TW201105071A - Method and apparatus of generating preamble sequence for wireless communication system - Google Patents

Method and apparatus of generating preamble sequence for wireless communication system Download PDF

Info

Publication number
TW201105071A
TW201105071A TW98142476A TW98142476A TW201105071A TW 201105071 A TW201105071 A TW 201105071A TW 98142476 A TW98142476 A TW 98142476A TW 98142476 A TW98142476 A TW 98142476A TW 201105071 A TW201105071 A TW 201105071A
Authority
TW
Taiwan
Prior art keywords
sequence
time domain
domain preamble
data
preamble
Prior art date
Application number
TW98142476A
Other languages
Chinese (zh)
Inventor
Yen-Chin Liao
Cheng-Hsuan Wu
Yung-Szu Tu
Original Assignee
Ralink Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ralink Technology Corp filed Critical Ralink Technology Corp
Priority to US12/836,553 priority Critical patent/US20110013547A1/en
Publication of TW201105071A publication Critical patent/TW201105071A/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

A method of generating preamble sequence for a wireless communication system includes generating a frequency-domain preamble sequence related to a packet, transforming the frequency-domain preamble sequence into a first time-domain preamble sequence, performing a cyclic shift delay process on the first time-domain preamble sequence to generate a second time-domain preamble sequence, and normalizing the first time-domain preamble sequence and the second time-domain preamble sequence, for generating the first field of a preamble of the packet.

Description

201105071 六、發明說明: 【發明所屬之技術領域】 本發明係指一種用於一無線通訊系統之前置資料(Preamble) 序列產生方法及相關裝置’尤指一種用於一超高傳輸量無線通訊系 統中產生前置資料序列的方法及相關裝置。 【先前技術】201105071 VI. Description of the Invention: [Technical Field] The present invention relates to a method for generating a Preamble sequence for a wireless communication system and related devices, especially for an ultra-high transmission wireless communication A method of generating a preamble sequence and related devices in the system. [Prior Art]

無線區域網路(Wireless Local Area Network,WLAN)技術是 熱門的無線通訊技術之一 ’最早用於軍事用途,近年來廣泛應用於 各種消費性電子產品’如桌上型電腦、筆記型電腦或個人數位助理, 提供大眾更便利及快速的網際網路通訊功能。無線區域網路通訊協 定標準IEEE802.il系列是由國際電機電子工程師學會(Institute〇f Electrical and Electronics Engineers,IEEE)所制定,由早期的正EEWireless Local Area Network (WLAN) technology is one of the popular wireless communication technologies. It was first used in military applications and has been widely used in various consumer electronic products in recent years, such as desktop computers, notebook computers or individuals. Digital assistants provide the convenience and speed of Internet communication for the general public. The IEEE802.il series of wireless LAN communication protocol standards was developed by the Institute of Electrical and Electronics Engineers (IEEE), from the early EE

W.lln。IEEE802.il a/g/n標準皆採用正交分頻多工(〇rth〇g〇nal (Multiple Input Multiple Output > ΜΙΜΟ 改善了資料速率及傳輸量(Thr〇ughput)W.lln. The IEEE802.il a/g/n standard uses orthogonal frequency division multiplexing (〇rth〇g〇nal (Multiple Input Multiple Output > 改善 improved data rate and throughput (Thr〇ughput)

FreqUency-DivisionMultiplexing,〇FDM)調變技術與正 802.Ua/g標準不同的是,鐵8〇2.lln標準使用多輸入多輸出 增加為40MHz。 在無線區域網路中, ΜΙΜΟ)技術及其它新功能,大幅 ghput) ’同時,通道頻寬由2〇ΜΗζ 傳輸端所傳輸之封包為一前置資料 201105071 (Preamble)與娜輸之資料的組合,前置資料位於每一封包的最 前端’接續為待傳輸之資料。請參考第1A圖,第1A圖為習知正ee 8〇2.lla/g標準之前置資料之示意圖,IEEE 802.11a/g標準之前置資 料的欄位依序為短訓練欄位STF (Sh〇rtTrainingFidd)、長训練搁 位 LTF (Long Training Field)及訊號攔位 SIG (SignalField),訊號 襴位SIG之後接續為待傳輸之資料欄位〇八丁八(DataField)。短訓 練欄位STF用來進行封包起始偵測(Start_〇f_packetDetecti〇n)、自 動增益控制(Automatic Gain Control,AGC)、初始頻率偏移估測 _( Frequency Offset Estimation )及初始時間同步(TimeFreqUency-DivisionMultiplexing (〇FDM) modulation technology differs from the positive 802.Ua/g standard in that the iron 8〇2.lln standard uses multiple inputs and multiple outputs to increase to 40MHz. In the wireless local area network, ΜΙΜΟ) technology and other new functions, large ghput) 'At the same time, the channel bandwidth is transmitted by the 2 〇ΜΗζ transmission end of the packet is a combination of pre-data 201105071 (Preamble) and Na's data The pre-data is located at the forefront of each packet and is connected to the data to be transmitted. Please refer to Figure 1A. Figure 1A is a schematic diagram of the pre-standard data of the conventional ee 8〇2.lla/g standard. The field of the IEEE 802.11a/g standard pre-data is sequentially the short training field STF ( Sh〇rtTrainingFidd), Long Training Field (LTF) and Signal SIG (SignalField). The signal SIG is followed by the data field to be transmitted, DataField. The short training field STF is used for packet start detection (Start_〇f_packetDetecti〇n), Automatic Gain Control (AGC), Frequency Offset Estimation, and Initial Time Synchronization ( Time

