TW201042770A - Photovoltaic module string arrangement and shading protection therefor - Google Patents

Photovoltaic module string arrangement and shading protection therefor Download PDF

Info

Publication number
TW201042770A
TW201042770A TW98117454A TW98117454A TW201042770A TW 201042770 A TW201042770 A TW 201042770A TW 98117454 A TW98117454 A TW 98117454A TW 98117454 A TW98117454 A TW 98117454A TW 201042770 A TW201042770 A TW 201042770A
Authority
TW
Taiwan
Prior art keywords
solar cells
series
solar
last
type
Prior art date
Application number
TW98117454A
Other languages
Chinese (zh)
Inventor
Leonid B Rubin
Valery M Nebusov
Fariborz Fari Ordubadi
Original Assignee
Day4 Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Day4 Energy Inc filed Critical Day4 Energy Inc
Priority to TW98117454A priority Critical patent/TW201042770A/en
Publication of TW201042770A publication Critical patent/TW201042770A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A method and apparatus for protecting a string of solar cells from shading in a solar panel having a plurality of strings of solar cells are described. Electric current is shunted around any string of the solar cells having at least one shaded solar cell by shunting the electric current through electrical conductors and a bypass diode located in a perimeter margin of a substrate supporting the solar cells such that no matter which string has a shaded solar cell current through the string with the shaded solar cell is shunted through electrical conductors and a respective bypass diode located in the perimeter margin. This distributes dissipation of heat from respective bypass diodes that are associated with strings having at least one shaded solar cell, to different locations around the perimeter margin.

Description

201042770 六、發明說明: 【發明所屬之_技糊^領域^ 發明領域 本發明係有關於光電(PV)模組及較特定地關於組配ρν 電池以允許增加PV串列數並以位於一PV模組内之旁路二 極體來提供該等串列的遮蔽防護。 Ο Ο ί:先前技術3 發明背景 由晶石夕PV電池構成的PV模組的設計與生產實際上已 經超過三十年保持不變了。一典型的ρν電池包含半導體材 料,其中至少一個ρ-η接面以及具有電流收集電極之正面與 背面表面。當一習知晶矽PV電池受照射時,其產生大約34 mA/cm2的一電流於大約0.6-0.62V。典型地,將多個ρν電池 電氣地互連成串聯及/或並聯PV串列以形成一比一單一 ρν 電池產生較高電壓及/或電流的PV模組。 PV電池可藉由例如由鍍錫銅製成之金屬標籤(tab)互連 成串列。例如一典型的PV模組可包含36-100個PV串聯互連 的電池’且這些電池典型地可結合成2至4個PV串列以實現 比使用一單一 PV電池可獲得之較高的電壓。 由於大體上期望PV模組在室外運作,典型地達25年而 不降格’因而它們的建構必須經受住各種天氣及環境條 件。典型的PV模組建構例如涉及在該模組的正面使用以諸 如乙浠-醋酸乙浠醋(ethylene vinyl acetate)之聚合物封事材 料或諸如氨基甲酸乙酯(urethane)之熱塑材料的一板覆蓋之 3 201042770 低鐵強化玻璃之-透明板。_PV電池陣列錢得該等電池 之正面面向該透明玻璃板這樣的一方式而置於該聚合物封 裝材料上。該陣列之背面以—封裝材料附加層及諸如杜邦 (DuP〇nt)之Tedlar⑧之天氣防護材料之-背板層或-玻璃板 覆蓋。該封裝材料附加層及料板層典型地具有開口,用 以為連接到在該模組内的Pv串狀導電體穿過該背面封裝 層及天氣防護材料之背板鱗備以提供與—電路的連接。 針對具有兩PV電池串列之一陣列的一pv模組,典型地 四個導體受配置穿經該等開口以使它們互相鄰近,這樣它 們可在安裝在該背板層上的一連接盒^η^〇η box)内終 止。該玻璃、封裝層' 電池及背板層典型地是真空受照射 的以消除空氣泡並用來防護該等pv電池免於受來自正面及 背面及還有來自邊緣之水分的滲透。在該連接盒内完成pv 串列之該等電氣互連及與旁路二極體的連接。該連接盒被 密封在該PV模組的背面上。 具有串聯互連PV電池之PV模組只有當所有的該等串 聯互連PV電池都以大致相同的光強度受照射時才最佳地運 作。然而’只要該PV模組佈局内有一個PV電池被遮蔽而所 有其它的電池都受照射’該整個PV模組就會受到不利的影 響而導致來自該PV模組的電力輸出之一實質的下降。已證 明了(1995年9月5-7曰在格林威治舉行的第30界大學電力工 程會議(Universities Power Engineering Conference)第 583到 586 頁由 V. Quaschning 與 R. Hanitsch 提出的“Numerical Simulation of Photovoltaic Generators with Shaded Cells”)的 201042770 是包含36個PV電池之一光電模組t僅僅— 受遮蔽時(小於該模組區域的3%),損 產2 力的70%。除了暫時的電力指 艰吓厓王电 、 5亥模组由於電池逆益可 因為當。V電池受遮蔽時,它開始^ 電阻器而非-電力產生器。在此情 該等其它_池暴露該受遮蔽電池於驅動電流 Ο Ο 電壓當中。此過程可使得該受遮蔽_池 擊穿或加熱它到-高溫而如果此高溫持續的話可能破壞整 Γ/ΓΓΓ 了減少麵馳彳《的風險, 實際上所有的PV模組採料路二極體(BPD),其等跨接在 :個PV串列及/或一整個模組兩端,視該特定的pv模組設 叶及所使用的該等PV電池品質而定。 HPV串列中的該等Pv電池數視^電池品質及 較特定地經受-反向電壓擊穿的能力蚊,只要在該PV串 列中有-個電池受«,觀向電壓擊穿可在所有的在該 串列中的該等太陽能電池上發生。例如,對於高品質㈣ 電池,敎的反向擊穿電壓是14V且在每電池產生最 大電壓(V叫大約為0.56V的情況下,在一串列中的電 池數不應該超過24。對於自冶姆生產的PV電池,典型地 具有-較低反向擊穿電壓為7V,在包含多於12個電池的… :列中不推薦❹它們。這樣產生了針對PV模組製造商的 一問題,因為需要較複賴…電池佈局且料致了額外的 匯流及增加的連接盒數。這些複雜化由於增加的串聯電阻 可導致電力損失。 5 201042770 爲了減少由旁路一整個電池串列所導致的電力損失, 旁路各別的電池是可能的,但是這導致了經濟及技術的問 題,這些問題阻礙了 一實際工業解決方案的發展。一般地, 大多數解決方案採用類似的原理’其中一旁路二極體以與 其所防護之太陽能電池相反的方向連接到該pv電池,以使 當該太陽能電池反向偏壓時該相關聯的旁路二極體開始傳 導。此互連可採用將該等二極體終端連接到該等電池終端 之導電體或該旁路二極體可在製造期間使用微電子技術及 設備直接地與該PV電池整合。大體上,至今,在此領域研 究的主要焦點似乎是爲了在PV模組照射期間最小化PV電 池破損’研究小型化該旁路二極體的方法。201042770 VI. Description of the Invention: [Technical Field] Field of the Invention The present invention relates to photovoltaic (PV) modules and, more particularly, to assembling ρν cells to allow an increase in the number of PV strings and to be located in a PV A bypass diode within the module provides shielding protection for the series. Ο Ο ί: Prior Art 3 Background of the Invention The design and production of a PV module composed of a spar PV cell has actually remained unchanged for more than three decades. A typical ρν cell comprises a semiconductor material having at least one p-n junction and a front and back surface having current collecting electrodes. When a conventional crystalline PV cell is illuminated, it produces a current of about 34 mA/cm2 at about 0.6-0.62V. Typically, a plurality of ρν cells are electrically interconnected into a series and/or parallel PV series to form a PV module that produces a higher voltage and/or current than a single ρν cell. The PV cells can be interconnected in series by, for example, metal tabs made of tin plated copper. For example, a typical PV module can contain 36-100 PV series interconnected cells' and these cells can typically be combined into 2 to 4 PV strings to achieve higher voltages than can be achieved with a single PV cell. . Since PV modules are generally expected to operate outdoors, typically for 25 years without degradation, their construction must withstand various weather and environmental conditions. A typical PV module construction involves, for example, the use of a polymeric sealing material such as ethylene vinyl acetate or a thermoplastic material such as urethane on the front side of the module. Board Cover 3 201042770 Low iron tempered glass - transparent board. The PV cell array is placed on the polymer encapsulant in such a manner that the front side of the cells faces the transparent glass plate. The back side of the array is covered with an additional layer of encapsulating material and a backing layer or a glass sheet of weather protection material such as DuPont's Tedlar8. The additional layer of the encapsulating material and the layer of the material layer typically have openings for providing a Pv string-like electrical conductor connected to the module through the back encapsulation layer and the backing plate of the weather protection material to provide an electrical circuit. connection. For a pv module having an array of two PV cell strings, typically four conductors are configured to pass through the openings such that they are adjacent to one another such that they can be attached to a connector box on the backing layer. η^〇η box) terminates. The glass, encapsulation layer, and the backsheet layer are typically vacuum exposed to eliminate air bubbles and serve to protect the pv cells from penetration from the front and back and also moisture from the edges. The electrical interconnections of the pv strings and the connections to the bypass diodes are completed in the junction box. The junction box is sealed to the back of the PV module. A PV module having series interconnected PV cells operates optimally only when all of the series interconnected PV cells are illuminated at substantially the same light intensity. However, as long as there is a PV cell in the PV module layout and all other cells are illuminated, the entire PV module will be adversely affected, resulting in a substantial drop in power output from the PV module. . It has been demonstrated (Numerical Simulation of V. Quaschning and R. Hanitsch, pp. 583-586 of the 30th University of Michigan's Power Engineering Conference, September 5-7, 1995) Photovoltaic Generators with Shaded Cells") 201042770 is a photovoltaic module containing 36 PV cells only - when obscured (less than 3% of the module area), 70% of the 2 forces. In addition to the temporary power, it is difficult to scare Yawang, and the 5 Hai module can be used because of the battery. When the V battery is shielded, it starts with a resistor instead of a power generator. In this case, the other _cells expose the shielded battery to the drive current Ο 电压 voltage. This process can cause the shaded pool to break down or heat it to - high temperature and if this high temperature continues, it may damage the whole / ΓΓΓ reduce the risk of surface ride, in fact, all PV module mining road poles Body (BPD), which is connected across: a PV string and/or an entire module, depending on the particular pv module set and the quality of the PV cells used. The number of such Pv batteries in the HPV series depends on the quality of the battery and the mosquitoes that are more specifically subjected to the reverse voltage breakdown, as long as there is a battery in the PV series, the viewing voltage breakdown can be All occur on the solar cells in the series. For example, for a high-quality (four) battery, the reverse breakdown voltage of 敎 is 14V and the maximum voltage per cell (V is about 0.56V, the number of cells in a series should not exceed 24). PV cells produced by Sigma typically have a lower reverse breakdown voltage of 7V, which is not recommended in columns containing more than 12 cells. This creates a problem for PV module manufacturers. Because of the need to rely on the battery layout and the resulting additional confluence and increased number of connection boxes. These complications can result in power loss due to increased series resistance. 5 201042770 To reduce the number of bypasses caused by an entire battery string The loss of power, bypassing individual batteries is possible, but this has led to economic and technical problems that have hampered the development of an actual industrial solution. In general, most solutions use a similar principle 'one side The diode is connected to the pv battery in a direction opposite to the solar cell it protects, such that the associated bypass diode opens when the solar cell is reverse biased Conduction. The interconnect may employ electrical conductors that connect the diode terminals to the battery terminals or the bypass diodes may be directly integrated with the PV cells during fabrication using microelectronics technology and equipment. So far, the main focus of research in this field seems to be to minimize the PV cell breakage during PV module illumination' research to miniaturize the bypass diode.

Murakami等人的美國專利第6,184,458 B1號名稱為 “Photovoltaic Element and Production Method”描述 了藉由 將一光電元件及一薄膜旁路二極體配置在同一基板上來形 成一pv元件,藉此該旁路二極體沒有減少該pv元件的有效 區域’因為其在一網板印刷(screen printed)電流收集電極下 形成。此類電池的生產是複雜的且在該網板印刷電流收集 電極與該旁路二極體部分間需要精準的對準。此外,所揭 露的該等技術對於現代高效率晶矽PV電池可能不實際,因 為目前可得的薄膜旁路二極體不能經受諸如大約8.5A的高 電流,而此電流在一高效率6叫電池中是典型的。此外,似 乎沒有針對在該旁路二極體内產生的將導致過熱及最終導 致該二極體故障之熱量耗散的關注。過熱可能會導致該PV 電池及該PV模組的破壞。 201042770No. 6,184,458 B1 to Murakami et al., entitled "Photovoltaic Element and Production Method" describes forming a pv element by arranging a photovoltaic element and a thin film bypass diode on the same substrate, whereby the bypass The diode does not reduce the effective area of the pv element because it is formed under a screen printed current collecting electrode. The production of such batteries is complex and requires precise alignment between the screen printed current collecting electrodes and the bypass diode portion. Moreover, the disclosed techniques may not be practical for modern high efficiency crystalline PV cells because currently available thin film bypass diodes cannot withstand high currents such as about 8.5 A, and this current is called at a high efficiency of 6 It is typical in batteries. In addition, it appears that there is no concern about the heat dissipation generated in the bypass diode that would cause overheating and ultimately lead to the failure of the diode. Overheating may cause damage to the PV cell and the PV module. 201042770

Kukulka之1997年的美國專利第5,616,185號名稱為 “Solar Cell with Integrated Bypass Diode and Method”,文中 描述了 一整合太陽能電池旁路二極體組件,該組件涉及在 一太陽能電池的背面(非照射面)中形成至少一個凹部並在 各自的凹部内放置分離的低高度(low-profile)的旁路二極 體以使每個旁路二極體與該太陽能電池的背面近乎共面。 所描述的該等生產方法是複雜的且需要在該太陽能電池中 切割精準的溝槽。該等溝槽可導致該太陽能電池易碎,增 加了電池破損及良率損失的風險。再者,在本參考中所描 述的該等技術對於現代高效率晶矽PV電池可能將不是實際 的,因為薄膜旁路二極體大體上不能經受典型地在此類電 池中出現的高電流或由此類高電流而導致產生的加熱。U.S. Patent No. 5,616,185 to Kukulka, entitled "Solar Cell with Integrated Bypass Diode and Method", describes an integrated solar cell bypass diode assembly that is associated with a non-illuminated surface of a solar cell. At least one recess is formed in the recess and separate low-profile bypass diodes are placed in the respective recesses such that each bypass diode is nearly coplanar with the back side of the solar cell. The described production methods are complex and require precise grooves to be cut in the solar cell. These grooves can cause the solar cell to be fragile, increasing the risk of battery breakage and yield loss. Furthermore, the techniques described in this reference may not be practical for modern high efficiency crystalline PV cells because the thin film bypass diodes are generally unable to withstand the high currents typically found in such cells or This type of high current causes the resulting heating.

Nakagawa等人的2002年的美國專利第6,384,313 B2號 名稱為 “Solar Cell Module and Method of Producing the Same”,文中描述了在太陽能電池形成於其上之基板的同一 面上形成太陽能電池元件之一光接收部分及一旁路二極體 的方法。具有這些特徵的一太陽能電池只允許該基板一邊 的多個太陽能電池單元串聯連接。U.S. Patent No. 6,384,313 B2 to Nakagawa et al., entitled "Solar Cell Module and Method of Producing the Same", which describes the formation of light of a solar cell element on the same side of a substrate on which the solar cell is formed. A method of receiving a portion and a bypass diode. A solar cell having these features allows only a plurality of solar cells on one side of the substrate to be connected in series.

Asai的1993年的美國專利第5,223,044號名稱為“Solar Cell Having a By-Pass Diode”,文中提供了只具有兩個終端 的一太陽能電池及在該太陽能電池被形成於其上之一共用 半導體基板上形成之一整合旁路二極體。再者,上面兩專 利中描述的該等技術要求複雜的且昂貴的微電子技術方 法,這些微電子技術方法不容易併入到一生產線,且所產 201042770 生的該等旁路二極體將可能不能夠經受高電流及所產生的 熱量’當該旁路二極體需要傳導電流時這可能發生。Asa's 1993 U.S. Patent No. 5,223,044 is entitled "Solar Cell Having a By-Pass Diode", which provides a solar cell having only two terminals and a semiconductor substrate on which the solar cell is formed. One of the integrated bypass diodes is formed. Furthermore, the techniques described in the two patents above require complex and expensive microelectronics methods that are not easily incorporated into a production line and that the bypass diodes produced by 201042770 will It may not be able to withstand high currents and the heat generated. This may occur when the bypass diode needs to conduct current.

Kukulka的2004年的美國專利第6,784,358 B2號,名稱 為 “Solar Cell Structure Utilizing and Amorphous Silicon Discrete By-Pass Diode” ’文中描述了具有防護免於反向偏 壓損壞的一太陽能電池結構。該防護採用厚度不超過2-3微 米的一分離非晶矽旁路二極體以使其自該太陽能電池的一 表面只突出一小距離且不自該太陽能電池的該等邊突出。 該非晶半導體旁路二極體的該等終端藉由焊接電氣地連接 到一主動半導體結構之相對應的邊。爲了避免二極體破 損,將此類極薄且易碎的二極體焊接到該主動半導體基板 需要極高的準確度。另外,該非晶半導體旁路二極體不能 經受住可能發生在晶矽太陽能電池系統中之該等高電流及 所產生的溫度。U.S. Patent No. 6,784,358 B2 to Kukulka, entitled "Solar Cell Structure Utilizing and Amorphous Silicon Discrete By-Pass Diode", describes a solar cell structure with protection against reverse bias damage. The shield uses a separate amorphous germanium bypass diode having a thickness of no more than 2-3 micrometers such that it protrudes only a small distance from a surface of the solar cell and does not protrude from the sides of the solar cell. The terminals of the amorphous semiconductor bypass diode are electrically connected to corresponding sides of an active semiconductor structure by soldering. In order to avoid diode damage, the soldering of such extremely thin and fragile diodes to the active semiconductor substrate requires extremely high accuracy. In addition, the amorphous semiconductor bypass diode cannot withstand such high currents and temperatures that may occur in a germanium solar cell system.

Asai等人的美國專利第5,330,583號名稱為“Solar Battery Module” ’文中描述了包括用以串聯連接多個太陽 能電池的互連體及允許該等電池的輸出電流繞開一或多個 電池的一或多個旁路二極體。每個二極體是一片形薄二極 體且附接在一電池的一電極上或互連體之間。較特定地, 該等片形旁路二極體被連接到該太陽能電池的正面表面或 被定位在一太陽能電池的該面或被連接到一太陽能電池的 背面表面以防護一太陽能電池串列。當該等旁路二極體被 連接到該正面表面時,它們在該太陽能電池之正面表面上 直接地被焊接到似乎是匯流條之兩平行導體之一上。大體 201042770 上,在太陽能電池設計中,保持該太陽能電池的正面表面 透明以使對該正面表面的遮蔽保持到一最小程度是一目 標。由於他們的必要性,電流收集指與連接到該等指以收 集來自該太陽能電池的電流之匯流條通常是堵塞該正面表 面之可接受的唯一事物。大體上,指及匯流條具有保持它 們在該正面表面上所占面積至最小的寬度及長度尺寸。因 此,匯流條典型地具有一窄的寬度及因而Asai的該等旁路 二極體在寬度上必須小。雖然具有這樣一小寬度及長度的 旁路二極體可能能夠攜帶相對大的電流,但是由於它們的 面積小,它們因為電流流動趨於變熱並施加一局部極熱源 在二極體安裝於其上之該太陽能電池上。U.S. Patent No. 5,330,583 to the name of "Solar Battery Module", which is incorporated herein by reference, which is incorporated herein incorporated by reference in its entirety herein in its entirety in the the the the the the the the the the Or multiple bypass diodes. Each of the diodes is a thin piece of thin diode and is attached to an electrode or between interconnects of a battery. More specifically, the sheet-shaped bypass diodes are connected to the front surface of the solar cell or are positioned on the face of a solar cell or connected to the back surface of a solar cell to protect a solar cell string. When the bypass diodes are connected to the front surface, they are directly soldered to one of the two parallel conductors which appear to be bus bars on the front surface of the solar cell. In generally 201042770, in solar cell design, it is a goal to keep the front surface of the solar cell transparent so that the shadow of the front surface is kept to a minimum. Because of their necessity, current collecting fingers and bus bars connected to the fingers to collect current from the solar cells are generally the only acceptable things to block the front surface. In general, the fingers and bus bars have a width and length dimension that maintains their area on the front surface to a minimum. Therefore, the bus bars typically have a narrow width and thus the bypass diodes of Asai must be small in width. Although bypass diodes having such a small width and length may be capable of carrying relatively large currents, due to their small area, they tend to heat up due to current flow and apply a local extreme heat source to which the diodes are mounted. On the solar cell.

Jean P. Posbic與Dinesh S. Amin的US 2005/0224109 A1 名稱為 “Enhanced function photovoltaic modules”,文中描述 了包含至少一個具有一電介質基板及定位在該pv模組内特 別設計的金屬化的圖案之薄印刷電路板的PV模組。在該模 組中可存在一或多個此類板。該板的長度可以是大約5〇〇到 大約2000毫米且其寬度可以是大約10到大約5〇毫米且其厚 度可以是大約0.1到大約2毫米。在一實施例中,一或多個 旁路二極體電氣連接到該板及連接到該P V模組之相對應的 PV串列,從而提供遮蔽防護。雖然此發明允許將旁路二極 體嵌入該PV模組中並改進了其遮蔽防護,但是由於印刷電 路板在該模組中所占的區域,其降低了 Pv模組的效率。同 樣此電路板的歸耗散能力似乎是受限制的,因為其金屬 部分只佔據其厚度的一部分而其基板由電介質材料製成。 9 201042770 習知的是,安裝後,一pv模組的下方部分由於例如污 垢、雪的積累或甚至由於未切割其在一場地中所安裝的位 置之在該PV模組附近的草而具有一較大受遮蔽的機會。如 果遮蔽了一PV模組的任一小部分及特定地該下方部分,本 發明允許在該PV模組内PV電池特別的佈局來取得最低的 電力損失。此類佈局可能增加裝備有個別的旁路二極體的 PV串列數。例如,如果一PV模組包含60個電池,配置在3 個PV串列中,每個串列20個電池,且只有一個電池受遮蔽, 則該PV模組至少減少了其電力產生的33%。然而,如果這 60個電池遭配置在10個串列中,則一個電池的遮蔽將只導 致10%的電力損失。 【發明内容】 發明概要 依據本發明之一層面,本文提供了一太陽電池板裝 置,其包括具有前及後平面之一透明板基板及在該基板之 一周邊周圍延伸的一周邊邊緣、配置到在該後平面上的一 平面陣列中以使可操作以啟動該等太陽能電池的光可透過 該基板來啟動該等太陽能電池並使得在該基板的後平面上 相鄰於該周邊邊緣處形成一周邊邊限之多個太陽能電池。 多個導電體大體上在該周邊邊限内端對端的遭配置。多個 電極將該等太陽能電池電氣地連接到一起成為多個太陽能 電池串聯串列,每個串聯串列具有在該周邊邊限内電氣連 接到互相相鄰的一對相鄰的導電體中之各自的導電體之一 正極終端與一負極終端。該裝置進一步包括多個旁路二極 10 201042770 體,該等旁路二極體中的每個旁路二極體電氣地連接在一 各自的成對導電體之間,以在一相對應的串列中之一太陽 能電池受遮蔽時分流來自連接到該各自的成對導電體的該 相對應的串列的電流。 該串列可電氣地連接成一串聯,以使該串聯具有一第 一串列及一最後串列且其中該第一串列之一第一太陽能電 池及該最後串列之一最後太陽能電池被近乎互相相鄰來配 置。 該第一串列之該第一太陽能電池與該最後串列之該最 後太陽能電池可相鄰於該基板的一共同邊緣遭配置。 該等串列可由電極電氣地連接到一起以形成該串聯。 該等旁路二極體可包括平面二極體。 該裝置可進一步包括用以耗散由在各自旁路二極體内 流動之電流所產生的熱量之熱槽。 該等導電體可包括充當該等熱槽的各自的熱槽部分。 在操作中,各自旁路二極體可具有定義其一熱端及一冷端 的一熱梯度且該等各自旁路二極體可具有分別自該熱端及 該冷端發出之一熱端終端及一冷端終端。該熱端終端可連 接到該等導電體中之一各自的導電體之一各自的熱槽部 分。 該等各自的熱槽部分可包括該等導電體之各自的大體 上平坦的部分。 該等導電體可包括一第一類型的金屬箔帶及該等大體 上平坦的部分可具有在大約50微米到大約1000微米間的一 11 201042770 厚度及具有在大約3毫米到大約π毫米間的一寬度及具有 在大約3釐米到大約2〇〇釐米間的一長度。 該裝置可進一步包含與各自旁路二極體相關聯的終止 導體,且該等終止導體可包括一第二類型的一金屬猪帶, 該第二類型的該金屬羯帶具有小於該第一類型的該金屬猪 帶之該大體上平坦的部分之厚度及具有小於該第—類型的 該金屬fl帶之該大體上平坦的部分之長度。該第二類型的 該金屬落帶可具有連接到該科電體之—各自的導電體之 -第-端及連接到-各自时路二極體之該冷端之一第二 端。 該第二類型的該金屬箱帶可具有在大約3〇微米到大約 200微米間的-厚度,具有大致與該第一類型的金屬羯帶寬 度相同的-寬度及具有在大約3楚米到大約卿米間的一 長度。 第三類型的金屬箔帶來形 另外,該等導電體可由一 成,該第三類型的金屬«具有在大約3〇微米到大約200微 米間的-厚度,及具有大約在3毫米到大約13毫米間的一寬 度及具有在大約㉟米到大約2崎米間的一長度。該等熱 槽可包括電氣連接到該第三類型的各自金屬㈣之一第四 類型的各自金屬羯帶,且該第四類型的金屬㈣可具有大 於該第三類型的該等金屬箔帶厚度的一厚度。 該第四類型的金屬 金屬箔帶寬度相同的一 帶長度的一長度。 名π可具有大致與該第三類型的該 寬度及小於該第三類型的該金屬箔 12 201042770 該第四類型的該金屬箔帶可以在該第三類型的一各自 的金屬箔帶的一部分上。 在操作中,各自旁路二極體可具有定義其一熱端及一 冷端的一熱梯度且該等各自旁路二極體可具有分別自該熱 端及該冷端發出之一熱端終端及一冷端終端。該熱端終端 可電氣連接到該第四類型的一各自的金屬箔帶及該冷端終 端可電氣連接到該第三類型的一各自的金屬箔帶。 該第四類型的金屬箔帶可具有在大約50微米到大約 1000微米間的一厚度及與該第一類型的該金屬箔帶寬度大 致相同的一寬度及在大約3釐米到大約2 0釐米間的一長度。 該裝置可進一步包括覆蓋該等太陽能電池、該等導電 體及該等旁路二極體的一底墊(backing),以使該等太陽能 電池、該等導電體及該等旁路二極體在該前基板與該底塾 間受疊層以形成一疊層板。 該底墊可具有可操作以傳導來自該等導電體及該等旁 路二極體傳導之熱量的一浸透熱材料。 該底整可包括紹浸透Tedlar®。 該裝置可進一步包括在該周邊邊緣上之一導熱框架。 該框架可操作以支撐該板。 該第一及最後串列可具有自該前基板及該底墊之間延 伸以自該疊層板的一邊緣延伸之各自的終端。 該等太陽能電池可在該基板上以列及行來配置及該裝 置可具有一底部與一頂部。當該太陽能電池板裝置在使用 時,該底部可以可操作以低於該頂部遭安裝,及在位於該 13 201042770 氏/之纟部列中的太陽能電池可由該等電極電氣地連接 以疋義太陽電池板之一底部串列。 處在該等太陽能電池之該底部列上面的至少第一及第 =列中且處在該等太陽能電池之為該底部列所共有的該等 饤之至j -些打中之太陽能電池可電氣地連接到一起以定 義太陽能電池的-中間串列,其中該中間串列包括處於其 4對兩極之-第—太陽能電池及—最後太陽能電池,且其 中該中間串列之該等第-及最後太陽能電池在該等太陽能 電的同行中且在S亥等太陽能電池之相鄰列中。 該等多個串聯串列可包括多個中間串列。 可並列地配置該等中間串列中的一些。 可在該基板的頂部配置該第一串列的該第一太陽能電 池及該最後串列的該最後太陽能電池。 依據本發明之另-層面,本文提供了一在具有多個太 陽能電池串列的—太陽電池板中防護一太陽能電池串列免 受遮蔽的方法。該方法包含藉由分流電流經過位於支撐該 等太陽能電池的一基板之一周邊邊限内的導電體與一旁路 -極體來使得該電流被分流繞過具有至少一個受遮蔽太陽 能電池之任一太陽能電池串列,以使無論哪一串列具有一 受遮蔽太陽能電池,經過具有該受遮蔽太陽能電池的該串 列的電流都經由位於該周邊邊限内的導電體及一各自的旁 路二極體來分流’藉此將來自與具有至少一個受遮蔽太陽 能電池之各自串列相關聯的旁路二極體的熱量耗散分散到 在該周邊邊限周圍的不同位置。 201042770 使得電流被分流可包含將多個太+ 太^電池配置到具有 前及後面以及在該基底之一周邊周圍姑彳由 〒之一周邊邊緣之 一透明板基板的一後面上之一平面陵万丨丨由 早列中,以使得光可透 過該基板來啟動該等太陽能電池且佶媒兮 文讦嗞周邊邊限相鄰於 該周邊邊緣在該基板的後面上形成。多個 能電池電氣地連接到-起成為多個太陽能電池串聯串列, 其中每個串聯串列具有一正極終端及—負極終端。 ΟUS 2005/0224109 A1 to Jean P. Posbic and Dinesh S. Amin, entitled "Enhanced function photovoltaic modules", which describes at least one metallized pattern having a dielectric substrate and being specifically designed within the pv module. PV module for thin printed circuit boards. One or more such plates may be present in the mold. The plate may have a length of from about 5 〇〇 to about 2000 mm and a width of from about 10 to about 5 mm and a thickness of from about 0.1 to about 2 mm. In one embodiment, one or more bypass diodes are electrically connected to the board and to a corresponding series of PVs connected to the P V module to provide shielding protection. Although this invention allows the bypass diode to be embedded in the PV module and improves its shielding protection, it reduces the efficiency of the Pv module due to the area occupied by the printed circuit board in the module. The same dissipative capability of this board appears to be limited because its metal portion occupies only a portion of its thickness and its substrate is made of a dielectric material. 9 201042770 It is known that after installation, the lower portion of a pv module has one due to, for example, accumulation of dirt, snow, or even grass that is adjacent to the PV module at a location that is not cut in a field. Larger shaded opportunities. The present invention allows for a particular layout of the PV cells within the PV module to achieve the lowest power loss if any small portion of a PV module is shielded and specifically the lower portion. Such a layout may increase the number of PV strings equipped with individual bypass diodes. For example, if a PV module contains 60 batteries, arranged in 3 PV strings, each stringing 20 batteries, and only one battery is shielded, the PV module reduces at least 33% of its power generation. . However, if these 60 batteries are configured in 10 series, the shielding of one battery will only result in a 10% power loss. SUMMARY OF THE INVENTION In accordance with one aspect of the present invention, a solar panel apparatus is provided that includes a transparent plate substrate having front and rear planes and a peripheral edge extending around a periphery of one of the substrates, configured to Forming the solar cells in a planar array on the rear plane such that light operable to activate the solar cells is permeable to the substrate and forming a surface adjacent the peripheral edge on the back plane of the substrate Multiple solar cells with peripheral margins. A plurality of electrical conductors are disposed substantially end to end within the perimeter margin. The plurality of electrodes electrically connect the solar cells together to form a plurality of tandem series of solar cells, each series string having electrical connection to a pair of adjacent ones of the adjacent ones in the peripheral margin One of the respective electrical conductors has a positive terminal and a negative terminal. The apparatus further includes a plurality of bypass diodes 10 201042770 bodies, each of the bypass diodes being electrically connected between a respective pair of electrical conductors to correspond to each other One of the series of solar cells is shunted to shunt current from the corresponding series connected to the respective pair of electrical conductors. The series can be electrically connected in a series such that the series has a first series and a last series and wherein one of the first series of solar cells and the last series of solar cells are near Configured next to each other. The first solar cell of the first series and the last solar cell of the last series may be disposed adjacent to a common edge of the substrate. The series can be electrically connected together by electrodes to form the series. The bypass diodes can include planar diodes. The apparatus can further include a heat sink for dissipating heat generated by current flowing in the respective bypass diodes. The electrical conductors can include respective heat sink portions that act as the heat sinks. In operation, each of the bypass diodes may have a thermal gradient defining a hot end and a cold end and the respective bypass diodes may have one of the hot end terminals respectively from the hot end and the cold end And a cold end terminal. The hot terminal can be connected to a respective hot groove portion of one of the respective conductors of the conductors. The respective heat sink portions may include respective substantially flat portions of the conductors. The electrical conductors can include a first type of metal foil strip and the substantially planar portions can have an 11 201042770 thickness between about 50 microns and about 1000 microns and have a thickness between about 3 mm and about π mm. a width and a length of between about 3 cm and about 2 cm. The apparatus can further include termination conductors associated with respective bypass diodes, and the termination conductors can include a second type of metal pigtail, the second type of metal ribbon having less than the first type The thickness of the substantially flat portion of the metal pig band and having a length that is less than the substantially flat portion of the metal fl band of the first type. The metal drop strap of the second type may have a first end connected to the respective electrical conductor of the electrical body and a second end connected to the cold junction of the respective time diode. The second type of metal box strip can have a thickness of between about 3 microns and about 200 microns, having a width that is substantially the same as the width of the first type of metal strip and having a width of about 3 to about A length between the meters. A third type of metal foil is formed in addition to the conductors, the third type of metal «having a thickness of between about 3 Å and about 200 microns, and having a thickness of between about 3 mm and about 13 A width between millimeters and a length between about 35 meters and about 2 square meters. The heat sinks may include respective metal tantalum strips electrically connected to one of the fourth types of respective metal (four) types, and the fourth type of metal (four) may have a thickness greater than the third type of the metal foil strips a thickness. The fourth type of metal foil has a length of one strip of the same length. The name π can have the width of the third type and the metal foil 12 of the third type. 201042770. The metal foil strip of the fourth type can be on a portion of a respective metal foil strip of the third type. . In operation, each of the bypass diodes may have a thermal gradient defining a hot end and a cold end and the respective bypass diodes may have one of the hot end terminals respectively from the hot end and the cold end And a cold end terminal. The hot end terminal can be electrically connected to a respective metal foil strip of the fourth type and the cold end terminal can be electrically connected to a respective metal foil strip of the third type. The fourth type of metal foil strip may have a thickness between about 50 microns and about 1000 microns and a width that is substantially the same as the width of the metal foil strip of the first type and between about 3 cm and about 20 cm. One length. The device may further include a backing covering the solar cells, the electrical conductors, and the bypass diodes to enable the solar cells, the electrical conductors, and the bypass diodes A laminate is formed between the front substrate and the bottom plate to form a laminate. The underpad can have a heat permeable material operable to conduct heat from the conductors and the bypass diodes. The bottom can include Tedlar® soaked. The device can further include a thermally conductive frame on the peripheral edge. The frame is operable to support the panel. The first and last strings can have respective terminations extending from between the front substrate and the backing pad to extend from an edge of the laminate. The solar cells can be arranged in columns and rows on the substrate and the device can have a bottom and a top. When the solar panel device is in use, the bottom portion can be operable to be mounted below the top portion, and the solar cells located in the crest portion of the 13 201042770 / can be electrically connected by the electrodes to derogate the sun One of the bottoms of the panel is in series. The at least the first and the third columns above the bottom row of the solar cells and the solar cells of the solar cells that are common to the bottom row may be electrically Connected together to define an intermediate series of solar cells, wherein the intermediate series comprises - the first solar cell and the last solar cell in its four pairs of poles, and wherein the intermediate series of the first and last The solar cells are in the peers of such solar power and in adjacent columns of solar cells such as Shai. The plurality of series strings can include a plurality of intermediate strings. Some of the intermediate strings can be configured side by side. The first series of the first solar cells and the last series of the last solar cells may be disposed on top of the substrate. In accordance with another aspect of the present invention, a method of protecting a solar cell string from obscuration in a solar panel having a plurality of solar cells is provided. The method includes shunting current through a conductor and a bypass body in a peripheral edge of a substrate supporting one of the solar cells to bypass the current having at least one shaded solar cell The solar cells are arranged in series so that no matter which series has a shielded solar cell, the current passing through the series of the shielded solar cells passes through the electrical conductors located in the peripheral margin and a respective bypass The poles are shunted 'by thereby dissipating heat dissipation from the bypass diode associated with the respective series of at least one shaded solar cell to different locations around the perimeter margin. 201042770 allows the current to be shunted to include a plurality of too + too ^ batteries configured to have a front side and a back side and one of the back sides of one of the peripheral edges of the base plate The solar cells are activated by the light source through the substrate, and the peripheral edges of the media are formed adjacent to the peripheral edge on the back surface of the substrate. A plurality of energy cells are electrically connected to form a series of a plurality of solar cells in series, wherein each series string has a positive terminal and a negative terminal. Ο

該方法可進一步包含將該等太陽能電池與該等電極連 接以使該第-串列的該第-太陽能電池與該最後串列的該 最後太陽能電池遭配置在該基板的頂部。 本發明可提供PV模組之較佳及高朗遮蔽防護。 本發明還可提供不僅PV串列數而且還有在每個串列中 的電池數視PV電池_型或在钱位置處ρν模組及遮蔽 條件而變化之可能性。 已發現用具有如上所列舉之尺寸的導電體提供了足夠 的熱量耗散。例如諸如由來自^_ISQVQlta之知曉為The method can further include connecting the solar cells to the electrodes such that the first solar cell of the first series and the last solar cell of the last series are disposed on top of the substrate. The invention can provide better and high protection shielding of the PV module. The present invention may also provide the possibility of not only the number of PV strings but also the number of cells in each series depending on the PV cell type or the ρν module at the money position and the shielding conditions. It has been found that electrical conductors having the dimensions recited above provide sufficient heat dissipation. For example, such as known by ^_ISQVQlta

Tedlar⑧的一產品提供之具有域的該底塾的❹,提供了 由該等旁路二極體與導電體經過MPV模組背面之額外的熱 量耗散’當在任-PV_M的任一pVf池受遮蔽時,這使 »亥等万路—極體的溫度在實地狀況下大體上保持在以叱 以下。 該等導電體及^路二極體定位在與該pv模組之該等邊 緣極接近的位£,這為該pv模組提供足㈣電氣絕緣。 虽所有的PV電池處在相同的照射下時該等導電體不傳 15 201042770 .電/爪仁是虽任一串列中的一太陽能電池受遮蔽時該等 導電體必定傳送電流。 藉由允許該等終端引線延伸經過該背板内的一孔或多 孔或、、、二過4疊層板之該邊緣’可在該模組之終端引線與該 外部負載間提供一連接。 +精由將該等終端引線伸出該疊層板邊緣,消除了在該 換組後表面上的_f知的連接盒的需要,藉此減小了模 組生產的複雜度及成本。 【-資方也 '七-】 較佳實施例之詳細說明 參考第1圖’大體上以1〇顯示依據本發明之一第一實施 例之-太陽電池板裝置。該裝置⑴包含—透明板基板12, 該透明板基板U具有前平則4及後平㈣關繞該基板U 之一周邊延伸之一周邊邊緣18。 該裝置10進一步包括遭配置到在該後平面16上的-平 面陣列中之多個太陽能電池22,以使可操作以啟動該等太 陽能電池22的光可進人該基板的前面14並通财基板邮 啟動該等太㈣電池22且使得-周邊輕24相鄰該周邊邊 緣18在該基板12的該後平面16上形成。 該裝置H)進-步包括大體上端對端配置在該周邊邊限 24中之多個導電體26。 該裝置職-步包括將該等太陽能電㈣電氣地連接 到-起成為多個太陽能電池22的串聯串列3〇之 28,每個串聯串_具有電氣地連接到在關 中 16 201042770 互相相鄰的-對相鄰的導電體26之各自的導體之一正極終 端32及—負極終端34。讀等電極28大體上如在篇年3仙 日a開的申#人的國際專利公開案第购挪键⑷^ 號案中所描述的。 Ο Ο 。亥裝置10進纟包括多個旁路:極㈣。每個旁& 極體36電氣地連接在各自的成料f體26之間,以在-相 對應串列中的-太陽能電池22受遮蔽時分流來自連接到該 各自的成對導電體之該相對應的串列30的電流。 >考第2圖該裝置⑽進一步包括用以耗散由在各自 旁路一極體36内流動之電流產生的熱量之熱槽觀。每個二 極體36具有-相關聯的熱槽1〇卜在所示的實施中,每個導 電體26包括充當該熱槽1〇1之一各自的熱槽部分1〇3。 在所示的實施例中,該等旁路二極體36是平面旁路二 極體’諸如可得自日本的日本英達株式會社(Nih〇n interOne of Tedlar's products provides the enthalpy of the bottom of the field, providing additional heat dissipation from the bypass diodes and conductors through the back of the MPV module 'when any pVf pool in the -PV_M When it is shielded, this keeps the temperature of the body of the body and the body substantially below 叱 in the field. The conductors and the diodes are positioned in close proximity to the edges of the pv module, which provides sufficient electrical insulation for the pv module. These electrical conductors do not pass when all of the PV cells are under the same illumination. The electric/claws are such that when one of the solar cells in any of the series is shielded, the electrical conductors must carry current. A connection between the terminal leads of the module and the external load can be provided by allowing the terminal leads to extend through a hole or holes in the backing plate or the edge of the laminated board. The finishing of the terminal leads beyond the edge of the laminate eliminates the need for a junction box on the rear surface of the swap, thereby reducing the complexity and cost of the mold assembly. [--Fundamental 'Seven-> Detailed Description of Preferred Embodiments Referring to Fig. 1', a solar panel device according to a first embodiment of the present invention is generally shown at 1 turn. The device (1) comprises a transparent plate substrate 12 having a front edge 4 and a rear edge (four) surrounding a peripheral edge 18 extending around a periphery of the substrate U. The apparatus 10 further includes a plurality of solar cells 22 disposed in a planar array on the rear plane 16 such that light operable to activate the solar cells 22 can enter the front face 14 of the substrate and pass through The substrate activates the four (four) cells 22 such that a peripheral light 24 is adjacent the peripheral edge 18 formed on the rear plane 16 of the substrate 12. The apparatus H) further comprises a plurality of electrical conductors 26 disposed substantially end to end in the peripheral margin 24. The device operation includes electrically connecting the solar powers (four) to a series of serials 3 of a plurality of solar cells 22, each series string _ having an electrical connection to each other adjacent to the Guanzhong 16 201042770 One of the respective conductors of the adjacent conductors 26 is a positive terminal 32 and a negative terminal 34. The read-equivalent electrode 28 is substantially as described in the International Patent Publication No. (4) No. of the International Patent Publication No. Ο Ο. The 10 device includes several bypasses: pole (four). Each of the side & pole bodies 36 is electrically coupled between the respective material f bodies 26 to shunt from the respective pair of electrical conductors when the solar cells 22 in the corresponding series are shielded. The current of the corresponding string 30. > Test Figure 2 The device (10) further includes a heat sink view for dissipating heat generated by current flowing in the respective bypass body 36. Each of the diodes 36 has an associated heat sink 1 . In the illustrated embodiment, each of the conductors 26 includes a respective heat sink portion 1 〇 3 that acts as one of the heat sinks 1〇1. In the illustrated embodiment, the bypass diodes 36 are planar bypass diodes such as Nih〇n inter, available from Japan.

Electronics Corporation)第UCQS30A045號部件或自美國德 克薩斯州達拉斯的達爾(Diodes)公司第PDS1040L號部件。 當該旁路二極體36在操作中時’其具有定義該旁路二極體 之一熱端44及一冷端46的一熱梯度42。因而該旁路二極體 36可視為具有分別自該熱端44及該冷端46發出之一熱端終 端39及一冷端終端64。該熱端終端39電氣地連接到一各自 的導電體26之一各自的熱槽部分1〇3。 在所示的該實施例中,該等熱槽部分103包括該導電體 26之各自的大體上平坦部分27。該等平坦部分27延伸該等 導電體26的整個長度,但不需這樣做。在此實施例中,該 17 201042770 等導電體26由一第一類型金屬箔帶構成及該等大體上平坦 部分27具有在大約50微米到大約1000微米間的一厚度31及 在大約3毫米到大約13毫米間的一寬度33及在大約3釐米到 大約200釐米間的一長度35。因此每個旁路二極體36的該熱 端終端39諸如藉由焊接電氣地連接到一導電體26之一各自 的平坦部分27,以使來自該旁路二極體的熱量可沿著該導 電體的長耗散。下面將描述該平坦部分27提供一熱量傳送 表面以將熱量傳送到一底墊部分。 該裝置進一步包括與該等旁路二極體36相關聯的終止 導體29。該等終止導體29由一第二類型的一金屬箔帶構 成,其具有小於該第一類型的金屬箔帶之該大體上平坦部 分27之厚度31的一厚度53及小於該第一類型的金屬箔帶之 該大體上平坦部分之一長度35的一長度55。該終止導體29 具有諸如藉由焊接電氣地連接到該等導電體26之一各自導 電體的一第一端73及諸如藉由焊接電氣地連接到該各自旁 路二極體36之該冷端終端64的一第二端71。在所示的該實 施例中該第二類型的金屬箔帶具有在大約3 0微米到大約 200微米間的一厚度53,大致與該第一類型的金屬箔之一寬 度相同的一寬度50及在大約3釐米到大約10釐米間的一長 度55且比該第一類型的金屬箔帶較薄。 要明白的是藉由首先將該熱端終端39電氣地連接到該 第一類型之導電體26之該平坦部分27,由於該第一類型的 該導電體比由該第二類型的金屬箔形成的該終止導體2 9 厚5該旁路二極體3 6由該導電體相對牢固地保持且該終止 18 201042770 導體可用來克服在該旁路二極體最終電氣地連接到之該等 相對的導電體間的任何未對準。 該等終止導體29遭配置在該周邊邊限24上以使該第二 端71位於一各自旁路二極體36的該冷端終端64下,但是與 一第一相鄰導電體26隔開一間隙38且該第二端73位於一第 二相鄰導電體26下面。該導體26的一部分75與該終止導體 29的該第二端73重疊以使該導電體的一端邊緣61與該終止 導體的一端邊緣63隔開在大約5毫米到15毫米間的一距離 45 ° 當在該間隙之該等相對端上的該等導體26、29經受該 太陽電池板安裝於其内的該系統之一額定電壓時,該間隙 38必須足夠寬以防止電弧發生。典型地在大約2到大約3毫 米間的一間隙對於橫跨該間隙3 8之大約一 10 0伏的電位差 而言將是足夠的。 由在該裝置10内的太陽能電池22之串列30的數量與配 置來決定該等導電體26的定位及旁路二極體36的定位及數 量,因為每個串列打算具有其自己的旁路二極體。 參考第3圖,在一可選擇的實施例中,該等導電體26由 一第三類型的金屬箔帶形成,其具有在大約30微米到大約 200微米間的一厚度5 7及在大約3毫米到大約13毫米間的一 寬度56及在大約3釐米到大約200釐米間的一長度58。因此 在此實施例中的該等導電體26與上面描述的該等薄終止導 體29類似,只是較長。上面描述的該第二類型的金屬箔帶 類似於在此實施例中所使用的該第三類型的金屬箔帶。 19 201042770 在此實施例中,該等熱槽101包括諸如藉由焊接連接到 各自的第三類型金屬箔帶之各自的第四類型的金屬箔帶 40。該等第四類型的金屬箔帶40具有大於該等第三類型的 金屬箔帶之厚度57的一厚度52及在所示的該實施例中,該 第四類型的金屬箔帶40具有大致與該第三類型的金屬箔帶 相同的一寬度50及小於該第三類型的金屬箔帶之長度58的 一長度54。該第四類型的金屬箔帶4〇具有在大約50微米到 大約1000微米間的一厚度52及大致與該第三類型的金屬箔 帶之寬度5 6相等的一寬度5 0及在大約3釐米到大約10釐米 間的一長度54,因此比該第三類型的金屬箔帶較厚且與該 第一類型的金屬箔帶類似。 該等旁路二極體36首先電氣地連接到熱槽101,接著該 等熱槽電氣地連接到它們各自導電體26。該等導電體26定 位在該基板的該周邊邊限2 4上以在相鄰的導電體2 6間流出 間隙43,在必要的情況下,允許自該等旁路二極體36的該 冷端46延伸的終端64到在與該等熱槽101所在的該等端相 對之該等間隙43的該等端上之該等導電體的連接。自該等 旁路二極體36之該等冷端46延伸的該等終端64藉由焊接連 接到各自的導電體26。 當在該間隙之相對端上的該等相鄰的導體26經受該太 陽電池板安裝於其内之該系統的一額定電壓時,該等間隙 43必須足夠寬以防止電弧發生。典型地在大約2到大約3毫 米間的一間隙43對於橫跨該間隙之一 100伏的電位差而言 將是足夠的。 20 201042770 的:==:4°在副第三類型的金綱 第四類型的金屬^焊接而被牢固接合於其上,以使該 帶連接到騎久1端邊緣6G與該第四類型的金屬猪 的。因此::"導電體26之一端邊緣62大體上是共面 ,於°亥等導電體26遠比該第等四類型的金屬猪 兮各自2而料第四㈣的金射1帶沿著它們連接到的 該各自導電體26只延伸_部分。Electronics Corporation) UCQS 30A045 component or part of Diodes Corporation PDS 1040L from Dallas, Texas. When the bypass diode 36 is in operation, it has a thermal gradient 42 defining a hot end 44 and a cold end 46 of the bypass diode. Thus, the bypass diode 36 can be considered to have one of the hot end terminals 39 and one of the cold end terminals 64 from the hot end 44 and the cold end 46, respectively. The hot termination terminal 39 is electrically connected to a respective heat sink portion 1〇3 of one of the respective electrical conductors 26. In the illustrated embodiment, the hot trough portions 103 include respective substantially flat portions 27 of the electrical conductors 26. The flat portions 27 extend the entire length of the conductors 26, but need not be done. In this embodiment, the electrical conductors 26 of the 17 201042770 are constructed of a first type of metal foil strip and the substantially planar portions 27 have a thickness 31 between about 50 microns and about 1000 microns and at about 3 mm to A width 33 between about 13 mm and a length 35 between about 3 cm and about 200 cm. Thus the hot end terminal 39 of each bypass diode 36 is electrically connected to a respective flat portion 27 of one of the conductors 26, such as by soldering, such that heat from the bypass diode can follow The long dissipation of the electrical conductor. The flat portion 27 will be described below to provide a heat transfer surface for transferring heat to a bottom pad portion. The device further includes a termination conductor 29 associated with the bypass diodes 36. The terminating conductors 29 are formed of a metal foil strip of a second type having a thickness 53 that is less than the thickness 31 of the substantially flat portion 27 of the metal foil strip of the first type and less than the first type of metal A length 55 of the length 35 of one of the substantially flat portions of the foil strip. The termination conductor 29 has a first end 73 electrically connected to a respective one of the conductors 26 by soldering and the cold junction electrically connected to the respective bypass diode 36, such as by soldering. A second end 71 of the terminal 64. In the illustrated embodiment, the second type of metal foil strip has a thickness 53 between about 30 microns and about 200 microns, a width 50 that is substantially the same width as one of the first type of metal foils and A length 55 between about 3 cm and about 10 cm is thinner than the first type of metal foil strip. It is to be understood that by first electrically connecting the hot end terminal 39 to the flat portion 27 of the first type of electrical conductor 26, since the first type of electrical conductor is formed from the second type of metal foil The termination conductor 2 9 is thick 5 and the bypass diode 36 is relatively firmly held by the conductor and the termination 18 201042770 conductor can be used to overcome the relative electrical connection that is ultimately electrically connected to the bypass diode Any misalignment between the conductors. The termination conductors 29 are disposed on the peripheral margin 24 such that the second end 71 is located under the cold end terminal 64 of a respective bypass diode 36, but is spaced apart from a first adjacent conductor 26 A gap 38 and the second end 73 are located below a second adjacent electrical conductor 26. A portion 75 of the conductor 26 overlaps the second end 73 of the termination conductor 29 such that an end edge 61 of the conductor is spaced from an end edge 63 of the termination conductor by a distance of 45° between about 5 mm and 15 mm. When the conductors 26, 29 at the opposite ends of the gap are subjected to one of the rated voltages of the system in which the solar panel is mounted, the gap 38 must be wide enough to prevent arcing. A gap typically between about 2 and about 3 millimeters will be sufficient for a potential difference of about one hundred and ten volts across the gap 38. The positioning and number of the conductors 26 and the number and arrangement of the bypass diodes 36 are determined by the number and configuration of the series 30 of solar cells 22 within the device 10, as each string is intended to have its own side. Road diode. Referring to Figure 3, in an alternative embodiment, the conductors 26 are formed from a third type of metal foil strip having a thickness of between about 30 microns and about 200 microns and at about 3 A width 56 between millimeters to about 13 millimeters and a length 58 between about 3 centimeters and about 200 centimeters. Thus, the conductors 26 in this embodiment are similar to the thin termination conductors 29 described above, but only longer. The second type of metal foil tape described above is similar to the third type of metal foil tape used in this embodiment. 19 201042770 In this embodiment, the heat sinks 101 comprise a fourth type of metal foil strip 40, such as by welding, to each of the respective third type of metal foil strips. The fourth type of metal foil strip 40 has a thickness 52 greater than the thickness 57 of the third type of metal foil strip and, in the illustrated embodiment, the fourth type of metal foil strip 40 has substantially The third type of metal foil strip has the same width 50 and a length 54 that is less than the length 58 of the third type of metal foil strip. The fourth type of metal foil strip 4 has a thickness 52 between about 50 microns and about 1000 microns and a width 50 equal to the width 5 6 of the third type of metal foil strip and about 3 cm. A length 54 of between about 10 cm is therefore thicker than the third type of metal foil strip and similar to the first type of metal foil strip. The bypass diodes 36 are first electrically connected to the heat sink 101, which are then electrically connected to their respective electrical conductors 26. The conductors 26 are positioned on the peripheral edge 24 of the substrate to flow out of the gap 43 between adjacent conductors 26, allowing the cold from the bypass diodes 36, if necessary. The terminals 64 extending from the ends 46 are connected to the conductors at the ends of the gaps 43 opposite the ends of the heat sinks 101. The terminals 64 extending from the cold ends 46 of the bypass diodes 36 are connected to the respective electrical conductors 26 by soldering. When the adjacent conductors 26 on opposite ends of the gap are subjected to a nominal voltage of the system in which the solar panel is mounted, the gaps 43 must be wide enough to prevent arcing. A gap 43 typically between about 2 and about 3 millimeters will be sufficient for a potential difference of 100 volts across one of the gaps. 20: 201042770: ==: 4° is firmly bonded to the third type of metal of the third type of metal, welding, so that the belt is connected to the long-end edge 6G and the fourth type of metal pig's. Thus::" one end edge 62 of the conductor 26 is substantially coplanar, and the conductor 26 at °H is much longer than the fourth type of metal bristle 2 and the fourth (four) gold shot 1 along The respective electrical conductors 26 to which they are connected extend only the _ portion.

Ο 、車接路二極體36的該等熱端終端39諸如藉由焊接熱 禅im “ Γ連制由該第四㈣的金射1帶4G提供之該熱 &quot;及轉冷端終端64諸如藉由焊接連接到由該第三類 型的金屬箱帶提供之該導電體26。 再次說明,由在該裝置10内的太陽能電池22之串列30 的數量與配置來決定該等導電體26的定位及旁路二極體% 的疋位及數量,g為每㈣浙算具有其自己的旁路二極 體。 參考第4圖’在所示的實施例中,該等太陽能電池22配 置在该基板(在第丨圖中以12顯示)上的列7〇及行72中。該裝 置10可視為具有一底部74及一頂部76,其中當該太陽電池 板裝置10在使用時,該底部可操作以低於該頂部來安裝。 典型地,太陽電池板是矩形的,具有一短邊與一長邊且通 常使該等短邊在該板的頂部與底部來安裝。該等太陽電池 板通常遭連接到與垂直成一角度保持該等太陽電池板直立 的安裝結構。當該等板使用時’定義該等列7〇及行72以使 列大體上水平地延伸及該等行大體上垂直地延伸。 21 201042770 在所示的該實施例中,該太陽電池板裝置1 〇具有由電 極(在第1圖中以2 8顯示)電氣地連接到一起的4 8個太陽能電 池,用以形成第一、第二、第三、第四、第五、第六及第 七串列80、82、84、86、88、90及92的一串聯組。該第一 串列80具有第一及最後太陽能電池94及96及其間的多個太 陽能電池,所有的電池都由該等電極(28)串聯連接。該第一 太陽能電池94具有面向該基板(12)的一正面,其作為該串列 80之一正極終端100且還作為整個裝置10之一正極終端 102。因此,在第1圖中以104最佳可見的一第一終止電極遭 連接到該第一串列80之該第一太陽能電池94的正面。該第 一終止電極104具有離開該基板12向外延伸用以連接到例 如一正極終端導體(圖未示)以使得該太陽電池板的該正極 終端102被連接到一外電路的一第一平面導體106。 類似的,該第七(最後)串列92具有第一及最後太陽能電 池108及110及其間的多個太陽能電池,所有的電池都由該 等電極(28)串聯連接。該最後太陽能電池110具有作為該最 後串列92之一負極終端114且還作為整個板之一負極終端 116的一後面(112)。因此,在第1圖中以118最佳可見的一第 二終止電極遭連接到該最後串列92之該最後太陽能電池 110的後面(112)。該最後終止電極(118)具有離開該基板(12) 向外延伸用以連接到例如一負極終端導體(圖未示)以使得 該太陽電池板的該負極終端被連接到該外電路的一第二平 面導體(120)。 在所示的該實施例中,配置該等串歹1丨80-92以以在該裝 22 201042770 置10頂部左手邊的該第一串列80開始,在該左手邊以該等 第二及第三串列82及84向下接著。該等第二及第三串列82 及84可視為中間串列。每個中間串列包括處於該中間串列 之相對極的一第一太%能電池130及一最後太陽能電池 132,且該中間串列之該等第一及最後太陽能電池13〇及132 處在同一行72中且在相鄰列70中。藉由使該等中間串列的 該等第一太陽能電池130及該等最後太陽能電池132位在同 一行72及相鄰列70當中,每個中間串列之該等第一及最後 太陽能電池可位於與該太陽電池板之一邊緣相鄰,在此實 例中,諸如在第1圖以134所示之一左手邊緣(自背面看),因 而相鄰該周邊邊限(24)以幫助每個中間串列之該等第一及 最後太陽能電池130及132連接到在該周邊邊限内之各自的 導電體(26)及旁路二極體(36)。 該第四串列86由在該裝置10之底部74的一列太陽能電 池構成。該等第五及第六串列88及90在該裝置10的右手邊 向上延伸並作為具有相鄰於該周邊邊限(24)遭配置之第一 及最後太陽能電池130、132之附加的中間串列。該等第五 及第六串列88及90分別與該等第三及第二串列84及82並 排。該第七串列92是位在該裝置10之頂部右手區域内的該 最後串列。因此,該等第一及最後串列80及92在該裝置1〇 之頂部部分76内互相相鄰遭配置。 另外,該最後串列92之該最後太陽能電池110相鄰於該 第一串列80之該第一太陽能電池94接近地遭配置,且這使 得分別連接到該等第一及最後串列之該等正極及負極終端 23 201042770 (100、114)的該等第一及第二平面導體互相相鄰的遭配置以 允許該板的該等正極及負極終端導體互相靠近且相鄰的被 定位。在所示的該實施例中,該第一串列8〇之該第一太陽 能電池94與該最後串列92之該最後太陽能電池11〇相鄰於 一共同邊緣遭配置,即該基板12的該頂部邊緣(在第丨圖中 以140顯示)’這使得該板的該等正極及負極終端與1〇6 能夠位於該太陽電池板的頂部邊緣(14〇)。 以該等太陽能電池如上所描述的那樣遭配置及連接, 要明白的是,每個串列80-92之該等第一及最後太陽能電池 相鄰於該周邊邊限(24)遭定位。這使得諸如在第丨圖中以 142、144、146、148、150、152所示之額外的導電體能夠 被電氣地連接到該等電極而將相鄰的串列連接到一起以延 伸到該周邊邊限(24)内,並連接到在該周邊邊限内電氣地連 接到各自的串列80-92之旁路二極體(36)之相對應的導電體 (26)。 將該等電極連接到該周邊邊限24内之該等導電體26的 °亥專導電體(142-152)希望具有與在周邊邊限内的該等導電 體26大致相同的寬度及厚度,但具有適當的長度以在該相 鄰周邊邊限内的該等導電體與該等電極2 8之間延伸而將該 串聯之相鄰的串列80_92電氣地連接到一起。 返回參考第1圖,在所示的該實施例中還提供了 一個組 旁路二極體160用以當例如整個板大約50%的太陽能電池 受遮蔽時分流流經整個組之電流。該組旁路二極體可以 以習知的方式位於該基板外一連接盒内,但此二極體160如 24 201042770 所示可以可選擇地併入在該基板12上。爲了這樣做,在該 周邊邊限24内相鄰於該頂部邊緣140的導電體162與164被 分別地連接到該第一及第二平面導體106與120。如上所 述,自該組旁路二極體160之一熱端(圖未示)及一冷端(圖未 示)延伸的引線(圖未示)可以以如上所述之關於該等旁路二 極體36相同的方式連接。 因此,在製造裝置10期間,自該等電極28延伸將該等 ^ 串列連接到一起之該等導電體142-152延伸到該周邊邊限 〇 24内並置於該周邊邊限内之各自的導電體26上。接著定位 . 該等導電體26以使該等旁路二極體36圍繞該周邊邊限24相 對均勻的隔開,接著自該等電極28延伸將該等串列連接到 一起之該等導電體142-152被焊接到在該周邊邊限24内的 ' 該等導電體26上。應該明白的是在該周邊邊限24内的一些 導電體26將縱向地對齊,諸如在該周邊邊限24之與該太陽 電池板的該等長邊相關聯的部分内之該等導電體26,而其 Q 它的導電體將成直角對齊以在該周邊邊限内的拐角處延 伸,大體上如153所示。在直角處相遇之該等導電體26的連 接可藉由例如焊接或超音波焊接來完成。 參考第5圖,在該周邊邊限24内的該等導電體26及旁路 二極體36已如所要求遭連接後,使一底墊17〇位在該基板12 之上來覆蓋該等太陽能電池22、該等導電體26及該等旁路 二極體36,以形成具有該等電極、太陽能電池、導體、熱 槽及旁路二極體夾在該基板12與該底墊17〇之間之一疊層 板。該底墊170希望地具有一浸透導熱材料,可操作以傳導 25 201042770 來自該等熱槽101及該等旁路二極體的熱量。該底塾170例 如可以是紹浸透(aluminum-impregnated)Tedlar®。 該等正極及負極終端導體106及120可自該前基板12及 該底墊170之間延伸以自該疊層板的頂部邊緣140延伸用於 終止。或參考第6圖’可在該底塾170的一背面176内割開一 開口或多個開口 172及174以允許該等正極及負極終端導體 106及120穿經該底墊的背面176延伸及自該底墊的背面176 延伸,用來在諸如例如在太陽電池板上通常使用的由泰科 電子有限公司(Tyco Electronics Ltd)提供的一習知的連接盒 内終止。 希望地,整個裝置諸如藉由習知的用於疊層太陽電池 板的技術被疊層以形成該疊層板。可圍繞該疊層板的該周 邊配置一導熱框架180以防護該疊層板的邊緣並耗散來自 5亥等旁路—極體36、該等熱槽1〇1及該底墊的熱量。該 框架180例如可由銘製成且可幫助用來安裝該板的機械的 支撐。 加上面提到的該等熱槽101的該等長度結合該底墊17〇及 框木18G的熱量耗散特性足以適當地耗散由料旁路二極 體所產生的熱量以將該等旁路二極體的接面溫度維持在 製ia商推薦的操作範圍内。 第1 4 5與6圖貫施例中所示的該串列配置的一特 疋的優點疋獨立地旁路每個串細_92及太陽能電池的該 底部列即該第四串觸是-單-的串列。參考_,在設 備中’太陽能電池的該底部列即該第四串觸可能由於例 26 201042770 如積雪或葉子而被剝奪光的情況下,將會旁路掉該串列而 不影響該板中該等剩餘串列80-84及88-92的正常操作。當旁 路掉該第四串列86時,防護此串列的該旁路二極體36將開 始加熱及連接到該旁路二極體36的該熱槽將耗散此熱量到 該底墊170及該框架180,這可熔化積雪用來提供一自我清 理效果。 在沒有清理積雪或允許葉子在該裝置10底部74的周圍 〇 繼續生長的情況下,由於由積雪或葉子所導致的遮蔽越積 越高,最終,該等第三及第五串列84及88將變為受遮蔽且 被旁路掉,但是該等串列甲的剩餘串列即該第一8〇、第二 - 82、第六90及第七92串列將仍然運轉。因此最初地,當只 該第四串列86受遮蔽時,該裝置1〇仍然能夠提供其電力生 產能力的42/48=87.5%(由於該旁路二極體而損失較小)及當 破等第三及第五串列84及88亦受遮蔽時,該太陽能電池仍 然能夠提供其其電力生產能力的大約50%。 Ο 由於該等串列80-92由串聯連接的太陽能電池(22)構 成’橫跨在任一受遮蔽的太陽能電池兩端將出現的最大反 向電壓是由在該串列中該等剩餘太陽能電池所產生的該等 電壓加上該旁路二極體正向壓降的總和。在所示的該實施 例中,該等串列80·92中的每個串列由6-9個太陽能電池(22) 構成。此在每個串列中相對低的太陽能電池數導致在該串 列中之任一受遮蔽太陽能電池上一低的最大反向電壓。因 而在串列中有該等6個太陽能電池的情況下,當一個受 遮蔽時,其餘的五個太陽能電池每個產生一0.56V的電壓, 27 201042770 產生2.8V的一總電壓貢獻(這來自於該等未受遮蔽的電 池),加上由於來自該模組之該等剩餘串列的電流所產生之 橫跨在該旁路二極體(36)兩端的一0.7V電壓降,導致橫跨在 該受遮蔽的太陽能電池兩端之一 3.5V的總反向電壓。上面 描述的旁路具有少量太陽能電池(22)之分離串列的技術導 致一較低反向電壓橫跨在該受遮蔽的太陽能電池兩端,這 就是說該串列中該等太陽能電池的該等反向擊穿電壓不需 要很高,即是說可以使用諸如冶金矽之一較低等級的矽來 製作該等太陽能電池,而隨之成本的減少。 在所示的該實施例中,在使用旁路二極體(36)來旁路一 串歹80-92的情況下,當至少一個太陽能電池沒有產生足夠 的電力時,例如如果該串列中至少一個太陽能電池(22)受遮 蔽,則在該串列中的所有該等太陽能電池都遭旁路。因此, 由例如該遭旁路的串列中未受遮蔽的太陽能電池之任何工 作太陽能電池(22)所產生的該電力被損失了。因此,在每個 串列中具有較少太陽能電池(22)的串列需要旁路的太陽能 電池較少,這在諸如部分遮蔽之部分電力生產條件期間導 致較低的電力損失。因此,在所示的實施例中,由於該等 串列80-92在每個串列中具有一相對少的太陽能電池(22) 數,所以該裝置(10)在諸如部分遮蔽之部分電力生產條件期 間仍比在每個串列中具有一較多太陽能電池數之一類似裝 置生產的電力較多。 如在第7、8及9圖中所示,其它太陽能電池串列配置是 可能的。參考第7圖,在一可選擇的實施例中,該等太陽能 28 201042770 電池(22)配置成與第1及4圖所示類似的串列,除了一第—串 列192之-第-太陽能電池刚與該最後串列196之該最後 太陽能電池194相鄰於-基板2〇2之相對邊緣198、2〇〇遭配 置及太陽能電池的該等底部兩列充當底部串列之外。配置 正極及負極終端賴2〇4與咖以伸出該MW之相對邊邊 緣、·。這有助於在—串聯太陽能電池中使用非常短 的連接導體來將相鄰的類似類型的太陽電池板相鄰地並列 連接到一起。 在所示的實施例中,在每個串列中存在6個太陽能電池 (22)。如上所討論的,此在每個串列中相對少的太陽能電池 (22)數允a午該等太陽能電池由諸如冶金矽之一低等級的矽 製成且在諸如部分遮蔽之部分電力生產條件期間減少該裝 置(10)的電力損失。 參考第8圖,在串列210、212' 214及210中將該等太陽 能電池22連接到一起,其中該等串列電氣地連接成一串聯 以使該串聯具有配置在該太陽電池板相對端218、22〇之一 第一串列210及一最後串列216。在所示的實施例中,該第 一串列210配置在該板的一頂部部分222及該最後串列216 配置在§亥板的一底部部分224。另外,(圖未示)可將該第一 串列210配置在該板的該底部部分224及將該最後串列配置 在該板的頂部部分222。這兩種配置都允許每個串列210、 212之第一及最後太陽能電池230、232相鄰於該周邊邊限的 同一部分即相鄰於同一邊緣234遭定位’這允許在一共同邊 緣耗散在該等旁路二極體236中所產生的熱量。 29 201042770 在所不的實施例中’在每個串列21〇、212、214及216 中存在12個太陽能電池(22)。此在每個串列21〇、212、214 及216中相對多的太陽能電池(22)數提高可能在處於遮蔽期 間之一太陽能電池(22)上發生之最大反向電壓。因此在所示 的該實施例中,由諸如冶金矽之低級矽製成之太陽能電池 (22)可能不具有足夠的反向擊穿電力值及可能需要太陽能 級矽來製造在該等串列210、212、214及216中之該等太陽 能電池(22)。 參考第9圖,在一可選擇的實施例中,將太陽能電池22 的串列電氣地連接成包含多個分離子組之一串聯組。在此 實施例中,有兩個子組240與242,對於每個子組中總數為 24個太陽能電池而言,每個子組包含三個串列246、248及 250,每個串列包含8個太陽能電池(22)。該第一子組240位 於該太陽電池板之一頂部部分252中及該第二子組242位於 該太陽電池板之一底部部分254中。在該太陽電池板之相對 端256、258配置每個組之該第一串列246及該最後串列 250。這實質上在一單一板内提供了兩分離的太陽能電池單 元並將旁路二極體260定位在一周邊邊限之相鄰於該板之 頂部及底部邊緣262、264之部分中。 當然,其它串列配置是可能的,其中,大體而言,相 鄰於該周邊邊限定位每個串列之該第一及最後太陽能電池 以允許用於在該太陽電池板中之該等串列中的每個串列之 導電體及旁路二極體定位在該周邊邊限内,其中由該等旁 路二極體所產生的熱量可輕易的耗散。 30 201042770 在結合該等附圖檢閱上述對本發明之特定實施例的描 述之後,本發明之其它層面與特徵對於熟於此技者而吕將 Ο 變得很明顯。 【圖式簡單説明】 第1-9圖顯示本發明之多個實施例。 【主要元件符號說明】 46...冷端 10…太陽電池板裝置 12…透明板基板 14.. .前平面 16.. .後平面 18.. .周邊邊緣 22…太陽能電池 24…周邊邊限 26、142、144、146、148、 150、152、162、164··. 導電體 27.. .平坦部分 28.. .電極 29.. .導體 30.. .串聯串列 3卜52、53、57…厚度 32.. .正極終端 33、56…寬度 34.. .負極終端 35、 54、55、58…長度 36、 260…旁路二極體 38.. .間隙 39.. .熱端終端 4〇.&quot;第四類型的金屬箱帶 42.. .熱梯度 43.. .間隙 44.. .熱端 45.. .距離 61.. .端邊緣 63.. .端邊緣 64.. .冷端終端 70.. .列 71.. .弟—端 72…行 73…第一端 74.. .底部 75.. .導體的一部分 76.. .頂部 80、192、210…第一串列 82.. .第二串列 84.. .第三串列 86·.·第四串列 88…第五串列 90.. .第六串列 92·.·第七串列、最後串列 94、108、130、190···第一太 陽能電池 96、110、132、194...最後太 陽能電池 100、102…正極終端 101.. .熱槽 103···熱槽部分 104…第一終止電極 106···第一平面導體、正極終 31 201042770 端導體 112.. 後面 176…背面 114、116...負極終端 118.. .第二終止電極、最後終 止電極 120.. .第二平面導體、負極終 端導體 134.. .左手邊緣 140.. .頂部邊緣 153.. .拐角 160.. .組旁路二極體 170.. .底墊 172、174.··開口 196、216…最後串列 198、200...相對邊緣 202.. .基板 204.. .正極終止導體 206.. .負極終止導體 212、214...串列 218、220...相對端 222、252...太陽電池板頂部部 分 224、254...太陽電池板底部部 分 240、242...子組 246.. .串列、第一串列 248.. .串列 250.. .串列、最後串列 256、258...相對端 262.. .太陽能電池板頂部邊 緣 264.. .太陽能電池板底部邊 緣 32The hot end terminals 39 of the vehicle-connected diodes 36 are provided, for example, by welding heat, "the heat supplied by the fourth (four) gold shot 1 belt 4G" and the cold-end terminal 64 The electrical conductors 26 are provided, for example, by soldering, to the metal conductor strips provided by the third type of metal box. Again, the electrical conductors 26 are determined by the number and configuration of the series 30 of solar cells 22 within the apparatus 10. The positioning and the number and number of bypass diodes, g, have their own bypass diodes for each (four). Referring to Figure 4, in the illustrated embodiment, the solar cells 22 are configured. In the row 7〇 and row 72 on the substrate (shown at 12 in the figure), the device 10 can be viewed as having a bottom 74 and a top 76, wherein when the solar panel device 10 is in use, The bottom portion is operable to be mounted below the top. Typically, the solar panel is rectangular having a short side and a long side and is typically mounted at the top and bottom of the board. The board is typically connected to an upright installation that maintains the solar panels at an angle to the vertical Structure. When the plates are in use, 'the columns 7 and 72 are defined such that the columns extend substantially horizontally and the rows extend substantially vertically. 21 201042770 In the embodiment shown, the solar cell The board device 1 has 48 solar cells electrically connected together by electrodes (shown as 2 8 in FIG. 1) for forming first, second, third, fourth, fifth, sixth And a series of series of seventh series 80, 82, 84, 86, 88, 90, and 92. The first series 80 has first and last solar cells 94 and 96 and a plurality of solar cells therebetween, all of the batteries The electrodes are connected in series by the electrodes (28). The first solar cell 94 has a front surface facing the substrate (12) as one of the positive terminals 100 of the series 80 and also as a positive terminal 102 of the entire device 10. Thus, a first termination electrode, best seen at 104 in Figure 1, is coupled to the front side of the first solar cell 94 of the first series 80. The first termination electrode 104 has a direction away from the substrate 12. Externally extending for connection to, for example, a positive terminal conductor (not shown) The positive terminal 102 of the solar panel is connected to a first planar conductor 106 of an external circuit. Similarly, the seventh (last) series 92 has first and last solar cells 108 and 110 and between Solar cells, all of which are connected in series by the electrodes (28). The last solar cell 110 has a back terminal 114 that is one of the last series 92 and also serves as a negative terminal 116 for the entire board (112). Thus, a second termination electrode, best seen at 118 in Figure 1, is connected to the rear (112) of the last solar cell 110 of the last string 92. The last termination electrode (118) has left the The substrate (12) extends outwardly for connection to, for example, a negative terminal conductor (not shown) such that the negative terminal of the solar panel is coupled to a second planar conductor (120) of the external circuit. In the illustrated embodiment, the strings 1丨80-92 are configured to begin with the first series 80 on the left-hand side of the top of the assembly 22 201042770, on the left hand side of the second The third series 82 and 84 are followed downwards. The second and third strings 82 and 84 can be considered as intermediate queues. Each of the intermediate series includes a first solar cell 130 and a last solar cell 132 at opposite poles of the intermediate string, and the first and last solar cells 13 and 132 of the intermediate series are In the same row 72 and in the adjacent column 70. By arranging the intermediate solar cells 130 and the last solar cells 132 in the same row 72 and adjacent columns 70, the first and last solar cells of each intermediate string can be Located adjacent one of the edges of the solar panel, in this example, such as one of the left hand edges (viewed from the back) shown at 134 in FIG. 1, thus adjacent the perimeter margin (24) to assist each The first and last solar cells 130 and 132 in the middle are connected to respective conductors (26) and bypass diodes (36) within the peripheral margin. The fourth series 86 is comprised of a column of solar cells at the bottom 74 of the apparatus 10. The fifth and sixth series 88 and 90 extend upwardly on the right hand side of the device 10 and serve as an additional intermediate between the first and last solar cells 130, 132 disposed adjacent to the peripheral margin (24). Serial. The fifth and sixth series 88 and 90 are arranged in parallel with the third and second series 84 and 82, respectively. The seventh series 92 is the last series located in the top right hand region of the device 10. Accordingly, the first and last series 80 and 92 are disposed adjacent each other within the top portion 76 of the device 1〇. In addition, the last solar cell 110 of the last string 92 is disposed adjacent to the first solar cell 94 adjacent to the first string 80, and this causes the first and last series to be respectively connected. The first and second planar conductors of the positive and negative terminal 23, 201042770 (100, 114) are disposed adjacent one another to allow the positive and negative terminal conductors of the plate to be positioned adjacent one another and adjacently positioned. In the illustrated embodiment, the first solar cell 94 of the first string 8 is adjacent to the last solar cell 11 of the last string 92 adjacent to a common edge, ie, the substrate 12 The top edge (shown at 140 in the first image) 'this enables the positive and negative terminals of the plate and the 1〇6 to be located at the top edge (14〇) of the solar panel. With the solar cells configured and connected as described above, it will be appreciated that the first and last solar cells of each of the series 80-92 are positioned adjacent to the peripheral margin (24). This enables additional conductors, such as shown at 142, 144, 146, 148, 150, 152 in the second diagram, to be electrically connected to the electrodes and to connect adjacent strings together to extend to the Within the peripheral margin (24), and connected to corresponding electrical conductors (26) electrically connected to the bypass diodes (36) of the respective series 80-92 within the peripheral margin. The conductive conductors (142-152) of the conductors 26 that connect the electrodes to the peripheral margins 24 are desirably of substantially the same width and thickness as the conductors 26 within the peripheral margins. However, the conductors of appropriate length are extended between the adjacent conductors and the electrodes 28 to electrically connect the series of adjacent series 80_92. Referring back to Figure 1, a set of bypass diodes 160 is also provided in this embodiment as shown to shunt current through the entire group when, for example, approximately 50% of the solar cells of the entire panel are shielded. The set of bypass diodes can be located in a connection box outside the substrate in a conventional manner, but the diode 160 can optionally be incorporated on the substrate 12 as shown in 24 201042770. To do so, electrical conductors 162 and 164 adjacent the top edge 140 within the peripheral margin 24 are coupled to the first and second planar conductors 106 and 120, respectively. As described above, the leads (not shown) extending from one of the hot ends (not shown) and a cold end (not shown) of the set of bypass diodes 160 may be as described above with respect to the bypasses. The diodes 36 are connected in the same manner. Thus, during manufacture of the device 10, the conductors 142-152 that extend from the electrodes 28 are connected to the perimeter edge 24 and are placed within the perimeter margin. On the conductor 26. Positioning the conductors 26 such that the bypass diodes 36 are relatively evenly spaced around the peripheral margins 24, and then extending from the electrodes 28 the conductors that are connected together in series 142-152 are soldered to the conductors 26 within the peripheral margin 24. It will be appreciated that some of the electrical conductors 26 within the peripheral margin 24 will be longitudinally aligned, such as within the portion of the peripheral margin 24 associated with the long sides of the solar panel. While its Q conductors will be aligned at right angles to extend at the corners within the perimeter margin, generally as indicated at 153. The connection of the conductors 26 that meet at right angles can be accomplished by, for example, soldering or ultrasonic welding. Referring to FIG. 5, after the conductors 26 and the bypass diodes 36 in the peripheral margin 24 have been connected as required, a bottom pad 17 is placed over the substrate 12 to cover the solar energy. The battery 22, the conductors 26 and the bypass diodes 36 are formed to have the electrodes, the solar cells, the conductors, the heat sink and the bypass diode sandwiched between the substrate 12 and the bottom pad 17 One of the laminated plates. The bottom pad 170 desirably has a soaked thermally conductive material operable to conduct heat from the heat sink 101 and the bypass diodes. For example, the bottom crucible 170 may be aluminum-impregnated Tedlar®. The positive and negative terminal conductors 106 and 120 can extend from between the front substrate 12 and the bottom pad 170 to extend from the top edge 140 of the laminate for termination. Or an opening or openings 172 and 174 may be cut in a back surface 176 of the bottom plate 170 to allow the positive and negative terminal conductors 106 and 120 to extend through the back surface 176 of the bottom pad and Extending from the back side 176 of the underpad is used to terminate within a conventional junction box provided by Tyco Electronics Ltd, such as is commonly used on solar panels. Desirably, the entire apparatus is laminated, such as by conventional techniques for laminating solar panels, to form the laminate. A thermally conductive frame 180 may be disposed around the periphery of the laminate to protect the edges of the laminate and dissipate heat from the bypass body, the heat sinks 1, and the bottom pads. The frame 180 can be made, for example, and can assist in the mechanical support used to mount the panel. The lengths of the heat sinks 101 mentioned above combined with the heat dissipation characteristics of the bottom pad 17 and the frame 18G are sufficient to properly dissipate the heat generated by the bypass diode to surround the side. The junction temperature of the diodes is maintained within the operating range recommended by the manufacturer. An advantage of the feature of the tandem configuration shown in the first and fifth embodiments is to bypass each string _92 independently and the bottom column of the solar cell, ie the fourth string is - Single-string. Reference_, in the device, the bottom column of the solar cell, that is, the fourth series of contacts may be deprived of light due to snow, leaves or leaves, as in Example 26 201042770, the series will be bypassed without affecting the board. The normal operation of the remaining series 80-84 and 88-92. When the fourth series 86 is bypassed, the bypass diode 36 protecting the series will begin to heat and the heat sink connected to the bypass diode 36 will dissipate the heat to the bottom pad. 170 and the frame 180, which melts the snow to provide a self-cleaning effect. In the event that the snow is not cleared or the leaves are allowed to continue to grow around the bottom 74 of the device 10, the third and fifth series 84 and 88 are eventually formed due to the higher the amount of shadowing caused by snow or leaves. It will become obscured and bypassed, but the remaining series of the series A, ie the first 8th, 2nd - 82nd, 6th 90th and 7th 92th series will still operate. Therefore, initially, when only the fourth series 86 is shielded, the device 1 can still provide 42/48=87.5% of its power production capacity (the loss is small due to the bypass diode) and when broken When the third and fifth series 84 and 88 are also obscured, the solar cell is still capable of providing about 50% of its power production capacity. Ο Since the series 80-92 consist of solar cells (22) connected in series, the maximum reverse voltage that will occur across the ends of any shaded solar cell is caused by the remaining solar cells in the series. The resulting voltages plus the sum of the forward voltage drops of the bypass diodes. In the illustrated embodiment, each of the series of serials 80.92 is comprised of 6-9 solar cells (22). This relatively low number of solar cells in each series results in a low maximum reverse voltage on any of the shaded solar cells in the series. Thus, in the case where there are six solar cells in the series, when one is shielded, the remaining five solar cells each generate a voltage of 0.56V, and 27 201042770 produces a total voltage contribution of 2.8V (this comes from In the unshielded battery, plus a 0.7V voltage drop across the bypass diode (36) due to the current from the remaining series of the module, resulting in a horizontal A total reverse voltage of 3.5V across one of the shaded solar cells. The bypass described above has a technique of separating a series of solar cells (22) resulting in a lower reverse voltage across the shaded solar cells, which is to say the solar cells in the series The reverse breakdown voltage does not need to be very high, that is, it can be made using a lower grade of tantalum such as one of the metallurgical crucibles, with consequent cost reduction. In the illustrated embodiment, where a bypass diode (36) is used to bypass a series of turns 80-92, when at least one solar cell does not generate sufficient power, such as in the series When at least one solar cell (22) is shielded, all of the solar cells in the series are bypassed. Thus, the power generated by any of the working solar cells (22), such as the unshielded solar cells in the bypassed series, is lost. Thus, fewer tandem solar cells need to be bypassed in each series with fewer solar cells (22), which results in lower power losses during partial power production conditions such as partial shading. Thus, in the illustrated embodiment, since the series 80-92 have a relatively small number of solar cells (22) in each series, the device (10) is electrically produced in portions such as partial shadowing. The condition period still produces more power than a device having one more solar cell count in each series. As shown in Figures 7, 8, and 9, other solar cell string configurations are possible. Referring to Figure 7, in an alternative embodiment, the solar energy 28 201042770 battery (22) is configured in a series similar to that shown in Figures 1 and 4, except for a first - tandem 192 - the first - solar energy The battery is just adjacent to the last edge 198, 2 of the last solar cell 194 of the last string 196 adjacent to the substrate 2〇2 and the bottom two columns of the solar cell serve as the bottom string. The positive and negative terminals are arranged to extend to the opposite edge of the MW. This helps to use very short connecting conductors in a tandem solar cell to connect adjacent similar types of solar panels adjacently side by side. In the illustrated embodiment, there are six solar cells (22) in each series. As discussed above, this relatively small number of solar cells (22) in each series allows the solar cells to be made of a low grade pluton such as one of metallurgical crucibles and in part of the power production conditions such as partial shading. The power loss of the device (10) is reduced during the period. Referring to Figure 8, the solar cells 22 are connected together in series 210, 212' 214 and 210, wherein the series are electrically connected in series such that the series has an opposite end 218 disposed on the solar panel. One of the 22nd first string 210 and one last serial 216. In the illustrated embodiment, the first series 210 is disposed at a top portion 222 of the board and the last series 216 is disposed at a bottom portion 224 of the board. Additionally, (not shown) the first series 210 can be disposed at the bottom portion 224 of the panel and the last string can be disposed at the top portion 222 of the panel. Both configurations allow the first and last solar cells 230, 232 of each of the strings 210, 212 to be positioned adjacent to the same portion of the perimeter edge, i.e., adjacent to the same edge 234. This allows for a common edge consumption. The heat generated in the bypass diodes 236 is dispersed. 29 201042770 In the alternative embodiment, there are 12 solar cells (22) in each of the strings 21, 212, 214 and 216. This increase in the number of solar cells (22) in each of the series 21, 212, 214, and 216 increases the maximum reverse voltage that may occur on one of the solar cells (22) during the occlusion period. Thus, in the illustrated embodiment, a solar cell (22) made of a lower grade such as a metallurgical crucible may not have sufficient reverse breakdown power values and may require a solar grade to be fabricated in the series 210. The solar cells (22) of 212, 214 and 216. Referring to Figure 9, in an alternative embodiment, the series of solar cells 22 are electrically connected to a series comprising a plurality of discrete subgroups. In this embodiment, there are two subgroups 240 and 242. For a total of 24 solar cells in each subgroup, each subgroup contains three strings 246, 248, and 250, each of which contains eight Solar cell (22). The first subset 240 is located in a top portion 252 of the solar panel and the second subset 242 is located in a bottom portion 254 of the solar panel. The first series 246 and the last series 250 of each set are disposed at opposite ends 256, 258 of the solar panel. This essentially provides two separate solar cells in a single panel and positions the bypass diode 260 in a portion of the perimeter edge adjacent the top and bottom edges 262, 264 of the panel. Of course, other tandem configurations are possible, wherein, generally, the first and last solar cells of each of the strings are defined adjacent to the peripheral edge to allow for the strings in the solar panel The electrical conductors and the bypass diodes of each of the series are positioned within the peripheral margin, wherein the heat generated by the bypass diodes can be easily dissipated. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; BRIEF DESCRIPTION OF THE DRAWINGS Figures 1-9 show various embodiments of the present invention. [Main component symbol description] 46...cold end 10...solar panel device 12...transparent plate substrate 14.. front plane 16.. rear plane 18. peripheral edge 22...solar battery 24...peripheral margin 26, 142, 144, 146, 148, 150, 152, 162, 164 · ·. Conductor 27.. Flat portion 28.. Electrode 29.. Conductor 30.. . Series serial 3 Bu 52, 53 , 57...thickness 32.. positive terminal 33, 56...width 34.. negative terminal 35, 54, 55, 58... length 36, 260... bypass diode 38.. gap 39.. hot end Terminal 4 〇.&quot; The fourth type of metal box belt 42.. Thermal gradient 43.. Clearance 44.. Hot end 45.. Distance 61.. End edge 63.. End edge 64.. Cold end terminal 70.. column 71.. brother-end 72... row 73... first end 74.. bottom 75.. part of the conductor 76.. top 80, 192, 210... first string Column 82...Second series column 84... third string column 86·.. fourth string column 88... fifth string column 90... sixth string column 92·.·seven string column, last string Columns 94, 108, 130, 190... first solar cells 96, 110, 132, 194... last solar cells 100, 102... positive Terminal 101.. Heat sink 103···heat bath portion 104...first terminating electrode 106···first plane conductor, positive terminal 31 201042770 end conductor 112.. rear 176...reverse 114,116...negative terminal 118... second terminating electrode, last terminating electrode 120.. second planar conductor, negative terminal conductor 134.. left hand edge 140.. top edge 153.. corner 16.. group bypass dipole Body 170.. bottom pad 172, 174..... opening 196, 216... last string 198, 200... opposite edge 202.. substrate 204.. positive termination conductor 206.. negative termination conductor 212, 214...column 218,220...opposite ends 222,252...solar panel top portions 224,254...solar panel bottom portions 240,242...subgroup 246.. The first series 248... tandem 250... tandem, last string 256, 258... opposite end 262.. solar panel top edge 264.. solar panel bottom edge 32

Claims (1)

201042770 七、申請專利範圍: 1. 一種太陽能電池板裝置,其包含: 一透明板基板,其具有前及後平面以及在該基板之 一周邊周圍延伸之一周邊邊緣; 多個太陽能電池,其等配置在該後面上之一平面陣 列中以使可操作以啟動該等太陽能電池的光可透過該 基板來啟動該等太陽能電池並使得一周邊邊限相鄰於 _ 該周邊邊緣在該基板之該後面上形成; Ο 多個導電體,其等大體上端對端地配置到該周邊邊 限中; 多個電極,其等將該等太陽能電池電氣地連接到一 ' 起成為多個太陽能電池串聯串列,每個串聯串列具有電 氣連接到在該周邊邊限中互相相鄰的一對相鄰的導電 體中之各自的導電體之一正極終端與一負極終端;及 多個旁路二極體,該等旁路二極體中的每個旁路二 Q 極體電氣地連接在一各自的該成對導電體之間,以分流 來自連接到該各自的成對導電體之一相對應的串列的 電流,當該相對應的串列中之一太陽能電池受遮蔽時。 2. 如申請專利範圍第1項所述之裝置,其中該等串列電氣 地連接成一串聯,以使該串聯具有一第一串列及一最後 串列且其中該第一串列之一第一太陽能電池與該最後 串列之一最後太陽能電池近乎互相相鄰來配置。 3. 如申請專利範圍第2項所述之裝置,其中該第一串列之 該第一太陽能電池與該最後串列之該最後太陽能電池 33 201042770 冏透緣來配置 邳鄰於該基板之 4. 2請專利範圍第2項所述之農置,其中 電極而電氣地連接到—起來形成該串聯。J藉由 5·如申請專利範圍第】項所 體包括平面二極體。 ^置,其中該等旁路二極 6.如申請專利範圍第1項所述之裝置,其進-步包含用以 耗散由在各自的該等旁路二極體中流動之電 的熱量之熱槽。 7.如申請專利範圍第6項所述之裝置,其中_ 括充當熱槽之各自的熱槽部分,且其中在操作中,各自 的該等旁路二極體具有定義其-熱端及-冷端之一熱 梯度’且其巾該等各自的該#旁路二極體具有分別自該 熱端及該冷端發出之—熱端終端與-冷端終端,且其中 該熱端終端被連接到該等導電體之一各自的導電體之 一各自的該熱槽部分。 8. 如申請專利範圍第7項所述之裝置,其中該等各自的該 等熱槽部分包括該等導電體之各自的大體上平坦部分。 9. 如申請專利範圍第8項所述之裝置,其中該f導電體由 一第一類型的金屬箔帶構成,且其中該等大體上平坦部 分具有在大約50微米到大約1〇〇〇微米間的一厚度及在 大約3毫米到大約13毫米間的一寬度及在大約3釐米到 大約200釐米間的一長度。 10. 如申請專利範圍第9項所述之裝置,其進一步包含與各 自的該等旁路二極體相關聯的終止導體,該等終止導體 34 201042770 包含一第二類型的一金屬箔帶,該第二類型的該金屬箔 帶具有小於該第一類型之該金屬箔帶之該大體上平坦 部分之該厚度之一厚度及小於該第一類型之該金屬箔 帶之該大體上平坦部分之該長度的一長度,該第二類型 之該金屬箔帶具有連接到該等導電體之一各自的導電 體之一第一端及連接到一各自的該旁路二極體之該冷 端之一第二端。 〇 u,如申請專利範圍第10項所述之裝置,其中該第二類型之 該金屬箔帶具有在大約30微米到大约200微米間的一厚 '度、大致與該第一類型之該金屬箔帶之該寬度相同的一 . 寬度及在大約3釐米到大約10釐米間的一長度。 12·如申請專利範圍第6項所述之裝置,其中該等導電體由 一第一類型的金屬箔帶形成,該第一類型的金屬箔帶具 有在大約30微米到大約200微米間的一厚度及在大約3 毫米到大約13毫米間的一寬度及在大約3釐米到大約 〇 釐米間的一長度,且其中該等熱槽包括電氣地連接 到該第一類型之各自的該等金屬箔帶之一第二類型之 各自的金屬箔帶,該第二類型之該等金屬箔帶具有比該 第一類型之該等金屬箔帶厚度較大之一厚度。 I3’如申请專利範圍第12項所述之裝置,其中該第二類型之 S亥金屬箔帶具有大致與該第一類型之該金屬箔帶之該 寬度相同之一寬度及小於該第一類型之該金屬箔帶之 長度之一長度。 14·如申請專利範圍第13項所述之裝置,其中該第二類型之 35 201042770 該金屬箔帶在該第一類型之一各自的金屬箔帶之一部 分上。 15. 如申請專利範圍第14項所述之裝置,其中在操作中,各 自的該等旁路二極體具有定義其一熱端及一冷端之一 熱梯度,且其中該等各自的該等旁路二極體具有分別自 該熱端及該冷端發出之一熱端終端及一冷端終端,且其 中該熱端終端電氣地連接到該第二類型之一各自的該 金屬箔帶且該冷端終端電氣地連接到該第一類型之一 各自的該金屬箔帶。 16. 如申請專利範圍第15項所述之裝置,其中該第二類型之 該金屬箔帶具有在大約50微米到大約1000微米間的一 厚度及大致與該第一類型之該金屬箔帶之該寬度相等 的一寬度及在大約3釐米到大約10釐米間的一長度。 17. 如申請專利範圍第2項所述之裝置,其進一步包含覆蓋 該等太陽能電池、該等導電體及該等旁路二極體之一底 墊,以使該等太陽能電池、該等導電體及該等旁路二極 體在該前基板與該底墊間疊層以形成一疊層板。 18. 如申請專利範圍第17項所述之裝置,其中該底墊具有一 浸透導熱材料,該浸透導熱材料可操作以傳導來自該等 熱槽及該等旁路二極體的熱量。 19. 如申請專利範圍第18項所述之裝置,其中該底墊包含鋁 浸透 Tedlar®。 20. 如申請專利範圍第18項所述之裝置,其進一步包含在該 周邊邊緣之一導熱框架。 36 201042770 π如申請專利範圍第18項所述之農置,其中該等第一及最 後串列具有自該前基板與該底塾之間延伸以自該疊層 板之一邊緣延伸之各自的終端。 过如申請專利範圍第2項所述之裝置,其中該等太陽能電 1 也在該基板上以列及行來配置1其中該裝置具有一底 部與-頂部’其中當該讀電池板在使㈣該底部可操201042770 VII. Patent application scope: 1. A solar panel device comprising: a transparent plate substrate having front and rear planes and a peripheral edge extending around a periphery of one of the substrates; a plurality of solar cells, etc. Arranging in the rear planar array to enable light operable to activate the solar cells to pass through the substrate to activate the solar cells and to have a peripheral edge adjacent to the peripheral edge at the substrate Formed on the rear; Ο a plurality of electrical conductors, such as being substantially end-to-end disposed in the peripheral margin; a plurality of electrodes, such as electrically connecting the solar cells to a plurality of solar cell series strings a column, each series string having one of a positive terminal and a negative terminal electrically connected to a respective one of a pair of adjacent conductors adjacent to each other in the peripheral margin; and a plurality of bypass diodes Each of the bypass diodes of the bypass diodes is electrically connected between a respective pair of electrical conductors to shunt from the respective ones connected to the respective A series of currents corresponding to one of the pair of electrical conductors when one of the corresponding series of solar cells is shielded. 2. The device of claim 1, wherein the series are electrically connected in a series such that the series has a first series and a last series and wherein the first series is A solar cell is disposed adjacent to one another of the last series of last solar cells. 3. The apparatus of claim 2, wherein the first series of the first solar cells and the last series of the last solar cells 33 201042770 are disposed to be adjacent to the substrate 4 2 Please refer to the agricultural device described in item 2 of the patent scope, in which the electrodes are electrically connected to form the series. J includes a planar diode by means of 5. The device of claim 1, wherein the step further comprises dissipating heat from the electricity flowing in the respective bypass diodes. Hot trough. 7. The device of claim 6, wherein the respective heat sink portions serve as heat sinks, and wherein in operation, the respective bypass diodes have their definitions - hot ends and - a thermal gradient of one of the cold ends and the respective bypass diodes of the respective wipers have a hot end terminal and a cold end terminal respectively from the hot end and the cold end, and wherein the hot end terminal is Connected to each of the heat sink portions of one of the respective electrical conductors of one of the electrical conductors. 8. The device of claim 7, wherein the respective heat sink portions comprise respective substantially flat portions of the electrical conductors. 9. The device of claim 8 wherein the f-conductor is comprised of a first type of metal foil strip, and wherein the substantially planar portions have a thickness of between about 50 microns and about 1 micron. A thickness therebetween and a width between about 3 mm and about 13 mm and a length between about 3 cm and about 200 cm. 10. The device of claim 9, further comprising a termination conductor associated with the respective bypass diodes, the termination conductors 34 201042770 comprising a second type of metal foil strip, The second type of metal foil strip has a thickness less than the thickness of the substantially flat portion of the first type of metal foil strip and less than the substantially flat portion of the first type of metal foil strip a length of the length, the metal foil strip of the second type having a first end connected to one of the respective conductors of the conductors and connected to a cold end of the respective bypass diode A second end. The device of claim 10, wherein the metal foil strip of the second type has a thickness of between about 30 microns and about 200 microns, substantially the same type of metal as the first type. The width of the foil strip is the same width and a length between about 3 cm and about 10 cm. 12. The device of claim 6 wherein the electrical conductors are formed from a first type of metal foil strip having a thickness of between about 30 microns and about 200 microns. a thickness and a width between about 3 mm and about 13 mm and a length between about 3 cm and about 〇 cm, and wherein the heat sinks comprise the metal foils electrically connected to the respective first type Each of the second type of metal foil strips has a thickness that is greater than the thickness of the metal foil strips of the first type. The apparatus of claim 12, wherein the second type of S-metal foil strip has a width substantially the same as the width of the first type of the metal foil strip and less than the first type One of the lengths of the metal foil strip. 14. The device of claim 13, wherein the second type of 35 201042770 is on a portion of a respective metal foil strip of one of the first types. 15. The device of claim 14, wherein in operation, each of the bypass diodes has a thermal gradient defining a hot end and a cold end, and wherein each of the respective The bypass diode has one of a hot end terminal and a cold end terminal respectively from the hot end and the cold end, and wherein the hot end terminal is electrically connected to the respective metal foil strip of the second type And the cold end terminal is electrically connected to the respective metal foil strip of one of the first types. 16. The device of claim 15 wherein the second type of metal foil strip has a thickness between about 50 microns and about 1000 microns and is substantially associated with the first type of metal foil strip. The width is equal to a width and a length between about 3 cm and about 10 cm. 17. The device of claim 2, further comprising covering the solar cells, the electrical conductors, and one of the bypass diodes to make the solar cells, the conductive The body and the bypass diodes are laminated between the front substrate and the bottom pad to form a laminated board. 18. The device of claim 17, wherein the underpad has a permeable thermally conductive material operable to conduct heat from the heat sinks and the bypass diodes. 19. The device of claim 18, wherein the underpad comprises aluminum impregnated Tedlar®. 20. The device of claim 18, further comprising a thermally conductive frame at the peripheral edge. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; terminal. The apparatus of claim 2, wherein the solar power 1 is also arranged in columns and rows on the substrate, wherein the device has a bottom and a top portion, wherein when the read battery panel is in (4) The bottom can be operated 作以低於_部來絲,且其巾纽於該底部之一底部 列:之太陽能電池藉由該等電極來電氣地連接以定義 太%電池板之一底部串列。 23.如申4專利範圍第22項所述之裳置,其中處在該等太陽 能電池之該底部列上面的至少第一及第二列中且處在 陽能電池之為該底部騎共有的該等行之至少 -些行中之太陽能電池電氣地連接到一起以定義一太 陽能電池中間串列,其間串列包括處於該中間串 、:之相對兩極之_第_太陽能電池及一最後太陽能電 〃中射間串列之該等第-及最後太陽能電池處 在該等太陽能電池之同—行中且在該等太 相鄰列中。 24.如申請專利範圍第23項 碉所述之裝置,其中該等多個串聯 串列包括多個該等中間串列。 25·如申請專利範圍第24 Ε , ,料之裝置,其中該等中間串列 的至〉'一些中間串列並列地來配置。 26.如申請專利範圍第23 頂、之裝置,其中在縣板之該 項^配置該第—串列 甲歹J之该第一太陽能電池及該最後串 37 201042770 列之該最後太陽能電池。 27. —種在具有多個太陽能電池串列之一太陽電池板中防 護一太陽能電池串列免受遮蔽效應的影響之方法,該方 法包含以下步驟: 藉由分流電流經過位於支撐該等太陽能電池的一 基板之一周邊邊限内的導電體與一旁路二極體來致使 該電流被分流繞過具有至少一個受遮蔽太陽能電池之 任一太陽能電池串列,以使無論哪一串列具有一受遮蔽 太陽能電池,經過具有該受遮蔽太陽能電池的該串列的 電流都經由位於該周邊邊限内的導電體及一各自的旁 路二極體來分流,藉此將來自與具有至少一個受遮蔽太 陽能電池之串列相關聯的各自的旁路二極體之熱量耗 散分散到在該周邊邊限周圍的不同位置。 28. 如申請專利範圍第27項所述之方法,其中致使電流被分 流包含: 將多個太陽能電池配置到具有前及後面以及在該 基底之一周邊周圍延伸之一周邊邊緣之一透明板基板 的一後面上之一平面陣列中,以使光可透過該基板來啟 動該等太陽能電池且使得該周邊邊限相鄰於該周邊邊 緣在該基板的該後面上形成; 使用多個電極來將該等太陽能電池電氣地連接到 一起成為多個太陽能電池串聯串列,其中每個串聯串列 具有一正極終端及一負極終端; 將多個該等導電體端對端地配置到該周邊邊限中; 38 201042770 將該等正極及負極終端電氣地連接到在該邊限中 互相相鄰之一對相鄰的該等導電體中之各自的導電 體;及 將旁路二極體電氣地連接到各自的成對的該等相 鄰的該等導電體。 29. 如申請專利範圍第28項所述之方法,其中電氣地連接該 等串列包含:連接該等太陽能電池以使該串聯具有一第 一串列及一最後串列且使得該第一串列之一第一太陽 能電池與該最後串列之一最後太陽能電池近乎互相相 鄰來配置。 30. 如申請專利範圍第29項所述之方法,其中電氣地連接該 等太陽能電池包含:連接該等太陽能電池以使該第一串 列之該第一太陽能電池與該最後串列之該最後太陽能 電池相鄰於該基板之一共用邊緣來配置。 31. 如申請專利範圍第27項所述之方法,其進一步包含耗散 由經過該旁路二極體分流之電流產生的熱量。 32. 如申請專利範圍第31項所述之方法,其中耗散熱量包含 將該旁路二極體電氣連接且熱連接到一熱槽。 33. 如申請專利範圍第24項所述之方法,其進一步包含將該 等太陽能電池、該等導電體及該等旁路二極體在該基板 與一底墊間疊層以形成一疊層板。 34. 如申請專利範圍第33項所述之方法,其進一步包含經由 該底墊耗散來自該等旁路二極體的熱量。 35. 如申請專利範圍第33項所述之方法,其進一步包含傳導 39 201042770 來自該底墊與來自該基板的熱量到在該基板之一周邊 邊緣上之一導熱框架。 36.如申請專利範圍第33項所述之方法,其進—步包含致使 分別連接到該等第-及最後串列之該等第一及最後太 陽能電池之終端自該前基板與該底塾之間延伸以自該 疊層板之一邊緣延伸。 ^如申請專職圍第28項所述之方法,其中配置該等太陽 能電池包含:在縣板上㈣及行配置料太陽能電池 以使該等太陽能電池之一串列位於該等太陽能電池之 一底部列中。 凡如甲請專利範圍第37項所述之方法,其中配置該等太陽 此電池包含:配置鱗太陽能電池以使處在該等太陽能 電池之該底部列上面的至少第一及第二列中且處在該 專太陽能電池之為該底部列所共有的該等行之至少一 $行中之太陽能電池電氣地連接到—起以定義太陽能 '池之一中間串列’其中該中間串列包括處於該中間串 2之相對兩極之_第—太陽能電池與—最後太陽能電 ^二其中該中間㈣之該等第—及最後太陽能電池處 能電池之同一行中且在該等太陽能電池之 相鄰列中。 置犯圍第38項所述之方法,其中配置包含:配 40 能電池以使多個中間串列並列地來配置。 專利範圍第38項所述之方法,其中配置包含:配 專太陽能電池以使該第-申列之該第-太陽能電 40 201042770 池與該最後串列之該最後太陽能電池被配置在該基板 之該頂部。The solar cells are placed below the _ portion, and the solar cells are electrically connected to the bottom of the bottom: the solar cells are electrically connected by the electrodes to define a bottom column of one of the panels. 23. The skirt of claim 22, wherein at least in the first and second columns above the bottom row of the solar cells and in the solar cell are common to the bottom ride At least some of the rows of solar cells are electrically connected together to define a series of solar cells in the middle, wherein the series includes the intermediate strings, the opposite poles, the solar cells, and a final solar power. The first and last solar cells of the tandem array are in the same row of the solar cells and are in the adjacent columns. 24. The device of claim 23, wherein the plurality of series series comprises a plurality of the intermediate strings. 25. The device of claim 24, wherein the intermediate serials are arranged side by side to some of the intermediate strings. 26. The device of claim 23, wherein the first solar cell in the first column is arranged in the first row and the last solar cell listed in the last string 37 201042770. 27. A method of protecting a solar cell string from a shadowing effect in a solar panel having a plurality of solar cell strings, the method comprising the steps of: supporting the solar cells by shunting current through An electrical conductor in a peripheral margin of one of the substrates and a bypass diode to cause the current to be shunted around any of the solar cell strings having at least one shaded solar cell so that no matter which series has one The shaded solar cell, the current passing through the series of the shielded solar cells is shunted via the electrical conductors located within the peripheral margin and a respective bypass diode, thereby having at least one The heat dissipation of the respective bypass diodes associated with the tandem solar cells is dispersed to different locations around the perimeter margin. 28. The method of claim 27, wherein causing current to be shunted comprises: arranging a plurality of solar cells to one of a peripheral plate having a front edge and a back edge and extending around one of the periphery of the substrate One of the rear planar arrays to enable light to pass through the substrate to activate the solar cells and such that the peripheral edge is formed adjacent the peripheral edge on the back side of the substrate; using a plurality of electrodes The solar cells are electrically connected together to form a series of a plurality of solar cells, wherein each series string has a positive terminal and a negative terminal; a plurality of the electrical conductors are disposed end to end to the peripheral margin 38 201042770 electrically connecting the positive and negative terminals to respective ones of the adjacent ones of the adjacent ones in the margin; and electrically connecting the bypass diodes To the respective pairs of the adjacent ones of the electrical conductors. 29. The method of claim 28, wherein electrically connecting the series comprises: connecting the solar cells such that the series has a first series and a last series and the first string One of the first solar cells is arranged adjacent to one of the last series of last solar cells. 30. The method of claim 29, wherein electrically connecting the solar cells comprises: connecting the solar cells to cause the first series of the first solar cells to be the last of the last series The solar cells are arranged adjacent to one of the common edges of the substrate. 31. The method of claim 27, further comprising dissipating heat generated by a current shunted through the bypass diode. 32. The method of claim 31, wherein dissipating heat comprises electrically connecting and thermally connecting the bypass diode to a heat sink. 33. The method of claim 24, further comprising laminating the solar cells, the electrical conductors, and the bypass diodes between the substrate and a backing pad to form a laminate board. 34. The method of claim 33, further comprising dissipating heat from the bypass diodes via the underpad. 35. The method of claim 33, further comprising conducting 39 201042770 from the underpad with heat from the substrate to a thermally conductive frame on a peripheral edge of one of the substrates. 36. The method of claim 33, further comprising causing terminals of the first and last solar cells respectively connected to the first and last series to be from the front substrate and the bottom Extending between to extend from one of the edges of the laminate. ^ The method of claim 28, wherein the arranging the solar cells comprises: arranging solar cells on the county board (four) and row so that one of the solar cells is located at one of the bottoms of the solar cells In the column. The method of claim 37, wherein the solar cells are configured to: arrange the scale solar cells to be in at least the first and second columns above the bottom row of the solar cells and Solar cells in at least one of the rows of the dedicated solar cells that are common to the bottom row are electrically connected to define an intermediate series of solar 'pools' in which the intermediate series is included The opposite poles of the intermediate string 2, the first solar cell and the last solar cell, wherein the middle (four) of the first and last solar cells are in the same row of cells and in adjacent columns of the solar cells . The method of claim 38, wherein the configuration comprises: configuring a battery with a plurality of intermediate strings arranged side by side. The method of claim 38, wherein the configuration comprises: assigning a solar cell such that the first solar cell 40 201042770 pool and the last tandem solar cell are disposed on the substrate The top. 4141
TW98117454A 2009-05-26 2009-05-26 Photovoltaic module string arrangement and shading protection therefor TW201042770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98117454A TW201042770A (en) 2009-05-26 2009-05-26 Photovoltaic module string arrangement and shading protection therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98117454A TW201042770A (en) 2009-05-26 2009-05-26 Photovoltaic module string arrangement and shading protection therefor

Publications (1)

Publication Number Publication Date
TW201042770A true TW201042770A (en) 2010-12-01

Family

ID=45000691

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98117454A TW201042770A (en) 2009-05-26 2009-05-26 Photovoltaic module string arrangement and shading protection therefor

Country Status (1)

Country Link
TW (1) TW201042770A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563847B2 (en) 2009-01-21 2013-10-22 Tenksolar, Inc Illumination agnostic solar panel
US8748727B2 (en) 2008-01-18 2014-06-10 Tenksolar, Inc. Flat-plate photovoltaic module
US8829330B2 (en) 2010-02-23 2014-09-09 Tenksolar, Inc. Highly efficient solar arrays
US8828778B2 (en) 2008-01-18 2014-09-09 Tenksolar, Inc. Thin-film photovoltaic module
US8933320B2 (en) 2008-01-18 2015-01-13 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
US9299861B2 (en) 2010-06-15 2016-03-29 Tenksolar, Inc. Cell-to-grid redundandt photovoltaic system
US9773933B2 (en) 2010-02-23 2017-09-26 Tenksolar, Inc. Space and energy efficient photovoltaic array
EP3772757A1 (en) * 2019-08-07 2021-02-10 Solaredge Technologies Ltd. Solar panel arrangement

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8748727B2 (en) 2008-01-18 2014-06-10 Tenksolar, Inc. Flat-plate photovoltaic module
US8828778B2 (en) 2008-01-18 2014-09-09 Tenksolar, Inc. Thin-film photovoltaic module
US8933320B2 (en) 2008-01-18 2015-01-13 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
US9768725B2 (en) 2008-01-18 2017-09-19 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
US8563847B2 (en) 2009-01-21 2013-10-22 Tenksolar, Inc Illumination agnostic solar panel
US9543890B2 (en) 2009-01-21 2017-01-10 Tenksolar, Inc. Illumination agnostic solar panel
US8829330B2 (en) 2010-02-23 2014-09-09 Tenksolar, Inc. Highly efficient solar arrays
US9773933B2 (en) 2010-02-23 2017-09-26 Tenksolar, Inc. Space and energy efficient photovoltaic array
US9299861B2 (en) 2010-06-15 2016-03-29 Tenksolar, Inc. Cell-to-grid redundandt photovoltaic system
EP3772757A1 (en) * 2019-08-07 2021-02-10 Solaredge Technologies Ltd. Solar panel arrangement

Similar Documents

Publication Publication Date Title
US20120060895A1 (en) Photovoltaic module string arrangement and shading protection therefor
CN110828591B (en) Solar panel
EP3127168B1 (en) Photovoltaic module with bypass diodes
US20160163903A1 (en) High-efficiency pv panel with conductive backsheet
TW201042770A (en) Photovoltaic module string arrangement and shading protection therefor
US20100275976A1 (en) Photovoltaic module with edge access to pv strings, interconnection method, apparatus, and system
US20090025778A1 (en) Shading protection for solar cells and solar cell modules
US20140124013A1 (en) High efficiency configuration for solar cell string
US20130206203A1 (en) Photovoltaic module with integrated solar cell diodes
WO2018090445A1 (en) Photovoltaic lamination assembly with bypass diodes
US10770610B2 (en) Photovoltaic module interconnect joints
US10446733B2 (en) Hybrid solar cell
US20230044021A1 (en) Solar cells having junctions retracted from cleaved edges
KR20140095658A (en) Solar cell
CN111200031B (en) Thin film photovoltaic module with integrated electronics and method of making same
CN218730981U (en) Back electrode solar cell unit and battery module
KR102511697B1 (en) Solar cell having a plurality of sub-cells coupled by cell level interconnection
US8049097B2 (en) Solar cell including cooling channels and method for fabrication
KR20070016138A (en) Photovoltaic module with an electric device
US20210313479A1 (en) High Power Density Solar Module and Methods of Fabrication
JP2020107766A (en) First solar cell module and solar cell system
KR20210014316A (en) Shingled solar cell panel with wire and manufacturing method thereof
Gee et al. Method of monolithic module assembly