細地描述,該使用者亦, 第二組 該使用者亦可記錄其等自身對該Galhleo)) to produce the first woman a m罝 bei. The positioning can include, for example, a GPS/AGPS device, a binocular positioning based on a cell, a two-dimensional positioning, an inertial sensor, a geographic information system (GJS), or a group of people. ugly σ two or more One of the subsystems is a hybrid system. Alternatively, a manual method can be used 'for example, by one of the scanning devices, the typed data batch, < 贞村. The conventional printed map can be used, for example, to establish the location of each location. When 鈇, 田,... J, there are other procedures for determining the location depending on the situation. A user interface can be provided to enable a user to input data to enable or enhance the performance of the positioning system, such as (4) GPS assistance data (estimating position, time, ephemeris, etc. the method may include one or more additional sensors that self-measure one of parameters of movement, direction or altitude (eg, a magnetometer, an accelerometer) Receiving data in one or more of a barometer. In general, the positioning system may be more effective at the first plurality of locations than at the second plurality of locations. Additionally, the positioning system may be At least one of the second plurality of locations is inoperable (or indeed may be 25%, 50〇/., 75〇/., 80%, 90〇/〇 or 95°/〇 above the second plurality of locations) Incapable of operating.) For example, the second plurality of positioning may be partially (eg, 25%, 50%, 75°/., 80%, 90%, or 95°/.) or all indoors, while blocking GPS and Other absolute/global positioning systems operate effectively. Conversely, the ig detection system may generally be more effective at the second plurality of locations than at the first plurality of locations at 3 Hz. For example, the signal detection system It may only work (or work most efficiently), such as neighboring eight, only relatively close to the source or when the detection system lacks attenuating material with π / a1 of the I53204.doc -10- 201140123 signal source. Knife (blocking such as 25%, 50%, 75%, 80%, 90% or more) or all 6 ° 丨 indoors or unobstructed by the wall. The first plurality of positioning (such as by the heart of the * brother Xu—the need for the vehicle to pass through.” It may be that the source of the U et al. Allowing effective detection. This method can be difficult to stop A·l, in-v including using a signal detection at another plurality of locations to scan first to generate another signal detection data, and relying on the other L number Detecting data to process the source location data. Thus, the second scan phase can be repeated one by one, two or more times to further improve the accuracy of the position estimates. In an example, a second (or another) signal detection system can be used at the first or second (or another) plurality of scan locations to supplement the (first) nickname detection system and further improve the The accuracy of the location estimate. The first, second, and (as appropriate) additional scan phases are performed substantially simultaneously (on the same day or on the same day, etc.). The method can further include processing the source location data to generate map material representing a map of the ones of the sources. The term "map J preferably implicitly includes a collection of data encoding and/or identifying at least one geographic or other location. The map may, for example, be a set of records, wherein each record provides a two-dimensional or a three-dimensional coordinate, and may also contain another material (such as an assigned name or identifier) about the source, the map may be embodied in a computer readable signal or medium, or may be, for example, human readable Form 6 of the 6th source of the consistent source (for example, overlaying a conventional geographic plan). The map may be encoded in any suitable format, such as 153204.doc •]1 · 201140123 (eg GIS file standard" The signal source can be - a wireless access point in a wireless communication network, such as a base station. The signal source can be a Wi_FutWiMax base station, (4) or other cellular communication tower, - a radio transmitter Or a beacon or any other suitable source of electromagnetic signals. For example, the source may facilitate unidirectional (such as a simple transmitter) or bidirectional (such as - network node) communication. The at least one of the source location data and the processed source location data may be transmitted via the wireless access point. This facilitates, for example, a handheld device having limited computing power and memory. The processing of the data is distributed between the server and the database. Alternatively, the same device can be used to perform all processing and scanning functions. Typically, at least part of the scan is performed using a handheld portable device. For example, one can be used. A suitably equipped handheld device (such as a suitably configured mobile phone, laptop or handheld device customized for a particular application) performs this second scanning phase (at the second plurality of locations) and The first scanning phase is also performed (in the first plurality of positioning locations, additionally or alternatively, at least part of the scanning can be performed using the in-vehicle portable device. For example, 'can be used with and can be handheld The device compares: : good power and selectivity (eg using a directional antenna) one of the onboard devices performs at least this first scanning phase. The method can be step-by-step Included: storing the processed source location data, receiving a user location request from a user device (such as a mobile phone or other portable device), the user location request including the user device Corresponding to a signal detection system (such as a receiver 153204.doc -12·201140123 obtained data; relying on the user location request data to process the stored ## source location data to generate a representation of the user device Locating an estimated user location data; and outputting the user location data. Therefore, the above mentioned method can be integrated into a user location service. The user location method can use the user device or the far Additional systems in the server (or elsewhere, such as via the Internet) to aid in estimating the positioning of the user device. For example, a built-in GPS receiver in the user device can be used. The delta method may include identifying one or more locations in which no user location service or one of the user location services is less than a threshold and one or more additional sources of electromagnetic signals are provided to provide or Improving the accuracy of one of the identified locations of the user location service. A new source is then scanned at another second set of locations. In any of the methods as described above, the travel may be performed between a plurality of locations, such as between the first plurality of locations and/or between the second plurality of locations ( For example, a scan is performed by a user walking, via a vehicle or one of them. The user can interact with any hardware type to facilitate any of the other method steps mentioned above (or below). In another aspect of the present invention, a method for estimating a position of a plurality of electromagnetic signal sources is provided, the method comprising: inputting a source source location data, the source location data representation being scanned by the first plurality of locations An estimate of the position of the pair or a plurality of such sources; the input signal of the input signal, the signal detection data being related to the signals received from the sources at the second plurality of locations; The signal detection data is processed to process the signal source 153204.doc 201140123 location data to correct the estimation error in the source location data; and output the processed source location data. This method finds, for example, a particular application of a computer code for a server operable to communicate with a user device at a scanning location via a network or other communication link. In another aspect of the invention, a portable unit programmed with computer code is provided for causing the portable unit to perform one of the methods described above. In still another aspect of the present invention, a server programmed with a computer code for causing the portable unit to perform one of the methods described above is provided. Although the embodiments of the present invention described above with reference to the drawings include a method performed by a computer device and φ includes a computer device, the present invention also extends to program instructions, particularly adapted to perform the present invention. The program or program for causing a computer to execute as a program on or in the carrier of the computer device of the present invention. The program may be in the form of an original code, a destination code, a code intermediate source (such as in a partially compiled form) or any other form of embodiment suitable for use in accordance with the present invention. The carrier can be any entity or device capable of piggybacking the program. For example, the carrier may include a storage medium (such as a R〇M (eg, -cD ROM or -semi-body R〇M) or a magnetic recording medium (eg & a floppy disk, hard disk) or flash memory In addition, the carrier may be a transmittable carrier (such as a signal or optical signal) that can be transmitted via electricity, € or a domain or by radio or other means. When m is included in the I53204 .doc 201140123 When the signal is transmitted directly from one of the cables, the carrier may consist of such a cable or other device or component. Although various aspects and embodiments of the invention have been described separately above, the invention Any of these aspects and features may be used in conjunction with any other aspect, embodiment, or feature, where appropriate. For example, device features may be interchanged with method features where appropriate. [Embodiment] Reference Now The following drawings illustrate an example embodiment of the present invention. A method and system for a source of electromagnetic signals for use in a signal received by a user II device and using the above The party mentioned The method and the previously collected data of the system locate the user-system, the 'first--------------------------------------------- The positioning of the stationary electromagnetic signal sources: an error in the estimated tenth. The resulting chirp of the stationary electromagnetic signal source is later used as a reference for locating the _ (usually mobile) user device. In a particular embodiment, a method for dynamically determining the location of a wireless access point (WAP) or wireless beacon in a wireless technology based system (such as a location seat) is described. The wireless standard described in this document Mainly Wl:Fl_' and the positioning system is mainly - Wi-Fi based system, but this method can be applied to other related standards such as Bluetooth and other systems. In addition, +士+; It can be used to determine other communication technologies (such as in the positioning of base stations in sway communication (for example, (4) and sing), (4). I53204.doc 15 201140123 In a Wi-Fi-based positioning system, the coordinates of WAp /positioning along with other signals The algorithm is used together to estimate user location in a wireless local area network (WLAN) where the users can be mobile or stationary within the WLAN and have any device with built-in or external Wi-Fi capabilities. It may also have the ability to connect to the Internet to exchange parameters with the central server (eg, Wi-Fi system parameters such as MAC address, signal strength, coordinates, etc.). One instance has built-in use. Wi Fi is connected to a user of the Internet-mobile phone. Therefore, in this positioning method, the positioning accuracy of a user largely depends on the known location of the WAPs in the respective WLANs. Accuracy. The driving and walking attacks described above are techniques for determining and/or mapping the location of a WAP. Figure 1 depicts an overview of an example system that uses a Wi-Fi wireless access point (WAp) signal source to locate a user device. A user device 102 is operated by a user (not shown) and contains a Wi-Fi adapter (also not shown). A number of wireless access points (WAPs) 1G4, 1G6, (10), 11(), 112 are located immediately adjacent to the user in the two buildings 114, 116. Due to signal attenuation, transmission power limitations, and other factors, the Wi_Fi adapter in the user device H) 2 can only be measured as 104, 1〇6, 11〇, 112. The user device 1〇2 then goes to the WAP 108. There may also be - GSM (Mobile) masts 118 and others, and the properties of these and other sources of electromagnetic signals may also be measured and used in the location finding system. The user device 102 can measure the signal quality (such as signal strength, angle of incidence, etc.) or the data carried by the signal (153204.doc 201140123 such as a MAC address or associated with a WAP transmission) Some characteristics of other identifiers). The system processes various signal characteristics and compares the characteristics with the data in a database. As described in more detail below, the positioning system can triangulate (or otherwise determine) the user device using stored data about some or all of the associated WAPs 1G4, 1〇6, 11(), 112. The position of 1〇2 and therefore the position of the user is also triangulated. A method and system are now described in which the shortcomings of both the respectful attack and the walking attack method can be substantially overcome, using a multi-stage procedure and using dynamic and self-correcting recursive techniques to accurately determine the interior of the building and the difficult environment ( For example, the positioning coordinates of several WAps among many obstacles). Here, the search coordinates of the search and judgment SWAp are referred to as "scan" and "map" respectively. Figure 2 illustrates a flow diagram of a procedure for locating the location of a wireless access point (WAP) for use in the system of Figure i. In step S200, in a first phase of the process, the signal sources (signals from the WAp) are scanned at a first and a: position. Various scanning procedures can be used 'eg, using-handheld devices (such as - mobile phones, smart phones, or other devices) and in a building (in this embodiment) external or internal embodiment, the first line position It is formed by the vehicle-four (four) path of the execution-driving attack program. The data collected during the (four) program as described above and below (e.g., with respect to Figure 7) is used to generate an estimate of the location of the source (WAP). And storing the estimated locations (in step S202, in the first scanning phase, usually (but not necessarily) combining the output of a global or absolute positioning system (such as Gps or AGPS) by 153204.doc • 17-201140123 Estimating the location of the WAPs as a result of a relative positioning system, such as triangulation using WAP signal strength (described in more detail below). In another embodiment, for example, purely from one of the buildings A map or plan or area in which the scan is taken extracts the first set of estimated locations, and the user can directly input the first set of estimated locations to the processing software using the user interface of the device. Thus, in this case The term "scan" can be interpreted quite widely. In step S204, in a second phase of the procedure, the signal source (the WAp signals) is scanned again at a second set of locations. In the example, the second set of positioning systems is generally scanned in one of the interiors or intermediate operations of the building that has been scanned remotely by the driving attack in the stage. In the embodiment, the scanning is done automatically and the scanning of one or the other can be performed by the same or a different driving attack setting, which can be selected by the operator "on the spot" or due to a result of the collection of the results collected in the stage. And immediately determine or determine prior to the scanning operation (e.g., with reference to the geography and/or merchandising information about the delineating environment and the buildings and other structures therein). The scanning results are recorded in steps S2 and 6t. As described in more detail, the user also, the second group of users can also record their own