Synchronization);長訓練欄位LTF用來進行精密之頻率偏移估測及 時間同步;訊號襴位SIG用來攜帶資料速率及封包長度之資訊。 請參考第1B圖,第1B圖為習知ΙΕΕΕ802·11η標準之前置資料 之示意圖。IEEE 802.11η標準之前置資料為混合格式,向下相容於 IEEE802.11a/g標準之無線區域網路系統,其包含的攔位除了有相 修同於IEEE 802.1 la/g標準之前置資料之傳統(Legacy)短訓練欄位 L-STF、傳統長訓練欄位l-LTF及傳統訊號欄位L-SIG之外,另於 傳統訊號攔位SIG後增加了高傳輸量(High-Throughput)訊號欄位 HT-SIG、高傳輸量短訓練欄位HT_STF以及N個高傳輸量長訓練欄 位HT-LTF ’接續為資料攔位DATA。高傳輸量訊號攔位HT_SIG的 相位與傳統訊號欄位L-SIG的相位相差90。,因此,當訊號接收機 接收到一封包並進行解碼至高傳輸量訊號攔位ΗΤ-SIG後,即能辨 認此封包為IEEE 802.11a/g標準或IEEE 802·11η標準。 201105071 請參考第2圖,第2圖為習知IEEE 802.11n標準之一訊號傳送 機20之功成方塊圖。訊號傳送機2〇包含有一訊號轉換單元2〇〇、 循環移位延遲(CyclicShiftDelay,CSD)處理單元CSD 1〜CSD 3、 _ — _ 保護間隔(Guardlnterval,GI)處理單元GI—1〜GI一4、射頻處理單 元RF_1〜RF_4及天線A1〜A4。訊號轉換單元2〇〇用來進行128 個取樣時間點之逆向離散傅利葉轉換(Inverse Discrete FQurief Transform)以實現正交分頻多工調變,將頻域(FrequencyD〇main) 輸入序列sk轉換為時域(TimeDomain)序列Sn。接下來,訊號轉 換單元200所輸出之時域序列〜會由單一路徑導通至四個路徑,或 稱為傳輸鏈(TransmitChain),進而透過循環移位延遲處理單元 CSD_1〜CSD—3,加入循環前綴(CyclicPreflx)用以抵抗多路徑傳 輸通道干擾;通過保護間隔處理單元GI—1〜GI一4,於前置資料序列 sn起始處加入32個或64個取樣時間長度做為保護間隔,以抵抗符 間干擾(Inter-symbol Interference);通過一射頻處理單元即1〜 RF一4轉換為射頻訊號;最後’由天線Ai〜A4發射至空中。 為了實現更高品質的無線區域網路傳輸,相關單位正在制定新 一代的 IEEE 802.11ac 標準,係超高傳輸量(VeryHighThr〇ughput, VHT)之無線區域網路標準’通道頻寬由提高至8〇MHz。 IEEE 802.11 ac標準除了必須向下相容於IEEE 8〇2丨丨“g/η標準之無 線區域網路系統,更應使無線區域網路系統以最快的速度,辨認出 接收之封包為何種無線區域網路標準,以提升封包處理效率。 201105071 【發明内容】 α此本^明之主要目的即在於提供—種驗—無線通訊系統 之前置資料序列產生方法,使得麵8〇2llac標準能夠向下相容於 IEEE802.11a/g/n標準之無線區域網路系統,同時達到最佳的封包處 理效率。 本發明揭露-種前置資料序列產生方法,用於一無線通訊系統 »中’該前置資料序列產生方法包含有產生相關於一封包之一頻域前 置資料序列;將該頻域前置資料序列轉換為一第一時域前 列;將該第-時域前置資料序列進行循環移位延遲處理,以產生一 第二時域前置資料序列;以及對該第一時域前置資料序列及該第二 時域前置資料序列進行正規化運算,以產生一正規化運算結果,作 為該封包之一前置資料序列的一起始攔位。 • 本發明另揭露-種前置資料序列產生襄置,用於一無線通訊系 統中,該前置資料序列產生裝置包含有一序列產生單元用來產生 相關於-封包之-頻域前置資料序列;一訊號轉換單元,用來將該 頻域則置資料序列轉換為一第一時域前置資料序列;一延遲處理單 元,用來將該第一時域前置資料序列進行循環移位延遲處理,以產 生一第二時域前置資料序列;以及一正規化運算單元用來對該第 一時域前置資料序列及該第二時域前置資料序列進行正規化運算, 以產生一正規化運算結果,作為該封包之—前置資料序列的一起始 201105071 欄位。 【實施方式】 请參考第3圖,第3圖為本發明實施例一前置資料之示意圖, 其較佳地用於一超高傳輸量(Very High Throughput,VHT)無線通 訊系統,如IEEE 802.11ac標準之無線區域網路系統。第3圖之前置 資料的起始攔位為一超高傳輸量短訓練攔位VHT-STF,其格式與習 知IEEE 802.11a/g/n標準之前置資料中的傳統短訓練欄位不相同, 使訊號接收機在接收封包後,能夠在前置資料的第一個攔位解碼完 成後’即辨認出封包為IEEE 802.11ac標準或習知IEEE802.11a/g/n 標準,不須如IEEE 802.11η標準中必須等到解碼至前置資料的高傳 輸量訊號攔位HT-SIG,才能得知封包為何者標準,因此大幅提升了 封包處理效率。在第3圖中,超高傳輸量短訓練攔位VHTSTF後接 續為傳統長訓練攔位L_LTF及傳統訊號攔位L_SIG,與第1A圖及 第1B圖中IEEE802.Ua/g/n標準之前置資料中相對應的欄位相同, 再接續為-超冑傳輸量罐齡VHT_SIG,攜帶倾速率資訊,其 後攔位於第3圖中省略敘述。 月多考第4圖,第4圖為本發明實施例一前置資料序列產生裝 $ 之魏方塊圖。前置龍相產生裝置4()制於—超高傳輸 量無線通訊系統,如IEEE 8G2 —標準之無線區域網路系統,用來 f生如第3圖中別置資料序列之超高傳輸量短訓練攔位VHT-STF, 疋、後文所述之頻_夺域前置資料序列,皆是指超高傳輸量短訓練 201105071 攔位VHT-STF所對應之前置資料序列。前置資料序列產生裝置4〇 包含有一序列產生早元400、一 5虎轉換早元402及一週期調整單 元404。週期調整單元404進一步包含有一循環移位延遲處理單元 410、乘法器1VH、M2及一加法器412。 序列產生單元400用來產生80MHz通道之頻域前置資料序列 Sk ’產生前置資料序列Sk的方法’舉例來說,可將圧;gg 802 iia/g 標準之2〇MHz通道之前置資料序列,作為8〇%112通道中頻帶最低 之2〇MHz子通道的前置資料相’並且將其難,作為鮮較高的 二個2〇MHz子通道之前置資料序列,如此形成的8〇MHz通道之前 置資料序列能夠由臓802.lla/g/n標準之訊號接收機成功辨認 出。若雇Hz通道之前置資料序列表示為⑷㈣山,63},則序 列產生單元產生之8〇MHz通道之前置資料序列表示為 dU:〇,l,..·,255}。訊號轉換單元4〇2雛於序列產生單 元彻與週期調整單元404之間,其運作類似 機20之訊號轉換單元200,用來 而虎傳运 僅㈣_ f進仃256個取樣時間點之逆向離散 傅職,將_續_戰㈣ 轉換為週期等於64個取樣日_隔之時域前置資料序列,} 〇,1,...,255},輸出至週期調整單元.。 在週期調整單元404中,德卢教 號轉換單元,乘法器M1 :位延遲處理單元·減於訊 法器⑽麵接於訊號轉換單元’補位延遲處理單元,乘 ’加法器412耦接於乘法器Ml 201105071 及宋法器M2。輸入至週期調整單元姻 為二路徑進行處理,上半部路財的 ^置_序列〜分 輸入之前置資料序列Sn延遲 纖位㈣處理單元猶將 半部路財則無猶環移位i;^·:;5期’輪出至乘法器-下 至乘法器M2。 ^處理早心前置資料序列〜直接輸入 乘法器奶、M2及加法器412之組合係為一 … 用來對前置資料序列s及循户‘ 規化運异早兀’ 1貝W ~ sn及循祕位延遲處 資料序列進行正規化(N。晴—職早7所輸出之則置 Γ:= 處理單元所輪出之前置資料序列乘 規化係數α ’產生-前置資料序列Sn(1),乘法器Μ2將前置資 以-正規化係數Ρ,產生—前置_列Sn(2)。加 法器412將前置資料序列Sn⑴及Sn(2)相加,產生 即實際上傳送至喊狐機的齡傳 ^序歹j S η ..ρ 寻铷里短甽練欄位。通過週期調 整早元404的處理’第3 _示之超高傳輸量短訓練搁位 娜跡,其週期轉換絲32個取__隔,等於峨轉換單元 402所產生之前置資料序列Sn之週期的二分之一。 值得注意的是,由於週期為16個取樣時間間隔的正ee 802.Ua/g標準之短訓練攔位STF或週期為32個取樣時間間隔的 IEEE 802‘lln標準之傳統短訓練攔位L_STF,在通過ffiE謂2心 標準之訊號接«後,皆倾魏樣(〇勝sample)為職等於料 個取樣時間間隔之序列,因此,訊號接收機能夠藉由偵測已接收之 201105071 前置資料序列的第一個欄位的週期為32或64個取樣時間間隔,判 斷已接收之封包為IEEE 802.11 ac標準或習知IEEE 802.11 a/g/n標 準。相較於IEEE 802.11η標準之訊號接收機必須將封包解碼至高傳 輸量訊號欄位HT-SIG才能得知封包之通訊標準,本發明實施例之 前置資料相纽裝置4G所產生的前置·序列,關使訊號接收 機最快地辨認出封包所使用的通訊標準,提升了封包處理效率。 IEEE 802.1 lac標準之訊號接收機辨認封包所使用之通訊標準 .的方式’舉例如下。以表示前置資料序列產生裝置4〇 所產生之前置資料序列s,n,前置資料序列[幻的自相關 (Auto-correlation)函數表示如下: T-1 corrT[n] = 'ZVHT__STF[n + k] · VHT_STF[k]* > ⑴ 其中n及k為取樣時間變數,τ為取樣數目。由於前置資料序列 的週期為32個取樣時間間隔,式1之自相關函數 鲁cwrr[«]在n為32的整數倍時間時,會出現峰值。請參考第5圖, 第5圖為第4圖之前置資料序列產生裝置4〇以正規化係數^〇 5進 行正規化運算後產生之前置資料序列[幻的自相關函數 ,以τ=64計算而得,可知η=〇及η=32時出現峰值。 對IEEE802.11ac標準之訊號接收機而言,前置資料序列 5TFR]為已知,訊號接收機接收到的前置資料序列吋幻與已 知前置資料序列的交互相關(Cross-correlation)函數 11 201105071 表示如下: Γ-1 co%[«]= Σφ2 + 々]·Κ//Γ 57FW。 k=0 ~ J (2) 當訊號接收機之-交互相_測H以T=64計算式2之交互相關函 數別’若交互相關_器於每32個取樣時間間隔偵測到一峰 值’可知已接收之前置資料序列啦]為超高傳輸量短訓練獅,換 言之,訊號接收機所接收的IEEE 802.11ac標準之封包。另一方面 若交互相關·器不是於每32個取樣時間間隔,而=於每64^取 樣時間間隔偵測到-峰值’此時可知已接收之前置資料序歹刚為鲁 咖說na/g/n標準之傳統短訓練攔位,換言之,訊號接收機所接 收的是臓802.Ha/g/n標準之封包。由上可知,當交互相關债測 器以T=64計算式2之交互侧函數心w,交互相關侦測器能夠 根據交互相關函數②%[«]之峰值出現位置,判斷封包為ffiEE 802.1 lac 標準或 IEEE 802.11 a/g/n 標準。 訊號接收機除了以交互相關偵測器偵測封包所使用的通訊標 準,亦可使用自相關偵測器進行偵測。請先參考下列式3及式4, ® 其分別為前置資料序列STF[幻延遲T及τ/2之延遲相關 (Delay-correlation)函數: dcorrn[n]=ZVHT_STF[n + k]^HT_STF[n + k + T]* ; (3)Synchronization; the long training field LTF is used for precise frequency offset estimation and time synchronization; the signal clamp SIG is used to carry information on data rate and packet length. Please refer to Figure 1B. Figure 1B is a schematic diagram of the prior art data of the conventional 802.11n standard. The IEEE 802.11n standard pre-formatted data is a mixed format, and is compatible with the IEEE802.11a/g standard wireless local area network system. The included bits contain the same pre-requisites as the IEEE 802.1 la/g standard. The traditional Legacy short training field L-STF, the traditional long training field l-LTF and the traditional signal field L-SIG, and the high signal transmission after the traditional signal blocking SIG (High-Throughput The signal field HT-SIG, the high transmission short training field HT_STF and the N high transmission long training field HT-LTF 'continued as the data block DATA. The phase of the high transmission signal block HT_SIG is 90 degrees out of phase with the traditional signal field L-SIG. Therefore, when the signal receiver receives a packet and decodes it to the high-transmission signal interception SIG-SIG, it can recognize that the packet is the IEEE 802.11a/g standard or the IEEE 802.11n standard. 