TW201133945A - Diamond LED devices and associated methods - Google Patents

Diamond LED devices and associated methods Download PDF

Info

Publication number
TW201133945A
TW201133945A TW99138336A TW99138336A TW201133945A TW 201133945 A TW201133945 A TW 201133945A TW 99138336 A TW99138336 A TW 99138336A TW 99138336 A TW99138336 A TW 99138336A TW 201133945 A TW201133945 A TW 201133945A
Authority
TW
Taiwan
Prior art keywords
layer
diamond
semiconductor
aluminum nitride
diamond layer
Prior art date
Application number
TW99138336A
Other languages
Chinese (zh)
Inventor
jian-min Song
Original Assignee
jian-min Song
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/686,288 external-priority patent/US7867802B2/en
Priority claimed from US12/755,034 external-priority patent/US8309967B2/en
Application filed by jian-min Song filed Critical jian-min Song
Publication of TW201133945A publication Critical patent/TW201133945A/en

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

LED devices incorporating diamond materials and methods for making such devices are provided. One such method may include forming epitaxially a substantially single crystal SiC layer on a substantially single crystal Si wafer, forming epitaxially a substantially single crystal diamond layer on the SiC layer, doping the diamond layer to form a conductive diamond layer, removing the Si wafer to expose the SiC layer opposite to the conductive diamond layer, forming epitaxially a plurality of semiconductor layers on the SiC layer such that at least one of the semiconductive layers contacts the SiC layer, and coupling an n-type electrode to at least one of the semiconductor layers such that the plurality of semiconductor layers is functionally located between the conductive diamond layer and the n-type electrode.

Description

201133945 六、發明說明: 優先權資料 本發明主張於2〇10年4月6日提出申請的美國第 12/755,034號發明專利申請案的優先權,該美國專利申請 案是於2010年1月12日提出申請的美國第彳2/686 288號 發明專利申請案的接續案,上述美國專利申請案整合於本 文中以作為參考。 【發明所屬之技術領域】 本發明一般關於半導體裝置以及其相關方法。因此, 本發明涉及電子與材料科學領域》 【先前技術】 在許多已發展國家中,對大部分居民而言電子裝置為 其生活必需品》對電子裝置之使用及依賴日益增加,產生 了對體積小、速度快電子裝置的需求。隨著電子電路速度 加快且尺寸減小’這些裝置的散熱卻成為問題。 電子裝置一般包含具有整體連接電子組件的印刷電路 板’這些組件使電子裝置具有全面的功能性。該些電子組 件(諸如處理器、電晶體、電阻器、電容器、發光二極體 (LED )等)在工作時會產生大量的熱;隨著熱量積累,會 引起與該等電子組件相關之各種熱問題,大量的熱不但會 影響電子裝置之可靠度,電子裝置甚至更可能失效,例如, 累積在電子組件内部的熱及在印刷電路板之表面上的熱可 導致元件燒壞或引起短路而使裝置失效,因此,熱量的積 累最終會影響電子裝置之功能壽命。此問題對於具有高功 201133945 率及高電流需求之電子組件以及支撐其之印刷電路板尤其 嚴重。 現有已知技術採用諸如風扇、熱沉、熱電致冷晶片 (Peltier)裝置及液體冷卻裝置等各種散熱裝置,作為減少電 子裝置中熱量積累的方法,因為速度加快及功率消耗增多 會使熱積累增加’故該些散熱裝置之尺寸一般必須増大, 以便發揮功效’且亦可能需要電力來驅動操作。舉例而言, 必須增加風扇尺寸及加快其速度以加大氣流,且增加熱沉 • 尺寸以增大熱容及表面積。然而,因應較小電子裝置之需 求,不僅不適合使用尺寸漸增的該些散熱裝置,而且可能 會需要更小尺寸的散熱裝置。 因此,人們不斷研究尋求適當散熱電子裝置的方法及 相關裝置,同時將散熱裝置在電子裝置上的尺寸及功率的 限制減到最小散熱。 【發明内容】 因此,本發明提供具有增強的散熱功效的半導體裝置 以及製造此類半導體裝置的方法。在一方面,舉例而言, 本發明提供-發光二極體裝置,其包含一傳導性鑽石層、 -搞合到該鑽石層的碳化梦(Sic)層、複數半導體層其中 至少-半導體層耦合到該碳化矽層、以及一耦合到該複數 半導體層的至少其中—個的n型電極,其中該傳導性鑽石 層以及η型電極被配置為使得在傳導性鑽石層以及η型電 極兩者之間形成有一大致上線性的傳導路徑。雖然可考慮 許多半導體層的結構,在一方面該複數半導體層可被依序 配置在傳導性鑽石層與η型電極之間。依據各種材料的沉 201133945 積技術,該碳化矽層的晶格可以磊晶方式(epitaxia丨丨y)耦合 或是匹配到該傳導性鑽石層的晶格上。 可依據半導體裝置所要進行的應用而使用各種半導體 材料來建構此一半導體裝置。舉例而言,在一方面該半導 體材料可包含矽化鍺、砷化鎵、氮化鎵、鍺、硫化鋅、磷 化鎵、銻化鎵、磷砷化鎵銦、磷化鋁、砷化鋁、砷化鎵鋁、 氮化鎵、氮化硼、氮化鋁、砷化銦、磷化銦、銻化銦 '氬 化銦以及其混合物的至少其中一種。 ^ 在另一方面,該半導體材料可包含氮化鎵、氮化硼、 氮化銘、氛化銦以及其混合物的至少其中一種。在一特定 方面’該半導體材料可包含氮化鎵。在另一更特定方面, 該半導體材料可包含氮化鋁》 根據本發明某些方面,該傳導性鑽石層可根據該半導 體裝置所欲達成的應用而作廣泛地變化。舉例而言,在— 方面該傳導性鑽石層可為一單晶或是大致上為一單晶在 ^ 另一方面,該傳導性鑽石層可為一傳導性無支撐力鑽石層 (Conductive Adynamic Diamond Layer)。此外,在某此應 用中’該傳導性鑽石層呈透明狀時是有益的。 可使用各種技術來令一鑽石層具有傳導性。舉例而 言’可摻入各種雜質到該鑽石層的晶格之中。這些雜質可 包含矽、硼、磷、氮、鋰、鋁、鎵等等。在一特定方面, 舉例而言,該鑽石層可摻有硼。上述雜質亦可包含金屬顆 粒’這些金屬顆粒以不干涉該半導體裝置的方式摻入晶格 之中’例如以不阻礙發光二極體發光的方式摻入。 本發明另外提供發光二極體裝置的製造方法。在一方 5 201133945 面此一方法包含:在一大致上為單晶的矽晶圓上以磊晶方 式形成大致上為單晶的碳化矽層;在該碳化矽層上以磊 曰曰方式形成一大致上為單晶的鑽石層;摻雜該鑽石層以形 成-傳導性鑽石層;移除該石夕晶圓以露出相對於該傳導性 鑽石層的碳化矽層;在該碳化矽層上以磊晶方式形成複數 半導體層並使得其中至少一半導體層接觸該碳化石夕層;以 及將- η㉟電極搞合到其中至少一半導體層上以使得該複 數半導體層功能性地位於該傳導性鑽石層與該η型電極之 參間。 可使用各種技術來將該鑽石層以磊晶方式沉積到該碳 化石夕層。舉例而言,在一方面該形成遙晶鑽石層的步驟可 進一步包含:令一矽晶圓的生長表面進行漸變製程 (Grading) ’使該生長表面由發逐漸變化為碳化石夕以形成該 碳化石夕層;以及令一碳化矽層的生長表面進行漸變製程, 使該生長表面由碳化石夕逐漸變化為鑽石以形成該鑽石層。 在另一方面,該形成單晶碳化矽的磊晶層的步驟可進一步 _包含:在一單晶石夕晶圓上形成一同構形無晶鑽石層以形成 介於該單晶石夕晶圓與同構形無晶錯石層之間的碳化石夕層; 以及移除該同構形無晶鑽石層以露出該碳化石夕層。在移除 該同構形無晶鑽石層後,可在該露出的碳化石夕層上形成該 傳導性鑽石層。 Λ 本發明亦提供發光二極體裝置,其包含一傳導性鑽石 基材、一 _合到該鑽石基材上且大致上為$晶的碳化# 層、複數以磊晶方式耦合到該碳化矽層上的半導體層、以 及一耦合到其中至少一個半導體層上的η型電極其使得 201133945 該複數半導體層功能性地介於該傳導性鑽石層與該n型電 極之間。 由此本發明之各種特徵已廣泛地概述,以便可更加 理解以下本發明之實施方式,且可更認識到本發明對此項 技術所作之貢獻,根據以下本發明之實施方式以及隨附申 請專利範圍’本發明之其他特徵將更為清晰,亦可藉由實 施本發明來得以瞭解。 【實施方式】 定義 在描述及主張本發明時,將根據下文所閣明之定義使 用以下術語。 除非上下文另外明確說明,否則單數形式的冠詞「一 以及「該」包括複數的用法。舉例而言,當提及「一(個 熱源」包括提及一或多個這樣的熱源,而提及「該鑽石層&gt; 包括提及一或多個這樣的鑽石層。</ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The continuation of the U.S. Patent Application Serial No. 2/686,288, filed on Jan. 27, filed on Jan. TECHNICAL FIELD OF THE INVENTION The present invention generally relates to semiconductor devices and related methods. Accordingly, the present invention relates to the field of electronics and materials science. [Prior Art] In many developed countries, electronic devices are essential for most residents. The use and dependence on electronic devices is increasing, resulting in a small size. The demand for fast electronic devices. As electronic circuits speed up and size decrease, heat dissipation from these devices becomes a problem. Electronic devices typically include a printed circuit board having integrally connected electronic components. These components provide the electronic device with full functionality. The electronic components (such as processors, transistors, resistors, capacitors, light-emitting diodes, etc.) generate a large amount of heat during operation; as heat builds up, various types of electronic components are associated with them. Thermal problems, a large amount of heat will not only affect the reliability of the electronic device, the electronic device is even more likely to fail, for example, the heat accumulated inside the electronic component and the heat on the surface of the printed circuit board may cause the component to burn out or cause a short circuit. The device is rendered ineffective, so the accumulation of heat ultimately affects the functional life of the electronic device. This problem is especially acute for electronic components with high power 201133945 rates and high current requirements, as well as printed circuit boards that support them. The prior art uses various heat dissipating devices such as a fan, a heat sink, a pyroelectric wafer (Peltier) device, and a liquid cooling device as a method of reducing heat accumulation in the electronic device, because the speed is increased and the power consumption is increased to increase the heat accumulation. 'Therefore, the size of these heat sinks must generally be large in order to function.' It may also require power to drive the operation. For example, you must increase the fan size and speed it up to increase airflow and increase the heat sink size to increase heat capacity and surface area. However, in response to the demand for smaller electronic devices, it is not only unsuitable to use the heat sinks of increasing size, and a smaller size heat sink may be required. Therefore, methods and related devices for finding suitable heat-dissipating electronic devices have been continuously researched, and the size and power limitations of the heat-dissipating devices on the electronic devices are minimized. SUMMARY OF THE INVENTION Accordingly, the present invention provides a semiconductor device having enhanced heat dissipation efficiency and a method of fabricating such a semiconductor device. In one aspect, for example, the present invention provides a light-emitting diode device comprising a conductive diamond layer, a carbonized dream (Sic) layer bonded to the diamond layer, and a plurality of semiconductor layers at least - a semiconductor layer coupled And a n-type electrode coupled to at least one of the plurality of semiconductor layers, wherein the conductive diamond layer and the n-type electrode are configured such that both the conductive diamond layer and the n-type electrode A substantially linear conduction path is formed therebetween. Although a structure of a plurality of semiconductor layers can be considered, in the aspect, the plurality of semiconductor layers can be sequentially disposed between the conductive diamond layer and the n-type electrode. According to the sinking technique of various materials, the lattice of the tantalum carbide layer can be coupled or epitaxially matched to the crystal lattice of the conductive diamond layer. The semiconductor device can be constructed using various semiconductor materials depending on the application to be performed by the semiconductor device. For example, in one aspect, the semiconductor material may include antimony telluride, gallium arsenide, gallium nitride, germanium, zinc sulfide, gallium phosphide, gallium antimonide, gallium indium arsenide, aluminum phosphide, aluminum arsenide, At least one of gallium arsenide aluminum, gallium nitride, boron nitride, aluminum nitride, indium arsenide, indium phosphide, indium antimony indium arphide, and mixtures thereof. ^ In another aspect, the semiconductor material can comprise at least one of gallium nitride, boron nitride, nitride, indium oxide, and mixtures thereof. In a particular aspect the semiconductor material can comprise gallium nitride. In another more specific aspect, the semiconductor material can comprise aluminum nitride. According to certain aspects of the invention, the layer of conductive diamond can vary widely depending on the application desired for the semiconductor device. For example, the conductive diamond layer can be a single crystal or substantially a single crystal. On the other hand, the conductive diamond layer can be a conductive unsupported diamond layer (Conductive Adynamic Diamond). Layer). Furthermore, it is advantageous in certain applications that the conductive diamond layer is transparent. Various techniques can be used to make a diamond layer conductive. For example, various impurities may be incorporated into the crystal lattice of the diamond layer. These impurities may include bismuth, boron, phosphorus, nitrogen, lithium, aluminum, gallium, and the like. In a particular aspect, for example, the diamond layer can be doped with boron. The above impurities may also contain metal particles. These metal particles are incorporated into the crystal lattice in a manner that does not interfere with the semiconductor device, for example, in such a manner as not to impede the light emission of the light-emitting diode. The present invention additionally provides a method of fabricating a light emitting diode device. In one method, the method of the present invention comprises: forming a substantially single crystal silicon carbide layer on a substantially single crystal germanium wafer by epitaxy; forming a germanium layer on the tantalum carbide layer a substantially monocrystalline diamond layer; doping the diamond layer to form a conductive diamond layer; removing the stone wafer to expose a tantalum carbide layer relative to the conductive diamond layer; Forming a plurality of semiconductor layers in an epitaxial manner and causing at least one of the semiconductor layers to contact the carbonized carbide layer; and bonding the -η35 electrode to at least one of the semiconductor layers such that the plurality of semiconductor layers are functionally located in the conductive diamond layer Intersected with the n-type electrode. Various techniques can be used to deposit the diamond layer into the carbonized stone layer in an epitaxial manner. For example, the step of forming the remote crystal diamond layer on the one hand may further include: grading the growth surface of the wafer to make the growth surface gradually change from carbon to carbon to form the carbon a fossil layer; and a gradual process of growing the surface of the tantalum carbide layer, such that the growth surface is gradually changed from carbon stone to diamond to form the diamond layer. In another aspect, the step of forming an epitaxial layer of the monocrystalline niobium carbide further may include: forming an isomorphous amorphous diamond layer on a single crystal silicon wafer to form a single crystal wafer a layer of carbonized stone between the layer of the isomorphous amorphous layer; and removing the layer of the isomorphous amorphous diamond to expose the layer of carbonized stone. After removing the isomorphous amorphous diamond layer, the conductive diamond layer can be formed on the exposed carbonized stone layer. The present invention also provides a light-emitting diode device comprising a conductive diamond substrate, a carbonized # layer bonded to the diamond substrate and substantially being crystalline, and a plurality of epitaxially coupled to the tantalum carbide A semiconductor layer on the layer, and an n-type electrode coupled to at least one of the semiconductor layers such that the 201133945 plurality of semiconductor layers are functionally interposed between the conductive diamond layer and the n-type electrode. The various features of the present invention have been broadly described, so that the following embodiments of the present invention can be more fully understood, and the present invention can be more fully appreciated by the present invention. The scope of the invention will be more apparent from the following description of the invention. [Embodiment] Definitions In describing and claiming the present invention, the following terms will be used in accordance with the definitions set forth below. The singular articles "a", "," For example, reference to "a heat source" includes reference to one or more of such heat sources, and reference to "the diamond layer" includes reference to one or more such diamond layers.

