TW201133315A - Touch panel and differential detection method for same - Google Patents

Touch panel and differential detection method for same Download PDF

Info

Publication number
TW201133315A
TW201133315A TW99107795A TW99107795A TW201133315A TW 201133315 A TW201133315 A TW 201133315A TW 99107795 A TW99107795 A TW 99107795A TW 99107795 A TW99107795 A TW 99107795A TW 201133315 A TW201133315 A TW 201133315A
Authority
TW
Taiwan
Prior art keywords
sensing
touch panel
value
electrode
characteristic
Prior art date
Application number
TW99107795A
Other languages
Chinese (zh)
Other versions
TWI413928B (en
Inventor
Chien-Yung Cheng
Po-Sheng Shih
Po-Yang Chen
Original Assignee
Innolux Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innolux Display Corp filed Critical Innolux Display Corp
Priority to TW99107795A priority Critical patent/TWI413928B/en
Publication of TW201133315A publication Critical patent/TW201133315A/en
Application granted granted Critical
Publication of TWI413928B publication Critical patent/TWI413928B/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Abstract

The present disclosure relates to a touch panel and a differential detection method for the touch panel is provided. The differential detection method includes the following steps. An ith scan electrode is selected within a plurality of scan electrodes for providing a driving signal. During the period for providing the driving signal to the ith scan electrode, a difference between the feature values of two neighboring scan electrodes Δ Ci between a reference feature value and the feature value of the kth scan electrode are detected, wherein the difference between the feature values of the jth and the (j+1)th scan electrodes is Δ C(i, j). The feature value of a standard detecting point of detecting points in the touch panel is set with a standard feature value. The feature values of the detecting points is calculated by using the standard feature value, the difference Δ Ci and the difference Δ C(i, j).

Description

201133315 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明是有關於觸控面板,且特別是有關於一種觸控面 板的差動辨識方法。 . 【先前技術】 [0002] 近來各式電子產品朝向操作簡便、小體積以及大螢幕尺 寸的方向發展。因此,許多電子產品都採用觸控面板以 省略鍵盤或是操控按鍵,進而使螢幕可配置的面積擴大 。現今最常見的觸控面板大致可區分為電阻式、電容式 、紅外線式及超音波式等觸控面板。傳統觸控面板至少 需要2片銦錫氧化物(indium, tin oxide,以下稱ITO) 膜,以分別測出X、Y方向的觸碰位置。傳統電容式觸控 面板的觸控技術是利用在電容式觸控面複I TO膜的四角連 接電極,並且加入一定的電訊號。待手指觸碰電容式觸 控面板上的任一點時,手指會帶走耦合在電容式觸控面 板上的電荷並使得四角連接電極的電流產生變化。電容 式觸控面板則可以利用偵測上述的四角連接電極上的能 量變化差異來判斷出觸碰的行為與位置。然而,此傳統 電容式觸控面板只能判斷出單點的觸碰行為。 【發明内容】 [0003] 本發明提供一種觸控面板的差動辨識方法,可以精確辨 識出單點、兩點甚至更多觸碰點的座標資訊。 [0004] 本發明提出一種觸控面板的差動辨識方法。該觸控面板 沿第一軸向與第二軸向各自具有多個掃描電極與多個感 測電極。該差動辨識方法包括下述步驟:於該些掃描電 099107795 表單編號A0101 第4頁/共34頁 0992014015-0 201133315 極中選擇第i個掃描電極,以提供一驅動訊號至所述第i 個掃描電極;在提供該驅動訊號至所述第i個掃描電極的 期間,感測該些感測電極中第j個感測電極與相鄰近的另 一個感測電極的特徵差值△ C( i,j ),以及感測該些感測 電極中第k個感測電極與一參考特徵值的特徵差值ACi, 前述i、j、k為整數;將觸控面板的多個感測點中的一個 基準感測點的特徵值設定為一基準特徵值;以及使用該 基準特徵值、該些特徵差值Δ(Μ與該些特徵差值△ C(i,j)計算該些感測點的特徵值。 ° _ 本發明提出一種觸控面板,包括一第一導電層、一第二 導電層、多個掃描電極、多個掃描電極以及一控制器。 掃描電極沿第一軸向配置於第一導電層的一侧,而感測 電極沿第二軸向配置於第二導電層的一侧。控制器於該 些掃描電極中選擇第i個掃描電極,以提供驅動訊號至所 述第i個掃描電極。在提供驅動訊號至所述第i個掃描電 極的期間,該控制器感測這些感測電極中第j個感測電極 與相鄰近的另一個感測電極的特徵差值ACCi,j),以及 感測這些感測電極中第k個感測電極與一參考特徵值的特 徵差值△ C i。此控制器將觸控面板的多個感測點中的一 個基準感測點的特徵值設定為基準特徵值。控制器使用 該基準特徵值、該些特徵差值ACi與該些特徵差值△ C(i,j)計算該些感測點的特徵值。 [0006] 在本發明之一實施例中,上述之計算該觸控面板的多個 感測點的特徵值的步驟包括:計算A C [ i ] = △ C i - △201133315 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a touch panel, and more particularly to a differential identification method for a touch panel. [Prior Art] [0002] Recently, various electronic products have been developed in the direction of easy operation, small size, and large screen size. As a result, many electronic products use touch panels to omit the keyboard or manipulate buttons, thereby expanding the configurable area of the screen. The most common touch panels today are roughly classified into resistive, capacitive, infrared, and ultrasonic touch panels. A conventional touch panel requires at least two indium tin oxide (ITO) films to measure the touch positions in the X and Y directions. The touch technology of the conventional capacitive touch panel utilizes the four-corner connection electrode of the complex touch surface of the capacitive touch surface, and adds a certain electrical signal. When a finger touches any point on the capacitive touch panel, the finger takes away the charge coupled to the capacitive touch panel and causes the current at the four corners to change. The capacitive touch panel can detect the behavior and position of the touch by detecting the difference in energy variation on the four-corner connection electrodes. However, this conventional capacitive touch panel can only determine the touch behavior of a single point. SUMMARY OF THE INVENTION [0003] The present invention provides a differential identification method for a touch panel, which can accurately recognize coordinate information of a single point, two points, or even more touch points. [0004] The present invention provides a differential identification method for a touch panel. The touch panel has a plurality of scan electrodes and a plurality of sensing electrodes in each of the first axis and the second axis. The differential identification method includes the steps of: selecting the ith scan electrode from the scan electrodes 099107795 Form No. A0101, page 4 / page 34 0992014015-0 201133315 to provide a driving signal to the ith a scan electrode; during the period of providing the driving signal to the ith scan electrode, sensing a characteristic difference Δ C (i) of the jth sensing electrode and the adjacent sensing electrode of the sensing electrodes And j), and sensing a characteristic difference value ACi of the kth sensing electrode and a reference feature value among the sensing electrodes, wherein the i, j, and k are integers; and the plurality of sensing points of the touch panel are The feature value of a reference sensing point is set as a reference feature value; and the reference feature values, the feature difference values Δ (Μ and the feature difference values Δ C(i, j) are used to calculate the sensing points The present invention provides a touch panel including a first conductive layer, a second conductive layer, a plurality of scan electrodes, a plurality of scan electrodes, and a controller. The scan electrodes are disposed along the first axial direction. One side of the first conductive layer, and the sensing electrode is along the second axial direction The controller is disposed on one side of the second conductive layer, and the controller selects an i-th scan electrode among the scan electrodes to provide a driving signal to the ith scan electrode, and provides a driving signal to the ith scan electrode The controller senses a characteristic difference value ACCi,j) of the jth sensing electrode and the adjacent sensing electrode of the sensing electrodes, and senses the kth sensing of the sensing electrodes. The characteristic difference Δ C i between the electrode and a reference eigenvalue. The controller sets the feature value of one of the plurality of sensing points of the touch panel as the reference feature value. The controller calculates the feature values of the sensing points using the reference feature values, the feature difference values ACi, and the feature difference values Δ C(i, j). In an embodiment of the invention, the step of calculating the feature values of the plurality of sensing points of the touch panel includes: calculating A C [ i ] = Δ C i - Δ