況下)至 且亦可 模型一 可輸入 153204.doc 201140123 GPS之GPS辅助資料(估計位置 Τ 1罝、時間、星曆表等等)。該 使用者可自一地圖輸入該第_ ^ ^ 乐—組疋位之一些或全部的位 置。輸入該第二組定位之一此 之些或全部的位置的能力可為特 別有幫助’這是因為其可校正由該第一複數個定位之估計 定位中的誤差引起之誤差。 在步驟麵巾,❹該掃財序线第二階段的該等结 果處理且校正該第-組估計的着定位(或其他信號源(諸 如行動電話天線桿料)之定位)。下文更詳細地描述此程 序。然後在步驟S210中輸出該等經校正的估計。 在該第-實施例t,執行該映射程序之該使用者或一群 使用者具有具賴顿力及較佳地具備其他的定位系統 能力(諸如GPS/AGPS、基於小區塔之定位等等)之小型消 費性器件(諸如智慧型行動電話、膝上型電腦等等)或精密 的電子器件(諸如一定製的計算器件、放大器、天線等 等)。此等器件可具有可辅助定位之額外的感測器(例如, 一加速度計、磁強計等等卜此等器件亦可具有除粘七以 外之自b力以連接至網際網路,諸如透過行動的網際網路服 務提供商閘道。 使用者可(例如)配備運行於具有或不具有任意作業系統 且具有一微控制器、GPS/AGPS及Wi-Fi硬體能力之一消費 性行動器件上之Satsis專屬軟體。本文中所述之該等掃描 及映射程序(包含多個掃描階段)的全部基本上可使用軟體 執行’諸如在需要時使用前文所述之硬體的此軟體。選取 之軟體亦能夠使用一使用者的輸入以記錄關於正在進行掃 I53204.doc -19- 201140123 描/映射之區域/地點的資訊,諸如位置座標、建築物類 型、高度資訊(諸如掃描樓層等等)、都市或鄉村地點類型 等等(在需要時)^ 圖3繪示根據圖2之該程序之一建築物中之一組無線存取 點(WAP)的該第一掃描階段。 在圖3中’一建築物300含有六個WAP 302、304、306、 310 3 12。圍繞該建築物之周邊選取九個掃描站點 320 ' 322、324 ' 326、328、330、332、334、336,儘管 實際上此等掃描站點可能圍繞全部側中之一些側,且可能 (例如)僅沿著該建築物之一側或兩側(例如,取決於可達 性)。應瞭解的是,取決於(例如)該建築物的尺寸及環境的 複雜性,可能發現較多或較少的WAp且可能使用較多或較 少的掃描(與對應的掃描定位)。 將该等WAP(以圓圈展示)置於一典型建築物中之不同地 點在本貫施例中,具有一消費性器件(諸如具有Wi_Fi及 GPS/AGPS^力之智慧電話)之&前描i^的一使用者可圍繞 忒建築物自外部(以一矩形框展示)自不同地點掃描此建築 物。使用者在每個地點藉由GPS/AGps記錄Wi_Fi掃描參 數,諸如信號強度、可見WAP2MAC位址、信號品質等及 使用者自身的位置。該使用者亦可記錄自觀察及/或已有 知識之其他有用的環境特定資料,諸如建築物之高度與類 型、接近該掃描地點之實體信號障礙物的數目及類型等 等。该使用者亦可記錄來自該器件上或該器件中之額外感 測器的資料(若可用)以辅助定位。例如,其等可能記錄自 153204.doc -20- 201140123 -磁強計接收之航向資料、來自一氣屋計之高度資訊等 等。 如前所述,不包含GPS及其之變體的任意其他的定位系 統或方法亦可用於定位使用者的位置,諸如基於小區塔的 三角定位、慣性感測器、使用者位置輸入、⑽等等或組 合此專技術之任意混合系統。 如圖3所示,可外部自一個以上地點掃描許多wAp。例 如,自三個定位掃描WAP 302、304’自兩個定位掃描WAp 310、312,且自一個定位掃描WAp 3〇8。由於WAp 3〇6之 中心定位在該建築物内且缺乏自外掃描定位之該等信號的 可見性,故無法自任意定位掃描WAP 306。 安裝在該器件上之軟體使用各種信號處理演算法一起處 理來自該掃描程序之該等記錄以判定不同地點處之使用者 定位與可見的無線存取點之間的距離,且隨後建立此等 WAP之一地圖。 存在允許使用一 Wi-Fi或其他相當的系統來定位之許多 距離量測演算法。該等演算法包含(例如)到達時間 (TOA)、到達時間差(TDOA)、到達角(AOA)、所接收之信 號強度(RSS)等等》取決於該軟體、行動器件及WAP之技 術能力而通常採用基於RSS之距離量測演算法,但是亦可 視情況使用另外的演算法。 在RSS演算法中,該接收器(使用者)處之一 Wi-Fi信號的 強度(功率)係與來自無線電源(WAP)之一信號的傳輸強度 比較而量測,且由下列自由空間中之數學方程式給出: 153204.doc -21 - 201140123 pf _ PrGtGrA2 τ~~(Λπγ¥ (1) 八中^係所接收的功率,Pt係—傳輸功率,&與Gt分別為 接收益天線增益與傳輸器天線增益,—信號波長且d為 源與接收$之間的-距離。亦可按照傳播增益(PG)將此方 程式表示為: (2) 且呈分貝形式則為: PGds λIn case) can also be model 1 can be input 153204.doc 201140123 GPS GPS auxiliary data (estimated position Τ 1罝, time, ephemeris, etc.). The user can enter some or all of the positions of the first _ ^ ^ music group from a map. The ability to input the position of some or all of the second set of locations may be particularly helpful' because it corrects for errors caused by errors in the estimated position of the first plurality of locations. At the step face, the results of the second stage of the sweep line are processed and the positioning of the first set of estimates (or the location of other sources (such as mobile phone antenna bars) is corrected). This procedure is described in more detail below. The corrected estimates are then output in step S210. In the first embodiment t, the user or a group of users who perform the mapping procedure have a power rating and preferably other positioning system capabilities (such as GPS/AGPS, cell tower based positioning, etc.) Small consumer devices (such as smart mobile phones, laptops, etc.) or sophisticated electronic devices (such as a custom computing device, amplifier, antenna, etc.). Such devices may have additional sensors that can aid in positioning (eg, an accelerometer, a magnetometer, etc., such devices may also have a b-force other than stick seven to connect to the Internet, such as through Mobile Internet Service Provider Gateway. Users can, for example, be equipped with a consumer mobile device that operates with or without any operating system and has a microcontroller, GPS/AGPS and Wi-Fi hardware capabilities. Satsis-specific software. All of the scanning and mapping procedures (including multiple scanning stages) described herein can be performed essentially using software - such as using the hardware described above when needed. The software can also use a user's input to record information about areas/locations that are being scanned/mapped, such as location coordinates, building type, height information (such as scan floors, etc.), Urban or rural location type, etc. (when needed) ^ Figure 3 illustrates the first scanning phase of a group of wireless access points (WAPs) in a building according to the procedure of Figure 2. In Figure 3, a building 300 contains six WAPs 302, 304, 306, 310 3 12. Nine scanning stations 320 ' 322 , 324 ' 326 , 328 , 330 , 332 , 334 are selected around the perimeter of the building. , 336, although in practice such scanning sites may surround some of the sides, and may, for example, only be along one or both sides of the building (eg, depending on accessibility). Yes, depending on, for example, the size of the building and the complexity of the environment, more or less WAp may be found and more or less scans may be used (with corresponding scan fixes). Displayed in a circle at different locations in a typical building. In this embodiment, there is a consumer device (such as a Wi-Fi and GPS/AGPS power smart phone) & The building can be scanned from different locations around the building (shown in a rectangular frame). The user records Wi-Fi scanning parameters such as signal strength, visible WAP2 MAC address, signal quality by GPS/AGps at each location. Waiting for the user's own location. The user may also record other useful environmentally specific information from observations and/or prior knowledge, such as the height and type of the building, the number and type of physical signal obstacles close to the scanning location, etc. Record data from additional sensors on the device or in the device (if available) to aid in positioning. For example, they may be recorded from 153204.doc -20- 201140123 - Heading data received by the magnetometer, from a gas house Highly information, etc. As mentioned previously, any other positioning system or method that does not include GPS and its variants can also be used to locate the user's location, such as triangulation based on cell towers, inertial sensors, User location input, (10), etc. or any combination of this technology. As shown in Figure 3, many wAps can be scanned externally from more than one location. For example, WAp 310, 312 is scanned from two positioning scans from three positioning scans WAP 302, 304', and WAp 3 〇 8 is scanned from one positioning. Since the center of the WAp 3〇6 is positioned within the building and lacks the visibility of such signals from external scanning locations, the WAP 306 cannot be scanned from any location. The software installed on the device processes the records from the scanning program together using various signal processing algorithms to determine the distance between the user location at different locations and the visible wireless access point, and then establishes such WAPs. One of the maps. There are many distance measurement algorithms that allow the positioning using a Wi-Fi or other equivalent system. Such algorithms include, for example, time of arrival (TOA), time difference of arrival (TDOA), angle of arrival (AOA), received signal strength (RSS), etc. depending on the technical capabilities of the software, mobile device, and WAP. RSS-based distance measurement algorithms are usually used, but additional algorithms may be used as appropriate. In the RSS algorithm, the strength (power) of one of the Wi-Fi signals at the receiver (user) is measured in comparison with the transmission strength of one of the signals from the wireless power source (WAP), and is in the following free space. The mathematical equation gives: 153204.doc -21 - 201140123 pf _ PrGtGrA2 τ~~(Λπγ¥ (1) The power received by the eight-phase system, Pt-transmission power, & and Gt are the gain of the receiving antenna With the transmitter antenna gain, the signal wavelength and d is the distance between the source and the received $. This equation can also be expressed as the propagation gain (PG) as: (2) and in decibel form: PGds λ