「熱轉移」、「熱運動」以及「熱傳輸」等用詞可相 互交替使用,是用於指出將熱量從—高溫區域轉移到一低 溫區域的速率。熱量轉移速率可包含任何本發明所屬領域 中具有通常知識者已知的熱量傳輸機制,例如而不受限於 傳導性、對流性以及輻射性等等。 ; 文中所使用的「散發(emjtt丨ng)」一詞是指自—固熊 科轉移到空氣的熱或是光轉移製程。 “ 文中所使用的「發光表面一詞是指一&amp; —主工,.^ 疋作戒置或物體的 表面,光自該表面散發。光可包含可見光或者在紫外線 光譜内的光。發光表面的例子可包含而不限制於—&amp; 、 發光二 201133945 極體上的氮化物層,或者一個將與發光二極體結合的半導 體層結構上的氮化物層’光則自該氮化物層發出。 文中所使用的「線性傳導路徑」一詞是指一沿著兩電 極之間的直線的傳導路徑》 文中所使用的「氣相沉積」一詞是指透過使用氣相沉積 技術而形成的材料。氣相沉積製程可包含任何而不受限於化 學氣相沉積(Chemical Vapor Deposition, CVD)以及物理氣 相沉積(Physical Vapor Deposition, PVD)等製程。本發明所 ❿屬技術領域具有通常知識者可廣泛地實施各個氣相沉積方 法的各種不同態樣。氣相沉積方法的例子包含熱燈絲化學氣 相沉積、RF化學氣相沉積、雷射化學氣相沉積、雷射脫落 (Laser Ablation)、同構形鑽石塗佈製程(c〇nf〇「ma丨 Diamond Coating Processes)、有機金屬化學氣相沉積 (Metal-Organic CVD, M0CVD)、濺鍍 '熱蒸發物理氣相沉 積、電離金屬物理氣相沉積(丨onjZed Metal PVD, IMPVD)、 電子束物理氣相沉積(Electron Beam PVD, EBPVD)、以及 •反應性物理氣相沉積等方法等等。 文中所使用的「化學氣相沉積」或是r CVD」等用詞是 指任透過化學方式將蒸氣中的鑽石顆粒沉積於一表面上的 方法。此領域中有多種已知的化學氣相沉積技術。 文中所使用的「物理氣相沉積」或是「ρν〇」等用詞是 指任透過物理方式將蒸氣中的鑽石顆粒沉積於一表面上的 方法。此領域中有多種已知的物理氣相沉積技術。 文中所使用的「鑽石」一詞是指一種碳原子的結晶結 構,該結構中碳原子與碳原子透過四面體配位晶格方式鍵 201133945 'α該四面體配位鍵結即是已知的sp3鍵結。具體而言,各 炭原子又到其他四個碳原子所環繞而鍵結,四個周圍的碳原 子刀別位於正四面體的頂點。此外,在室溫下,任兩碳原子 之間的鍵長為1.54埃’且任兩鍵之間的爽角為1〇9度28 刀16秒,實驗結果有極為小微差異但可忽略。鑽石的結構 與性質’包括其物理與電氣性質,均為本發明所屬技術領域 具有通常知識者所知悉。 文中所使用的「扭曲四面體配位」—詞是指碳原子的四 面體配位鍵結為不規則&amp;,或者偏冑前述鑽石的正常四面體 結構。此種扭曲型態通常導致其中一些鍵長加長而其餘的鍵 長縮短並且使得鍵之間的角度改變。此外,扭曲四面體改 變了碳的特性與性質,使其特性與性質實際上介於以sp3配 位鍵結的碳結構(例如鑽石)與以sp2配位鍵結的碳結構(例 如石墨)之間。其中一個具有以扭曲四面體鍵結的碳原子的 材料便是無晶鑽石。 文中所使用的「類鑽碳」一詞是指一以主碳原子為主要 成分的含碳材料,該含碳材料中的大量碳原子以扭曲四面體 配位鍵結。儘管化學氣相沉積製程或其他製程可用於形成類 鑽碳,類鑽碳亦可透過物理氣相沉積製程而形成。尤其,類 鑽碳材料中可含有各種作為雜質或摻雜物的元素,這些元素 可包含而不受限於氫、硫、磷、硼、氮、矽以及鎢等等。 文中所使用的「無晶鑽石」一詞是指一種類鑽碳,該類 鑽碳主要元素為碳原子,且大多數的碳原子以扭曲四面體配 位鍵結。在一方面,無晶鑽石中的碳原子數量可為佔總量的 至少大約90%,且這些碳原子之中的至少2〇%以扭曲四面 201133945 體配位鍵結。無晶鑽石具有高於鑽石的原子密度(鑽石密度 為176原子/每立方公分(at〇ms/cm3))。此外,無晶鑽石以 及鑽石材料在炫化時體積收縮。 文中所使用的「無支撐力(Adynamic)」一詞是指—種層 結構,該層結構無法獨立維持其結構以及//或是強度。舉例 而言,在缺乏一模具層或一支撐層的情況下,一無支撐力鑽 石層將會在移該除模具面或是鑽石面之後捲曲或是變形。儘 管有許多原因導致一層結構具有無支撐力的性質,在—方 面,導致無支撐力性質的原因在於該層結構非常的薄。 文中所使用的「生長側」以及「生長表面」等用詞可相 互乂替使用,並且是指在一化學氣相沉積製程之中,在一薄 膜或是一層結構上生長的表面。 文中所使用的「基材」一詞是指一種支撐表面,該支撐 表面可連接各種材料以藉此形成一半導體裝置或一鑽石底 =導體裝置。該基材可具有任何能夠達成特定結果的外形、 :度或材料,且包含而不限制於金屬、合金、陶瓷以及其混 合物。此外,在某些方面,該基材可為一現有的半導體裝置 或是晶圓’或者可為一種能夠結合一適當裝置的材料。 文中所使用的「大致上」一詞是指一作用、特徵、性質、 狀結構、物品或結果之完全或近乎完全的範圍或是程 度。舉例而言,一物體「大致上」被包覆,其意指被完全地 包覆,或者被幾乎完全地包H㈣完全程度相差之卻破 可允許偏差程度,係可在某些例子中取決於說明t内文。然 而,-般而t ’接ϋ完全時所得到W結果將如同在絕對且徹 底完全時得到的全部結果-般。當「大致上」被使用於描述 201133945 完全或近乎完全地缺乏-作用、特徵、性f、狀態、結構、 物品或結果時,該使用方式亦是如前述方式而同等地應用 的。舉例而言’-「大致上不包含」顆粒的組成物,係可完 全缺乏顆粒,或是近乎完全缺乏顆粒而到達如同其完全缺乏 顆粒的程度。換言之,只要__「大致上不包含」原料或元件 的組成物不具有可被量測得的效果,該組成物實際上仍可包 含這些原料或是元件。 文中所使用的「大約」是指給予一數值範圍之端點彈 性,所給予的數值可高於該端點少許或是低於該端點少許。 文中所使用的複數物品、結構元件、組成元件以及/或 材料,可以一般列表方式呈現以利方便性。然而,該等列表 應被解釋為.該列表的各成員是被獨立的視為分離且獨特的 成員。因此,基於此列表的成員出現在同一群組中而沒有其 他反面的指示,此列表中的各成員均不應被解釋為與同列表 中的任何其他成員相同的。 濃度、數量、顆粒尺寸、體積以及其他數值資料可以一 範圍形式表達或呈現》應了解的是’此範圍形式僅僅為了方 便與簡潔而使用’因此該範圍形式應該被彈性地解釋為不僅 包含了被清楚描述以作範圍限制的數值,亦包含在該範圍中 的所有獨立數值以及子範圍,猶如清楚地引述各獨立數值以 及子範圍一般。舉例而言,「大約1到大約5」的數值範圍 應被解釋為不僅僅包含所清楚描述的數值範圍,亦應進—步 解釋為包含在該數值範圍中的獨立數值以及子範圍。因此, 此數值範圍内包含諸如2,3,以及4等獨立數值,包含諸如 1_3,2-4以及3-5以及1,2,3,4及5等子範圍。 11 201133945 此相同的法則適用於僅引述單一數值作為下限或是上 限的範圍。此外,此解釋方式適用於任何幅度的範圍以及任 何所述的特性。 本發明 本發明提供了整合有鑽石層的半導體裝置以此半導體 裝置的製造方法《半導體裝置,尤其是會發光的半導體裝置 時常對冷卻技術構成挑戰。應注意的是,儘管下列大部分敘 述專門針對於發光二極體等之發光裝置,但本發明申請專利 • 範圍之範疇不應因此受限制,且這些技術同樣適用於其他類 型之半導體裝置。 由半導體裝置工作產生之大部分熱易於累積在半導電 層内部,因此影響裝置之效率。舉例而言,發光二極體(led) 可由複數個氮化物層配置而成。隨著LED在電子及照明裝 置中變得曰益重要,LED持續發展而對於功率需求持續增 加。功率需求遞增的趨勢已導致這些裝置面臨散熱的問題, 这些裝置典型均具有小尺寸的特性,因此更加劇了散熱的問 ’題’這些裝置由於小尺寸的特型會使具有大體積性質的傳統 鋁製熱鰭片之熱沉無法發揮功效。另外,該些傳統熱沉若位 於LED之發光表面,會阻礙光之發射,若欲使熱沉不干擾 氮化物層或發光表面之功能,其通常必須位於LED與諸如 電路板之支撐結構間的接面處,如此一來,熱沉位置相對遠 離大部分熱量積聚的地方,亦即發光表面及半導體層。 目刖已發現在LED封裝内形成一鑽石層可使led即便 在高功率下亦可做適當地散熱,且能同時維持led小尺寸 封裝。此外,在一方面,藉由一鑽石層對一 LED的半導體 c 201133945 層吸取熱量,可讓該LED超過其最大運作瓦數《〇peratjng Wattage)’以便能讓該LED在一高於LED原本的最大運作 瓦數的運作瓦數下工作。The terms "heat transfer", "thermal motion" and "heat transfer" can be used interchangeably to indicate the rate at which heat is transferred from a high temperature zone to a low temperature zone. The heat transfer rate may comprise any heat transfer mechanism known to those of ordinary skill in the art to which the present invention pertains, such as, without limitation, conductivity, convection, and radiation. The term "emjtt丨ng" as used in the text refers to the heat or light transfer process from the transfer of the solid bear to the air. "The term "lighting surface" as used in this document refers to a &amp; main work, which is the surface of a ring or object from which light can be emitted. Light may contain visible light or light in the ultraviolet spectrum. Examples may include, but are not limited to, a nitride layer on a polar body of the light-emitting diode 201133945, or a nitride layer on a semiconductor layer structure to be bonded to the light-emitting diode, from which light is emitted. The term "linear conduction path" as used herein refers to a conduction path along a straight line between two electrodes. The term "vapor deposition" as used herein refers to a material formed by the use of vapor deposition techniques. The vapor deposition process can include any process that is not limited to Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD). Various aspects of the various vapor deposition methods are widely practiced by those of ordinary skill in the art to which the present invention pertains. Examples of vapor deposition methods include hot filament chemical vapor deposition, RF chemical vapor deposition, laser chemical vapor deposition, laser ablation (Laser Ablation), and isomorphic diamond coating process (c〇nf〇"ma丨Diamond Coating Processes), Metal-Organic CVD (M0CVD), Sputtering 'Thermal Evaporation Physical Vapor Deposition, Ionized Metal Physical Vapor Deposition (丨onjZed Metal PVD, IMPVD), Electron Beam Physical Vapor Sedimentation (Electron Beam PVD, EBPVD), and reactive physical vapor deposition, etc. The terms "chemical vapor deposition" or "r CVD" used in the text refer to any chemical vapor in the vapor. A method of depositing diamond particles on a surface. There are many known chemical vapor deposition techniques in this field. The terms "physical vapor deposition" or "ρν〇" as used herein refer to a method of physically depositing diamond particles in a vapor onto a surface. There are many known physical vapor deposition techniques in this field. The term "diamond" as used herein refers to a crystalline structure of carbon atoms in which a carbon atom and a carbon atom pass through a tetrahedral coordination lattice mode bond 201133945 'α. The tetrahedral coordination bond is known. Sp3 key knot. Specifically, each carbon atom is bonded to the other four carbon atoms, and the four surrounding carbon atomic cutters are located at the apex of the regular tetrahedron. Further, at room temperature, the bond length between any two carbon atoms was 1.54 Å and the refresh angle between any two bonds was 1 〇 9 degrees 28 knives for 16 seconds, and the experimental results were extremely small but negligible. The structure and nature of the diamond 'including its physical and electrical properties are known to those of ordinary skill in the art to which the invention pertains. The term "distorted tetrahedral coordination" as used herein means that the tetrahedral coordination bond of a carbon atom is irregular &amp; or the normal tetrahedral structure of the aforementioned diamond. Such a twisted pattern typically results in some of the bond lengths being lengthened while the remaining bond lengths are shortened and the angle between the keys is changed. In addition, the twisted tetrahedron changes the properties and properties of carbon, so that its properties and properties are actually between the carbon structure (eg, diamond) coordinated by sp3 and the carbon structure (eg, graphite) coordinated by sp2. between. One of the materials with a twisted tetrahedral carbon atom is an amorphous diamond. The term "diamond-like carbon" as used herein refers to a carbonaceous material having a main carbon atom as a main component, and a large number of carbon atoms in the carbonaceous material are coordinately bonded by a twisted tetrahedron. Although chemical vapor deposition processes or other processes can be used to form diamond-like carbon, diamond-like carbon can also be formed by physical vapor deposition processes. In particular, the diamond-like carbon material may contain various elements as impurities or dopants, and these elements may include, without limitation, hydrogen, sulfur, phosphorus, boron, nitrogen, ruthenium, tungsten, and the like. The term "amorphous diamond" as used herein refers to a diamond-like carbon whose main element is a carbon atom and most of which are coordinated by a twisted tetrahedron. In one aspect, the number of carbon atoms in the amorphous diamond can be at least about 90% of the total, and at least 2% of the carbon atoms are twisted to the four-sided 201133945 bulk coordination bond. Amorphous diamonds have a higher atomic density than diamonds (diamond density is 176 atoms per cubic centimeter (at 〇ms/cm3)). In addition, amorphous diamonds and diamond materials shrink in volume during glazing. The term "Adynamic" as used herein refers to a layer structure that does not independently maintain its structure and/or strength. For example, in the absence of a mold layer or a support layer, an unsupported diamond layer will curl or deform after moving the mold surface or the diamond surface. Although there are many reasons for the unsupported nature of a layer structure, the reason for the unsupported nature in the area is that the layer structure is very thin. The terms "growth side" and "growth surface" as used herein may be used interchangeably and refer to a surface grown on a thin film or a layer of a chemical vapor deposition process. As used herein, the term "substrate" refers to a support surface that can be joined to a variety of materials to thereby form a semiconductor device or a diamond bottom = conductor device. The substrate can have any shape, degree or material that achieves a particular result, and is encompassed without limitation to metals, alloys, ceramics, and mixtures thereof. Moreover, in some aspects, the substrate can be a conventional semiconductor device or wafer&apos; or can be a material that can be combined with a suitable device. The term "substantially" as used herein refers to the complete or near-complete extent or extent of an action, feature, property, structure, item, or result. For example, an object is "substantially" enveloped, meaning that it is completely covered, or is almost completely wrapped. H(4) is completely different in degree of deviation, which may be determined in some cases. Explain the t text. However, the result obtained by the general and t's is completely the same as that obtained when it is absolutely and completely complete. When "substantially" is used to describe 201133945 completely or nearly completely lacking - action, feature, sex f, state, structure, article or result, the mode of use is equally applied as described above. For example, the composition of the particles - "substantially not containing" may be completely devoid of particles, or nearly completely devoid of particles to the extent that they are completely devoid of particles. In other words, as long as the composition of the raw material or component does not have a measurable effect, the composition may actually contain these materials or components. As used herein, "about" refers to the endpoint elasticity imparted to a range of values, which can be given a value that is a little above the endpoint or a little below the endpoint. The plural articles, structural elements, constituent elements and/or materials used herein may be presented in a general list for convenience. However, such lists should be interpreted as. The members of the list are considered separate and distinct members. Therefore, based on the fact that members of this list appear in the same group without other negatives, each member of this list should not be interpreted as being the same as any other member in the same list. Concentration, quantity, particle size, volume, and other numerical data may be expressed or presented in a range. It should be understood that 'this range of forms is used only for convenience and simplicity'. Therefore, the range form should be flexibly interpreted to include not only The numerical values are intended to be limited by the scope of the invention, and all the individual values and sub-ranges in the range are included as if the individual values and sub-ranges are clearly recited. For example, a range of values from "about 1 to about 5" is to be construed as not limited to the range of values that are clearly described, and should be interpreted as an independent value and sub-range in the range. Therefore, this numerical range includes independent values such as 2, 3, and 4, including sub-ranges such as 1_3, 2-4, and 3-5, and 1, 2, 3, 4, and 5. 11 201133945 This same rule applies to a range that only quotes a single value as a lower or upper limit. Moreover, this explanation applies to any range of amplitudes and any of the described characteristics. The present invention provides a semiconductor device incorporating a diamond layer. The semiconductor device, particularly a semiconductor device that emits light, often poses a challenge to the cooling technology. It should be noted that although most of the following descriptions are directed to light-emitting devices such as light-emitting diodes, the scope of the scope of the present invention should not be limited thereby, and the techniques are equally applicable to other types of semiconductor devices. Most of the heat generated by the operation of the semiconductor device tends to accumulate inside the semiconducting layer, thus affecting the efficiency of the device. For example, a light emitting diode (LED) may be configured by a plurality of nitride layers. As LEDs become more important in electronics and lighting fixtures, LEDs continue to evolve and power demand continues to increase. The trend of increasing power demand has led to the problem of heat dissipation in these devices, which typically have small size characteristics, thus further exacerbating the problem of heat dissipation. These devices will have a large-volume nature due to the small size of the device. The heat sink of aluminum fins does not work. In addition, if the conventional heat sink is located on the light emitting surface of the LED, it will hinder the emission of light. If the heat sink does not interfere with the function of the nitride layer or the light emitting surface, it usually must be located between the LED and the supporting structure such as the circuit board. At the junction, the heat sink is located relatively far away from where most of the heat accumulates, namely the light emitting surface and the semiconductor layer. It has been found that the formation of a diamond layer in the LED package allows the LED to properly dissipate heat even at high power and maintain a small package of LEDs at the same time. In addition, on the one hand, the heat of the semiconductor c 201133945 layer of an LED by a diamond layer allows the LED to exceed its maximum operating wattage "〇peratjng Wattage" so that the LED can be higher than the original LED. The maximum operating wattage is operated under wattage.