Ci + 1,其中Δ(:[!ΐ]表示第i個與第i + 1個掃描電極的特徵 099107795 表單編號A0101 第5頁/共34頁 0992014015-0 201133315 [0007] [0008] [0009] [0010] 099107795 差值;若該基準感測點位於第j列’則使用該基準特徵值 計算 C(i + l,j) = CU,:i) + AC[i]或計算 C(i-l,j) C ( i,j) - △ C [ i ] ’其中C ( i,j )表示該些感測點中第 i行第j列感測點的特徵值;以及計算C(i,j + i)= 以1,:!’)+ Δ(:(ί,:ί)或計算 C(i,j-1) = C(i,j) - △ C(i, j)。 在本發明之一實施例中,所述觸控面板的差動辨識方法 ,更包括:計算第i條掃描線上所有感測點的特徵值中最 小特徵值與該基準特徵值的差值,锋為一補償值;以及 依據該補償值調整該第i條掃描線上所有感測點的特徵值 〇 ' - 在本發明之一實施例中,所述觸控面板的差動辨識方法 ,更包括.計算第“条掃描線上所有感測點的一平均特徵 值;計算該平均特徵值與該基準特徵值的差值,作為一 補償值;以及依據該職值觀該爾上所有感 測點的特徵值。 在本發明之一實施财,上述❹m徵差值Δ(:ί的步驟 包括:感測所述第k個感測電極與該觸控面板的閒置感測 電極的特徵差值ACi。 在本發明之—實施财,上述感測特徵差值ΔΠ的步驟 包括:感測所述第k個感測電極與—參考電容器的特徵差 值 Δ(:ί。 基於上述,本發明實施例所揭露的差動辨識方法採用全 平面掃描方式,可以精確辨《在觸控岐上單點、兩 第6頁/共34頁 表單編號Α0101 0992014015-0 [0011] 201133315 - [0012] [0013] Ο [0014] ο • [0015] 099107795 點甚至更多觸碰點的座標資訊,且無鬼點問題。 為讓本發明之上述特徵和優點能更明顯易懂,下文特舉 實施例,並配合所附圖式作詳細說明如下。 【實施方式】 以下實施例所辨識的觸控面板可以是任何形式的觸控面 板’例如電容式觸控面板、電阻式觸控面板或是具有奈 米碳管(carb〇ri nan〇_tube, CNT)薄膜的觸控面板等。 此觸控面板沿第—轴向與第二轴向(例如X轴與γ轴,但不 以此為限)各自具有多個掃描電極與多個感測電極。另外 ’基於所辨識之觸控面板的類型,欲辨識的特徵值也會 有所不同。為了能更具體地說:明實現方式,似下將以電 容式觸控面板為示範例,且以電容值作為欲辨識的特徵 值。所屬領域具有通常知識者當可依據下述實施例之教 示而類推至其他類型的觸控面板。欲辨識的特徵值除了 電容值外,也可能是電流值或電壓值》 圖1是依照本發明實施例說明一種觸控面板1〇〇的功能模 塊示意圖。圖2是依照未發明其中一個實施例說明圖1所 示觸控面板100的組合圖。在圖2中引入笛卡兒座標系統 (Cartesian coordinate system),其包括相互垂直 的X軸方向、Y軸方向和Z軸方向。為了簡化圖式及說明, 圖2中之第一電極114及第二電極124僅分別以五電極表示 ’但實際應用時,第一感測電極114及第二感測電極124 的數目’可根據實際觸控面板的面積及應用領域而定。 如圖2所示,觸控面板1〇〇由第一導電膜11〇與第二導電膜 120相疊合而成。介電層結構配置於第一導電膜11()與第 表單編號 A0101 帛 7 頁/共 34 1 0992014015-0 201133315 [0016] [0017] [0018] 099107795 二導電膜120之間。此介電層結構可以是圖2所示環形膠 體層130,也可以是其他結構。第一導電膜11〇與第二導 電膜120二者以環形膠體層13〇黏合固定。第一導電膜 11 〇與第二導電膜12 0之間均勻散佈多個絕緣間隔物 (spacer) 132 ’使二導電膜110、120維持一固定間距 〇 第—導電膜110包括第一導電層113與第一電極114。在 第一導電層113的一侧沿第一軸向(例如:χ軸方向)設置 多個第一電極114。其中,第一電極114間之間距相等, 並分別與第一導電層113電性連接;第一電極114的末端 延伸至第-導電膜110的下緣巾央’作為對外部傳遞訊號 之用。 第二導電膜120亦包括第二導電層i 23與第二電極124。 在第二導體層123的一侧沿第二軸向(例如:γ軸方向)設 置多個第二電極124。第二電極丨24間之間距相等,並分 別與第二導電層123電性連啤;第二電極124與第二導電 膜120右侧數條平行排列的_接導線125連接,連接導線 12 5 /σ著第一導電層12 3右侧邊緣延伸,連接導線12 5的 末端延伸至第二導電骐120的下緣中央,作為對外部傳遞 訊號之用。 此外,觸控面板100另包括一軟性印刷電路板14〇,其具 有複數個金屬接點141,在環形膠體層13〇下緣中央具有 缺口 131。在組裝時,該缺口 13丨與軟性電路板“ο對 應,軟性電路板140上下的金屬接點141可與第一導電膜 110及第三導電膜12〇上的各導線的末端電性連接可使 表早編號Α0101 第8頁/共34頁 0992014015-0 201133315 外部電訊號傳遞到第_邋+ ^ 蛉甩層11〇的第一電極Π4以及第 二導電層120的第二電極124上。 [0019] 在幸又佳只施例中,本發明實施例觸控面板⑽所使用之 %形膠體層130可以是熱固化膠或则化膠等。為了提高 觸控面板1GG的可讀,^朗控聽⑽的邊框寬度 ,本實施例中之第—導電層113及第二導電層123是以奈 米碳管薄朗構成。此奈米碳管賴具有導電特性,其 由超順垂直排列奈米碳管陣列(Super Vert丨ca丄_ ΟCi + 1, where Δ(:[!ΐ] represents the characteristics of the ith and i+1th scan electrodes 099107795 Form No. A0101 Page 5 / Total 34 Page 0992014015-0 201133315 [0007] [0008] [0009] [0010] 099107795 difference; if the reference sensing point is in the jth column ' then use the reference eigenvalue to calculate C(i + l, j) = CU, :i) + AC[i] or calculate C(il, j) C ( i,j) - Δ C [ i ] ' where C ( i,j ) represents the eigenvalues of the i-th row and j-th sense points in the sensing points; and calculates C(i,j + i)= with 1,:!')+ Δ(:(ί,:ί) or calculate C(i,j-1) = C(i,j) - △ C(i, j). In the present invention In one embodiment, the differential identification method of the touch panel further includes: calculating a difference between a minimum feature value of the feature values of all the sensing points on the i-th scan line and the reference feature value, and the front is a compensation value. And adjusting the characteristic value of the sensing points of the ith scanning line according to the compensation value - ′ - in an embodiment of the invention, the differential identification method of the touch panel further includes: calculating the “Article” An average eigenvalue of all sensed points on the scan line; calculation The difference between the average eigenvalue and the reference eigenvalue is used as a compensation value; and the eigenvalues of all the sensing points are determined according to the value. In the implementation of the present invention, the ❹m lag difference Δ(: The step of: sensing the characteristic difference value ACi of the kth sensing electrode and the idle sensing electrode of the touch panel. In the present invention, the step of sensing the characteristic difference value ΔΠ includes: Sensing the characteristic difference Δ of the kth sensing electrode and the reference capacitor (: ί. Based on the above, the differential identification method disclosed in the embodiment of the present invention adopts a full-plane scanning mode, and can accurately distinguish the “touch”单上单点,两第6页/共34页表编号Α0101 0992014015-0 [0011] 201133315 - [0012] [0013] 00 [0015] 099107795 Point information of even more touch points In order to make the above features and advantages of the present invention more comprehensible, the following specific embodiments will be described in detail below with reference to the accompanying drawings. The control panel can be any form of touch The control panel is, for example, a capacitive touch panel, a resistive touch panel or a touch panel having a carbon nanotube (CNT) film. The touch panel is along the first axis. The second axis (eg, the X-axis and the γ-axis, but not limited thereto) each has a plurality of scan electrodes and a plurality of sense electrodes. In addition, the feature values to be identified will vary depending on the type of touch panel being recognized. In order to be more specific: the implementation of the capacitive touch panel will be exemplified, and the capacitance value is taken as the characteristic value to be recognized. Those of ordinary skill in the art can be analogized to other types of touch panels in accordance with the teachings of the following embodiments. The characteristic value to be identified may be a current value or a voltage value in addition to the capacitance value. FIG. 1 is a schematic diagram showing a functional module of a touch panel 1A according to an embodiment of the invention. FIG. 2 is a combination diagram of the touch panel 100 of FIG. 1 according to an embodiment of the invention. A Cartesian coordinate system is introduced in Fig. 2, which includes an X-axis direction, a Y-axis direction, and a Z-axis direction which are perpendicular to each other. In order to simplify the drawing and the description, the first electrode 114 and the second electrode 124 in FIG. 2 are respectively represented by five electrodes 'but in actual application, the number of the first sensing electrodes 114 and the second sensing electrodes 124' may be The area of the actual touch panel and the field of application depend on it. As shown in FIG. 2, the touch panel 1 is formed by laminating a first conductive film 11A and a second conductive film 120. The dielectric layer structure is disposed between the first conductive film 11 () and the first form number A0101 帛 7 / 34 1 0992014015-0 201133315 [0016] [0018] 099107795 between the two conductive films 120. The dielectric layer structure may be the annular gel layer 130 shown in Fig. 2, or may be other structures. Both the first conductive film 11A and the second conductive film 120 are bonded and fixed by the annular colloid layer 13A. A plurality of insulating spacers 132 ′ are evenly distributed between the first conductive film 11 〇 and the second conductive film 120 θ to maintain the two conductive films 110 , 120 at a fixed pitch. The first conductive film 110 includes the first conductive layer 113 . And the first electrode 114. A plurality of first electrodes 114 are disposed on one side of the first conductive layer 113 in a first axial direction (e.g., a x-axis direction). The first electrodes 114 are equally spaced apart from each other and electrically connected to the first conductive layer 113. The end of the first electrode 114 extends to the lower edge of the first conductive film 110 as a signal for external transmission. The second conductive film 120 also includes a second conductive layer i 23 and a second electrode 124. A plurality of second electrodes 124 are disposed on one side of the second conductor layer 123 in the second axial direction (for example, the γ-axis direction). The second electrodes 24 are equally spaced apart from each other and electrically connected to the second conductive layer 123. The second electrode 124 is connected to a plurality of parallel-connected wires 125 on the right side of the second conductive film 120, and the connecting wires 12 5 /σ extends to the right edge of the first conductive layer 12 3 , and the end of the connecting wire 12 5 extends to the center of the lower edge of the second conductive pad 120 for transmitting signals to the outside. In addition, the touch panel 100 further includes a flexible printed circuit board 14A having a plurality of metal contacts 141 having a notch 131 in the center of the lower edge of the annular colloid layer 13. In the assembly, the notch 13 丨 corresponds to the flexible circuit board ο. The metal contacts 141 above and below the flexible circuit board 140 can be electrically connected to the ends of the wires on the first conductive film 110 and the third conductive film 12 可. The table is numbered as early as Α0101. Page 8/34 pages 0992014015-0 201133315 The external electrical signal is transmitted to the first electrode Π4 of the 邋 邋 + ^ 蛉甩 layer 11 以及 and the second electrode 124 of the second conductive layer 120. In the case of the preferred embodiment, the %-shaped colloid layer 130 used in the touch panel (10) of the embodiment of the present invention may be a heat-curable adhesive or a gel, etc. In order to improve the readability of the touch panel 1GG, The width of the frame of the listening and listening (10), the first conductive layer 113 and the second conductive layer 123 in the embodiment are formed by a thin carbon nanotube. The carbon nanotube has a conductive property, and the nano tube is arranged by super-shorizon Carbon tube array (Super Vert丨ca丄_ Ο