2〇1〇g(W (3) 由於信號傳播不確定性,在不修改自由空間模型(方程式) 情況下無法輕易應用於現實世界環境中。称⑽號傳播 可受許多因素影響,諸如信號衰減及自表面的反射(多路 徑效應)、建築物類型、移動的物件及人、傳輸頻率、天 線高度及極化等等。 然而,存在試圖模型化不同的環境及信號傳播行為之各 種模型以透過其等判定接收器與源之間的距離。例如,存 在可用於預測不同的室内環境之信號行為的若干模型。該 等室内模型之一者係由下列方程式描述: PGds = 201og(-A_) +1〇;? 1〇§(^〇) + χσ 對於 d > d〇 ⑷ 其中X、η及d0係隨不同的室内環境變化且可憑經驗判定之 參數。例如,對於一典型的硬分區辦公室環境,χ、^及d〇 153204.doc •22· 201140123 的值分別為7.0、3.0及loo β 了 it供使用者輸入以還遮 選擇%境類型且然後使用儲存在 憶體中之上文提及的參數之特定值(例如,由該使用者 其他操作者先前輸人)°或者,若使用者輸人不可用, 可自軟體組態選取預設值。 記 或 則 分二如’亦存在可用於室外環境之若干模型。—種此模型 (才曰疋為史丹佛大學臨時(SUI)模型)係由下列方程式描述·· 凡= 201〇g(l^)傷1〇g(|)咖肠對於d>d。⑺ PL係描述為路徑知耗’且可與對於室内模型中所述類似地 處理其他參數,即(例如)透過制者輸人或自軟體組態。 在使用該等可用模型之任意者判定全部該等距離之後, -起處理該等距離與制者已自其等掃描之該等地點的參 考定位座標以逐-映射可見的WAP。取決於mAp之 量測(ό己錄)數目,各種方法可用於映射此等WAp ^下文參 考圖8描述一種三角定位方法。 圖4繪示在圖2中之該程序中的該第一階段掃描之後的圖 3之該等WAP之該等估計位置。 圖4中以一實線圓圈展示wap 402、404、406、408、 410、412的貫際定位,且以分別對應於WAp 402、404、 408、410、412之覆疊的虛線圓圈 452、454、458、460、 462展不所估計的定位WAp,。因為在該第一掃描階段中未 發現對應的實際WAP 4〇6,故不存在WAP'估計456。 再者’可發現WAP 406由於其在該建築物外部之九個掃 153204.doc •23- 201140123 描定位之任意者處的信號可見性而未被映射。經映射之 WAP的精度取決於許多因素,諸如掃描距離、對環境之模 型化、使用者位置的精度、自建築物外部對一 WAp之掃描 (量測)次數以及關於各自的WAP之該等地點的幾何等等。 圖5繪示圖3之該建築物中之該組無線存取點(WAp)的該 第二掃描階段。建築物500中再次展示六個WAp 5〇2、 504、506、508、510、512。在該建築物内部選取(在可能 的情況下)散佈於該等WAP之間的五個新掃描站點52〇、 522、524、526、528。 如所提及,在第二映射階段,該等掃描點位於該建築物 内部,其中進行該映射之一使用者一般不具有Gps/AGps 可得性。在此情況下,使用Wi-Fi定位技術導出此五個地 點處之一使用者座標。Wi-Fi定位使用該建築物内部之各 自地點處的經映射(使用如上所述之該第一掃描階段)及其 他可用WAP之座私。例如,地點524處之一使用者使用經 階段1映射之WAP座標及其他的信號處理演算法而使用 WAP 504、508、512來定位其自身(諸如使用Wi Fi信號強 度之距離量測、諸如透過使用者輸入之環境模型化及三角 定位及如上文關於階段1所述之諸如此類)。 一使用者(或(例如)在一中心定位處理所接收之測量資料 的其他操作者)有能力輸入其自身對該第二組定位之位置 的估計或輸入對該等位置之一自動導出的估計的一校正 (在適當的情況下)(例如,校正一明顯不正確的Gps讀數或 覆蓋不精確的GPS讀數(若可用且正被使用))。一使用者亦 153204.doc •24· 201140123 可輸入資料以啟用或增強參考定位系統之效能, GPS(若可用且正被使用)之Gps輔助資料(估計的位置、時 :立星曆表等)。特定言之,該使用者可記錄—感知高度 $、他量測(諸如該建築物中之樓層編號),從而允許以較 ==估計一高度或其他尺寸。若一基線高度、可用於 特疋疋位(例如使用自地形圖導出之資料),則可將—高 ^估計h計算為hb+hsXs,其中㈣每—樓層之估計高度(: 一奢基於-全域或局域平均數或使用關於該掃描定位處之 :建病物的專門知識)且5係樓層編號(使用英國術語,。為 二層’ 1:第—層’以此類推)。例如’在使用慣性(或差 二立之一實施例中,一使用者可在適當的時候輸入基 準(或名對)值以允許對慣性定位系統之校準。 選之’該使用者亦可輸入對要應用之環境模型的一 或連同此一模型-起使用之參數(參見下文對一政 及其等之參數的一論述)。例如,可使用一 在使用者介面中之其他輸人器件(諸如運行 ;):Γ:攜帶之一手持式器件上的-互動式應用程 仃十環i兄(及其他資料)之該選擇。 位乏允許三角定位之足夠點或-使用者供應的 方法(視^ ,可使用諸如加權平均數之其他可能的 料:視:要包含該掃播器使用者或在一稍後階段處理資 佳猜^。者的-手動輸入)以獲得對該掃描定位之一「最 在該第二掃描階段期間,由於典型缺乏與該掃插使用者 153204.doc •25· 201140123 之接近程度及(例如)衰減信號之厚結構牆壁,故自該建築 物内部掃描該六個 WAP 502、504、506、508、510、512 之全部。可發現的是,許多WAp可自一個以上地點予以掃 描。例如’ WAP 508係自定位522、524、526、528予以掃 描。類似於階段1 ’使用者在每個地點再次記錄Wi_Fi掃描 參數,諸如信號強度、可見WAP之MAC位址、信號品質等 及使用者自身的位置。使用者亦可自觀察及/或已有知識 記錄其他有用的環境特定資料,諸如建築物高度及類型、 接近該掃描地點之實體信號障礙物的數目及類型等。該使 用者亦可自該器件上之額外的感測器記錄資料(若可用)以 輔助定位,諸如可提供航向之磁強計、可提供高度資訊之 氣壓計等。 圖ό繪示根據上文所述之該程序之在圖$中所示的該第二 掃描階段期間的該掃描器之估計位置。如前述,展示建築 物 600 中之六個 WAP 602、604、606、608、610、612。亦 展不掃描站點.620、622、624、626、028處之該掃描器的 估计位置,泫等估計位置與實際掃描站點不同,而相異程 度取決於(例如)影響信號傳播之上文提及的因素。 在其中器件具有一網際網路連接之另一實施例中,亦可 使用中心網頁飼服器藉由與該中心網頁伺服器交換 Fi參數而導出一使用者之座標。在此情況下,-中心網頁 伺服盗係可操作以透過一内部資料庫或自其他的網際網路 資源提供-使用者之定位。在一些情況下,該使用者亦可 使用GPS/AGPS座標以及任意其他的定位技術(若其可 153204.doc •26· 201140123 用)。使用者亦可在處理軟體中ml —挪 秋®〒輸入堵如座標、環境類型 等(如上文關於階段〗所述)之資訊以輔助映射程序。 以不同的信號處理演算法(諸如使用Wi_Fi信號強度之距 離量測、使用使用者輸入之環境模型化、三角定位等等) 在一器件上之一軟體中一起處理由自該五個掃描定位之全 部的掃描形成之該等記錄以(大體上更精確地)映射該建築 物内部之WAP。 圖7示意繪示在圖5之該程序中之該第二掃描階段之後的 圖3之該等WAP的估計位置。圖7中以一實線圓圈展示WAp 702、704、706、708、710、712之實際定位,且以分別對 應於 WAP 702、704、706、708、710、712 之覆疊的虛線 圓圈752、754、756、758、760、762展示估計的定位 WAP' 〇 可注意的是,在此假設情況下,大體上改良該等WAp之 位置的估§·},儘管在個別情況下(諸如對於WAp 7〇4(及估 計的WAP' 754)) ’該估計可相對於該第一階段(如圖4中所 繪示)變得不太精確。階段II亦已映射在階段I中未被映射 之 WAP(例如 WAP 706)。 雖然掃描點處之一使用者的座標(在階段I之後自Wi-Fi定 位内部導出)與使用者之座標(使用GPS/AGPS外部導出)相 比可能不精確,但是映射精度及經映射之WAP的涵蓋範圍 之整體改良在第二映射階段之後歸因於該掃描/映射使用 者(建築物内部)與WAP之接近程度及因此能夠藉由透過應 用上文關於階段I所述之室内信號傳播模型更精確地預測 153204.doc •27· 201140123 信號傳播路徑而量測使用者與WAP之間的距離而增加。 此整個映射程序可與在經映射之WAP座標中產生改良的 次數一樣多次地延伸至隨後的階段以改良涵蓋範圍及某一 精度水準。該程序仍然基本上與階段π相同,且可經重複 以(例如)一建築物内部或外部之較多的掃描定位重新掃描 一先前站點(例如,若一特定站點被識別為一特別困難的 環境(例如在對初始掃描資料重審之後))。 圖8緣示二角定位(在二維中)一無線存取點(WAP)之位置 之程序。此為用於估計該WAP之位置的可能方法中之一 者。圓8中展示三個掃描站點8〇2、8〇4、8〇6,各掃描站點 偵測來自處於近似區域8〇8中之一 WAP的一信號。該WAp/ 區域808離各自的掃描站點802、804、806之距離為1、 d2、旬。各站點802、8〇4、8〇6被表示距離dn處之全部點的 執跡之一圓圈包圍。 此處’ dl、d2、旬係自先前所述之可用的距離量測模型 之任意者導出’且在下列方程式中連同站點8〇2、8〇4、 806之定位座標—起使用: d = (6) 其中山係距離,Xf&yjsWAp 7之乂座標與y座標,且〜及l 係若干地點之X座標與y座標,其中i為1、2、 、形成 三個方程式且解出區域808中之該WAP的X座標與y座標。 可以諸如最小平方法之任意可用的方法解此等方程式。 如圖8中所示,區域808中之該WAP的經映射座標係三個 153204.doc • 28 - 201140123 圓圈(該等站點與該WAP之間的估計距離的轨跡)重疊之 處。該等圓圏由於該等距離dl、d2、d3之量測/估計中二誤 差及該等掃描站謂2、_、_之參考(或估計)座標中之 可此誤差而並非重疊於一單一點處。 a應瞭解的是,可視需要將以上二維實例擴展為三維。通 常不需要記錄-WAP之三維位置(純梓是該二維位置),但 是應瞭解的是’若需要三維定位射骑相關的修改。 圖9示意繪示適合連同圖2之該程序之至少該第一階段— 起使用之一專用掃描器系統。此掃描器可用於較一手持式 單元(其可為或可不為與下文關於圖1〇所述之單元相同的 單元)優先之上文所述的實施例之一些或全部中。 在圖9中,該專用掃描器系統(諸如一駕駛攻擊裝具)包 含一方向性天線902(諸如一方向Wi_Fi天線)、用於放大來 自該天線之信號的放大器9〇4、用於提供該掃描器系統9〇() 之參考座標的一 GPS(或AGPS或其他類似的單元)9〇6、用 於控制及/或處理及/或接收來自該天線9〇2、放大器9〇4、 GPS單元906之任意者或全部之資料的一電腦9〇8、用於控 制該掃描器系統,輸入相關的資料且顯示結果的一使用者 介面910及用於儲存掃描程序所產生之記錄的一資料儲存 單元912。在一替代實施例中,提供一網路介面單元(未展 示)以允許經由一通信網路發送及/或接收資料,以(例如) 允許遠端控制及/或資料收集(例如,此可避免需要該儲存 器單元912)。 圖10示意繪示適合連同圖2之該程序之該第一及該第二 153204.doc -29· 201140123 階段一起使用之一手持式單元。 該手持式單元包含一 Wi-Fi介面1002、一Gps或AGps單 元1004、-網路介面娜(對於該掃描器之一純粹的本端 操作,其可視情況不存在)、一處理器(或微控制器或其他 的電腦化器件)1_、-使用者介面1〇1〇及_資料儲存單 元1〇12。與上文關於圖9所述之該器件相比,此單元可具 有較小的選擇性、信號放大及/或處理能力或儲存容量, 但是在另一方面可為更可攜且因此較容易攜帶其與需要掃 描之任意WAP近距離接觸。在另一實施例中,該手持式單 元可省略或關閉該GPS/AGPS單元1004,例如若僅在該第 二掃描階段使用。 在另一實施例中,可提供一掃描器單元,該掃描器單元 混合來自上文關於圖9所述之該掃描器系統9〇〇與上文關於 圖10所述之該手持式單元1000兩者之特徵。 圖11係使用圖2之該程序所產生之資料來定位一使用者 器件之一系統的一概觀》 圖11中展示一使用者器件1100(例如,諸如上文所述之 該手持式器件10 0 0或任意其他的器件)、—電信網路(諸如 一行動電話網路)1102、一定位伺服器1104及一 WAp定位 資料庫1106(其可與該定位伺服器11〇4整合)。 在使用中’ 一使用者引起該使用者器件1100發送一定位 請求1150至該電信網路1102(例如使用一行動電話上之一 服務)。該請求U50通常可包含在該使用者器件11〇〇處接 收之資料’諸如來自鄰近WAP偵測之信號的屬性(諸如上 153204.doc • 30· 201140123 文關於階段I及階段II所述之該等屬性)^因此,該請求 1150可(例如)包含鄰近WAP之信號強度及MAC位址(及/或 小區塔信號等等)的細節。 自該網路1102—請求1152(通常與該初始請求1150相同) 傳送至該定位伺服器1104。該定位伺服器11〇4然後處理該 請求1152,且在處理中以一 WAP查詢請求1154詢問該定位 資料庫1106以指定關於該定位請求11 52之WAP資料。該資 料庫1106然後將所請求之資料1156傳回該伺服器11 〇4。該 伺服器結合該所接收之請求資料丨丨5 2完成處理該資料丨丨5 6 以產生一定位估計’以定位資料1158之形式將該定位估計 發送回該使用者器件1100 ^該網路將定位資料i i 6〇(通常 與該資料1158相同)遞送至該使用者器件11〇〇。該使用者 器件然後可處理該定位資料1160以擷取(及例如顯示)該定 位估計。 上文參考圖11所述之該系統亦可(例如)結合上文所述之 該階段I及該階段II用於初始「探索」階段中。該伺服器 1104可(例如)額外地或替代地操作軟體來處理該掃描資料 以產生上文所述之各種估計。 在一些應用中,在該第二掃描階段期間所獲得之資料可 用於判定-或多個定位,其中將有利地定位另—電磁信號 源(例如,一藍芽信標)以改良在一或多個定位處提供至一 使用者器件之定位資料的精度。然後可在藉此判定之一定 位處提供另-電磁信號源、。根據本發明之另-掃描階段然 後可發生在圍繞最新放置之電磁信號源的複數個定位處。 153204.doc •31 · 201140123 應瞭解的是’當然可能存在上文所述之該位置定位系統 的其他應用’例如包含一使用者器件之完全本端的定位系 統(例如包含該使用者器件中之全部相關的資料及處理能 力)及經由各種不同的網路(例如,並不限於一網路或—電 信網路)通信之器件。 總之,已描述一種使用一多階段自校正映射程序判定無 線區域網(WLAN)中之無線存取點(WAP)之位置座標的方 法。該等WAP通常為各自WLAN中之wi_Fi存取點,但是其 等可為另一基於Wi-Fi之定位系統的其他WAp。例如,該 方法及系統完全可在一消費性行動器件上實施,或可依賴 於遠端組件及軟體(諸如經由某種形式的通信網路(諸如2〇1〇g(W (3) Due to the uncertainty of signal propagation, it cannot be easily applied to the real world environment without modifying the free space model (equation). The propagation of (10) can be affected by many factors, such as signal attenuation. And reflection from the surface (multipath effect), building type, moving objects and people, transmission frequency, antenna height and polarization, etc. However, there are various models that attempt to model different environments and signal propagation behaviors to They determine the distance between the receiver and the source. For example, there are several models that can be used to predict the signal behavior of different indoor environments. One of these indoor models is described by the following equation: PGds = 201og(-A_) + 1〇;? 1〇§(^〇) + χσ For d > d〇(4) where X, η and d0 are parameters that vary with different indoor environments and can be determined empirically. For example, for a typical hard-partition office Environment, χ, ^ and d〇153204.doc •22· 201140123 The values are 7.0, 3.0 and loo β respectively for user input to also cover the % type and then use the stored in the memory. The specific value of the parameter mentioned above (for example, previously input by other operators of the user) ° or, if the user input is not available, the preset value can be selected from the software configuration. 