此外,在發光之半導體裝置與不發光之半導體裝置中, 由於通常構成半導體層之材料相對不具有良好之導熱性,故 會將熱量滯留在這些半導體層内。此外,再加上半導體層與 鑽石層之間的晶格不匹配,會減緩熱傳導,因此更增加熱量 的積累。半導體裝置現在已發展為整合了複數鑽石層來增進 半導體裝置的散熱性質以及其他性質。這些鑽石層增加了曰橫 向穿越半導體裝置的熱量流動速率,因此減少了滞留在半^ 體層内的熱量。這些橫向的熱傳輸可有效地增進許多半 裝置㈣料㈣。此外,根據本發明某些方面,半導 置可增進晶格匹配,藉此進-步增進半導體裝置的熱傳導 性。此外’應注意的是’鑽石層所提供的有益特性不僅僅在 於散熱上,《特性的範嘴不應僅限制於散孰上。 若鑽石層可整合於—半龍裝置内且#、 該半導體層可達成更有效的内部散熱。其中一個整合的層二 在於鑽石材料的高介電特性’尤其那些 構的鑽石材料。若該鑽石層是在該半導體裝置Li;: : 中,則可達到適當的冷卻條件,然而,由於鑽1導路仅之 導致難以達成前述結構。目前已發現料性鑽石特性’ 裝置的傳導路徑之中。層上,且因此位於該半導體 體裝 此外,透過使用一傳 置可被建構為具有穿 導性鑽石層作為—電極 過介於兩電極間的半 ,發光二極 導體層的線 13 201133945 吐傳導路&amp;。許多傳統的發光二極體裝置被建構為令來自门 型電極的傳導路徑與來自ρ型電極的傳導路徑呈直角。此種 「L形」的傳導路徑導致電子以及電洞彼此呈直角狀態,因 此減少了半導體裝置的效率。根據本發明某些方面,該線性 傳導路I使得電子與電洞被配置為沿著相同的線性路徑,因 此可增進發光二極體裝置的效率。 因此,在本發明一方面,提供一發光二極體裝置。如圖 1所示,此一發光二極體裝置可包含一傳導性鑽石層12、一 耦合到該傳導性鑽石層12的碳化矽層或是氮化鋁層14、複 數半導體層16’其中至少一半導體層16耦合到該碳化矽層 或疋氮化鋁層14、以及一耦合到其中至少一半導體層16的 η型電極18。在此裝置中,該傳導性鑽石層12在功能上作 為一 Ρ型電極。 如圖2所示,在本發明另一方面,可耦合一支撐基材 20到該半導體裝置上已為了處理與使用上的便利性。可在 該傳導性鑽石層12與該支撐基材2〇之間形成一反射層24 以將光線反射穿過該傳導性鑽石層12來增進該發光二極體 裝置的效率。可由各種本案所屬技術領域具有通常知識者已 知的反射材料來形成此一反射層24。其中一個反射材料的 例子可為鉻金屬或是其他反射材料。 圖3顯示了一半導體基材的建構方法的部分步驟,在本 發明特定方面’該半導體基材可被用於形成一發光二極體裝 置。該方法提供一單晶矽生長基材34,可在該基材上設置 其他材料。雖然該石夕生長基材34不一定必須是單晶結構, 相對於非單晶的基材,此單晶晶格結構可有助於其他具有較 201133945 少晶格匹配的材料沉積於該矽生長基材34上。在沉積製程 之前,完整清潔該矽生長基材以便自該晶圓上移除任何可能 造成秒生長基材與形成在基材上的其他層結構之間晶格不 匹配的非晶矽或是非矽顆粒是有益的。可在本發明範疇内考 畺任何能夠清理該矽生長基材的方法,然而在本發明—方 面,該矽生長基材可浸泡在氫氧化鉀之中並且以蒸餾水進行 超音波清洗。 在清潔該矽生長基材34之後,可在該矽生長基材34 上形成有一單晶碳化矽磊晶層32以及磊晶鑽石層36 ,使 得該單晶碳化矽層32位於該矽生長基材34與鑽石層36之 間。該碳化矽層32可以分離方式形成在該鑽石層36上,或 者可為在該鑽石層36沉積的結果或是與其沉積物連接。舉 例而言,該碳化矽層32可為一由矽到鑽石的漸變製程 (Gradation Process)的結果,如下所述。此外,可在該矽生 長基材34沉積一無晶鑽石層以透過有機體内生長方式(【η Vivo)創造該碳化矽層32,亦如下所述。 接著’可在該鑽石層36上形成一矽層38。該矽層38 增進了矽承載基材42與該鑽石層36結合的強度,該矽承載 基材42具有一二氧化矽(Si〇2)層4〇以結合到該矽層38 上。圓該矽承載基材42結合到該矽層38上的晶圓結合製程 之後,可移除該矽生長基材34以露出該碳化矽層32。如前 所述,該碳化矽層32可被用作為一生長表面以便在其上沉 積半導體材料。在一方面,在LED層形成在該碳化矽層32 之後,該可疑除矽承載基材42以及該矽層38以便露出該傳 導性鑽石層。接著可將一支撐基材以及/或是反射層設置在 15 201133945 該鑽石層上,如文中所述。 此外’針對前述内容,在本發明某些實施例之中,可以 氮化銘取代該碳化矽層32而將氮化鋁設置在該石夕層38與該 鑽石層36之間。在此實施例中,可用鑽石(亦即碳)或是 矽來漸變為一氮化鋁層。可運用的漸變技術的其中一個例子 示原子層沉積(Atomic Layer Deposition, ALD)。使用此技 術,改變材料濃度的多層結構可由起始材料漸變(層漸變)為 最終材料。舉例而言,矽層為起始層,可令一部份的氮化鋁 與矽共同沉積,接著在一接續層中,兩部份的氮化鋁可共同 與矽沉積,如此類推,直到產生一具有大致均等分布有矽與 氮化鋁的層結構。此一漸變製程產生一超級晶格。此技術可 進一步被用於由鑽石轉變到氮化鋁的製程之中。其他半導體 材料諸如氮化鎵等等,可接著加入到該氮化鋁之中。在一方 面,該氮化鋁可為無晶且針對其他氮材料作為—緩衝層。 鑽石材料具有優異的熱傳導特性,使得鑽石材料成為整 合於諸如LED等半導體裝置之中的理想材料。在半導體材 料中由半導體材料轉移到鑽石材料的熱轉移速率可因此加 速。應注意的是,本發明並非被缝於特定的熱傳輸理論之 ::就其本身而言,在本發明-方面,可至少_部分透:將 轉SI進入以及通過一鑽石層來加速自半導體裝置内部 ^多熱量的m於鑽石優異的熱傳導性質,熱量可 地橫向傳播通過鑽石層以及到達—半導體裝置的 '甚 緣的熱量可更快速的排散到空氣之t或者田 熱器或者半導體裝置的支撐架等結構之中。此:::圍的, 分面積暴露於线之中㈣石㈣會更快速地排 201133945 有此鑽石層的裝置的熱量。由於鑽石的熱傳導性大於一與該 鑽石層熱耦合的半導體層或其他結構的熱傳導性,因此該鑽 石層成為一熱沉。因此,該鑽石層吸取了該半導體層内所產 、&lt;、、、量,並且這些熱里以橫向方式傳播並排散於該半導體 裝置之外。此種加速熱轉移速率的方式可導致半導體裝置具 有更低的運作溫度。此外,熱轉移速率的加速不僅僅冷卻一 半導體震置,更會降低在空間上位於該半導體裝置附近的許 多電子元件的熱負載。 在本發明某些方面,可將鑽石層的一部分暴露於空氣之 中此種暴露的狀態可限制在某些例子中限制在只暴露鑽石 層的邊緣;或者可暴露該鑽石比例的表面積,例如暴露 鑽石層的其中一側。在此方面中,至少一部分透過將熱量自 鐵石層轉㈣线中时式,τ達成半導體裝置的熱量移除 速率的加速效果。舉例而言,鑽石材料,例如類鑽碳 (D丨amond-like Carbon, DLC)等,即便在低於 100。C 的溫 度,亦具有優異的熱發射率特性,因此鑽石材料能直接輻射 熱量到空氣中。含半導體裝置在内的多數其他材料的導熱性 優於熱輕射性。因此,半導體裝置可傳導熱量到類鑽碳層, 將熱里在類鑽碳層中橫向傳播,且接著沿著類鑽碳層的邊緣 或疋其他外露的表面將熱量輻射到空氣之中。由於類鑽碳的 网導熱性以及高熱輻射性,由類鑽碳轉移到空氣中的熱量轉 移速率可大於由半導體裝置轉移到空氣中的熱量轉移速 率°此外’由半導體裝置到類鑽碳層的熱量轉移速率可大於 由半導體裝置到空氣的熱量轉移速率。因此,類鑽碳層可用 做加速自該半導體層移除熱量的速率,使得透過類鑽碳層的 17 201133945 熱量轉移速率高於半導體本身的熱量轉移速率或者高於由 半導體到空氣中的熱量轉移速率β 如上所建議的,可使用各種鑽石材料來對一半導體裝置 提供熱量轉移速率的加速特性。這類鑽石材料的例子可包含 而不受限於鑽石、類鑽碳、無晶鑽石以及其結合等等。應注 意的是,任何可用於對一半導體裝置散熱的天然或人造鑽石 材料均在本發明範疇之内。 應注意的是,下列敘述是關於鑽石沉積技術相當普遍性 的4 ,這些鑽石沉積技術可以或是未必會使用於特定鑽石 層或應用,且這些鑽石沉積技術可廣泛的介於本發明的各種 不同方面。一般而言,可用各種已知方法來形成鑽石,這些 方法包含各種氣相沉積技術。可使用任何已知的氣相沉積技 術來形成鑽石層。儘管可使用與氣相沉積法特性與產物相近 的任何方法來形成鑽石,最常見的氣相沉積技術包含化學氣 相/儿積以及物理氣相沉積。在一方面,可使用化學氣相沉積 技術,例如熱燈絲、微波電漿、氫氧焰(〇xyacety丨 Flame)、RF化學氣相沉積、雷射化學氣相沉積、雷射脫落、 同構形鑽石塗佈製程(conforma丨Diam〇nd c〇atjngFurther, in the semiconductor device which emits light and the semiconductor device which does not emit light, since the material constituting the semiconductor layer generally does not have good thermal conductivity, heat is retained in these semiconductor layers. In addition, the addition of a lattice mismatch between the semiconductor layer and the diamond layer slows heat transfer and therefore increases heat build-up. Semiconductor devices have now evolved to integrate multiple diamond layers to enhance the heat dissipation properties and other properties of semiconductor devices. These diamond layers increase the rate of heat flow across the semiconductor device, thereby reducing the amount of heat trapped within the semiconductor layer. These lateral heat transfers are effective in enhancing many of the four (4) materials (4). Moreover, in accordance with certain aspects of the present invention, the semi-conducting can enhance lattice matching, thereby further enhancing the thermal conductivity of the semiconductor device. In addition, it should be noted that the beneficial properties provided by the diamond layer are not limited to heat dissipation. The characteristics of the mouth should not be limited to the divergence. If the diamond layer can be integrated into the semi-dragon device and #, the semiconductor layer can achieve more efficient internal heat dissipation. One of the integrated layers is the high dielectric properties of diamond materials, especially those of diamond materials. If the diamond layer is in the semiconductor device Li;: :, appropriate cooling conditions can be attained, however, it is difficult to achieve the foregoing structure due to the drill 1 lead. It has now been found that the properties of the material diamonds are among the conduction paths of the device. The layer, and thus the semiconductor body, can be constructed by having a pass-through diamond layer as the electrode-passing half between the electrodes, the line of the light-emitting diode layer 13 201133945 Road &amp; Many conventional light-emitting diode devices are constructed such that the conduction path from the gate electrode is at a right angle to the conduction path from the p-type electrode. Such an "L-shaped" conduction path causes electrons and holes to be at right angles to each other, thereby reducing the efficiency of the semiconductor device. In accordance with certain aspects of the present invention, the linear conduction path I allows electrons and holes to be arranged along the same linear path, thereby enhancing the efficiency of the light emitting diode device. Accordingly, in one aspect of the invention, a light emitting diode device is provided. As shown in FIG. 1, the LED device can include a conductive diamond layer 12, a tantalum carbide layer or an aluminum nitride layer 14 coupled to the conductive diamond layer 12, and at least a plurality of semiconductor layers 16'. A semiconductor layer 16 is coupled to the tantalum carbide layer or tantalum aluminum nitride layer 14, and an n-type electrode 18 coupled to at least one of the semiconductor layers 16. In this device, the conductive diamond layer 12 functions as a Ρ-type electrode. As shown in Fig. 2, in another aspect of the invention, a support substrate 20 can be coupled to the semiconductor device for ease of handling and use. A reflective layer 24 can be formed between the conductive diamond layer 12 and the support substrate 2A to reflect light through the conductive diamond layer 12 to enhance the efficiency of the light-emitting diode device. This reflective layer 24 can be formed from a variety of reflective materials known to those of ordinary skill in the art to which the present invention pertains. An example of one of the reflective materials may be chrome metal or other reflective material. Figure 3 shows a partial step of a method of constructing a semiconductor substrate that can be used to form a light emitting diode device in a particular aspect of the invention. The method provides a single crystal germanium growth substrate 34 on which other materials can be disposed. Although the growth substrate 34 does not necessarily have to be a single crystal structure, the single crystal lattice structure can contribute to deposition of other materials having less lattice matching than 201133945 on the non-single substrate. On the substrate 34. Prior to the deposition process, the crucible growth substrate is completely cleaned to remove any amorphous or non-矽 that may cause a lattice mismatch between the second growth substrate and other layer structures formed on the substrate from the wafer. Particles are beneficial. Any method capable of cleaning the growth substrate of the crucible can be considered within the scope of the present invention, however, in the present invention, the crucible growth substrate can be immersed in potassium hydroxide and ultrasonically cleaned with distilled water. After cleaning the crucible growth substrate 34, a monocrystalline niobium carbide epitaxial layer 32 and an epitaxial diamond layer 36 may be formed on the crucible growth substrate 34 such that the monocrystalline niobium carbide layer 32 is located on the crucible growth substrate. 34 is between the diamond layer 36. The tantalum carbide layer 32 may be formed on the diamond layer 36 in a separate manner, or may be deposited as a result of deposition on the diamond layer 36 or attached to its deposit. For example, the tantalum carbide layer 32 can be a result of a Gradation Process from tantalum to diamond, as described below. Further, an amorphous diamond layer may be deposited on the growth substrate 34 to create the tantalum carbide layer 32 by an in-vivo growth mode ([η Vivo), as also described below. A layer 38 of tantalum 38 can then be formed on the diamond layer 36. The ruthenium layer 38 enhances the bond strength of the ruthenium carrying substrate 42 to the diamond layer 36 having a layer of ruthenium dioxide (Si 〇 2) 4 结合 for bonding to the ruthenium layer 38. After the wafer bonding process of the germanium carrier substrate 42 is bonded to the germanium layer 38, the germanium growth substrate 34 can be removed to expose the tantalum carbide layer 32. As described above, the tantalum carbide layer 32 can be used as a growth surface to deposit a semiconductor material thereon. In one aspect, after the LED layer is formed on the tantalum carbide layer 32, the suspected germanium carrier substrate 42 and the tantalum layer 38 are exposed to expose the conductive diamond layer. A support substrate and/or a reflective layer can then be placed over the diamond layer of 15 201133945, as described herein. Further, in view of the foregoing, in some embodiments of the present invention, the tantalum carbide layer 32 may be replaced by a nitride to form aluminum nitride between the austenite layer 38 and the diamond layer 36. In this embodiment, diamond (i.e., carbon) or ruthenium may be used to gradualize into an aluminum nitride layer. One example of a gradient technique that can be used is Atomic Layer Deposition (ALD). Using this technique, the multilayer structure that changes the material concentration can be graded (layer graded) from the starting material into the final material. For example, the germanium layer is the starting layer, which allows a portion of the aluminum nitride to be deposited together with the germanium. Then, in a continuous layer, the two portions of aluminum nitride can be deposited together with the germanium, and so on, until A layer structure having substantially uniform distribution of tantalum and aluminum nitride. This gradual process produces a superlattice. This technique can be further used in processes from diamond to aluminum nitride. Other semiconductor materials such as gallium nitride and the like can be subsequently added to the aluminum nitride. In one aspect, the aluminum nitride can be amorphous and act as a buffer layer for other nitrogen materials. Diamond materials have excellent thermal conductivity, making diamond materials an ideal material for integration into semiconductor devices such as LEDs. The rate of heat transfer from the semiconductor material to the diamond material in the semiconductor material can therefore be accelerated. It should be noted that the present invention is not sewn to the specific heat transfer theory: in its own right, in the aspect of the invention, it can be at least partially transparent: the transfer of SI into and through a diamond layer is accelerated from the semiconductor The heat inside the device is superior to the excellent thermal conductivity of the diamond. The heat can be transmitted laterally through the diamond layer and the heat of the 'semiconductor device' can be dissipated more quickly to the air or the field heater or semiconductor device. The support frame and other structures. This::: surrounding, the sub-area exposed to the line (four) stone (four) will be more quickly discharged 201133945 The heat of the device with this diamond layer. Since the thermal conductivity of the diamond is greater than the thermal conductivity of a semiconductor layer or other structure thermally coupled to the diamond layer, the diamond layer becomes a heat sink. Therefore, the diamond layer absorbs the &lt;,, and amount produced in the semiconductor layer, and the heat is propagated laterally and dispersed outside the semiconductor device. This manner of accelerating the rate of thermal transfer can result in semiconductor devices having lower operating temperatures. In addition, the acceleration of the thermal transfer rate not only cools a semiconductor episode, but also reduces the thermal load of many electronic components that are spatially located near the semiconductor device. In certain aspects of the invention, a portion of the diamond layer may be exposed to air. Such exposure may be limited to limiting the edge of only the diamond layer in some instances; or may expose the surface area of the diamond, such as exposure One side of the diamond layer. In this aspect, at least a portion of the τ achieves an acceleration effect of the heat removal rate of the semiconductor device by transferring heat from the iron layer to the (four) line. For example, diamond materials, such as D丨amond-like Carbon (DLC), are even below 100. The temperature of C also has excellent thermal emissivity characteristics, so the diamond material can directly radiate heat into the air. Most other materials, including semiconductor devices, have better thermal conductivity than thermal light. Thus, the semiconductor device can conduct heat to the diamond-like carbon layer, laterally propagate the heat in the diamond-like carbon layer, and then radiate heat into the air along the edges of the diamond-like carbon layer or other exposed surfaces. Due to the thermal conductivity of the diamond-like carbon network and the high heat radiation, the rate of heat transfer from the diamond-like carbon to the air can be greater than the rate of heat transfer from the semiconductor device to the air. In addition, from the semiconductor device to the diamond-like carbon layer. The rate of heat transfer can be greater than the rate of heat transfer from the semiconductor device to the air. Therefore, the diamond-like carbon layer can be used to accelerate the rate of heat removal from the semiconductor layer, so that the heat transfer rate of the 17 201133945 through the diamond-like carbon layer is higher than the heat transfer rate of the semiconductor itself or higher than the heat transfer from the semiconductor to the air. Rate β As suggested above, various diamond materials can be used to provide an accelerated characteristic of the heat transfer rate to a semiconductor device. Examples of such diamond materials may include, without limitation, diamonds, diamond-like carbons, amorphous diamonds, combinations thereof, and the like. It should be noted that any natural or synthetic diamond material that can be used to dissipate heat from a semiconductor device is within the scope of the present invention. It should be noted that the following description is about the relatively common nature of diamond deposition techniques. These diamond deposition techniques may or may not be used for a particular diamond layer or application, and these diamond deposition techniques may vary widely across the present invention. aspect. In general, diamonds can be formed by a variety of known methods, including various vapor deposition techniques. Any known vapor deposition technique can be used to form the diamond layer. Although diamonds can be formed using any method similar to that of vapor deposition, the most common vapor deposition techniques include chemical gas phase/integration and physical vapor deposition. In one aspect, chemical vapor deposition techniques can be used, such as hot filament, microwave plasma, oxyhydrogen flame (French), RF chemical vapor deposition, laser chemical vapor deposition, laser shedding, isomorphism Diamond coating process (conforma丨Diam〇nd c〇atjng