Aligned Carbon Nanotube Array)透過拉伸方式製成 ,可應用於製作透明的導電薄膜。在拉伸製程中,長鍊 狀奈米碳管約略沿著拉伸方向平行排列,因而奈米碳管 ^ 4繫...:,f ι,.^ΐ'ΐ 導電薄膜在拉伸方向具有較低阻抗’在垂直拉伸方向阻 抗約為拉伸方向阻抗的5〇至350倍之間,其表面電阻也因 量測的位置不同、方向不同而介於1 ΚΩ至800 ΚΩ之間 ,因此第一導電層113及第二導電層123具有導電異向性 (Anisotropic Conductivity) ° 〇 [0020] 如圖2所示’在本發明實施例中’第一導電層1丨3具有一 主導電方向CD1 (原導電膜拉伸方向),第二導電層eg 具有另一主導電方向CD2。在此實施例中,第一導電層 113的主導電方向(即低阻抗方向)CD1及第二導電層123 的主導電方向CD2相互垂直。例如,第二導電層123的低 阻抗方向CD2為X軸方向,而第一導電層113的低阻抗方向 CD1為Y軸方向。在此,第一導電層113與第二導電層123 在主導電方向之垂直方向的阻抗,約為主導電方向CD1、 CD2阻抗的100至200倍之間。 099107795 表單編號A0101 第9頁/共34頁 0992014015-0 201133315 [0021] 如圖1所示,控制器1 0電性連接至第一電極1 1 4與第二電 極1 24。在辨識Y軸向的碰觸位置時,第一電極11 4被當作 掃描電極,因此控制器10同時提供驅動訊號(例如邏輯高 準位)給所有第一電極114,並在提供驅動訊號至所有第 一電極114的期間,逐一感測每一個第二電極124的特徵 值(例如Ϊ:容值、電阻值或電壓值)。然後,控制器丨0再 同時將驅動訊號改提供給所有第二電極124,並在提供驅 動訊號至所有第二電極124的期間,逐一感測每一個第一 電極114的特徵值。控制器10完成上述辨識的動作後,便 可以得到觸碰點的X、Y轴座標資訊。 [0022] 為了簡化說明,以下實施例以觸控面板100在操作時,僅 有二個觸控點舉例。但實際操作時,本發明實施例觸控 面板之多點辨識方法亦可適用於更多觸控點的情形。圖3 是依照本發明實施例說明圖2所示觸控面板100的辨識方 法示意圖。假設觸控面板100上有兩個觸碰點,其座標分 別是(xl, y2)與(x2,yl)。控制器10進行上述操作而 同時提供驅動訊號給所有第一電極114,並感測每一個第 二電極124的電容值。由每一個第二電極124的電容值可 以求得觸碰點的Y軸座標是y2與yl。接下來,控制器10進 行上述操作而同時將驅動訊號改提供給所有第二電極124 ,並感測每一個第一電極114的電容值。由每一個第一電 極114的電容值可以求得觸碰點的X軸座標是xl與x2。完 成上述辨識的動作後,控制器10便可以得到兩個觸碰點 的X、Y軸的座標資訊。然而,此辨識方式會有鬼點的問 題與訊號遮蔽問題。例如,控制器10無法判斷兩個觸碰 099107795 表單編號A0101 第10頁/共34頁 0992014015-0 201133315 點座標到底是(χ1,y2)、(x2,yl),還是(χ1,yl)、(χ2, y2)。 [0023] 圖4是依照本發明實施例說明圖丨所示觸控面板1〇〇的示意 圖。為了簡化圖式及說明,圖4中僅以掃描電極8卜託表 Ο 示第一電極114 ,以及用感測電極D1〜D5表示第二電極 124,但實際應用時,掃描電極及感測電極的數目可根據 實際觸控面板的面積及應用需求而定。藉由圖2中第一導 電層113及第二導電層123所具有的導電異向性,掃描電 極S1〜S5相當於各自電性連接至對應的一條掃描線,而感 測電極D1〜D 5亦柢當於各自電性連接至對應的一條感測線 。前述掃描線與感測線的每一個交會處形成一個感測電 容,而每-個感測電容可以作為一個感測#,如圖4所示 [0024] ο 099107795 在辨識過程中,掃描電極SbS5會以—次—個的方式輪流 被選擇並且被提㈣動訊號。前述掃描電極W~s5的順序 可以是以财方式選擇下-個掃描電極,也可以是交錯 方式,例如先掃S1、S3、S5,再掃S2、s4...,或是以幻 、S2、S4 ' SI ' S5的順序進行掃t在其他實施例中, 掃描電㈣卜S5的㈣順序切叫賴或無規則 的順序,例如隨機蚊驅動順序,或是其他任何方式決 定驅動順和本實施例將以循序方式決定掃描電 的掃描順序。圖5是依照本發明實施例說明圖艸掃描電 極S卜S5被提供驅㈣號的時相係㈣^也就是說, 於掃描電極S1〜S5中選擇^個細電極Si,以提供驅動 訊號至所騎㈣極Si ;接下來轉錄伽動訊號至 表單編號A0101 第11頁/共34頁 0992014015-0 201133315 如述i為整數。Aligned Carbon Nanotube Array) is made by stretching and can be used to make transparent conductive films. In the stretching process, the long-chain carbon nanotubes are arranged approximately parallel along the stretching direction, so that the carbon nanotubes are...:,f ι,.^ΐ'ΐ The conductive film has a tensile direction in the stretching direction. The lower impedance 'the impedance in the vertical tensile direction is between 5 〇 and 350 times the impedance in the tensile direction, and the surface resistance is also between 1 Κ Ω and 800 Κ Ω due to the different positions and directions. The first conductive layer 113 and the second conductive layer 123 have an anisotropic conductivity. [0020] As shown in FIG. 2, in the embodiment of the present invention, the first conductive layer 1丨3 has a main conductive direction. CD1 (original conductive film stretching direction), the second conductive layer eg has another main conductive direction CD2. In this embodiment, the main conductive direction (i.e., low impedance direction) CD1 of the first conductive layer 113 and the main conductive direction CD2 of the second conductive layer 123 are perpendicular to each other. For example, the low-impedance direction CD2 of the second conductive layer 123 is in the X-axis direction, and the low-impedance direction CD1 of the first conductive layer 113 is in the Y-axis direction. Here, the impedance of the first conductive layer 113 and the second conductive layer 123 in the direction perpendicular to the main conductive direction is between 100 and 200 times the impedance of the main conductive directions CD1 and CD2. 099107795 Form No. A0101 Page 9 of 34 0992014015-0 201133315 [0021] As shown in FIG. 1, the controller 10 is electrically connected to the first electrode 1 14 and the second electrode 1 24 . When the touch position of the Y-axis is recognized, the first electrode 11 is regarded as a scan electrode, so the controller 10 simultaneously supplies a driving signal (for example, a logic high level) to all the first electrodes 114, and provides a driving signal to During the period of all the first electrodes 114, the characteristic values (for example, capacitance, resistance value or voltage value) of each of the second electrodes 124 are sensed one by one. Then, the controller 再0 simultaneously supplies the driving signal to all of the second electrodes 124, and senses the characteristic value of each of the first electrodes 114 one by one while providing the driving signals to all of the second electrodes 124. After the controller 10 completes the above identification operation, the X and Y axis coordinate information of the touch point can be obtained. [0022] In order to simplify the description, in the following embodiments, when the touch panel 100 is in operation, only two touch points are exemplified. However, in the actual operation, the multi-point identification method of the touch panel of the embodiment of the present invention can also be applied to more touch points. FIG. 3 is a schematic diagram showing an identification method of the touch panel 100 of FIG. 2 according to an embodiment of the invention. It is assumed that there are two touch points on the touch panel 100, and their coordinates are (xl, y2) and (x2, yl), respectively. The controller 10 performs the above operation while simultaneously providing driving signals to all of the first electrodes 114, and sensing the capacitance value of each of the second electrodes 124. From the capacitance value of each of the second electrodes 124, it can be found that the Y-axis coordinates of the touch point are y2 and yl. Next, the controller 10 performs the above operation while simultaneously supplying the driving signal to all of the second electrodes 124, and sensing the capacitance value of each of the first electrodes 114. From the capacitance value of each of the first electrodes 114, the X-axis coordinates of the touch point can be found to be x1 and x2. After the above identified action is completed, the controller 10 can obtain the coordinate information of the X and Y axes of the two touch points. However, this identification method has ghost problems and signal obscuration problems. For example, the controller 10 cannot judge two touches 099107795 Form No. A0101 Page 10 / Total 34 Page 0992014015-0 201133315 Whether the coordinates of the point coordinates are (χ1, y2), (x2, yl), or (χ1, yl), ( Χ2, y2). 4 is a schematic view of the touch panel 1A shown in FIG. 4 according to an embodiment of the invention. In order to simplify the drawing and the description, in FIG. 4, only the first electrode 114 is shown by the scanning electrode 8 and the second electrode 124 is represented by the sensing electrodes D1 to D5, but in practical use, the scanning electrode and the sensing electrode The number can be determined according to the actual touch panel area and application requirements. With the conductive anisotropy of the first conductive layer 113 and the second conductive layer 123 in FIG. 2, the scan electrodes S1 S S5 are electrically connected to corresponding one scan lines, and the sensing electrodes D1 DD D 5 They are also electrically connected to a corresponding one of the sensing lines. Each of the scan lines and the sense line forms a sense capacitance at each intersection, and each sense capacitor can be used as a sense #, as shown in FIG. 4 [0024] ο 099107795 During the identification process, the scan electrode SbS5 will In turn, the (four) motion signals are selected in turn. The order of the scan electrodes W~s5 may be selected by the next scan electrode, or may be an interlaced manner, for example, sweeping S1, S3, S5, sweeping S2, s4..., or illusion, S2. The sequence of S4 'SI 'S5 is swept t. In other embodiments, the scanning (4), S5, (4) sequential ordering or random order, such as a random mosquito driving sequence, or any other way to determine the driving of the Shun and Ben The embodiment will determine the scanning order of the scanning power in a sequential manner. FIG. 5 is a timing diagram showing the phase (4) of the scan electrode Sb S5 being provided with the drive number (4) in accordance with an embodiment of the present invention. That is, selecting the fine electrode Si from the scan electrodes S1 S S5 to provide a driving signal to Ride (four) pole Si; next transcript gamma signal to form number A0101 page 11 / total 34 page 0992014015-0 201133315 as described i is an integer.