201105071 Please refer to FIG. 2, which is a block diagram of the signal transmitter 20 of one of the conventional IEEE 802.11n standards. The signal transmitter 2〇 includes a signal conversion unit 2〇〇, Cyclic Shift Delay (CSD) processing units CSD 1 to CSD 3, __ _ Guardlnterval (GI) processing units GI-1 to GI-4 , RF processing units RF_1 ~ RF_4 and antennas A1 ~ A4. The signal conversion unit 2 is configured to perform an inverse discrete Fourier transform (Inverse Discrete FQurief Transform) for 128 sampling time points to implement orthogonal frequency division multiplexing modulation, and convert the frequency domain (FrequencyD〇main) input sequence sk into time The domain (TimeDomain) sequence Sn. Next, the time domain sequence outputted by the signal conversion unit 200 is turned on by a single path to four paths, or a transmission chain (TransmitChain), and then the cyclic prefix is added through the cyclic shift delay processing units CSD_1 to CSD-3. (CyclicPreflx) is used to resist multipath transmission channel interference; by guard interval processing units GI-1 to GI-4, 32 or 64 sampling time lengths are added at the beginning of the preamble sequence sn as guard intervals to resist Inter-symbol Interference; converted to an RF signal by an RF processing unit, 1 to RF-4; finally 'transmitted into the air by antennas Ai to A4. In order to achieve higher quality wireless local area network transmission, the relevant units are developing a new generation of IEEE 802.11ac standard, which is a wireless local area network standard of 'Very HighThr〇ughput (VHT)' channel bandwidth is increased to 8 〇MHz. In addition to being compatible with IEEE 8〇2丨丨 “g/η standard wireless local area network systems, the IEEE 802.11 ac standard should enable wireless local area network systems to identify the received packets at the fastest speed. Wireless local area network standard to improve the efficiency of packet processing. 201105071 [Invention content] The main purpose of this is to provide a method for generating a pre-data sequence of a wireless communication system, so that the standard 8〇2llac standard can be The wireless local area network system compatible with the IEEE802.11a/g/n standard achieves the best packet processing efficiency. The present invention discloses a pre-data sequence generating method for a wireless communication system. The preamble sequence generation method includes generating a frequency domain preamble sequence related to a packet; converting the frequency domain preamble sequence into a first time domain forefront; and performing the first-time domain preamble sequence Cyclic shift delay processing to generate a second time domain preamble sequence; and normalizing the first time domain preamble sequence and the second time domain preamble sequence, To generate a normalized operation result as a starting block of the preamble sequence of the packet. • The invention further discloses a preamble sequence generating device for use in a wireless communication system, the preamble The sequence generating device includes a sequence generating unit for generating a correlation-frequency-domain pre-data sequence, and a signal conversion unit for converting the frequency domain data sequence into a first time domain pre-data sequence a delay processing unit for performing cyclic shift delay processing on the first time domain preamble sequence to generate a second time domain preamble sequence; and a normalization operation unit for using the first time The domain preamble sequence and the second time domain preamble sequence are normalized to generate a normalized operation result as a starting 201105071 field of the packet-preamble sequence. [Embodiment] Please refer to FIG. 3 is a schematic diagram of a pre-data according to an embodiment of the present invention, which is preferably used in a Very High Throughput (VHT) wireless communication system, such as IEEE. The 802.11ac standard wireless local area network system. The initial block of the pre-data in Figure 3 is an ultra-high transmission short training block VHT-STF, which has the format and the conventional IEEE 802.11a/g/n standard. The traditional short training fields in the pre-data are different, so that after receiving the packet, the signal receiver can recognize the packet as IEEE 802.11ac standard or conventional IEEE802 after the first block decoding of the pre-data is completed. The .11a/g/n standard does not require the high-transmission signal interception HT-SIG that must be decoded to the pre-data in the IEEE 802.11n standard to know the packet standard, thus greatly improving the packet processing efficiency. In Figure 3, the ultra-high-transmission short training block VHTSTF is followed by the traditional long training block L_LTF and the traditional signal block L_SIG, before the IEEE802.Ua/g/n standard in Figures 1A and 1B. The corresponding fields in the data are the same, and then continue to be - super-transfer volume tank age VHT_SIG, carrying the tilt rate information, and then the block is omitted in Figure 3. Figure 4 of the monthly multi-test, Figure 4 is a Wei block diagram of the pre-data sequence generation of the embodiment of the present invention. The front-end dragon phase generating device 4 () is manufactured in an ultra-high-transmission wireless communication system, such as the IEEE 8G2-standard wireless local area network system, for generating ultra-high transmission volume such as the data sequence in FIG. The short training block VHT-STF, 疋, and the frequency _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The preamble sequence generating means 4 includes a sequence of generating early 400, a 5 tiger early 402 and a periodic adjusting unit 404. The period adjustment unit 404 further includes a cyclic shift delay processing unit 410, multipliers 1VH, M2, and an adder 412. The sequence generating unit 400 is configured to generate a frequency domain preamble sequence Sk ' of the 80 MHz channel to generate a preamble sequence Sk. For example, the gg gg 802 iia/g standard 2 〇 MHz channel preamble data can be used. The sequence, as the pre-data phase of the 2〇MHz sub-channel