TW201130894A - Film forming composition by use of silicon compound - Google Patents

Film forming composition by use of silicon compound Download PDF

Info

Publication number
TW201130894A
TW201130894A TW99135974A TW99135974A TW201130894A TW 201130894 A TW201130894 A TW 201130894A TW 99135974 A TW99135974 A TW 99135974A TW 99135974 A TW99135974 A TW 99135974A TW 201130894 A TW201130894 A TW 201130894A
Authority
TW
Taiwan
Prior art keywords
group
film
formula
resist
compound
Prior art date
Application number
TW99135974A
Other languages
Chinese (zh)
Other versions
TWI507450B (en
Inventor
Satoshi Takei
Original Assignee
Nissan Chemical Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Ind Ltd filed Critical Nissan Chemical Ind Ltd
Publication of TW201130894A publication Critical patent/TW201130894A/en
Application granted granted Critical
Publication of TWI507450B publication Critical patent/TWI507450B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/44Block-or graft-polymers containing polysiloxane sequences containing only polysiloxane sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0752Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen

Abstract

Provided is a film-forming composition which contains a silicon compound (A) having a partial structure represented by general formula (1) and which attains excellent flatness. Specifically provided is a composition which is intended to be used in a process for the formation of a pattern by nanoimprint lithography and which can form a resist upper-layer film by thermal firing and/or light irradiation on a resist for nanoimprining. In general formula (1), R1s are each C1-10 alkyl, C6-20 aryl, or a combination of the same; R2 is a polymerizable organic group; and n1 is an integer of 1 to 10.

Description

201130894 六、發明說明: 【發明所屬之技術領域】 本發明係關於,使用矽化合物之膜形成組成物,進一 步係關於在奈米壓印用抗餓的上層形成膜時的組成物。詳 係爲有關於圖型形成製程中,將於奈米壓印用抗蝕的上層 所使用之上層膜藉由熱燒成及/或光照射而形成時的上層 膜形成組成物。又,與使用該上層膜形成組成物之上層膜 的形成方法、及奈米壓印用抗蝕圖型之形成方法有關。 【先前技術】 對於自過去之半導體裝置的製造,進行藉由使用光阻 之光微影法的微細加工。前述微細加工爲,在矽晶圓等半 導體基板上形成光阻之薄膜,於該上面介著描繪半導體裝 置的圖型之光罩圖型,照射紫外線等活性光線,並顯像, 藉由將所得之光阻圖型作爲保護膜並使基板進行触刻處理 ,於基板表面形成對應前述圖型的微細凹凸之加工法。揭 示將該光阻之下層膜藉由光照射形成硬化膜之方法。 作爲次世代的圖型形成法,奈米壓印微影術爲其中一 技術而受到注目。奈米壓印微影術係與使用光源之過去微 影術爲完全相異的方法。準備具有與欲製作的圖型爲對稱 之圖型的模型(模版),於塗佈於基板上的抗蝕以直接押 入方式,於基板上製作出與模版之圖型爲對稱之圖型的方 法。作爲奈米壓印微影術之特徵,與過去光微影術做比較 ,因解像度未取決於光源波長,無需要如準分子雷射曝光 -5- 201130894 裝置或電子線描繪裝置等高價裝置,可低成本化爲其特徵 (參照專利文獻〗)。 換言之,奈米壓印微影術爲於矽或鎵等無機基板、氧 化膜、氮化膜、石英、玻璃、高分子薄膜上將奈米壓印用 抗蝕之組成物藉由噴射方式滴下,塗佈至約數十nm至數 μηι的膜厚,以具有約數十nm至數十μηι的圖型尺寸之微細 凹凸的模版進行押入加壓,以加壓狀態下光照射或熱燒成 ,硬化組成物後,由塗膜剝離模版,得到經轉印之圖型的 圖型形成法。因此,以奈米壓印微影術之情況下,進行光 照射時,基板或模版的至少一方必須爲透明。一般由模版 側以光照射爲一般情況,模版材料中使用如石英、藍寶石 等可透過光之無機材料或光透過性之樹脂等。 又,使用奈米壓印微影術,欲使奈米尺寸的圖型於大 面積進行刻印,不僅要求加押壓力之均勻性或模版或基底 表面之平坦性,亦必須控制加押而流出之奈米壓印用抗蝕 的舉動。在過去半導體微影術中,因可任意設定於加工基 板上不作爲元件而使用的區域,可使用小模版於刻印部外 側設置抗蝕流出部。又,雖僅在半導體將刻印不良部分作 爲不良元件而不使即可,例如在對於硬碟等之應用上,因 全面作爲裝置作用時,欲不產生刻印缺陷而必須有要特殊 加工過程。 奈米壓印微影術中,因其爲藉由物理性接觸而製圖之 技術,故隨著進行微細化,容易引起圖型之欠缺、剝落或 這些再附著所產生的異物等製圖欠損之問題。 -6 - 201130894 模版與奈米壓印用抗蝕之剝離性、奈米壓印用抗蝕與 基底加工基板之密著性爲重要,至今依舊藉由模版或抗蝕 之表面改質處理,嘗試解決缺陷或異物問題等。 又,奈米壓印用抗蝕組成物係由光反應機制的相異, 而大致分爲自由基交聯型態與陽離子交聯型態、或這些混 合型態(例如參照專利文獻2、專利文獻3、專利文獻4 ) 〇 自由基交聯型係由具有乙烯性不飽和鍵之化合物衍生 物所成,一般使用含有可自由基聚合之甲基丙烯酸酯、丙 烯酸酯、或具有乙烯基之聚合性化合物與光交聯啓始劑之 組成物。另一方面,陽離子交聯型爲一般使用含有具有環 氧基、或氧雜環丁烷環之化合物衍生物的聚合性化合物與 光交聯啓始劑之組成物。經光照射時,藉由光交聯啓始劑 所產生的自由基會攻擊乙烯性不飽和鍵、或陽離子會攻擊 環氧基、或氧雜環丁烷環而進行連鎖聚合,並進行交聯反 應,形成3次元網路結構。將2官能以上之多官能基單體或 寡聚物作爲成分使用時得到交聯結構體。 又,已提出種種抗蝕(參照專利文獻5 )。 刻印微影術所於過去已存在,但近年來,有關數十nm 之微細奈米圖型形成亦被檢討者。但,奈米壓印微影術有 著奈米壓印用抗蝕與模版直接以物理方式接所引起的缺陷 之顧慮(例如參照專利文獻6 )。 且,將重疊或將大面積全面性地轉印時,會導致因加 工基板與奈米壓印用抗蝕之密著性不良引起奈米壓印用抗 201130894 蝕之剝落,因面內均勻性引起奈米壓印用抗蝕之膜厚變化 之問題。 且,近年來有著隨著圖型之細線幅微細化的明朗化之 奈米水準的平滑性或平坦性不足之問題。換言之’隨著微 細化,於加工基板上形成段差或針孔’對於具有較大縱橫 比之加工基板會形成奈米壓印用抗蝕。因此’對於使用於 該製程之奈米壓印用抗蝕’除要求圖型形成之特性以外’ 亦要求可控制段差或在針孔周邊部之基板的被覆性、或如 於無間隙下可塡充針孔之埋入特性、於基板表面可形成平 坦膜之平坦化特性等。但,奈米壓印用抗蝕難適用於具有 大縱橫比之基板上。 且,在半導體微影術之領域下,作爲抗鈾圖型之線幅 較微細之情況下爲有效之一方法,作爲半導體基板與光阻 之間的上層膜,使用作爲含有矽之硬式光罩且爲已知的膜 而進行。此時,光阻與硬式光罩中,因該構成成分具有大 差異,藉由彼等乾式蝕刻被除去之速度取決於使用於乾式 蝕刻之氣體種類。而藉由適當地選擇氣體種類,不會引起 光阻之膜厚的較大減少,硬式光罩藉由乾式蝕刻除去成爲 可能。因此,使用光阻與硬式光罩時,光阻可爲薄膜、或 可確保作爲使用於半導體基板加工之保護膜(藉由光阻與 硬式光罩而成)爲充分的膜厚。 欲解決這些問題,至今未有對於可適合使用的奈米壓 印用抗蝕上層膜之組成物的詳細揭示內容。 又’過去微刻印微影術之用途上爲已知的刻印用抗蝕 c -8 - 201130894 上層膜爲,以密著性或平坦性賦予作爲目的之步驟爲於材 料上有共通部分,但奈米幅的微細圖型形狀、奈米幅的段 差或在針孔上之平坦性特性有著相大的差異。因此,若直 接使用在奈米壓印微影術之用途上適用的上層膜時,多會 引起因表面平滑性或平坦性不良所引起的基板蝕刻加工之 問題。 〔先行技術文獻〕 〔專利文獻〕 〔專利文獻1〕國際公開第2005/57634號手冊 〔專利文獻2〕特開2007-072374號公報 〔專利文獻3〕特開2008- 1 054 1 4號公報 〔專利文獻4〕特開20〇9-51017號公報 〔專利文獻5〕特開2006-1 1 48 82號公報 〔專利文獻6〕特開2005- 1 593 5 8號公報 【發明內容】 本發明的目的爲提供一種含有矽原子之膜形成組成物 者,特別爲提供一種於圖型形成製程之奈米壓印微影術中 ,將使用於奈米壓印用抗蝕之上層的抗蝕上層膜藉由光照 射或熱燒成使其硬化而形成之含有矽原子的抗蝕上層膜形 成組成物。又,使用該組成物之圖型形成製程的奈米壓印 微影術中,提供使用於奈米壓印用抗蝕之上層的上層膜之 形成方法、及奈米壓印用抗蝕圖型之形成方法’藉由含有 來自有機矽化合物之無機原子的矽原子’以氧氣體的電漿 -9 - 201130894 蝕刻速度會變小,提供具有蝕刻耐性之硬式光罩層者。 作爲本發明之第1觀點,一種膜形成組成物,其含有 具有下述式(1):BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composition for forming a film using a ruthenium compound, and further relates to a composition for forming a film on an upper layer resistant to hunger for nanoimprinting. The upper layer film forming composition in the case where the overlayer film used for the upper layer of the nano-imprint resist is formed by thermal firing and/or light irradiation in the pattern forming process is described. Further, it relates to a method of forming an overlayer film using the upper film forming composition and a method of forming a resist pattern for nanoimprinting. [Prior Art] For the fabrication of semiconductor devices from the past, microfabrication by photolithography using photoresist is performed. The microfabrication is a film in which a photoresist is formed on a semiconductor substrate such as a germanium wafer, and a pattern of a pattern of a semiconductor device is formed thereon, and an active light such as ultraviolet rays is irradiated and developed, and the result is obtained. The photoresist pattern is used as a protective film and the substrate is subjected to a lithography process, and a method of processing fine irregularities corresponding to the above-described pattern is formed on the surface of the substrate. A method of forming a cured film by irradiation of light under the photoresist is disclosed. As a pattern generation method of the next generation, nanoimprint lithography has attracted attention as one of the technologies. The nanoimprint lithography system is completely different from the past lithography using a light source. Preparing a model (template) having a pattern symmetrical with the pattern to be produced, and forming a pattern symmetrical with the pattern of the stencil on the substrate by directly pushing the resist applied on the substrate . As a feature of nanoimprint lithography, compared with past photolithography, since the resolution does not depend on the wavelength of the light source, there is no need for high-priced devices such as excimer laser exposure-5-201130894 devices or electronic line drawing devices. It can be characterized by low cost (refer to the patent literature). In other words, the nanoimprint lithography is performed by spraying a composition of a resist for nanoimprint on an inorganic substrate such as tantalum or gallium, an oxide film, a nitride film, a quartz, a glass or a polymer film. It is applied to a film thickness of about several tens of nm to several μm, and is pressed and pressed with a stencil having a fine unevenness of a pattern size of about several tens of nm to several tens of μm, and is irradiated or thermally fired under pressure. After the composition is hardened, the stencil is peeled off from the coating film to obtain a pattern forming method of the transferred pattern. Therefore, in the case of nanoimprint lithography, at least one of the substrate or the stencil must be transparent when performing light irradiation. Generally, light irradiation is generally performed on the stencil side, and a permeable medium such as quartz or sapphire or a light transmissive resin is used as the stencil material. Moreover, using nanoimprint lithography, in order to engrave the nanometer size pattern on a large area, not only the uniformity of the pressure of the urging or the flatness of the surface of the stencil or the substrate is required, but also the control must be controlled to flow out. The behavior of the resist for nanoimprinting. In the past, in semiconductor lithography, a region where the processing substrate is not used as an element can be arbitrarily set, and a small stencil can be used to provide a resist outflow portion on the outer side of the imprinting portion. Further, although it is only necessary for the semiconductor to use the defective portion as a defective element, for example, in the application to a hard disk or the like, when it is used as a device as a whole, it is necessary to have a special processing process in order not to cause an imprint defect. In nanoimprint lithography, since it is a technique of drawing by physical contact, it is easy to cause defects such as lack of pattern, peeling, or foreign matter due to reattachment due to the miniaturization. -6 - 201130894 The peeling property of the stencil and the nano embossing resist, the adhesion between the nano embossing resist and the substrate processing substrate are important, and it has been tried by the surface modification of the stencil or the resist. Solve defects or foreign objects, etc. Further, the resist composition for nanoimprinting differs depending on the photoreaction mechanism, and is roughly classified into a radical crosslinked type and a cationic crosslinked type, or a mixed form (for example, refer to Patent Document 2 and Patent). Document 3, Patent Document 4) The ruthenium radical cross-linking type is formed by a compound derivative having an ethylenically unsaturated bond, and generally uses a polymerization containing a radically polymerizable methacrylate, an acrylate, or a vinyl group. A composition of a compound and a photocrosslinking initiator. On the other hand, the cationic cross-linking type is a composition in which a polymerizable compound containing a compound derivative having an epoxy group or an oxetane ring and a photocrosslinking initiator are generally used. When irradiated with light, free radicals generated by photocrosslinking initiator attack the ethylenically unsaturated bond, or the cation attacks the epoxy group or the oxetane ring to carry out chain polymerization and crosslink The reaction forms a 3-dimensional network structure. When a bifunctional or higher polyfunctional monomer or oligomer is used as a component, a crosslinked structure is obtained. Further, various types of corrosion resistance have been proposed (see Patent Document 5). Engraving lithography has existed in the past, but in recent years, the formation of micro-nano patterns of tens of nm has also been reviewed. However, nanoimprint lithography has a concern that the resist for nanoimprinting and the stencil are directly physically connected (for example, refer to Patent Document 6). Further, when the film is superimposed or transferred over a large area, the adhesion between the processed substrate and the nano-imprint resist is poor, and the nano-imprinting resists the peeling of the anti-201130894 etch due to the in-plane uniformity. The problem of the film thickness of the resist for nanoimprinting is changed. Further, in recent years, there has been a problem that the smoothness or flatness of the nanometer level which is fine with the fine line width of the pattern is insufficient. In other words, "the step or the pinhole is formed on the processed substrate with the miniaturization". For the processed substrate having a large aspect ratio, a resist for nanoimprinting is formed. Therefore, 'in addition to the characteristics of the pattern formation required for the nano-imprint resist used in the process', it is also required to control the step difference or the coverage of the substrate at the peripheral portion of the pinhole, or if there is no gap. The embedding characteristics of the pinhole hole, the flattening property of the flat film can be formed on the surface of the substrate, and the like. However, the resist for nanoimprinting is difficult to apply to a substrate having a large aspect ratio. Moreover, in the field of semiconductor lithography, it is effective as a method for making the anti-uranium pattern thinner, and as an upper film between the semiconductor substrate and the photoresist, it is used as a hard mask containing germanium. It is also carried out for a known film. At this time, in the photoresist and the hard mask, since the constituent components have a large difference, the speed at which they are removed by dry etching depends on the kind of gas used for dry etching. By appropriately selecting the gas species, a large reduction in the film thickness of the photoresist is not caused, and the hard mask is removed by dry etching. Therefore, when a photoresist and a hard mask are used, the photoresist can be a film or a film thickness sufficient to be used as a protective film for semiconductor substrate processing (by a photoresist and a hard mask). In order to solve these problems, there has been no detailed disclosure of a composition of a resist upper film for nanoimprint which can be suitably used. Also, the use of the past micro-imprinting lithography is known as the resist for the imprinting c-8 - 201130894. The upper film is a step of imparting adhesion or flatness as a purpose for the material to have a common part, but The fine pattern shape of the rice web, the step difference of the nanoweb or the flatness characteristics on the pinhole have a large difference. Therefore, if the upper film which is suitable for use in the use of nanoimprint lithography is directly used, the problem of etching of the substrate due to surface smoothness or poor flatness is often caused. [Patent Document 1] [Patent Document 1] International Publication No. 2005/57634 (Patent Document 2) JP-A-2007-072374 (Patent Document 3) JP-A-2008- 1 054 1 4 [Patent Document 5] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. The object of the invention is to provide a film-forming composition containing a ruthenium atom, in particular to provide a nano-imprint lithography process for forming a pattern, and to use the resist upper film for the upper layer of the nano-imprint resist. A resist upper film containing germanium atoms formed by light irradiation or thermal firing to form a composition. Further, in the nanoimprint lithography using the pattern forming process of the composition, a method for forming an upper layer film for use in an upper layer of a resist for nanoimprinting, and a resist pattern for nanoimprinting are provided. The formation method 'by the ruthenium atom containing an inorganic atom derived from an organic ruthenium compound' etch rate of oxygen gas -9 - 201130894 becomes small, providing a hard mask layer having etching resistance. According to a first aspect of the invention, there is provided a film-forming composition comprising the following formula (1):

R2 式⑴ (式(1)中,R1各獨立表示碳原子數1至10的烷基或碳原 子數6至20的芳基,R2表示聚合性有機基’ nl表示1至10的 整數)所示部分結構的矽化合物(A)者。 作爲第2觀點’於上述矽化合物(A)之分子中所含之 全矽原子數爲8至40的第1觀點所記載之膜形成組成物。 作爲第3觀點,上述矽化合物(A)爲式(2):R2 Formula (1) (In the formula (1), R1 each independently represents an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms, and R2 represents a polymerizable organic group 'nl represents an integer of 1 to 10) Part of the structure of the ruthenium compound (A). In the second aspect, the film formation composition described in the first aspect of the ruthenium compound (A) has a total ruthenium atom number of 8 to 40. As a third aspect, the above hydrazine compound (A) is a formula (2):