'There are also several models that can be used in outdoor environments. - This model (the Stanford University Temporary (SUI) model) is described by the following equations: · = 201〇g(l^) injury 1〇g ( |) The gut is for d>d. (7) The PL is described as path knower' and other parameters can be processed similarly as described for the indoor model, ie, for example, by the maker input or from the software configuration. After any of the available models determines all of the equal distances, the reference positioning coordinates of the locations and the locations from which the controller has scanned are processed to map the visible WAPs one by one. Depending on the measurement of the mAp The number of methods can be used to map such WAps. A triangulation method is described below with reference to Figure 8. Figure 4 illustrates the Figure 3 after the first stage scan in the program of Figure 2. Such estimated positions of the WAP. A solid circle in Figure 4. The continuous positioning of wap 402, 404, 406, 408, 410, 412 is shown, and the dashed circle 452, 454, 458, 460, 462 corresponding to the overlay of WAp 402, 404, 408, 410, 412 respectively is not displayed. The estimated position WAp, because no corresponding actual WAP 4〇6 is found in the first scan phase, there is no WAP' estimate 456. Furthermore, 'the WAP 406 can be found due to its nine outside the building. Sweep 153204.doc •23- 201140123 The signal visibility at any of the locations is not mapped. The accuracy of the mapped WAP depends on many factors, such as the scanning distance, the modeling of the environment, the accuracy of the user's location, the number of scans (measurements) from a building outside the WAp, and the locations of the respective WAPs. Geometry and so on. Figure 5 illustrates the second scanning phase of the set of wireless access points (WAp) in the building of Figure 3. Six WAp 5〇2, 504, 506, 508, 510, 512 are again shown in the building 500. Five new scanning sites 52, 522, 524, 526, 528 interspersed between the WAPs are selected (where possible) within the building. As mentioned, in the second mapping phase, the scan points are located inside the building, and one of the users performing the mapping generally does not have Gps/AGps availability. In this case, one of the user coordinates at these five locations is derived using Wi-Fi positioning technology. Wi-Fi positioning uses the mapping at each location within the building (using the first scanning phase as described above) and other available WAPs. For example, one of the users at location 524 uses WAP 504, 508, 512 to locate itself using phase 1 mapped WAP coordinates and other signal processing algorithms (such as distance measurement using Wi Fi signal strength, such as through Environmental modeling and triangulation of user input and the like as described above with respect to Phase 1.) A user (or, for example, another operator that processes the received measurement data in a central location) has the ability to input its own estimate of the location of the second set of locations or to automatically derive an estimate of one of the locations. A correction (where appropriate) (for example, correcting a significantly incorrect Gps reading or overwriting an inaccurate GPS reading (if available and being used)). One user is also 153204.doc •24· 201140123 can input data to enable or enhance the performance of the reference positioning system, GPS (if available and being used) Gps auxiliary data (estimated position, time: ephemeris, etc.) . In particular, the user can record - perceived height $, his measurements (such as the floor number in the building), allowing a height or other size to be estimated with a ==. If a baseline height is available for special positions (for example, using data derived from topographic maps), the -high ^ estimate h can be calculated as hb+hsXs, where (iv) the estimated height per floor (: a luxury based - The global or local average or use of the knowledge about the location of the scan: the knowledge of the disease built) and the 5 series floor number (using the British term, the second layer ' 1: first layer' and so on). For example, in the use of inertia (or one of the two embodiments, a user can enter a reference (or name) value at the appropriate time to allow calibration of the inertial positioning system. Select the user to enter One of the environmental models to be applied or the parameters used in conjunction with this model (see below for a discussion of the parameters of a government and its etc.) For example, other input devices in the user interface can be used ( Such as running;): Γ: Carrying the option of an interactive application on a hand-held device, the ten-ring i brother (and other materials). The lack of sufficient point to allow triangulation or the method of user supply ( Depending on the ^, other possible materials such as a weighted average can be used: depending on whether the user of the scanner is to be included or processed at a later stage - manual input to obtain the location of the scan. "The most during the second scanning phase, the six are scanned from the interior of the building due to the typical lack of a structural wall that is close to the sweeping user 153204.doc •25·201140123 and, for example, the attenuation signal. WAP 502 All of 504, 506, 508, 510, 512. It can be seen that many WAPs can be scanned from more than one location. For example, ' WAP 508 is self-positioning 522, 524, 526, 528 to scan. Similar to Phase 1 'Use The Wi_Fi scan parameters, such as signal strength, visible WAP address, signal quality, etc., and the user's own location are recorded again at each location. The user can also observe and/or have existing knowledge to record other useful environment specifics. Information such as building height and type, number and type of physical signal obstacles close to the scanning location, etc. The user may also record data (if available) from additional sensors on the device to aid in positioning, such as A heading magnetometer, a barometer that provides a high degree of information, etc. The figure shows the estimated position of the scanner during the second scanning phase shown in Figure $ of the program as described above. As previously described, six WAPs 602, 604, 606, 608, 610, 612 in the building 600 are shown. The estimated positions of the scanner at stations .620, 622, 624, 626, 028 are also not scanned. The estimated position is different from the actual scanning site, and the degree of dissimilarity depends on, for example, the factors mentioned above that affect signal propagation. In another embodiment in which the device has an internet connection, The central web server can be used to derive a user's coordinates by exchanging Fi parameters with the central web server. In this case, the central web server robbery can operate through an internal database or from other internet sites. Network resource provisioning - user location. In some cases, the user may also use GPS/AGPS coordinates and any other positioning technology (if it is available for 153204.doc •26·201140123). The user can also use the information of the ml-Nuoqiu® input block such as coordinates, environment type, etc. (as described in the above paragraph) in the processing software to assist the mapping process. Different signal processing algorithms (such as distance measurement using Wi_Fi signal strength, environmental modeling using user input, triangulation, etc.) are processed together in one software on a device by positioning from the five scans The records formed by all scans map (substantially more accurately) the WAP inside the building. Figure 7 is a schematic illustration of the estimated locations of the WAPs of Figure 3 after the second scan phase in the routine of Figure 5. The actual positioning of WAp 702, 704, 706, 708, 710, 712 is shown in a solid circle in FIG. 7 and in a dashed circle 752 corresponding to the overlay of WAP 702, 704, 706, 708, 710, 712, respectively. 