Processes)、有機金屬化學氣相沉積(Meta| 〇rganjc cVD, ΜOCVD)以及直流電弧技術等技術。典型的化學沉積技術使 用氣態反應物來將鑽石或是類鑽碳材料沉積為一層結構或 一膜結構。前述氣體可包含少量(大約少於5% )的含碳材 料,例如以氫氣稀釋的甲炫^本發明所屬技術領域具有通常 知識者知悉各種化學氣相沉積製程的設備與條件,亦知悉特 別適用於氮化硼層的製程。在另一方面,可使用物理氣相沉 18 201133945 積技術’.例如濺鍍、陰極電弧以及熱蒸發等等。此外,可使 用特定的沉積條件以調整類鑽碳、無晶鑽石或者是純鑽石等 所沉積材料的確切型態。應注意的是,高溫會降低諸如發光 二極體等許多半導體裝置的品質。必須小心翼翼以便能確保 鑽石以低溫方式沉積’藉此避免鑽石於沉積時損壞的問題。 舉例而言’若半導體包含有氮化銦,可使用最多到6〇〇。〇 的沉積溫度。在氮化鎵的例子中,最多到大約1000均 能保持層結構的熱穩定性。此外,可以不過度干涉鑽石層的 春熱轉移或半導體裝置發光表面的方法,透過硬焊(Braze)、 膠合或是貼合等方式將預先形成的複數層結構固定於半導 體層或是半導體層的支樓基材上。 可在一基材的生長表面上形成一選用的成核 (Nucleation)加強層以增進鑽石層的沉積品質以及減少沉積 時間。特別是,可以透過沉積適用的晶核的方式來形成一鑽 石層’例如,在一基材的一鑽石生長表面上沉積一鑽石晶 核’接著透過氣相沉積技術令該晶核生長成一薄膜或層結 _ 構。在本發明一方面,在該基材上可塗佈一薄狀的成核加強 層以增強鑽石層的生長。接著將鑽石晶核置放在該成核加強 層上’且透過化學氣相沉積來進行鑽石層的生長製程。 本發明所屬技術領域具有通常知識者可知曉各種可作 為成核加強材料的適用材料。在本發明一方面,該成核加強 材料可為一選自金屬、金屬合金、金屬化合物、碳化物、碳 化物形成元素(Carbide Former)以及其結合。碳化物形成材 料的例子可為鎢(W)、组(IA)、鈦(Ti)、鉻(Z「)、鉻(Cr)、鉬 (Mo)、矽以及錳(Μη) »此外,碳化物的例子可包含碳化鎢 .201133945 (wc)、碳化梦、碳化鈦(TIC)、碳化鍅(z「c)以及其結合。 當使用時,該成核加強層為—足夠薄的層結構以致於其 不會不利地影響該鑽石層的熱傳導性。在本發明一方面,該 成核加強層的厚度可小於大、約(M微米⑽)。在本發明另〆 -方面’該厚度可至少小於大約1G奈米㈣。在本發明又 -方面’該成核加強層的厚度可小於大約5奈米。在本發明 另一方面,該成核加強層的厚度可少於大約3奈米。 可使用各種方法來增加在透過氣相沉積技術所形成的 鐵石層的成核表面的鑽石品質。舉例而言,可在鑽石沉積的 較早階段時,減少甲烷流量並且增加總氣體壓力來增進鑽石 顆粒的品質。這樣的措施能減少碳的分解率,並且能增加氫 原子濃度。因此’將會使非常高比例的碳以sp3鍵結配置狀 態沉積,且能增進所形成的鑽石晶核的品質。此外,可增加 鑽石顆粒的成核率以便減少鑽石顆粒之間的空隙。增加鑽石 顆粒成核率的方法可包含而不限制於下列例子:對該生長表 面提供一適量的負偏壓,通常大約是1〇〇伏特;以精細鑽石 膠或是鑽石粉末對該生長表面進行拋光,該精細鑽石膠或粉 末可部分留存於該生長表面;以及透過物理氣相沉積或是電 漿輔助式化學氣相沉積(PECVD)的製程來植入如碳、矽、 鉻錳、鈦、釩、錯、鎢、鉬、钽、以及類似的離子,來控 制生長表面的成分。物理氣相沉積製程的實施溫度一般低於 化學氣相沉積製程的溫度,且在某些例子中可低於大約2〇〇 C(大約150 C)。其他增進鑽石成核的方法對於本案所屬 技術領域具有通常知識者是顯而易見的。 在本發明一方面’該鑽石層可為一同構形鑽石層 20 201133945 (conformal diamond丨ayer)的型態。可透過廣泛的各種基 材,例如包括非平面基材’來實施同構形鑽石塗佈製程。同 構形鑽石塗佈製程相較於傳統的鑽石薄膜製程能具有許多 優點。同構形鑽石塗佈置成可用於相當多種之基材上,包括 非平面之基材。可透過不利用偏壓的鑽石生長條件來預先處 理於生長表面形成一碳膜。鑽石生長條件可為傳統適用鑽石 的化學氣相沉積條件並且不使用偏壓。因此,所形成的碳薄 膜大多小於100埃的厚度。預先處理步驟可在大約2〇〇 „c 到大約900 c的生長溫度,而較佳的低溫在大約5〇〇。c 以下。無須任何特殊理論,碳薄膜在如少於一小時的短時間 内形成,且該碳薄膜為一種氫端(Hydr〇gen_terminated)無晶 碳。 在形成該薄碳膜之後,該生長表面可接著在鑽石生長條 件下形成一同構型鑽石層。該鑽石生長條件可為通常使用傳 統化學氣相沉積式鑽石生長方式的條件。然而,不同於傳統 鑽石膜生長,由上述預先處理步驟所產生的鑽石膜是一種同 構形鑽石膜。此外,鑽石膜一般無須醞釀期即在大致整個基 材上開始生長。再者,可生長到在大約8〇nm以内厚度的大 致上為連續性而無晶界的鑽石膜。大致上無晶界的鑽石層相 較有晶界的鎖石層可更有效地進行散熱。 可使用各種技術來令一鑽石層具有傳導性。本發明所屬 技術領域具有通常知識者能知悉這些技術。舉例而言,可摻 入各種雜質到該鑽石層的晶格之令。這些雜質可包含矽、 硼、磷、氮、鋰、鋁、鎵等等。在一特定方面,舉例而言, 該鑽石層可摻有硼。上述雜質亦可包含金屬顆粒,這些金屬 21 201133945 顆粒以不干涉該半導體裝置的方式摻入晶 、&quot;丁 , 1 歹 *J 士〇 Π 尤 阻礙發光二極體發光的方式摻入。 乂不 對於某些鑽石層,特別是那些即將形成有半導體層的鑽 石層’創造-個生長基材而令該半導體材料可以最少的晶格 差排結構(例如大致上為單晶體的結構)形成於該生長:材 上是有㈣。大致上為單晶體結構的生長表面與半導體二料 之間有強大的鍵結效應,因此利用大致上為單晶體結構的生 長表面可促進將晶格差排的情形降到最。在纟發明一方 面’此種基材包含-大致上為單晶體結構的鑽石層,在該鑽 石層上麵合有-大致上為單晶體結構的碳化石夕層。該碳㈣ 大致上為單晶體結構的特性有利於一例如氮化鎵或是氮化 紹等半導體大致上沉積為—單晶體。此外,由該鑽石層到該 碳化碎層以及由該·層到該半導體層的蟲晶關係、,增加了 鑽石層的熱傳導性’因此增進了半導體裝置的散熱性。 可使用各種可能的方法來建造此種鑽石/碳化矽合成 _基材。任何這類方法均被視為是屬於本發明範疇之内。舉例 而言,在一方面可透過將一單晶矽晶圓逐漸變化為一單晶鑽 石層的方式來創$-基材。換言之,該石夕晶圓能由石夕逐漸的 轉化為碳化矽並接著逐漸轉化為鑽石。漸變製程的技術在申 請人同在美國專利局内審查的美國第11/8〇9 8〇6號發明專 利申請案中作進一步討論,該案整合於本文中以作參考》其 他在一材料上生長另一材料,或是將兩材料相互結合的方 法’均s己載於申請人同在審查的美國第11/809,718號、第 11/809,721 號、第 61/187,557 號、第 61/230,055 號以及第 61/259,948號發明專利申請案’這些案件亦整合於本文中以 22 201133945 作為參考。除了上述對晶格差排最小化的優點,大致上為單 晶體的鑽石層可為透明而透光,以利建構一發光半導體穿 置,例如發光二極體以及雷射二極體。 在增厚鑽石層或是設置一支撐基材到該鑽石層上之 後,可透過任何本發明所屬技術領域具有通常知識者已知的 各種方法來移除該矽晶圓。最後產出的結構則包括一大致上 為單晶體結構的鑽石層,在該鑽石層上以磊晶方式耦合一有 大致上為單晶體結構的碳化矽層.接著使用任何本發明所屬 技術領域具有通常知識者已知的方法,以磊晶方式在該碳化 矽層上沉積有一半導體材料。在本發明一方面,此沉積製程 可發生在一漸變製程之中,該漸變製程類似於在該矽晶圓上 形成鑽石層所使用的漸變技術。 根據本發明某些方面,該鑽石層可具有供一半導體裝置 進订散熱的任何厚度。鑽石層的厚度可根據應用以及半導體 裝置結構的不同而改變。I例而言,大的1熱需求將會需 要較厚的鑽石層。鑽石層厚度亦會隨著該鑽石層内所使用的 材料的不同而有所變化。換言之,在—方面—鑽石層的厚度 可由大約1G到大約5G微米β在另—例子中,—鑽石層的厚 ,可等於或小於大約10微米,又一例子中,一鑽石層厚度 可由大約50微米到大約1〇〇微米,在另一例子中一鑽石 層的厚度可大於大約50微米。在又一例子中,—鑽石層可 為無支撐力鑽石層。 根據本發明某些方面,該碳化石夕層可依據碳化石夕層的沉 積方法以及半導體裝置的用途而具有不同的厚度。在某些方 s碳化發層可僅足夠厚到能排列沉積於碳化碎層上的層 23 201133945 結構的晶格方向》在其他方面,較厚的碳化矽層較為有利。 根據這些變化,在一方面該碳化矽層的厚度可等於或小於大 約1微米。在另一方面,該碳化矽層的厚度可等於或小於大 約500奈米《在又一方面,該碳化矽層的厚度可等於或小於 大約1奈米。在又另一方面,該碳化矽層的厚度可大於大約 1微米。 如前所述,根據本發明某些方面,該半導體裝置包含複 數連接到一個或多個鑽石層的半導體層。這些半導體層可透 • 過本發明所屬技術領域具有通常知識者所知曉的各種方法 連接到一鑽石層。在本發明一方面,可在一鑽石層上沉積一 個或多個半導體層,或者如前所述,可在一耦合到鑽石層的 碳化矽層上沉積一個或多個半導體層。 可利用本發明所屬技術領域具有通常知識者已知的各 種技術在一例如碳化矽層的基材上沉積一半導體層。這類技 術的其中一個例子是有機金屬化學氣相沉積(Meta|-organicProcesses), organometallic chemical vapor deposition (Meta| 〇rganjc cVD, ΜOCVD) and DC arc technology. Typical chemical deposition techniques use gaseous reactants to deposit diamond or diamond-like carbon materials into a layer structure or a membrane structure. The foregoing gas may comprise a small amount (about less than 5%) of carbonaceous material, such as methyl dilute diluted with hydrogen. The apparatus and conditions known to those skilled in the art to be aware of various chemical vapor deposition processes are also known to be particularly applicable. The process of the boron nitride layer. On the other hand, physical vapor deposition can be used, such as sputtering, cathodic arc, and thermal evaporation. In addition, specific deposition conditions can be used to adjust the exact type of material deposited, such as diamond-like carbon, amorphous diamond, or pure diamond. It should be noted that high temperatures can degrade the quality of many semiconductor devices such as light-emitting diodes. Care must be taken to ensure that the diamond is deposited in a low temperature manner, thereby avoiding the problem of diamond damage during deposition. For example, if the semiconductor contains indium nitride, up to 6 Å can be used. The deposition temperature of 〇. In the case of gallium nitride, up to about 1000 can maintain the thermal stability of the layer structure. In addition, the pre-formed plurality of layers can be fixed to the semiconductor layer or the semiconductor layer by brazing, gluing or lamination without excessively interfering with the spring heat transfer of the diamond layer or the light-emitting surface of the semiconductor device. On the floor of the building. An optional nucleation strengthening layer can be formed on the growth surface of a substrate to enhance the deposition quality of the diamond layer and to reduce deposition time. In particular, a diamond layer can be formed by depositing a suitable crystal nucleus 'for example, depositing a diamond nucleus on a diamond growth surface of a substrate' and then growing the nucleus into a film by vapor deposition techniques or Layer _ structure. In one aspect of the invention, a thin nucleation enhancing layer can be applied to the substrate to enhance the growth of the diamond layer. The diamond nucleus is then placed on the nucleation enhancing layer and the diamond layer is grown by chemical vapor deposition. Those skilled in the art will be aware of a variety of suitable materials that can be used as nucleating reinforcing materials. In one aspect of the invention, the nucleating reinforcing material can be selected from the group consisting of metals, metal alloys, metal compounds, carbides, carbide forming elements (Carbide Former), and combinations thereof. Examples of the carbide forming material may be tungsten (W), group (IA), titanium (Ti), chromium (Z", chromium (Cr), molybdenum (Mo), lanthanum, and manganese (Mn). Examples may include tungsten carbide. 201133945 (wc), carbonized dreams, titanium carbide (TIC), tantalum carbide (z "c), and combinations thereof. When used, the nucleation strengthening layer is - a sufficiently thin layer structure such that It does not adversely affect the thermal conductivity of the diamond layer. In one aspect of the invention, the thickness of the nucleation enhancing layer can be less than about, about (M micrometers (10)). In another aspect of the invention, the thickness can be at least less than Approximately 1 G nanometer (d). In the present invention - the thickness of the nucleation enhancing layer can be less than about 5 nanometers. In another aspect of the invention, the thickness of the nucleation enhancing layer can be less than about 3 nanometers. Various methods are used to increase the quality of the diamond on the nucleation surface of the iron layer formed by vapor deposition. For example, at the earlier stage of diamond deposition, the methane flow is reduced and the total gas pressure is increased to enhance the diamond particles. Quality. Such measures can reduce the rate of carbon decomposition, And can increase the concentration of hydrogen atoms. Therefore, 'will make a very high proportion of carbon deposited in the sp3 bonding state, and can improve the quality of the formed diamond nucleus. In addition, can increase the nucleation rate of diamond particles in order to reduce diamonds. The gap between the particles. The method of increasing the nucleation rate of the diamond particles may include, but is not limited to, the following example: providing an appropriate amount of negative bias to the growth surface, typically about 1 volt; for fine diamond glue or diamond The growth surface is polished by a powder, and the fine diamond glue or powder may be partially retained on the growth surface; and implanted by a physical vapor deposition or a plasma-assisted chemical vapor deposition (PECVD) process such as carbon or germanium. , chromium manganese, titanium, vanadium, erbium, tungsten, molybdenum, niobium, and similar ions to control the composition of