R1 R1 式⑵ (式(2)中,R1各獨立表示碳原子數1至1〇的烷基或碳原 子數6至20的芳基’ R2各獨立表示聚合性有機基,η2各獨 立表示3至5的整數)所示第1觀點所記載之膜形成組成物 -10- 201130894 作爲第4觀點’上述Rl表示甲基,R2表示環氧 雜環丁烷基、乙烯基' 或含有選自彼等至少種的基 性有機基的第1觀點至第3觀點中任一所記載之膜形 物。 作爲第5觀點’進一步含有聚合啓始劑(C)及 D)之第’點至第4觀點中任—所記載之膜形成組员 作爲第6觀點’聚合啓始劑(C )爲熱或光陽離 啓始劑、或熱或光自由基聚合啓始劑之第5觀點所 膜形成組成物。 作爲第7觀點’矽化合物(A)的重量平均分 900至1 00000之第!觀點至第6觀點中任一所記載之 組成物。 作爲第8觀點,進一步作爲矽化合物(b)含3 ): 【化3】 (Rl1)a1(R31)b1Si (R21)4—(a,+b1)式⑶ (式中,R11表示環氧基、氧雜環丁烷基、乙烯基 有選自彼等之至少I種之基的聚合性有機基,且藉 鍵與矽原子結合之基,R31表示烷基、芳基、鹵化 鹵化芳塞、或具有氫硫基、胺基或氰基之有機基, Si-C鍵與矽原子結合之基,R21表示鹵素原子、或碳 1至20的烷氧基或醯氧基,a1表示1的整數,b1表示0 的整數,aUb1表示1、2或3的整數)所示矽化合物;g 選自式(4 ): 基、氧 之聚合 成組成 溶劑( 物。 子聚合 記載之 子量爲 膜形成 Γ式(3 、或含 由 Si-C 烷基、 且藉由 原子數 、]或2 -11 - 201130894 lit 4] C(R41)ciSi (R51)3-c02V 式⑷ (式中’ R41表示環氧基、氧雜環丁烷基、乙烯基、或含 有彼等之聚合性有機基,且藉由Si_C鍵與矽原子結合之基 ’ R51表示鹵素原子、或碳原子數1至20的烷氧基或醯氧基 ’ Y表示氧原子、碳原子數1至20的伸烷基,c1表示1或2的 整數)所示矽化合物、彼等水解物、式(3 )所示矽化合 物的水解縮合物、式(4)所示矽化合物的水解縮合物、 及式(3 )所示矽化合物與式(4 )所示矽化合物的水解縮 合物所成群之至少1種的矽化合物(B1)之第1觀點至第7 觀點中任一所記載之膜形成組成物。 作爲第9觀點,進一步含有作爲矽化合物(B )之上述 式(3)所示矽化合物、及選自式(4)所示矽化合物、彼 等之水解物、式(3)所示矽化合物的水解縮合物、式(4 )所示矽化合物的水解縮合物、及式(3 )所示矽化合物 與式(4)所示矽化合物的水解縮合物所成群之至少1種砂 化合物(B 1 )、以及 —般式(5 ): 【化5】 (R12)a2(R32)b2Si (R22)4—(a2+b2〉式⑸ (式中,R12及R3 2各表示烷基、芳基、鹵化烷基、鹵化芳 基、或具有氫硫基、胺基或氰基之有機基,且藉由si-c鍵 與矽原子結合之基’ R22表示鹵素原子、或碳原子數1至20 的烷氧基或醯氧基,a2及b2各表示0、1、或2的整數’ -12- 201130894 a2 + b2表示〇、1、或2的整數)所示矽化合物及、選自式(6 ): 【化6】 C(R42)〇2Si (R52)3-c〇2Y 式⑹ (式中,R42表示碳原子數1至5的烷基,R52表示鹵素原子 、或碳原子數1至20的烷氧基或醯氧基,Y表示氧原子、碳 原子數1至20的伸烷基,c2表示0或1的整數)所示矽化合 物、其水解物、式(5 )所示矽化合物的水解縮合物、式 (6)所不砂化合物的水解縮合物、及式(5)所示砂化合 物與式(6)所示矽化合物之水解縮合物所成群之至少1種 石夕化合物(B 2 )的組合之桌1觀點至弟7觀點中任一所記載 之膜形成組成物。 作爲第1 〇觀點,矽化合物(B )爲式(3 )所示化合物 的水解縮合物之第8觀點所記載之膜形成組成物。 作爲第1 1觀點,進一步含有交聯性化合物及/或界面 活性劑之第1觀點至第1 〇觀點中任一所記載之膜形成組成 物。 作爲第1 2觀點,膜爲包覆以奈米壓印法所形成之抗蝕 圖型的上層膜之第1觀點至第π觀點中任一所記載之膜形 成組成物。 作爲第1 3觀點,含有將第1觀點至第1 2觀點中任一所 記載之膜形成組成物作爲抗蝕上層膜形成組成物,塗佈於 藉由奈米壓印所形成之抗蝕圖型上,形成抗蝕上層膜之步 驟、及於前述抗蝕上層膜藉由熱燒成及/或光照射而使抗 -13- 201130894 蝕上層膜硬化的步驟,使用於使用奈米壓 程中的層合結構之形成方法。 作爲第1 4觀點,含有將第1觀點至第 記載之膜形成組成物作爲抗蝕上層膜形成 藉由奈米壓印所形成之抗蝕圖型上,形成 驟、於前述抗蝕上層膜藉由熱燒成及/或 上層膜硬化的步驟、將該抗蝕上層膜藉由 蝕刻之步驟、將抗蝕膜藉由氧系氣體進行 依據所形成之抗蝕上層膜及抗蝕膜的圖型 驟之基板的製造方法。 作爲第15觀點,藉由前述奈米壓印之 度/直徑所示縱橫比爲0.0 1以上的孔、或j 橫比爲0.0 1以上之段差、或這些混在之具 型的第1 3觀點所記載之形成方法。 作爲第16觀點,藉由前述奈米壓印之 度/直徑所示縱橫比爲0.0 1以上的孔、或丄 橫比爲0.01以上之段差、或這些混在之具 型的第1 4觀點所記載之製造方法。 作爲第1 7觀點,藉由前述光照射 65〇11111之光進行的第13觀點至第16觀點中 方法。 發明之效果 本發明的目的爲,於圖型形成製程之 印的圖型形成製 1 2觀點中任一所 組成物,塗佈於 抗蝕上層膜之步 光照射而使抗蝕 鹵素系氣體進行 蝕刻之步驟、及 而加工基板的步 抗蝕圖型的以高 认高度/幅所示縱 有凹凸之抗蝕圖 抗蝕圖型的以高 U高度/幅所示縱 有凹凸之抗蝕圖 爲波長250nm至 任一所示記載之 奈米壓印微影術 -14· 201130894 中,將使用於奈米壓印用抗蝕的上層之抗蝕上層膜藉由光 照射或熱燒成使其硬化,欲膜形成的含有矽原子之抗蝕上 層膜形成組成物。又,對於使用該組成物之圖型形成製程 的奈米壓印微影術,使用於奈米壓印用抗蝕之上層的上層 膜的形成方法、及奈米壓印用抗蝕圖型的形成方法。 將來自有機矽化合物的無機原子之矽原子於膜中含有 例如5至45質量%時,藉由氧氣體之電漿蝕刻速度會變小, 成爲蝕刻耐性硬式光罩層。 又,藉由抗蝕圖型之本發明的抗蝕上層膜之蝕刻時所 使用的氟系氣體(例如CF4 )氣體條件中,因具有比抗蝕 更充分高的蝕刻速度,故可蝕刻本發明的抗蝕上層膜,繼 續蝕刻抗蝕圖型,將抗蝕圖型反轉印至本發明的上層膜, 將所形成之抗蝕膜與抗蝕上層膜作爲保護膜而可進行基板 之加工。 且,將具有微細凹凸之模版進行押入加壓,在加壓的 狀態下進行光照射或熱燒成使組成物硬化後,由塗膜脫離 模版時,因本發明的上層膜與奈米壓印用抗蝕之間的高密 著性,於蝕刻加工時不容易引起抗蝕圖型之欠缺、倒下、 剝落或抗蝕小片之再附著所引起的異物等製圖欠損的問題 〇 又,本發明的抗蝕上層膜欲防止抗蝕圖型倒下、改善 加工邊緣、使抗蝕圖型反轉,且欲平坦具有凹凸之抗蝕圖 型而具有優良平坦性及表面平滑性,欲平坦成爲基底的奈 米壓印用抗蝕圖型之凹凸,於深蝕刻後可使表面平滑,作 -15- 201130894 爲該結果在電漿蝕刻步驟中,對於基底基板可使其具有較 高加工精度》 且,不會與本發明的抗蝕上層膜之下層所形成之抗蝕 互相混合,光阻溶劑爲不溶,於塗佈時或加熱乾燥時由下 層膜至上層抗蝕膜不會有低分子量物質之擴散,抗蝕下層 膜爲具有良好矩形之奈製圖特性。 本案發明者經詳細重複硏究結果,發現將含有低分子 量成分之含有量較少的矽原子之矽化合物(A)、聚合啓 始劑(C)及溶劑(D )作爲構成成分之組成物可適用於奈 米壓印用抗蝕上層膜形成時的材料。 又,依用途作爲本發明的抗蝕上層膜形成組成物使用 光交聯時,無須進行在高溫之熱燒成,可藉由光照射形成 抗蝕上層膜。因此,故可防止因低分子量成分的揮發或昇 華所引起的周邊裝置之污染。且在高溫的熱燒成成爲不必 要,故即使將低分子量成分使用於抗蝕上層膜形成組成物 亦無昇華等顧慮,可將比較多量的低分子量成分使用於抗 蝕上層膜形成組成物。因此,使用比較低黏度的抗餓上層 膜形成組成物形成抗蝕上層膜。而亦可形成孔之塡充性或 半導體基板之平坦化性進一步優良的抗蝕上層膜。 實施發明之形態 本發明爲含有具有式(1 )所示部分結構的矽化合物 (A)之膜形成組成物。矽化合物(A)的分子中可含有 矽原子5至40質量%。可使上述矽化合物(A )的分子中之 -16- 201130894 全矽原子數爲8至40、或8至20。 上述膜形成組成物可進一步含有聚合啓始劑(C)與 溶劑(D )。本發明的膜形成組成物中之固體成分,例如 可爲0.5至99質量%、或3至5〇質量%、或10至30質量%。固 體成分爲由膜形成組成物之全成分除去溶劑(D)者。 可使固體成分中所占之上述(A)、或上述(A)與 上述(B1)、或上述(A)與上述(B1)與上述(B2)的 比率爲1至99.5質量%、或7至5 0質量%、或70至90質量%。 矽化合物(A)爲支鏈型矽化合物,由直鏈聚矽氧院 具有聚矽氧烷爲分支之結構,於該先端具有聚合性有機基 。上述矽化合物(A)的重量平均分子量可爲900至100000 、或900至50000、或900至1 0000,由溶解性之觀點來看以 900至3000爲佳。 式(1)中’ nl爲1至10的整數。Ri各爲碳原子數1至 10的院基、碳原子數6至20的芳基、或彼等之組合。 作爲院基可舉出甲基 '乙基、η -丙基、i_丙基、環丙 基、η -丁基' i-丁基、s-丁基、t-丁基、環丁基、ι_.甲基_ 環丙基、2 -甲基-環丙基、η -戊基、1-甲基-n_ 丁基、2 -甲 基-n_ 丁基、3 -甲基- η-丁基、1,1-二甲基-n_丙基、ι,2·二甲 基-η-丙基、2,2-二甲基-n_丙基、1-乙基-n_丙基、環戊基 、1-甲基-環丁基、2-甲基-環丁基、3-甲基-環丁基、丨,2_ 二甲基-環丙基、2,3-二甲基-環丙基、丨_乙基-環丙基、2_ 乙基-環丙基、n_己基、1-甲基- η-戊基、2 -甲基-η -戊基、 3-甲基-η-戊基、4-甲基-η-戊基、1,1-二甲基_η_ 丁基、L2- -17- 201130894 二甲基-η-丁基、1,3-二甲基-η-丁基、2,2-二甲基·η·丁基、 2.3- 二甲基-η-丁基、3,3-二甲基-η-丁基、1-乙基丁基、 2-乙基-η-丁基、1,1,2_三甲基-η-丙基、1,2,2-三甲基_η-丙 基、乙基-1-甲基-η-丙基、1-乙基-2-甲基-η-丙基、環己 基、丨-甲基-環戊基、2-甲基-環戊基、3-甲基-環戊基、卜 乙基-環丁基、2-乙基-環丁基、3-乙基·環丁基、丨,2-二甲 基-環丁基、1,3_二甲基-環丁基、2,2_二甲基_環丁基、 2.3- 二甲基-環丁基、2,4-二甲基-環丁基、3,3-二甲基-環 丁基、1-η-丙基-環丙基、2-η-丙基-環丙基、1_卜丙基-環 丙基、2-i-丙基-環丙基、1,2,2-三甲基-環丙基、丨,2,3·三 甲基-環丙基、2,2,3-三甲基-環丙基、1-乙基-2-甲基-環丙 基、2-乙基-1-甲基-環丙基、2-乙基-2-甲基-瓌芮基及2_乙 基-3-甲基-環丙基等。 作爲芳基,可舉出苯基、〇-甲基苯基、ni-甲基苯基' p-甲基苯基、〇-氯苯基、m-氯苯基、p-氯苯基、〇-氟苯基 、p-氟苯基、〇-甲氧基苯基、P-甲氧基苯基、P·硝基苯基 、P-氰基苯基、α·萘基、β-萘基、〇-聯苯基、m-聯苯基、 p-聯苯基、1-蒽基、2-蒽基、9-蒽基、1-菲基、2-菲基、3-菲基、4-菲基及9-菲基。 式(1 )中R2爲聚合性有機基,可舉出環氧基、氧雜 環丁烷基、乙烯基、或含有彼等之有機基。作爲R2例如可 舉出環氧基、氧雜環丁烷基、乙烯基’作爲含有彼等之有 機基,可舉出丙烯醯基乙基、丙烯醯丙基、甲基丙烯醯基 乙基、甲基丙烯醯基丙基、環氧丙基乙基、環氧丙基丙基 -18- 201130894 、環氧環己基乙基、環氧環己基丙基等。 使用於本發明之矽化合物(A)可舉出式(2)的化合 物之例子。式(2)中,R1各表示碳原子數1至10的烷基、 碳原子數6至20的芳基 '或彼等組合,可舉出上述例示。 又’ R2各表示聚合性有機基,可舉出上述例示。而n2各爲 3至5的整數。 式(1)及式(2)中,R1表示甲基,R2表示環氧基、 氧雜環丁烷基、乙烯基、或可例示出含有彼等之有機基。 式(2 )的化合物可例示如以下者。R1 R1 Formula (2) (In the formula (2), R1 each independently represents an alkyl group having 1 to 1 carbon atom or an aryl group having 6 to 20 carbon atoms. R2 each independently represents a polymerizable organic group, and η2 each independently represents 3 Film-forming composition according to the first aspect shown in the first aspect of the present invention is a fourth aspect. The above R1 represents a methyl group, and R2 represents an epoxyecycloalkyl group, a vinyl group or a member selected from the group consisting of The film shape described in any one of the first aspect to the third aspect of the basic organic group. The film formation member described in the fifth viewpoint 'further containing the polymerization initiators (C) and D) from the "point to the fourth viewpoint" as the sixth viewpoint 'the polymerization initiator (C) is heat or The film forms a composition from the fifth viewpoint of the initiator, or the thermal or photoradical polymerization initiator. As the seventh point of view, the average weight of the compound (A) is 900 to 1,000,000! The composition described in any one of the sixth aspect. Further, as the ninth aspect, the ruthenium compound (b) further contains 3): (R1) a1 (R31) b1Si (R21) 4 - (a, + b1) Formula (3) (wherein R11 represents an epoxy group An oxetanyl group, a vinyl group having a polymerizable organic group selected from at least one of the groups, and a group bonded to a ruthenium atom by a bond, and R31 represents an alkyl group, an aryl group, a halogenated halogenated aryl group, Or an organic group having a thiol group, an amine group or a cyano group, a group in which a Si-C bond is bonded to a ruthenium atom, R21 represents a halogen atom, or an alkoxy group or a decyloxy group having 1 to 20 carbon atoms, and a1 represents an integer of 1. , b1 represents an integer of 0, aUb1 represents an integer of 1, 2 or 3) 矽 compound; g is selected from the group (4): a group, a polymerization of oxygen to form a solvent (substance. Formula (3, or consists of Si-C alkyl, and by atomic number,] or 2 -11 - 201130894 lit 4] C(R41)ciSi (R51)3-c02V Formula (4) (wherein R41 represents epoxy a group, a oxetane group, a vinyl group, or a polymerizable organic group containing the same, and a group in which a Si_C bond is bonded to a ruthenium atom, R51 represents a halogen atom or an alkoxy group having 1 to 20 carbon atoms. or The hydrazine oxy group Y represents an oxygen atom, an alkylene group having 1 to 20 carbon atoms, and c1 represents an integer of 1 or 2), a hydrolyzate thereof, and a hydrolysis condensate of the hydrazine compound represented by the formula (3). And a hydrazine compound (B1) of at least one of a hydrolysis condensate of the hydrazine compound represented by the formula (4) and a hydrolytic condensate of the hydrazine compound represented by the formula (3) and the hydrazine compound represented by the formula (4). The film formation composition according to any one of the first aspect to the seventh aspect, further comprising the oxime compound represented by the above formula (3) as the ruthenium compound (B), and the oxime compound selected from the formula (4) a hydrazine compound, a hydrolyzate thereof, a hydrolysis condensate of the hydrazine compound represented by the formula (3), a hydrolysis condensate of the hydrazine compound represented by the formula (4), and an oxime compound represented by the formula (3) and the formula (4) At least one sand compound (B 1 ) in the group of the hydrolysis condensate of the ruthenium compound shown, and the general formula (5): (R5) a2 (R32) b2Si (R22) 4 - (a 2+ B2> Formula (5) (wherein R12 and R3 2 each represent an alkyl group, an aryl group, an alkyl halide group, a halogenated aryl group, or an organic group having a thiol group, an amine group or a cyano group; And the group 'R22' bonded to the ruthenium atom by the si-c bond represents a halogen atom or an alkoxy group or a decyloxy group having 1 to 20 carbon atoms, and a2 and b2 each represent an integer of 0, 1, or 2' - 12- 201130894 a2 + b2 represents an yttrium compound represented by an integer of 〇, 1, or 2, and is selected from the group consisting of formula (6): [Chem. 6] C(R42)〇2Si (R52)3-c〇2Y Formula (6) ( Wherein R42 represents an alkyl group having 1 to 5 carbon atoms, R52 represents a halogen atom, or an alkoxy group or a decyloxy group having 1 to 20 carbon atoms, and Y represents an oxygen atom and an alkylene group having 1 to 20 carbon atoms. a group, c2 represents an integer of 0 or 1), a hydrolyzate thereof, a hydrolysis condensate of the oxime compound represented by the formula (5), a hydrolysis condensate of the non-sand compound of the formula (6), and the formula (5) A film forming composition according to any one of Table 1 to Aspect 7 of the combination of the sand compound and the hydrolysis condensate of the hydrazine compound represented by the formula (6), which is a combination of at least one compound (B 2 ) Things. The oxime compound (B) is a film-forming composition described in the eighth aspect of the hydrolysis-condensation product of the compound represented by the formula (3). The film forming composition according to any one of the first aspect to the first aspect of the present invention, further comprising the crosslinkable compound and/or the surfactant. In the first aspect, the film is a film-forming composition according to any one of the first aspect to the πth aspect of the upper layer film of the resist pattern formed by the nanoimprint method. According to a third aspect, the film-forming composition according to any one of the first aspect to the first aspect is formed as a composition of a resist upper layer film, and is applied to a resist pattern formed by nanoimprinting. a step of forming a resist upper layer film and a step of hardening the anti--13-201130894 etched upper layer film by thermal baking and/or light irradiation of the resist upper layer film, which is used in a nanometer pressure range A method of forming a laminated structure. According to a fourteenth aspect, the film formation composition according to the first aspect to the first aspect is formed on a resist pattern formed by nanoimprinting as a resist upper layer film, and the resist is formed on the resist upper layer film. a step of thermally baking and/or curing the upper film, a step of etching the resist upper film, and a pattern of the resist upper film and the resist film formed by the oxygen film by the oxygen gas A method of manufacturing a substrate. According to a fifteenth aspect, the aspect ratio of the nanoimprint embossing/diameter is 0.011 or more, or the j lateral ratio is 0.011 or more, or the first and third viewpoints are mixed. The method of formation of the record. In the sixteenth aspect, the aspect ratio of the nanoimprint embossing/diameter is 0.011 or more, or the aspect ratio of the aspect ratio of 0.01 or more, or the first aspect of the mixed type is described. Manufacturing method. As a matter of the seventh aspect, the method of the thirteenth aspect to the sixteenth aspect is performed by the light of 65 〇 11111 by the light. Advantageous Effects of Invention The object of the present invention is to form a composition of any of the patterns of the pattern forming process of the pattern forming process, and apply the light to the resist upper layer film to irradiate the halogen-resistant gas. a step of etching, and a resist pattern of a step resist pattern of a substrate to be processed with a high U height/width as shown by a high-recognition height/web The wavelength of 250 nm to any of the nanoimprint lithography described in the above-mentioned No. 14 to 201130894, the upper resist film for the upper layer of the resist for nanoimprint is irradiated by light or thermally fired. The hardened, anti-corrosion upper film containing a ruthenium atom formed by the film is formed into a composition. Further, a nanoimprint lithography method using a pattern forming process of the composition, a method of forming an upper layer film for using a resist overlayer for nanoimprinting, and a resist pattern for nanoimprinting Forming method. When the ruthenium atom of the inorganic atom derived from the organic ruthenium compound is contained in the film, for example, 5 to 45% by mass, the plasma etching rate by the oxygen gas is reduced to become an etching-resistant hard mask layer. Further, in the fluorine-based gas (for example, CF4) gas used in the etching of the resist superposed film of the present invention in the resist pattern, since the etching rate is sufficiently higher than that of the resist, the present invention can be etched. The resist upper film continues to etch the resist pattern, reverse-transfers the resist pattern to the upper film of the present invention, and the formed resist film and the resist upper film are used as a protective film to process the substrate. Further, the stencil having fine concavities and convexities is subjected to pressurization, and light irradiation or hot baking is performed in a pressurized state to cure the composition, and when the coating film is detached from the stencil, the upper film and the nano embossing of the present invention are used. With the high adhesion between the resists, it is not easy to cause defects in the pattern of the resist pattern due to lack of the resist pattern, falling, peeling, or reattachment of the resist sheet during the etching process. The anti-corrosion upper layer film is intended to prevent the resist pattern from falling down, to improve the processing edge, to reverse the resist pattern, and to flatten the resist pattern having irregularities, and to have excellent flatness and surface smoothness, and to be flattened as a base. The embossing pattern of the nanoprinting has a concave-convex pattern, and the surface can be smoothed after deep etching, as -15-201130894. In the plasma etching step, the base substrate can be made to have a higher processing precision. It does not mix with the resist formed by the lower layer of the resist upper layer film of the present invention, and the photoresist solvent is insoluble, and there is no diffusion of low molecular weight substances from the underlayer film to the upper resist film during coating or heat drying. ,anti Underlayer film to have good drawing characteristics Chennai rectangles. The inventors of the present invention have found out that the ruthenium compound (A) containing a ruthenium atom having a low content of a low molecular weight component, the polymerization initiator (C), and the solvent (D) are used as constituent components. It is suitable for the material used in the formation of a resist upper film for nanoimprinting. Further, when photo-crosslinking is used as the composition for forming a resist-uplayer film of the present invention, it is not necessary to carry out thermal firing at a high temperature, and a resist-uplayer film can be formed by light irradiation. Therefore, it is possible to prevent contamination of peripheral devices caused by volatilization or sublimation of low molecular weight components. Further, since it is not necessary to thermally calcine at a high temperature, even if a low molecular weight component is used for the resist upper film forming composition, there is no need for sublimation, and a relatively large amount of a low molecular weight component can be used for the resistive upper film forming composition. Therefore, a relatively low-viscosity anti-hungry upper film forming composition is used to form a resist upper film. Further, it is possible to form a resist upper layer film in which the hole is filled or the flatness of the semiconductor substrate is further improved. MODE FOR CARRYING OUT THE INVENTION The present invention is a film-forming composition containing an oxime compound (A) having a partial structure represented by the formula (1). The ruthenium compound (A) may contain 5 to 40% by mass of a ruthenium atom in the molecule. The total number of atoms of -16 to 201130894 in the molecule of the above ruthenium compound (A) may be from 8 to 40, or from 8 to 20. The above film-forming composition may further contain a polymerization initiator (C) and a solvent (D). The solid content in the film-forming composition of the present invention may be, for example, 0.5 to 99% by mass, or 3 to 5% by mass, or 10 to 30% by mass. The solid component is one in which the solvent (D) is removed from the entire component of the film-forming composition. The ratio of the above (A) or the above (A) to the above (B1), or the above (A) and the above (B1) to the above (B2) may be 1 to 99.5% by mass, or 7 Up to 50% by mass, or 70 to 90% by mass. The ruthenium compound (A) is a branched ruthenium compound, and has a structure in which a polyoxane is branched by a linear polyoxazine, and a polymerizable organic group is present at the apex. The above hydrazine compound (A) may have a weight average molecular weight of from 900 to 100,000, or from 900 to 50,000, or from 900 to 10,000, preferably from 900 to 3,000 from the viewpoint of solubility. 'nl in the formula (1) is an integer of 1 to 10. Each of Ri is a group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a combination thereof. Examples of the hospital base include methyl 'ethyl, η-propyl, i-propyl, cyclopropyl, η-butyl' i-butyl, s-butyl, t-butyl, cyclobutyl, Io_.methyl_cyclopropyl, 2-methyl-cyclopropyl, η-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-η-butyl 1,1-dimethyl-n-propyl, ι,2·dimethyl-η-propyl, 2,2-dimethyl-n-propyl, 1-ethyl-n-propyl, Cyclopentyl, 1-methyl-cyclobutyl, 2-methyl-cyclobutyl, 3-methyl-cyclobutyl, anthracene, 2-dimethyl-cyclopropyl, 2,3-dimethyl- Cyclopropyl, hydrazine-ethyl-cyclopropyl, 2-ethyl-cyclopropyl, n-hexyl, 1-methyl-η-pentyl, 2-methyl-η-pentyl, 3-methyl- Η-pentyl, 4-methyl-η-pentyl, 1,1-dimethyl-ηη butyl, L2- -17- 201130894 dimethyl-η-butyl, 1,3-dimethyl- Η-butyl, 2,2-dimethyl·η·butyl, 2.3-dimethyl-η-butyl, 3,3-dimethyl-η-butyl, 1-ethylbutyl, 2 -ethyl-η-butyl, 1,1,2-trimethyl-η-propyl, 1,2,2-trimethyl-η-propyl, ethyl-1-methyl-η-propyl Base, 1-ethyl-2-methyl-η-propyl, cyclohexyl, oxime-methyl- Cyclopentyl, 2-methyl-cyclopentyl, 3-methyl-cyclopentyl, ethyl-cyclobutyl, 2-ethyl-cyclobutyl, 3-ethylcyclobutyl, anthracene, 2- Dimethyl-cyclobutyl, 1,3-dimethyl-cyclobutyl, 2,2-dimethyl-cyclobutyl, 2.3-dimethyl-cyclobutyl, 2,4-dimethyl- Cyclobutyl, 3,3-dimethyl-cyclobutyl, 1-η-propyl-cyclopropyl, 2-η-propyl-cyclopropyl, 1-propyl-cyclopropyl, 2-i- Propyl-cyclopropyl, 1,2,2-trimethyl-cyclopropyl, hydrazine, 2,3·trimethyl-cyclopropyl, 2,2,3-trimethyl-cyclopropyl, 1 -ethyl-2-methyl-cyclopropyl, 2-ethyl-1-methyl-cyclopropyl, 2-ethyl-2-methyl-indenyl and 2-ethyl-3-methyl - cyclopropyl and the like. Examples of the aryl group include a phenyl group, a fluorenyl-methylphenyl group, a ni-methylphenyl 'p-methylphenyl group, a fluorenyl-chlorophenyl group, an m-chlorophenyl group, a p-chlorophenyl group, and an anthracene. -fluorophenyl, p-fluorophenyl, fluorenyl-methoxyphenyl, P-methoxyphenyl, P.nitrophenyl, P-cyanophenyl, α-naphthyl, β-naphthyl , 〇-biphenyl, m-biphenyl, p-biphenyl, 1-indenyl, 2-indenyl, 9-fluorenyl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4 - phenanthryl and 9-phenanthryl. R2 in the formula (1) is a polymerizable organic group, and examples thereof include an epoxy group, an oxacyclobutane group, a vinyl group, or an organic group containing the same. Examples of R 2 include an epoxy group, an oxetanyl group, and a vinyl group as an organic group containing the same, and examples thereof include an acryloylethyl group, a propylene propyl group, and a methacryl fluorenyl group. Methyl propylene decyl propyl, epoxy propyl ethyl, glycidyl propyl -18 - 201130894, epoxy cyclohexyl ethyl, epoxy cyclohexyl propyl and the like. The compound (A) used in the present invention may be exemplified by the compound of the formula (2). In the formula (2), each of R1 represents an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms, or a combination thereof, and the above-exemplified examples are mentioned. Further, each of R2 represents a polymerizable organic group, and the above examples are exemplified. And n2 is an integer of 3 to 5. In the formulae (1) and (2), R1 represents a methyl group, and R2 represents an epoxy group, an oxetanyl group, a vinyl group, or an organic group containing the same. The compound of the formula (2) can be exemplified as follows.

Ut7) ch3/ch3Ut7) ch3/ch3

3HC,、ch3 ch3/ch3 、Si、 / CH-3HC,, ch3 ch3/ch3, Si, / CH-

)si^CH3 3HC 、CH3 式(2-2) -19- 201130894 【化8】 ch3/ch3) si^CH3 3HC , CH3 (2-2) -19- 201130894 【化8】 ch3/ch3

QQ

o oo o

Si 式(2-3) H3C)SiSi type (2-3) H3C)Si

H3C〇(S ,Si-^CH3 3HC'、ch3 ,ch3 、ch3 〇/ CH3 ^ Hji^Si^OSi-^yO^0 式(2-4) 本發明的膜形成組成物進一步含有聚合啓始劑(C ) 。聚合啓始劑(c)爲熱或光陽離子聚合啓始劑、或熱或 光自由基聚合啓始劑。 藉由加熱含有矽化合物(A)之被膜’由熱陽離子聚 合啓始劑之作用進行矽化合物(A)之陽離子聚合而形成 硬化被膜。 又,將含有矽化合物(A )之被膜藉由光照射經光陽 離子聚合啓始劑的作用進行矽化合物(A)的陽離子聚合 而形成硬化被膜。而可進行陽離子聚合之反應性基爲環氧 基、氧雜環丁烷基、或含有彼等之有機基爲佳。 藉由將含有矽化合物(A)之被膜進行加熱經熱自由 -20- 201130894 基聚合啓始劑之作用進行矽化合物(A)的自由基聚合而 形成硬化被膜。 又,藉由將含有矽化合物(A )之被膜進行光照射, 經光自由基聚合啓始劑之作用進行矽化合物(A )的自由 基聚合而形成硬化被膜。而可進行自由基聚合之反應性爲 乙烯基、或含有彼等之有機基爲佳。 聚合性部位之乙烯基在縮合物中具有二個以上時,對 於溶劑的耐溶劑溶解性之觀點來看爲佳。 本發明所使用的矽化合物(A )例如可由以下合成方 法得到。 將上述式(2-1 )至(2-4 )所記載之矽化合物作爲例 〇 將3H,5H-八甲基四矽氧烷(Lancaster公司製)3.0g、 作爲觸媒之鈀活性碳(含有5質量%之鈀。Acres organics 公司製)0.07g、水2.6g、四氫呋喃70g在室溫進行24小時 混合攪拌後,過濾並純化(第一段階)。H3C〇(S ,Si—^CH3 3HC′, ch3 , ch3 , ch3 〇/ CH3 ^ Hji^Si^OSi-^yO^0 Formula (2-4) The film-forming composition of the present invention further contains a polymerization initiator (C) The polymerization initiator (c) is a thermal or photocationic polymerization initiator, or a thermal or photoradical polymerization initiator. The process of heating the film containing the ruthenium compound (A) is initiated by thermal cation polymerization. The cation polymerization of the ruthenium compound (A) is carried out to form a hardened film. Further, the film containing the ruthenium compound (A) is subjected to cationic polymerization of the ruthenium compound (A) by light irradiation through a photocationic polymerization initiator. The hardened film is formed, and the reactive group capable of cationic polymerization is preferably an epoxy group, an oxetanyl group, or an organic group containing the same. The film containing the cerium compound (A) is heated by the film. Heat Free -20- 201130894 The role of the base polymerization initiator is to carry out radical polymerization of the ruthenium compound (A) to form a hardened film. Further, photo-radical polymerization is carried out by irradiating the film containing the ruthenium compound (A) with light. The action of the initiator to carry out the free radicals of the ruthenium compound (A) The cured film is formed into a hardened film, and the reactivity of the radical polymerization is preferably a vinyl group or an organic group containing the same. When the vinyl group in the polymerizable portion has two or more condensates, the solvent resistance to the solvent The oxime compound (A) used in the present invention can be obtained, for example, by the following synthesis method. The ruthenium compound described in the above formulas (2-1) to (2-4) is exemplified as 3H. 3.0 g of 5H-octamethyltetraoxane (manufactured by Lancaster Co., Ltd.), palladium-activated carbon (containing 5 mass% of palladium, manufactured by Acres Organics Co., Ltd.), 0.07 g of water, 2.6 g of water, and 70 g of tetrahydrofuran at room temperature After mixing for 24 hours, it was filtered and purified (first stage).

【化9】 h3c H3C, H3C 、0个< ^ 9出 ySL a-CH3 ,〇 \ 〇 W CHs CH, CH3 H3C OH OH ch3 H3c'Si^ .Siv ^Si-^CHs H2〇/THF H3C 、CT CHs CH3[9] h3c H3C, H3C, 0 < ^ 9 out ySL a-CH3 , 〇 \ 〇 W CHs CH, CH3 H3C OH OH ch3 H3c'Si^ .Siv ^Si-^CHs H2〇/THF H3C , CT CHs CH3

5%Pd/C :H3 將所得之反應物2.9 g —邊以冰冷卻下,一邊滴於二甲 基氯矽烷(Gelest公司製)28g、三乙基胺53g、二乙基醚 1 〇〇g的混合溶液,在室溫進行24小時攪拌。其後混合水 400g,將反應液分離出2層,將萃取出的醚層進行3次水洗 步驟後,混合硫酸鎂(A1 d r i c h公司製)5 g並使其脫水。其 201130894 後,欲除去硫酸鎂,經過濾後將醚系溶劑藉由蒸發使其除 去,得到矽化合物(A )之中間體2 · 9g (第二段階)。 【化1 0】5% Pd/C: H3 2.9 g of the obtained reaction product was poured into dimethyl chlorodecane (Gelest) 28 g, triethylamine 53 g, diethyl ether 1 〇〇g while cooling with ice. The mixed solution was stirred at room temperature for 24 hours. Thereafter, 400 g of water was mixed, and the reaction liquid was separated into two layers, and the extracted ether layer was washed with water three times. Then, 5 g of magnesium sulfate (manufactured by A1 d r i c h) was mixed and dehydrated. After 201130894, magnesium sulfate was removed, and after filtration, the ether solvent was removed by evaporation to obtain Intermediate 2 · 9 g (second stage) of the hydrazine compound (A). [化1 0]

進一步重複第一段階與第二段階,得到si原子爲12個 之支鏈型矽化合物。 【化1 1 h3c .Η ΚFurther, the first stage and the second stage are repeated to obtain a branched ruthenium compound having 12 Si atoms. [化1 1 h3c .Η Κ

Si H3C h3c、 h3c h3c ,ch3 、ch3 ch3Si H3C h3c, h3c h3c , ch3 , ch3 ch3

5%Pd/C nH HO H3V0H 巧 h3c \ / ch3 h3c 3CH3 h2o/thf H3C4 h3c _ d ch3 ch3 ch3 ch35%Pd/C nH HO H3V0H Q3 h3c \ / ch3 h3c 3CH3 h2o/thf H3C4 h3c _ d ch3 ch3 ch3 ch3

Qi_l HO·H‘sr / CH:Qi_l HO·H‘sr / CH:

HaC^ \ H3C 0 H3C-si H3C η3(:、1/:η3 § / g -ch3 CHa 二甲基氯砂烷 X- HsC 4- P13 ^CH3_^ H3C~>i^X 〇^SiySi-CH3 、CH3 TCA/醚 H3〆 【化1 2 h3c、士,ch3 十 3C Η3° X CHaHaC^ \ H3C 0 H3C-si H3C η3(:, 1/:η3 § / g -ch3 CHa dimethyl chlorosane X- HsC 4- P13 ^CH3_^ H3C~>i^X 〇^SiySi-CH3 , CH3 TCA/ether H3〆[化1 2 h3c,士,ch3 十3C Η3° X CHa

OHOH

h3c + H3C)i、甲、HaC u OHH3c + H3C)i, A, HaC u OH

5%Pd/C h3c5% Pd/C h3c

4v/s/iTCH3 H2〇/THFH3〇^、jir、 i"0 CH3 H3〆 〇 Γ〇 CH3 H CH3 ,Si Si-CH3 H3C4"CHH3/t-CH,二甲基氛砂,H3C.f:CH3/^cH3 H3C 4- 3 Ψ h3C 4, HiC ψ CH3 Ηη?^Ι CH3 zSi、…一W、CHa H3C'Sk ^Si、W 〇、( -Si SrCHs CH3 -22- 201130894 【化1 3】4v/s/iTCH3 H2〇/THFH3〇^, jir, i"0 CH3 H3〆〇Γ〇CH3 H CH3 , Si Si-CH3 H3C4"CHH3/t-CH, dimethyl air, H3C.f:CH3 /^cH3 H3C 4- 3 Ψ h3C 4, HiC ψ CH3 Ηη?^Ι CH3 zSi,...-W, CHa H3C'Sk ^Si, W 〇, ( -Si SrCHs CH3 -22- 201130894 [Chem. 1 3]

於該Si原子爲12個之支鏈型矽化合物(A)的中間體 3.3g中,混合甲苯32.5g、4-乙烯基-1-環己烷1,2-環氧化物 (Aid rich公司製)1.2g、及1,3-二乙烯基-1,1,3,3-四甲基 二矽氧烷鈾(0 )錯體二甲苯溶液(2質量%、Aldrich公司 製)0.025g,在室溫下進行24小時攪拌,進行過濾’將甲 苯藉由蒸餾除去,可得到最終固體物之上述支鏈型矽化合 物((A )、式(2 - 5 ) ) 3.5 g。此可使用美國德州大學In 3.3 g of the intermediate of the 12-membered branched ruthenium compound (A), 32.5 g of toluene and 4-vinyl-1-cyclohexane 1,2-epoxide (manufactured by Aid Rich Co., Ltd.) were mixed. 1.2 g, and 1,3-divinyl-1,1,3,3-tetramethyldioxane uranium (0) solution of xylene (2% by mass, manufactured by Aldrich Co., Ltd.) 0.025 g, The mixture was stirred at room temperature for 24 hours, and filtered. Toluene was removed by distillation to obtain 3.5 g of the above-mentioned branched fluorene compound ((A), formula (2-5)). This can be used at the University of Texas

Austin校之品名 Sil2-epoxy。 【化1 4】Austin's name is Sil2-epoxy. [化1 4]

HiC H3C-SI. h3cHiC H3C-SI. h3c

又,同樣地於S i原子爲1 2個之支鏈型矽化合物(A ) 201130894 的中間體3.0g中,混合甲苯29.5g、甲基丙烯酸烯丙基(東 京化成工業製)l.lg、及1,3-二乙烯基_1,1,3,3-四甲基二 矽氧烷鈾(0)錯體二甲苯溶液(2質量%、Aldrich公司製 )0.023g,在室溫下進行24小時攪拌’進行過濾’將甲苯 經蒸餾而除去,可得到最終固體物之上述支鏈型矽化合物 ((A)、式(2 - 6 ) ) 3. 1 g。此可使用美國德州大學Further, in the same manner, 3.0 g of the intermediate of the branched fluorene compound (A) 201130894 having 12 S i atoms was mixed with 29.5 g of toluene and allyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.). And 1,3-divinyl-1,1,3,3-tetramethyldioxane uranium (0) solution of xylene (2% by mass, manufactured by Aldrich), 0.023 g, at room temperature The mixture was filtered for 24 hours, and the toluene was removed by distillation to obtain the above-mentioned branched fluorene compound ((A), formula (2-6)) 3. 1 g of the final solid. This can be used at the University of Texas