754, 756, 758, 760, 762 show the estimated positioning WAP'. It is noted that in this hypothetical case, the estimate of the position of the WAp is substantially improved, although in individual cases (such as for WAp) 7〇4 (and estimated WAP' 754)) 'This estimate may become less accurate relative to the first phase (as depicted in Figure 4). Phase II also maps WAPs that are not mapped in Phase I (for example, WAP 706). Although the coordinates of one of the users at the scan point (derived from within Wi-Fi positioning after Phase I) may be inaccurate compared to the user's coordinates (using GPS/AGPS external export), mapping accuracy and mapped WAP The overall improvement of the coverage is attributed to the proximity of the scan/map user (inside the building) to the WAP after the second mapping phase and can therefore be achieved by applying the indoor signal propagation model described above with respect to Phase I. More accurately predicts the 153204.doc •27·201140123 signal propagation path and measures the distance between the user and the WAP. This entire mapping procedure can be extended to subsequent stages as many times as the number of improvements in the mapped WAP coordinates to improve coverage and a certain level of accuracy. The program is still substantially the same as phase π, and can be re-scanned for a previous site by repeating, for example, more scanning locations inside or outside a building (eg, if a particular site is identified as a particular difficulty Environment (for example, after reviewing the initial scan data)). Figure 8 illustrates the procedure for positioning (in two dimensions) a wireless access point (WAP) location. This is one of the possible methods for estimating the location of the WAP. Three scanning stations 8〇2, 8〇4, 8〇6 are shown in circle 8, and each scanning station detects a signal from one of the approximate areas 8〇8. The distance of the WAp/area 808 from the respective scanning stations 802, 804, 806 is 1, d2, and ten. Each of the stations 802, 8〇4, 8〇6 is surrounded by a circle representing the detour of all points at the distance dn. Here, 'dl, d2, and X are derived from any of the available distance measurement models previously described' and are used in the following equations together with the coordinates of the stations 8〇2, 8〇4, 806: d = (6) where the mountain distance, the coordinates of Xf&yjsWAp 7 and the y coordinate, and ~ and l are the X coordinates and y coordinates of several locations, where i is 1, 2, forming three equations and solving the area The X coordinate and the y coordinate of the WAP in 808. These equations can be solved by any available method such as the least squares method. As shown in Figure 8, the mapped coordinates of the WAP in region 808 are where three 153204.doc • 28 - 201140123 circles (the trajectories of the estimated distances between the stations and the WAP) overlap. The rounds are not overlapped by a single error in the measurement/estimation of the distances dl, d2, and d3 and the error in the reference (or estimated) coordinates of the scanning stations 2, _, _ A little bit. a should understand that the above two-dimensional instance can be expanded to three dimensions as needed. It is usually not necessary to record the three-dimensional position of the WAP (the pure 梓 is the two-dimensional position), but it should be understood that 'if three-dimensional positioning is required for the mount-related modifications. Figure 9 is a schematic illustration of one of the dedicated scanner systems suitable for use in conjunction with at least the first stage of the process of Figure 2. This scanner may be used in some or all of the above-described embodiments of the preferred hand-held unit (which may or may not be the same as the unit described below with respect to Figure 1). In FIG. 9, the dedicated scanner system (such as a driving attack harness) includes a directional antenna 902 (such as a directional Wi_Fi antenna), an amplifier 9〇4 for amplifying signals from the antenna, for providing the A GPS (or AGPS or other similar unit) 9〇6 of the reference coordinate of the scanner system 9〇() for controlling and/or processing and/or receiving from the antenna 9〇2, amplifier 9〇4, GPS a computer 9〇8 of any or all of the information of the unit 906, a user interface 910 for controlling the scanner system, inputting relevant data and displaying the result, and a data for storing the record generated by the scanning program The storage unit 912. In an alternate embodiment, a network interface unit (not shown) is provided to allow transmission and/or reception of data via a communication network to, for example, allow remote control and/or data collection (eg, this can be avoided) This storage unit 912) is required. Figure 10 is a schematic illustration of one hand-held unit suitable for use with the first and second 153204.doc -29. 201140123 stages of the program of Figure 2. The handheld unit includes a Wi-Fi interface 1002, a Gps or AGps unit 1004, a network interface nano (for a pure local operation of the scanner, which may not be visible), a processor (or micro Controller or other computerized device) 1_, - user interface 1〇1〇 and _ data storage unit 1〇12. This unit may have less selectivity, signal amplification and/or processing power or storage capacity than the device described above with respect to Figure 9, but on the other hand may be more portable and therefore easier to carry. It is in close contact with any WAP that needs to be scanned. In another embodiment, the handheld unit can omit or turn off the GPS/AGPS unit 1004, e.g., if only used during the second scanning phase. In another embodiment, a scanner unit can be provided that mixes the scanner system 9A described above with respect to FIG. 9 from the handheld unit 1000 described above with respect to FIG. Characteristics of the person. 11 is an overview of a system for locating a user device using the data generated by the process of FIG. 2. FIG. 11 shows a user device 1100 (eg, such as the handheld device 10 described above). 0 or any other device), a telecommunications network (such as a mobile telephone network) 1102, a location server 1104, and a WAp location database 1106 (which may be integrated with the location server 11A4). In use, a user causes the user device 1100 to send a location request 1150 to the telecommunications network 1102 (e.g., using one of the services on a mobile phone). The request U50 may generally include data received at the user device 11' such as an attribute from a signal detected by a neighboring WAP (such as described in paragraphs 153204.doc • 30·201140123 regarding Phase I and Phase II) Etc.) Thus, the request 1150 can, for example, include details of signal strength and MAC address (and/or cell tower signal, etc.) of the neighboring WAP. From the network 1102 - request 1152 (usually the same as the initial request 1150) is transmitted to the location server 1104. The location server 11〇4 then processes the request 1152 and, in processing, queries the location database 1106 with a WAP query request 1154 to specify WAP data for the location request 11 52. The repository 1106 then passes the requested data 1156 back to the server 11 〇4. The server completes processing the data 结合 5 6 in conjunction with the received request data 以 5 2 to generate a location estimate 'to send the location estimate back to the user device 1100 in the form of location data 1158. ^ The network will The location data ii 6〇 (usually the same as the data 1158) is delivered to the user device 11〇〇. The user device can then process the location data 1160 to retrieve (and display, for example) the location estimate. The system described above with reference to Figure 11 can also be used, for example, in conjunction with Phase I and Phase II described above for the initial "exploration" phase. The server 1104 can, for example, additionally or alternatively operate the software to process the scanned data to produce the various estimates described above. In some applications, the data obtained during the second scan phase can be used to determine - or multiple locations, where an otherwise - electromagnetic signal source (eg, a Bluetooth beacon) will be advantageously positioned to improve one or more The positioning provides accuracy to the positioning data of a user device. An additional source of electromagnetic signals can then be provided at a certain location determined thereby. The further scanning phase according to the invention can then occur at a plurality of locations around the newly placed electromagnetic signal source. 153204.doc •31 · 201140123 It should be understood that 'of course there may be other applications of the position location system described above', such as a fully localized positioning system comprising a user device (eg including all of the user device) Relevant data and processing capabilities) and devices that communicate via various networks (eg, not limited to a network or telecommunications network). In summary, a method of determining the location coordinates of a wireless access point (WAP) in a wireless local area network (WLAN) using a multi-stage self-correction mapping procedure has been described. The WAPs are typically wi_Fi access points in their respective WLANs, but they may be other WAps of another Wi-Fi based positioning system. For example, the method and system can be implemented entirely on a consumer mobile device, or can rely on remote components and software (such as via some form of communication network (such as