第i + 1個掃描電極+ Di + 1 scan electrode + D

[0025] [0026] «供該驅動訊號至所述第H目掃描電極Si的期間,控制 益1 〇以差動放大器感測該些感測電極中第^固感測 電極Dj與相鄰近的另—個感測電極的特徵差值△…,j) 以及以差動放大器感測該些感測電極D卜D 5中第让個感 測電極Dk與某-參考特徵值Cref的特徵差值⑽,其中 j ' k為整數。前述「相鄰近的兩個感測電極」可以是相 互鄰接的兩個感測電極,例如感測⑺個感測電極^與第 J + 1個感測電極D(j+1)而獲得特徵差值△(:〇, j)。或者 ,「相鄰近的兩個感測電極」也可以是中間隔著—個、 二個或更多個其他感測電極的兩個感測電極,例如感測 第j個感測電極Dj與第j + 2個感測電極j)( j + 2)而獲得特徵 f值Δ(:α,j)。於本實施例中,上述特徵差值△(:(〖,j) 疋指該些感測電極D! ~ D 5 _第』個感測電極D〗與第"〗個 f測電極D(j + 1)的特徵差值,而上述特徵差值可以是電 谷差值。上述感測該些感冑電極.财相鄰近的兩個感 測電極的實現方式,可以是以_次—對感測電極的方式 感測相鄰近的兩個感測電極的特徵差值,也可 以同時完成前述所有特徵差值的感測操作。 例如,假sS:上述「第k個感測電極」細,也就是控制器 1 〇以差動放大器感測這些感測電極D1 ~D5中的邊緣電極 D1與某-參考特徵船ef_徵差值^在提供該驅動訊 號至第1個掃描電極以的期間,控制器1〇以差動放大器感 測相鄰近的感測電極^與…的特徵差值Δ(:(1,〗)' 感測 電極D2與D3的特徵差值△cdj)、感測電極⑽與“的特 099107795 表單編號A0101 第12頁/共34頁 0992014015-0 201133315 徵差值Δ(:(1,3)、感測電極D4與D5的特徵差值A C(l,4)、以及以差動放大器感測第1個感測電極D1與某 一參考特徵值Crei的特徵差值AC1。前述參考特徵值 Cref可以由配置在觸控面板1〇〇上的間置感測電極 (dummy detecting electrode) D0來提供。也就是說 ,在提供該驅動訊號至第1個掃描電極S1的期間,差動放 大器感測第1個感測電極D1與觸控面板丨〇〇的閒置感測電 極D0的特徵差值AC1。於本實施例中,上述閒置感測電 極D 0並沒有連接實體感測線。應用本實施例者可以視其 〇 、 設計需求而任意決定間置感測電極D0的連接架構,比如 說將閒置感測電極D0連接至比較特別的線(例如地線)。 在其他實施例中,在觸控面板1 〇 〇上可能沒有配置上述閒 置感測電極D0,而前述參考特徵值cref可以由配置在觸 控面板10 0外的參考電容器來提供。也就是說,控制器1〇 以差動放大器感測所述第1個感測電極D1與該參考電容器 的特徵差值Δ(:1。 〇 [〇〇27]接下來,在提供該驅動訊號至第2個掃描電極S2的期間, 以差動放大器感測相鄰近的感測電極〇丨與…的特徵差值 △c(2, 1)、感測電極D2與D3的特徵差值Δ(:(2, 2)、感 測電極1)3與D4的特徵差值AC(2, 3)、感測電極D4與D5的 特徵差值Δ(:(2, 4)、以及以差動放大器感測第丨個感測電 極D1與該參考特徵值^以的特徵差值δ(:2。以此類推, 獲得特徵差值ACai)〜Δ(:(3,4)、ΔίΧΐυ〜△ C(4, 4)、△(χδ,1)〜4)以及特徵差值 AC3、Δ(:4 、AC5。 099107795 表單編號Α0101 第13頁/共34頁 0992014015-0 201133315 [0028] [0029] [0030] 需強調的是,前述「第k個感測電極」可以依據設計需求 而任意決定。例如’以圖4為例,上述「第k個感測電極 」可以是D5或其他感測電極。也就是說,可以視設計需 求而從感測電極D1〜D5中選擇任何一條感測電極來偵測出 特徵差值Δ(:1~Δ05。另外,前述閒置感測電極])〇的位置 並不限於圖4所示。間置感測電極D〇的位置可以視設計需 求而定,例如圖4中閒置感測電極D0,之位置或是其他任 何位置。 利用上述特徵差值△Cl-A C5可轉換為另一軸向的資訊。 例如,計算△ C [ i ] = △ C i - Δ Ci Η,其中△ C [ i ]表示 第i個掃描電極Si與第i + i個掃描電極s(i + 1)的特徵差值 。請參照圖4 ’由於ΔΠ=(:(1,1)-Cref,而△ C2 = C(2, 1)-Cref,所以第1個掃描電極S1與第2個掃描 電極S2的特徵差值Δ(:[1] = c(11)_ = △ n-AC2。以此類推,可以計算出特徵差值Δ(:[2]〜△ C[4] 〇 上述辨識所獲得的值都是相對特徵值,若欲獲得所有感 測點的特徵值,則需要將觸控面板1〇〇多個感測點中任選 一個感測點作為基準感測點,並將此基準感測點的特徵 值預先設定為某一基準特徵值。接下來,便可以使用該 基準特徵值、特徵差值ACl〜AC5、與特徵差值△ c(l,1)〜Δ(:(1,4)、特徵差值1)〜△Cd 4)、特 徵差值Δ(:(3,1)〜Δ(:(3,4)、特徵差值 CU,4)、特徵差值計算所有感測點 的特徵值。 099107795 表單編號A0101 第14頁/共34頁 0992014015-0 201133315 [0031][0026] During the period from the driving signal to the H-th scan electrode Si, the control amplifier senses the second sensing electrode Dj of the sensing electrodes adjacent to each other by the differential amplifier. The characteristic difference Δ..., j) of the other sensing electrodes and the difference between the sensing electrodes Dk and the certain reference reference value Cref of the sensing electrodes D D D 5 are sensed by the differential amplifier (10), where j ' k is an integer. The foregoing two adjacent sensing electrodes may be two sensing electrodes adjacent to each other, for example, sensing (7) sensing electrodes ^ and J + 1 sensing electrodes D (j+1) to obtain characteristic difference The value △ (: 〇, j). Alternatively, the "two sensing electrodes adjacent to each other" may also be two sensing electrodes with one, two or more other sensing electrodes interposed therebetween, for example, sensing the jth sensing electrode Dj and the first j + 2 sensing electrodes j) ( j + 2) to obtain a characteristic f value Δ (: α, j). In this embodiment, the characteristic difference value Δ(:(,, j) 疋 refers to the sensing electrodes D! ~ D 5 _ the first sensing electrodes D and the first " a f measuring electrodes D ( The characteristic difference value of j + 1), and the above characteristic difference value may be the electric valley difference value. The above sensing the sensing electrodes, the two sensing electrodes adjacent to the financial phase may be implemented by _ times-pair The sensing electrode is configured to sense the characteristic difference between the two sensing electrodes adjacent to each other, and the sensing operation of all the feature difference values described above may be simultaneously performed. For example, the false sS: the “kth sensing electrode” is thin. That is, the controller 1 感 senses the edge electrode D1 of the sensing electrodes D1 to D5 and the certain reference feature ship ef_ sign difference by the differential amplifier, during the period in which the driving signal is supplied to the first scanning electrode. The controller 1 detects the characteristic difference Δ(:(1, ′′′′ of the sensing electrodes D2 and D3) and the sensing electrode by the differential amplifier. (10) with "Special 099107795 Form No. A0101 Page 12 / Total 34 Page 0992014015-0 201133315 Difference value Δ (: (1, 3), sensing electrodes D4 and D5 The difference AC (1, 4), and the difference amplifier AC1 of the first sensing electrode D1 and a certain reference characteristic value Crei are sensed by the differential amplifier. The aforementioned reference characteristic value Cref can be configured in the touch panel 1 The dummy detecting electrode D0 is provided on the cymbal. That is, during the period in which the driving signal is supplied to the first scanning electrode S1, the differential amplifier senses the first sensing electrode D1 and the touch. In the present embodiment, the idle sensing electrode D 0 is not connected to the physical sensing line. The embodiment of the present invention can be used as the design and the design requirements. The connection structure of the inter-set sensing electrode D0 is arbitrarily determined, for example, the idle sensing electrode D0 is connected to a relatively special line (for example, a ground line). In other embodiments, the above-mentioned touch panel 1 may not be configured. The sensing electrode D0 is idle, and the aforementioned reference characteristic value cref may be provided by a reference capacitor disposed outside the touch panel 100. That is, the controller 1 感 senses the first sensing electrode with a differential amplifier D1 and the reference The characteristic difference Δ of the container (: 1. 〇 [〇〇 27] Next, during the period in which the driving signal is supplied to the second scanning electrode S2, the differential amplifier senses the adjacent sensing electrodes 〇丨 and... Characteristic difference Δc(2, 1), characteristic difference Δ(:(2, 2), sensing electrode 1) of sensing electrodes D2 and D3, characteristic difference AC(2, 3) of D4, The characteristic difference Δ(:(2, 4) of the sensing electrodes D4 and D5, and the characteristic difference δ(:2) of the second sensing electrode D1 and the reference characteristic value are sensed by the differential amplifier. By analogy, the characteristic difference values ACai)~Δ(:(3,4), ΔίΧΐυ~△C(4, 4), △(χδ,1)~4) and the characteristic difference values AC3, Δ(:4, AC5. 099107795 Form No. 1010101 Page 13 of 34 0992014015-0 201133315 [0028] [0030] It should be emphasized that the aforementioned "kth sensing electrode" can be arbitrarily determined according to design requirements. For example For example, in FIG. 4, the “kth sensing electrode” may be a D5 or other sensing electrode. That is, any one of the sensing electrodes D1 to D5 may be selected according to design requirements to detect. The position difference Δ(:1~Δ05. In addition, the position of the idle sensing electrode]) is not limited to that shown in Fig. 4. The position of the interfering sensing electrode D〇 may be determined according to design requirements, for example, FIG. The position of the sensing electrode D0 is idle, or any other position. The above characteristic difference ΔCl-A C5 can be used to convert to another axial information. For example, calculate Δ C [ i ] = △ C i - Δ Ci Η, where Δ C [ i ] represents the characteristic difference between the i-th scan electrode Si and the i-th i-th scan electrode s(i + 1). Please refer to FIG. 4' ΔΠ=(:(1,1)-Cref, and ΔC2 = C(2, 1)-Cref, so the characteristic difference Δ(:[1] of the first scan electrode S1 and the second scan electrode S2 = c(11)_ = △ n-AC2. By analogy, the characteristic difference Δ(:[2]~△ C[4] can be calculated. The values obtained by the above identification are relative eigenvalues, if you want to obtain For the feature values of all the sensing points, the touch panel 1 任 one of the plurality of sensing points needs to be used as the reference sensing point, and the characteristic value of the reference sensing point is preset to a certain value. Reference characteristic value. Next, the reference characteristic value, the characteristic difference values ACl~AC5, and the characteristic difference value Δc(l,1)~Δ(:(1,4), the characteristic difference value 1)~Δ can be used. Cd 4), the characteristic difference Δ(:(3,1)~Δ(:(3,4), the characteristic difference value CU,4), the characteristic difference value is used to calculate the eigenvalues of all the sensing points. 099107795 Form No. A0101 14 pages/total 34 pages 0992014015-0 201133315 [0031]