the growth surface. The implementation temperature of the physical vapor deposition process is generally lower than the temperature of the chemical vapor deposition process, and at some In some cases, it may be less than about 2 C (about 150 C.) Other methods of enhancing diamond nucleation will be apparent to those of ordinary skill in the art to which this invention pertains. In one aspect of the invention, the diamond layer can be in the form of a conformal diamond layer 20 201133945 (conformal diamond丨ayer). The isomorphous diamond coating can be applied through a wide variety of substrates, including, for example, non-planar substrates. Cloth process. The same configuration diamond coating process has many advantages over the traditional diamond film process. The same configuration diamond coating is arranged to be used on a wide variety of substrates, including non-planar substrates. A carbon film is formed on the growth surface by pre-treatment using a biased diamond growth condition. The diamond growth condition can be a chemical vapor deposition condition of a conventional applicable diamond and no bias is used. Therefore, the formed carbon film is mostly less than 100 angstroms. Thickness. The pretreatment step can be at a growth temperature of about 2 〇〇 c to about 900 c, and a preferred low temperature is about 5 〇〇. c below. Without any special theory, the carbon film is formed in a short time of less than one hour, and the carbon film is a hydrogen end (Hydr〇gen_terminated) crystal free carbon. After forming the thin carbon film, the growth surface can then form a layer of isomorphic diamond under the diamond growth conditions. The diamond growth conditions may be those in which a conventional chemical vapor deposition type diamond growth mode is generally used. However, unlike conventional diamond film growth, the diamond film produced by the above pre-treatment steps is an isomorphous diamond film. In addition, the diamond film generally begins to grow on substantially the entire substrate without gestation. Further, it is possible to grow to a diamond film which is substantially continuous with a thickness of about 8 Å or less and has no grain boundaries. A diamond layer that is substantially free of grain boundaries can dissipate heat more efficiently than a grain boundary layer. Various techniques can be used to make a diamond layer conductive. Those skilled in the art will be aware of these techniques. For example, a variety of impurities can be incorporated into the crystal lattice of the diamond layer. These impurities may include bismuth, boron, phosphorus, nitrogen, lithium, aluminum, gallium, and the like. In a particular aspect, for example, the diamond layer can be doped with boron. The above impurities may also contain metal particles, which are doped in such a manner that they do not interfere with the semiconductor device, and do not interfere with the light-emitting diode in a manner that does not interfere with the light-emitting diode.乂Do not create a growth substrate for certain diamond layers, particularly those diamond layers that are to be formed with a semiconductor layer, so that the semiconductor material can be formed with the least lattice difference structure (for example, a substantially single crystal structure). Growth: There is (4) on the material. There is a strong bonding effect between the growth surface of the single crystal structure and the semiconductor material. Therefore, the use of a growth surface which is substantially a single crystal structure can promote the case where the lattice difference is minimized. In the case of the invention, the substrate comprises a diamond layer having a substantially single crystal structure, and a carbonized stone layer having a substantially single crystal structure is formed on the diamond layer. The carbon (4) is substantially a single crystal structure in favor of a semiconductor such as gallium nitride or nitride which is substantially deposited as a single crystal. Further, the thermal conductivity of the diamond layer is increased by the diamond layer to the carbonized fracture layer and the mycelium relationship from the layer to the semiconductor layer, thereby improving the heat dissipation of the semiconductor device. A variety of possible methods can be used to construct such a diamond/carbonized ruthenium composite substrate. Any such method is considered to be within the scope of the invention. For example, on the one hand, a $-substrate can be created by gradually changing a single crystal germanium wafer into a single crystal diamond layer. In other words, the Shi Xi wafer can be gradually converted from shi shi to tantalum carbide and then gradually converted into diamonds. The technique of the grading process is further discussed in the U.S. Patent Application Serial No. 11/8,9,8,6, which is incorporated by reference in the U.S. Patent Office, the entire disclosure of which is incorporated herein by reference. The method of growing another material, or combining the two materials, is contained in US Nos. 11/809,718, 11/809,721, 61/187,557, 61/230,055, as reviewed by the applicant. And the invention patent application No. 61/259,948 'these cases are also incorporated herein by reference to 22 201133945. In addition to the above advantages of minimizing the lattice difference, a diamond layer of substantially single crystal can be transparent and transparent to facilitate the construction of a light-emitting semiconductor such as a light-emitting diode and a laser diode. After thickening the diamond layer or providing a support substrate to the diamond layer, the tantalum wafer can be removed by any of the methods known to those of ordinary skill in the art to which the present invention pertains. The resulting structure comprises a diamond layer of substantially single crystal structure on which an intercalated layer of tantalum carbide having a substantially single crystal structure is epitaxially coupled. Subsequent use of any of the technical fields of the present invention A method known in the art is to deposit a semiconductor material on the tantalum carbide layer in an epitaxial manner. In one aspect of the invention, the deposition process can occur in a grading process similar to the grading technique used to form a diamond layer on the wafer. According to some aspects of the invention, the diamond layer can have any thickness for a semiconductor device to dispense heat. The thickness of the diamond layer can vary depending on the application and the structure of the semiconductor device. In the case of I, a large 1 heat demand would require a thicker diamond layer. The thickness of the diamond layer will also vary with the materials used in the diamond layer. In other words, in the aspect - the thickness of the diamond layer may be from about 1 G to about 5 G micrometers. In another example, the thickness of the diamond layer may be equal to or less than about 10 micrometers. In still another example, the thickness of one diamond layer may be about 50. Micron to about 1 micron, in another example a diamond layer can have a thickness greater than about 50 microns. In yet another example, the diamond layer can be an unsupported diamond layer. According to some aspects of the present invention, the carbonized carbide layer may have different thicknesses depending on the deposition method of the carbonized stone layer and the use of the semiconductor device. In some cases, the carbonization layer may be only thick enough to align the layer deposited on the carbonized fracture layer. 23 The lattice orientation of the structure of the 201133945 structure. In other respects, a thicker layer of tantalum carbide is advantageous. According to these variations, the thickness of the tantalum carbide layer may be equal to or less than about 1 micrometer on the one hand. On the other hand, the thickness of the tantalum carbide layer may be equal to or less than about 500 nm. In still another aspect, the thickness of the tantalum carbide layer may be equal to or less than about 1 nm. In yet another aspect, the tantalum carbide layer can have a thickness greater than about 1 micron. As previously mentioned, in accordance with certain aspects of the present invention, the semiconductor device includes a plurality of semiconductor layers connected to one or more diamond layers. These semiconductor layers can be connected to a diamond layer by various methods known to those skilled in the art to which the present invention pertains. In one aspect of the invention, one or more semiconductor layers can be deposited on a diamond layer, or one or more semiconductor layers can be deposited on a tantalum carbide layer coupled to the diamond layer, as previously described. A semiconductor layer can be deposited on a substrate such as a tantalum carbide layer using various techniques known to those skilled in the art to which the present invention pertains. An example of such a technique is organometallic chemical vapor deposition (Meta|-organic)