Fi、行動電活或其他網路)連接之一中心伺服器)以達到相 同的目的。 雖然上文已關於特定實施例描述本發明,但是熟習此項 技術者易於得知修改屬於本發明之精神及料之内。 【圖式簡單說明】 圖1繪不使用Wi-Fi無線存取點(WAp)信號源來定位使用 者器件之系統的概觀; 於圖1之系統中之無線存取點 園, 之建築物中之一組無線存取點 圖2係繪示用於定位用 (WAP)的位置的程序之流程 圖3繪·示根據圖2之程序 (WAP)的第掃描階段; 中之第一掃描階段之後的圖3中之 圖4繪示在圖2之程序 WAP的估計位置; 153204.doc •32· 201140123 中之該組無線存取點(WAP)的第二 圖5繪示圖3之建築物 掃描階段; 圖6繪示在圖5中所示之第 計位置; 二掃描階段期間之掃描器的估 圖7繪示在圖5之程序中之第二掃描階段之後的圖3中之 WAP的估計位置; 圖8繪示三角定位無線存取點(WAp)之位置之程序; 圖9示意缚示適合連同圖2之程序之至少第一階段起使用 之專用掃描器系統; 圖10示意繪示適合連同圖2之程序之第一階段及第二階 段起使用之手持式單元;及 圖11係使用圖2之程序所產生之資料來定位使用者器件 之系統的概觀。 【主要元件符號說明】 102 使用者器件 104 無線存取點(WAP) 106 無線存取點 108 無線存取點 110 無線存取點 112 無線存取點 114 建築物 116 建築物 118 全球行動通信系統(GSM天線桿) 300 建築物 153204.doc -33- 201140123 302 無線存取點 304 無線存取點 306 無線存取點 308 無線存取點 310 無線存取點 312 無線存取點 320 掃描站點 322 掃描站點 324 掃描站點 326 掃描站點 328 掃描站點 330 掃描站點 332 掃描站點 334 掃描站點 336 掃描站點 400 建築物 402 無線存取點 404 無線存取點 406 無線存取點 408 無線存取點 410 無線存取點 412 無線存取點 452 無線存取點 454 無線存取點 153204.doc -34- 201140123 458 無線存取點 460 無線存取點 462 無線存取點 500 建築物 502 無線存取點 504 無線存取點 506 無線存取點 508 無線存取點 510 無線存取點 512 無線存取點 520 掃描站點 522 掃描站點 524 掃描站點 526 掃描站點 528 掃描站點 600 建築物 602 無線存取點 604 無線存取點 606 無線存取點 608 無線存取點 610 無線存取點 612 無線存取點 620 掃描站點' 622 掃描站點' 153204.doc ·35· 201140123 624 掃描站點’ 626 掃描站點' 628 掃描站點' 702 無線存取點 704 無線存取點 706 無線存取點 708 無線存取點 710 無線存取點 712 無線存取點 752 無線存取點' 754 無線存取點’ 756 無線存取點’ 758 無線存取點' 760 無線存取點' 762 無線存取點’ 802 掃描站點 804 掃描站點 806 掃描站點 808 近似區域 900 專用掃描器系統 902 方向性天線 904 放大器 906 全球定位系統 908 電腦 -36- 153204.doc 201140123 910 使用者介面 912 資料儲存器 1000 手持式單元 1002 Wi-Fi介面 1004 全球定位系統 1006 網路介面 1008 處理器 1010 使用者介面 1012 資料儲存器 1100 使用者器件 1102 電信網路 1104 定位伺服器 1106 WAP定位資料庫 1150 定位請求 1152 定位請求 1154 定位請求 1156 定位資料 1158 定位資料 1160 定位資料 153204.doc -37-Fi, mobile power or other network) is connected to one of the central servers for the same purpose. Although the invention has been described above with respect to specific embodiments, it will be apparent to those skilled in the art that the modifications are within the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 depicts an overview of a system that does not use a Wi-Fi wireless access point (WAp) source to locate a user device; in a wireless access point park in the system of Figure 1, in a building One set of wireless access points FIG. 2 is a flow chart showing a procedure for positioning (WAP). FIG. 3 shows a scanning stage according to the procedure of FIG. 2 (WAP); after the first scanning stage Figure 4 in Figure 3 shows the estimated position of the program WAP in Figure 2; 153204.doc • 32· 201140123 The second Figure 5 of the set of wireless access points (WAP) shows the building scan of Figure 3. Figure 6 is a diagram showing the position of the meter shown in Figure 5; Figure 7 of the scanner during the second scanning phase shows the estimation of the WAP in Figure 3 after the second scanning phase in the procedure of Figure 5. Figure 8 illustrates a procedure for positioning a wireless access point (WAp); Figure 9 illustrates a dedicated scanner system suitable for use with at least the first stage of the procedure of Figure 2; Hand-held unit used in conjunction with the first and second phases of the procedure of Figure 2; and Figure 11 Information generated by the program of Figure 2 to locate the system overview of the user device. [Description of main component symbols] 102 User device 104 Wireless access point (WAP) 106 Wireless access point 108 Wireless access point 110 Wireless access point 112 Wireless access point 114 Building 116 Building 118 Global mobile communication system ( GSM antenna mast) 300 Building 153204.doc -33- 201140123 302 Wireless access point 304 Wireless access point 306 Wireless access point 308 Wireless access point 310 Wireless access point 312 Wireless access point 320 Scanning site 322 Scanning Site 324 Scan Site 326 Scan Site 328 Scan Site 330 Scan Site 332 Scan Site 334 Scan Site 336 Scan Site 400 Building 402 Wireless Access Point 404 Wireless Access Point 406 Wireless Access Point 408 Wireless Access point 410 wireless access point 412 wireless access point 452 wireless access point 454 wireless access point 153204.doc -34- 201140123 458 wireless access point 460 wireless access point 462 wireless access point 500 building 502 wireless Access point 504 wireless access point 506 wireless access point 508 wireless access point 510 wireless access point 512 wireless access point 520 scanning site 522 Scanning Site 524 Scanning Site 526 Scanning Site 528 Scanning Site 600 Building 602 Wireless Access Point 604 Wireless Access Point 606 Wireless Access Point 608 Wireless Access Point 610 Wireless Access Point 612 Wireless Access Point 620 Scanning Site '622 Scanning Site' 153204.doc ·35· 201140123 624 Scanning Site '626 Scanning Site' 628 Scanning Site '702 Wireless Access Point 704 Wireless Access Point 706 Wireless Access Point 708 Wireless Access Point 710 Wireless Access Point 712 Wireless Access Point 752 Wireless Access Point '754 Wireless Access Point' 756 Wireless Access Point '758 Wireless Access Point' 760 Wireless Access Point '762 Wireless Access Point' 802 Scan Station Point 804 Scanning Site 806 Scanning Site 808 Approximate Zone 900 Dedicated Scanner System 902 Directional Antenna 904 Amplifier 906 Global Positioning System 908 Computer-36- 153204.doc 201140123 910 User Interface 912 Data Storage 1000 Handheld Unit 1002 Wi -Fi interface 1004 GPS 1006 Network interface 1008 Processor 1010 User interface 1012 Data storage 1100 User device 1102 telecommunication network 1104 positioning server 1106 WAP positioning database 1150 positioning request 1152 positioning request 1154 positioning request 1156 positioning data 1158 positioning data 1160 positioning data 153204.doc -37-