with the lowest frequency band in the 8〇%112 channel, and it is difficult to be used as the fresh higher 2〇MHz sub-channel pre-data sequence, thus forming 8 The 〇MHz channel preamble sequence can be successfully identified by the 802.lla/g/n standard signal receiver. If the pre-sequence data sequence of the Hz channel is represented as (4) (four) mountain, 63}, the sequence of the 8 〇 MHz channel generated by the sequence generating unit is expressed as dU: 〇, l, .., 255}. The signal conversion unit 4〇2 is between the sequence generation unit and the period adjustment unit 404, and operates similarly to the signal conversion unit 200 of the machine 20, and is used to transmit only the (iv)_f into the reverse dispersion of 256 sampling time points. Fu, the _ continuation _ war (four) is converted into a period equal to 64 sampling days _ interval time domain pre-data sequence, } 〇, 1, ..., 255}, output to the cycle adjustment unit. In the period adjusting unit 404, the Delu number conversion unit, the multiplier M1: the bit delay processing unit minus the signal processor (10) is connected to the signal conversion unit 'complement delay processing unit, and the multiplier 'adder 412 is coupled to Multiplier Ml 201105071 and Song M2. The input to the cycle adjustment unit is processed for the two paths, and the upper half of the road is set to the sequence of the data. The data sequence of the data is delayed by the delay. The processing unit is still half of the road. ;^·:;5 phase 'round to multiplier-down to multiplier M2. ^Processing the early heart pre-data sequence ~ directly input the multiplier milk, M2 and adder 412 is a combination of ... for the pre-data sequence s and the household 'regulation of the different early '1 shell W ~ sn And the sequence of the secret data is normalized (N. Qing - early 7th output is set to: = the processing unit is rotated before the data sequence multiplication coefficient α 'generating - pre-data sequence Sn (1) The multiplier Μ2 adds the pre-sufficient-normalization coefficient Ρ to generate the pre-array _ column Sn(2). The adder 412 adds the pre-data sequence Sn(1) and Sn(2) to generate Transfer to the screaming machine's age transmission 歹 S j S η ..ρ 寻 铷 甽 甽 。 。 。 。 。 。 。 。 。 。 。 。 。 。 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404 The periodic conversion wire 32 takes __ interval, which is equal to one-half of the period of the pre-sequence data sequence Sn generated by the 峨 conversion unit 402. It is worth noting that the positive ee 802 has a period of 16 sampling intervals. .Ua/g standard short training block STF or the traditional short training block L_STF of the IEEE 802'lln standard with a period of 32 sampling intervals. After ffiE is said that the signal of the 2 heart standard is connected to the «sample, the sample is equal to the sequence of sampling intervals. Therefore, the signal receiver can detect the received 201105071 pre-data sequence. The first field has a period of 32 or 64 sampling intervals, and it is judged that the received packet is the IEEE 802.11 ac standard or the conventional IEEE 802.11 a/g/n standard. Compared with the IEEE 802.11n standard signal receiver. The packet must be decoded into the high-transmission signal field HT-SIG to know the communication standard of the packet, and the pre-sequence generated by the data matching device 4G before the embodiment of the present invention enables the signal receiver to recognize the fastest. The communication standard used for the outbound packet improves the efficiency of packet processing. The IEEE 802.1 lac standard signal receiver recognizes the communication standard used by the packet. The following is an example of the preamble sequence generation device. The data sequence s, n, preamble sequence [Auto-correlation function] is expressed as follows: T-1 corrT[n] = 'ZVHT__STF[n + k] · VHT_STF[k]* > (1) n and k are taken The time variable, τ is the number of samples. Since the period of the pre-data sequence is 32 sampling intervals, the autocorrelation function Lu Cwrr[«] of Equation 1 will peak when n is an integer multiple of 32. Please refer to 5, Figure 5 is the 4th pre-data sequence generating device 4, normalized by the normalization coefficient ^ 〇 5 to generate the pre-data sequence [phantom autocorrelation function, calculated by τ = 64 It can be seen that a peak occurs when η = 〇 and η = 32. For the IEEE802.11ac standard signal receiver, the preamble sequence 5TFR] is known, and the cross-correlation function of the preamble sequence received by the signal receiver and the known preamble sequence is known. 11 201105071 is expressed as follows: Γ-1 co%[«]= Σφ2 + 々]·Κ//Γ 57FW. k=0 ~ J (2) When the signal receiver-interactive phase_test H calculates the cross-correlation function of Equation 2 with T=64, if the cross-correlation_detector detects a peak every 32 sampling intervals' It can be seen that the pre-sequence data sequence has been received] for the ultra-high transmission short training lion, in other words, the IEEE 802.11ac standard packet received by the signal receiver. On the other hand, if the cross-correlation device is not at every 32 sampling intervals, and = is detected at every 64^ sampling interval, it is known that the pre-arranged data has been received. The traditional short training block of the g/n standard, in other words, the signal receiver receives the packet of the 802.Ha/g/n standard. It can be seen from the above that when the interaction-related debt detector calculates the interactive side function heart w of Equation 2 with T=64, the cross-correlation detector can determine the packet as ffiEE 802.1 lac according to the peak position of the interaction correlation function 2%[«]. Standard or IEEE 802.11 a/g/n standard. In addition to the communication standard used by the inter-detector to detect the packet, the signal receiver can also use the autocorrelation detector for detection. Please refer to the following Equations 3 and 4, respectively. They are the pre-data sequence STF [Delay-correlation function of phantom delay T and τ/2: dcorrn[n]=ZVHT_STF[n + k]^HT_STF [n + k + T]* ; (3)

I_J dcorrT2[n] = Σ^Τ_STF[n + k] VHT_STF[n + k + , (4) 其中n及k為取樣時間變數,τ為取樣數目。請參考第6A圖及第 12 201105071 圖第6A圖及帛6B圖分別為前置資料序列產生裝置4〇以正規 糸數〇?=0.5進行正規化運算後產生之前置資料序歹师^一观⑷ =遲相關函數^/贈nW及延遲相關函數―^卜],並且以τ=64 計算而得。由第6Α圖及第6Β圖可知: dc〇rrn[n] = 64 ; 办〇%21>]〜30(〜772)>>0。 、匕係數〇;為〇·5以外的其它數值’以丁=64計算之延遲相關函 辦nW仍等於64,但延遲相關函數細^办]則不一定與第6β 對IEEE 802.心標準之訊號接收機而言,已接收之前置資料序 列明延遲丁及丁/2之延遲相關函數,表示如下: 、 dcorrm[n] = p^[n + k]-r[n + k + T]* ; ⑸ Σ^^]·^+,+γΓ 0 ⑹ 由於傳輸過程產生的誤差,訊號接收機所接收的前置資料序歹刚 =完全等於待傳送之輕資料相咖_见朋。訊號接收機可使 =一自相_測器,以㈣計算式5之延遲相關函數―iW, ,且使用另一,自相關偵測器,以τ=64計算式6之延遲相關函數 ⑦⑽]。當計算結果顯示延遲相關函數如〜[顺近糾,並且 ^遲糊函數心細接近3〇 (遠大於〇)時,即可確認已接收之 則置貢料序师]為超高傳輸量短訓練棚位,換言之,訊號接收機 13 201105071 所接收的是正EE 802.11ac標準之封包;另一方面,當計算結果顯示 延遲相關函數接近Μ,但是延遲細函數也㈣刺很小 (接近〇)時,即可確認已接收之前置資料序列«I為正ee 802.1 la/g/n標準之傳統短訓練嫩,換言之,訊號接收機所接收的 是IEEE 802.11 a/g/n標準之封包。 簡s之,當訊號傳送機以本發明實施例之前置資料序列產生裝 置40所產生之超高傳輸量短訓練攔位,作為待傳送封包之前置資料 的起始欄位,對應之訊號接收機能夠在已接收之封包之前置資料的 起始欄位解碼後,即偵測到起始攔位之週期與IEEE802.11a/g/n標 準之前置資料之週期不同,即時辨認出已接收之封包為正ee 802.11ac標準,義提升了封包處理效率。需注意的是,前述說明 係以IEEE 802.11ac標準為例,但不以此為限,其它採類似技術之超 高傳輸量無線通訊系統,_IEEE8〇2.llae標準為基礎之衍生變 化,亦可採本發明之前置資料序列產生機制,此等轉用應係本領域 通常知識者所熟習之技藝。 °月參考第7圖,第7圖為本發明實施例一流程%之示音圖,苄 程7〇為第4圖之前置資料序列產生裝置*之運作流程用以產Z 前置資料序列中的超高傳輸量短訓練攔位。流程70包含有以下步 步驟700 :開始。 步驟702 :序列產生單元400產生頻域前置資料序列& 201105071 料序列Sk轉換為時 步驟704 :訊號轉換單元402將頻域前置資 域前置資料序列Sn。 步驟706 :循環移位延遲處理單元 延遲二分之一週期。 410將時域前置資料序列I_J dcorrT2[n] = Σ^Τ_STF[n + k] VHT_STF[n + k + , (4) where n and k are sampling time variables and τ is the number of samples. Please refer to Fig. 6A and Fig. 12 201105071 Fig. 6A and Fig. 6B for the pre-data sequence generating device 4, which is normalized by the normal number of 〇?=0.5, and then the pre-data sequence is generated. View (4) = late correlation function ^ / gift nW and delay correlation function - ^ Bu], and calculated as τ = 64. It can be seen from the 6th and 6th drawings: dc〇rrn[n] = 64; Office %21>]~30(~772)>>0. , 匕 coefficient 〇; for other values other than 〇·5, the delay related information calculated by D = 64 is still equal to 64, but the delay correlation function is not necessarily the same as the 6β to IEEE 802. For the signal receiver, the delay correlation function of the delay sequence D and D/2 of the pre-data sequence has been received, which is expressed as follows: , dcorrm[n] = p^[n + k]-r[n + k + T ]* ; (5) Σ^^]·^+,+γΓ 0 (6) Due to the error caused by the transmission process, the pre-data sequence received by the signal receiver is just equal to the light data to be transmitted. The signal receiver can make a = self-phase detector, calculate the delay correlation function ―iW of equation 5 by (4), and calculate the delay correlation function 7(10) of equation 6 with τ=64 using another, autocorrelation detector. . When the calculation result shows that the delay correlation function is such as ~[close to the correction, and the heart of the delay function is close to 3〇 (far greater than 〇), it can be confirmed that the received tribute is the short-training training for ultra-high transmission. The shed, in other words, the signal receiver 13 201105071 receives the packet of the EE 802.11ac standard; on the other hand, when the calculation results show that the delay correlation function is close to Μ, but the delay function is also (four) thorn is small (close to 〇), It can be confirmed that the received data sequence «I is the traditional short training of the standard ee 802.1 la/g/n standard, in other words, the signal receiver receives the IEEE 802.11 a/g/n standard packet. In short, when the signal transmitter uses the ultra-high transmission short training block generated by the data sequence generating device 40 in the embodiment of the present invention, as the starting field of the data to be transmitted before the packet, the corresponding signal The receiver can decode the initial field of the data before the received packet, that is, the period of detecting the initial block is different from the period of the previous data of the IEEE802.11a/g/n standard, and the time is recognized. The received packet is the positive ee 802.11ac standard, which improves the efficiency of packet processing. It should be noted that the foregoing description uses the IEEE 802.11ac standard as an example, but it is not limited thereto, and other ultra-high-transmission wireless communication systems using similar technologies, based on the derivative of the IEEE8〇2.llae standard, may also be used. The prior art data sequence generation mechanism of the present invention is employed, and such transfer should be performed by those skilled in the art. Referring to FIG. 7 , FIG. 7 is a diagram showing the flow of % of the process of the first embodiment of the present invention, and the benzyl process is the operation sequence of the pre-data sequence generating device* of FIG. 4 for producing the Z pre-data sequence. The ultra-high throughput short training block. The process 70 includes the following steps: Step 700: Start. Step 702: The sequence generating unit 400 generates a frequency domain preamble sequence & 201105071. The sequence Sk is converted into a step 704: the signal converting unit 402 prefends the frequency domain preamble data sequence Sn. Step 706: The cyclic shift delay processing unit delays by one-half of a cycle. 410 time domain preamble sequence

步驟期.乘法請、M2及觸化對時域前置資料序列 S及延遲二分之一週期之時域前置資料序列知進行Step period. Multiplication, M2, and tactile time-domain pre-data sequence S and delay-peripheral period time domain pre-data sequence

正規化運算,以產生前置資料序列s,n,作為超高傳 輸量短訓練欄位。 步驟710 :結束。 步驟7〇6及步驟708 _期調整單元綱之運作步驟,最終產 週/月為32個取樣時間間隔的超南傳輸量短訓練攔位vhtjtf。 因此’ IEEE 802.11ac標準之訊號接收機接收封包並將前置資料的第 -個襴位解碼之後’即能辨認此封包所使㈣通訊標準,較習知 ffiEE 802.11η標準之訊號接收機的封包辨認更快速。關於流程7〇之 φ各步驟的詳細運作’請參考前述之前置資料序列產生裝置4〇,在此 不贊述。 凊注意’除了起始攔位之外’前置資料中其它欄位的形成,不 必然需要將週期減半cIEEE8〇2 llac標準的封包係通過類似第2圖 之訊號傳送機20之傳輸鏈架構,傳送至訊號接收機。為了驗證訊號 接收機能夠正確偵測到包含有本發明之前置資料的封包,現以IEEE 8〇2·11η標準之通道模型B (ChannelModelB)模擬傳輸通道,由訊 3 15 201105071 號傳送機傳送1000個僅包含本發明之前置資料之封包,分別由 40MHz通道之訊號接收機及80MHz通道之訊號接收機接收,並計 算正確偵測封包的機率,表列於第8圖至第11圖。8〇MHz通道可 被分割為4個非重疊之20MHZ子通道,依其頻帶由低至高為a、b、 C'D;80MHz通道又可分為3個部分重疊之4〇MHz子通道{a,b}、 {B,C}&{C,D}。 第8圖表列40MHz通道之一訊號接收機之一自相關性偵測器於 各個40MHZ子通道{A,B}、{B,C}、{C,D}及各個傳輸鏈之下,基 於不同的讯雜比(Signal-to-Noise Ratio,SNR)所量測之封包成功 _ 機率(Packet Detection Probability )之最小值。第 9 圖表列 4〇MHz 通道之一訊號接收機之一交互相關性偵測器於各個4〇MHz子通道 {A’B} {B,C}、{C,D}及各個傳輸鏈之下’基於不同的訊雜比所量 測之封包成功_機率之最小值。由第8圖及第9圖可知,彻Hz 通道之5fl號接收機所量測到的封包成功彳貞測機率之最小值多數為 9〇%以上’這表示即使訊號接收機不支援IEEE 802.11ac標準之 ▲MHz通道械接收機也能夠成功偵測出本發明$嶋Hz通道之 j置貝料序列。第1〇圖表列8〇MHz通道之一訊號接收機之一自相 性價測器於各個傳輸鍵之下,基於不同的訊雜比所量測之封包成 j測解咖、值11_列_z輕之-峨接收機之 ^互相雜彳貞測祕各個傳輸狀下,基於不同的訊雜比所量測 :包成功_機率之最小值。由第1()岐第u圖可知,議Hz 通道之訊號接收機所量測到的封包成功_機率之最小值接近 201105071 100%,這表示本發明80MHz通道之前置資料序列,能夠成功地被 80MHz通道之訊號接收機所偵測出。 綜上所述’當超高傳輸量無線通訊系統之訊號傳送機以本發明 之超高傳輸量短訓練欄位’作為待傳送封包之前置資料的起始攔位 時,對應之訊號接收機能夠在起始欄位解碼後,即辨認出已接收之 封包的通訊標準。因此,本發明可使傳送之封包快速地被辨認出, _ 提升封包處理效率,加強超高傳輸量之功能。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍 所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第U圖為習知!EEE8〇211a/g標準之前置資料之示意圖。 第1B圖為習wEEE8〇2 Un鮮之前置資料之示意圖。 圖為習知驗謝ln標準之—訊號傳送機之功能方塊圖。 3圖為本發明實施例一前置資料之示意圖。 ^ 4圖為本發明實施例—前置資料序列產生裝置之功能方塊圖。 5圖為第4圖之前置資料序列產生裝置所產生之前置資料序列的 自相關函數之示意圖。 第6A、6B圖為第4圖之前置資料序列產生裝置所產生之前置資料 序列的延遲相關函數之示意圖。 第7圖為本發明實施例-流程之示意圖。 17 201105071 第8圖為40MHz通道之一訊號接收機之一自相關性偵測器於各個 40MHz子通道及各個傳輸鏈之下,基於不同的訊雜比所量測 之封包成功偵測機率之最小值之列表。 第9圖為40MHz通道之一訊號接收機之一交互相關性偵測器於各個 40MHz子通道及各個傳輸鏈之下,基於不同的訊雜比所量測 之封包成功偵測機率之最小值之列表。 第10圖為80MHz通道之一訊號接收機之一自相關性偵測器於各個 傳輸鏈之下,基於不同的訊雜比所量測之封包成功偵測機率之 最小值之列表。 第11圖為80MHz通道之一訊號接收機之一交互相關性侧器於各 個傳輸鏈之下,基於不同的訊雜比所量測之封包成功偵測機率 之最小值之列表。 【主要元件符號說明】 STF、L-STF 傳統短訓練攔位 LTF、L-LTF 傳統長訓練攔位 SIG、L-SIG 傳統訊號攔位 HT-SIG 南傳輸量訊號攔位 HT-STF 高傳輸量短訓練欄位 HT-LTF 南傳輸量長訓練攔位 VHT-STF 超尚傳輸量短訓練欄位 DATA 資料襴位 20 訊號傳送機 18 201105071The normalization operation is performed to generate the pre-data sequence s, n as a short training field for ultra-high transmission. Step 710: End. Steps 7〇6 and 708 _ period adjust the operation steps of the unit, and the final production week/month is 32 short sampling intervals of the super-transmission training stop vhtjtf. Therefore, the 'IEEE 802.11ac standard signal receiver receives the packet and decodes the first bit of the preamble data' to identify the packet (4) communication standard, which is better than the ffiEE 802.11n standard signal receiver packet. Identify faster. For the detailed operation of each step of φ of the process ’, please refer to the aforementioned pre-sequence sequence generating device 4, which is not mentioned here.凊 Note that the formation of other fields in the pre-data other than the initial block does not necessarily require that the packet of the cIEEE8〇2 llac standard be halved by a transmission chain architecture similar to that of the signal transmitter 20 of FIG. , transmitted to the signal receiver. In order to verify that the signal receiver can correctly detect the packet containing the pre-information data of the present invention, the channel model B (Channel Model B) analog transmission channel of the IEEE 8〇2·11η standard is transmitted by the transmitter of the signal 3 15 201105071. 1000 packets containing only the pre-information data of the present invention are respectively received by the signal receiver of the 40 MHz channel and the signal receiver of the 80 MHz channel, and the probability of correctly detecting the packet is calculated, which is shown in Figures 8 to 11. The 8〇MHz channel can be divided into 4 non-overlapping 20MHZ subchannels, which are divided into three, a, b, and C'D according to the frequency band; the 80MHz channel can be divided into three partially overlapping 4〇MHz subchannels {a , b}, {B, C} & {C, D}. The eighth chart shows one of the 40MHz channels. One of the receivers of the signal detector is based on the different 40MHZ sub-channels {A, B}, {B, C}, {C, D} and each transmission chain. The minimum value of the Packet Detection Probability measured by the Signal-to-Noise Ratio (SNR). The ninth chart column is one of the 4 〇 MHz channels. One of the receivers of the signal correlation detector is under each 4 〇 MHz sub-channel {A'B} {B, C}, {C, D} and each transmission chain. 'The minimum value of the packet success rate based on different signal-to-noise ratios. It can be seen from Fig. 8 and Fig. 9 that the minimum value of the successful detection probability of the packet measured by the 5fl receiver of the Hz channel is mostly 9〇% or more', which means that even if the signal receiver does not support IEEE 802.11ac The standard ▲MHz channel mechanical receiver can also successfully detect the j 嶋 Hz channel of the present invention. The first chart shows one of the 8 〇 MHz channels. One of the receivers is a self-consistent price detector under each transmission key. The packets measured based on different signal-to-noise ratios are measured by j, and the value is 11_column_ z light-峨 receiver's mutual miscellaneous measurement under various transmission conditions, based on different signal-to-noise ratio measurements: the minimum value of the packet success _ probability. It can be seen from the first () 岐 u diagram that the minimum value of the packet success rate measured by the signal receiver of the Hz channel is close to 201105071 100%, which indicates that the 80 MHz channel preamble sequence of the present invention can be successfully It is detected by the signal receiver of the 80MHz channel. In summary, when the signal transmitter of the ultra-high transmission wireless communication system uses the ultra-high transmission short training field of the present invention as the initial stop of the data to be transmitted, the corresponding signal receiver After the initial field is decoded, the communication standard of the received packet can be identified. Therefore, the present invention enables the transmitted packet to be quickly recognized, _ improving the processing efficiency of the packet, and enhancing the function of ultra-high throughput. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should fall within the scope of the present invention. [Simple description of the figure] The U picture is a conventional! Schematic diagram of the EEE8〇211a/g standard pre-data. Figure 1B is a schematic diagram of the previous data of the wEEE8〇2 Un fresh. The picture shows the functional block diagram of the signal transmitter. 3 is a schematic diagram of pre-data according to a first embodiment of the present invention. 4 is a functional block diagram of a pre-data sequence generating apparatus according to an embodiment of the present invention. Figure 5 is a schematic diagram of the autocorrelation function of the pre-data sequence generated by the pre-data sequence generating device of Figure 4. 6A and 6B are diagrams showing the delay correlation function of the pre-data sequence generated by the pre-data sequence generating means of Fig. 4. Figure 7 is a schematic diagram of an embodiment of the present invention. 17 201105071 Figure 8 shows one of the 40MHz channels, one of the receivers of the autocorrelation detector, under each 40MHz sub-channel and each transmission chain, the minimum probability of successful detection of packets based on different signal-to-noise ratios. A list of values. Figure 9 is the minimum correlation of the probability of successful detection of packets based on different signal-to-noise ratios under one of the 40MHz sub-channels and each transmission chain. List. Figure 10 is a list of the minimum value of the probability of successful packet detection based on the different signal-to-noise ratios of one of the 80MHz channels, the autocorrelation detector under each transmission chain. Figure 11 is a list of the minimum value of the probability of successful packet detection based on the different signal-to-noise ratios of one of the 80MHz channels. [Main component symbol description] STF, L-STF traditional short training block LTF, L-LTF traditional long training block SIG, L-SIG traditional signal block HT-SIG South transmission signal block HT-STF high transmission Short training field HT-LTF South transmission long training block VHT-STF Super transmission short training field DATA data unit 20 signal transmitter 18 201105071

Sk Sn 70 700、702、704、706、708、710 步驟 200、402 CSD_1 〜CSD—3、410 GI一1 〜GI_4 RF—1 〜RF_4 A1 〜A4 40 400 404 412Sk Sn 70 700, 702, 704, 706, 708, 710 Steps 200, 402 CSD_1 ~ CSD - 3, 410 GI - 1 ~ GI_4 RF - 1 ~ RF_4 A1 ~ A4 40 400 404 412

Ml > M2 訊號轉換單元 循環移位延遲處理單元 保護間隔處理單元 射頻處理單元 天線 前置資料序列產生裝置 序列產生單元 週期調整單元 加法器 乘法器 頻域前置資料序列 時域前置資料序列 流程Ml > M2 signal conversion unit cyclic shift delay processing unit guard interval processing unit RF processing unit antenna pre-data sequence generating device sequence generating unit period adjusting unit adder multiplier frequency domain pre-data sequence time domain pre-data sequence

1919

Claims (1)

201105071 七、申請專利範圍: 1· -種前置資料(Preamble)序列產生方法,用於一無線通訊系 統中’該前置資料序列產生方法包含有: 產生相關於一封包之一頻域前置資料序列; 將該頻域前置資料序列轉換為一第一時域前置資料序列; 將該第一時域前置資料序列進行循環移位延遲處理,以產生一 第二時域前置資料序列;以及 對該第一時域前置資料序列及該第二時域前置資料序列進行正 規化運算,以產生一正規化運算結果,作為該封包之一前 置資料序列的一起始攔位。 2·如請求項1所述之前置資料序列產生方法,其中將該第一時域 前置資料序列進行循環移位延遲處理之步驟,係將該第一時域 前置資料延遲二分之一週期,以產生該第二時域前置資料序列。 3.如請求項1所述之前置資料序列產生方法,其中對該第一時域 前置資料序列及該第二時域前置資料序列進行正規化運算之步 驟’包含有: 將該第一時域前置資料序列乘上一第一係數,產生一第三時域 前置資料序列; 將該第二時域前置資料序列乘上一第二係數,產生一第四時域 前置資料序列;以及 20 201105071 將該第三時域前置資料序列與該第四時域前置資料序列相加, 以產生該起始攔位。 4. 一種前置資料(Preambie)序列產生裝置,用於一無線通訊系 統中,該前置資料序列產生裝置包含有·· 一序列產生單元,用來產生相關於一封包之一頻域前置資料序 列; 5孔5虎轉換單元,用來將該頻域前置資料序列轉換為一第—時 鼸域前置資料序列; ' 一延遲處理單元,用來將該第一時域前置資料序列進行循環移 位L遲處理,以產生一第二時域前置資料序列;以及 一正規化運算單元,用來觸第-喊前置資料糊及該第二 時域前置資料序列進行正規化運算,以產生一正規化運算 、,果作為5亥封包之一前置資料序列的_起始搁位。 籲 _:束項4所述之則置資料序列產生裝置,其中該延遲處理單 7G係用來將遠第一時域前置資料延遲二分之一週期以產生該 第二時域前置資料序列。 6.如印求項4所述之前置資料序列產生裝置,其中該正規化 單元包含有: 丹 第乘法盗,用來將該第一時域前置資料序列乘上—第—係 數’產生-第三時域前置資料序列; ’、 21 201105071 一第二乘法器,用來將該第二時域前置資料序列乘上一第二係 數,產生一第四時域前置資料序列;以及 一加法器,用來將該第三時域前置資料序列與該第四時域前置 資料序列相加,以產生該起始攔位。 、圖式·201105071 VII. Patent application scope: 1. A pre-data (Preamble) sequence generation method for a wireless communication system. The pre-data sequence generation method includes: generating a frequency domain preamble related to a packet. a data sequence; converting the frequency domain preamble data sequence into a first time domain preamble data sequence; performing the cyclic shift delay processing on the first time domain preamble data sequence to generate a second time domain preamble data And normalizing the first time domain preamble sequence and the second time domain preamble sequence to generate a normalized operation result as a starting block of the preamble sequence of the packet . 2. The method according to claim 1, wherein the step of performing the cyclic shift delay processing on the first time domain preamble sequence delays the first time domain preamble by two-thirds One cycle to generate the second time domain preamble sequence. 3. The method according to claim 1, wherein the step of normalizing the first time domain preamble sequence and the second time domain preamble sequence comprises: The first time domain preamble data sequence is multiplied by a first coefficient to generate a third time domain preamble data sequence; the second time domain preamble data sequence is multiplied by a second coefficient to generate a fourth time domain preamble a sequence of data; and 20 201105071, adding the third time domain preamble sequence to the fourth time domain preamble sequence to generate the initial block. A preambient sequence generating device for use in a wireless communication system, the preamble sequence generating device comprising a sequence generating unit for generating a frequency domain preamble associated with a packet a data sequence; a 5-hole 5 tiger conversion unit for converting the frequency domain preamble sequence into a first-time domain preamble sequence; 'a delay processing unit for using the first time domain preamble data The sequence is cyclically shifted by L delay processing to generate a second time domain preamble sequence; and a normalized operation unit is configured to touch the first-call preamble data paste and the second time domain preamble data sequence for regularization The operation is performed to generate a normalized operation, and the result is a _starting position of the preamble sequence of one of the 5 hai packets. ??? ???: the data sequence generating device according to the bundle item 4, wherein the delay processing unit 7G is configured to delay the far first time domain preamble data by one-half period to generate the second time domain preamble data sequence. 6. The pre-data sequence generating apparatus according to claim 4, wherein the normalization unit comprises: a Dandi multiplier, which is used to multiply the first time domain preamble sequence by a - coefficient - generated a third time domain preamble sequence; ', 21 201105071 a second multiplier for multiplying the second time domain preamble sequence by a second coefficient to generate a fourth time domain preamble sequence; And an adder for adding the third time domain preamble sequence to the fourth time domain preamble sequence to generate the initial block. ,figure· 22twenty two
TW98142476A 2009-07-16 2009-12-11 Method and apparatus of generating preamble sequence for wireless communication system TW201105071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/836,553 US20110013547A1 (en) 2009-07-16 2010-07-14 Method of generating preamble sequence for wireless communication system and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22593109P 2009-07-16 2009-07-16

Publications (1)

Publication Number Publication Date
TW201105071A true TW201105071A (en) 2011-02-01

Family

ID=43485871

Family Applications (5)

Application Number Title Priority Date Filing Date
TW98140123A TW201105057A (en) 2009-07-16 2009-11-25 Method and apparatus for generating training sequences in wireless communication system
TW98141062A TWI441491B (en) 2009-07-16 2009-12-01 Method of generating preamble sequence for wireless local area network device
TW98141064A TW201105074A (en) 2009-07-16 2009-12-01 Method of generating preamble sequence for wireless local area network device
TW98141061A TWI405441B (en) 2009-07-16 2009-12-01 Setting method and apparatus for a wireless communication system
TW98142476A TW201105071A (en) 2009-07-16 2009-12-11 Method and apparatus of generating preamble sequence for wireless communication system

Family Applications Before (4)

Application Number Title Priority Date Filing Date
TW98140123A TW201105057A (en) 2009-07-16 2009-11-25 Method and apparatus for generating training sequences in wireless communication system
TW98141062A TWI441491B (en) 2009-07-16 2009-12-01 Method of generating preamble sequence for wireless local area network device
TW98141064A TW201105074A (en) 2009-07-16 2009-12-01 Method of generating preamble sequence for wireless local area network device
TW98141061A TWI405441B (en) 2009-07-16 2009-12-01 Setting method and apparatus for a wireless communication system

Country Status (2)

Country Link
CN (2) CN103457898B (en)
TW (5) TW201105057A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693356B2 (en) 2009-07-16 2014-04-08 Ralink Technology Corp. Method for wireless communication system and device using the same
US11825434B2 (en) 2021-04-20 2023-11-21 National Yang Ming Chiao Tung University Method and architecture of synchronization of wireless communication system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201891B (en) * 2011-05-03 2015-07-22 中兴通讯股份有限公司 Wireless frame transmission method and device
TWI470958B (en) * 2012-01-03 2015-01-21 Mstar Semiconductor Inc Method and associated apparatus applied to receiver of wireless network for determining a quantity of antennas of transmitter
US20150365257A1 (en) * 2014-06-12 2015-12-17 Huawei Technologies Co., Ltd. System and Method for OFDMA Resource Allocation
US9712217B2 (en) 2014-09-08 2017-07-18 Intel Corporation Parallel channel training in multi-user multiple-input and multiple-output system
US9998951B2 (en) * 2015-08-05 2018-06-12 Qualcomm Incorporated Training sequence generation for wireless communication networks
CN106487737B (en) 2015-08-26 2021-04-20 华为技术有限公司 Method and apparatus for transmitting long training sequence in wireless local area network
WO2017088761A1 (en) * 2015-11-23 2017-06-01 华为技术有限公司 Wireless local area network data transmission method and device
CN106789761B (en) * 2015-11-23 2020-04-03 华为技术有限公司 Wireless local area network data transmission method and device
CN108683482B (en) * 2017-04-01 2021-03-09 电信科学技术研究院 Method and device for estimating timing position

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8619907B2 (en) * 2004-06-10 2013-12-31 Agere Systems, LLC Method and apparatus for preamble training in a multiple antenna communication system
US8737189B2 (en) * 2005-02-16 2014-05-27 Broadcom Corporation Method and system for compromise greenfield preambles for 802.11n
EP1905251A4 (en) * 2005-07-15 2010-01-20 Mitsubishi Electric Res Lab Antenna selection for multi-input multi-output system
US7742390B2 (en) * 2005-08-23 2010-06-22 Agere Systems Inc. Method and apparatus for improved long preamble formats in a multiple antenna communication system
JP4367422B2 (en) * 2006-02-14 2009-11-18 ソニー株式会社 Wireless communication apparatus and wireless communication method
US20070189412A1 (en) * 2006-02-15 2007-08-16 Samsung Electronics Co., Ltd. Method and system for sounding packet exchange in wireless communication systems
US7804800B2 (en) * 2006-03-31 2010-09-28 Intel Corporation Efficient training schemes for MIMO based wireless networks
JP4924106B2 (en) * 2006-04-27 2012-04-25 ソニー株式会社 Wireless communication system, wireless communication apparatus, and wireless communication method
US8526351B2 (en) * 2009-06-05 2013-09-03 Broadcom Corporation Channel characterization and training within multiple user, multiple access, and/or MIMO wireless communications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693356B2 (en) 2009-07-16 2014-04-08 Ralink Technology Corp. Method for wireless communication system and device using the same
US11825434B2 (en) 2021-04-20 2023-11-21 National Yang Ming Chiao Tung University Method and architecture of synchronization of wireless communication system

Also Published As

Publication number Publication date
CN103457898A (en) 2013-12-18
TW201105074A (en) 2011-02-01
TWI441491B (en) 2014-06-11
CN101958739B (en) 2013-09-11
TWI405441B (en) 2013-08-11
TW201105070A (en) 2011-02-01
TW201105073A (en) 2011-02-01
CN103457898B (en) 2017-04-26
CN101958739A (en) 2011-01-26
TW201105057A (en) 2011-02-01

Similar Documents

Publication Publication Date Title
TW201105071A (en) Method and apparatus of generating preamble sequence for wireless communication system
US20110013547A1 (en) Method of generating preamble sequence for wireless communication system and device thereof
US11706725B2 (en) Short and long training fields
US7920599B1 (en) Methods and systems for synchronizing wireless transmission of data packets
US8170160B1 (en) Multi-symbol phase offset estimation
US8761273B2 (en) Method for transmitting and receiving wireless signal in wireless communication system and apparatus for the same
CN100589468C (en) Method and apparatus for modulating-demodulating OFDM multi-carrier-wave signal time frequency
JP4154570B2 (en) Method and wireless LAN receiver for determining a tuning frequency offset in a receiver that generates complex data samples from a demodulated received signal
TWI455497B (en) Method and associated apparatus applied to receiver of wireless network for frequency offset
CN101312454B (en) MIMO-OFDM synchronization method and apparatus
CN105915473B (en) A kind of estimation of ofdm system parametric channel and equalization methods based on compressed sensing technology
WO2007140670A1 (en) A method for realizing synchronization in multiple input multiple output orthogonal frequency division multiplexing system
US10735237B2 (en) Apparatus and method for generating and detecting preamble symbol
WO2009113005A2 (en) A physical layer convergence protocol (plcp) packet structure for multiple-input-multiple-output (mimo) communication systems
WO2010063188A1 (en) Method and device for filtering orthogonal frequency division multiplexing channel estimate result
JP5182757B2 (en) Frame synchronization acquisition circuit
CN104769904A (en) Symbol time offset correction via intercarrier interference detection in OFDM receiver
CN101119350A (en) OFDM system, fast synchronous method and sending terminal equipment
US20090274233A1 (en) Method and system for phase tracking in wireless communication systems
CN106453192B (en) A kind of symbol timing synchronization method and system based on the complementary binary sequence pairs of shielding
JP4841256B2 (en) Wireless device
TWI422254B (en) Methods and reciecer for symbol timing
WO2017084296A1 (en) Data transmission method, apparatus and system
WO2007029579A1 (en) Reception method and device and communication system using the same
EP2770685A1 (en) Ofdm packets time synchronisation