Austin校之品名 Sil2-Methacrylate。 【化1 51Austin's name is Sil2-Methacrylate. 【化1 51

本發明中除含有矽化合物(A)以外,亦可進一步含 有矽化合物(B )。藉此可改善熱或光硬化特性、膜強度 、膜彈性率、平坦性、透明性、收縮性、外面氣體低減、 抗蝕的濕潤性、氣體透過性、保存安定性及與基板之濕潤 性等。 矽化合物(B)可使用式(3)及選自式(4)所示矽 化合物 '這些水解物、及這些水解縮合物所成群之至少i 種矽化合物(B 1 )。 又’矽化合物(B)可使用上述矽化合物(B1)、式 -24- 201130894 (5 )及選自式(6 )所示矽化合物、這些水解物、及這些 水解縮合物所成群的至少1種矽化合物(B2 )之組合。 矽化合物(B )使用式(3 )之矽化合物、這些水解物 、或這些水解縮合物爲佳。而矽化合物(B)使用式(3) 的水解縮合物爲佳。 上述矽化合物(B)的重量平均分子量可爲900至 100000、或900至50000、或900至10000,由溶解性的觀點 來看以900至3000爲佳。 可使用以矽化合物(A)與矽化合物(B )之質量比爲 ‘100: 0至30: 7〇的比率下混合者,進一步可使用100: 〇至 7 〇 : 3 0的莫耳比。 式(3)的矽化合物中,R11表示環氧基、氧雜環丁烷 基、乙烯基、或含有彼等之聚合性有機基且藉由Si-C鍵與 砍原子結合者,R31表示具有院基、芳基、鹵化院基、鹵 化芳基、或氫硫基、胺基或氰基之有機基,且藉由Si-C鍵 與矽原子結合者,R21表示齒素原子、或碳原子數1至8的 烷氧基或醯氧基,a1爲1的整數,b1爲0、1或2的整數, abb1爲1、2或3的整數。 又,式(4)的矽化合物中,R41表示環氧基、氧雜環 丁烷基、乙烯基、或含有彼等之聚合性有機基且藉由Si-C 鍵與矽原子結合者’ R51表示鹵素原子、或碳原子數1至20 的烷氧基或醯氧基,Y表示氧原子、碳原子數1至20的伸烷 基,c1爲1或2的整數。 式(5 )的矽化合物中,R12及R32各表示烷基、芳基、 -25- 201130894 鹵化烷基、鹵化芳基、或具有氫硫基、胺基或氰基之有機 基且藉由Si-C鍵與矽原子結合者,R22表示鹵素原子、或碳 原子數1至8的烷氧基或醯氧基,a2及b2各爲0、1、或2的整 數,a2 + b2爲0、1、或2的整數。 式(6)的矽化合物中,R42表示碳原子數1至5的烷基 ,R52表示鹵素原子、或碳原子數1至8的烷氧基或醯氧基 ,Y表示氧原子、碳原子數1至20的伸烷基,c2表示0或1的 整數。 式(3)至式(6)之矽化合物(B)中,環氧基、氧 雜環丁烷基、乙烯基、或含有彼等的聚合性有機基可舉出 上述例示。又,烷基、芳基可舉出上述例示。 作爲碳原子數1至20的伸烷基,可舉出伸甲基、伸乙 基、1-3-伸丙基、2-2’-伸丙基、伸丁基等。 作爲具有氫硫基之有機基,可舉出乙基氫硫基、丁基 氫硫基、己基氫硫基、辛基氫硫基等。 作爲具有胺基之有機基,可舉出胺基乙基、胺基丙基 等。 作爲具有氰基之有機基,可舉出氰基乙基、氰基丙基 等。 作爲碳原子數1至20的烷氧基,可舉出具有碳原子數1 至20的直鏈、分支、環狀的烷基部分之烷氧基’例如可舉 出甲氧基、乙氧基、η-丙氧基、i-丙氧基、η-丁氧基、i-丁 氧基、s-丁氧基、t-丁氧基、η-戊氧基、1-甲基-η· 丁氧基 、2-甲基-η-丁氧基、3-甲基-η-丁氧基、1,1_二甲基-η-丙 -26- 201130894 氧基、1,2-二甲基-η-丙氧基、2,2-二甲基-η-丙氧基、1-乙 基-η-丙氧基、η-己氧基、1-甲基-η-戊氧基、2-甲基-η-戊 氧基、3-甲基- η-戊氧基、4-甲基-η-戊氧基、1,1-二甲基-η-丁氧基、I,2-二甲基-η-丁氧基、1,3-二甲基-η-丁氧基、 2,2-二甲基-η-丁氧基、2,3-二甲基-η-丁氧基、3,3-二甲基-η-丁氧基、1-乙基-η-丁氧基、2-乙基-η-丁氧基、1,1,2-三 甲基- η-丙氣基、1,2,2-二甲基-η -丙氧基、1-乙基甲基_ η-丙氧基及1-乙基-2-甲基-η-丙氧基等,又作爲環狀的烷 氧基,可舉出環丙氧基、環丁氧基、1-甲基-環丙氧基、2-甲基-環丙氧基、環戊氧基、1-甲基-環丁氧基、2-甲基-環 丁氧基、3-甲基-環丁氧基、1,2-二甲基-環丙氧基、2,3-二 甲基-環丙氧基、1-乙基-環丙氧基、2-乙基-環丙氧基、環 己氧基、1-甲基-環戊氧基、2-甲基-環戊氧基、3-甲基-環 戊氧基、1-乙基-環丁氧基、2-乙基-環丁氧基、3-乙基-環 丁氧基、1,2-二甲基-環丁氧基、1,3-二甲基-環丁氧基、 2,2-二甲基-環丁氧基、2,3-二甲基-環丁氧基、2,4-二甲 基-環丁氧基、3,3-二甲基-環丁氧基、1-Π-丙基-環丙氧基 、2-η-丙基-環丙氧基、Ι-i-丙基-環丙氧基、2-i-丙基-環丙 氧基、1,2,2-三甲基-環丙氧基、1,2,3-三甲基-環丙氧基、 2,2,3-三甲基-環丙氧基、1-乙基-2-甲基-環丙氧基、2-乙 基-1-甲基-環丙氧基、2-乙基-2-甲基-環丙氧基及2-乙基-3-甲基-環丙氧基等。 碳原子數1至20的醯氧基,例如可舉出甲基羰基氧基 、乙基羰基氧基、η-丙基羰基氧基、i-丙基羰基氧基、n- -27- 201130894 丁基羰基氧基、i-丁基羰基氧基、s-丁基羰基氧基、t-丁基 羰基氧基' η-戊基羰基氧基、1-甲基-η-丁基羰基氧基、2-甲基-η-丁基羰基氧基、3-甲基-η-丁基羰基氧基、1,1-二甲 基-η-丙基羰基氧基、1,2-二甲基-η-丙基羰基氧基、2,2-二 甲基-η-丙基羰基氧基、1-乙基-η-丙基羰基氧基、η-己基 羰基氧基、1-甲基-η-戊基羰基氧基、2-甲基戊基羰基 氧基、3-甲基-η-戊基羰基氧基、4_甲基-η_戊基羰基氧基 、1,1-二甲基-η-丁基羰基氧基、1,2-二甲基-η-丁基羰基氧 基、1,3-二甲基- η-丁基羰基氧基、2,2-二甲基-η-丁基羰基 氧基、2,3-二甲基- η-丁基羰基氧基、3,3-二甲基- η-丁基羰 基氧基、1-乙基-η-丁基羰基氧基、2-乙基-η-丁基羰基氧 基、1,1,2-三甲基-η-丙基羰基氧基、1,2,2-三甲基-η-丙基 羰基氧基、1-乙基-1-甲基- η-丙基羰基氧基、1-乙基-2-甲 基-η-丙基羰基氧基、苯基羰基氧基、及對甲苯磺醯羰基氧 基等。 作爲鹵素基可舉出氟、氯、溴、碘等。 作爲上述式(3)之矽化合物爲乙烯基系化合物,例 如可舉出甲基丙嫌醯胺三甲氧基ϊ夕院、2 -甲基丙嫌氧基乙 基三甲氧基矽烷、(甲基丙烯氧基甲基)聯(三甲氧基) 甲基矽烷、甲基丙烯氧基甲基三乙氧基矽烷、甲基丙烯氧 基甲基三甲氧基矽烷、3 -甲基丙烯氧基丙基二甲基氯矽烷 、2 -甲基丙烯氧基乙基三甲氧基矽烷、3 -甲基丙烯氧基丙 基二甲基乙氧基矽烷、3 -甲基丙烯氧基丙基二甲基甲氧基 矽烷、3-甲基丙烯氧基丙基三氯矽烷、3-甲基丙烯氧基丙 •28- 201130894 基甲基二乙氧基矽烷、3-甲 矽烷、3-甲基丙烯氧基丙基 基丙基三氯矽烷、3 -甲基丙 甲基丙烯氧基丙基三甲氧基 甲氧基矽烷、3 -甲基丙烯氧 、甲基丙烯氧基三甲氧基矽 烷、甲基丙烯氧基三異丙氧 基矽烷、甲基丙烯氧基苯基 苯基甲基甲氧基矽烷、甲基 丙烯氧基苯基二甲基矽烷、 烷、甲基丙烯氧基苯基二氯 矽烷、甲基丙烯氧基甲基二 基二乙氧基矽烷、甲基丙烯 丙烯氧基二苯基氯矽烷、丙 氧基乙基三甲氧基矽烷、( )甲基砂院、丙稀氧基甲基 三甲氧基矽烷、3 -丙烯氧基 基乙基三甲氧基矽烷、3-丙 、3-丙烯氧基丙基二甲基甲 氯矽烷' 3-丙烯氧基丙基甲 丙基甲基二甲氧基矽烷、3-3-丙烯氧基丙基三氯矽烷、 、3-丙烯氧基丙基三甲氧基 基矽烷、3-丙烯氧基丙基參 基丙烯氧基丙基甲基二甲氧基 三丙氧基矽烷、3-甲基丙烯氧 烯氧基丙基三乙氧基矽烷、3-矽烷、2-甲基丙烯氧基丙基三 基丙基參(甲氧基乙基)矽烷 烷、甲基丙烯氧基三丁氧基矽 基矽烷、甲基丙烯氧基三苯氧 二甲氧基矽烷、甲基丙烯氧基 丙烯氧基苯基二氯矽烷、甲基 甲基丙烯氧基苯基二乙氧基矽 矽烷、甲基丙烯氧基三甲氧基 甲氧基矽烷、甲基丙烯氧基甲 氧基甲基二乙酸基矽烷、甲基 烯醯胺三甲氧基矽烷、2 -丙烯 丙烯氧基甲基)聯(三甲氧基 三乙氧基矽烷、丙烯氧基甲基 丙基—甲基氯砂院、2 -丙稀氧 烯氧基丙基二甲基乙氧基矽烷 氧基矽烷、3-丙烯氧基丙基三 基二乙氧基矽烷、3-丙烯氧基 丙稀氧基丙基二丙氧基砍院、 3 -丙嫌氧基丙基二乙氧基砂院 矽烷、2 -丙烯氧基丙基三甲氧 (甲氧基乙基)矽烷、丙烯氧 -29- 201130894 基三甲氧基矽烷、丙烯氧基三丁氧基矽烷、丙烯氧基三異 丙氧基矽烷、丙烯氧基三苯氧基矽烷、丙烯氧基苯基二甲 氧基矽烷、丙烯氧基苯基甲基甲氧基矽烷、丙烯氧基苯基 二氯矽烷、丙烯氧基苯基二甲基矽烷、丙烯氧基苯基二乙 氧基矽烷、丙烯氧基苯基二氯矽烷、丙烯氧基三甲氧基砂 烷、丙烯氧基甲基二甲氧基矽烷、丙烯氧基甲基二乙氧基 矽烷、丙烯氧基甲基二乙酸基矽烷、丙烯氧基二苯基氯砂 烷等乙烯基含有矽烷化合物。 又作爲式(3)的矽化合物之環氧系化合物,例如可 舉出環氧丙氧基甲基三甲氧基矽烷、環氧丙氧基甲基三乙 氧基矽烷、α-環氧丙氧基乙基三甲氧基矽烷、α-環氧丙氧 基乙基三乙氧基矽烷、β-環氧丙氧基乙基三甲氧基矽烷、 β-環氧丙氧基乙基三乙氧基矽烷、α-環氧丙氧基丙基三甲 氧基矽烷、α-環氧丙氧基丙基三乙氧基矽烷、β-環氧丙氧 基丙基三甲氧基矽烷、β-環氧丙氧基丙基三乙氧基矽烷、 γ-環氧丙氧基丙基三甲氧基矽烷、γ-環氧丙氧基丙基三乙 氧基矽烷、γ-環氧丙氧基丙基三丙氧基矽烷、γ-環氧丙氧 基丙基三丁氧基矽烷、γ-環氧丙氧基丙基三苯氧基矽烷、 α-環氧丙氧基丁基三甲氧基矽烷、α·環氧丙氧基丁基三乙 氧基矽烷、(3-環氧丙氧基丁基三乙氧基矽烷、γ-環氧丙氧 基丁基三甲氧基矽烷、γ -環氧丙氧基丁基三乙氧基矽烷、 δ-環氧丙氧基丁基三甲氧基矽烷、δ_環氧丙氧基丁基三乙 氧基矽烷、(3,4-環氧環己基)甲基三甲氧基矽烷、( 3,4 -環氧環己基)甲基三乙氧基砂院、β_( 3,4 -環氧環己In the present invention, in addition to the ruthenium compound (A), the ruthenium compound (B) may be further contained. Thereby, heat or light hardening characteristics, film strength, film elastic modulus, flatness, transparency, shrinkage, outer gas reduction, wettability of the resist, gas permeability, storage stability, wettability with the substrate, and the like can be improved. . As the hydrazine compound (B), at least one hydrazine compound (B 1 ) of the formula (3) and a hydrolyzate selected from the group consisting of the hydrazine compound represented by the formula (4) and the hydrolysis condensate can be used. Further, the ruthenium compound (B) may be the group of the above-mentioned ruthenium compound (B1), the formula-24-201130894 (5), and the ruthenium compound selected from the formula (6), the hydrolyzate, and the hydrolysis condensate. A combination of one hydrazine compound (B2). The hydrazine compound (B) is preferably a hydrazine compound of the formula (3), these hydrolyzates or hydrolyzed condensates. Further, the hydrazine compound (B) is preferably a hydrolysis condensate of the formula (3). The above hydrazine compound (B) may have a weight average molecular weight of from 900 to 100,000, or from 900 to 50,000, or from 900 to 10,000, preferably from 900 to 3,000 from the viewpoint of solubility. A mixture having a mass ratio of the ruthenium compound (A) to the ruthenium compound (B) of ‘100: 0 to 30: 7 可 may be used, and a molar ratio of 100: 〇 to 7 〇 : 30 may be further used. In the anthracene compound of the formula (3), R11 represents an epoxy group, an oxetanyl group, a vinyl group, or a polymerizable organic group containing the same, and is bonded to a chopped atom by a Si-C bond, and R31 represents An organic group of a aryl group, an aryl group, a halogenated compound, a halogenated aryl group, or a thiol group, an amine group or a cyano group, and a bond of a Si-C bond to a ruthenium atom, and R21 represents a dentate atom or a carbon atom. Alkoxy or a decyloxy group of 1 to 8, a1 is an integer of 1, b1 is an integer of 0, 1, or 2, and abb1 is an integer of 1, 2 or 3. Further, in the oxime compound of the formula (4), R41 represents an epoxy group, an oxetanyl group, a vinyl group, or a polymerizable organic group containing the same, and is bonded to a ruthenium atom by a Si-C bond. A halogen atom or an alkoxy group or a decyloxy group having 1 to 20 carbon atoms, Y represents an oxygen atom, an alkylene group having 1 to 20 carbon atoms, and c1 is an integer of 1 or 2. In the anthracene compound of the formula (5), R12 and R32 each represent an alkyl group, an aryl group, a -25-201130894 alkyl halide group, a halogenated aryl group, or an organic group having a thiol group, an amine group or a cyano group, and by Si -C bond is bonded to a ruthenium atom, R22 represents a halogen atom, or an alkoxy group or a decyloxy group having 1 to 8 carbon atoms, and a2 and b2 are each an integer of 0, 1, or 2, and a2 + b2 is 0. An integer of 1, or 2. In the anthracene compound of the formula (6), R42 represents an alkyl group having 1 to 5 carbon atoms, R52 represents a halogen atom or an alkoxy group or a decyloxy group having 1 to 8 carbon atoms, and Y represents an oxygen atom and a carbon atom. An alkyl group of 1 to 20, and c2 represents an integer of 0 or 1. In the oxime compound (B) of the formula (3) to the formula (6), the epoxy group, the oxetane group, the vinyl group or the polymerizable organic group containing the same may be exemplified above. Further, the alkyl group and the aryl group are exemplified above. The alkylene group having 1 to 20 carbon atoms may, for example, be a methyl group, an ethyl group, a 1-3-propyl group, a 2-2'-propyl group or a butyl group. Examples of the organic group having a thiol group include an ethyl thio group, a butyl thio group, a hexyl thio group, and an octyl thio group. The organic group having an amine group may, for example, be an aminoethyl group or an aminopropyl group. Examples of the organic group having a cyano group include a cyanoethyl group and a cyanopropyl group. Examples of the alkoxy group having 1 to 20 carbon atoms include an alkoxy group having a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, and examples thereof include a methoxy group and an ethoxy group. , η-propoxy, i-propoxy, η-butoxy, i-butoxy, s-butoxy, t-butoxy, η-pentyloxy, 1-methyl-η· Butoxy, 2-methyl-η-butoxy, 3-methyl-η-butoxy, 1,1-dimethyl-η-propyl-26- 201130894 oxy, 1,2-dimethyl Base-η-propoxy, 2,2-dimethyl-η-propoxy, 1-ethyl-η-propoxy, η-hexyloxy, 1-methyl-η-pentyloxy, 2-methyl-η-pentyloxy, 3-methyl-η-pentyloxy, 4-methyl-η-pentyloxy, 1,1-dimethyl-η-butoxy, I,2 - dimethyl-η-butoxy, 1,3-dimethyl-η-butoxy, 2,2-dimethyl-η-butoxy, 2,3-dimethyl-η-butyl Oxy, 3,3-dimethyl-η-butoxy, 1-ethyl-η-butoxy, 2-ethyl-η-butoxy, 1,1,2-trimethyl- η -propenyl group, 1,2,2-dimethyl-η-propoxy group, 1-ethylmethyl_η-propoxy group, and 1-ethyl-2-methyl-η-propoxy group And as a cyclic alkoxy group, , cyclobutoxy, 1-methyl-cyclopropoxy, 2-methyl-cyclopropoxy, cyclopentyloxy, 1-methyl-cyclobutoxy, 2-methyl-cyclobutoxy , 3-methyl-cyclobutoxy, 1,2-dimethyl-cyclopropoxy, 2,3-dimethyl-cyclopropoxy, 1-ethyl-cyclopropoxy, 2- Ethyl-cyclopropoxy, cyclohexyloxy, 1-methyl-cyclopentyloxy, 2-methyl-cyclopentyloxy, 3-methyl-cyclopentyloxy, 1-ethyl-cyclobutane Oxyl, 2-ethyl-cyclobutoxy, 3-ethyl-cyclobutoxy, 1,2-dimethyl-cyclobutoxy, 1,3-dimethyl-cyclobutoxy, 2 ,2-dimethyl-cyclobutoxy, 2,3-dimethyl-cyclobutoxy, 2,4-dimethyl-cyclobutoxy, 3,3-dimethyl-cyclobutoxy , 1-fluorenyl-cyclopropoxy, 2-η-propyl-cyclopropoxy, Ι-i-propyl-cyclopropoxy, 2-i-propyl-cyclopropoxy, 1 , 2,2-trimethyl-cyclopropoxy, 1,2,3-trimethyl-cyclopropoxy, 2,2,3-trimethyl-cyclopropoxy, 1-ethyl-2 -Methyl-cyclopropoxy, 2-ethyl-1-methyl-cyclopropoxy, 2-ethyl-2-methyl-cyclopropoxy and 2-ethyl-3-methyl-cyclo Propoxy and the like. Examples of the decyloxy group having 1 to 20 carbon atoms include a methylcarbonyloxy group, an ethylcarbonyloxy group, a η-propylcarbonyloxy group, an i-propylcarbonyloxy group, and an n--27-201130894. Alkylcarbonyloxy, i-butylcarbonyloxy, s-butylcarbonyloxy, t-butylcarbonyloxy' η-pentylcarbonyloxy, 1-methyl-η-butylcarbonyloxy, 2-methyl-η-butylcarbonyloxy, 3-methyl-η-butylcarbonyloxy, 1,1-dimethyl-η-propylcarbonyloxy, 1,2-dimethyl- Η-propylcarbonyloxy, 2,2-dimethyl-η-propylcarbonyloxy, 1-ethyl-η-propylcarbonyloxy, η-hexylcarbonyloxy, 1-methyl-η -pentylcarbonyloxy, 2-methylpentylcarbonyloxy, 3-methyl-η-pentylcarbonyloxy, 4-methyl-η-pentylcarbonyloxy, 1,1-dimethyl -η-butylcarbonyloxy, 1,2-dimethyl-η-butylcarbonyloxy, 1,3-dimethyl-η-butylcarbonyloxy, 2,2-dimethyl-η -butylcarbonyloxy, 2,3-dimethyl-η-butylcarbonyloxy, 3,3-dimethyl-η-butylcarbonyloxy, 1-ethyl-η-butylcarbonyloxy Base, 2-ethyl-η-butylcarbonyloxy, 1,1,2-trimethyl --η-propylcarbonyloxy, 1,2,2-trimethyl-η-propylcarbonyloxy, 1-ethyl-1-methyl-η-propylcarbonyloxy, 1-ethyl -2-methyl-η-propylcarbonyloxy, phenylcarbonyloxy, p-toluenesulfonylcarbonyloxy and the like. Examples of the halogen group include fluorine, chlorine, bromine, and iodine. The oxime compound of the above formula (3) is a vinyl compound, and examples thereof include methyl propyl decylamine trimethoxy oxime, 2-methylpropane oxyethyl trimethoxy decane, and (methyl group). Propenyloxymethyl)-(trimethoxy)methylnonane, methacryloxymethyltriethoxydecane, methacryloxymethyltrimethoxydecane, 3-methylpropoxypropyl Dimethylchlorodecane, 2-methylacryloxyethyltrimethoxydecane, 3-methylpropoxypropyldimethylethoxydecane, 3-methylpropoxypropyldimethylmethyl Oxydecane, 3-methacryloxypropyltrichlorodecane, 3-methylpropenyloxypropane- 28-201130894-based methyldiethoxydecane, 3-methylnonane, 3-methylpropenyloxy Propyl propyl trichloro decane, 3-methylpropyl methacryloxypropyl trimethoxy methoxy decane, 3-methyl propylene oxygen, methacryloxy trimethoxy decane, methyl propylene oxide Triisopropoxy decane, methacryloxyphenyl phenyl methyl methoxy decane, methacryloxyphenyl dimethyl decane, alkane, methyl propyl Oxyphenyl chlorinated dichlorodecane, methacryloxymethyldiyldiethoxy decane, methacryl propylene diphenyl chlorodecane, propoxyethyl trimethoxy decane, ( ) methyl sand , propyleneoxymethyltrimethoxydecane, 3-propenyloxyethyltrimethoxydecane, 3-propenyl, 3-propenyloxypropyldimethylmethyl chlorodecane' 3-propenyloxypropane Methyl propyl methyl dimethoxy decane, 3-3- propylene oxy propyl trichloro decane, 3- propylene oxy propyl trimethoxy decane, 3- propylene oxy propyl propylene propylene Propylmethyldimethoxytripropoxydecane, 3-methylpropoxyallylpropyltriethoxydecane, 3-decane, 2-methylpropoxypropyltriylpropyl Methoxyethyl) decane, methacryloxy tributoxydecyl decane, methacryloxytriphenyl oxy dimethoxy decane, methacryloxy propylene oxy phenyl dichloro decane, Methyl methacryloxyphenyl diethoxy decane, methacryloxy trimethoxy methoxy decane, methacryloxy methoxy methyl diacetoxy decane, Iridylamine trimethoxy decane, 2-propenyl propyleneoxymethyl) (trimethoxytriethoxydecane, propyleneoxymethylpropyl-methyl chlorin, 2-acryloxy) Propyl dimethyl ethoxy decyloxy decane, 3-propoxy propyl triyl diethoxy decane, 3- propylene oxy propyloxy propyl dipropoxy cleavage, 3-propyl Oxypropyl propyl diethoxy sand decane, 2-propenyloxypropyltrimethoxy (methoxyethyl) decane, propylene oxide -29- 201130894-based trimethoxy decane, propyleneoxy tributoxy Decane, propyleneoxytriisopropoxydecane, propyleneoxytriphenoxydecane, propyleneoxyphenyldimethoxydecane, propyleneoxyphenylmethylmethoxydecane, propyleneoxyphenyldiene Chlorodecane, propyleneoxy phenyl dimethyl decane, propylene oxy phenyl diethoxy decane, propylene oxy phenyl dichloro decane, propylene oxy trimethoxy sane, propylene oxy methyl dimethoxy B-decane, propyleneoxymethyldiethoxydecane, acryloxymethyldiacetoxydecane, propyleneoxydiphenylchlorosane, etc. An alkoxy group-containing silicon compound. Further, examples of the epoxy compound of the oxime compound of the formula (3) include a glycidoxymethyltrimethoxydecane, a glycidoxymethyltriethoxydecane, and an α-glycidoxy group. Ethyltrimethoxydecane, α-glycidoxyethyltriethoxydecane, β-glycidoxyethyltrimethoxydecane, β-glycidoxyethyltriethoxy Decane, α-glycidoxypropyltrimethoxydecane, α-glycidoxypropyltriethoxydecane, β-glycidoxypropyltrimethoxydecane, β-epoxypropane Oxypropyl propyl triethoxy decane, γ-glycidoxypropyl trimethoxy decane, γ-glycidoxypropyl triethoxy decane, γ-glycidoxypropyl tripropyl Oxydecane, γ-glycidoxypropyl tributoxydecane, γ-glycidoxypropyltriphenoxydecane, α-glycidoxybutyltrimethoxydecane, α· Epoxypropoxy butyl triethoxy decane, (3-glycidoxybutyl triethoxy decane, γ-glycidoxy butyl trimethoxy decane, γ-glycidoxy Butyl triethoxy decane, δ-glycidoxy Butyltrimethoxydecane, δ_glycidoxybutyltriethoxydecane, (3,4-epoxycyclohexyl)methyltrimethoxydecane, (3,4-epoxycyclohexyl) A Triethoxylate sand, β_( 3,4 -epoxycyclohexane

S -30- 201130894 基)乙基三甲氧基矽烷、β-(3,4-環氧環己 氧基矽烷、β- (3,4-環氧環己基)乙基三丙 (3,4-環氧環己基)乙基三丁氧基矽烷、β. 己基)乙基三苯氧基矽烷、γ- (3,4-環氧環 甲氧基矽烷、γ-(3,4-環氧環己基)丙基三 δ-(3,4-環氧環己基)丁基三甲氧基矽烷、δ 己基)丁基三乙氧基矽烷、環氧丙氧基甲基 矽烷、環氧丙氧基甲基甲基二乙氧基矽烷、 乙基甲基二甲氧基矽烷、α-環氧丙氧基乙基 矽烷、β-環氧丙氧基乙基甲基二甲氧基矽烷 基乙基乙基二甲氧基矽烷、α-環氧丙氧基丙 基矽烷、α-環氧丙氧基丙基甲基二乙氧基矽 氧基丙基甲基二甲氧基矽烷、β-環氧丙氧基 氧基矽烷、γ_環氧丙氧基丙基甲基二甲氧基 丙氧基丙基甲基二乙氧基矽烷、γ-環氧丙氧 丙氧基矽烷、γ-環氧丙氧基丙基甲基二丁氧 氧丙氧基丙基甲基二苯氧基矽烷、γ-環氧丙 二甲氧基矽烷、γ-環氧丙氧基丙基乙基二乙 環氧丙氧基丙基乙烯基二甲氧基矽烷、γ-環 乙烯基二乙氧基矽烷等。 作爲式(4 )之矽化合物,例如可舉出隻 氧環己基)乙基〕四甲基二矽氧烷、二(環 )四甲基二矽氧烷、二(環氧丙氧基丙基) 烷等環氧基含有矽烷化合物、二(3 -甲基丙 基)乙基三乙 氧基矽烷、β· -(3,4-環氧環 己基)丙基三 乙氧基矽烷、 • ( 3,4-環氧環 甲基二甲氧基 α-環氧丙氧基 甲基二乙氧基 、β-環氧丙氧 基甲基二甲氧 烷、β-環氧丙 丙基乙基二甲 砂院、γ-環氧 基丙基甲基二 基矽烷、γ-環 氧基丙基乙基 氧基矽烷、γ-氧丙氧基丙基 Η 2- ( 3,4-環 氧丙氧基丙基 四苯基二矽氧 烯氧基丙基) -31 - 201130894 四甲基二矽氧烷、二(3 -甲基丙烯氧基丙基)四苯基二矽 氧烷、二(3-丙烯氧基丙基)四甲基二矽氧烷、二(3-丙 烯氧基丙基)四苯基二矽氧烷等乙烯基含有矽烷化合物等 較佳例子。 作爲式(5)之矽化合物,可舉出四甲氧基矽烷、四 氯矽烷、四乙酸基矽烷、四乙氧基矽烷、四η-丙氧基矽烷 、四異丙氧基矽烷、四η-丁氧基矽烷、甲基三甲氧基矽烷 、甲基三氯矽烷、甲基三乙酸基矽烷、甲基三丙氧基矽烷 、甲基三乙酸基矽烷、甲基三丁氧基矽烷、甲基三戊氧基 矽烷、甲基三苯氧基矽烷、甲基三苯甲氧基矽烷、甲基三 苯乙基氧基矽烷、乙基三甲氧基矽烷、乙基三乙氧基矽烷 、苯基三甲氧基矽烷 '苯基三氯矽烷、苯基三乙酸基矽烷 、苯基三乙氧基矽烷、γ-氯丙基三甲氧基矽烷、γ-氯丙基 三乙氧基矽烷、γ-氯丙基三乙酸基矽烷、3、3、3-三氟丙 基三甲氧基矽烷、γ-氫硫基丙基三甲氧基矽烷、γ-氫硫基 丙基三乙氧基矽烷、β-氰基乙基三乙氧基矽烷、氯甲基三 甲氧基矽烷 '氯甲基三乙氧基矽烷、二甲基二甲氧基矽烷 、苯基甲基二甲氧基矽烷、二甲基二乙氧基矽烷、苯基甲 基二乙氧基矽烷、γ-氯丙基甲基二甲氧基矽烷、γ-氯丙基 甲基二乙氧基矽烷、二甲基二乙酸基矽烷、甲基丙烯氧 基丙基甲基二甲氧基矽烷、γ-甲基丙烯氧基丙基甲基二乙 氧基矽烷、γ-氫硫基丙基甲基二甲氧基矽烷、γ-氫硫基甲 基二乙氧基矽烷、甲基乙烯基二甲氧基矽烷、甲基乙烯基 二乙氧基矽烷等。S -30- 201130894 base) ethyltrimethoxydecane, β-(3,4-epoxycyclohexyloxydecane, β-(3,4-epoxycyclohexyl)ethyltripropene (3,4- Epoxycyclohexyl)ethyltributoxydecane, β. hexyl)ethyltriphenoxydecane, γ-(3,4-epoxycyclomethoxydecane, γ-(3,4-epoxy ring) Hexyl)propyltris-δ(3,4-epoxycyclohexyl)butyltrimethoxydecane, δ hexyl)butyltriethoxydecane, glycidoxymethyldecane, epoxidoxyl Methyldiethoxydecane, ethylmethyldimethoxydecane, α-glycidoxyethyldecane, β-glycidoxyethylmethyldimethoxydecylethylethyl Dimethoxydecane, α-glycidoxypropyl decane, α-glycidoxypropylmethyldiethoxymethoxypropylmethyldimethoxydecane, β-epoxy Propoxyoxydecane, γ-glycidoxypropylmethyldimethoxypropoxypropylmethyldiethoxydecane, γ-glycidoxypropoxy decane, γ-epoxy Propoxypropylmethyldibutoxypropoxypropylmethyldiphenoxydecane, γ-epoxypropyldimethoxyindole , Γ- glycidoxypropyltrimethoxysilane glycidoxypropyl diethyl ethyl vinyl dimethoxy Silane, γ- vinyl diethoxy silane-ring and the like. Examples of the oxime compound of the formula (4) include oxycyclohexyl)ethyl]tetramethyldioxane, di(cyclo)tetramethyldioxane, and bis(glycidoxypropyl). An epoxy group such as an alkane contains a decane compound, bis(3-methylpropyl)ethyltriethoxydecane, β-(3,4-epoxycyclohexyl)propyltriethoxydecane, ( 3,4-epoxycyclomethyldimethoxy α-glycidoxymethyldiethoxy, β-glycidoxymethyldimethoxymethane, β-glycidylpropylethyl Dimethicone, γ-epoxypropylmethyldidecane, γ-epoxypropylethyloxydecane, γ-oxypropoxypropyl hydrazine 2- ( 3,4-epoxypropyl Oxypropyl propyl tetraphenyldioxyloxypropyl) -31 - 201130894 tetramethyldioxane, bis(3-methylpropoxypropyl)tetraphenyldioxane, di A preferred example of a vinyl group-containing decane compound such as 3-propenyloxypropyl)tetramethyldioxane or bis(3-propenyloxypropyl)tetraphenyldioxane is given as the formula (5). Examples of the ruthenium compound include tetramethoxy decane, tetrachloro decane, and tetraethyl ethane. Base decane, tetraethoxy decane, tetra η-propoxy decane, tetraisopropoxy decane, tetra η-butoxy decane, methyl trimethoxy decane, methyl trichloro decane, methyl triacetate Decane, methyltripropoxydecane, methyltriacetoxydecane, methyltributoxydecane, methyltripentyloxydecane, methyltriphenyloxydecane, methyltrityloxydecane, Methyltriphenylethyloxydecane, ethyltrimethoxydecane, ethyltriethoxydecane, phenyltrimethoxydecane'phenyltrichlorodecane, phenyltriacetoxydecane,phenyltriethoxy Basear, γ-chloropropyltrimethoxydecane, γ-chloropropyltriethoxydecane, γ-chloropropyltriacetoxydecane, 3,3,3-trifluoropropyltrimethoxydecane, γ -Hexylthiopropyltrimethoxydecane, gamma-hydrothiopropyltriethoxydecane, β-cyanoethyltriethoxydecane, chloromethyltrimethoxydecane'chloromethyltriethoxy Base decane, dimethyl dimethoxy decane, phenylmethyl dimethoxy decane, dimethyl diethoxy decane, phenyl methyl diethoxy decane, γ-chloropropyl Methyldimethoxydecane, γ-chloropropylmethyldiethoxydecane, dimethyldiacetoxydecane, methacryloxypropylmethyldimethoxydecane, γ-methylpropenyloxy Propyl methyl diethoxy decane, γ-hydrothiopropyl methyl dimethoxy decane, γ-hydrothiomethyl diethoxy decane, methyl vinyl dimethoxy decane, A Vinyl diethoxy decane and the like.

-32- 201130894 作爲式(6)的矽化合物,可舉出伸甲基雙三甲氧基 矽烷、伸甲基雙三氯矽烷、伸甲基雙三乙酸基矽烷、伸乙 基雙三乙氧基矽烷、伸乙基雙三氯矽烷、伸乙基雙三乙酸 基矽烷、伸丙基雙三乙氧基矽烷、伸丁基雙三甲氧基矽院 等。 將矽化合物(B )進行水解並使其縮合時,矽化合物 的水解性基(例如氯原子、烷氧基或醯氧基)每1莫耳中 ’使用超過1莫耳且100莫耳以下,較佳爲1莫耳至50莫耳 之水。 本發明的矽化合物(B )中將選自上述化合物的至少I 種砂院化合物進行水解、使其縮合時可使用觸媒。作爲此 時可使用的觸媒’可舉出鈦或鋁等金屬螯合化合物、酸觸 媒 '鹼觸媒。 上述矽化合物(B)爲在上述式(3)、或上述式(3 )與式(5 )的組合所成的矽化合物中,含有5至1 〇 〇莫耳% 、或5至75莫耳%的比率之(a + b)値成i的矽化合物之矽化 合物經水解並使其縮合的縮合物爲佳。 作爲使用於水解的有機溶劑,例如可舉出n -戊烷' i _ 戊烷' η -己烷、i_己烷、n_庚烷、丨·庚烷、2,2,4•三甲基戊 院' η-辛烷、卜辛烷、環己烷、甲基環己烷等脂肪族烴系 溶劑;苯、甲苯、二甲苯、乙基苯、三甲基苯、甲基乙基 本、η -丙基苯、卜丙基苯、二乙基苯、^ 丁基苯、三乙基 苯、二-i-丙基苯、η·戊基萘、三甲基苯等芳香族烴系溶劑 ,甲醇、乙醇、η-丙醇、i-丙醇、η-丁醇、丁醇、sec_y -33- 201130894 醇、t-丁醇、η-戊醇、i-戊醇、2_甲基丁醇、sec-戊醇、t-戊醇、3-甲氧基丁醇、η-己醇、2_甲基戊醇、sec_己醇、2-乙基丁醇、sec-庚醇、庚醇·3、η·辛醇、2_乙基己醇、sec-辛醇、η-壬基醇、2,6-二甲基庚醇_4、n_癸醇、sec-十一烷 基醇、三甲基壬基醇、sec -十四烷基醇、sec -十七烷基醇 、酚、環己醇、甲基環己醇、3,3,5 -三甲基環己醇、苯甲 基醇、苯基甲基甲醇、二丙酮醇、甲酚等單醇系溶劑;乙 二醇、丙二醇、1,3-丁二醇、戊二醇-2,4、2·甲基戊二醇-2,4、己二醇-2,5、庚二醇_2,4、2 -乙基己二醇-1,3、二乙 二醇、二丙二醇、三乙二醇、三丙二醇、甘油等多價醇系 溶劑;丙酮、甲基乙基酮、甲基-n_丙基酮、甲基·η-丁基 酮、二乙基酮、甲基-卜丁基酮、甲基戊基酮、乙基-η· 丁基酮、甲基-η-己基酮、二-i-丁基酮、三甲基壬酮、環 己酮、甲基環己酮、2,4-戊烷二酮、两酮基丙酮、二丙酮 醇、乙醯苯、葑酮等酮系溶劑;乙基醚、丨-丙基醚、n-丁 基醚、η-己基醚、2-乙基己基醚、環氧乙烷、I,2·環氧丙 烷、二氧環戊烷基、甲基二氧環戊院基、二螺院、二甲 基二噁烷、乙二醇單甲基醚、乙二醇單乙基醚、乙二醇二 乙基醚、乙二醇單-η -丁基酸、乙二醇單-η -己基醚、乙二 醇單苯基醚、乙二醇單-2-乙基丁基醚、乙二醇二丁基醚、 二乙二醇單甲基醚、二乙二醇單乙基醚、二乙二醇二乙基 醚、二乙二醇單-η-丁基醚、二乙二醇二-η-丁基醚、二乙 二醇單-η-己基醚、乙氧基三甘醇、四乙二醇二-η_ 丁基酸 、丙二醇單甲基醚、丙二醇單乙基醚、丙二醇單丙基醚、 -34- 201130894 丙二醇單丁基醚、二丙二醇單甲基醚、二丙二醇單乙基醚 、二丙二醇單丙基醚、二丙二醇單丁基酸、三丙二醇單甲 基醚、四氫呋喃、2 -甲基四氫呋喃等醚系溶劑;二乙基碳 酸酯、乙酸甲基、乙酸乙酯、γ-丁內酯、γ-戊內酯、乙酸 η-丙酯、乙酸i-丙酯、乙酸η-丁酯、乙酸i-丁酯、乙酸sec-丁酯、乙酸η-戊酯、乙酸sec-戊酯、乙酸3-甲氧基丁酯、 乙酸甲基戊酯、乙酸2-乙基丁酯、乙酸2-乙基己酯、乙酸 苯甲酯、乙酸環己酯、乙酸甲基環己酯、乙酸η-壬酯、乙 醯乙酸甲酯、乙醯乙酸乙酯、乙酸乙二醇單甲基醚、乙酸 乙二醇單乙基醚、乙酸二乙二醇單甲基醚.、乙酸二乙二醇 單乙基醚、乙酸二乙二醇單-η-丁基醚、乙酸丙二醇單甲基 醚、乙酸丙二醇單乙基醚、乙酸丙二醇單丙基醚、乙酸丙 二醇單丁基醚、乙酸二丙二醇單甲基醚、乙酸二丙二醇單 乙基醚、二乙酸甘醇、乙酸甲氧基三甘醇、丙酸乙酯、丙 酸η-丁酯、丙酸i-戊酯、草酸二乙酯、草酸二-η-丁酯、乳 酸甲酯、乳酸乙酯、乳酸η- 丁酯、乳酸η-戊酯、丙二酸二 乙酯、苯二酸二甲酯、苯二酸二乙酯等酯系溶劑;Ν-甲基 甲醯胺、Ν,Ν-二甲基甲醯胺、Ν,Ν-二乙基甲醯胺、乙醯胺 、Ν-甲基乙醯胺、Ν,Ν-二甲基乙醯胺、Ν-甲基丙醯胺、Ν-甲基吡咯烷嗣等含氮系溶劑;硫化二甲基、硫化二乙基、 噻吩、四氫噻吩、二甲基亞颯、環丁颯、1,3_丙烷砸等含 硫系溶劑等。 特別以丙二醇單甲基醚、丙二醇單乙基醚、丙二醇單 丙基醚、丙二醇單丁基醚、丙二醇二甲基醚、丙二醇二乙 -35- 201130894 基醚、丙二醇單甲基醚乙酸酯、丙二醇單乙基醚乙酸酯、 丙二醇單丙基醚乙酸酯由溶液之保存安定性的觀點來看爲 佳。 又’將矽化合物(B )經水解並縮合時,可使用觸媒 。作爲此時所使用的觸媒,可舉出金屬螯合化合物、有機 酸、無機酸、有機鹼、無機鹼。 作爲金屬螯合化合物,例如可舉出三乙氧基·單(乙 醯丙酮酸)鈦、三-η-丙氧基.單(乙醯丙酮酸)鈦、三小 丙氧基·單(乙醯丙酮酸)鈦、三-η-丁氧基·單(乙醯丙酮 酸)鈦、三-sec -丁氧基·單(乙醯丙酮酸)鈦、三_t_ 丁氧 基.單(乙醯丙酮酸)鈦、二乙氧基.聯(乙醯丙酮酸)鈦 、二-η -丙氧基.聯(乙醯丙酮酸)鈦、二·ί_丙氧基.聯( 乙醯丙酮酸)鈦、二-η -丁氧基·聯(乙醯丙酮酸)鈦、二_ sec-丁氧基.聯(乙醯丙酮酸)鈦、二-t-丁氧基·聯(乙醯 丙酮酸)欽、單乙氧基.參(乙醯丙酮酸)鈦、單-η -丙氧 基·參(乙醯丙酮酸)鈦、單-i -丙氧基.參(乙醯丙酮酸) 鈦、單-η -丁氧基.參(乙醯丙酮酸)鈦、單-sec· 丁氧基. 參(乙醯丙酮酸)鈦、單-t-丁氧基·參(乙醯丙酮酸)欽 、肆(乙醯丙酮酸)鈦、三乙氧基·單(乙基乙醯乙酸醋 )鈦、三-η-丙氧基·單(乙基乙醯乙酸酯)鈦、三-i_丙氧 基·單(乙基乙醯乙酸醋)鈦、三-η -丁氧基.單(乙基乙醯 乙酸酯)鈦、三-sec -丁氧基.單(乙基乙醯乙酸酯)鈦、 三-t-丁氧基·單(乙基乙醯乙酸酯)鈦、二乙氧基.聯(乙 基乙醯乙酸酯)鈦、二-η-丙氧基·聯(乙基乙醯乙酸酯) -36- 201130894 鈦、二-i-丙氧基·聯(乙基乙醯乙酸酯)鈦、二-η-丁氧基 •聯(乙基乙醯乙酸酯)鈦、二-sec-丁氧基·聯(乙基乙醯 乙酸酯)鈦、二-t-丁氧基·聯(乙基乙醯乙酸酯)鈦、單 乙氧基·參(乙基乙醯乙酸酯)鈦、單-η-丙氧基·參(乙基 乙醯乙酸酯)鈦、單-i-丙氧基·參(乙基乙醯乙酸酯)鈦 、單-η-丁氧基·參(乙基乙醯乙酸酯)鈦、單-sec-丁氧基 •參(乙基乙醯乙酸酯)鈦、單-t-丁氧基·參(乙基乙醯乙 酸酯)鈦、肆(乙基乙醯乙酸酯)鈦、單(乙醯丙酮酸) 參(乙基乙醯乙酸酯)鈦、聯(乙醯丙酮酸)聯(乙基乙 醯乙酸酯)鈦、參(乙醯丙酮酸)單(乙基乙醯乙酸酯) 鈦、等鈦螯合化合物;三乙氧基·單(乙醯丙酮酸)锆、 三-η-丙氧基·單(乙醯丙酮酸)锆、三-i-丙氧基·單(乙 醯丙酮酸)锆、三-η-丁氧基·單(乙醯丙酮酸)銷、三-sec-丁氧基·單(乙醯丙酮酸)鍩、三-t-丁氧基·單(乙醯 丙酮酸)锆、二乙氧基·聯(乙醯丙酮酸)锆、二-11-丙氧 基·聯(乙醯丙酮酸)锆、二-i-丙氧基·聯(乙醯丙酮酸) 銷、二-η-丁氧基·聯(乙醯丙酮酸)锆、二-sec-丁氧基· 聯(乙醯丙酮酸)锆、二-t-丁氧基·聯(乙醯丙酮酸)锆 、單乙氧基·參(乙醯丙酮酸)鉻、單-η-丙氧基·參(乙醯 丙酮酸)锆、單-i-丙氧基·參(乙醯丙酮酸)锆、單-η-丁 氧基·參(乙醯丙酮酸)鍩、單-sec-丁氧基·參(乙醯丙酮 酸)锆、單-t-丁氧基·參(乙醯丙酮酸)锆、肆(乙醯丙 酮酸)锆、三乙氧基·單(乙基乙醯乙酸酯)鉻、三-η·丙 氧基·單(乙基乙醯乙酸酯)锆、三-i-丙氧基·單(乙基乙 -37- 201130894 醯乙酸酯)锆、三-η-丁氧基·單(乙基乙醯乙酸酯)鍩、 三- sec-丁氧基·單(乙基乙醯乙酸酯)锆、三-t-丁氧基·單 (乙基乙醯乙酸酯)銷、二乙氧基·聯(乙基乙醯乙酸酯 )锆、二-η-丙氧基·聯(乙基乙醯乙酸酯)銷、二-i-丙氧 基·聯(乙基乙醯乙酸酯)锆、二-η-丁氧基·聯(乙基乙醯 乙酸酯)锆、二-sec-丁氧基·聯(乙基乙醯乙酸酯)锆、 二-t-丁氧基·聯(乙基乙醯乙酸酯)锆、單乙氧基·參(乙 基乙醯乙酸酯)锆、單-η-丙氧基·參(乙基乙醯乙酸酯) 锆、單-i-丙氧基·參(乙基乙醯乙酸酯)锆、單-η-丁氧基 •參(乙基乙醯乙酸酯)锆、單-sec-丁氧基·參(乙基乙醯 乙酸酯)锆、單-t-丁氧基·參(乙基乙醯乙酸酯)锆、肆 (乙基乙醯乙酸酯)鉻、單(乙醯丙酮酸)參(乙基乙醯 乙酸酯)锆、聯(乙醯丙酮酸)聯(乙基乙醯乙酸酯)锆 、參(乙醯丙酮酸)單(乙基乙醯乙酸酯)锆、等锆螯合 化合物;參(乙醯丙酮酸)鋁、參(乙基乙醯乙酸酯)鋁 等鋁螯合化合物等。 作爲有機酸,例如可舉出乙酸、丙酸、丁酸、戊酸、 己酸、庚酸、辛酸、壬酸、癸酸、草酸、馬來酸、甲基丙 二酸、己二酸、癸二酸、没食子酸、丁酸、苯六酸、花生 四烯酸、莽草酸、2-乙基己酸、油酸、硬脂酸、亞油酸、 次亞麻油酸、水楊酸、安息香酸、P-胺基安息香酸、P-甲 苯磺酸、苯磺酸、單氯乙酸、二氯乙酸、三氯乙酸、三氟 乙酸、甲酸、丙二酸、磺酸、苯二酸、富馬酸、檸檬酸、 酒石酸等。 -38- 201130894 作爲無機酸,例如可舉出鹽酸、硝酸、硫酸、 、磷酸等。作爲有機鹼,例如可舉出吡啶' 吡咯、 吡咯烷、哌啶、甲吡啶、三甲基胺、三乙基胺、單 、二乙醇胺、二甲基單乙醇胺、單甲基二乙醇胺、 胺、二氮雜聯環辛烷、二氮雜聯環壬烷'二氮雜聯 碳烯、四甲基銨氫氧化物等。 作爲無機鹼,例如可舉出氨、氫氧化鈉、氫氧 氫氧化鋇、氫氧化鈣等。這些觸媒中,以金屬螯合 、有機酸、無機酸爲佳,較佳爲鈦螯合化合物、有 舉出。可同時使用彼等1種或者2種以上。 且,欲提高抗蝕密著性、柔軟性、平坦化性等 要使用未含有下述矽原子的聚合性化合物,可與含 矽原子之聚合性化合物進行共聚合(混雜化)、或之 作爲未含矽原子之具有乙烯性不飽和鍵的聚合 物之具體例,可舉出乙二醇二(甲基)丙烯酸酯、 醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙燃 四乙二醇二(甲基)丙烯酸酯、九乙二醇二(甲基 酸酯、聚乙二醇二(甲基)丙烯酸酯、三丙二醇二 )丙烯酸酯、四丙二醇二(甲基)丙烯酸酯、九丙 (甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸醋 雙〔4-(丙烯氧基二乙氧基)苯基〕丙烷、2,2雙 甲基丙烯氧基二乙氧基)苯基〕丙烷、3 _苯氧基_2_ 丙稀酸酯、1,6 -聯丙稀氧基-2_羥基丙基)_己基 戊四醇三(甲基)丙烯酸酯、三羥甲基丙烷三(甲 氫氟酸 哌嗪、 乙醇胺 三乙醇 環十一 化鉀、 化合物 機酸可 ,視必 有上述 I合。 性化合 二乙二 酸酯、 )丙烯 (甲基 二醇二 ' 2,2-〔4-( 丙醯基 醚、季 基)丙 -39- 201130894 烯酸酯、甘油三(甲基)丙烯酸酯、參-(2-羥基乙基)-異三聚氰酸酯(甲基)丙烯酸酯、季戊四醇四(甲基)丙 烯酸酯、二季戊四醇五(甲基)丙烯酸酯、及二季戊四醇 六(甲基)丙烯酸酯等。且,其中例如所謂乙二醇二(甲 基)丙烯酸酯表示乙二醇二丙烯酸酯與乙二醇二甲基丙烯 酸酯。 作爲未含有矽原子之具有乙烯性不飽和鍵的聚合性化 合物,又可舉出可藉由多價異氰酸酯化合物與羥基烷基不 飽和羧酸酯化合物之反應所得的尿烷化合物、藉由多價環 氧化合物與羥基烷基不飽和羧酸酯化合物之反應所得的化 合物、苯二酸二烯丙基等二烯丙基酯化合物、及二乙烯基 苯二甲酸酯等二乙烯基化合物等。 又,作爲具有未含矽原子的陽離子聚合性之部位的聚 合性化合物,可舉出具有環氧環及氧雜環丁烷環等環狀醚 結構、乙烯基醚結構及乙烯硫醚結構等之化合物。 作爲未含矽原子之具有環氧環的聚合性化合物,雖無 特別限定,可使用具有一個至六個、或二個至四個環氧環 之化合物。作爲具有上述環氧環之聚合性化合物,例如可 舉出由二醇化合物、三醇化合物、二羧酸化合物及三羧酸 化合物等具有二個以上羥基或羧基之化合物 '與環氧氯丙 烷等環氧丙基化合物所製造之具有二個以上環氧丙基醚結 構或環氧丙基酯結構之化合物。 作爲未含矽原子具有環氧環的聚合性化合物之具體例 ,可舉出1,4-丁烷二醇二環氧丙基醚' 1,2-環氧-4-(環氧 -40 - 201130894 乙基)環己烷、甘油三環氧丙基醚、二乙二醇二環氧丙基 醚、2,6-二環氧丙基苯基環氧丙基醚、1,1,3-參〔p-(2,3-環氧丙氧基)苯基〕丙烷、1,2·環己烷二羧酸二環氧丙基 酯、4,4’-伸甲基聯(Ν,Ν-二環氧丙基苯胺)、3,4-環氧環 己基甲基-3,4-環氧環己烷羧酸酯、三羥甲基乙烷三環氧丙 基醚、三環氧丙基-Ρ-胺基酚、四環氧丙基間苯二甲胺、四 環氧丙基二胺基二苯基甲烷、四環氧丙基- I,3·雙胺基甲基 環己烷、雙酚-Α-二環氧丙基醚、雙酚-S-二環氧丙基醚、 季戊四醇四環氧丙基醚間苯二酚二環氧丙基醚、苯二酸二 環氧丙基酯、新戊二醇二環氧丙基醚、聚丙二醇二環氧丙 基醚、四溴雙酚-Α-二環氧丙基醚、雙酚六氟丙酮二環氧 丙基醚、季戊四醇二環氧丙基醚、參_(2,3-環氧丙基)三 聚異氰酸酯、單烯丙基二環氧丙基三聚異氰酸酯、二甘油 聚二環氧丙基醚、季戊四醇聚環氧丙基醚、1,4-聯(2,3-環氧丙氧基全氟異丙基)環己烷、山梨醇聚環氧丙基醚、 三羥甲基丙烷聚環氧丙基醚、間苯二酚二環氧丙基醚、 1,6-己烷二醇二環氧丙基醚、聚乙二醇二環氧丙基醚、苯 基環氧丙基酸、Ρ-第三丁基苯基環氧丙基酸、己二酸二環 氧丙基醚、〇 -苯二酸二環氧丙基醚、二溴苯基環氧丙基醚 、1,2,7,8-二環氧辛烷、1,6·二羥甲基全氟己烷二環氧丙基 醚、4,4’-聯(2,3-環氧丙氧基全氟異丙基)二苯基醚、 2,2-聯(4-環氧丙基氧基苯基)丙烷、3,4-環氧環己基甲 基-3,,4’-環氧環己烷羧酸酯、3,4 -環氧環己基環氧乙烷' 2- (3,4-環氧環己基)-3,,4’-環氧-1,3-二噁烷-5-螺環己烷 201130894 、1,2 -乙烯二氧基-聯(3,4-環氧環己基甲烷)、4’,5’-環 氧-2’-甲基環己基甲基-4,5-環氧-2-甲基環己烷羧酸酯、乙 二醇-聯(3,4-環氧環己烷羧酸酯)、雙-(3,4-環氧環己基 甲基)己二酸酯、及聯(2,3-環氧環戊基)醚等。 作爲未含矽原子之具有氧雜環丁烷環的聚合性化合物 ,雖無特別限定,可使用具有一個至六個、或二個至四個 氧雜環丁烷環之化合物。 作爲未含矽原子之具有氧雜環丁烷環的聚合性化合物 ,例如可舉出3-乙基-3-羥基甲基氧雜環丁烷、3-乙基-3-(苯氧基甲基)氧雜環丁烷、3,3-二乙基氧雜環丁烷、及 3-乙基-3- (2-乙基己氧基甲基)氧雜環丁烷、1,4-聯(( (3-乙基-3-氧雜環丁基)甲氧基)甲基)苯、二((3-乙 基-3-氧雜環丁基)甲基)醚、及季戊四醇肆((3-乙基- 3- 氧雜環丁基)甲基)醚等。 作爲未含矽原子之具有乙烯基醚結構的聚合性化合物 ,雖無特別限定,可使用具有一個至六個、或二個至四個 乙烯基醚結構之化合物。 作爲未含矽原子之具有乙烯基醚結構的聚合性化合物 ,例如可舉出乙烯基-2 -氯乙基醚、乙烯基-正丁基醚、 1,4-環己烷二甲醇二乙烯基醚 '乙烯基環氧丙基醚、聯( 4- (乙烯氧基甲基)環己基甲基)戊二酸酯、三(乙二醇 )二乙烯基醚、己二酸二乙烯基酯、二乙二醇二乙烯基醚 、參(4-乙烯氧基)丁基偏苯三羧酸酯、聯(4-(乙烯氧 基)丁基)對苯二甲酸酯、聯(4-(乙烯氧基)丁基異苯 -42- 201130894 二甲酸酯、乙二醇二乙烯基醚、1,4-丁烷二醇二乙烯基醚 、四甲二醇二乙烯基醚、四乙二醇二乙烯基醚、新戊二醇 二乙烯基醚、三羥甲基丙烷三乙烯基醚、三羥甲基乙烷三 乙烯基醚、己烷二醇二乙烯基醚、I,4-環己烷二醇二乙烯 基醚、四乙二醇二乙烯基醚、季戊四醇二乙烯基醚、季戊 四醇三乙烯基醚及環己烷二甲醇二乙烯基醚等。 本發明中所使用的聚合啓始劑(c)若爲藉由熱燒成 或光照射,具有開始進行前述矽化合物的聚合之作用的化 合物即可,並無特別限定。可使用藉由光照射或熱燒成產 生酸(柏朗斯特酸或路易氏酸)、鹼、自由基、或陽離子 之化合物。 例如可舉出藉由光照射產生活性自由基,可引起前述 矽化合物的自由基聚合的化合物,即藉由光自由基聚合啓 始劑、及光照射產生質子酸及碳陽離子等陽離子種,可引 起前述矽化合物的陽離子聚合之化合物,即光陽離子聚合 啓始劑等。 光照射,例如可使用波長150nm至lOOOnm、或200至 700nm、或3 00至600nm之光進行。而藉由曝光量1至 2000mJ/cm2、或 10 至 1 5 00mJ/cm2、或 50 至 1 000mJ/cm2 產生 活性自由基之光自由基聚合啓始劑、或產生陽離子種之光 陽離子聚合啓始劑作爲光聚合啓始劑使用爲佳。 作爲光自由基聚合啓始劑,例如可舉出咪唑化合物、 重氮化合物、雙咪唑化合物、N-芳基甘胺酸化合物、有機 疊氮化合物、二茂鈦化合物、鋁酸鹽化合物、有機過氧化 -43- 201130894 物、N-烷氧基吡啶鑰鹽化合物、及噻噸酮化合物等。 作爲化合物,可舉出P-疊氮苯甲醛、P-疊氮乙醯苯、 p -疊氮安息香酸、P -疊氮苯亞甲基乙醯苯、4,4’-二疊氮查 耳酮、4,4’-二疊氮二苯基硫化物、及2,6 -聯(4’-疊氮苯亞 甲基)-4-甲基環己酮等。 作爲重氮化合物,可舉出1_重氮基-2,5 -二乙氧基- 4- p-甲苯基氫硫基苯硼氟化物、1-重氮基-4-N,N-二甲基胺基苯 氯化物、及1-重氮基-4-N,N-二乙基胺基苯硼氟化物等。 作爲雙咪唑化合物,可舉出2,2’-聯(〇-氯苯基)-4,5,4’,5’-肆(3,4,5-三甲氧基苯基)l,2’-雙咪唑、及2,2’· 聯(〇-氯苯基)4,5,4’,5’-四苯基-1,2’-雙咪唑等。 作爲二茂鈦化合物,可舉出二環戊二烯-鈦-二氯化物 '二環戊二烯·鈦-聯苯基、二環戊二烯-鈦-聯(2,3,4,5,6· 五氯苯基)、二環戊二烯-鈦-聯(2,3,5,6-四氟苯基)、二 環戊二烯·鈦-聯(2,4,6-三氟苯基)、二環戊二烯-鈦-聯( 2,6-二氟苯基)、二環戊二烯-鈦-聯(2,4-二氟苯基)、聯 (甲基環戊二烯)-鈦-聯(2,3,4,5,6-五氯苯基)、聯(甲 基環戊二烯)-鈦-聯(2,3,5,6-四氟苯基)、聯(甲基環戊 二烯)-鈦-聯(2,6-二氟苯基)、及二環戊二烯-鈦-聯( 2,6·二氟- 3-( 1H -吡咯-1-基)-苯基)等。 作爲光陽離子聚合啓始劑,可舉出磺酸酯、颯亞胺化 合物、二磺醯重氮甲烷化合物、二烷基_4·羥基鎏鹽、芳基 磺酸-P-硝基苯甲基酯、矽烷醇-鋁錯體、(η6-苯)(η5· 環戊二烯)鐵(II )等。 -44 - 201130894 作爲颯亞胺化合物,例如可舉出N -(三氟甲烷磺醯氧 基)丁二醯亞胺、N-(九氟·正丁烷磺醯氧基)丁二醯亞 胺、N-(樟腦磺醯氧基)丁二醯亞胺及n-(三氟甲烷磺醯 氧基)萘二甲醯亞胺等。 作爲二磺醯重氮甲烷化合物,例如可舉出聯(三氟甲 基磺醯)重氮甲烷、聯(環己基磺醯)重氮甲烷、聯(苯 基磺醯)重氮甲烷、聯(p -甲苯磺醯)重氮甲烷、聯( 2,4-二甲基苯磺醯)重氮甲烷、及甲基磺醯-P-甲苯磺醯重 氮甲烷等。 又,作爲光陽離子聚合啓始劑,可舉出2 -甲基..1-(4-甲硫苯基)-2-嗎啉代丙烷-1-酮。 又,芳香族碘鑷鹽化合物、芳香族鎏鹽化合物、芳香 族重氮鑰鹽化合物、芳香族鐵鹽化合物、三嗪化合物及鐵 芳烴錯體化合物等可作爲光自由基聚合啓始劑、或亦可作 爲光陽離子聚合啓始劑使用。 作爲芳香族碘鎗鹽化合物,可舉出苯基碘鑰六氟磷酸 酯、二苯基碘鑰三氟甲烷磺酸酯、二苯基碘鑰九氟·正丁 烷磺酸酯、二苯基碘鑰全氟-正辛烷磺酸酯、二苯蕋碘鑷 樟腦磺酸酯、聯(4-tert-丁基苯基)碘鎗樟腦磺酸酯及聯 (4-tert-丁基苯基)碘鐵三氟甲烷磺酸酯等。 作爲芳香族鎏鹽化合物,例如可舉出三苯基鎏六氟銻 酸鹽、三苯基鎏九氟正丁烷磺酸鹽、三苯基鎏樟腦磺酸鹽 及三苯基鎏三氟甲烷磺酸鹽等。光聚合啓始劑可僅使用一 種或組合二種以上使用。 -45- 201130894 且,作爲藉由熱燒成(加熱)產生陽離子或自由基, 可引起前述聚合性化合物的熱聚合反應之化合物,可舉出 P-甲苯磺酸、三氟甲烷磺酸、吡啶鑰P-甲苯磺酸、水楊酸 、磺基水楊酸、檸檬酸、安息香酸、羥基安息香酸等氧化 合物,或可添加2,4,4,6-四溴環六二稀酮、苯偶因對甲苯 磺酸酯、2-硝基苯甲基對甲苯磺酸酯、聯(4-t-丁基苯基 )碘鑰三氟甲烷磺酸酯、三苯基鎏三氟甲烷磺酸酯、苯 基-聯(三氯甲基)-s-三嗪、苯偶因對甲苯磺酸酯、N-羥 基丁二醯亞胺三氟甲烷磺酸酯等酸發生劑。作爲燒成條件 可適宜地選自燒成溫度60°C至3 00°C、燒成時間0.3至90分 鐘之中。 作爲本發明的膜形成組成物中之矽化合物(A)與聚 合啓始劑(C)的含有量,對於矽化合物(A) 100質量份 而言’聚合啓始劑(C)例如爲1至20質量份、或3至10質 量份。聚合啓始劑(C )之量比此少時,無法充分進行聚 合反應,所得之被膜的硬度及耐摩耗性會有不充分之狀況 。聚合啓始劑的量比此多時,僅在被膜之表面附近引起硬 化,有著無法完全硬化至被膜內部的情況。且,使用熱燒 成時,聚合啓始劑之量比此多時,聚合啓始劑之昇華量會 增加,成爲燒成爐內的污染原因。 對於本發明的膜形成組成物,作爲矽化合物(A )使 用具有自由基聚合性部位之乙烯性不飽和鍵的化合物時, 作爲聚合啓始劑使用光自由基聚合啓始劑爲佳。作爲矽化 合物(A )使用具有陽離子聚合性的部位之乙烯基醚結構 -46- 务·. y 201130894 、環氧環或氧雜環丁烷環的化合物時,作爲聚合啓始劑使 用光陽離子聚合啓始劑爲佳。作爲熱燒成的矽化合物(B )使用具有矽烷醇基的化合物時,作爲聚合啓始劑使用三 苯基鎏三氟甲烷磺酸酯、及吡啶鎗p -甲苯磺酸爲佳 本發明的膜形成組成物係將矽化合物(A )、或矽化 合物(A)與矽化合物(B)的混合物一般溶解或分散於有 機溶劑(D )所成。作爲該有機溶劑,選自醇系溶劑、酮 系溶劑、醯胺系溶劑、酯系溶劑及非質子系溶劑所成群之 至少1種。可舉出使用於上述矽化合物(B )的水解之溶劑 〇 又’將矽化合物(B )進行水解得到縮合物,將此與 矽化合物(A )進行混合使用時,使用於矽化合物(b )的 水解之有機溶劑可直接作爲膜形成組成物之溶劑(D )使 用。 作爲本發明所使用的溶劑(D )之例子,例如可舉出 乙二醇單甲基醚、乙二醇單乙基醚、甲基賽路蘇乙酸酯、 乙基賽路蘇乙酸酯、二乙二醇單甲基醚、二乙二醇單乙基 醚、丙二醇、丙二醇單甲基醚、丙二醇單甲基醚乙酸酯、 丙二醇丙基醚乙酸酯、甲苯、二甲苯、甲基乙基酮、環戊 酮、環己酮、2 -羥基丙酸乙酯、2 -羥基-2-甲基丙酸乙酯、 乙氧基乙酸乙酯、羥基乙酸乙酯、2 -羥基-3-甲基丁酸甲酯 、3 -甲氧基丙酸甲酯、3 -甲氧基丙酸乙酯、3 -乙氧基丙酸 乙酯、3 -乙氧基丙酸甲酯、丙酮酸甲酯、丙酮酸乙酯、乙 酸乙酯、乙酸丁酯、乳酸乙酯、乳酸丁酯、N -二甲基甲醯 -47- 201130894 胺、N -二甲基乙醯胺、二甲基亞颯及N -甲基吡咯烷酮等。 這些溶劑(D )可單獨、或組合二種以上使用。作爲 溶劑,使用沸點爲80至250 °C、或100至200。(:、或120至 1 8 0°C之溶劑爲佳。溶劑之沸點低時,於膜形成組成物的 塗佈中大多溶劑會蒸發掉,使得黏度上昇,導致塗佈性降 低。溶劑之沸點高時’膜形成組成物之塗佈後乾燥需要較 長時間。使用溶劑的量’例如可使膜形成組成物之固體成 分濃度成爲〇·5至99質量%、或3至50質量%、或10至30質量 %之量。 對於本發明的膜形成組成物,可添加上述矽化合物( A )與聚合啓始劑(C )以外,視必要亦可添加交聯性化合 物、界面活性劑、增感劑、胺化合物、聚合物化合物、抗 氧化劑、熱聚合禁止劑、表面改質劑及脫泡劑等。本發明 的膜形成組成物中,可進一步添加β -二酮、膠狀二氧化矽 、膠狀氧化鋁、有機聚合物、界面活性劑、矽烷耦合劑、 自由基發生劑、三氮烯化合物、鹼化合物等成分 藉由添加界面活性劑,可抑制針孔或條紋等產生,又 可提高膜形成組成物之塗佈性。作爲界面活性劑,例如可 舉出聚環氧乙烷月桂基醚、聚環氧乙烷硬脂醯基醚及聚環 氧乙烷油基醚等聚環氧乙烷基醚化合物、聚環氧乙烷辛基 酚醚及聚環氧乙烷壬基酚醚等聚環氧乙烷基烯丙基醚化合 物、聚環氧乙烷·聚環氧丙烷嵌段共聚物化合物、山梨醇 酐單月桂酸酯、山梨醇酐單棕櫚酸酯、山梨醇酐單硬脂酸 酯、山梨醇酐三油酸酯及山梨醇酐三硬脂酸酯等山梨醇酐 -48- 201130894 脂肪酸酯化合物、聚環氧乙烷山梨醇酐單月桂酸酯、聚環 氧乙烷山梨醇酐單棕櫚酸酯'聚環氧乙烷山梨醇酐單硬脂 酸酯及聚環氧乙烷山梨醇酐三硬脂酸酯等聚環氧乙烷山梨 醇酐脂肪酸酯化合物。又,可舉出商品名 EftopEF301,EF3 03、EF3 52 ((股)TOHKEM PRODUCTS 製)、商品名1^^§3€&〇?171、?173、11-08'11-30(大日本 油墨(股)製)、FluoradFC430、FC431 (住友 3M (股) 製)、商品名 AsahiguardAG710,SurflonS-3 82、SC101、 SCI 02 > SC 1 03 ' SC 1 04 ' SC105、SC106(旭硝子(股)製 )等氟系界面活性劑及有機矽氧烷聚合物KP341 (信越化 學工業(股)製)等。使用界面活性劑時,作爲該添加量 對於矽化合物(A ) 100質量份而言,例如爲0.1至5質量份 、或〇 . 5至2質量份。 增感劑可使用於增加對於前述光聚合啓始劑之光的感 度時。作爲增感劑,例如可舉出2,6 -二乙基-1,3,5,7,8 -五 甲基吡咯甲川-BF2錯體及1,3,5,7,8-五甲基吡咯甲川-8?2錯 體等吡咯甲川錯體化合物、伊紅(Eosin )、乙基伊紅、 紅黴素、螢光素及孟加拉玫瑰紅等咕噸系色素、1 - ( 1 -甲 基萘酚〔1,2-(1〕噻唑-2(11〇-亞基-4-(2,3,6,7)四氫-1H,5H-苯並〔ij〕喹嗪-9-基)-3-丁烯-2-酮、1-(3-甲基 苯並噻唑-2 ( 3H)-亞基-4- ( p-二甲基胺基苯基)-3-丁烯_ 2 -酮等酮噻唑啉化合物、2-(p -二甲基胺基苯乙烯基)-萘 酚〔l,2-d〕噻唑、2-〔4-(p-二甲基胺基苯基)-1,3-丁二 烯基〕-萘酚〔l,2-d〕噻唑等苯乙烯基或苯基丁二烯基雜 -49- 201130894 環化合物等。又,可舉出2,4 -二苯基_6-(p -二甲基胺基苯 乙烯基)-1,3,5-三嗪、2,4-二苯基-6-( ( 〔2,3,6,7〕四 氫-1H,5H-苯並〔ij〕嗤嗪-9-基)-1-乙烯-2-基)-1,3,5-三 嗪酮蒽-((〔2,3,6,7〕四氫-1H,5H-苯並〔ij〕唾嗪-9-基 )-1-乙烯-2-基)酮及2,5-聯(p-二甲基胺基苯亞烯丙基) 環戊酮、5,10,15,20四苯基卟啉等。使用增感劑時,作爲 該添加量’對於矽化合物(A) 1〇〇質量份而言,例如〇」 至2 0質量份。 胺化合物可使用於防止因前述光聚合啓始劑的氧阻礙 所引起的感度降低。作爲胺化合物可使用脂肪族胺化合物 及芳香族胺化合物等種種胺化合物。使用胺化合物時,作 爲該添加量’對於矽化合物100質量份而言,例如爲0.1至 10質量份。 又,可添加高分子化合物。作爲高分子化合物,其種 類並無特別限制’可使用重量平均分子量爲1〇〇〇至 1000000程度之種種聚合物化合物。例如可舉出具有苯環 、萘環或蒽環之丙烯酸酯聚合物、甲基丙烯酸酯聚合物、 酚醛清漆聚合物、苯乙烯聚合物、聚醯胺、聚醯胺酸、聚 酯及聚亞胺等。使用高分子化合物時,作爲該添加量,對 於矽化合物100質量份而言,例如爲0.1至50質量份。 本發明中上述膜可作爲形成包覆基板上以奈米壓印法 形成之抗蝕圖型的上層膜時的膜形成組成物使用。 本發明係含有將上述膜形成組成物作爲抗蝕上層膜形 成組成物’塗佈於藉由奈米壓印所形成之抗蝕圖型上,形 -50- 201130894 成抗蝕上層膜之步驟、及於前述抗蝕上層膜藉由熱燒成及 /或光照射而使抗蝕上層膜硬化的步驟,使用奈米壓印的 圖型形成製程中所使用的使用之層合結構的形成方法。 又,本發明爲含有將上述膜形成組成物作爲抗鈾上層 膜形成組成物,塗佈於藉由奈米壓印所形成之抗蝕圖型上 ,形成抗蝕上層膜之步驟、於前述抗蝕上層膜藉由熱燒成 及/或光照射使抗蝕上層膜硬化的步驟、將抗鈾上層膜藉 由鹵素系氣體進行蝕刻的步驟、將抗蝕膜藉由氧系氣體進 行蝕刻的步驟、及依據所形成之抗蝕上層膜及抗蝕膜的圖 型加工基板的步驟之基板的製造方法。 又,含有使用抗蝕下層膜時,將抗蝕下層膜塗佈於基 板上形成抗蝕下層膜的步驟、及於前述抗蝕下層膜藉由熱 燒成及/或光照射硬化抗蝕下層膜的步驟、及於抗蝕下層 膜的上面塗佈奈米壓印用抗蝕組成物並藉由熱燒成及/或 光照射而形成奈米壓印用抗蝕的步驟、藉由步進法(step and repeat )進行刻印的步驟、藉由光照射硬化抗蝕之步 驟、將本發明的奈米壓印用抗蝕上層膜形成組成物塗佈抗 蝕圖型上形成抗蝕上層膜之步驟、於前述抗蝕上層膜藉由 熱燒成或光照射硬化抗蝕上層膜的步驟、欲除去多餘的奈 米壓印用抗蝕上層膜時,藉由鹵素系氣體,至抗蝕之表層 界面經電漿蝕刻進行深蝕刻的步驟、藉由氧系氣體將抗蝕 做選擇性除去的步驟,可形成於使用奈米壓印的圖型形成 製程中所使用的層合結構。 藉由前述奈米壓印之抗蝕圖型可使用於高度/直徑所 -51 - 201130894 示縱橫比爲0.01以上的孔,例如60至lOOOOOnm的孔、溝、 及渠、或高度/幅所示縱橫比爲0.01以上之段差,例如60至 lOOOOOnm之段差、或這些經混合具有凹凸之抗蝕圖型上。 又對於不具有段差等之基板亦可使用。 前述光照射可藉由波長250nm至650nm之光進行。 藉由這些方法可製造出半導體、發光二極體、固體照 相元件 '記錄裝置、及顯示器裝置。 以下對於本發明之奈米壓印用抗蝕上層膜形成組成物 的使用做說明。 於半導體、發光二極體、固體照相元件,記錄裝置、 或顯示器裝置的製造上所使用之加工基板(例如矽/二氧 化矽被覆基板、矽晶圓基板、氮化矽基板、玻璃基板、 ITO基板、聚亞胺基板、低介電率材料(i〇w_k材料)被覆 基板等)上,以抗蝕下層膜、及奈米壓印用抗蝕的順序形 成。 抗蝕下層膜可藉由轉動、塗佈、噴霧、噴射等適當塗 佈方法形成塗佈膜。抗蝕下層膜可使用有機系或聚矽氧烷 系的抗蝕下層膜。而於塗佈膜進行光照射或熱燒成前,視 必要可進行乾燥步驟。使用含有溶劑的抗蝕下層膜形成組 成物時,進行乾燥步驟爲佳。 乾燥步驟若非高溫下加熱的方法即可,並無特別限制 。若在高溫(例如3 00°C、或其以上之溫度)下加熱時, 可能會引起抗蝕下層膜所含之固體成分的昇華等而污染到 裝置。乾燥步驟例如可於加熱板上將基板在50至l〇〇t下 -52- 201130894 加熱0.1至10分鐘。又,例如可在室溫(20°c程度)下進行 風乾。 其次對於抗蝕下層膜進行熱燒成及/或光照射。光照 射爲例如可使用超高壓水銀燈、閃光UV燈、高壓水銀燈 、低壓水銀燈、deep-UV (深紫外)燈、短弧超高壓氙氣 燈、短弧金屬鹵化燈、YAG雷射激起用燈及氙氣閃光燈等 進行。例如使用超高壓水銀燈,藉由照射含有將紫外光區 之 2 8 9nm、297nm、3 0 3 nm、3 1 3 nm ( j 線)、3 3 4nm、 3 6 5 n m ( i 線)、可見光區的 4 0 5 n m ( h 線)、4 3 6 n m ( g 線 )、546nm、5 79nm之波長作爲波峰的輝線光譜之波長 25 0nm程度至65〇nm程度的波長而進行。 藉由光照射,由抗蝕下層膜中之光聚合啓始劑會產生 陽離子種或活性自由基,而藉此會引起抗蝕下層膜中之聚 合性化合物的聚合反應。而該聚合反應之結果形成抗蝕下 層膜。 如此所形成之抗蝕下層膜中,使用於塗佈於該上層之 奈米壓印用抗蝕組成物的溶劑,例如爲對乙二醇單甲基醚 、乙基賽路蘇乙酸酯、二乙二醇單乙基醚、丙二醇、丙二 醇單甲基醚、丙二醇單甲基醚乙酸酯、丙二醇丙基醚乙酸 酯、甲苯、甲基乙基酮、環己酮、2-羥基丙酸乙酯、2-羥 基-2-甲基丙酸乙酯、乙氧基乙酸乙酯、丙酮酸甲酯、乳酸 乙酯及乳酸丁酯等之溶解性低者。因此,藉由本發明的抗 蝕下層膜形成組成物所形成之抗蝕下層膜爲不會引起與上 塗奈米壓印用抗齡之互混合。 -53- 201130894 熱燒成(加熱)中,可適宜選自燒成溫度80°C至3 00°C 、燒成時間〇·3至90分鐘中。較佳爲燒成溫度130°C至3 0 0t 、燒成時間0.5至5分鐘。 其次’於抗蝕下層膜上形成抗蝕。藉此於半導體、發 光二極體、固體照相元件、記錄裝置、或顯示器裝置的製 造上所使用之加工基板上形成抗蝕下層膜及抗蝕之層合結 構。 抗蝕的形成可藉由轉動、塗佈、噴霧、噴射等適當熟 知方法,即可進行對於抗蝕用組成物溶液之抗蝕下層膜上 的塗佈及藉由光照射或熱燒成而進行。作爲形成於抗蝕下 層膜上之抗蝕並無特別限制,可使用任意泛用的丙烯酸酯 型態的有機丙烯酸抗蝕、或無機抗蝕。例如已揭示將矽氧 烷聚合物作爲主成分的公知光硬化無機抗蝕。且已揭示使 用聚乙烯基醇之有機抗蝕。已揭示在光奈米壓印平版印刷 術所使用的含有氟添加劑之抗蝕材料組成物。已揭示使用 光硬化性樹脂,藉由光奈米壓印平版印刷術形成圖型之例 子。又,已揭示含有聚合性化合物、光聚合啓始劑、界面 活性聚合啓始劑,限定黏度之奈米壓印平版印刷術用抗蝕 硬化性組成物。 藉由刻印之圖型形成製程分爲一次轉印法與步進法。 一次轉印法爲將抗蝕在加工全面成膜後,使用與基板相同 尺寸的模版加押基板與模版而轉印的方法。另一方使用藉 由步進法對較小晶片尺寸進行加工之模版,與藉由光平版 印刷術進行曝光處理同等地,模版每特定尺寸進行重複轉-32- 201130894 Examples of the hydrazine compound of the formula (6) include methyl bistrimethoxy decane, methyl bis chloro decane, methyl bis decyl decane, and ethyl bis triethoxy. Decane, ethyl bis-trichlorodecane, ethyl bis-triacetoxy decane, propyl bis-triethoxy decane, butyl bis-trimethoxy fluorene, etc. When the hydrazine compound (B) is hydrolyzed and condensed, the hydrolyzable group (for example, a chlorine atom, an alkoxy group or a decyloxy group) of the hydrazine compound is used in an amount of more than 1 mol and less than 100 mol per 1 mol. It is preferably from 1 mole to 50 moles of water. In the hydrazine compound (B) of the present invention, a catalyst can be used for hydrolyzing and condensing at least one of the sand compound selected from the above compounds. The catalyst "which can be used at this time" includes a metal chelate compound such as titanium or aluminum, and an acid catalyst 'alkali catalyst. The hydrazine compound (B) is a quinone compound formed by the above formula (3) or a combination of the above formulas (3) and (5), and contains 5 to 1 mol%, or 5 to 75 mols. It is preferred that the ratio of % (a + b) of the ruthenium compound of the ruthenium compound of i is hydrolyzed and condensed. Examples of the organic solvent used for the hydrolysis include n-pentane 'i pentane' η-hexane, i-hexane, n-heptane, hydrazine heptane, 2, 2, 4 • trimethyl Ji'anyuan 'an aliphatic hydrocarbon solvent such as η-octane, octane, cyclohexane or methylcyclohexane; benzene, toluene, xylene, ethylbenzene, trimethylbenzene, methyl ethyl, An aromatic hydrocarbon solvent such as η-propylbenzene, propylpropylbenzene, diethylbenzene, butylbenzene, triethylbenzene, di-i-propylbenzene, η-pentylnaphthalene or trimethylbenzene, methanol , ethanol, η-propanol, i-propanol, η-butanol, butanol, sec_y -33- 201130894 alcohol, t-butanol, η-pentanol, i-pentanol, 2-methylbutanol, Sec-pentanol, t-pentanol, 3-methoxybutanol, η-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, heptanol 3. η-octanol, 2-ethylhexanol, sec-octanol, η-mercaptool, 2,6-dimethylheptanol-4, n-nonanol, sec-undecyl alcohol, Trimethyldecyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, phenol, cyclohexanol, methylcyclohexanol, 3,3,5-trimethylcyclohexanol, benzene Alcohol, phenylmethyl Monool solvent such as alcohol, diacetone alcohol or cresol; ethylene glycol, propylene glycol, 1,3-butylene glycol, pentanediol-2,4,2·methylpentanediol-2,4, hexane a polyvalent alcohol solvent such as alcohol-2,5, heptanediol 2,4,2-ethylhexanediol-1,3, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, glycerin or the like; Acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl η-butyl ketone, diethyl ketone, methyl-bubutyl ketone, methyl amyl ketone, ethyl-η·butyl Ketone, methyl-η-hexyl ketone, di-i-butyl ketone, trimethyl fluorenone, cyclohexanone, methylcyclohexanone, 2,4-pentanedione, ketone acetone, diacetone Ketone solvents such as alcohol, acetophenone and fluorenone; ethyl ether, hydrazine-propyl ether, n-butyl ether, η-hexyl ether, 2-ethylhexyl ether, ethylene oxide, I, 2· Propylene oxide, dioxetane, methyldioxolane, snail, dimethyl dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol Diethyl ether, ethylene glycol mono-η-butyl acid, ethylene glycol mono-η-hexyl ether, ethylene glycol monophenyl ether, ethylene glycol mono-2-ethyl butyl ether, Ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, diethylene glycol mono-η-butyl ether, diethylene glycol Alcohol di-η-butyl ether, diethylene glycol mono-η-hexyl ether, ethoxy triethylene glycol, tetraethylene glycol di-η-butyl acid, propylene glycol monomethyl ether, propylene glycol monoethyl ether, Propylene glycol monopropyl ether, -34- 201130894 Propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monobutyl acid, tripropylene glycol monomethyl ether , ether solvent such as tetrahydrofuran or 2-methyltetrahydrofuran; diethyl carbonate, methyl acetate, ethyl acetate, γ-butyrolactone, γ-valerolactone, η-propyl acetate, i-propyl acetate , η-butyl acetate, i-butyl acetate, sec-butyl acetate, η-amyl acetate, sec-amyl acetate, 3-methoxybutyl acetate, methyl amyl acetate, 2-ethyl acetate Butyl ester, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, η-decyl acetate, methyl acetate, ethyl acetate, ethyl acetate alcohol Methyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate. , diethylene glycol monoethyl ether acetate, diethylene glycol mono- η-butyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl acetate Ether, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, diacetic acid glycol, methoxy triethylene glycol acetate, ethyl propionate, η-butyl propionate, i-pentyl propionate, Diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, η-butyl lactate, η-amyl lactate, diethyl malonate, dimethyl phthalate, phthalic acid An ester solvent such as diethyl ester; Ν-methylformamide, hydrazine, hydrazine-dimethylformamide, hydrazine, hydrazine-diethylformamide, acetamidine, hydrazine-methylacetamide, a nitrogen-containing solvent such as hydrazine, hydrazine-dimethylacetamide, hydrazine-methylpropionamide or hydrazine-methylpyrrolidinium; dimethyl sulfide, diethyl sulfide, thiophene, tetrahydrothiophene, and dimethyl A sulfur-containing solvent such as sulfonium, cyclobutyl hydrazine or 1,3_propane oxime. In particular, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl-35-201130894 ether, propylene glycol monomethyl ether acetate Propylene glycol monoethyl ether acetate and propylene glycol monopropyl ether acetate are preferred from the viewpoint of storage stability of the solution. Further, when the hydrazine compound (B) is hydrolyzed and condensed, a catalyst can be used. The catalyst used in this case may, for example, be a metal chelate compound, an organic acid, an inorganic acid, an organic base or an inorganic base. Examples of the metal chelate compound include triethoxy mono(ethylpyruvate) titanium and tri-n-propoxy group. Single (acetylpyruvate) titanium, trisuccinyloxy mono(acetylpyruvate) titanium, tris-n-butoxy mono(acetylpyruvate) titanium, tris-sec-butoxy-single (acetyl acetonate) titanium, tri-t-butoxy. Single (acetylpyruvate) titanium, diethoxy. Bis(acetylpyruvate) titanium, di-n-propoxy. Titanium (acetylpyruvate) titanium, di. ί_ propoxy. Bis(acetylpyruvate) titanium, di-n-butoxy-linked (acetyl acetonate) titanium, bis-s-butoxy. Bis(acetylpyruvate) titanium, di-t-butoxy-linked (acetylpyruvate), monoethoxy. Reference (acetyl acetonate) titanium, mono-η-propoxy-sodium (acetyl acetonate) titanium, mono-i-propoxy. Reference (acetyl acetonate) titanium, mono-η-butoxy. Reference (acetyl acetonate) titanium, mono-sec. butoxy.  Refractory (acetyl acetonate) titanium, mono-t-butoxy ginseng (acetyl acetonate), bismuth (acetyl acetonate) titanium, triethoxy methoxy (ethyl acetonitrile acetate) titanium , tri-η-propoxy-mono (ethyl acetamidine acetate) titanium, tri-i-propoxy-mono (ethyl acetonitrile acetate) titanium, tri-n-butoxy. Mono (ethyl acetamidine acetate) titanium, tri-sec-butoxy. Mono (ethyl acetamidine acetate) titanium, tri-t-butoxy mono (ethyl acetonitrile acetate) titanium, diethoxy. Bis(ethylacetamidine acetate) titanium, di-η-propoxy-ethyl (ethyl acetamidine acetate) -36- 201130894 Titanium, di-i-propoxy-linked (ethyl acetamidine) Acetate) titanium, di-n-butoxy-linked (ethylacetamidine acetate) titanium, di-sec-butoxy-linked (ethylacetamidine acetate) titanium, di-t- Butoxy-ethyl (ethyl acetamidine acetate) titanium, monoethoxy thiophene (ethyl acetamidine acetate) titanium, mono-η-propoxy ginseng (ethyl acetamidine acetate) Titanium, mono-i-propoxy ginseng (ethyl acetoacetate) titanium, mono-η-butoxy ginseng (ethyl acetoacetate) titanium, mono-sec-butoxy • ginseng (ethyl acetoacetate) titanium, mono-t-butoxy ginseng (ethyl acetoacetate) titanium, strontium (ethyl acetamidine acetate) titanium, single (acetamidine acetone) Acid) ginseng (ethyl acetoacetate) titanium, bis(acetyl acetonate) hydride (ethyl acetoacetate) titanium, ginseng (acetyl acetonate) mono (ethyl acetonitrile acetate) Titanium, etc. titanium chelate compound; zirconium triethoxy-mono(acetylpyruvate), zirconium tri-n-propoxy mono(acetylpyruvate), tri-i-propoxy ·Single (acetyl acetonate) zirconium, tri-n-butoxy mono(acetylpyruvate) pin, tri-sec-butoxy mono(ethylpyruvyl) hydrazine, tri-t-butoxy Zirconium (acetyl acetonate) zirconium, diethoxy bis(acetyl acetonate) zirconium, di-11-propoxy bis(acetyl acetonate) zirconium, di-i-propoxy group Bis(acetylpyruvate) pin, zirconium di-n-butoxy bis(acetyl acetonate), zirconium di-sec-butoxy bis(acetyl acetonate), di-t-butoxy · Zirconium (acetyl acetonate), chromium monoethoxy, acetyl (acetyl acetonate), mono-η-propoxy ginseng (acetyl acetonate) zirconium, mono-i-propoxy ginseng (acetyl acetonate) zirconium, mono-η-butoxy ginseng (acetyl acetonate) ruthenium, mono-sec-butoxy ginseng (acetyl acetonate) zirconium, mono-t-butoxy Zirconium (acetyl acetonate) zirconium, cerium (acetyl acetonate) zirconium, triethoxy singly (ethyl acetoxyacetate) chromium, tri-n-propoxy-single (ethyl acetonitrile) Zirconium, tri-i-propoxy-mono (ethyl ethyl-37-201130894 indole acetate) zirconium, tri-n-butoxy mono(ethylacetamidineacetic acid) Ester), tris-s-butoxy-mono(ethylacetamidine acetate) zirconium, tri-t-butoxy mono(ethylacetamidine acetate) pin, diethoxy group (Ethylacetamidine acetate) zirconium, di-n-propoxy-linked (ethylacetamidine acetate) pin, di-i-propoxy-linked (ethylacetamidine acetate) zirconium , bis-η-butoxy-linked (ethyl acetamidine acetate) zirconium, di-sec-butoxy-linked (ethyl acetamidine acetate) zirconium, di-t-butoxy-linked (ethyl acetoacetate) zirconium, monoethoxy thiophene (ethyl acetamidine acetate) zirconium, mono-η-propoxy ginseng (ethyl acetamidine acetate) zirconium, mono- I-propoxy ginseng (ethyl acetoacetate) zirconium, mono-η-butoxy ginseng (ethyl acetamidine acetate) zirconium, mono-sec-butoxy gin (ethyl) Ethyl acetate, zirconium, mono-t-butoxy ginseng (ethyl acetamidine acetate) zirconium, cerium (ethyl acetoacetate) chromium, mono (acetyl acetonate) ginseng (B Ethyl acetonitrile acetate) zirconium, bis(acetonitrile pyruvate) bis(ethyl acetamidine acetate) zirconium, ginseng (acetyl acetonate) mono(ethyl acetamidine acetate) zirconium, iso zirconium Chemical Thereof; see (acetyl pyruvic acid) aluminum, ginseng (ethyl acetyl acetate) aluminum chelate compounds such as aluminum and the like. Examples of the organic acid include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, capric acid, capric acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, and anthracene. Diacid, gallic acid, butyric acid, mellitic acid, arachidonic acid, shikimic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linoleic acid, salicylic acid, benzoic acid , P-amino benzoic acid, P-toluenesulfonic acid, benzenesulfonic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, sulfonic acid, phthalic acid, fumaric acid , citric acid, tartaric acid, etc. -38- 201130894 Examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and the like. Examples of the organic base include pyridine 'pyrrole, pyrrolidine, piperidine, methylpyridine, trimethylamine, triethylamine, mono-, diethanolamine, dimethyl monoethanolamine, monomethyldiethanolamine, and amine. Diazabicyclooctane, diazabicyclononane 'diazabicarbene, tetramethylammonium hydroxide, and the like. Examples of the inorganic base include ammonia, sodium hydroxide, cesium hydroxide hydroxide, and calcium hydroxide. Among these catalysts, metal chelate, organic acid, and inorganic acid are preferred, and a titanium chelate compound is preferred. One type or two or more types can be used at the same time. In order to improve the anti-corrosion resistance, the flexibility, the flatness, and the like, it is possible to use a polymerizable compound which does not contain the above-mentioned ruthenium atom, and to copolymerize (mixture) the polymerizable compound containing a ruthenium atom, or Specific examples of the polymer having an ethylenically unsaturated bond which does not contain a halogen atom include ethylene glycol di(meth)acrylate, alcohol di(meth)acrylate, and triethylene glycol di(methyl). Propylene tetraethylene glycol di(meth)acrylate, nonaethylene glycol di(methyl ester, polyethylene glycol di(meth)acrylate, tripropylene glycol di)acrylate, tetrapropylene glycol di(methyl) Acrylate, nona-propylene (meth) acrylate, polypropylene glycol bis(4-(acryloxydiethoxy)phenyl]propane, 2,2 bis methacryloxy Ethoxy)phenyl]propane, 3- phenoxy-2-propane acrylate, 1,6-dipropyloxy-2-hydroxypropyl)-hexylpentaerythritol tri(meth)acrylate, Trimethylolpropane tris(piperazine hydroformate, ethanolamine triethanol ring eleven potassium, compound acid, can There is a combination of the above-mentioned I. Dimethyl phthalate, propylene (methyl diol di' 2,2-[4-(propyl ketone), quaternary) propyl-39- 201130894 enoate, glycerol Methyl) acrylate, cis-(2-hydroxyethyl)-isocyanurate (meth) acrylate, pentaerythritol tetra(meth) acrylate, dipentaerythritol penta (meth) acrylate, and Pentaerythritol hexa(meth) acrylate, etc., wherein, for example, ethylene glycol di(meth) acrylate means ethylene glycol diacrylate and ethylene glycol dimethacrylate. As ethylene having no ruthenium atom The polymerizable compound having an unsaturated bond may, for example, be a urethane compound obtainable by a reaction of a polyvalent isocyanate compound and a hydroxyalkyl unsaturated carboxylate compound, and a polyvalent epoxy compound and a hydroxyalkyl group. a compound obtained by a reaction of a saturated carboxylic acid ester compound, a diallyl ester compound such as diallyl benzoate, or a divinyl compound such as divinyl phthalate, or the like. Cationic polymerization Examples of the polymerizable compound include a cyclic ether structure such as an epoxy ring and an oxetane ring, a vinyl ether structure, and an ethylene sulfide structure. The polymerizable compound is not particularly limited, and a compound having one to six or two to four epoxy rings can be used. Examples of the polymerizable compound having the above epoxy ring include a diol compound and three. a compound having two or more hydroxyl groups or carboxyl groups such as an alcohol compound, a dicarboxylic acid compound, and a tricarboxylic acid compound, and an epoxy propyl compound such as epichlorohydrin, having two or more epoxy propyl ether structures or epoxy A compound of a propyl ester structure. Specific examples of the polymerizable compound having an epoxy ring without a halogen atom include 1,4-butanediol diepoxypropyl ether ' 1,2-epoxy-4 -(epoxy-40 - 201130894 ethyl) cyclohexane, glycerol triepoxypropyl ether, diethylene glycol diepoxypropyl ether, 2,6-diepoxypropyl phenyl epoxypropyl ether 1,1,3-glycol [p-(2,3-epoxypropoxy)phenyl]propane, 1,2·cyclohexane Di-glycidyl dicarboxylate, 4,4'-extension methyl (Ν, Ν-diepoxypropyl aniline), 3,4-epoxycyclohexylmethyl-3,4-epoxy ring Hexane carboxylate, trimethylolethane triepoxypropyl ether, triepoxypropyl-indole-aminophenol, tetraepoxypropyl m-xylylenediamine, tetraepoxypropyldiamine Diphenylmethane, tetraethoxypropyl-I,3.diaminomethylcyclohexane, bisphenol-oxime-diepoxypropyl ether, bisphenol-S-diglycidyl ether, pentaerythritol IV Epoxypropyl ether resorcinol diepoxypropyl ether, diepoxypropyl phthalate, neopentyl glycol diepoxypropyl ether, polypropylene glycol diepoxypropyl ether, tetrabromobisphenol -Α-diglycidyl ether, bisphenol hexafluoroacetone diglycidyl ether, pentaerythritol diepoxypropyl ether, ginseng (2,3-epoxypropyl) trimer isocyanate, monoallyl Di-epoxypropyl trimer isocyanate, diglycerin polydiepoxypropyl ether, pentaerythritol polyepoxypropyl ether, 1,4-bis(2,3-epoxypropoxyperfluoroisopropyl)cyclohexane Alkane, sorbitol polyepoxypropyl ether, trimethylolpropane polyepoxypropyl ether, resorcinol diepoxypropyl 1,6-hexanediol diepoxypropyl ether, polyethylene glycol diglycidyl ether, phenylepoxypropyl acid, hydrazine-t-butylphenyl epoxypropyl acid, Diacid diepoxypropyl ether, phthalic acid diepoxypropyl ether, dibromophenyl epoxypropyl ether, 1,2,7,8-diepoxyoctane, 1,6·2 Hydroxymethyl perfluorohexane diepoxypropyl ether, 4,4'-bi(2,3-epoxypropoxyperfluoroisopropyl)diphenyl ether, 2,2-linked (4-ring) Oxypropyl phenyl phenyl) propane, 3,4-epoxycyclohexylmethyl-3,4'-epoxycyclohexane carboxylate, 3,4-epoxycyclohexyl oxirane 2 - (3,4-epoxycyclohexyl)-3,,4'-epoxy-1,3-dioxane-5-spirocyclohexane 201130894, 1,2-ethylenedioxy-linked (3, 4-epoxycyclohexylmethane), 4',5'-epoxy-2'-methylcyclohexylmethyl-4,5-epoxy-2-methylcyclohexanecarboxylate, ethylene glycol- (3,4-epoxycyclohexanecarboxylate), bis-(3,4-epoxycyclohexylmethyl)adipate, and bis(2,3-epoxycyclopentyl)ether . The polymerizable compound having an oxetane ring which does not contain a halogen atom is not particularly limited, and a compound having one to six or two to four oxetane rings can be used. Examples of the polymerizable compound having an oxetane ring which does not contain a halogen atom include 3-ethyl-3-hydroxymethyloxetane and 3-ethyl-3-(phenoxymethyl). Oxycyclobutane, 3,3-diethyloxetane, and 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, 1,4- Bis((3-ethyl-3-oxetanyl)methoxy)methyl)benzene, bis((3-ethyl-3-oxetanyl)methyl)ether, and pentaerythritol ((3-ethyl-3-oxetanyl)methyl)ether or the like. The polymerizable compound having a vinyl ether structure which does not contain a halogen atom is not particularly limited, and a compound having one to six or two to four vinyl ether structures can be used. Examples of the polymerizable compound having a vinyl ether structure which does not contain a halogen atom include vinyl-2-chloroethyl ether, vinyl-n-butyl ether, and 1,4-cyclohexane dimethanol divinyl. Ether 'vinyl epoxy propyl ether, bis(4-(vinyloxymethyl)cyclohexylmethyl) glutarate, tris(ethylene glycol) divinyl ether, divinyl adipate, Diethylene glycol divinyl ether, ginseng (4-vinyloxy)butyl trimellitic acid ester, bis(4-(vinyloxy)butyl)terephthalate, bis (4-( Vinyloxy)butyl isophthalene-42- 201130894 Diformate, ethylene glycol divinyl ether, 1,4-butanediol divinyl ether, tetramethyl glycol divinyl ether, tetraethylene Alcohol divinyl ether, neopentyl glycol divinyl ether, trimethylolpropane trivinyl ether, trimethylolethane trivinyl ether, hexanediol divinyl ether, I, 4-ring Hexanediol divinyl ether, tetraethylene glycol divinyl ether, pentaerythritol divinyl ether, pentaerythritol trivinyl ether, cyclohexane dimethanol divinyl ether, etc. The polymerization used in the present invention The starting agent (c) is not particularly limited as long as it is a compound which starts the polymerization of the oxime compound by thermal baking or light irradiation, and can be used to produce an acid by light irradiation or thermal firing. A compound of a sulphate acid or a Lewis acid, a base, a radical, or a cation. For example, a compound which generates an active radical by light irradiation and which causes radical polymerization of the above hydrazine compound, that is, by light freedom The base polymerization initiator and the light irradiation generate a cationic species such as a proton acid or a carbocation, and a compound which can cause cationic polymerization of the above ruthenium compound, that is, a photocationic polymerization initiator, etc. For light irradiation, for example, a wavelength of 150 nm to 100 nm can be used. Or light of 200 to 700 nm, or 300 to 600 nm, and photo radical polymerization of living radicals by exposure amount of 1 to 2000 mJ/cm 2 , or 10 to 1 500 00 mJ/cm 2 , or 50 to 1 000 mJ/cm 2 A starter or a photocationic polymerization initiator which produces a cationic species is preferably used as a photopolymerization initiator. As a photoradical polymerization initiator, for example, an imidazole compound and diazotization may be mentioned. Compound, biimidazole compound, N-arylglycine compound, organic azide compound, titanocene compound, aluminate compound, organic peroxidation-43-201130894, N-alkoxypyridine salt compound, And a thioxanthone compound, etc. Examples of the compound include P-azidobenzaldehyde, P-azidoacetin, p-azidobenzoic acid, P-azidobenzylidene benzene, 4,4 '-Diazide chalcones, 4,4'-diazide diphenyl sulfide, and 2,6-linked (4'-azidobenzylidene)-4-methylcyclohexanone. Examples of the diazonium compound include 1-diazo-2,5-diethoxy-4-p-tolylthiophenylbenzene fluoride, 1-diazo-4-N,N-di Methylaminophenyl chloride, and 1-diazo-4-N,N-diethylaminophenyl boron fluoride, and the like. As the biimidazole compound, 2,2'-bi(〇-chlorophenyl)-4,5,4',5'-fluorene (3,4,5-trimethoxyphenyl) l, 2' can be mentioned. - Bisimidazole, and 2,2'-linked (〇-chlorophenyl) 4,5,4',5'-tetraphenyl-1,2'-bisimidazole. As the titanocene compound, dicyclopentadiene-titanium-dichloride 'dicyclopentadiene·titanium-biphenyl, dicyclopentadiene-titanium-linked (2,3,4,5) can be mentioned. ,6·pentachlorophenyl), dicyclopentadiene-titanium-bis(2,3,5,6-tetrafluorophenyl), dicyclopentadiene·titanium-linked (2,4,6-three Fluorophenyl), dicyclopentadiene-titanium-bis(2,6-difluorophenyl), dicyclopentadiene-titanium-(2,4-difluorophenyl), linked (methyl ring) Pentadiene)-titanium-linked (2,3,4,5,6-pentachlorophenyl), bis(methylcyclopentadiene)-titanium-linked (2,3,5,6-tetrafluorobenzene) (), (methylcyclopentadienyl)-titanium-bis(2,6-difluorophenyl), and dicyclopentadiene-titanium-linked (2,6.difluoro-3-(1H-) Pyrrol-1-yl)-phenyl) and the like. Examples of the photocationic polymerization initiator include a sulfonate, a quinone imine compound, a disulfonium diazomethane compound, a dialkyl-4 hydroxy sulfonium salt, and an aryl sulfonic acid-P-nitrobenzyl group. Ester, stanol-aluminum conjugate, (η6-benzene) (η5·cyclopentadiene) iron (II), and the like. -44 - 201130894 Examples of the quinone imine compound include N-(trifluoromethanesulfonyloxy)butaneimine, N-(nonafluoro-n-butanesulfonyloxy)butaneimine N-(camphorsulfonyloxy)butaneimine and n-(trifluoromethanesulfonyloxy)naphthylimine. Examples of the disulfonium diazomethane compound include bis(trifluoromethylsulfonyl)diazomethane, hydrazine (cyclohexylsulfonyl)diazomethane, bis(phenylsulfonyl)diazomethane, and ( P-toluenesulfonium)diazomethane, bis(2,4-dimethylphenylsulfonate)diazomethane, and methylsulfonium-P-toluenesulfonium diazomethane. Further, as a photocationic polymerization initiator, a 2-methyl group can be mentioned. . 1-(4-Methylthiophenyl)-2-morpholinopropan-1-one. Further, an aromatic iodonium salt compound, an aromatic sulfonium salt compound, an aromatic diazo salt compound, an aromatic iron salt compound, a triazine compound, and an iron aromatic hydrocarbon compound can be used as a photoradical polymerization initiator, or It can also be used as a photocationic polymerization initiator. Examples of the aromatic iodine salt compound include phenyl iodine hexafluorophosphate, diphenyl iodine trifluoromethane sulfonate, diphenyl iodine hexafluoro-n-butane sulfonate, and diphenyl. Iodine perfluoro-n-octane sulfonate, diphenyl sulfonium iodide sulfonate, bis(4-tert-butylphenyl) iodine gun camphorsulfonate and conjugated (4-tert-butylphenyl) Iodine trifluoromethanesulfonate and the like. Examples of the aromatic onium salt compound include triphenylsulfonium hexafluoroantimonate, triphenylsulfonium nonafluorobutanesulfonate, triphenyl camphorsulfonate, and triphenylsulfonium trifluoromethane. Sulfonate and the like. The photopolymerization initiator may be used singly or in combination of two or more. -45-201130894 Further, as a compound which generates a cation or a radical by thermal baking (heating) to cause thermal polymerization of the polymerizable compound, P-toluenesulfonic acid, trifluoromethanesulfonic acid, and pyridine are mentioned. Key P-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, hydroxybenzoic acid, etc., or 2,4,4,6-tetrabromocyclohexadecanone, benzene Occasion p-toluenesulfonate, 2-nitrobenzyl p-toluenesulfonate, (4-t-butylphenyl) iodine trifluoromethanesulfonate, triphenylsulfonium trifluoromethanesulfonate An acid generator such as ester, phenyl-bi(trichloromethyl)-s-triazine, benzoin p-toluenesulfonate or N-hydroxybutylimine trifluoromethanesulfonate. The firing conditions are suitably selected from a firing temperature of 60 ° C to 300 ° C and a firing time of 0. 3 to 90 minutes. The content of the ruthenium compound (A) and the polymerization initiator (C) in the film-forming composition of the present invention, the polymerization initiator (C) is, for example, 1 to 100 parts by mass of the ruthenium compound (A). 20 parts by mass, or 3 to 10 parts by mass. When the amount of the polymerization initiator (C) is less than this, the polymerization reaction cannot be sufficiently performed, and the hardness and abrasion resistance of the obtained film may be insufficient. When the amount of the polymerization initiator is more than this, it is hardened only in the vicinity of the surface of the film, and it may not be completely cured to the inside of the film. Further, when hot baking is used, when the amount of the polymerization initiator is larger than this, the sublimation amount of the polymerization initiator increases, which causes contamination in the firing furnace. In the film-forming composition of the present invention, when a compound having an ethylenically unsaturated bond having a radical polymerizable moiety is used as the ruthenium compound (A), a photoradical polymerization initiator is preferably used as the polymerization initiator. As the ruthenium compound (A), a vinyl ether structure having a cationically polymerizable site is used.  y 201130894, a compound of an epoxy ring or an oxetane ring, preferably a photocationic polymerization initiator is used as a polymerization initiator. When a compound having a stanol group is used as the fluorinated compound (B), triphenylsulfonium trifluoromethanesulfonate and a pyridine gun p-toluenesulfonic acid are used as a polymerization initiator. The formation of the composition is generally obtained by dissolving or dispersing a mixture of the ruthenium compound (A) or the ruthenium compound (A) and the ruthenium compound (B) in an organic solvent (D). The organic solvent is at least one selected from the group consisting of an alcohol solvent, a ketone solvent, a guanamine solvent, an ester solvent, and an aprotic solvent. The solvent used for the hydrolysis of the above ruthenium compound (B) and the hydrazine compound (B) are hydrolyzed to obtain a condensate, and when used in combination with the ruthenium compound (A), it is used for the ruthenium compound (b). The hydrolyzed organic solvent can be directly used as the solvent (D) of the film-forming composition. Examples of the solvent (D) used in the present invention include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl stilbene acetate, and ethyl stilbene acetate. , diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether acetate, toluene, xylene, A Ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, 2-hydroxy- Methyl 3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl 3-ethoxypropionate, acetone Methyl ester, ethyl pyruvate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, N-dimethylformamidine-47- 201130894 Amine, N-dimethylacetamide, dimethyl Aachen and N-methylpyrrolidone. These solvents (D) may be used singly or in combination of two or more. As the solvent, a boiling point of 80 to 250 ° C or 100 to 200 is used. (:, or a solvent of 120 to 180 ° C is preferred. When the boiling point of the solvent is low, most of the solvent evaporates during coating of the film-forming composition, so that the viscosity is increased, resulting in a decrease in coatability. When the film forming composition is high, it takes a long time to dry after coating. The amount of the solvent used can be, for example, the solid content concentration of the film forming composition becomes 5·5 to 99% by mass, or 3 to 50% by mass, or For the film-forming composition of the present invention, the above-mentioned ruthenium compound (A) and the polymerization initiator (C) may be added, and if necessary, a crosslinkable compound, a surfactant, or an addition may be added. Sensitizer, amine compound, polymer compound, antioxidant, thermal polymerization inhibitor, surface modifier, defoaming agent, etc. In the film-forming composition of the present invention, β-diketone or colloidal cerium oxide may be further added. By adding a surfactant to the components such as colloidal alumina, organic polymer, surfactant, decane coupling agent, radical generator, triazene compound, and alkali compound, pinholes or streaks can be suppressed, and improve The coating property of the composition is formed. Examples of the surfactant include polyethylene oxide lauryl ether, polyethylene oxide stearyl ether, and polyethylene oxide oleyl ether. Poly(ethylene oxide) allyl ether compound such as alkyl ether compound, polyethylene oxide octylphenol ether and polyethylene oxide nonylphenol ether, polyethylene oxide/polypropylene oxide block copolymerization Compounds, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate and sorbitan tristearate-48 - 201130894 Fatty acid ester compound, polyethylene oxide sorbitan monolaurate, polyethylene oxide sorbitan monopalmitate 'polyethylene oxide sorbitan monostearate and polyepoxy A polyethylene oxide sorbitan fatty acid ester compound such as ethene sorbitan tristearate, and the product names EftopEF301, EF3 03, EF3 52 (manufactured by TOHKEM PRODUCTS), and trade name 1 ^^§3€&〇?171,?173,11-08'11-30 (Daily Ink (share) system), FluoradFC430, FC431 (Sumitomo 3M ( )), trade name: Asahiguard AG710, Surfllon S-3 82, SC101, SCI 02 > SC 1 03 'SC 1 04 'SC105, SC106 (Asahi Glass Co., Ltd.) and other fluorine-based surfactants and organic siloxane polymers KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), etc. When the surfactant is used, the amount of the ruthenium compound (A) is, for example, 0. 1 to 5 parts by mass, or 〇.  5 to 2 parts by mass. The sensitizer can be used to increase the sensitivity to the light of the aforementioned photopolymerization initiator. Examples of the sensitizer include 2,6-diethyl-1,3,5,7,8-pentamethylpyrromethene-BF2 and 1,3,5,7,8-pentamethyl. Pyridoxazole-8?2 complex and other pyrromethene complex compounds, eosin (Eosin), ethyl eosin, erythromycin, luciferin and bengal rose red, etc., 1 - (1-methyl Naphthol [1,2-(1]thiazole-2(11〇-ylidene-4-(2,3,6,7)tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl) 3-buten-2-one, 1-(3-methylbenzothiazole-2(3H)-ylidene-4-(p-dimethylaminophenyl)-3-butene-2 - Keto thiazoline compound such as ketone, 2-(p-dimethylaminostyryl)-naphthol [l,2-d]thiazole, 2-[4-(p-dimethylaminophenyl)- a styrene group such as 1,3-butadienyl]-naphthol [l,2-d]thiazole or a phenylbutadienyl hetero-49-201130894 ring compound, etc. Further, 2, 4 - 2 Phenyl-6-(p-dimethylaminostyryl)-1,3,5-triazine, 2,4-diphenyl-6-((2,3,6,7)tetrahydrogen -1H,5H-benzo[ij]pyridazin-9-yl)-1-ethen-2-yl)-1,3,5-triazinone oxime-((2,3,6,7]tetra Hydrogen-1H,5H-benzo[ij]soxazin-9-yl)-1- Ethylene-2-yl)one and 2,5-linked (p-dimethylaminophenylallyl)cyclopentanone, 5,10,15,20 tetraphenylporphyrin, etc. When a sensitizer is used The amount of addition is ', for example, 〇" to 20 parts by mass based on 1 part by mass of the ruthenium compound (A). The amine compound can be used to prevent sensitivity reduction due to oxygen inhibition by the aforementioned photopolymerization initiator. As the amine compound, various amine compounds such as an aliphatic amine compound and an aromatic amine compound can be used. When an amine compound is used, the amount of addition is '0. 1 to 10 parts by mass. Further, a polymer compound can be added. The polymer compound is not particularly limited in its kind. Various polymer compounds having a weight average molecular weight of from 1 Å to 1,000,000 can be used. For example, an acrylate polymer having a benzene ring, a naphthalene ring or an anthracene ring, a methacrylate polymer, a novolak polymer, a styrene polymer, a polyamine, a poly-proline, a polyester, and a poly Amines, etc. When the polymer compound is used, the amount of the compound is, for example, 0% by mass based on 100 parts by mass of the ruthenium compound. 1 to 50 parts by mass. In the present invention, the film can be used as a film-forming composition when forming an upper layer film of a resist pattern formed by a nanoimprint method on a coated substrate. The present invention relates to a step of applying the above-mentioned film-forming composition as a resist-uplayer film-forming composition to a resist pattern formed by nanoimprinting, and forming a resist-up film from -50 to 201130894, and The step of curing the resist upper layer film by thermal baking and/or light irradiation on the resist upper layer film is a method of forming a laminated structure used in a pattern forming process using a nanoimprint pattern. Further, the present invention is a step of forming a resist-up film by forming the film-forming composition as a composition for forming an anti-uranium upper layer and applying it to a resist pattern formed by nanoimprinting. a step of curing the upper resist film by thermal firing and/or light irradiation, a step of etching the anti-uranium upper layer film by a halogen-based gas, and a step of etching the resist film by an oxygen-based gas, And a method of manufacturing a substrate in which the substrate is processed in accordance with the pattern of the resist upper film and the resist film formed. Further, in the case where a resist underlayer film is used, a step of applying a resist underlayer film on a substrate to form a resist underlayer film, and a step of curing the underlayer film by thermal baking and/or light irradiation on the resist underlayer film And a step of forming a resist composition for nanoimprinting on the upper surface of the resist underlayer film and forming a resist for nanoimprint by thermal firing and/or light irradiation, by a step method (step and repeat) a step of performing imprinting, a step of hardening the resist by light irradiation, and a step of forming a resist-up film on the resist pattern of the nano-imprint resist-up film forming composition of the present invention And the step of curing the upper resist film by thermal baking or light irradiation on the resist upper layer film, and removing the excess resist upper layer film for nanoimprinting, by using a halogen-based gas to the surface layer of the resist The step of performing deep etching by plasma etching and the step of selectively removing the resist by an oxygen-based gas can be formed in a laminated structure used in a pattern forming process using nanoimprint. The above-mentioned nano-embossed resist pattern can be used for height/diameter -51 - 201130894 to show an aspect ratio of 0. Holes above 01, such as holes, grooves, and channels of 60 to 1000 Onm, or height/width are shown as 0. The step difference of 01 or more, for example, the step difference of 60 to 1000OOm, or the resist pattern which is mixed with irregularities. Further, a substrate having no step or the like can be used. The aforementioned light irradiation can be performed by light having a wavelength of from 250 nm to 650 nm. By these methods, a semiconductor, a light-emitting diode, a solid-phase element, a recording device, and a display device can be manufactured. The use of the resist superposed film forming composition for nanoimprinting of the present invention will be described below. Processed substrates used in the manufacture of semiconductors, light-emitting diodes, solid-state photographic elements, recording devices, or display devices (eg, tantalum/yttria-coated substrates, tantalum wafer substrates, tantalum nitride substrates, glass substrates, ITO) The substrate, the polyimide substrate, the low dielectric constant material (i〇w_k material), the substrate, and the like are formed in the order of the underlayer film and the resist for nanoimprint. The underlayer film can be formed into a coating film by a suitable coating method such as spinning, coating, spraying, spraying or the like. As the underlayer film, an organic or polyoxyalkylene-based underlayer film can be used. The drying step may be carried out as necessary before the coating film is subjected to light irradiation or thermal firing. When a composition is formed using a resist underlayer film containing a solvent, it is preferred to carry out a drying step. The drying step is not particularly limited as long as it is not heated at a high temperature. If it is heated at a high temperature (e.g., at a temperature of 300 ° C or higher), sublimation of solid components contained in the underlayer film may be caused to contaminate the device. The drying step can be performed, for example, by heating the substrate at 50 to 10 〇〇t -52 - 201130894 on a hot plate. 1 to 10 minutes. Further, for example, it can be air-dried at room temperature (about 20 ° C). Next, the underlayer film is subjected to thermal firing and/or light irradiation. The light irradiation is, for example, an ultrahigh pressure mercury lamp, a flash UV lamp, a high pressure mercury lamp, a low pressure mercury lamp, a deep-UV (deep ultraviolet) lamp, a short arc ultra high pressure xenon lamp, a short arc metal halide lamp, a YAG laser arousal lamp, and a xenon gas. Flash, etc. For example, an ultrahigh pressure mercury lamp is used, by irradiating a region containing 289 nm, 297 nm, 309 nm, 3 1 3 nm (j line), 3 3 4 nm, 3 6 5 nm (i line), visible light region. The wavelengths of 4 0 5 nm (h line), 4 3 6 nm (g line), 546 nm, and 5 79 nm are performed as the wavelength of the peak spectrum of the peak of the wavelength of about 250 nm to about 65 nm. By photoirradiation, a photopolymerization initiator in the underlayer film of the resist generates a cationic species or an active radical, thereby causing polymerization of the polymerizable compound in the underlayer film. As a result of the polymerization, a resist underlayer film is formed. In the resist underlayer film formed as described above, a solvent used for the resist composition for nanoimprint applied to the upper layer is, for example, ethylene glycol monomethyl ether or ethyl stilbene acetate. Diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether acetate, toluene, methyl ethyl ketone, cyclohexanone, 2-hydroxypropyl The acidity of ethyl acetate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, methyl pyruvate, ethyl lactate and butyl lactate is low. Therefore, the underlayer film formed by forming the composition of the resistive underlayer film of the present invention does not cause intermixing with the age resistance of the top coated nanoimprint. -53- 201130894 In the thermal firing (heating), it may be suitably selected from a firing temperature of 80 ° C to 300 ° C and a firing time of 3 3 to 90 minutes. Preferably, the firing temperature is 130 ° C to 300 °, and the firing time is 0. 5 to 5 minutes. Next, a resist is formed on the underlayer film. Thereby, a resist underlayer film and a resist laminated structure are formed on the processed substrate used for the fabrication of a semiconductor, a light-emitting diode, a solid photographic element, a recording device, or a display device. The formation of the resist can be carried out by coating with a resist underlayer film of the resist composition solution by a well-known method such as rotation, coating, spraying, spraying, or the like, by light irradiation or thermal firing. . The anticorrosive layer formed on the underlayer film is not particularly limited, and any of the commonly used acrylate type organic acrylic resists or inorganic resists can be used. For example, a known photohardenable inorganic resist having a siloxane polymer as a main component has been disclosed. Organic corrosion barriers using polyvinyl alcohol have been disclosed. A resist material composition containing a fluorine additive used in photonographic lithography has been disclosed. An example of forming a pattern by photonographic lithography using a photocurable resin has been disclosed. Further, a resist-curable composition for nanoimprint lithography which has a viscosity-restricting property and which contains a polymerizable compound, a photopolymerization initiator, and an interfacial polymerization initiator. The pattern forming process by marking is divided into a primary transfer method and a stepping method. The primary transfer method is a method in which a resist is applied to a film after the entire film is processed, and the substrate is transferred using a stencil of the same size as the substrate. The other party uses a stencil that processes the smaller wafer size by the stepping method, and the stencil is repeatedly rotated for each specific size as with the exposure processing by photolithography.

S -54- 201130894 印,最終進行全面性刻印而形成圖型者。一般 上會有反翹或凹凸,故於加工基板變大的情況 圖型形成的情況時’模版於加工基板上難以平 押入。由以上得知,以步進法爲較佳。 又,藉由光刻印之圖型形成製程與藉由熱 形成製程相比,模版(塑模)與抗蝕間之剝離 陷較少,對準精度優良,藉由抗蝕的熱膨張或 型尺寸變化較小,處理時間短且生產性優。因 印之圖型形成製程的優位性,而適用於必須微 途上。 通過任意模版藉由刻印進行圖型形成。在 圖型形成製程中,於加工基板上塗佈使用於奈 蝕下層的下層膜組成物,於該上層塗佈刻印用 ,押上光透過性模版,進行熱燒成及/或光照 由刻印之圖型形成。對於藉由光刻印之圖型形 版或基板的至少一方使用可透過照射光之材料 模版爲具有可刻印之等倍圖型。模版爲例 版印刷術或電子線描繪法等可對應所望加工精 ,本發明中對於模版圖型形成方法並無特別限 中可使用之模版並無特別限定,但若具有所定 性即可。具體爲玻璃、石英、丙烯酸樹脂、聚 等光透明性樹脂、透明金屬蒸鍍膜、聚二甲基 軟膜、光硬化膜、金屬膜等可舉出。特別由透 之觀點來看以經製圖的石英爲佳。 基板及模版 或必須微細 行且均勻地 刻印之圖型 性優良,缺 熱收縮之圖 由上述光刻 細加工之用 藉由刻印之 米壓印用抗 抗蝕組成物 射,進行藉 成製程,模 0 如藉由光平 度形成圖型 制。本發明 強度、耐久 碳酸酯樹脂 砂氧院等柔 明性與品質 -55- 201130894 作爲非光透過型模版(塑模)材雖無特別限定,若爲 具有所定強度與形狀保持性者即可。具體可舉出陶瓷材料 、蒸鍍膜、磁性膜、反射膜、Ni、Cu' Cr、Fe等金屬基板 、SiC、矽氧烷、氮化矽氧烷、聚矽氧烷、氧化矽氧烷、 非晶質矽氧烷等基板等,並無特別限定。形狀可爲板狀塑 模、輥狀塑模中任一種。輥狀塑模特別可適用於轉印之連 續生產性爲必要之情況。 上述本發明所使用的模版,以使用藉由可提高光奈米 壓印平版印刷術用抗蝕硬化物與模版之剝離性時的矽氧烷 系或氟系等矽烷耦合劑而進行離型處理者爲佳。例如雖無 特別限制,亦可使用十三氟1,1,2,2-四氫辛基二甲基矽烷 、或NovecEGC-1720等販賣的離型劑。 而本發明的抗蝕上層膜形成組成物可使用於如此抗蝕 圖型的凹凸不會產生隙間(空間;void )下以上層膜塡充 時。又,於具有縱橫比爲0 · 〇 1以上的孔以疏密方式具有的 加工基板(具有孔密集地存在之部分與疏鬆地存在之部分 的抗蝕圖型)上可適用本發明的上層膜形成組成物。而本 發明的抗蝕上層膜形成組成物可使用於將平坦的抗蝕上層 膜形成於如此孔以疏密方式存在之基板表面上。 作爲藉由本發明的抗蝕上層膜形成組成物所形成之抗 蝕上層膜的膜厚,在抗蝕表面上,例如爲1 〇至1 OOOOnm、 或 50至 lOOOOnm、或 100至 lOOOOnm。 而由抗蝕上層膜至抗蝕上部藉由乾式蝕刻成爲背蝕刻 。該抗蝕的表面拋光之加工可藉由鹵素系氣體,特別爲氟 -56- 201130894 系氣體之乾式蝕刻進行爲佳。作爲氟系氣體,例如可舉出 四氟甲烷(CF4)、全氟環丁烷()、全氟丙院( c3f8)、三氟甲烷、及二氟甲烷(CH2F2)等。 其次’將含有矽之抗蝕上層膜作爲保護膜,進行抗蝕 之除去。抗蝕係藉由氧、或氫,進一步藉由這些與氮氣之 混合的乾式蝕刻進行爲佳。 最後進行加工基板之加工。半導體基板的加工可藉由 鹵素系氣體,特別爲藉由氟、或氯系氣體之乾式蝕刻進行 爲佳。作爲氯系氣體,例如可舉出氯硼烷、三氯硼烷、氯 、四氯化碳、及氯仿等。 本發明的抗蝕上層膜形成組成物可將抗蝕圖型以含矽 之膜進行反轉,可藉由電漿蝕刻改善加工邊緣。隨著微細 加工之進展,於抗蝕層的厚度以上,加工基板之深雕刻蝕 刻成爲必要之情況變多。或者欲防止奈米壓印時的抗蝕圖 型倒塌,隨著配線幅的減少,抗蝕層之厚度會變薄,或藉 由電漿蝕刻之加工邊緣會變小。 特別爲欲防止圖型倒塌,使用縱橫比較小的模版時, 藉由追加本發明之含矽之抗蝕上層膜,可反轉抗蝕圖型, 將含矽之抗蝕上層膜作爲硬式光罩,將成爲基底的有機抗 蝕藉由蝕刻選擇比較大的氧、或氫,進一步藉由這些與氮 氣之混合可進行乾式蝕刻。其後,將經反轉之抗蝕圖型正 確地於加工基板上可藉由氟、或氯系氣體之乾式鈾刻進行 轉印。 -57- 201130894 【實施方式】 〔實施例〕 實施例1 混合矽化合物(A )(相當於式(2-5 ) ) l.OOg、作 爲光陽離子聚合啓始劑之4-異丙基-4’-甲基二苯基碘鑰肆 (五氯苯基)硼酸酯 /4-isopropyl-4’-methyldiphenyli〇donium Tetrakis ( pentafluorophenyl) borate (東京化成工業股份 有限公司製)0.02g、丙二醇單甲基醚乙酸酯2.76g、環己 酮7.08g、及界面活性劑(大日本油墨化學工業(股)製 之商品名^^83[&〇1130) 0.0018,調整爲10質量%之溶液。 而將該溶液使用孔徑0.2 μηι之聚乙烯製微細過濾器進行過 濾,調製出抗蝕上層膜形成組成物之溶液。 實施例2 混合矽化合物(A )(相當於式(2-6 ) ) l.OOg、作 爲光自由基聚合啓始劑之2-羥基-2-甲基-1-苯基-丙烷-1-酮 (Ciba Japan股份有限公司製、商品名DAROCUR1 173 ) 0.04g、丙二醇單甲基醚乙酸酯2.81g、環己酮7.29g、及界 面活性劑(大日本油墨化學工業(股)製之商品名 MegafacR30) O.OOlg’調製出10質量%之溶液。再將該溶 液使用孔徑〇 . 2 μιη之聚乙烯製微細過濾器進行過濾’調製 出抗蝕上層膜形成組成物之溶液。 實施例3S -54- 201130894 Printed, and finally formed a comprehensive pattern to form the pattern. Generally, there is a back warpage or unevenness, so that when the processing substrate becomes large, the pattern is formed. The template is difficult to be embossed on the processed substrate. From the above, it is known that the stepping method is preferred. Moreover, the pattern forming process by the photolithography pattern has less peeling between the stencil (mold) and the resist than the heat forming process, and the alignment precision is excellent, and the thermal expansion or size of the resist is utilized. The change is small, the processing time is short and the productivity is excellent. Because the pattern of the print forms the superiority of the process, it is suitable for the micro-path. Pattern formation is performed by engraving through an arbitrary template. In the pattern forming process, the underlying film composition for the underlying layer of the underlying layer is coated on the processed substrate, and the upper layer is coated with an imprinting plate, and the light transmissive stencil is applied to perform thermal firing and/or illumination by engraving. Form formation. The stencil that is permeable to light is used for at least one of the pattern or the substrate printed by the lithography to have an embossable pattern. The stencil is exemplified by a stencil printing method or an electronic line drawing method, and the stencil pattern forming method is not particularly limited in the present invention, but it may be characterized. Specific examples thereof include glass, quartz, acrylic resin, poly-light-transparent resin, transparent metal vapor-deposited film, polydimethyl soft film, photo-cured film, metal film, and the like. In particular, it is preferable to use a patterned quartz. The substrate and the stencil or the pattern which has to be finely and uniformly imprinted are excellent, and the pattern of lack of heat shrinkage is subjected to the borrowing process by the lithographic fine processing by the embossed rice embossing with the anti-corrosive composition. Mode 0 is formed by patterning by light flatness. The present invention is not limited to a non-light-transmissive stencil (molding) material, and is not limited to a predetermined strength and shape retention. Specific examples thereof include a ceramic material, a vapor deposited film, a magnetic film, a reflective film, a metal substrate such as Ni, Cu'Cr, and Fe, SiC, a halogenated alkane, a lanthanum nitride, a polyoxyalkylene oxide, a oxyalkylene oxide, or a non- The substrate or the like such as crystalline siloxane is not particularly limited. The shape may be any one of a plate-shaped mold and a roll-shaped mold. The roll mold is particularly suitable for the case where continuous productivity of transfer is necessary. The stencil used in the above-described invention is subjected to release treatment by using a decane coupling agent such as a decane or a fluorine-based couplant which can improve the peeling property of the resist for lithographic lithography and the stencil. It is better. For example, although it is not particularly limited, a release agent such as tridecafluoro 1,1,2,2-tetrahydrooctyldimethyl decane or NovecEGC-1720 can be used. On the other hand, the resist-up film forming composition of the present invention can be used for the unevenness of the above-mentioned resist pattern without causing the film to be filled under the gap (void). Further, the upper layer film of the present invention can be applied to a processed substrate having a hole having an aspect ratio of 0 · 〇1 or more in a dense manner (a resist pattern having a portion where the pores are densely present and a portion where the pores are present) A composition is formed. Further, the resist upper film forming composition of the present invention can be used for forming a flat resist upper film on the surface of the substrate in such a manner that the holes are present in a dense manner. The film thickness of the resistive upper layer film formed by forming the composition of the resist upper film of the present invention is, for example, 1 Å to 1 OOO Onm, or 50 to 1000 nm, or 100 to 1000 nm on the resist surface. The resist upper film to the upper portion of the resist is back etched by dry etching. The surface polishing of the resist can be carried out by dry etching of a halogen-based gas, particularly a fluorine-56-201130894-type gas. Examples of the fluorine-based gas include tetrafluoromethane (CF4), perfluorocyclobutane (), perfluoropropene (c3f8), trifluoromethane, and difluoromethane (CH2F2). Next, the resist upper film containing ruthenium was used as a protective film to remove the resist. The resist is preferably further dried by dry etching using oxygen or hydrogen. Finally, the processing of the processed substrate is performed. The semiconductor substrate can be processed by a halogen-based gas, particularly by dry etching of fluorine or a chlorine-based gas. Examples of the chlorine-based gas include chloroborane, trichloroborane, chlorine, carbon tetrachloride, and chloroform. The resist superposed film forming composition of the present invention can reverse the resist pattern with a film containing ruthenium, and the processed edge can be improved by plasma etching. As the progress of the microfabrication progresses, the deep engraving etching of the processed substrate becomes more necessary than the thickness of the resist layer. Alternatively, in order to prevent the resist pattern from collapsing during nanoimprinting, the thickness of the resist layer may become thinner as the wiring width is reduced, or the processing edge by plasma etching may become smaller. In particular, in order to prevent pattern collapse, when a template having a relatively small aspect ratio is used, by adding the anti-corrosion film of the present invention, the resist pattern can be reversed, and the anti-corrosion film containing the antimony is used as a hard mask. The organic resist which will be the substrate is selected to have relatively large oxygen or hydrogen by etching, and further dry etching can be performed by mixing these with nitrogen. Thereafter, the reversed resist pattern is correctly transferred onto the processed substrate by dry uranium engraving of fluorine or a chlorine-based gas. -57-201130894 [Embodiment] [Examples] Example 1 Mixed hydrazine compound (A) (corresponding to formula (2-5)) l. OOg, 4-isopropyl-4 as a photocationic polymerization initiator '-Methyldiphenyl iodine quinone (pentachlorophenyl) borate / 4-isopropyl-4'-methyldiphenyli〇donium Tetrakis (pentafluorophenyl) borate (made by Tokyo Chemical Industry Co., Ltd.) 0.02g, propylene glycol monomethyl 2.76 g of ethyl ether acetate, 7.08 g of cyclohexanone, and a surfactant (manufactured by Dainippon Ink and Chemicals Co., Ltd., product name: ^^83 [& 〇1130) 0.0018, adjusted to a solution of 10% by mass. This solution was filtered through a polyethylene fine filter having a pore size of 0.2 μm to prepare a solution of the resist upper film forming composition. Example 2 Mixed hydrazine compound (A) (corresponding to formula (2-6)) l. OOg, 2-hydroxy-2-methyl-1-phenyl-propane-1- as a photoradical polymerization initiator Ketone (manufactured by Ciba Japan Co., Ltd., trade name DAROCUR1 173 ) 0.04 g, 2.81 g of propylene glycol monomethyl ether acetate, 7.29 g of cyclohexanone, and a surfactant (product of Dainippon Ink Chemical Industry Co., Ltd.) The name MegafacR30) O.OOlg' modulates a 10% by mass solution. Further, this solution was filtered using a polyethylene fine filter having a pore size of 2 μm to prepare a solution of the resist upper film forming composition. Example 3

-58- 201130894 將3-環氧丙氧基丙基三甲氧基矽烷(信越化學工業股 份有限公司製、商品名KBM403 ) 72.0g、水16.2g、及對甲 苯磺酸〇.552g加入於丙二醇單甲基醚145.1g,再以80。(:進 行8小時攪拌,將3 -環氧丙氧基丙基三甲氧基矽烷經水解 後得到彼等縮合物。所得之聚矽氧烷樹脂的重量平均分子 量爲1250,數平均分子量爲1010。 其次,於反應溶液l〇.〇g中混合矽化合物(A )(相當 於式(2-5) ) 2.00g、作爲光陽離子聚合啓始劑之三(4_ t-丁基苯基)鎏三(全氟甲烷磺醯)甲基(商品名1^8?8-Cl、Ciba Japan股份有限公司製)〇.3g、丙二醇單甲基醚 乙酸酯17.03g、環己酮38.14g、及界面活性劑(大日本油 墨化學工業股份有限公司製之商品名MegafacR30) 0.006g ,調製出10質量%之溶液。再將該溶液使用孔徑0.2μηι的聚 乙烯製微細過濾器進行過濾,調製出抗蝕上層膜形成組成 物之溶液。 實施例4 混合矽化合物(A )(相當於式(2-5 ) ) l.OOg、作 爲熱陽離子聚合啓始劑之聯(4_t丁基苯基)碘鎰三氟酸酯 /Bis ( 4 -1 e r t - b u t y 1 p h e n y 1 ) i 〇 d ο n i um t r i f 1 a t e ( ( M i d o r i 化 學股份有限公司製之商品名BBI105) 0.05g、丙二醇單甲 基醚乙酸酯2.84g、環己酮7.36g、及界面活性劑(大日本 油墨化學工業(股)製之商品名MegafacR30) 0.001g,調 整出10質量%之溶液。再將該溶液使用孔徑0·2μπι之聚乙烯 -59- 201130894 製微細過濾器進行過濾’調製出抗蝕上層膜形成組成 溶液。 物之 比較例1 式(7-1 ) 【化1 2】 H2C=HC-H2Cn /CH3 /Si、CH3〇、 )srCH3 Η20=Η〇-Η2〇 CH3 式(7-1) 混合上述〔化12〕所示1,3 -二烯丙基四甲基二矽氧烷 、作爲熱陽離子啓始劑之2,6-聯(4’-疊氮苯亞甲基) 基環己酮〇.〇5g、環己酮9.00g、及界面活性劑(大曰 墨化學工業(股)製之商品名MegafacR30) O.OOlg, 出10質量%之溶液。再將該溶液使用孔徑〇.2μπι之聚乙 微細過濾器進行過濾,調製出抗蝕上層膜形成組成物 液。 〇.95g -4-甲 本油 調製 烯製 之溶 (對抗蝕溶劑之溶離試驗) 將在實施例1至實施例3所得之抗鈾上層膜形成組 的溶液藉由轉動塗佈,塗佈於半導體基板(矽晶圓基 上形成塗佈膜。將塗佈膜使用波長3 8 Onm之強化燈( )ORC製作所製之金屬鹵化燈),照射燈之全波長( 量2J/cm2)。再在加熱板上,以15(TC加熱1分鐘將溶 去使其乾燥,形成抗蝕上層膜(膜厚150至25 Onm)。 又,將在實施例4所得之抗蝕上層膜形成組成物 -60- 成物 板) (股 曝光 劑除 的溶 201130894 液藉由轉動塗佈,塗佈於半導體基板(矽晶圓基板)上形 成塗佈膜。在加熱板上以150°C加熱1分鐘後,在2 50°C下3 分鐘作爲本燒成,形成抗蝕上層膜(膜厚150至250nm)。 其次,將這些抗蝕上層膜浸漬於刻印用抗蝕所使用之 溶劑的乳酸乙酯、丙二醇單甲基醚、及丙二醇單甲基醚乙 酸酯中,確認藉由在實施例1至實施例4所得之抗蝕上層膜 形成組成物所得之抗蝕上層膜於這些溶劑中爲不溶。 又,將比較例1所得之抗蝕上層膜形成組成物的溶液 藉由轉動塗佈,塗佈於半導體基板(矽晶圓基板)上。其 後於加熱板上以150°c進行1分鐘加熱後,在200°c下3分鐘 作爲本燒成。因此,無法得到均質的抗蝕上層膜。 作爲其中一理由爲,比較例1之主成分的1,3_二烯丙基 四甲基二矽氧烷之分子量爲較小之214.45,故於轉動塗佈 後不太會引起分子之締合,無法得到非晶質之均質膜。 (光學參數之測定) 與前述同樣地,藉由實施例1至實施例4所得之抗蝕上 層膜形成組成物的溶液於矽晶圓-基板上形成如表1記載的 膜厚之抗蝕上層膜。再藉由分光橢圓測厚儀( Ellipsometer),測定出在上層膜之波長63 3 nm的折射率( η値)及衰減係數(k値),該値如表1所示。 表1中作爲實施例1至4爲由各實施例1至4的抗蝕上層 膜形成組成物所得之抗蝕上層膜的評估値。 -61 - 201130894 [表1〕 娜(nm) 折射率(η値) 衰減係數(k値) ST 施例 1 2 1 0 1.4 7 0.0002 實施例 2 2 5 2 1.52 0. 0 0 0 3 實施例 3 2 4 7 1 . 5 4 0.0002 實施例 4 193 1.5 0 0.0001 (刻印用光硬化抗蝕之準備) 混合丙烯酸丁酯(東京化成工業股份有限公司製) 1 1.7g、丙烯酸異莰酯(東京化成工業股份有限公司製) 20.Og、乙二醇二甲基丙烯酸酯(東京化成工業股份有限 公司製)9.52g、及2-羥基甲基-1-苯基-丙烷-丨_酮( Ciba Japan股份有限公司製之商品名DAROCUR1 1 73 ) 〇.788g,在室溫下進行5小時搅拌。其中丙烯酸丁酯、丙 烯酸異莰酯、乙二醇二甲基丙烯酸酯、及2-羥基-2-甲基-1 -苯基-丙烷-1 -酮之莫耳比爲3 8 % : 4 0 % : 2 0 % : 2 %。 (乾式飩刻速度之試驗) 與前述同樣地,藉由實施例1至實施例4所得之抗蝕上 層膜形成組成物的溶液於各矽晶圓-基板上形成如表2所記 載的膜厚之抗蝕上層膜。再使用日本Scientific製RIE系統 ES401,作爲乾式蝕刻氣體使用〇2與CF4的條件下,測定該 上層膜之乾式蝕刻速度(每單位時間之膜厚減少量)。所 得之結果作爲乾式蝕刻速度之選擇性表示。在與前述刻印 用光硬化抗蝕之同樣條件下的乾式蝕刻速度作爲1 ·〇〇時, 表示上層膜之乾式蝕刻速度之比者爲乾式蝕刻速度之選擇 比。 -62- 201130894 表2中作爲實施例1至4爲實施例1至4的抗蝕上層膜形 成組成物所得之各抗蝕上層膜之評估値。 〔表2〕 膜厚(nm) 〇2氣體選擇比 CF«氣體選擇比 實施例 1 2 12 0.2 1.2 實施例 2 2 5 4 0.2 1.2 胃施例 3 2 4 9 0.1 1 · 1 實施例 4 1 9 7 0.1 1-2 本發明之由實施例1至實施例4所得之抗蝕上層膜對於 未含矽之刻印用光硬化抗蝕而言具有優良的〇2氣體選擇比 。此表示將抗蝕上層膜塗佈於奈米壓印抗蝕圖型上後,藉 由CF4氣體進行深蝕刻後,取代爲02氣體,可選擇性取除 抗蝕,可將奈米壓印圖型藉由這些抗蝕上層膜而翻轉。 (光奈米壓印後之抗蝕上層膜的平坦性) 對於本發明之抗蝕上層膜的奈米壓印試驗,使用藉由 光奈米壓印裝置(分子篩刻印公司製之商品名IMPR10 ) 的步進法。將上述刻印用光硬化抗蝕藉由滴入塗佈法,每 1處滴入〇.〇〇92口1的液滴,以2.5><2.5£:1]12的面積中設置7><7 之合計49處。將作成抗蝕材料之液滴的加工基板,設定水 平至與80nm線(高度120nm)以等間隔刻畫的石英模版的 距離成爲均勻。以〇.4mm/秒至0.003mm/秒的速度下減少, 將模版面向加工基板而降低。模版與抗蝕表面開始銜接後 ,施予1 8N的押入壓力而賦予加重,將模版的凹凸部完全 密著於基板。其後,進行光照射(1 30秒),將刻印用抗 鈾進行光硬化。使模版上昇,藉由光奈米壓印完成抗蝕圖 -63- 201130894 型之形成製程。其結果均勻地得到2 · 5 χ 2 · 5 cm2面積之8 Onm 的線(高度1 20nm )之抗蝕圖型。 其次,藉由前述實施例1至4所得之抗蝕上層膜形成組 成物的溶液,於奈米壓印用抗蝕圖型上各形成抗蝕上層膜 (膜厚 1 90至 260nm )。 奈米壓印用抗蝕圖型(80nm之線(高度120nm )、線 :空間的比率爲1 : 1 )上的實施例1至4所得之抗蝕上層膜 形成組成物的平坦化率之結果如表1所示。 再藉由使用掃描型電子顯微鏡(SEM )觀察基板之截 面形狀,評估藉由下層膜之平坦化率。平坦化率可依據下 式求得。將基板上之孔可完全地平坦化時的平坦化率爲 1 0 0%。圖2中,平坦化性以以下方法求得。 平坦化率={(含圖型部分的抗蝕上層膜之厚度t) / (含圖型部分的抗蝕上層膜之厚度h) } xl 00 又,於孔內部未觀察到空間(隙間)之產生,觀察到 孔內部以下層膜進行過濾。 [表3〕 無圖型部分 膜厚(n in) 有圖型部分膜厚差 平坦化率 (n m) (n m) ( n m) (%) 實施例1 2 15 2 0 1 14 9 3 實施例2 2 5 3 2 18 3 5 8 6 實施例3 2 4 7 2 2 0 2 7 8 9 實施例4 2 0 1 1 6 4 3 7 8 1 實施例1至4之抗蝕上層膜的圖型上之膜厚差(Bias) 爲小。實施例1至4的上層膜中,特別爲膜厚難成一定的含 微細抗蝕圖型部分的流動性爲優良。此爲含有矽化合物( -64- 201130894 A )之抗蝕上層膜的溶液可通暢地流入,而得到一定膜厚 之故。其結果得知具有凹凸之奈米壓印用抗蝕圖型上抗蝕 上層膜之膜厚差較小,且具有優良的平坦性。 產業上可利用性 本發明的膜形成組成物爲藉由熱及/或光進行硬化, 顯示優良的平坦化性。藉由於基板上包覆奈米壓印法所得 之抗蝕圖型上而可形成優良平坦化膜,保護抗蝕圖型,藉 由選擇抗蝕與抗蝕上層膜之乾式蝕刻時的氣體種類而可轉 印圖型,藉由所得之圖型可精密地加工基板。 【圖式簡單說明】 〔圖1〕表示使用奈米壓印上層膜之基板的加工步驟 圖。 〔圖2〕表示使用奈米壓印上層膜之基板的平坦化性 圖。 【主要元件符號說明】 圖1中, (a )表示塗佈抗蝕之狀態、 (b )表示加壓塑模之狀態、 (c )表示硬化(光硬化)抗蝕之狀態、 (d )表示取出塑模之狀態、 (e )表示塗佈本案膜形成組成物(抗蝕上層膜形成 -65- 201130894 組成物)之狀態、 (f) 表示硬化(光硬化)本案膜形成組成物(抗蝕 上層膜形成組成物)之狀態、 (g) 表示以鹵素系氣體進行本案膜(抗蝕上層膜) 之蝕刻與抗蝕面拋光之狀態、 (h) 表示以氧系氣體進行抗蝕之除去的狀態。 圖1中, (1 )表示基板、 (2 )表示轉印層、 (3 )表示抗蝕、 (4 )表示塑模、 (5)表示紫外光、 (6 )表示本案的膜形成組成物(抗蝕上層膜形成組 成物)、 (7 )表示紫外光、 (8) 表示鹵素系氣體、 (9) 表示氧系氣體。 圖2中, (1 〇 )表示加工基板、 (1〗)表示抗蝕圖型、 (12)表示本案的膜(本案抗蝕上層膜)。 圖2中, (t)表示在含圖型部分的抗蝕上層膜之厚度、 (h)表示在未含圖型部分的抗蝕上層膜之厚度。 -66--58- 201130894 72.0 g of 3-glycidoxypropyltrimethoxydecane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM403), 16.2 g of water, and 552 g of p-toluenesulfonate were added to propylene glycol. The methyl ether was 145.1 g, and then 80. (: After stirring for 8 hours, 3-glycidoxypropyltrimethoxydecane was hydrolyzed to obtain the condensate. The obtained polyoxymethane resin had a weight average molecular weight of 1,250 and a number average molecular weight of 1010. Next, the ruthenium compound (A) (corresponding to the formula (2-5)) 2.00 g is mixed with the reaction solution l〇.〇g, and the (3_t-butylphenyl) ruthenium as a photocationic polymerization initiator (perfluoromethanesulfonyl)methyl (trade name: 1^8?8-Cl, manufactured by Ciba Japan Co., Ltd.) 3.3g, propylene glycol monomethyl ether acetate 17.03g, cyclohexanone 38.14g, and interface 0.006 g of an active agent (trade name Megafac R30 manufactured by Dainippon Ink and Chemicals Co., Ltd.) was prepared to prepare a solution of 10% by mass, and the solution was filtered using a polyethylene fine filter having a pore size of 0.2 μm to prepare a resist. The upper film forms a solution of the composition. Example 4 Mixed hydrazine compound (A) (corresponding to formula (2-5)) l. OOg, as a thermal cationic polymerization initiator (4_t butyl phenyl) iodonium III Fluoride/Bis ( 4 -1 ert - buty 1 pheny 1 ) i 〇d ο ni um tri f 1 ate (trade name BBI105, manufactured by M idori Chemical Co., Ltd.) 0.05 g, 2.84 g of propylene glycol monomethyl ether acetate, 7.36 g of cyclohexanone, and a surfactant (Daily Ink Chemical Industry Co., Ltd.) The product name of Megafac R30 was adjusted to 0.001 g, and a solution of 10% by mass was adjusted. The solution was filtered using a fine filter of polyethylene-59-201130894 having a pore size of 0·2 μm to prepare a resist upper film to form a composition solution. Comparative Example 1: Formula (7-1) [Chemical 1 2] H2C=HC-H2Cn /CH3 /Si, CH3〇, )srCH3 Η20=Η〇-Η2〇CH3 Formula (7-1) Mixing the above 1,3 -Diallyl tetramethyldioxane, 2,6-linked (4'-azidobenzylidene)cyclohexanone oxime. 5g as a thermal cation initiator Cyclohexanone 9.00g, and a surfactant (trade name MegafacR30 manufactured by Otsuka Chemical Industry Co., Ltd.) O.OOlg, a solution of 10% by mass. The solution was further prepared using a pore size of 2.2μπι. The filter is filtered to prepare a resist upper film to form a composition liquid. 〇.95g -4-甲本油 The preparation of the solvent is dissolved (for the resist The solvent from the test) in Example 1 to Example 3 was obtained from the upper layer of the anti-U group by rotational coating embodiment, applied to a semiconductor substrate (silicon wafer substrate to form a coating film. The coated film was made of a metal halide lamp (manufactured by ORC) having a wavelength of 3 8 Onm, and the full wavelength of the lamp (amount of 2 J/cm 2 ) was irradiated. Further, on a hot plate, it was dissolved by heating at 15 °C for 1 minute to form a resist upper film (film thickness: 150 to 25 nm). Further, the resist upper film obtained in Example 4 was formed into a composition. -60-Forming plate) (Solution of the stock solution by dissolving the 201130894 solution by spin coating, coating on a semiconductor substrate (矽 wafer substrate) to form a coating film. Heating on a hot plate at 150 ° C for 1 minute. Thereafter, the film was fired at 2,500 ° C for 3 minutes to form a resist upper film (film thickness: 150 to 250 nm). Next, these resist upper films were immersed in a solvent of the solvent used for the resist for marking. In the propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate, it was confirmed that the resist upper film obtained by forming the composition of the resist upper film obtained in Examples 1 to 4 was insoluble in these solvents. Further, a solution of the composition for forming a resist-upper film obtained in Comparative Example 1 was applied onto a semiconductor substrate (矽 wafer substrate) by spin coating, and then dried at 150 ° C for 1 minute on a hot plate. After heating, it was baked at 200 ° C for 3 minutes. Therefore, it was impossible to obtain The resist upper layer film. As one of the reasons, the molecular weight of 1,3-diallyl tetramethyldioxane which is the main component of Comparative Example 1 is 214.45, which is not so much after spin coating. The association of molecules is caused, and an amorphous homogeneous film cannot be obtained. (Measurement of Optical Parameters) In the same manner as described above, the solution of the composition of the resist upper layer obtained in Examples 1 to 4 was formed into twin crystals. A resist-upper film having a film thickness as shown in Table 1 was formed on the circular-substrate, and a refractive index (η値) and an attenuation coefficient at a wavelength of 63 3 nm of the upper film were measured by an Ellipsometer. (k値), which is shown in Table 1. In Table 1, as Examples 1 to 4, evaluation results of the resist upper film obtained by forming the composition of the resist upper film of each of Examples 1 to 4. -61 - 201130894 [Table 1] Na (nm) Refractive index (η値) Attenuation coefficient (k値) ST Example 1 2 1 0 1.4 7 0.0002 Example 2 2 5 2 1.52 0. 0 0 0 3 Example 3 2 4 7 1 . 5 4 0.0002 Example 4 193 1.5 0 0.0001 (Preparation of photo-curing resist for engraving) Mixed butyl acrylate (Tokyo Chemical Industrial Co., Ltd.) 1 1.7 g, isodecyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) 20. Og, ethylene glycol dimethacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) 9.52 g, and 2- Hydroxymethyl-1-phenyl-propane-indole-ketone (trade name: DAROCUR1 1 73, manufactured by Ciba Japan Co., Ltd.) 788.788g, stirred at room temperature for 5 hours, wherein butyl acrylate, isodecyl acrylate The molar ratio of ethylene glycol dimethacrylate and 2-hydroxy-2-methyl-1-phenyl-propane-1-one was 38%: 40%: 20%: 2%. (Test of dry etch rate) The film thickness of the composition shown in Table 2 was formed on each of the ruthenium wafer-substrate by the solution of the composition of the resist upper layer film obtained in Examples 1 to 4 in the same manner as described above. The resist upper film. Further, the RIE system ES401 manufactured by Scientific Scientific Co., Ltd. was used, and the dry etching rate (the amount of film thickness reduction per unit time) of the upper layer film was measured under the conditions of using 〇2 and CF4 as dry etching gas. The results obtained are expressed as a selectivity of the dry etch rate. When the dry etching rate under the same conditions as those of the above-described photohardenable resist is 1 · 〇〇, the ratio of the dry etching rate of the upper film is the ratio of the dry etching speed. -62- 201130894 In Table 2, Examples 1 to 4 are evaluations of the respective resist upper film obtained by forming the composition of the resist upper film of Examples 1 to 4. [Table 2] Film thickness (nm) 〇 2 gas selection ratio CF «gas selection ratio Example 1 2 12 0.2 1.2 Example 2 2 5 4 0.2 1.2 Stomach Example 3 2 4 9 0.1 1 · 1 Example 4 1 9 7 0.1 1-2 The resist upper film obtained in the first to fourth embodiments of the present invention has an excellent 〇2 gas selection ratio for the photohardenable resist for imprinting without ruthenium. This means that the resist upper film is coated on the nanoimprint resist pattern, and after deep etching by CF4 gas, it is replaced by 02 gas, and the resist can be selectively removed, and the nanoprint can be printed. The pattern is inverted by these resist upper films. (Flatness of the resist upper film after photon imprinting) For the nanoimprint test of the resist superposed film of the present invention, a photon imprinting apparatus (product name IMPR10 manufactured by Molecular Sieve Printing Co., Ltd.) was used. Stepping method. The photo-curing resist for the above-mentioned imprinting is dropped by a drop-in coating method, and a droplet of 口.〇〇92 port 1 is dropped into each place, and 7 is set in an area of 2.5 <2.5 £:1]12. <7 total 49 places. The processed substrate on which the droplets of the resist material were formed was set to have a uniform distance from the quartz stencil patterned at equal intervals to the 80 nm line (height 120 nm). The reduction is reduced at a speed of 〇4 mm/sec to 0.003 mm/sec, and the stencil is lowered toward the processing substrate. After the stencil and the resist surface were joined together, a pressing pressure of 18 N was applied to impart weight, and the uneven portion of the stencil was completely adhered to the substrate. Thereafter, light irradiation (1 30 seconds) was carried out, and the marking was photocured with anti-uranium. The stencil is raised, and the resist pattern -63-201130894 type forming process is completed by photon embossing. As a result, a resist pattern of 8 Onm (area 1 20 nm) of an area of 2 · 5 χ 2 · 5 cm 2 was uniformly obtained. Next, a resist-up film (having a film thickness of 1 90 to 260 nm) was formed on each of the resist pattern for the nanoimprint by the solutions of the resist-up film forming compositions obtained in the above Examples 1 to 4. As a result of the flattening rate of the composition of the resist upper layer formed in Examples 1 to 4 on the resist pattern (80 nm line (height 120 nm), line: space ratio of 1:1) for nanoimprinting As shown in Table 1. Further, the shape of the cross section of the substrate was observed by using a scanning electron microscope (SEM), and the flattening ratio by the underlayer film was evaluated. The flattening rate can be obtained according to the following formula. The flattening ratio when the holes on the substrate were completely flattened was 100%. In Fig. 2, the flatness is obtained by the following method. Flattening rate = {(thickness t of the resist upper film including the pattern portion) / (thickness h of the resist upper film including the pattern portion) } xl 00 Further, no space (interstitial) is observed inside the hole The resulting film was observed to filter under the pores. [Table 3] No pattern partial film thickness (n in) Pattern portion partial film thickness flatness (nm) (nm) (nm) (%) Example 1 2 15 2 0 1 14 9 3 Example 2 2 5 3 2 18 3 5 8 6 Example 3 2 4 7 2 2 0 2 7 8 9 Example 4 2 0 1 1 6 4 3 7 8 1 The pattern of the resist upper film of Examples 1 to 4 The film thickness difference (Bias) is small. In the upper layer films of Examples 1 to 4, particularly, the fluidity of the portion containing the fine resist pattern which is difficult to form a film thickness is excellent. This is a solution in which the resist upper layer film containing the antimony compound (-64-201130894 A) can smoothly flow in, and a certain film thickness is obtained. As a result, it was found that the resist pattern upper resist film for nanoprinting having irregularities has a small film thickness difference and excellent flatness. Industrial Applicability The film-forming composition of the present invention is cured by heat and/or light, and exhibits excellent planarization properties. An excellent planarization film can be formed by coating the resist pattern obtained by the nanoimprint method on the substrate, and the resist pattern can be protected by selecting the gas type during dry etching of the resist and the resist upper film. The pattern can be transferred, and the substrate can be precisely processed by the obtained pattern. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] shows a processing step of a substrate using a nanoimprinting upper film. Fig. 2 is a plan view showing the planarization of a substrate using a nanoimprinting upper film. [Description of main component symbols] In Fig. 1, (a) shows a state in which a resist is applied, (b) a state in which a press mold is formed, (c) a state in which hardening (photohardening) is performed, and (d) indicates The state in which the mold is taken out, (e) indicates the state in which the film-forming composition (the composition of the resist upper film formation -65-201130894) is applied, and (f) indicates the film formation composition of the hardening (photohardening) film (resistance) (g) shows a state in which the composition of the upper film is formed, (g) shows a state in which the film (corrosion upper film) is etched and a resist surface is polished by a halogen-based gas, and (h) shows that the resist is removed by an oxygen-based gas. status. In Fig. 1, (1) indicates a substrate, (2) indicates a transfer layer, (3) indicates resist, (4) indicates a mold, (5) indicates ultraviolet light, and (6) indicates a film formation composition of the present invention ( The resist upper layer film forming composition), (7) represents ultraviolet light, (8) represents a halogen-based gas, and (9) represents an oxygen-based gas. In Fig. 2, (1 〇 ) indicates a processed substrate, (1) indicates a resist pattern, and (12) indicates a film of the present invention (an upper resist film in this case). In Fig. 2, (t) shows the thickness of the resist upper film in the pattern-containing portion, and (h) shows the thickness of the resist upper film in the portion not including the pattern. -66-

Claims (1)

201130894 七、申請專利範園: 1. 一種膜形成組成物,其特徵爲含有具有下述式(1201130894 VII. Application for Patent Park: 1. A film forming composition characterized by having the following formula (1) R2 式⑴ (式(1)中,R1各獨立表示碳原子數1至10的烷基或碳原 子數6至20的芳基,R2表示聚合性有機基,nl表示1至10的 整數)所示部分結構之矽化合物(A )者。 2 ·如申請專利範圍第1項之膜形成組成物,其中於上 述矽化合物(A)的分子中所含之全矽原子數爲8至40。 3 .如申請專利範圍第1項之膜形成組成物,其中上述 矽化合物(A )爲式(2 ):R2 Formula (1) (In the formula (1), R1 each independently represents an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms, R2 represents a polymerizable organic group, and n1 represents an integer of 1 to 10) Part of the structure of the ruthenium compound (A). 2. The film-forming composition of claim 1, wherein the total ruthenium atom contained in the molecule of the ruthenium compound (A) is from 8 to 40. 3. The film forming composition of claim 1, wherein the above hydrazine compound (A) is formula (2): (式(2)中,R1各獨立表示碳原子數1至1〇的烷基或碳原 子數6至20的芳基,R2各獨立表示聚合性有機基,n2各獨 立表示3至5的整數)所示。 -67- 201130894 4 ·如申請專利範圍第1項至第3項中任一項之膜形成 組成物’其中上述R1表示甲基,R2表示環氧基、氧雜環丁 院基、乙烯基、或含有選自這些的至少1種基的聚合性有 機基。 5 .如申請專利範圍第1項至第4項中任一項之膜形成 組成物’其中進一步含有聚合啓始劑(C )及溶劑(D )。 6. 如申請專利範圍第5項之膜形成組成物,其中聚合 啓始劑(C)爲熱或光陽離子聚合啓始劑、或熱或光自由 基聚合啓始劑。 7. 如申請專利範圍第1項至第6項中任一項之膜形成 組成物’其中矽化合物(A)的重量平均分子量爲900至 100000 - 8 ·如申請專利範圍第1項至第7項中任一項之膜形成 組成物’其特徵爲進一步作爲矽化合物(B)含有式(3) 【化3】 (R11)a1(R3%Si (R21)4一(a1+b1)式⑶ (式中,Ru表示環氧基、氧雜環丁烷基、乙烯基、或含 有選自彼等之至少1種之基的聚合性有機基,且藉由Si-C 鍵與矽原子結合的基,R31表示烷基、芳基、鹵化烷基、 鹵化芳基、或具有氫硫基、胺基或氛基之有機基,且藉由 Si-C鍵與矽原子結合的基,R21表示鹵素原子、或碳原子數 1至20的烷氧基或醯氧基,a1表示1的整數,b1表示0、1或2 的整數,a1+1)1表示1、2或3的整數)所示矽化合物及選自 -68- 201130894 式(4 ): 【化4】 C(R41)〇^Si (R51)3-c〇2Y 式⑷ (式中,R41表示環氧基、氧雜環丁烷基、乙烯基、或含 有這些的聚合性有機基,且藉由Si-C鍵與矽原子結合的基 ,R51表示鹵素原子、或碳原子數1至20的烷氧基或醯氧基 ,Y表示氧原子、碳原子數1至20的伸烷基,c1表示1或2的 整數)所示矽化合物、這些水解物、式(3 )所示矽化合 物的水解縮合物、式(4 )所示矽化合物的水解縮合物、 及式(3)所示矽化合物與式(4)所示矽化合物的水解縮 合物所成群之至少1種矽化合物(B 1 )。 9.如申請專利範圍第1項至第7項中任一項之膜形成 組成物,其特徵爲進一步作爲矽化合物(B )含有上述式 (3 )所示矽化合物及選自式(4 )所示矽化合物、這些水 解物、式(3 )所示矽化合物的水解縮合物、式(4 )所示 矽化合物的水解縮合物、及式(3 )所示矽化合物與式(4 )所示矽化合物之水解縮合物所成群之至少1種矽化合物 (B1 )、與 —般式(5 ): 【化5】 (R12)a2(R32)b2Si (R22)4—(a2+b2)式⑸ (式中,R12及R32各表示烷基、芳基、鹵化烷基、鹵化芳 基、或具有氫硫基、胺基或氰基之有機基,且藉由Si-C鍵 與矽原子結合的基,R22表示鹵素原子、或碳原子數1至2〇 -69- 201130894 的烷氧基或醯氧基,a2及b2各表示〇、1、或2的整數’ a2 + b2表示0、1、或2的整數)所示矽化合物及選自式(6) [化6】 C(R42)c2Si (R52)3_c2〕2Y 式⑹ (式中,R42表示碳原子數1至5的烷基,R52表示鹵素原子 '或碳原子數1至20的烷氧基或醯氧基,Y表示氧原子、碳 原子數1至20的伸烷基,c2表示〇或1的整數)所示矽化合 物、其水解物、式(5 )所示矽化合物的水解縮合物、式 (6 )所示矽化合物的水解縮合物、及式(5 )所示矽化合 物與式(6)所示矽化合物的水解縮合物所成群的至少1種 矽化合物(B2 )的組合。 10-如申請專利範圍第8項之膜形成組成物,其中矽 化合物(B)爲式(3)所示化合物之水解縮合物。 11. 如申請專利範圍第1項至第1 0項中任一項之膜形 成組成物,其中進一步含有交聯性化合物及/或界面活性 劑。 12. 如申請專利範圍第1項至第1 1項中任一項之膜形 成組成物,其中膜爲包覆以奈米壓印法所形成之抗蝕圖型 的上層膜。 13. —種層合結構的形成方法,其特徵爲含有將如申 請專利範圍第1項至第1 2項中任一項之膜形成組成物作爲 抗蝕上層膜形成組成物,塗佈於藉由奈米壓印所形成之抗 蝕圖型上’形成抗蝕上層膜之步驟、及於前述抗蝕上層膜 -70- 201130894 藉由熱燒成及/或光照射硬化抗蝕上層膜的步驟,其爲使 用奈米壓印的圖型形成製程中所使用的層合結構之形成方 法。 14. 一種基板的製造方法,其特徵爲含有將如申請專 利範圍第1項至第1 2項中任一項之膜形成組成物作爲抗蝕 上層膜形成組成物,塗佈於藉由奈米壓印所形成之抗蝕圖 型上,形成抗蝕上層膜之步驟、於前述抗蝕上層膜藉由熱 燒成及/或光照射硬化抗蝕上層膜的步驟、將該抗蝕上層 膜藉由鹵素系氣體進行蝕刻的步驟、將抗蝕膜藉由氧系氣 體進行蝕刻之步驟、及依據所形成之抗蝕上層膜及抗蝕膜 的圖型加工基板的步驟。 15. 如申請專利範圍第13項之形成方法,其中藉由前 述奈米壓印之抗蝕圖型爲具有以高度/直徑所示縱橫比爲 0.01以上的孔、或高度/幅所示縱橫比爲0.01以上之段差、 或這些經混合的凹凸之抗蝕圖型。 16. 如申請專利範圍第14項之製造方法,其中藉由前 述奈米壓印之抗蝕圖型爲具有以高度/直徑所示縱橫比爲 0.01以上的孔、或高度/幅所示縱橫比爲0_01以上之段差、 或這些經混合的凹凸之抗蝕圖型。 17. 如申請專利範圍第I3項至第16項中任一項之方法 ,前述光照射係藉由波長250nm至650nm之光進行。 -71 -(In the formula (2), R1 each independently represents an alkyl group having 1 to 1 carbon atom or an aryl group having 6 to 20 carbon atoms, and R2 each independently represents a polymerizable organic group, and n2 each independently represents an integer of 3 to 5. ) shown. The film forming composition of any one of the above-mentioned items, wherein R1 represents a methyl group, and R2 represents an epoxy group, an oxetane group, a vinyl group, and the like. Or a polymerizable organic group containing at least one group selected from these. 5. The film-forming composition of any one of the above-mentioned items of the invention, wherein the polymerization initiator (C) and the solvent (D) are further contained. 6. The film-forming composition of claim 5, wherein the polymerization initiator (C) is a thermal or photocationic polymerization initiator, or a thermal or optical radical polymerization initiator. 7. The film-forming composition of any one of claims 1 to 6, wherein the weight average molecular weight of the ruthenium compound (A) is from 900 to 100,000 - 8 · as in the first to seventh claims of the patent application The film-forming composition of any one of the items is characterized in that it further contains, as the ruthenium compound (B), a formula (3) (R3) a1 (R3% Si (R21) 4 - (a1 + b1) formula (3) (wherein Ru represents an epoxy group, an oxetanyl group, a vinyl group, or a polymerizable organic group containing at least one selected from the group consisting of, and is bonded to a ruthenium atom by a Si-C bond. And R31 represents an alkyl group, an aryl group, a halogenated alkyl group, a halogenated aryl group, or an organic group having a thiol group, an amine group or an aryl group, and a group bonded to a ruthenium atom by a Si-C bond, and R21 represents a halogen. An atom, or an alkoxy group or a decyloxy group having 1 to 20 carbon atoms, a1 represents an integer of 1, b1 represents an integer of 0, 1 or 2, and a1+1)1 represents an integer of 1, 2 or 3)矽 compound and selected from -68- 201130894 Formula (4): [Chemical 4] C(R41)〇^Si (R51)3-c〇2Y Formula (4) (wherein R41 represents an epoxy group or an oxetane Base, vinyl, or contain this a polymerizable organic group, and a group bonded to a ruthenium atom by a Si-C bond, R51 represents a halogen atom, or an alkoxy group or a decyloxy group having 1 to 20 carbon atoms, and Y represents an oxygen atom and a carbon atom number of 1. An alkylene group of 20, wherein c1 represents an integer of 1 or 2), a hydrolyzed product of the hydrolyzate, a hydrolyzed condensate of the anthracene compound represented by the formula (3), a hydrolyzed condensate of the anthracene compound represented by the formula (4), And at least one hydrazine compound (B 1 ) in a group in which the hydrazine compound represented by the formula (3) and the hydrazine compound represented by the formula (4) are hydrolyzed. 9. The film-forming composition according to any one of claims 1 to 7, wherein the oxime compound (B) further comprises an oxime compound represented by the above formula (3) and is selected from the group consisting of formula (4) The hydrazine compound, the hydrolyzate, the hydrolysis condensate of the hydrazine compound represented by the formula (3), the hydrolysis condensate of the hydrazine compound represented by the formula (4), and the hydrazine compound represented by the formula (3) and the formula (4) At least one ruthenium compound (B1) in the group of the hydrolysis condensate of the ruthenium compound, and the general formula (5): (R5) a2 (R32) b2Si (R22) 4 - (a2 + b2) Formula (5) (wherein R12 and R32 each represent an alkyl group, an aryl group, an alkyl halide group, a halogenated aryl group, or an organic group having a thiol group, an amine group or a cyano group, and are bonded to a ruthenium atom by a Si-C bond. a bonded group, R22 represents a halogen atom, or an alkoxy group or a decyloxy group having 1 to 2〇-69 to 201130894, and a2 and b2 each represent an integer of 〇, 1, or 2' a2 + b2 represents 0, An anthracene compound represented by an integer of 1 or 2 and selected from the group consisting of the formula (6) [Chem. 6] C(R42)c2Si(R52)3_c2]2Y Formula (6) (wherein R42 represents an alkyl group having 1 to 5 carbon atoms , R52 means halogen a sulfonium compound having a prime atom 'or an alkoxy group or a decyloxy group having 1 to 20 carbon atoms, Y representing an oxygen atom, an alkylene group having 1 to 20 carbon atoms, and c2 representing an integer of ruthenium or 1), and hydrolysis thereof And a hydrolysis condensate of the hydrazine compound represented by the formula (5), a hydrolysis condensate of the hydrazine compound represented by the formula (6), and a hydrolysis condensate of the hydrazine compound represented by the formula (5) and the hydrazine compound represented by the formula (6) A combination of at least one quinone compound (B2) in a group. The film-forming composition of claim 8, wherein the hydrazine compound (B) is a hydrolysis condensate of the compound represented by the formula (3). 11. The film-forming composition according to any one of claims 1 to 10, further comprising a crosslinkable compound and/or a surfactant. 12. The film-forming composition according to any one of claims 1 to 11, wherein the film is an upper layer film coated with a resist pattern formed by nanoimprinting. A method for forming a laminated structure, which comprises forming a film-forming composition according to any one of claims 1 to 12 as a resist-up film forming composition, and coating the same a step of forming a resist upper film on a resist pattern formed by nanoimprinting, and a step of hardening the upper film by thermal firing and/or light irradiation on the resist upper film-70-201130894, It is a method of forming a laminate structure used in a pattern forming process using nanoimprint. A method for producing a substrate, comprising: forming a film-forming composition according to any one of items 1 to 2 of the patent application as a resist-uplayer film forming composition, and applying it to a nano-pressure a step of forming a resist upper layer on the resist pattern formed by printing, a step of hardening the resist upper layer film by thermal firing and/or light irradiation, and using the resist upper layer film The step of etching the halogen-based gas, the step of etching the resist film by the oxygen-based gas, and the step of processing the substrate in accordance with the pattern of the formed resist upper film and the resist film. 15. The method according to claim 13, wherein the resist pattern of the nanoimprint is a hole having an aspect ratio of 0.01 or more in height/diameter, or an aspect ratio shown by height/width It is a step of 0.01 or more, or a resist pattern of these mixed irregularities. 16. The manufacturing method according to claim 14, wherein the resist pattern of the nanoimprint is a hole having an aspect ratio of 0.01 or more in height/diameter, or an aspect ratio shown by height/width. It is a step of 0_01 or more, or a resist pattern of these mixed irregularities. 17. The method of any one of claims 1 to 16, wherein the light irradiation is performed by light having a wavelength of from 250 nm to 650 nm. -71 -
TW099135974A 2009-10-22 2010-10-21 Film forming composition by use of silicon compound TWI507450B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009243585 2009-10-22

Publications (2)

Publication Number Publication Date
TW201130894A true TW201130894A (en) 2011-09-16
TWI507450B TWI507450B (en) 2015-11-11

Family

ID=43900302

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099135974A TWI507450B (en) 2009-10-22 2010-10-21 Film forming composition by use of silicon compound

Country Status (3)

Country Link
JP (1) JP5757242B2 (en)
TW (1) TWI507450B (en)
WO (1) WO2011049078A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9156863B2 (en) 2010-02-19 2015-10-13 Board Of Regents, The University Of Texas System Branched siloxanes and methods for synthesis
JP5966500B2 (en) * 2011-05-02 2016-08-10 株式会社リコー Silicone compound, photocurable liquid ink using the silicone compound, and method for producing the same
JP5875269B2 (en) * 2011-07-13 2016-03-02 株式会社ダイセル Curable epoxy resin composition
JP5887871B2 (en) * 2011-11-24 2016-03-16 富士通株式会社 Film forming material and pattern forming method
JP2013138179A (en) * 2011-11-30 2013-07-11 Central Glass Co Ltd Photopolymerizable composition and pattern formation method using the same
WO2015064310A1 (en) * 2013-10-30 2015-05-07 日産化学工業株式会社 Imprint material containing modified silicone compound and silsesquioxane compound
WO2017195586A1 (en) * 2016-05-11 2017-11-16 Dic株式会社 Curable composition for photoimprinting and pattern transfer method using same
KR102145656B1 (en) * 2017-11-24 2020-08-18 주식회사 엘지화학 Thermosetting resin composition for over coat film of a color filter and over coat film thereof
US20230103242A1 (en) * 2019-12-04 2023-03-30 Nissan Chemical Corporation Method for producing polymer
WO2023037941A1 (en) * 2021-09-10 2023-03-16 ダウ・東レ株式会社 High energy ray-curable composition and use of same
WO2023190168A1 (en) * 2022-03-31 2023-10-05 大日本印刷株式会社 Cured film forming method, method for manufacturing substrate for imprint mold, method for manufacturing imprint mold, method for manufacturing uneven structure, pattern forming method, hard mask forming method, insulating film forming method, and method for manufacturing semiconductor device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4009889C1 (en) * 1990-03-28 1991-06-13 Th. Goldschmidt Ag, 4300 Essen, De
US20020035199A1 (en) * 1997-03-25 2002-03-21 Stefan Breunig Composition (e.g. ink or varnish) which can undergo cationic and/or radical polymerization and/or crosslinking by irradiation, based on an organic matrix, a silicone diluent and a photoinitiator
JP2002348394A (en) * 2001-05-28 2002-12-04 Nippon Valqua Ind Ltd Production method for surface-modified fluoroelastomer, surface-modified fluoroelaistomer, and use thereof
DE10217151A1 (en) * 2002-04-17 2003-10-30 Clariant Gmbh Nanoimprint resist
JP4636242B2 (en) * 2005-04-21 2011-02-23 信越化学工業株式会社 Optical semiconductor element sealing material and optical semiconductor element
JP2007023163A (en) * 2005-07-15 2007-02-01 Fujifilm Corp Composition for forming film, insulating film and their production method
JP2007026889A (en) * 2005-07-15 2007-02-01 Fujifilm Corp Film forming composition, insulating film, and method of manufacturing same
JP5000112B2 (en) * 2005-09-09 2012-08-15 東京応化工業株式会社 Pattern formation method by nanoimprint lithography
JP5008192B2 (en) * 2006-09-08 2012-08-22 信越化学工業株式会社 Perfluoropolyether-polyorganosiloxane copolymer and surface treatment agent containing the same
JP5435879B2 (en) * 2008-02-14 2014-03-05 株式会社ダイセル Curable resin composition for nanoimprint
JP5445743B2 (en) * 2009-04-14 2014-03-19 日産化学工業株式会社 Film forming composition for optical imprint
JP5793824B2 (en) * 2009-06-02 2015-10-14 Jnc株式会社 Organosilicon compound, thermosetting composition containing the organosilicon compound, and sealing material for optical semiconductor

Also Published As

Publication number Publication date
WO2011049078A1 (en) 2011-04-28
JPWO2011049078A1 (en) 2013-03-14
JP5757242B2 (en) 2015-07-29
TWI507450B (en) 2015-11-11

Similar Documents

Publication Publication Date Title
TWI515513B (en) Resist underlayer film forming composition for nanoimprinting
TW201130894A (en) Film forming composition by use of silicon compound
KR101436336B1 (en) Silicon-containing resist underlying layer film forming composition for formation of photocrosslinking cured resist underlying layer film
JP5120577B2 (en) Resist underlayer film forming composition for forming a photocrosslinking cured resist underlayer film
TW200923583A (en) Curable composition for photonano-imprinting and member for liquid crystal display device by using it
JP5571788B2 (en) Double patterning method and material
TW200846824A (en) Curing composition for photonano-imprinting lithography and pattern forming method by using the same
JP6020532B2 (en) Pattern formation method
TW201113644A (en) Resist underlayer film forming composition containing silicone having sulfide bond
TW200811615A (en) Patterning method, upper layer film forming composition, and lower layer film forming composition
Takei et al. Silicon-containing spin-on underlayer material for step and flash nanoimprint lithography
KR20170033265A (en) Silicon-containing resist underlayer film forming composition having halogenated sulfonylalkyl group
TW202026340A (en) Silane
TWI822687B (en) Polymer for preparing resist underlayer film, resist underlayer film composition including the polymer and method for manufacturing semiconductor device using the composition
KR20150021542A (en) Silicon-containing resist underlayer film-forming composition having sulfone structure and amine structure
JP5657969B2 (en) Topographic planarization using molecular glass materials
JP5585757B2 (en) Method for planarizing a semiconductor substrate
CN117063129A (en) Composition for forming silicon-containing underlayer film for directional self-assembly
Song et al. Synthesis of silicon-containing materials for UV-curable imprint etch barrier solutions
TW201100456A (en) Nano-imprint resist and nanoimprinting lithography method using the same