Claims (1)

201140123 七、申請專利範園: 1. 一種估計複數個電磁信號源之定位的方法,其包括· 在第一複數個定位處掃描以產生信號源位置資料,談 信號源位置資料表示對一或多個該等信號源之位置的估 計; 使用一信號偵測系統在第二複數個定位處掃描以產生 信號偵測資料,該信號偵測資料係關於在該第二複數個 定位處自該等信號源接收之信號; 依賴於該信號偵測資料來處理該信號源位置資料以校 正該信號源位置資料中之估計誤差;及 輸出該經處理的信號源位置資料。 2·如請求項1之方法,其中處理該信號源位置資料進一步 包括··使用該信號❹j資料來估計該第二複數個定位之 位置。 3·如凊求項!之方法,其進一步包括接收表示關於該第二 複數個定位之資訊的定位資訊資料,且其中處理該信號 源位置資料進—步包括使㈣定位資訊資料來估計該第 一複數個定位之位置。 4.::求項3之方法’其中該定位資訊資料包括對該第二 複數個定位之至少-者之位置的-使用者估計。 5·如請求項4之方法,其進一步 件輸入該定位資訊資料。 I使用者輸入器 6.如請求項1之方沐 包括 、、冑理該信號源位置資料進一步 施加至該等信號源之環境因素的-環境 153204.doc 201140123 模型來處理該信號偵測資料。 7. 如請求項6之方法,其進—步包括接收表示環境模型之 一選項的環境模型選擇資料與表示該環境模型之至少一 參數的一選項的環境模型參數資料之至少一者,且根據 該%境模型選擇資料與該環境模型參數資料之該至少一 者來處理該信號偵測資料。 8. 如凊求項7之方法,其進_步包括經由一使用者輸入器 件輸入環境模型選擇資料與環境模型參數資料之該至少 一者。 9. 如明求項1之方法,《中處理該信號源位置資料進一步 包括:依賴於該信號偵㈣資料來產生表示對料信號源 之新估計的另一信號源位置資料。 10. 如凊求項9之方法,其進一步包括處理該信號源位置資 料及該另一仏號源位置資料以判定對該信號源位置資料 之一適當調整。 如唄求項1之方法’其進—步包括處理該信號偵測資料 、〜十在該帛複數個定位處未被债測之額外的信號源 之疋位’且添加額外的信號源位置資料至該信號源位置 資料》 12.如請求項1之方法中在該第-複數個定位處掃描包 括: 在减第一複數個定位處掃描以產生初始信號偵測資 料’該初始信號债測資料係關於在該第—複數個定位處 自該等信號源接收之信號; 153204.doc 201140123 依賴於第-掃描位置資料來處理該初始信號價测資料 以產生位置估計資料’該第一掃描位置資料表示該第— 複數個定位之各者的位置。 13 14. 15. 16. 17. 18. 19. 20. 21. 如請求項12之方法,其中在該第—複數個定位處掃福包 括·使用該信號偵測系統來產生該初始信號偵測資料。 如明求項1之方法,其進__步包括在該第—複數個定位 之各者處使用-定位系統來產生該第—掃描位置資料。 如:求項14之方法,其中該定位系統一般在該第—複數 個疋位處比在該第二複數個定位處更有效。 月求項14之方法’其中該信號偵測系統一般在該第二 複數個定位處比在該第—複數個定位處更有效。 青长項1之方法’其進一步包括在另外的複數個定位 :使用L號偵測系統進行掃描以產生另一信號偵測資 料’且依賴於該另-信號偵測資料進一步處理該信號源 月长項1之方法’其進一步包括處理該信號源位置資 料以產生表示該等信號源之—地圖的地圖資料。 如請求項H^ ’/、中該信號源係一無線通信網路中 之—無線存取點,諸如—基地台。 如請求項丨9 =古、土 w ',其中該信號偵測資料、該信號源位 :枓與該經處理的信號源位置資料之至少一者係經由 μ…、線存取點傳輪。 其中該掃描之至少部分係使用 一手 如請求項1之方法, 持可攜式器件執行。 153204.doc 201140123 其中該掃描之至少部分係使用一車 22.如請求項1之方法, 載可攜式器件執行。 23. 如請求項1之方法,其進-步包括: 儲存該經處理的信號源位置資料; 位^使用者器件接收—使用者^位請求,該使用者定 r二包含自與該使用者器件相關之-信號偵測系統獲 依·賴於該使用者定位嗜龙 疋位叫求資枓來處理該已儲存之信受 源位置資料以產生矣 座生表不對該使用者器件之定位之一估言 的使用者定位資料;及 輸出該使用者定位資料。 24. 耷长項1之方法’其中該掃描係由行進在複數個定位 之間的一使用者執行。 25. 一種估計複數個電磁信號源之定位的方法,其包括: 輸入信號源位置資料,該信號源位置資料表示藉由在 第-複數個定位處掃描而獲得之對一或多個該等信號源 之位置的估計; 輸入信號偵測資料’該信號偵測資料係關於在第二複 數個定位處自該等信號源接收之信號; 依賴於該信號須測資料來處理該信號源位置資料以校 正該信號源位置資料中之估計誤差;及 輸出該經處理的信號源位置資料。 26. —種有形地體現電腦程式碼之電腦可讀媒體,該電腦程 式碼用於引起一電腦執行如請求項丨中之方法。 I53204.doc 201140123 2入一種以電腦程式碼程式化之可攜式單元,該電腦程式 用於引起該可攜式單元執行如請求項】中之方法 " 28. —種以電腦程式碼程式化之飼服 ; 引起該可攜式單元勃一… /電版程式碼用於 平70執仃如請求項25中之方法。 153204.doc201140123 VII. Application for Patent Park: 1. A method for estimating the location of a plurality of electromagnetic signal sources, comprising: scanning at a first plurality of locations to generate signal source location data, and talking about signal source location data representing one or more Estimating the position of the signal sources; scanning a second plurality of locations to generate signal detection data using a signal detection system, the signal detection data being from the signals at the second plurality of locations The source receives the signal; relies on the signal detection data to process the source location data to correct the estimation error in the source location data; and outputs the processed source location data. 2. The method of claim 1, wherein processing the source location data further comprises using the signal 资料j data to estimate a location of the second plurality of locations. 3. The method of claim 2, further comprising receiving positioning information indicative of information regarding the second plurality of locations, and wherein processing the source location data further comprises: (4) locating the information to estimate the first A plurality of positioning positions. 4.:: The method of claim 3 wherein the location information comprises a user estimate of the location of at least the second plurality of locations. 5. In the method of claim 4, the further input of the positioning information material. I User Input Device 6. If the request item 1 includes, processing, the signal source location data is further applied to the environmental factors of the signal source - environment 153204.doc 201140123 model to process the signal detection data. 7. The method of claim 6, further comprising receiving at least one of an environmental model selection profile representing an option of an environmental model and an environmental model parameter profile representing an option of at least one parameter of the environmental model, and The at least one of the % environment model selection data and the environment model parameter data processes the signal detection data. 8. The method of claim 7, wherein the step of inputting the at least one of the environmental model selection data and the environmental model parameter data via a user input device. 9. The method of claim 1, wherein the processing the source location data further comprises: relying on the signal detection (4) data to generate another source location data indicative of a new estimate of the source of the material. 10. The method of claim 9, further comprising processing the source location information and the another source location data to determine an appropriate adjustment to one of the source location data. For example, the method of claim 1 includes the processing of the signal detection data, and the addition of additional signal source locations in the plurality of locations where the plurality of locations are not tested. Up to the source location data. 12. The method of claim 1 includes scanning at the first plurality of locations: scanning at the first plurality of locations to generate initial signal detection data. a signal received from the signal sources at the first plurality of locations; 153204.doc 201140123 responsive to the first scan location data to process the initial signal price measurement data to generate a position estimate data 'the first scan position data Indicates the location of each of the first and plural positions. 13 14. 15. 16. 17. 18. 19. 20. 21. The method of claim 12, wherein the sweeping at the first plurality of locations comprises: using the signal detection system to generate the initial signal detection data. The method of claim 1, wherein the step of detecting comprises using a positioning system at each of the first plurality of locations to generate the first scan location data. For example, the method of claim 14, wherein the positioning system is generally more effective at the first plurality of locations than at the second plurality of locations. The method of claim 14 wherein the signal detection system is generally more efficient at the second plurality of locations than at the first plurality of locations. The method of 青长项1 further includes: in another plurality of positioning: scanning using the L-number detection system to generate another signal detection data' and further processing the signal source month depending on the other-signal detection data The method of long term 1 further includes processing the source location data to generate map data representing the map of the sources. For example, in the request item H^'/, the signal source is a wireless access point in a wireless communication network, such as a base station. For example, the request item 丨9 = ancient, soil w ', wherein the signal detection data, the source of the signal: 枓 and at least one of the processed source location data are transmitted via the μ..., line access point. At least part of the scan is performed by a portable device using a method such as the method of claim 1. 153204.doc 201140123 wherein at least part of the scan is performed using a vehicle 22. The method of claim 1 is performed by a portable device. 23. The method of claim 1, further comprising: storing the processed source location data; the user device receiving - the user bit request, the user setting r containing the user The device-related signal detection system is relied upon by the user to locate the user's location, and the stored information is processed by the source location data to generate the location of the user device. An estimated user location data; and outputting the user location data. 24. The method of item 1 wherein the scanning is performed by a user traveling between a plurality of positions. 25. A method of estimating a location of a plurality of electromagnetic signal sources, comprising: input source location data, the source location data representing one or more of the signals obtained by scanning at the first plurality of locations Estimation of the position of the source; input signal detection data 'the signal detection data is about the signal received from the signal sources at the second plurality of locations; relying on the signal to be measured to process the source location data Correcting an estimated error in the source location data; and outputting the processed source location data. 26. A computer readable medium tangibly embodying a computer program code for causing a computer to perform a method as claimed. I53204.doc 201140123 2 into a portable unit programmed with computer code, which is used to cause the portable unit to execute the method in the request item. 28. Programmatically computerized code The feeding device; causing the portable unit to be... The electronic version of the code is used in the method of claim 25. 153204.doc
TW099145711A 2009-12-23 2010-12-23 Locating electromagnetic signal sources TWI507707B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US29873509P 2009-12-23 2009-12-23