若該基準制點位於第Μ,較_基準特徵值計算 C(1 + 1,j) = c(i,j) - Δ(:[π (或計算CU-U = c(i’j) + Δ(:[1])。其中’Cdj)表示該些感測點中 第1仃第J列感測點的特徵值。例如,假設感測點未被觸 碰之特徵值為C0,且假設選擇第!行第】列感測點(即圖4 標示C(l,1)處)作為基準感測點,則此基準感測點的特徵 值C(l’ 1)會被設定為C0 (即基準特徵值)。由於⑴ -C(l,1)- c(2, 1),所以特徵值c(2, 1:) = c(1,^ _ △C[l] = CO-MCl]。依此類推’可以算出特徵值 C(3, 1)、C(4, Γ)解(5,j) » [0032] 接下來計算C(i,j + 1)=⑴,]·) - △CU,』)(或計算 C(i,j-1) = CG’i) + △c^j)),以算出其他感測 點的特徵值。例如,請參照圖4,由於舰差值Δ(:(ι,^ =c(l,l)- c(l,2),所以特徵值 c(1,2) = Cd,))_If the reference point is at Μ, calculate C(1 + 1,j) = c(i,j) - Δ(:[π (or calculate CU-U = c(i'j) +) from the _ datum eigenvalue Δ(:[1]), where 'Cdj' represents the eigenvalue of the sensing point of the first 仃Jth column of the sensing points. For example, suppose that the eigenvalue of the sensing point is not touched is C0, and the hypothesis When the sensing point of the [row] row is selected (ie, at C(l, 1) in Fig. 4) as the reference sensing point, the characteristic value C(l'1) of the reference sensing point is set to C0 ( That is, the reference feature value). Since (1) -C(l,1)- c(2, 1), the eigenvalue c(2, 1:) = c(1,^ _ △C[l] = CO-MCl] And so on can calculate the eigenvalues C(3, 1), C(4, Γ) solutions (5,j) » [0032] Next calculate C(i,j + 1)=(1),]·) - △ CU, 』) (or calculate C(i, j-1) = CG'i) + Δc^j)) to calculate the eigenvalues of other sensing points. For example, referring to Figure 4, due to the ship difference Δ(:(ι,^ =c(l,l)- c(l,2), the eigenvalue c(1,2) = Cd,))_

△ C(l’ 1) = C0-AC(1,1)。依此類推,可以算出特徵 值c(l, 3)、C(l,4)與c(l,5)。相類似地,使用特徵值 C(2, 1)、C(3, 1)、C(4’ 1)與c(5,l),以及使用特徵差 值 ^0(2, 1)〜Δ(:(2, 4) ' 特徵差值 Δ(:(3, 4) 、特徵差值Δ(:(4,1)〜Δ(:(4,4)、特徵差值^¢(5,1)〜 △ C ( 5,4 )可以計算其他感測點的特徵值。 [0033]在獲得所有感測點的特徵值後,便可以決定哪一個或哪 些個感測點是觸碰點。例如,可以將所有感測點的特徵 值與-臨界值相比較,而賴值超㉟臨界值的感測點則 可以決定該感測點為觸碰點。又例如,若於這些感測點 中,某一個感測點(以下稱第一感測點)的特徵值大於與 099107795 表單編號Α0101 第頁/共34頁 0992014015-0 201133315 此第一感測點相鄰接的所有感測點的特徵值,則決定此 第一感測點為觸碰點。由於本實施例所揭露的差動辨識 方法採用全平面掃描方式,可以精確辨識出在觸控面板 上單點、兩點甚至更多觸碰點的座標資訊,且無鬼點問 題。 [0034] [0035] 099107795 應用上述實施例者可以依據設計需求而改變實施方式。 例如,以圖4為例,上述「第k個感測電極」可以是D3。 也就是說,選擇感測電極D3來偵測出特徵差值Δ(:卜Δ(:5 。另外,假設選擇第3行第3列感測點(即圖4標示c(3, 3) 處)作為基準感測點,則此基準感刹點的特徵值C(3, 3)會 被设定為基準特徵值依前述假設,可以算出特徵值 C(4, 3) = C0-AC[3]、C(5,3)=C(4,3)-AC[4]、 C(2, 3) = (:0+Δ(:[2]與C(l,3)=C(2, 3) + Δ(:[1]。然後 ,接著算出特徵值(:(3,4)=(:0-^(:(3,3)、 C(3’ 5)=C(3’4)-Δ(:(3, 4)、C(3, 2)=C0+/\C(3, 2)與 C(3’1)=C(3’2)+AC(3,1)。其它感測點的特徵值可以 推算出’在此不再贅述。 依據實際應用條件的不同,上述實施例在計算出所有感 測點的特徵值後,可以進一步進行校正步驟。例如,找 出第i條掃描線S i上所有感測點的特徵值中最小特徵值, 然後計算此最小特徵值與基準特徵值⑶的差值作為補償 值Coffset。然後,依據補償值以卩託七調整該第丨條掃 描線S i上所有感測點的特徵值。 圖6是依照本發明實施例說_控面板所有制點的特徵 值之示意圖。此觸控面板具有9個掃描線(即9個掃描電極 表單編號A0101 第Ϊ6頁/共34頁 0992014015-0 [0036] 201133315 Ο [0037] S1 ~ S 9 )與12個感測線(即12個感測電極D1〜D12 )。本實 施例是假設有兩個觸碰點’其位置分別在掃描線S3與感 測線D6交會處,以及在掃描線S6與感測線D6交會處,且 假設基準特徵值C0為1023,並選擇掃描線S1與感測線D1 交會處之感測點作為基準感測點。經過上述差動辨識方 法後,< 計算出觸控面板上所有感測點的特徵值,如圖6 所示。由圖6所示特徵值可以找出相對極大值出現在掃描 線S6與感測線D6交會處,則可以決定此感測點為觸碰點 。然而,另一觸碰點可能會因為上述多個特徵差值的誤 差而無法被辨識出。 Ο 因此,圖6所示感測點的特徵值需要進行校正。圖7是依 照本發明實施例說明圖6所示特徵值校正後之示意圖。例 如,找出第2條掃描線S2上所有感測點的特徵值中最小特 徵值為1017 ’然後計算此最小特徵值與:基準特徵值[〇的 差值作為補償值Coffset,,也就是Coffset = 1023 ~ 1017 = 6。然後’依據補償值Coffset調整掃描線S2上 所有感測點的特徵後,也就是掃描線S2上所有感測點的 特徵值都加上6。依此類推,逐一校正每一條掃描線上所 有感測點的特徵值,而獲得校正後的特徵值如圖7所示。 由圖7所示特徵值可以找出有兩個相對極大值,分別出現 在掃描線S6與感測線D6交會處,以及出現在掃描線“與 感測線D6交會處。因此,經過校正後更可以精確辨識出 此二個觸碰點的位置。 應用本實施例者可以視其設計需求而改用其他校正方法 來校正圖6所示特徵值。例如,計算第i條掃描線以上所 099107795 表單編號A0101 第17頁/共34頁 0992014015-0 [0038] 201133315 有感測點的平均特徵值,然後計算該平均特徵值與基準 特徵值C0的差值作為補償值Coffset,最後依據補償值△ C(l' 1) = C0-AC(1,1). By analogy, the eigenvalues c(l, 3), C(l, 4), and c(l, 5) can be calculated. Similarly, the eigenvalues C(2, 1), C(3, 1), C(4' 1), and c(5, l) are used, and the feature difference ^0(2, 1) ~ Δ is used ( :(2, 4) ' Characteristic difference Δ(:(3, 4) , characteristic difference Δ(:(4,1)~Δ(:(4,4), characteristic difference^¢(5,1) ~ △ C ( 5,4 ) can calculate the eigenvalues of other sensing points. [0033] After obtaining the eigenvalues of all the sensing points, it can be determined which sensing point or points are touching points. For example, The eigenvalues of all the sensing points can be compared with the -threshold value, and the sensing points with the lag value exceeding the 35th threshold value can determine the sensing point as the touch point. For example, if among these sensing points, The eigenvalue of a certain sensing point (hereinafter referred to as the first sensing point) is greater than the eigenvalue of all the sensing points adjacent to the first sensing point, which is greater than 099107795 Form No. Α0101 Page 34/34 Page 0992014015-0 201133315 The first sensing point is determined to be a touch point. Since the differential identification method disclosed in the embodiment adopts a full-plane scanning mode, the single point, two points or even more touches on the touch panel can be accurately identified. Point coordinate information, and no [0035] [0035] 099107795 The application of the above embodiment can change the implementation according to the design requirements. For example, taking FIG. 4 as an example, the "kth sensing electrode" may be D3. The sensing electrode D3 detects the characteristic difference Δ(: ΔΔ(:5. In addition, it is assumed that the sensing point of the third row and the third column is selected (that is, at the position c(3, 3) in FIG. 4) as the reference sensing. At the point, the characteristic value C(3, 3) of the reference sense point is set as the reference feature value. According to the above assumption, the characteristic value C(4, 3) = C0-AC[3], C(5) can be calculated. , 3)=C(4,3)-AC[4], C(2, 3) = (:0+Δ(:[2] and C(l,3)=C(2, 3) + Δ( :[1] Then, the eigenvalues are calculated (:(3,4)=(:0-^(:(3,3), C(3' 5)=C(3'4)-Δ(:( 3, 4), C(3, 2)=C0+/\C(3, 2) and C(3'1)=C(3'2)+AC(3,1). Characteristic values of other sensing points It can be inferred that 'there will be no further description here. Depending on the actual application conditions, the above embodiment can further perform the correction step after calculating the characteristic values of all the sensing points. For example, find the i-th scanning line S i The smallest of the eigenvalues of all sense points The eigenvalue is then calculated as the offset value Coffset of the minimum eigenvalue and the reference eigenvalue (3). Then, the eigenvalues of all the sensing points on the scan line S i are adjusted according to the compensation value. 6 is a schematic diagram of characteristic values of all control points of the control panel according to an embodiment of the present invention. The touch panel has 9 scan lines (ie, 9 scan electrode form numbers A0101, page 6 / 34 pages 0992014015-0 [0036] 201133315 Ο [0037] S1 ~ S 9 ) and 12 sense lines (ie 12 Sensing electrodes D1 to D12). In this embodiment, it is assumed that there are two touch points 'the positions are respectively at the intersection of the scan line S3 and the sensing line D6, and the intersection of the scan line S6 and the sensing line D6, and the reference feature value C0 is assumed to be 1023, and the scan is selected. The sensing point at the intersection of the line S1 and the sensing line D1 serves as a reference sensing point. After the differential identification method described above, < calculates the characteristic values of all the sensing points on the touch panel, as shown in FIG. 6. From the characteristic values shown in Fig. 6, it can be found that the relative maximum value appears at the intersection of the scanning line S6 and the sensing line D6, and the sensing point can be determined as the touch point. However, another touch point may not be recognized due to the error of the above plurality of feature differences. Ο Therefore, the eigenvalues of the sensing points shown in Figure 6 need to be corrected. Fig. 7 is a schematic view showing the eigenvalue correction shown in Fig. 6 in accordance with an embodiment of the present invention. For example, finding the smallest eigenvalue of the eigenvalues of all the sensing points on the second scanning line S2 is 1017 ′ and then calculating the difference between the minimum eigenvalue and the reference eigenvalue [〇 as the compensation value Coffset, that is, Coffset = 1023 ~ 1017 = 6. Then, the characteristics of all the sensing points on the scanning line S2 are adjusted according to the compensation value Coffset, that is, the characteristic values of all the sensing points on the scanning line S2 are added by 6. Similarly, the eigenvalues of all the sensing points on each scanning line are corrected one by one, and the corrected eigenvalues are obtained as shown in FIG. From the eigenvalues shown in Fig. 7, it can be found that there are two relative maxima, which appear at the intersection of the scan line S6 and the sense line D6, and appear at the intersection of the scan line "with the sense line D6. Therefore, after correction, it is more The position of the two touch points can be accurately identified. Applicants of the present embodiment can use other correction methods to correct the feature values shown in FIG. 6 according to their design requirements. For example, calculate the form number of the 099107795 above the i-th scan line. A0101 Page 17 of 34 0992014015-0 [0038] 201133315 has the average eigenvalue of the sensed point, and then calculates the difference between the average eigenvalue and the reference eigenvalue C0 as the compensation value Coffset, and finally according to the compensation value