Chemical Vapor Deposition, M0CVD)製程。 籲 該半導體層可包含任何適用於形成電子裝置、半導體裝 置或是其他類似裝置的材料。許多半導體是基於矽、鎵銦 以及錯。然而,適用於半導體層的材料可包含而不限制於 梦、碳切1化鍺、_化鎵、氮化鎵、錯、硫化鋅 '填化 錄、錄化鎵、碟石申簡、碟化銘、石申化链、坤化録紹、氣化 鎵、氮化侧、I化紹、_化銦、麟化銦、銻油、氮化鋼以 =混合物。在另—特定方面’舉例而言,該半導體層可包 3夕反化石夕、坤化鎵、氮化鎵、麟化錄、氮化銘、氣化姻、 氮化鎵銦、氮化鎵鋁或是其混合物。 24 201133945 在某些額外的實施例之中,可形成諸如基於砷化鎵、氮 化鎵、鍺、氮化硼、氮化鋁、銦基材料以及其混合等等非含 矽的半導體裝置。在另一實施例中,該半導體層可包含氮化 鎵、氮化鎵銦、氮化銦以及其混合物。在一特定方面,該半 導體材料為氮化鎵。在另一特定方面,該半導體材料為氮化 銘。其餘可使用的半導體材料包含氧化鋁、氧化鈹、鎢、鉬、 c Y2O3' (Y〇.9La〇 !)2〇3' C-AI23O27N5 ' c-MgAl2〇4 ' t-MgF2 ' 石墨以及其混合物。應了解的是,該半導體層可包含任何已 鲁知的半導體材料,且不應限制於文中所述的這些材料。此 外’半導體材料可為任何已知的結構配置,例如而不限制於 立方體閃鋅礦(Zincb|encle or sphalerite)結構、六方晶系纖 鋅礦結構(Wurtzitic)、菱形六面體結構(rhombohedral)、石 墨結構、亂層(Turbostratic)結構、裂解(Py「0|ytiC)結構、六 角形結構(Hexagonal)、無晶結構或是其混合。如前所述, 可利用本發明所屬技術領域具有通常知識者已知的方法來 鲁 此積該半導體層14。可使用各種已知的氣相沉積方法來沉 積這些半導體層,並且允許這些沉積製程在一漸變方法中進 行。此外,可在所述的兩沉積步驟之間實行一表面處理以便 月&amp;提供一平滑表面而供進行後續的沉積步驟。可透過任何已 知的方法,例如化學姓刻、拋光、皮輪拋光(Buffing)以及研 磨等方法來進行前述表面處理製程。 在本發明一方面,至少一半導體層可為氮化鎵。氮化鎵 半導體層有利於建造發光二極體或是其他半導體裝置。在某 些例子中,將碳化矽或是其他基材逐漸轉化為該半導體層是 有益的。舉例而言,可透過固定氣相沉積的氮濃度並且改變 25 201133945 鎵以及銦的沉積濃度,使鎵··銦的濃度比例由〇 J逐漸變化 為1:0’藉此將一氮化銦半導體基材逐漸轉化為一氮化鎵半 導體層°換言之’鎵與銦的供給產生變化以使得當銦的濃度 減少的同時,鎵的濃度增加。該逐漸轉化的功能為大幅減少 在氮化鎵直接形成於氮化銦時所觀察到的晶格錯位現象。 在本發明另一方面,至少一半導體層可為一氮化鋁層。 該氮化銘層可透過本發明所屬技術領域具有通常知識者已 知的任何方法沉積到一基材上。如上述氮化鎵層一般,兩半 導體層之間的逐漸轉化製程可增進半導體裝置的功能性。舉 例而言,在一方面可透過將氮化銦層逐漸轉化為氮化鋁層的 方式來將氮化鋁形成到一氮化銦半導體基材上。此種逐漸轉 化製程可包含例如透過固定所沉積的氮濃度並且改變銦以 及鋁的沉積濃度,使一銦:鋁的濃度比例由彳:〇逐漸變化為 〇:1,藉此將一氮化銦半導體基材逐漸轉化為一氮化鋁半導 體層。此逐漸轉化的製程大幅減少在氮化鋁直接形成於氮化 姻時所觀察到的晶格錯位現象。可在所述的任何兩沉積步驟 之間實行一表面處理以便能提供一平滑表面而供進行後續 的沉積步驟。可透過任何已知的方法,例如化學蝕刻、拋光、 皮輪拋光以及研磨等方法來進行前述表面處理製程。 如前所述,一 n型電極整合到一發光二極體裝置以作為 電眭接觸半導體層之用。本案所屬技術領域具有通常知識者 已知悉許多η型電極的使用與形成方法,因此本文中將不再 討論。 範例 下列範例顯示製造一本發明半導體裝置的各種技術。然 26 .201133945 而’應注意的是’下列範例僅是示範或顯示本發明的原理。 在不違反本發明範疇與精神下,本發明所屬技術領域具有通 常知識者可構想出各種修改與不同的組合、方法以及系統。 所附上的申請專利範圍是欲涵蓋這些修改與佈局。因此,雖 然上述内容已詳細敘述本發明,下列範例以本發明複數實施 例來提供進一步的詳細說明。 範例1 可根據下列所述形成一半導體基材: 取得一單晶矽晶圓,將該單晶矽晶圓浸泡於氫氧化鉀之 中,並且利用蒸餾水進行超音波清潔的方式來清洗單晶矽晶 圓,去除其上的非單晶矽以及外部碎屑。透過將該矽晶圓暴 露在化學氣相沉積狀態而不提供任何偏壓的方式,在該矽晶 圓的清潔表面上設置一同構型無晶碳塗佈層。在對該表面進 仃碳化之後,在800。c下,1 〇/〇曱烷以及99%氫氣的條件下, 進行大約30分鐘的無晶鑽石沉積製程。接著可在9〇〇乂的 條件下,利用氫氣或是氟氣進行大約6〇分鐘的處理製程來 去除該無晶碳塗佈層。去除無晶碳塗佈層之後則露出一取向 附生碳化矽層,該碳化矽層則是曾經介於矽晶圓以及無晶碳 塗佈層之間。該碳化矽層的厚度大約為1〇奈米。 接著使用曱烷進行化學氣相沉積約1〇小時,以在該碳 化矽層上沉積一厚度為10微米的透明鑽石塗佈層。在 小時之後,該原本供給的甲烷改為持續供給氫化矽(s•丨約 1 〇分鐘以沉積一層厚度約i微米的矽層。 在該1微米厚度矽層上晶圓結合—矽載具基材,該矽載 具基材具有一結合該矽層的二氧化矽表面。在晶圓結合製程 27 201133945 之後,透過利用一份氫氟酸、 3HNC 二份亞硝酸以及一份水的(HF +Chemical Vapor Deposition, M0CVD) process. The semiconductor layer can comprise any material suitable for forming an electronic device, a semiconductor device, or the like. Many semiconductors are based on germanium, gallium indium, and the wrong. However, materials suitable for the semiconductor layer may include, but are not limited to, dreams, carbon cuts, gallium, gallium nitride, gallium, zinc sulfide, fillers, gallium, discs, discs, discs Ming, Shi Shenhua chain, Kunhua recorded, gasification gallium, nitride side, I Huashun, _ indium, linalin, eucalyptus oil, nitrided steel = mixture. In another specific aspect, for example, the semiconductor layer can be used for the anti-chemical, anti-corrosion, gallium, gallium nitride, lining, nitriding, gasification, gallium indium nitride, gallium nitride aluminum Or a mixture thereof. 24 201133945 In certain additional embodiments, non-ambiguous semiconductor devices such as gallium arsenide, gallium nitride, germanium, boron nitride, aluminum nitride, indium based materials, and mixtures thereof can be formed. In another embodiment, the semiconductor layer can comprise gallium nitride, indium gallium nitride, indium nitride, and mixtures thereof. In a particular aspect, the semiconductor material is gallium nitride. In another specific aspect, the semiconductor material is nitrided. The remaining semiconductor materials that can be used include alumina, yttria, tungsten, molybdenum, c Y2O3' (Y〇.9La〇!) 2〇3' C-AI23O27N5 ' c-MgAl2〇4 ' t-MgF2 ' graphite and mixtures thereof . It should be understood that the semiconductor layer can comprise any well known semiconductor material and should not be limited to those materials described herein. Furthermore, the 'semiconductor material can be of any known structural configuration, such as without limitation to cubic zinc ore (Zincb|encle or sphalerite) structure, hexagonal wurtzite structure, rhombohedral structure (rhombohedral) , graphite structure, Turbostratic structure, cracking (Py "0|ytiC) structure, Hexagonal structure, amorphous structure, or a mixture thereof. As described above, the technical field to which the present invention pertains can be used. A method known to the skilled person is used to accumulate the semiconductor layer 14. These semiconductor layers can be deposited using various known vapor deposition methods, and these deposition processes are allowed to be carried out in a gradual process. A surface treatment is applied between the two deposition steps to provide a smooth surface for subsequent deposition steps, by any known method such as chemical surging, polishing, buffing, and grinding. The foregoing surface treatment process is performed. In one aspect of the invention, at least one of the semiconductor layers may be gallium nitride. The gallium nitride semiconductor layer is advantageous for construction Light-emitting diodes or other semiconductor devices. In some instances, it may be beneficial to gradually convert tantalum carbide or other substrate into the semiconductor layer. For example, the concentration of nitrogen that can be fixed by vapor deposition and change 25 201133945 The deposition concentration of gallium and indium is such that the concentration ratio of gallium indium is gradually changed from 〇J to 1:0', thereby gradually converting an indium nitride semiconductor substrate into a gallium nitride semiconductor layer. In other words, gallium and The supply of indium changes so that the concentration of gallium increases while the concentration of indium decreases. The function of this gradual conversion is to substantially reduce the lattice misalignment observed when GaN is directly formed in indium nitride. In another aspect, the at least one semiconductor layer can be an aluminum nitride layer. The nitriding layer can be deposited onto a substrate by any method known to those skilled in the art to which the present invention pertains. In general, the gradual conversion process between the two semiconductor layers can enhance the functionality of the semiconductor device. For example, on the one hand, the indium nitride layer can be gradually converted into an aluminum nitride layer. Forming aluminum nitride onto an indium nitride semiconductor substrate. Such a gradual conversion process may include, for example, fixing the deposited nitrogen concentration and changing the deposition concentration of indium and aluminum so that the concentration ratio of one indium: aluminum is彳: 〇 gradually changes to 〇: 1, thereby gradually converting an indium nitride semiconductor substrate into an aluminum nitride semiconductor layer. This gradual conversion process is greatly reduced when aluminum nitride is directly formed in the nitriding marriage. The lattice misalignment phenomenon may be performed. A surface treatment may be performed between any two deposition steps to provide a smooth surface for subsequent deposition steps. Any known method, such as chemical etching, polishing, The surface treatment process described above is carried out by methods such as leather wheel polishing and grinding. As previously mentioned, an n-type electrode is integrated into a light-emitting diode device for use as an electrical contact semiconductor layer. The use and formation of many n-type electrodes is known to those of ordinary skill in the art to which the present invention pertains and will therefore not be discussed herein. EXAMPLES The following examples show various techniques for fabricating a semiconductor device of the present invention. However, the following examples are merely illustrative or illustrative of the principles of the invention. Without departing from the spirit and scope of the invention, various modifications and combinations, methods and systems may be devised by those skilled in the art. The scope of the patent application attached is intended to cover these modifications and arrangements. Accordingly, the present invention has been described in detail by reference to the embodiments of the present invention Example 1 A semiconductor substrate can be formed as follows: A single crystal germanium wafer is obtained, the single crystal germanium wafer is immersed in potassium hydroxide, and the single crystal germanium is cleaned by ultrasonic cleaning using distilled water. The wafer is removed from non-single crystal ruthenium and external debris. A conformal amorphous carbon coating layer is disposed on the cleaned surface of the twinned circle by exposing the germanium wafer to a chemical vapor deposition state without providing any bias. After carbonizing the surface, it is at 800. Under a condition of 1 〇/decane and 99% hydrogen, an amorphous diamond deposition process of about 30 minutes was carried out. The amorphous carbon coating layer can then be removed by treatment with hydrogen or fluorine gas for about 6 minutes at 9 Torr. After removing the amorphous carbon coating layer, an oriented epitaxial lanthanum carbide layer is exposed, which is once between the ruthenium wafer and the amorphous carbon coating layer. The tantalum carbide layer has a thickness of about 1 nanometer. Next, chemical vapor deposition was carried out using decane for about 1 hour to deposit a transparent diamond coating layer having a thickness of 10 μm on the tantalum carbide layer. After the hour, the originally supplied methane was changed to a continuous supply of hydrogenated ruthenium (s•丨1 〇 minute to deposit a layer of ruthenium having a thickness of about 1 μm. On the 1 μm thick ruthenium layer, the wafer was bonded to the 矽 carrier base. The ruthenium substrate has a ruthenium dioxide surface bonded to the ruthenium layer. After the wafer bonding process 27 201133945, through a portion of hydrofluoric acid, 3HNC, two parts of nitrous acid and one part of water (HF +

出碳 4,981 範例2 一半導體裝置可依下列製程製造:Carbon output 4,981 Example 2 A semiconductor device can be manufactured according to the following processes:

相沉積製程並且利用氫化鎵(GaH3)以及氨氣材料,在該暴露 • 的碳化矽層上沉積一氮化鎵半導體層。 當然,應了解的是,上述内容僅供說明本發明原理的應 用。在不違背本發明範疇及精神的前提下,本發明所屬技術 領域具有通常知識者可做出多種修改及不同的配置,且依附 在後的申請專利範圍則意圖涵蓋這些修改與不同的配置。因 此’當本發明中目前被視為是最實用且較佳之實施例的細節 已被揭露如上時,對於本發明所屬技術領域具有通常知識者 而言’可依據本文中所提出的概念與原則來作出而不受限於 ® 多種包含了尺寸、材料、外形、形態、功能 '操作方法、組 裝及使用上的改變。 【圖式簡單說明】 圖1是本發明一實施例中的發光二極體裝置的側面剖 視圖。 圖2是本發明一實施例中的發光二極體裝置的側面剖 視圖。 圖3是本發明一實施例中的形成一發光二極體裝置的 步驟的側面剖視圖。 28 201133945 【主要元件符號說明】 1 2傳導性鑽石層 14碳化矽層或是氮化鋁層 16半導體層 1 8 η型電極 20支撐基材 2 4反射層 32早晶碳化碎蠢晶層 34矽生長基材 36鑽石層 3 8矽層 4 0二氧化矽層 42矽承載基材 29A phase deposition process and deposition of a gallium nitride semiconductor layer on the exposed tantalum carbide layer using gallium hydride (GaH3) and an ammonia gas material. Of course, it should be understood that the foregoing is merely illustrative of the application of the principles of the invention. Various modifications and different configurations are possible in the art to which the invention pertains without departing from the scope and spirit of the invention, and the scope of the appended claims is intended to cover such modifications. Therefore, when the details of the presently considered to be the most practical and preferred embodiments have been disclosed above, it will be apparent to those of ordinary skill in the art to which the present invention pertains. Made without limitation by ® A variety of dimensions, materials, shapes, shapes, functions, 'operations, assembly and use changes. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a side cross-sectional view showing a light-emitting diode device according to an embodiment of the present invention. Fig. 2 is a side cross-sectional view showing a light emitting diode device in an embodiment of the invention. Figure 3 is a side cross-sectional view showing the steps of forming a light-emitting diode device in an embodiment of the present invention. 28 201133945 [Description of main component symbols] 1 2 Conductive diamond layer 14 carbonized tantalum layer or aluminum nitride layer 16 semiconductor layer 1 8 n-type electrode 20 supports substrate 2 4 reflective layer 32 early crystal carbonized broken stupid layer 34矽Growth substrate 36 diamond layer 3 8 layer 4 0 cerium oxide layer 42 矽 carrier substrate 29

Claims (1)

201133945 七、申請專利範圍: 1·一種發光二極體裝置,其包含有: 一傳導性鑽石層; 一碳化矽層或氮化鋁層,其耦合到該鑽石層上; 複數半導體層,其中至少一半導體層耗合到該碳化矽 層或氣化銘層;以及 一 η型電極,其耦合到其中至少一半導體裝置上,其 中該傳導性鑽石層以及η型電極被配置為令該傳導性鑽石 _ 層與η型電極之間存有一大致上為線性的傳導路徑。 2 ·如申請專利範圍第1項所述的發光二極體裝置,其中 該複數半導體層被配置為依序介於該傳導性鑽石層與η型 電極之間。 3_如申請專利範圍第1項所述的發光二極體裝置,其進 一步包含一光反射層,該光反射層耦合到該傳導性鑽石層 上的一表面,該表面相對該碳化石夕或氮化鋁層。 4.如申請專利範圍第1項所述的發光二極體裝置,其中 _ 該碳化矽或氮化鋁層為一單晶層》 5_如申請專利範圍第4項所述的發光二極體裝置,其中 該碳化碎或氮化銘層具有大致上以蟲晶方式與該傳導性 錢石層相匹配的晶格。 6_如申請專利範圍第4項所述的發光二極體裝置,其中 該碳化矽或氮化鋁層具有一大致上以磊晶方式與其中至少 一半導體層相匹配的晶格。 7.如申請專利範圍第1項所述的發光二極體裝置,其中 該傳導性鑽石層摻入有硼。 30 201133945 8·如申清專利範圍第1項所述的發光二極體裝置,其中 該複數半導體層包含選自於氮化鎵、氮化硼、氮化鋁、氮 化麵以及其混合物的至少其中一種的成分。 9_如申明專利範圍第8項所述的發光二極體裝置,其中 至少一半導體層包含有氮化鎵。 10_如申請專利範圍第8項所述的發光二極體裝置,其 中至少一半導體層包含有氮化鋁。 11. 如申請專利範圍第1項所述的發光二極體裝置,其 中該奴化石夕或氮化銘層的厚度小於或等於大約1微米。 12. 如申請專利範圍第彳項所述的發光二極體裝置,其 中該碳化矽或氮化鋁層的厚度小於或等於大約5〇〇奈米。 13. 如申請專利範圍第彳項所述的發光二極體裝置,其 中該碳化矽或氮化鋁層的厚度小於或等於大約彳奈米。 14. 一種發光二極體的製造方法,其包含有: 、蠢aa方式在大致上為單晶的石夕晶圓上形成有一碳 化石夕或氮化紹層; 曰以磊晶方式在碳化矽或氮化鋁層上形成一大致上為單 晶的鑽石層; 摻雜該鑽石層以形成一傳導性鑽石層; 移除該矽晶圓以露出該相對於鑽石層的碳化矽或氮化 鋁層; 以晶方式在該碳化矽或氮化鋁層上形成有複數半導 體層,其中至少一半導體層接觸該碳化矽或氮化鋁層;以 及 將一 η型電極耦合到其中至少—半導體層上以使得該 31 201133945 複數半導體層功能性地位於該傳導性鑽石層與該n型電極 之間,且其中該傳導性鑽石層與η型電極被配置為令該傳 導性鑽石層與η型電極之間存有一大致上為線性的傳導路 徑。 15二申請專利範圍帛14項的製造方法,其中該形成 大致上單阳的鑽石層的磊晶層的步驟進一步包含令一矽晶 圓的表面進行合成性漸變’使該表面由矽逐漸變化為碳化 矽或是氮化鋁以形成該碳化矽或是氮化鋁層;以及令一破 A 的表©進行合成性漸變’使該表面由碳化石夕逐漸變 化為鑽石以形成該鑽石層。 * 16.如申請專利範圍帛15項的製造方法,其中該形成 碳化發的磊晶層的步驟進一步包含: 在該梦生長表面上形成—同構形無晶鑽石層以形成介 於該矽生長表面與同構形無晶鑽石層之間的碳化矽層;以 移除該同構形無晶鑽石層以露出該碳化矽層。 P·如申請專利範圍帛16制述的製造方法,其進 步包含在該外露的碳化碎層上形成—傳導性鑽石層。 18.如申請專利範圍帛14$所述的製造方法,其進 步包含: 先在該鐵石層的相對該碳化矽 在移除該矽晶圓之前 或氮化鋁層的一表面上形成一石夕層;以及 結合-碎承載基㈣㈣層上,料承載基材1有-氧化矽層,使得該矽層結合到該二氧化矽層上。 19.一種半導體裝置,其包含有: $ 32 201133945 一傳導性鑽石層; 一碳化矽層或氮化鋁層,其耦合到該鑽石層上; 複數半導體層,其中至少一半導體層耦合到該碳化矽 層或氮化鋁層;以及 一 η型電極,其耦合到其中至少一半導體裝置上。 20.如申請專利範圍第19項所述的半導體裝置,其中 該傳導性鑽石層與η型電極被配置為令該傳導性鑽石層與η 型電極之間存有一大致上為線性的傳導路徑。 八、圖式:(如次頁) 33201133945 VII. Patent application scope: 1. A light-emitting diode device comprising: a conductive diamond layer; a tantalum carbide layer or an aluminum nitride layer coupled to the diamond layer; and a plurality of semiconductor layers, at least a semiconductor layer is consumed to the tantalum carbide layer or a vaporization layer; and an n-type electrode coupled to at least one of the semiconductor devices, wherein the conductive diamond layer and the n-type electrode are configured to make the conductive diamond There is a substantially linear conduction path between the _ layer and the n-type electrode. 2. The light emitting diode device of claim 1, wherein the plurality of semiconductor layers are configured to be sequentially interposed between the conductive diamond layer and the n-type electrode. The light-emitting diode device of claim 1, further comprising a light reflecting layer coupled to a surface of the conductive diamond layer, the surface being opposite to the carbonized stone or Aluminum nitride layer. 4. The light-emitting diode device according to claim 1, wherein the silicon carbide or aluminum nitride layer is a single crystal layer. 5_ The light-emitting diode according to claim 4 A device wherein the carbonized or nitrided layer has a lattice substantially matched to the conductive rock layer in a nematic manner. The light-emitting diode device of claim 4, wherein the tantalum carbide or aluminum nitride layer has a lattice substantially matched to at least one of the semiconductor layers in an epitaxial manner. 7. The light emitting diode device of claim 1, wherein the conductive diamond layer is doped with boron. The light emitting diode device of claim 1, wherein the plurality of semiconductor layers comprise at least selected from the group consisting of gallium nitride, boron nitride, aluminum nitride, nitrided surfaces, and mixtures thereof. One of the ingredients. The light-emitting diode device of claim 8, wherein at least one of the semiconductor layers comprises gallium nitride. The light-emitting diode device of claim 8, wherein at least one of the semiconductor layers comprises aluminum nitride. 11. The light-emitting diode device of claim 1, wherein the thickness of the sinus or nitriding layer is less than or equal to about 1 micrometer. 12. The light emitting diode device of claim 2, wherein the thickness of the tantalum carbide or aluminum nitride layer is less than or equal to about 5 nanometers. 13. The light emitting diode device of claim 2, wherein the thickness of the tantalum carbide or aluminum nitride layer is less than or equal to about 彳 nanometer. A method for fabricating a light-emitting diode, comprising: a stupid aa method of forming a carbonized stone or a nitrided layer on a substantially single crystal Si Xi wafer; and an epitaxial manner in the tantalum carbide Forming a substantially single crystal diamond layer on the aluminum nitride layer; doping the diamond layer to form a conductive diamond layer; removing the germanium wafer to expose the tantalum carbide or aluminum nitride relative to the diamond layer Forming a plurality of semiconductor layers on the tantalum carbide or aluminum nitride layer in a crystalline manner, wherein at least one semiconductor layer contacts the tantalum carbide or aluminum nitride layer; and coupling an n-type electrode to at least the semiconductor layer So that the 31 201133945 plurality of semiconductor layers are functionally located between the conductive diamond layer and the n-type electrode, and wherein the conductive diamond layer and the n-type electrode are configured such that the conductive diamond layer and the n-type electrode There is a substantially linear conduction path. The manufacturing method of claim 2, wherein the step of forming an epitaxial layer of the substantially single-yang diamond layer further comprises: synthesizing a surface of a wafer of wafers to gradually change the surface from 矽 to Tantalum carbide or aluminum nitride to form the tantalum carbide or aluminum nitride layer; and a synthetic A gradient of the broken A's surface to gradually change the surface from carbonized stone to diamond to form the diamond layer. *16. The manufacturing method of claim 15 wherein the step of forming an epitaxial layer of carbonized hair further comprises: forming an isomorphous amorphous diamond layer on the dream growing surface to form a growth between the crucible a layer of tantalum carbide between the surface and the isomorphous amorphous diamond layer; to remove the isomorphous amorphous diamond layer to expose the tantalum carbide layer. P. The manufacturing method as described in the scope of application 帛16, which further comprises forming a conductive diamond layer on the exposed carbonized fracture layer. 18. The manufacturing method as described in claim 帛14$, the improvement comprising: first forming a layer of slabs on the surface of the layer of aluminum nitride relative to the tantalum wafer prior to removing the tantalum wafer And the layer of the carrier-supporting substrate (4) (4), the material-carrying substrate 1 has a layer of yttria, such that the layer of ruthenium is bonded to the layer of ruthenium dioxide. 19. A semiconductor device comprising: $32 201133945 a conductive diamond layer; a tantalum carbide layer or an aluminum nitride layer coupled to the diamond layer; a plurality of semiconductor layers, wherein at least one semiconductor layer is coupled to the carbonization a germanium layer or an aluminum nitride layer; and an n-type electrode coupled to at least one of the semiconductor devices. 20. The semiconductor device of claim 19, wherein the conductive diamond layer and the n-type electrode are configured such that a substantially linear conduction path exists between the conductive diamond layer and the n-type electrode. Eight, the pattern: (such as the next page) 33
TW99138336A 2010-01-12 2010-11-08 Diamond LED devices and associated methods TW201133945A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/686,288 US7867802B2 (en) 2007-05-31 2010-01-12 Diamond LED devices and associated methods
US12/755,034 US8309967B2 (en) 2007-05-31 2010-04-06 Diamond LED devices and associated methods

Publications (1)

Publication Number Publication Date
TW201133945A true TW201133945A (en) 2011-10-01

Family

ID=44268216

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99138336A TW201133945A (en) 2010-01-12 2010-11-08 Diamond LED devices and associated methods

Country Status (2)

Country Link
CN (1) CN102130243A (en)
TW (1) TW201133945A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI462339B (en) * 2011-11-21 2014-11-21 Ritedia Corp Light-emitting diode having diamond-like carbon layer and manufacturing method and application thereof
TWI466347B (en) * 2012-07-13 2014-12-21 Nat Univ Chung Hsing A light-emitting element having a high heat dissipation characteristic, and a light-emitting element manufactured by the method
TWI756022B (en) * 2021-01-13 2022-02-21 國家中山科學研究院 Nitride semiconductor device with ultra-nanocrystalline diamond layer electrode structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI495160B (en) * 2011-12-15 2015-08-01 Ritedia Corp Flip-chip light emitting diode and manufacturing method and application thereof
CN108767077A (en) * 2018-05-24 2018-11-06 深圳市光脉电子有限公司 A kind of novel chip light-source structure and its preparation process
CN111769186B (en) * 2020-07-31 2023-03-10 佛山紫熙慧众科技有限公司 Novel AlGaN-based ultraviolet LED epitaxial structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422901A (en) * 1993-11-15 1995-06-06 Motorola, Inc. Semiconductor device with high heat conductivity
SG54593A1 (en) * 1996-11-15 1998-11-16 Canon Kk Method of manufacturing semiconductor article
US7132309B2 (en) * 2003-04-22 2006-11-07 Chien-Min Sung Semiconductor-on-diamond devices and methods of forming
FR2817394B1 (en) * 2000-11-27 2003-10-31 Soitec Silicon On Insulator METHOD FOR MANUFACTURING A SUBSTRATE, IN PARTICULAR FOR OPTICS, ELECTRONICS OR OPTOELECTRONICS AND SUBSTRATE OBTAINED THEREBY
US7799600B2 (en) * 2007-05-31 2010-09-21 Chien-Min Sung Doped diamond LED devices and associated methods
CN100593247C (en) * 2007-08-27 2010-03-03 中国砂轮企业股份有限公司 Manufacturing method of LED
CN101378098A (en) * 2007-08-28 2009-03-04 中国砂轮企业股份有限公司 Light emitting diode and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI462339B (en) * 2011-11-21 2014-11-21 Ritedia Corp Light-emitting diode having diamond-like carbon layer and manufacturing method and application thereof
TWI466347B (en) * 2012-07-13 2014-12-21 Nat Univ Chung Hsing A light-emitting element having a high heat dissipation characteristic, and a light-emitting element manufactured by the method
TWI756022B (en) * 2021-01-13 2022-02-21 國家中山科學研究院 Nitride semiconductor device with ultra-nanocrystalline diamond layer electrode structure

Also Published As

Publication number Publication date
CN102130243A (en) 2011-07-20

Similar Documents

Publication Publication Date Title
TWI402385B (en) Semiconductor-on-diamond devices and associated methods
TWI378497B (en)
US7799600B2 (en) Doped diamond LED devices and associated methods
CN101924020B (en) Methods of making semiconductor devices
US8753911B2 (en) Diamond LED devices and associated methods
TW201133945A (en) Diamond LED devices and associated methods
US7867802B2 (en) Diamond LED devices and associated methods
TW201234685A (en) Stress regulated semiconductor devices and associated methods
US8778784B2 (en) Stress regulated semiconductor devices and associated methods
US7781256B2 (en) Semiconductor-on-diamond devices and associated methods
US7799599B1 (en) Single crystal silicon carbide layers on diamond and associated methods
US20120193642A1 (en) Diamond semiconductor devices and associated methods
WO2012076927A1 (en) Diamond semiconductor devices and associated methods
JP2009179505A (en) Method for producing nitride material
US9006086B2 (en) Stress regulated semiconductor devices and associated methods
CN102034772B (en) Diamond-bottom semiconductor device and relevant method thereof
TW201110283A (en) Diamond based semiconductor device and its associated method
TW201225330A (en) Diamond semiconductor device and method thereof