Publications (2)

Publication Number Publication Date
TW201140123A true TW201140123A (en) 2011-11-16
TWI507707B TWI507707B (en) 2015-11-11

Family

ID=46760217

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099145711A TWI507707B (en) 2009-12-23 2010-12-23 Locating electromagnetic signal sources

Country Status (1)

Country Link
TW (1) TWI507707B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572888B (en) * 2015-01-21 2017-03-01 先進光電科技股份有限公司 Optical image capturing system
TWI572891B (en) * 2015-01-29 2017-03-01 先進光電科技股份有限公司 Optical image capturing system
TWI575995B (en) * 2012-05-07 2017-03-21 動聯國際股份有限公司 Internet of things system
TWI610085B (en) * 2017-03-15 2018-01-01 酷異有限公司 Three-dimension positioning device and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445927B1 (en) * 2000-09-18 2002-09-03 Motorola, Inc. Method and apparatus for calibrating base station locations and perceived time bias offsets in an assisted GPS transceiver
WO2006009955A2 (en) * 2004-06-23 2006-01-26 Cognio, Inc Self-calibrated path loss position estimation process, device and system
US8090885B2 (en) * 2008-01-14 2012-01-03 Microsoft Corporation Automatically configuring computer devices wherein customization parameters of the computer devices are adjusted based on detected removable key-pad input devices
JP2012507207A (en) * 2008-10-23 2012-03-22 ゼットティーイー(ユーエスエー)インコーポレーテッド Femtocell handover in wireless communication
US20100135178A1 (en) * 2008-11-21 2010-06-03 Qualcomm Incorporated Wireless position determination using adjusted round trip time measurements

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575995B (en) * 2012-05-07 2017-03-21 動聯國際股份有限公司 Internet of things system
TWI572888B (en) * 2015-01-21 2017-03-01 先進光電科技股份有限公司 Optical image capturing system
TWI572891B (en) * 2015-01-29 2017-03-01 先進光電科技股份有限公司 Optical image capturing system
US9798107B2 (en) 2015-01-29 2017-10-24 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
TWI610085B (en) * 2017-03-15 2018-01-01 酷異有限公司 Three-dimension positioning device and method

Also Published As

Publication number Publication date
TWI507707B (en) 2015-11-11

Similar Documents

Publication Publication Date Title
US9609617B2 (en) Locating electromagnetic signal sources
JP5980122B2 (en) Location of electromagnetic signal source
US9639557B2 (en) Positioning system
US8279840B2 (en) Systems and methods for providing location based services (LBS) utilizing WLAN and/or GPS signals for seamless indoor and outdoor tracking
KR102252566B1 (en) Systems and methods for using three-dimensional location information to improve location services
KR102361202B1 (en) Adaptive position determination
KR101369548B1 (en) Apparatus and method for constructing and utilizing a beacon location database
CA2946686C (en) Location error radius determination
TW201329486A (en) Positioning method
KR101709411B1 (en) Method for positioning based on weighted triangulation and method for indoor positioning using the same
KR101600190B1 (en) Indoor positioning apparatus considering environmental parameters and method thereof
TWI507707B (en) Locating electromagnetic signal sources
EP3232220B1 (en) Method and device for estimating accuracy of a position determination
KR101901407B1 (en) Apparatus and method for determining location
KR20110129602A (en) System and method for positioning mobile terminal using gps and base station information