Coff set調整該第i條掃描線Si上所有感測點的特徵值。 例如,計算第2條掃描線S2上所有感測點的平均特徵值, 即 (1039+1041+職+1〇54 + 11〇6 + 1236 + 1119 + 1〇45+隨+肥“騰+廳)川_麵 。然後計算此平均特徵值與基準特徵值C0的差值作為補 償值C〇ffset,也就是Coffset = 1G23 - 1069 = - 46然後,依據補償值Coffset調整掃描線51上所有感 測=特徵值,也就是掃描線Μ上所有感測點的特徵值 都加上~46。依此類推,其餘條掃描線上特徵值的校正過 程不再贅述。 [0039] …⑽雖以電容值作為欲感測的特徵值然而本發 二實現方式不以此為限。例如’以電阻值作為欲感測 值。當手指、觸控筆等外物壓按觸控面板⑽時, 浐加的厭第導電層113與/或第二導電層123會因為外物 =Γ產生局部形變,使得第一導電㈣與第二 進行上處相互電性碰觸。因此,㈣器10可以 點的電阻法而計算出觸控面板1嶋一個感測 點甚至更, 辨識出在觸控面板100上單點、兩 更夕觸碰點的座標資訊。 099107795 [0040] 頁強調的X ’前述差_齡法^ 觸控面板,而不限於圖2所示的觸控面=任㈣式: 是依照本發明χ 面板100。例如,圖8 月另-個實施例說明則所示觸控面板_的 所示觸控面板100大部分結構相似於圖2所示 組合圖 表單編號A〇i〇j 苐Μ頁/共34頁 0992014015-0 201133315 Ο [0041] [0042]The Coff set adjusts the characteristic values of all the sensing points on the i-th scanning line Si. For example, calculate the average eigenvalue of all the sensing points on the second scanning line S2, that is, (1039+1041+ jobs+1〇54 + 11〇6 + 1236 + 1119 + 1〇45+ with + fertilizer "Teng + Hall Then, the difference between the average eigenvalue and the reference eigenvalue C0 is calculated as the compensation value C 〇 ffset, that is, Coffset = 1G23 - 1069 = - 46 Then, all the sensing on the scanning line 51 is adjusted according to the compensation value Coffset. = eigenvalue, that is, the eigenvalues of all the sensing points on the scanning line are added with ~46. By analogy, the correction process of the eigenvalues on the other scanning lines will not be described again. [0039] (10) Although the capacitance value is used as the The characteristic value to be sensed is not limited to this. However, for example, the resistance value is used as the sensing value. When a foreign object such as a finger or a stylus presses the touch panel (10), the anaphora is added. The first conductive layer 113 and/or the second conductive layer 123 may be locally deformed due to the foreign matter=Γ, so that the first conductive (four) and the second upper portion are electrically contacted with each other. Therefore, the (four) device 10 can be point-based resistive method. Calculating one sensing point of the touch panel 1 or even more, identifying a single point and two on the touch panel 100 099107795 [0040] The page emphasizes X 'the aforementioned difference _ age method ^ touch panel, not limited to the touch surface shown in FIG. 2 = any (four) formula: is according to the invention χ panel 100. For example, in the other embodiment of the present invention, the touch panel 100 shown in FIG. 2 is mostly similar in structure to the combination diagram form number shown in FIG. 2, A〇i〇j. 34 pages 0992014015-0 201133315 Ο [0041] [0042]

[0043] 觸控面板1 0 Ο,因此圖8可以參照圖2的相關說明。與圖2 不同之處,在於圖8所示觸控面板100的第二導電層123是 圖形化的ΙΤΟ膜層(或是其他透明導電材質)。第二導電層 123具有多條感測線,而圖8的第二導電層123僅繪示5條 感測線作為代表。控制器10透過第二電極124電性連接至 所有感測線。每一條感測線與第一導電層113之間形成多 個感測電容,而每一個感測電容可以作為一個感測點, 如圖4所示。因此,圖8所示觸控面板100亦可進行上述差 動辨識方法,以辨識出在觸控面板100上單點、兩點甚至 更多觸碰點的座標資訊。 综上所述,上述實施例所揭露的差動辨識方法採用全平 面掃描方式,可以計算出每一個感測點的特徵值,因此 能夠精確辨識出在觸控面板上單點、兩點甚至更多觸碰 點的座標資訊,且無鬼點問題。 雖然本發明已以實施例揭露如上,然其並非用以限定本 發明,任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,故 本發明之保護範圍當視後附之申請專利範圍所界定者為 準。 【圖式簡單說明】 圖1是依照本發明實施例說明一種觸控面板的功能模塊示 意圖。 圖2是依照本發明其中一個實施例說明圖1所示觸控面板 的組合圖。 099107795 表單編號Α0101 第19頁/共34頁 0992014015-0 [0044] 201133315 [0045] 圖3是依照本發明實施例說明圖2所示觸控面板的辨識方 法示意圖。 [0046] 圖4是依照本發明實施例說明圖1所示觸控面板的示意圖 〇 [0047] 圖5是依照本發明實施例說明圖4中掃描電極S1〜S 5被提供 驅動訊號的時序關係示意圖。 [0048] 圖6是依照本發明實施例說明觸控面板所有感測點的特徵 值之示意圖。 [0049] 圖7是依照本發明實施例說明圖6所示特徵值校正後之示 意圖。 [0050] 圖8是依照本發明另一個實施例說明圖1所示觸控面板100 的組合圖。 【主要元件符號說明】 [0051] 控制器:10 [0052] 觸控面板:1 0 0 [0053] 第一導電膜:11 〇 [0054] 第一導電層:1 1 3 [0055] 第一電極:11 4 [0056] 第二導電膜:120 [0057] 第二導電層:123 [0058] 第二電極:124 099107795 表單編號A0101 第20頁/共34頁 0992014015-0 201133315 [0059] 導線:125 [0060] 膠體層:130 [0061]缺口 : 131 [0062] 絕緣間隔物:132 [0063] 軟性電路板:140 [0064] 金屬接點:141 [0065] 主導電方向:CD1、CD2[0043] The touch panel 10 Ο, therefore, FIG. 8 can refer to the related description of FIG. 2 . The difference from FIG. 2 is that the second conductive layer 123 of the touch panel 100 shown in FIG. 8 is a patterned enamel film layer (or other transparent conductive material). The second conductive layer 123 has a plurality of sensing lines, and the second conductive layer 123 of FIG. 8 only shows five sensing lines as representatives. The controller 10 is electrically connected to all of the sensing lines through the second electrode 124. A plurality of sensing capacitors are formed between each of the sensing lines and the first conductive layer 113, and each of the sensing capacitors can serve as a sensing point, as shown in FIG. Therefore, the touch panel 100 shown in FIG. 8 can also perform the above differential identification method to recognize coordinate information of a single point, two points, or even more touch points on the touch panel 100. In summary, the differential identification method disclosed in the foregoing embodiment adopts a full-plane scanning method, and can calculate the feature value of each sensing point, thereby accurately identifying a single point, two points, or even more on the touch panel. More touch point coordinates, and no ghost problems. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing the function of a touch panel according to an embodiment of the invention. 2 is a combination diagram of the touch panel shown in FIG. 1 according to one embodiment of the present invention. 099107795 Form No. Α0101 Page 19 of 34 0992014015-0 [0045] FIG. 3 is a schematic diagram showing an identification method of the touch panel shown in FIG. 2 according to an embodiment of the invention. 4 is a schematic diagram showing the touch panel of FIG. 1 according to an embodiment of the invention. FIG. 5 is a timing diagram showing the driving signals provided by the scan electrodes S1 S S 5 of FIG. 4 according to an embodiment of the invention. schematic diagram. 6 is a schematic diagram illustrating characteristic values of all sensing points of a touch panel according to an embodiment of the invention. 7 is a diagram showing the eigenvalue correction shown in FIG. 6 in accordance with an embodiment of the present invention. 8 is a combination diagram of the touch panel 100 of FIG. 1 according to another embodiment of the present invention. [Main component symbol description] [0051] Controller: 10 [0052] Touch panel: 1 0 0 [0053] First conductive film: 11 〇 [0054] First conductive layer: 1 1 3 [0055] First electrode :11 4 [0056] Second conductive film: 120 [0057] Second conductive layer: 123 [0058] Second electrode: 124 099107795 Form number A0101 Page 20 / Total 34 page 0992014015-0 201133315 [0059] Wire: 125 [0060] Colloidal layer: 130 [0061] Notch: 131 [0062] Insulation spacer: 132 [0063] Flexible circuit board: 140 [0064] Metal contact: 141 [0065] Main conductive direction: CD1, CD2

[0066] 閒置感測電極:DO、D0’ [0067] 感測電極:D卜D12 [0068] 掃描電極:S1~S9 [0069] 特徵值:C(l,1)~C(5, 5) [0070] 特徵差值:Δ(:(1,1)~AC(5, 4),AC1 〜AC5,Δ(:[1]~ △ C[4][0066] Idle sensing electrode: DO, D0' [0067] sensing electrode: D Bu D12 [0068] Scanning electrode: S1 ~ S9 [0069] Characteristic value: C (l, 1) ~ C (5, 5) [0070] Characteristic difference: Δ(:(1,1)~AC(5, 4), AC1~AC5, Δ(:[1]~ △ C[4]

[0071] 笛卡兒座標系統的座標軸:X、Y、Z 099107795 表單編號A0101 第21頁/共34頁 0992014015-0[0071] Coordinate axis of the Cartesian coordinate system: X, Y, Z 099107795 Form No. A0101 Page 21 of 34 0992014015-0

Claims (1)

201133315 七、申請專利範圍: 該觸控面板沿—第一軸向 電極與多個感測電極,該 種觸控面板的差動辨識方法, 與—第二轴向各自具有多個掃描 差動辨識方法包括: =些掃描電財第1個掃料極,以提供—驅 戒至所述第i個掃描電極,其中ι為整數; 動況 ==該_峨至所述第⑽掃描電極的 =測電極中第觸測電極與相鄰近的另二〗 的特徵差值Δ(:(Μ),其幻為整數; 獅 在提供該㈣賊至所絲__細侧,感測該 些感測電極中《個感測電極與_參考特徵值的特徵差值 △ Ci ’其中k為整數; 將該觸控面板的多個感測點中的—個基準感測點的特徵值 設定為一基準特徵值;以及 使用該基準特徵值、該些特徵差值ACi與該些特徵差值^ C(i,j)計算該些感測點的特徵值。 •如申請專利範圍第1項所述觸控面板的差動辨識方法,其 中該些感測點的特徵值為電容值、電流值或電壓值。 .如申請專利範圍第1項所述觸控面板的差動辨識方法,其 中所述計算該觸控面板的多個感測點的特徵值的步驟包括 計算Δ(^[ί] = ACi-ACi + l’其中ACn]表示第i個與 第i + 1個掃描電極的特徵差值; 若該基準感測點位於第j列,則使用該基準特徵值計算 C(i + l,j) = C(i,j) - Δ(:[ί]或計算 C(i-l,j)= 099107795 表單編號A0101 第22頁/共34頁 0992014015-0 201133315 ’ J ) + △ C [ i ],其中c (i,j )表示該些感測點中第i 行第j列感測點的特徵值;以及 6十鼻 C(i,j + 1)=以“』)_ 或計算 c(in) =c(i,j) + ACCi,j)。 4 j> •如申請專利範圍第3項所述觸控面板的差動辨識方法,更 包括: 計算第i條掃描線上所有感測點的特徵值中最小特徵值與 5亥基準特徵值的差值,作為一補償值;以及 〇 依據該補償值調整該第i條掃描線上所有感測點的特徵值 〇 5 .如申請專利範圍第3項所述觸控面扳的差動辨識方法,更 .包括: f'ji 叶算第i條掃描線上所有感測點的一平緣特徵值; 叶算該平均特徵值與該基準特徵值的差偉,作為一補償值 :以及 依據該補償值調整該第i條掃描線上所有感測點的特徵值 ◎ 6 .如申請專利範圍第1項所述觸控面板的差動辨識方法,其 中感測特徵差值△ c i的步驟包括: 感測所述第k個感測電極與該觸控面板的一閒置感測電極 的特徵差值ACi。 7 .如申請專利範圍第1項所述觸控面板的差動辨識方法其 中感測特徵差值ACi的步驟包括: 感測所述第k個感測電極與一參考電容器的特徵差值ACi 099107795 .如申請專利範圍第1項所述觸控面板的差動辨識方法 表單編號A0I01 第23頁/共34頁 其 0992014015-0 201133315 中感測特徵差值Δ(:1的步驟所述第k個感測電極是該些感 測電極中的邊緣電極。 如申請專利範圍第!項所述觸控面板的差動辨識方法,其 中於該些掃描電極中選擇第i個掃描電極的步驟,是以循 序方式選擇下一個掃描電極。 ίο 11 099107795 如申請專利範圍第i項所述觸控面板的差動辨識方法,更 包括: 右於該些感測點中,—第—感測點的特徵值大於與咳第一 感测點相鄰接的所有感職㈣徵值,則決定該第一感測 點為一觸碰點。 一種觸控面板,包括: 一第一導電層; 多個掃描電極,沿-第-軸向配置於該第-導電層的一側 第二軸向配置於讓第二導電層的 沿 .側 一第二導電層 多個感測電極 :以及 —控制器’於該些掃描電極中選擇第i個掃描電極,以提 供—驅動訊號至所述第1個掃描電極,其中在提供該驅動 «至所述第i個掃描電極的期間,該控制器感測該些感 測電極中第j個感測電極與相鄰近的另—個感測電極的特 值,在提供該驅動訊號至所述第i個掃描電 的期間β玄控制器感測該些感測電極中第k個感測電極 與—參考特徵值的特徵差值心,前述i、j ' k為整數; '控制器將該觸控面板的多個感測點中的-個基準感測點 Hit設定為_基準特徵值;以及該控制器使用該基準 表單編號A_ 第24頁/共34頁 子 0992014015-0 201133315 特徵值、該些特徵差值ACi與該些特徵差值Δ(:(ί,]·)計 算該些感測點的特徵值。 12 13 Ο 14 15 . 〇 16 . 17 . 099107795 .如申請專利範圍第11項所述的觸控面板,其中該些感測點 的特徵值為電容值、電流值或電壓值。 •如申請專利範圍第11項所述的觸控面板,其中該控制器計 算△ch] = ACi-ACi + l,而△cti]表示第i個與第 ι + 1個掃描電極的特徵差值;若該基準感測點位於第j列 ,則該控制器使用該基準特徵值計算c(i + 1,” = c(i’ j) - △(:[ i ]或計算c(i-i,j) = c(i,j) + △ C[i],而C(i,j)表示該些感測點中第i行第】列感測點的 特徵值;以及該控制器計算c(i,H1) = c(i,〕·)_ △ c(i,j)或計算 C(i,j-1) = c(i,j) + △(;(“ j)。 如申請專利範圍第13項所述的觸控面板,其中該控制器更 計算第i條掃描線上所有感測點的特徵值中最小特徵值與 該基準特徵值的差值’作為一補償值;以及該控制器依據 该補償值調整該第i條掃描線上所有感測點的特徵值。 如申請專利範圍第13項所述的觸控面板,其中該控制器更 =算第!條掃描線上所有感測點的一平均特徵值;該控制 器什算該平均特徵值與該基準特徵值的差值作為一補償 值;以及該控制器依據該補償值調整該以條掃摇線上所 有感測點的特徵值。 如申請專利範圍第項所述的觸控面板,其中該控制器感 測所述^個感测電極與該觸控面板的一間置感測電極的 特徵差值ACi ^ 如申請專利範圍第U項所述的觸控面板,其中該控制器感 測所述第k個感測電極與一參考電容器 表單編號删 第25頁/共34頁 0992014015-0 201133315 18 19 20 ' 21 . 22 . 23 . 24 . .如申請專利範圍第11項所述的觸控面板,其中所述第請 感測電極是該些感測電極t的邊緣電極。 .如申請專利範圍第U項所述的觸控面板,其中該控制器是 以循序方式選擇下一個掃描電極。 如申請專利範圍第U項所述的觸控面板,該控制器更比較 该些感測點的特徵值,其中若於該些感測點中一第一感 測點的特徵值大於與該第一感測點相鄰接的所有感測點的 特徵值,則該控制器決定該第一感測點為一觸碰點。 如申請專利範圍第u項所述的觸控面板,該第一導電層為 奈米碳管膜。 如申請專利範圍第u項所述的觸控面板,該第二導電層為 奈米碳管膜。 如申請專利範圍第11項所述的觸控面板,該第二導電層為 銦錫氧化物膜。 如申請專利範圍第11項所述的觸控面板,更包括: -介電層結構,配置於該第一導電層與該第二導電層之間 099107795 表單編號A0101 第26頁/共34頁 0992014015-0201133315 VII. Patent application scope: The touch panel along the first axial electrode and the plurality of sensing electrodes, the differential identification method of the touch panel, and the second axial direction respectively have multiple scanning differential identification The method comprises: = scanning the first scanning electrode of the electricity to provide - driving to the ith scanning electrode, wherein ι is an integer; the dynamic condition == the _ 峨 to the (10) scanning electrode = The characteristic difference Δ(:(Μ) of the first touch test electrode in the measuring electrode is adjacent to the other two, and the magical value is an integer; the lion provides the (four) thief to the thin side of the silk __, sensing the sensing The characteristic difference Δ Ci ' of the sensing electrodes and the _ reference characteristic value in the electrode, where k is an integer; setting the characteristic value of one of the plurality of sensing points of the touch panel as a reference An eigenvalue; and calculating the eigenvalues of the sensing points using the reference eigenvalues, the characteristic difference values ACi, and the characteristic difference values ^ C(i, j). The differential identification method of the control panel, wherein the characteristic values of the sensing points are capacitance values, current values or voltages The method for differentially identifying a touch panel according to claim 1, wherein the step of calculating a feature value of the plurality of sensing points of the touch panel includes calculating Δ(^[ί] = ACi -ACi + l' where ACn] represents the characteristic difference between the i-th and i-th + scan electrodes; if the reference sense point is in the j-th column, the reference feature value is used to calculate C(i + l,j ) = C(i,j) - Δ(:[ί] or calculate C(il,j)= 099107795 Form No. A0101 Page 22 / Total 34 Page 0992014015-0 201133315 ' J ) + △ C [ i ], where c (i, j ) represents the eigenvalues of the i-th row and j-th column sensing points of the sensing points; and 6-seven nose C(i, j + 1) = "")_ or calculates c(in) =c(i,j) + ACCi,j). 4 j> • The differential identification method of the touch panel according to item 3 of the patent application scope includes: calculating the characteristics of all the sensing points on the i-th scanning line And a difference value between the minimum eigenvalue and the value of the 5th reference eigenvalue as a compensation value; and 调整 adjusting the eigenvalue 〇5 of all the sensing points on the ith scan line according to the compensation value. The method for differentially recognizing the touch panel comprises: f'ji leaves calculating a flat edge feature value of all the sensing points on the i-th scan line; and calculating the difference between the average feature value and the reference feature value And as a compensation value: and adjusting the characteristic value of all the sensing points on the ith scanning line according to the compensation value ◎ 6 . The differential identification method of the touch panel according to claim 1 , wherein the sensing feature The step of the difference Δ ci includes: sensing a characteristic difference value ACi of the kth sensing electrode and an idle sensing electrode of the touch panel. 7. The differential identification method of the touch panel according to claim 1, wherein the step of sensing the characteristic difference value ACi comprises: sensing a characteristic difference value of the kth sensing electrode and a reference capacitor ACi 099107795 The k-th sense identification method of the touch panel according to the first aspect of the patent application, Form No. A0I01, page 23/34, 0992014015-0 201133315, the k-th sense characteristic difference Δ(:1 step The sensing electrode is an edge electrode in the sensing electrodes. The differential identification method of the touch panel according to the item of claim 2, wherein the step of selecting the i-th scanning electrode among the scanning electrodes is Selecting the next scanning electrode in a sequential manner. ίο 11 099107795 The differential identification method of the touch panel according to the item i of claim 1, further comprising: right to the sensing points, the characteristic value of the first sensing point If the value of all the senses (four) is adjacent to the first sensing point of the cough, the first sensing point is determined to be a touch point. A touch panel includes: a first conductive layer; a plurality of scan electrodes Along the -axis a second axial direction disposed on a side of the first conductive layer is disposed on a second conductive layer along a side of the second conductive layer: and a controller selects an i-th of the scan electrodes Scanning electrodes to provide a driving signal to the first scanning electrode, wherein the controller senses the jth sense of the sensing electrodes during the providing of the driving « to the ith scanning electrode a characteristic value of the other electrode adjacent to the measuring electrode, and during the period of providing the driving signal to the ith scanning power, the β-thin controller senses the kth sensing electrode of the sensing electrodes - referring to the characteristic difference heart of the feature value, the aforementioned i, j ' k is an integer; the controller sets the reference sensing point Hit of the plurality of sensing points of the touch panel to the _ reference feature value; The controller calculates the senses using the reference form number A_page 24/34 pages 0992014015-0 201133315 feature values, the feature difference values ACi and the feature difference values Δ(:(ί,]·) The characteristic value of the point. 12 13 Ο 14 15 . 〇16 . 17 . 099107795 . The touch panel of claim 11, wherein the characteristic value of the sensing points is a capacitance value, a current value, or a voltage value. The touch panel of claim 11, wherein the controller calculates Δch] = ACi-ACi + l, and Δcti] represents the characteristic difference between the i-th and the ι + 1 scan electrodes; if the reference sense point is in the j-th column, the controller uses the reference feature The value calculates c(i + 1," = c(i' j) - △(:[ i ] or calculates c(ii,j) = c(i,j) + △ C[i], and C(i, j) indicating the characteristic value of the sensing point of the ith row of the sensing points; and the controller calculates c(i, H1) = c(i,]·)_ Δ c(i,j) or Calculate C(i,j-1) = c(i,j) + △(;(" j). The touch panel of claim 13, wherein the controller further calculates a difference between the smallest feature value of the feature values of all the sensing points on the i-th scanning line and the reference feature value as a compensation value; And the controller adjusts the characteristic values of all the sensing points on the ith scan line according to the compensation value. The touch panel of claim 13, wherein the controller is more calculated! An average characteristic value of all sensing points on the scan line; the controller calculates a difference between the average characteristic value and the reference characteristic value as a compensation value; and the controller adjusts the strip sweep line according to the compensation value The eigenvalues of all sense points. The touch panel of claim 1, wherein the controller senses a characteristic difference ACi of the sensing electrodes and an inductive electrode of the touch panel, as in the patent application scope U The touch panel of the present invention, wherein the controller senses the kth sensing electrode and a reference capacitor form number to delete the 25th page/total 34 page 0992014015-0 201133315 18 19 20 ' 21 . The touch panel of claim 11, wherein the first sensing electrodes are edge electrodes of the sensing electrodes t. The touch panel of claim U, wherein the controller selects the next scan electrode in a sequential manner. The controller of the touch panel of claim U, wherein the controller compares the feature values of the sensing points, wherein if the feature value of the first sensing point is greater than the number of the sensing points The controller determines that the first sensing point is a touch point, if the sensing value of all the sensing points adjacent to the sensing point is. The touch panel of claim 5, wherein the first conductive layer is a carbon nanotube film. The touch panel of claim 5, wherein the second conductive layer is a carbon nanotube film. The touch panel of claim 11, wherein the second conductive layer is an indium tin oxide film. The touch panel of claim 11, further comprising: - a dielectric layer structure disposed between the first conductive layer and the second conductive layer 099107795 Form No. A0101 Page 26 / Total 34 Page 0992014015 -0
TW99107795A 2010-03-17 2010-03-17 Touch panel and differential detection method for same TWI413928B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99107795A TWI413928B (en) 2010-03-17 2010-03-17 Touch panel and differential detection method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99107795A TWI413928B (en) 2010-03-17 2010-03-17 Touch panel and differential detection method for same

Publications (2)

Publication Number Publication Date
TW201133315A true TW201133315A (en) 2011-10-01
TWI413928B TWI413928B (en) 2013-11-01

Family

ID=46751160

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99107795A TWI413928B (en) 2010-03-17 2010-03-17 Touch panel and differential detection method for same

Country Status (1)

Country Link
TW (1) TWI413928B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467440B (en) * 2012-08-24 2015-01-01 Shih Hua Technology Ltd Touch screen, touch-control display device
TWI469009B (en) * 2012-08-24 2015-01-11 Shih Hua Technology Ltd Touch screen, touch-control display device
TWI469008B (en) * 2012-08-24 2015-01-11 Shih Hua Technology Ltd Touch screen, touch-control display device
TWI474248B (en) * 2013-05-08 2015-02-21 Touchplus Information Corp Method and device for sensing control point on capacitive-type panel
TWI497401B (en) * 2012-12-14 2015-08-21 Focaltech Systems Ltd Multipoint locating method and device on a touch screen
TWI503729B (en) * 2014-04-21 2015-10-11
US9250464B2 (en) 2012-08-24 2016-02-02 Tianjin Funayuanchuang Technology Co., Ltd. Carbon nanotube touch panel having two carbon nanotube films
TWI575438B (en) * 2016-02-06 2017-03-21 宸鴻科技(廈門)有限公司 Multi-point force touch detection method and multi-point force touch module
CN108021281A (en) * 2016-11-03 2018-05-11 禾瑞亚科技股份有限公司 Touch-control processing unit, method and electronic system
US10025488B2 (en) 2012-08-15 2018-07-17 Focaltech Systems, Ltd. Multipoint locating method and device on touch screen with single conducting layer
US10310683B2 (en) 2013-05-08 2019-06-04 Touchplus Information Corp. Method and device for sensing control point on capacitive-type panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587264B (en) * 2016-08-15 2017-06-11 友達光電股份有限公司 Display device and control method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0319714D0 (en) * 2003-08-21 2003-09-24 Philipp Harald Anisotropic touch screen element
TWI358029B (en) * 2008-05-16 2012-02-11 Htc Corp Method for filtering out signals from touch device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10025488B2 (en) 2012-08-15 2018-07-17 Focaltech Systems, Ltd. Multipoint locating method and device on touch screen with single conducting layer
US9250464B2 (en) 2012-08-24 2016-02-02 Tianjin Funayuanchuang Technology Co., Ltd. Carbon nanotube touch panel having two carbon nanotube films
TWI469009B (en) * 2012-08-24 2015-01-11 Shih Hua Technology Ltd Touch screen, touch-control display device
TWI469008B (en) * 2012-08-24 2015-01-11 Shih Hua Technology Ltd Touch screen, touch-control display device
TWI467440B (en) * 2012-08-24 2015-01-01 Shih Hua Technology Ltd Touch screen, touch-control display device
TWI497401B (en) * 2012-12-14 2015-08-21 Focaltech Systems Ltd Multipoint locating method and device on a touch screen
TWI474248B (en) * 2013-05-08 2015-02-21 Touchplus Information Corp Method and device for sensing control point on capacitive-type panel
US9430103B2 (en) 2013-05-08 2016-08-30 Touchplus Information Corp. Method and device for sensing control point on capacitive-type panel
CN104142766B (en) * 2013-05-08 2017-04-12 新益先创科技股份有限公司 Control point sensing method and device applied to capacitive panel
US10310683B2 (en) 2013-05-08 2019-06-04 Touchplus Information Corp. Method and device for sensing control point on capacitive-type panel
TWI503729B (en) * 2014-04-21 2015-10-11
TWI575438B (en) * 2016-02-06 2017-03-21 宸鴻科技(廈門)有限公司 Multi-point force touch detection method and multi-point force touch module
CN108021281A (en) * 2016-11-03 2018-05-11 禾瑞亚科技股份有限公司 Touch-control processing unit, method and electronic system

Also Published As

Publication number Publication date
TWI413928B (en) 2013-11-01

Similar Documents

Publication Publication Date Title
TW201133315A (en) Touch panel and differential detection method for same
CN102193693B (en) Touch panel and differential identification method thereof
US9606691B2 (en) Voltage difference-based capacitive touch detection device, capacitive touch detection method and capacitive touch screen panel, and display device with built-in capacitive touch screen panel
US20130032861A1 (en) Touch panel and method for manufacturing the same
CN101963855B (en) Multi-point touch identification method for touch screen
US20150346889A1 (en) Touch panel and touch detection circuit
TW200837620A (en) Capacitive-type touch pad having special arrangement of capacitance sensor
US9134870B2 (en) Capacitive touch-sensitive panel and mobile terminal using the same
JP5723547B2 (en) Multipoint touch identification method used for touch panels
JP2015049895A (en) Input signal identification method of touch panel
TW201516774A (en) Method of determining touch point and touch pressure
CN102033637B (en) Touch screen position detection method
US9612704B2 (en) Apparatus and method for sensing touch
KR20120101969A (en) Capacitive type touch detecting means, method and touch screen panel using voltage changing phenomenon, and display device embedding said the capacitive type touch screen panel
CN104808877B (en) The active array of capacitance type touch-control panel and the capacitance type touch-control panel of correlation
KR20130016651A (en) Capacitive type touch detecting means, method and touch screen panel using voltage changing phenomenon, and display device embedding said the capacitive type touch screen panel
KR102107786B1 (en) touch screen system
KR20120101967A (en) Capacitive type touch detecting means, method and touch screen panel using voltage changing phenomenon, and display device embedding said the capacitive type touch screen panel
TWI420376B (en) Method of multi-touch detection for touch panel
TW201106235A (en) Method of multi-touch detection for touch panel
TW201102886A (en) A positioning method of multi-touch
TW201642097A (en) Touch panel and touch detection circuit
KR101374311B1 (en) Capacitive type touch detecting means, method and touch screen panel using voltage changing phenomenon, and display device embedding said the capacitive type touch screen panel
US20130342503A1 (en) Signal Enhancing Method for Capacitive Touch Panel of Mobile Device
Kyoung et al. P‐167: A Low‐Side Self‐Capacitive Sensing Method for Large Area Touch Screen

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees