TW201024886A - Display structure - Google Patents

Display structure Download PDF

Info

Publication number
TW201024886A
TW201024886A TW97151200A TW97151200A TW201024886A TW 201024886 A TW201024886 A TW 201024886A TW 97151200 A TW97151200 A TW 97151200A TW 97151200 A TW97151200 A TW 97151200A TW 201024886 A TW201024886 A TW 201024886A
Authority
TW
Taiwan
Prior art keywords
electrode
display structure
semi
transparent
reflective
Prior art date
Application number
TW97151200A
Other languages
Chinese (zh)
Inventor
Kuan-Ting Chen
Jen-Chieh Yang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW97151200A priority Critical patent/TW201024886A/en
Publication of TW201024886A publication Critical patent/TW201024886A/en

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

A display structure is provided. An electrophoresis solution, comprising reflective charged particles and a light-absorbing dielectric solvent, is disposed between a first electrode and a second electrode. A transflective film is disposed on the second electrode.

Description

201024886 九、發明說明: 【發明所屬之技術領域】 本發明係有關於顯示器結構,特別係有關於反射式顯 示器結構。 【先前技冬好】 電泳顯示器是20世紀70年代發明的一種顯示技術。 電泳顯示結構係於介質溶劑中懸浮許多微小的、帶有一定 ❹ 電荷的粒子,把上述電泳溶液設置在兩個電極之間。操作 方法為於電極導入正或負極電荷,利用正負相吸的原理, 控制帶電粒子於介質溶劑中的分佈狀況,再配合結構對由 外界射入之光線的作用,達到顯示訊息的目的。 電泳顯示技術可以僅使用外界環境的光源,而不需要 背光源,即達到顯示訊息的目的。此外,電泳顯示器只有 在變換顯示狀態時才須要通電,若不必更換顯示狀態時, 則可關閉電源,螢幕上仍可維持顯示的資訊,此種特性稱 之為「雙穩態」,具有非常省電的特性。 為達全彩效果,在目前的全彩電泳顯示結構中,需在 顯示單元中個別使用紅、綠及藍色的濾光片、底板、電泳 溶劑、帶電粒子或其他元件,以達到顯示三原色光源的目 的。美國專利案號US6,751,007 B2揭示了將紅、綠及藍色 的帶電粒子(如第1圖所示)或底板(如第2圖所示)分 別置入不同的顯示單元中,以形成全彩顯示結構。然而, 此種全彩顯示結構的成本高且製造方法繁複。 5 201024886 【發明内容】 本發明提供一種顯示器結構,包括:一第一電極;一 透明之第二電極;一電泳溶液,設置於該第一電極及該第 二電極之間,且係由複數個反射帶電粒子及吸光介電質溶 劑所組成;以及一半反射膜,設置於該第二電極上方。 本發明也提供一種顯示器結構,包括:一半反射電極; 一全反射電極;以及一電泳溶液,係由複數個吸光帶電粒 ® 子及透明介電質溶劑所組成,其中該電泳溶液設置於該半 反射電極及該全反射電極之間。 本發明另外提供一種顯示器結構,包括:一半反射電 極;一第一透明電極;以及一電泳溶液,係由複數個全反 射帶電粒子及透明介電質溶劑所組成,其中該電泳溶液設 置於該半反射電極及該透明電極之間。 【實施方式】 本發明為一種顯示結構,特別係不需要使用不同色之 元件即可具有顯示全彩效果的電泳顯示結構,因此製程簡 單且成本低。本發明之電泳顯示結構還可與液晶顯示結構 整合在一起,利用電泳顯示結構對入射光線的作用,使提 升液晶顯示結構的顯示亮度。以下則針對本發明之實施例 加以說明。 有關各實施例之製造和使用方式係如以下所詳述。然 而,值得注意的是,本發明所提供之各種可應用的發明概 ό 201024886 念係依具體内文的各種變化據以實施,且在此所討論的具 體實施例僅是用來顯示具體使用和製造本發明的方法,而 不用以限制本發明的範圍。 以下係透過各種圖示及例式說明本發明較佳實施例。 此外,在本發明各種不同之各種實施例和圖示中,相同的 符號代表相同或類似的元件。 第3圖及第4圖分別顯示第一實施例之顯示單元其於 亮態及暗態時之剖面圖。顯示單元10包括電泳層3。電泳 • 層3可由介質溶劑4,及分佈於介質溶劑4之反射性帶電 粒子5所構成。介質溶劑4為具有吸光性之黑色液體。電 泳層3位於透明電極11及電極12之間。半反射膜20可設 置於透明電極11上。半反射膜20包括金屬,例如鋁(A1)、 銀(Ag)、金(Au)、銅(Cu)、鉻(Cr)或其組合,且厚度可介於 約100 nm至約1 mm 。半反射膜20也可以是其他適合的 材料。顯示單元10可包括基板2及透明基板1。透明基板 1包括例如玻璃的硬性材料,或包括例如聚碳酸醋 響 (polycarbonate; PC)、聚對苯二甲酸二乙醋(polyethylene terephthalate; PET)、聚萘酸伸乙醋(polyethytene naphthalate; PEN)、聚醚礙(polyether sulfone; PES)、聚醯亞 胺(polyimide; PI)、聚醚醚酮(polyether ether ketone; PEEK) 或其他適合的軟性材料。基板2可相同或不同於透明基板 1 ° 顯示單元10可利用設置於電極12上方之隔離結構30 予以定義。於俯視圖中,隔離結構30可具有封閉之環狀結 7 201024886 構’例如矩形、圓形、橢圓形、任意多邊形或其他 不規則的任意形狀(未顯示)。於其他實施例中,隔離= 構30利用具有凹口之隔離結構代替。例如,顯示單元之; 泳層3及透明電極11 ’以及電極12或半反_ 2〇可形成 於如第9圖及第10圖所示之隔離層31之凹口内。201024886 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to display structures, and more particularly to reflective display structures. [Previous winter good] Electrophoretic display is a display technology invented in the 1970s. The electrophoretic display structure suspends a plurality of tiny, erbium-charged particles in a medium solvent, and the above electrophoresis solution is disposed between the two electrodes. The operation method is to introduce positive or negative electric charge into the electrode, and use the principle of positive and negative phase suction to control the distribution of charged particles in the solvent of the medium, and then cooperate with the structure to act on the light incident from the outside to achieve the purpose of displaying the message. Electrophoretic display technology can use only the light source of the external environment, without the need for a backlight, that is, to achieve the purpose of displaying a message. In addition, the electrophoretic display needs to be powered only when the display state is changed. If it is not necessary to replace the display state, the power can be turned off, and the displayed information can still be maintained on the screen. This characteristic is called "bistable" and has a very low Electrical characteristics. In order to achieve the full color effect, in the current full color electrophoretic display structure, red, green and blue filters, bottom plates, electrophoretic solvents, charged particles or other components are separately used in the display unit to achieve the display of the three primary color light sources. the goal of. US Patent No. 6,751,007 B2 discloses that red, green, and blue charged particles (as shown in Figure 1) or bottom plates (as shown in Figure 2) are placed in different display units, respectively. Form a full color display structure. However, such a full color display structure is costly and complicated in manufacturing methods. The present invention provides a display structure comprising: a first electrode; a transparent second electrode; an electrophoretic solution disposed between the first electrode and the second electrode, and is composed of a plurality of The reflective charged particles and the light absorbing dielectric solvent are formed; and the semi-reflective film is disposed above the second electrode. The invention also provides a display structure comprising: a semi-reflective electrode; a total reflection electrode; and an electrophoresis solution, which is composed of a plurality of light-absorbing charged particles and a transparent dielectric solvent, wherein the electrophoresis solution is disposed in the half Between the reflective electrode and the total reflection electrode. The invention further provides a display structure comprising: a semi-reflective electrode; a first transparent electrode; and an electrophoresis solution, which is composed of a plurality of total reflection charged particles and a transparent dielectric solvent, wherein the electrophoresis solution is disposed in the half Between the reflective electrode and the transparent electrode. [Embodiment] The present invention is a display structure, in particular, an electrophoretic display structure capable of displaying a full color effect without using components of different colors, so that the process is simple and low in cost. The electrophoretic display structure of the present invention can also be integrated with a liquid crystal display structure to utilize the effect of the electrophoretic display structure on incident light to enhance the display brightness of the liquid crystal display structure. Hereinafter, embodiments of the invention will be described. The manner of manufacture and use of the various embodiments is as detailed below. However, it is to be noted that the various applicable inventions provided by the present invention are based on various changes in the specific context, and the specific embodiments discussed herein are merely intended to show specific use and The method of the invention is made without limiting the scope of the invention. The preferred embodiments of the present invention are described below by way of illustration and example. In addition, the same symbols represent the same or similar elements in the various embodiments and the various embodiments of the invention. 3 and 4 are cross-sectional views showing the display unit of the first embodiment in a bright state and a dark state, respectively. The display unit 10 includes an electrophoretic layer 3. Electrophoresis • Layer 3 may be composed of a dielectric solvent 4 and reflective charged particles 5 distributed in a dielectric solvent 4. The medium solvent 4 is a black liquid having light absorbability. The electrophoresis layer 3 is located between the transparent electrode 11 and the electrode 12. The semi-reflective film 20 can be placed on the transparent electrode 11. The semi-reflective film 20 includes a metal such as aluminum (A1), silver (Ag), gold (Au), copper (Cu), chromium (Cr), or a combination thereof, and may have a thickness of from about 100 nm to about 1 mm. The semi-reflective film 20 can also be other suitable materials. The display unit 10 may include a substrate 2 and a transparent substrate 1. The transparent substrate 1 includes a hard material such as glass, or includes, for example, polycarbonate (PC), polyethylene terephthalate (PET), polyethytene naphthalate (PEN). Polyether sulfone (PES), polyimide (PI), polyether ether ketone (PEEK) or other suitable soft materials. The substrate 2 may be the same or different from the transparent substrate. The display unit 10 may be defined by an isolation structure 30 disposed above the electrode 12. In a top view, the isolation structure 30 can have a closed annular junction 7 201024886 configured as a rectangle, a circle, an ellipse, an arbitrary polygon, or any other irregular shape (not shown). In other embodiments, the isolation = structure 30 is replaced with an isolation structure having a recess. For example, the display unit; the swimming layer 3 and the transparent electrode 11', and the electrode 12 or the half-anti- 2 〇 can be formed in the recess of the spacer layer 31 as shown in Figs. 9 and 10.

顯示單元之亮態與暗態可利用調變電極12及透明電 極11之間之偏壓的方式,改變反射性帶電粒子5於吸光之 黑色介質溶劑4中的分佈狀況而予以控制。當電場將反射 性帶電粒子5導向至電泳層3之靠近透明電極u的表面 時,穿過半反射膜20及透明電極π之入射光會藉由反射 性帶電粒子5反射回外部,因而使顯示結構呈現亮態,如 第3圖所示。請參考第4圖,當反射性帶電粒子$被導向 至電泳層3之遠離透明電極11的表面時,穿過半反射膜 20及透明電極11之入射光會被吸光之黑色介質溶劑4吸 收,因而使顯示結構呈現暗態。 應注意的是,此處所描述之光學現象主要用來說明實 施例之顯示單元的顯示機制,其他非關顯示機制之光學現 象(例如射向半反射膜20之外部光線中的一部份會直接由 半反射膜20反射回去,而無法射入至顯示單元内),於此 不予贅述。 请參考第3圖’顯示單元於亮態時所顯示之色彩可由 半反射臈20與反射粒子5之間所形成的微共振腔所決定, 共振腔效應可以簡單地視為一種Fabry-Perot的共振腔。滿 足下面公式: 8 201024886 2Ι7λ - Φ/2π = m (w 為整數) 這裡L代表的是半反射膜和反射粒子間的光學長度, Φ是反射相位差的總和,當w為整數時(〇,丨,2 ),可以 得到射出此共振腔的共振波長為λ。 光學長度(L)可以下列方程式表示:The bright state and the dark state of the display unit can be controlled by changing the distribution of the reflective charged particles 5 in the black medium solvent 4 that absorbs light by the bias voltage between the modulation electrode 12 and the transparent electrode 11. When the electric field directs the reflective charged particles 5 to the surface of the electrophoretic layer 3 close to the transparent electrode u, the incident light passing through the semi-reflective film 20 and the transparent electrode π is reflected back to the outside by the reflective charged particles 5, thereby causing the display structure Presents a bright state, as shown in Figure 3. Referring to FIG. 4, when the reflective charged particles $ are directed to the surface of the electrophoretic layer 3 remote from the transparent electrode 11, the incident light passing through the semi-reflective film 20 and the transparent electrode 11 is absorbed by the black dielectric solvent 4 which is absorbed, thereby Make the display structure appear dark. It should be noted that the optical phenomena described herein are mainly used to explain the display mechanism of the display unit of the embodiment, and other optical phenomena of the non-off display mechanism (for example, a part of the external light incident on the semi-reflective film 20 is directly It is reflected back by the semi-reflective film 20 and cannot be injected into the display unit), and will not be described here. Please refer to Fig. 3'. The color displayed by the display unit in the bright state can be determined by the micro-resonance cavity formed between the semi-reflecting 臈20 and the reflective particle 5. The cavity effect can be simply regarded as a resonance of a Fabry-Perot. Cavity. The following formula is satisfied: 8 201024886 2Ι7λ - Φ/2π = m (w is an integer) where L represents the optical length between the semi-reflective film and the reflective particle, and Φ is the sum of the reflection phase differences, when w is an integer (〇,丨, 2), the resonance wavelength at which the cavity is emitted can be obtained as λ. The optical length (L) can be expressed by the following equation:

L = n XL = n X

其中,η係材料之折射率,t係材料之實體厚度。請參 考第3圖,當光線入射至透明電極I!(用作光學共振腔) 内,會在反射性帶電粒子5及半反射膜2〇間互相^擾,造 成建設性干涉或坡義干涉,因此只有料讀長的光會 受到增強’其他部份會被削弱,接著再射出。微共振腔的 發光特性可錄共振㈣光學長度(L)來決定,並與中間介 質的厚度與魏率有關,因此可轉制翻電、 來調整顯示單元所顯示之色彩。 的厚度 請參考第5圖,其係將上述第一實施例之 σ至顯不器且處於亮態時的剖面圖。顯具 示單元、綠色顧示翠元]0Β及藍色顯示;Π =干示單單二具r同光學長度之透二= 顯不皁7L可藉由隔離結構3〇彼此 中’隔離結構3G可具有封閉之環狀結構,例俯視圖 糖圓形、任意多邊形或其他規則或不規則的^、圓形、 顯示)。於其他實施财,隔離結構3G 广狀(未 離結構代替。例如,顯示單元之電泳層3及透凹口之隔 iiB或11C,以及電極12或半反射膜2〇可形成電^ u A、 ;如第11 9 201024886 圖所示之隔離層31之凹口内。 第6圖及第7圖分別顯示另一實施例之顯示單元其於 亮態及暗態時之剖面圖,其與第3圖及第4圖的主要差異 在於該實施例更包括膽固醇液晶層40及透明電極16。透 明電極16可為氧化銦錫(IT〇)、氧化銦鋅(IZ〇)或其他適合 之材料。液晶層40中之膽固醇液晶材料可為微胞化 (micro-capsulated)或高分子穩定(polymer_stabilized)液晶材 料。膽固醇液晶層40之膽固醇液晶材料的狀態可由調變透 • 明電極11及16之偏壓的方式予以控制。 於操作液晶顯示結構的過程中,當外界光入射至平面 (planar)態膽固醇液晶材料時,膽固醇液晶材料會將外界光 中之單一色且單一旋性的顯示光反射出去,而其他特性的 光則會穿透液晶顯示結構,因此光利用率(反射率)及顯 示凴度低。請參考第6圖,顯示結構1〇,係以如第3圖之顯 示結構與液晶層40及透明電極16整合在一起所構成。當 液晶層4〇之膽固醇液晶材料被控制成平面(planar)態,且 反射性帶電粒子5被導向至電泳層3之靠近透明電極η 的表面時,入射光線中一色彩顯示光的左旋光會由液晶層 40反射出,而其他條件的光(包括上述顯示光的右旋光) 在穿過液晶層40後’會繼續穿過半反射膜2〇及透明電極 11。例如,當顯示結構10’係用以顯示紅色顯示光時,液晶 層40之膽固醇液晶材料可將入射光之左旋性紅光反射回 外部’而其他藍色、綠色及右旋性的紅光則穿透膽固醇液 晶材料。利用電泳顯示結構之共振光效應,以及全反射材 10 201024886 料5會將一旋性光反射成相反旋性光的特性,入射至透明 電極11内之光線最終能以上述色彩顯示光之右旋光特性 射出顯示結構,其中射出之光線的色彩可決定於透明電極 11之光學長度。由膽固醇液晶材反射出之光線的色彩可相 同於經共振結構作用後而射出之光線的色彩。因此,顯示 光源除了藉由液晶層40所造成之反射光線外,更包括於透 明電極11内共振後所反射之光線,因此提高了顯示結構 10’之光利用率(反射率)及顯示亮度。 ❹ 請參考第7圖,當液晶層40中的膽固醇液晶材料被控 制成垂直(Homeotropic)態或垂直螺旋(Focal conic)態,且反 射性帶電粒子5被導向至電泳層3之遠離透明電極11的表 面時,入射光線會直接穿過透明電極16、液晶層40、半反 射膜20及透明電極11而被介質溶劑4吸收,因而使顯示 結構10’呈現暗態。 請參考第8圖,其係將第6圖之顯示單元整合至顯示 器且處於亮態時的剖面圖。顯示器可具有紅色顯示單元 ❹ 10A’、綠色顯示單元10B’及藍色顯示單元10C’。不同色彩 之顯示單元具有不同光學長度之透明電極11 A’、11B’及 11C’,以及具有可反射出不同色彩之顯示光的膽固醇液晶 材料。顯示單元可藉由隔離結構30彼此隔開。同樣地,於 俯視圖中,隔離結構30可具有封閉之環狀結構,例如矩 形、圓形、橢圓形、任意多邊形或其他規則或不規則的任 意形狀(未顯示)。於其他實施例中,隔離結構30利用具 有凹口之隔離結構代替。例如,顯示單元之電泳層3及透 201024886 明電極11、半反射膜20、液晶層40,以及電極12或透明 電極16可形成於如第14圖所示之隔離層31之凹口内。 第9圖及第1〇圖分別顯示第二實施例之顯示單元其於 党態及暗態時之剖面圖。顯示單元50包括電泳層3,。電泳 層3’可由透明介質溶劑4,,及分佈於透明介質溶劑4,中之 帶電粒子5’所構成。帶電粒子5,係具有吸光性之黑色粒 子。電永層3’位於半反射電極13及全反射電極14之間。 半反射電極13可包括金屬,例如鋁(A1)、銀(Ag)、金(Au)、 籲 銅(Cu)、鉻(Cr)或其組合,且厚度可介於約1〇〇 nm至約1 mm。全反射電極14可包括金屬,例如鋁(A1)、銀(Ag)、金 (Au)、銅(Cu)、鉻(Cr)或其組合,且厚度可大於約10nm。 半反射電極13或全反射電極14也可以是其他適合的材 料。電泳層3’及全反射電極14可設置於隔離層31之凹口 17内。隔離層31包括聚二甲基梦氧烧(p〇lydimethylsiloxane; PDMS)、全聚氟醚(perfluoropolyethers; PFPE)或其他適合的 材料。顯示單元50可包括基板2及透明基板1。同樣地, — 透明基板1包括例如玻璃的硬性材料,或包括例如聚碳酸 酯(polycarbonate; PC)、聚對苯二曱酸二乙酯(polyethylene terephthalate; PET)、聚萘酸伸乙醋(polyethytene naphthalate; PEN)、聚醚礙(polyether sulfone; PES)、聚醯亞 胺(polyimide; PI)、聚醚謎酮(polyether ether ketone; PEEK) 或其他適合的軟性材料。基板2可相同或不同於透明基板 1 ° 於俯視圖(未顯示)中,凹口 17可具有例如矩形、圓 12 201024886 形、橢圓形、任意多邊形或其他規則或不規則的任意形狀。 於其他實施例中,具有凹口之隔離層31可利用隔離結構代 替。例如,顯示單元之電泳層3’,以及半反射電極13或全 反射電極14之設置區域可利用如第8圖所示之隔離結構 30予以定義。 顯示單元之亮態與暗態可利用調變半反射電極13及 全反射電極14之間之偏壓的方式,以改變吸光性黑色帶電 粒子5’於透明介質溶劑4’中的分佈狀況而予以控制。當吸 ❹ 光性黑色帶電粒子5’被導向至電泳層3之鄰近隔離層31 的侧表面時,穿過半反射電極13及透明介質溶劑4’之入射 光會由全反射電極14反射回外部,因而使顯示結構呈現亮 態,如第9圖所示。請參考第10圖,當吸光性黑色帶電粒 子5’被導向至電泳層3’之靠近透半反射電極13的上表面 時,穿過半反射電極13之入射光會被吸收光之帶電粒子5’ 吸收,因而使顯示結構呈現暗態。 顯示單元於亮態時所顯示之色彩可決定於透明介質溶 ® 劑4’之光學長度(L)。請參考第9圖,當光線於透明介質溶 劑4’(用作光學共振腔)内,會在半反射電極13及全反射 電極14間互相干擾,造成建設性干涉或坡壞性干涉,因此 只有某特定波長的光會受到增強,其他部份會被削弱,接 著再射出。微共振腔的發光特性可由微共振腔的光學長度 (L)來決定,並與中間介質的厚度與折射率有關,因此可以 控制透明介質溶劑4’的厚度來調整顯示單元所顯示之色 彩。 13 201024886 請參考第11圖,其係將例如第9圖之顯示單元整合至 顯示器且處於亮態時的剖面圖。顯示器可具有紅色顯示單 元50A、綠色顯示單元50B及藍色顯示單元50C。不同色 彩之顯示單元具有不同光學長度之透明介質溶劑4A’、4B’ 及4C’。顯示單元可藉由隔離層31彼此隔開。不同色彩之 顯示單元其電泳層3’及全反射電極14可形成於不同深度 之凹口 17A、17B及17C内,如第11圖所示。於其他實施 例中,不同色彩之顯示單元其電泳層及全反射電極可形成 ❹ 於相同深度之凹口内(未顯示)。於俯示圖中,凹口 17A、 17B及17C可具有例如矩形、圓形、橢圓形、任意多邊形 或其他規則或不規則的任意形狀。於其他實施例中,具有 凹口之隔離層31可利用隔離結構代替。例如,顯示單元之 電泳層3’,以及半反射電極13或全反射電極14之設置區 域可利用如第5圖所示之隔離結構30予以定義。 第12圖及第13圖分別顯示另一實施例之顯示單元其 於亮態及暗態時之剖面圖,其與第9圖及第10圖的主要差 ❹ 異在於該實施例具有液晶層40及透明電極16,且半反射 電極13’位於凹口 17内。透明電極16可為氧化銦錫(ITO)、 氧化銦鋅(IZO)或其他適合之材料。液晶層40之膽固醇液 晶材料可為微胞化(micro-capsulated)或高分子穩定 (polymer-stabilized)液晶材料。液晶層40之膽固醇液晶材 料的位向可由調變半反射電極13’及透明電極16之偏壓的 方式予以控制。 請參考第12圖,亮態顯示單元50’之液晶層40中的膽 201024886 固醇液晶材料係被控制成平面(planar)態,且電泳層3,中的 黑色帶電粒子5,被導向至電泳層3,之鄰近隔離層31的側 表面。基於相似於第6圖所描述之理由,第12圖所顯示之 實施例的顯示光源除了藉由液晶層4〇所造成之反射光線 外’更包括於電泳層3,内共振後所反射之光線,因此可提 高顯示結構50’之光利用率(反射率)及顯示亮度。 請參考第13圖,暗態顯示單元50,之液晶層40中的膽 固醇液as材料係被控制成垂直(H〇me〇tr〇pic)態或垂直螺旋 (Focal conic)態,且電泳層3,中的黑色帶電粒子5,被導向 至電泳層3’之靠近半反射電極13的上表面。 請參考第14圖,其係將如第12圖之顯示單元整合至 顯示器且處於亮態時的剖面圖。顯示器可具有紅色顯示單 元50A’、綠色顯示單元50B,及藍色顯示單元5〇c,。基於 相似於第8圖及第11圖所描述之理由,不同色彩之顯示單 元具有不同光學長度之透明介質溶劑4A’、4B,及4C,,以 及具有可反射出不同色彩之顯示光的膽固醇液晶材料,如 第14圖所示。 第15圖及第16圖分別顯示第三實施例之顯示單元 其於亮態及暗態時之剖面圖,其與第9圖或第1〇圖的主要 差異在於在該實施例之電泳層3a的帶電粒子5是全反射材 料。隔離層31’是吸收光的黑色材料。此外,電極u β 明材料。 & 請參考第15圖及第16圖,顯示單元6〇之亮態與暗g 可利用調變半反射電極13及透明電極u之間之偏壓的方 201024886 式,以改變反射性帶電粒子5於透明介質溶劑4’中的分佈 狀況而予以控制。請參考第15圖,當反射性帶電粒子5 被導向至電泳層3a之靠近透明電極11的下表面時,穿過 半反射電極13及透明介質溶劑4’之入射光會由反射性帶 電粒子5反射回外部,因而使顯示結構60呈現亮態。請參 考第16圖,當反射性帶電粒子5被導向至電泳層3a之鄰 近吸光性黑色隔離層31’的側表面時,穿過透明電極11之 入射光會被吸光性黑色隔離層31’吸收,因而使顯示結構 ❹ 60呈現暗態。 顯示單元60於亮態時所顯示之色彩可決定於透明介 質溶劑4’之光學長度(L),其理由與第一實施例相似,在此 不予贅述。 請參考第17圖,其係將例如第15圖之顯示單元整合 至顯示器且處於亮態時的剖面圖。顯示器可具有紅色顯示 單元60A、綠色顯示單元60B及藍色顯示單元60C。不同 色彩之顯示單元具有不同光學長度之透明介質溶劑4A’、 • 4B,及4C,。顯示單元可藉由吸光性黑色隔離層31,彼此隔 開。不同色彩之顯示單元其電泳層3a及透明電極11可形 成於不同深度之凹口 17A、17B及17C内,如第17圖所示。 於俯示圖中,凹口 17A、17B及17C可具有例如矩形、圓 形、橢圓形、任意多邊形或其他規則或不規則的任意形狀。 第18圖及第19圖分別顯示另一實施例之顯示單元60’ 其於亮態及暗態時之剖面圖,其與第15圖及第16圖的主 要差異在於該實施例具有液晶層40及透明電極16,且半 16 201024886 反射電極13’位於凹口 17内。液晶層4〇之膽固醇液晶材料 的位向可由調變半反射電極13,及透明電極16之偏壓的方 式予以控制。 »月參考第18圖’亮態顯示單元6〇’之液晶層40中的膽 固醇液晶材料係被控制成平面(planar)態,且電泳層3a中 的全反射帶電粒子5被導向至電泳層3a的底表面。基於相 似於第6圖所描述之理由,第18圖所顯示之實施例的顯示 光源除了藉由液晶層40所造成之反射光線外,更包括於電 _ 泳層3a内共振後所反射之光線,因此可提高顯示結構6〇, 之光利用率(反射率)及顯示亮度。 請參考第19圖’暗態顯示單元60,之液晶層40中的膽 固醇液θθ材料係被控制成垂直(H〇me〇tr〇pic)態或垂直螺旋 (Focal conic)態,且電泳層3a中的全反射帶電粒子5被導 向至電泳層3’的側壁上。 請參考第20圖,其係將如第18圖之顯示單元整合至 顯不器且處於亮態時的剖面圖。顯示器可具有紅色顯示單 元60A’、綠色顯示單元6〇B,及藍色顯示單元6〇c,。基於 相似於第8圖及第π圖所描述之理由,不同色彩之顯示單 元具有不同光學長度之透明介質溶劑4A,、4B,及4C,,以 及具有可反射出不同色彩之顯示光的膽固醇液晶材料,如 第20圖所示。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟悉此項技藝者,在不脫離本發明之精 神和範圍内,當可做些許更動與潤飾,因此本發明之保護 17 201024886 範圍當視後附之申請專利範圍所界定者為準。Wherein, the refractive index of the η-based material and the physical thickness of the t-based material. Referring to Figure 3, when light is incident on the transparent electrode I! (used as an optical resonant cavity), it will interfere with each other between the reflective charged particles 5 and the semi-reflective film 2, causing constructive interference or slope-like interference. Therefore, only the light that is expected to be read will be enhanced. The other parts will be weakened and then fired. The luminescence characteristics of the microcavity can be determined by the resonance (4) optical length (L) and related to the thickness and the Wei rate of the intermediate medium, so that the power can be converted to adjust the color displayed by the display unit. Please refer to Fig. 5, which is a cross-sectional view showing the σ of the first embodiment described above to the display and in a bright state. Display unit, green display Cuiyuan] 0Β and blue display; Π = show two single r with the same optical length of the two = display soap 7L can be separated by the structure 3 〇 each other 'isolation structure 3G can It has a closed ring structure, such as a top view sugar circle, an arbitrary polygon or other regular or irregular ^, circle, display). In other implementations, the isolation structure 3G is wide (not replaced by a structure. For example, the electrophoretic layer 3 of the display unit and the iiB or 11C of the through-pit, and the electrode 12 or the semi-reflective film 2 〇 can form an electric ^, As shown in the notch of the isolation layer 31 shown in FIG. 11 9 201024886. FIGS. 6 and 7 respectively show cross-sectional views of the display unit of another embodiment in a bright state and a dark state, and FIG. 3 The main difference between Fig. 4 and Fig. 4 is that the embodiment further includes a cholesteric liquid crystal layer 40 and a transparent electrode 16. The transparent electrode 16 may be indium tin oxide (IT〇), indium zinc oxide (IZ) or other suitable material. The cholesteric liquid crystal material in 40 may be a micro-capsulated or polymer-stabilized liquid crystal material. The state of the cholesteric liquid crystal material of the cholesteric liquid crystal layer 40 may be modulated by the manner in which the electrodes 11 and 16 are biased. In the process of operating the liquid crystal display structure, when external light is incident on a planar cholesteric liquid crystal material, the cholesteric liquid crystal material reflects a single color and a single sleek display light in the external light, and The characteristic light will penetrate the liquid crystal display structure, so the light utilization rate (reflectance) and display intensity are low. Please refer to Fig. 6 to show the structure 1〇, the display structure as shown in Fig. 3 and the liquid crystal layer 40 and transparent The electrodes 16 are integrally formed. When the cholesteric liquid crystal material of the liquid crystal layer 4 is controlled to a planar state, and the reflective charged particles 5 are guided to the surface of the electrophoretic layer 3 close to the transparent electrode η, the incident light is The left-handed light of one color display light is reflected by the liquid crystal layer 40, and the light of other conditions (including the right-handed light of the above-described display light) continues to pass through the semi-reflective film 2 and the transparent electrode 11 after passing through the liquid crystal layer 40. For example, when the display structure 10' is used to display red display light, the cholesteric liquid crystal material of the liquid crystal layer 40 can reflect the left-handed red light of the incident light back to the outside' while other blue, green, and right-handed red light Then, the cholesteric liquid crystal material is penetrated. The resonance light effect of the structure is displayed by electrophoresis, and the total reflection material 10 201024886 material 5 reflects the spin-light light into the characteristics of the opposite-rotation light, and is incident on the transparent electrode 11. The light finally emits the right-hand optical property of the light to emit the display structure, wherein the color of the emitted light can be determined by the optical length of the transparent electrode 11. The color of the light reflected by the liquid crystal liquid can be the same as that of the resonant structure. The color of the light that is emitted later is displayed. Therefore, in addition to the reflected light caused by the liquid crystal layer 40, the display light source further includes the light reflected by the resonance in the transparent electrode 11, thereby improving the light utilization efficiency of the display structure 10'. (Reflectance) and display brightness. ❹ Referring to FIG. 7, when the cholesteric liquid crystal material in the liquid crystal layer 40 is controlled to a homeotropic state or a Focal conic state, and the reflective charged particles 5 are guided to When the electrophoretic layer 3 is away from the surface of the transparent electrode 11, the incident light directly passes through the transparent electrode 16, the liquid crystal layer 40, the semi-reflective film 20, and the transparent electrode 11 to be absorbed by the dielectric solvent 4, thereby causing the display structure 10' to exhibit a dark state. . Please refer to Fig. 8, which is a cross-sectional view showing the display unit of Fig. 6 integrated into the display and in a bright state. The display may have a red display unit ❹ 10A', a green display unit 10B', and a blue display unit 10C'. The display units of different colors have transparent electrodes 11 A', 11B' and 11C' of different optical lengths, and cholesteric liquid crystal materials having display light which can reflect different colors. The display units can be separated from each other by the isolation structure 30. Similarly, in top view, the isolation structure 30 can have a closed loop structure, such as a rectangle, a circle, an ellipse, an arbitrary polygon, or any other regular or irregular shape (not shown). In other embodiments, the isolation structure 30 is replaced with an isolation structure having a recess. For example, the electrophoretic layer 3 of the display unit and the transparent electrode 11, the semi-reflective film 20, the liquid crystal layer 40, and the electrode 12 or the transparent electrode 16 may be formed in the recess of the isolation layer 31 as shown in Fig. 14. Fig. 9 and Fig. 1 respectively show cross-sectional views of the display unit of the second embodiment in a state of a party state and a dark state. The display unit 50 includes an electrophoretic layer 3, . The electrophoretic layer 3' may be composed of a transparent medium solvent 4, and charged particles 5' distributed in the transparent medium solvent 4. The charged particles 5 are black particles having light absorbing properties. The electric permanent layer 3' is located between the semi-reflective electrode 13 and the total reflection electrode 14. The semi-reflective electrode 13 may include a metal such as aluminum (A1), silver (Ag), gold (Au), copper (Cu), chromium (Cr), or a combination thereof, and may have a thickness of about 1 〇〇 nm to about 1 mm. The total reflection electrode 14 may comprise a metal such as aluminum (A1), silver (Ag), gold (Au), copper (Cu), chromium (Cr), or combinations thereof, and may have a thickness greater than about 10 nm. The semi-reflective electrode 13 or the total reflection electrode 14 may also be other suitable materials. The electrophoretic layer 3' and the total reflection electrode 14 may be disposed in the recess 17 of the spacer layer 31. The barrier layer 31 comprises polydimethyl phthalocyanine (PDMS), perfluoropolyethers (PFPE) or other suitable materials. The display unit 50 may include a substrate 2 and a transparent substrate 1. Similarly, the transparent substrate 1 comprises a hard material such as glass, or includes, for example, polycarbonate (PC), polyethylene terephthalate (PET), polyethytene (polyethytene) Naphthalate; PEN), polyether sulfone (PES), polyimide (PI), polyether ether ketone (PEEK) or other suitable soft materials. The substrate 2 may be the same or different from the transparent substrate 1 ° in a top view (not shown), and the recess 17 may have any shape such as a rectangle, a circle 12 201024886 shape, an ellipse shape, an arbitrary polygon or other regular or irregular shape. In other embodiments, the isolation layer 31 having the recesses may be replaced with an isolation structure. For example, the electrophoretic layer 3' of the display unit, and the arrangement area of the semi-reflective electrode 13 or the total reflection electrode 14 can be defined by the isolation structure 30 as shown in Fig. 8. The bright state and the dark state of the display unit can be changed by adjusting the bias between the semi-reflective electrode 13 and the total reflection electrode 14 to change the distribution of the light-absorbing black charged particles 5' in the transparent medium solvent 4'. control. When the light-absorbing black charged particles 5' are guided to the side surface of the electrophoretic layer 3 adjacent to the spacer layer 31, the incident light passing through the semi-reflective electrode 13 and the transparent medium solvent 4' is reflected back to the outside by the total reflection electrode 14. Thus, the display structure is rendered in a bright state, as shown in FIG. Referring to FIG. 10, when the light absorbing black charged particles 5' are directed to the upper surface of the electrophoretic layer 3' near the transflective electrode 13, the incident light passing through the semi-reflective electrode 13 is absorbed by the charged particles 5'. Absorbing, thus rendering the display structure dark. The color displayed by the display unit in the bright state can be determined by the optical length (L) of the transparent medium solution 4'. Please refer to Fig. 9. When the light is in the transparent medium solvent 4' (used as an optical resonant cavity), it will interfere with each other between the semi-reflective electrode 13 and the total reflection electrode 14, causing constructive interference or slope-damage interference, so only Light at a particular wavelength will be enhanced, and other parts will be weakened and then fired. The luminescent properties of the microcavity can be determined by the optical length (L) of the microcavity and are related to the thickness and refractive index of the intermediate medium, so that the thickness of the transparent medium solvent 4' can be controlled to adjust the color displayed by the display unit. 13 201024886 Please refer to Fig. 11, which is a cross-sectional view of a display unit such as Fig. 9 integrated into a display and in a bright state. The display may have a red display unit 50A, a green display unit 50B, and a blue display unit 50C. The display units of different colors have transparent medium solvents 4A', 4B' and 4C' of different optical lengths. The display units may be separated from each other by the isolation layer 31. The electrophoretic layer 3' and the total reflection electrode 14 of the display unit of different colors can be formed in the recesses 17A, 17B and 17C of different depths as shown in Fig. 11. In other embodiments, the electrophoretic layer and the total reflection electrode of the display unit of different colors may be formed in a recess of the same depth (not shown). In the top view, the notches 17A, 17B, and 17C may have any shape such as a rectangle, a circle, an ellipse, an arbitrary polygon, or other regular or irregular shapes. In other embodiments, the isolation layer 31 having the recesses can be replaced with an isolation structure. For example, the electrophoretic layer 3' of the display unit, and the arrangement area of the semi-reflective electrode 13 or the total reflection electrode 14 can be defined by the isolation structure 30 as shown in Fig. 5. 12 and 13 respectively show cross-sectional views of the display unit of another embodiment in a bright state and a dark state, which differ from the main difference between FIG. 9 and FIG. 10 in that the embodiment has a liquid crystal layer 40. And the transparent electrode 16, and the semi-reflective electrode 13' is located in the recess 17. The transparent electrode 16 may be indium tin oxide (ITO), indium zinc oxide (IZO), or other suitable material. The cholesterol liquid crystal material of the liquid crystal layer 40 may be a micro-capsulated or polymer-stabilized liquid crystal material. The orientation of the cholesteric liquid crystal material of the liquid crystal layer 40 can be controlled by the bias of the modulating semi-reflective electrode 13' and the transparent electrode 16. Referring to FIG. 12, the biliary 201024886 sterol liquid crystal material in the liquid crystal layer 40 of the bright state display unit 50' is controlled to be in a planar state, and the black charged particles 5 in the electrophoretic layer 3 are guided to electrophoresis. Layer 3 is adjacent to the side surface of the isolation layer 31. Based on the reason similar to that described in FIG. 6, the display light source of the embodiment shown in FIG. 12 is included in the electrophoretic layer 3 except for the reflected light caused by the liquid crystal layer 4, and is reflected by the internal resonance. Therefore, the light utilization ratio (reflectance) and display brightness of the display structure 50' can be improved. Referring to FIG. 13, in the dark state display unit 50, the cholesterol liquid as in the liquid crystal layer 40 is controlled to be a vertical (H〇me〇tr〇pic) state or a vertical spiral (Focal conic) state, and the electrophoretic layer 3 The black charged particles 5 in the middle are guided to the upper surface of the electrophoretic layer 3' close to the semi-reflective electrode 13. Please refer to Fig. 14, which is a cross-sectional view of the display unit of Fig. 12 integrated into the display and in a bright state. The display may have a red display unit 50A', a green display unit 50B, and a blue display unit 5〇c. Based on the reasons similar to those described in FIGS. 8 and 11, the display units of different colors have transparent medium solvents 4A', 4B, and 4C of different optical lengths, and cholesteric liquid crystals having display light reflecting different colors. Material as shown in Figure 14. 15 and 16 are cross-sectional views showing the display unit of the third embodiment in a bright state and a dark state, respectively, and the main difference from the 9th or 1st drawing is the electrophoretic layer 3a in this embodiment. The charged particles 5 are totally reflective materials. The spacer layer 31' is a black material that absorbs light. In addition, the electrode u β is a material. & Please refer to Fig. 15 and Fig. 16, showing that the bright state and the dark g of the unit 6 can be adjusted by using the bias between the semi-reflective electrode 13 and the transparent electrode u to change the reflective charged particles. 5 is controlled in the distribution of the transparent medium solvent 4'. Referring to FIG. 15, when the reflective charged particles 5 are directed to the lower surface of the electrophoretic layer 3a near the transparent electrode 11, the incident light passing through the semi-reflective electrode 13 and the transparent medium solvent 4' is reflected by the reflective charged particles 5. Returning to the exterior, thus causing display structure 60 to assume a bright state. Referring to Fig. 16, when the reflective charged particles 5 are directed to the side surface of the electrophoretic layer 3a adjacent to the light-absorbing black spacer layer 31', the incident light passing through the transparent electrode 11 is absorbed by the light-absorbing black spacer layer 31'. Thus, the display structure ❹ 60 is in a dark state. The color displayed by the display unit 60 in the bright state may be determined by the optical length (L) of the transparent medium solvent 4' for the same reason as in the first embodiment, and will not be described herein. Please refer to Fig. 17, which is a cross-sectional view showing, for example, the display unit of Fig. 15 integrated into the display and in a bright state. The display may have a red display unit 60A, a green display unit 60B, and a blue display unit 60C. Display units of different colors have transparent medium solvents 4A', 4B, and 4C of different optical lengths. The display units are separated from each other by the light absorbing black spacer layer 31. The electrophoretic layer 3a and the transparent electrode 11 of the display unit of different colors can be formed in the notches 17A, 17B and 17C of different depths as shown in Fig. 17. In the top view, the notches 17A, 17B, and 17C may have any shape such as a rectangle, a circle, an ellipse, an arbitrary polygon, or other regular or irregular shapes. 18 and 19 respectively show cross-sectional views of the display unit 60' of another embodiment in a bright state and a dark state, and the main difference from the 15th and 16th drawings is that the embodiment has a liquid crystal layer 40. And the transparent electrode 16, and the half 16 201024886 reflective electrode 13' is located in the recess 17. The orientation of the cholesteric liquid crystal material of the liquid crystal layer 4 can be controlled by the modulation of the semi-reflective electrode 13 and the transparent electrode 16. »Month. Referring to FIG. 18, the cholesteric liquid crystal material in the liquid crystal layer 40 of the 'bright display unit 6' is controlled to a planar state, and the total reflection charged particles 5 in the electrophoretic layer 3a are guided to the electrophoretic layer 3a. The bottom surface. Based on the reason similar to that described in FIG. 6, the display light source of the embodiment shown in FIG. 18, in addition to the reflected light caused by the liquid crystal layer 40, includes the light reflected by the resonance in the electrophoretic layer 3a. Therefore, the light utilization ratio (reflectance) and display brightness of the display structure 6〇 can be improved. Referring to FIG. 19, the dark state display unit 60, the cholesterol liquid θθ material in the liquid crystal layer 40 is controlled to be a vertical (H〇me〇tr〇pic) state or a vertical spiral (Focal conic) state, and the electrophoretic layer 3a The total reflection charged particles 5 in the middle are guided to the side walls of the electrophoretic layer 3'. Please refer to Fig. 20, which is a cross-sectional view of the display unit of Fig. 18 integrated into the display and in a bright state. The display may have a red display unit 60A', a green display unit 6A, and a blue display unit 6〇c. Based on the reasons similar to those described in Fig. 8 and Fig. π, the display units of different colors have transparent medium solvents 4A, 4B, and 4C of different optical lengths, and cholesteric liquid crystals having display light reflecting different colors. Material, as shown in Figure 20. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. Protection 17 201024886 Scope is subject to the definition of the scope of the patent application.

18 201024886 【圖式簡單說明】 第1圖及第2圖為習知全彩顯示結構。 第3圖及第4圖分別顯示第一眚 亮態及暗_之剖面圖。 實施例之顯示單元其於 不單元整合至顯示器且 第5圖顯示將第一實施例之顯 處於亮態時的剖面圖。 第6圖及第7圖分別顯示另一實施例之顯亍單元其於 亮態及暗態時之剖面圖。 顯不單兀其於 1 將第6圖之顯示單元整合至顯示器且處於 冗態時的剖面圖。 a圖分賴示第二實施狀顯示單元其於 売態及暗態時之剖面圖。 第η圖顯示將第二實施例之顯示單元整合至顯示器 且處於亮態時的剖面圖。 第12圖及第13圖分別顯示另—實_之顯示單元其 於亮態及暗態時之剖面圖。 第14圖顯示將第12圖之顯示單元整合至顯示器且處 於亮態時的剖面圖。 第15圖及第16圖分別顯示第三實施例之顯示單元其 於亮態及暗態時之剖面圖。 第17圖顯不將第二實施例之顯示單元整合至顯示器 且處於亮態時的剖面圖。 第18圖及第19圖分別顯示另—實施例之顯示單元其 於亮態及暗態時之剖面圖。 19 201024886 第20圖顯示將第18圖之顯示單元整合至顯示器且處 於亮態時的剖面圖。 【主要元件符號說明】 1〜透明基板; 2〜基板; 3〜電泳層; 3a〜電泳層; ❿ 3’〜電泳層; 4〜介質溶劑; 4’〜透明介質溶劑; 4A’〜透明介質溶劑; 4B’〜透明介質溶劑; 4C’〜透明介質溶劑; 5〜反射性帶電粒子; 5’〜吸光性黑色帶電粒子; • 10〜顯示單元; 10A〜紅色顯示單元; 10B〜綠色顯示單元; 10C〜藍色顯示單元; 10’〜顯示結構; 10A’〜紅色顯示單元; 10B’〜綠色顯示單元; 10C’〜藍色顯示單元; 20 201024886 11〜透明電極; 11A〜透明電極; 11 A’〜透明電極; 11B〜透明電極; 11B’〜透明電極; 11C〜透明電極; 11C’〜透明電極; 12〜電極; β 13〜半反射電極; 13’〜半反射電極, 14〜全反射電極; 16〜透明電極; 17〜凹口; 17Α〜凹口; 17Β〜凹口; 17C〜凹口; ® 20〜+反賴; 30〜隔離結構; 31〜隔離層; 31’〜吸光性黑色隔離層; 40〜液晶層; 50〜顯示單元; 50A〜紅色顯示單元; 50B〜綠色顯示單元; 21 201024886 50C〜藍色顯示單元; 60〜顯示單元; 60’〜顯示單元; 60A〜紅色顯示單元; 60A’〜紅色顯示單元; 60B〜綠色顯示單元; 60B’〜綠色顯示單元; 60C〜藍色顯示單元; ❹ 60C’〜藍色顯示單元。18 201024886 [Simple description of the drawings] Figures 1 and 2 show the conventional full-color display structure. Figures 3 and 4 show cross-sectional views of the first 亮 bright state and the dark _, respectively. The display unit of the embodiment is not integrated into the display unit and Fig. 5 is a cross-sectional view showing the first embodiment in a bright state. Fig. 6 and Fig. 7 respectively show cross-sectional views of the display unit of another embodiment in a bright state and a dark state. Not only does it include a cross-sectional view of the display unit of Figure 6 integrated into the display and in a redundant state. Figure a is a cross-sectional view showing the second embodiment of the display unit in an off state and a dark state. The nth diagram shows a cross-sectional view when the display unit of the second embodiment is integrated into the display and is in a bright state. Fig. 12 and Fig. 13 respectively show cross-sectional views of the display unit of the other-real state in the bright state and the dark state. Figure 14 is a cross-sectional view showing the integration of the display unit of Figure 12 into the display and in a bright state. Fig. 15 and Fig. 16 are sectional views showing the display unit of the third embodiment in a bright state and a dark state, respectively. Fig. 17 is a cross-sectional view showing the display unit of the second embodiment integrated into the display and in a bright state. Fig. 18 and Fig. 19 respectively show cross-sectional views of the display unit of another embodiment in a bright state and a dark state. 19 201024886 Figure 20 shows a cross-sectional view of the display unit of Figure 18 integrated into the display and in a bright state. [Main component symbol description] 1~transparent substrate; 2~substrate; 3~electrophoretic layer; 3a~electrophoretic layer; ❿3'~electrolytic layer; 4~media solvent; 4'~transparent medium solvent; 4A'~transparent medium solvent 4B'~transparent medium solvent; 4C'~transparent medium solvent; 5~reflective charged particles; 5'~absorbance black charged particles; • 10~ display unit; 10A~red display unit; 10B~green display unit; 10C ~ blue display unit; 10'~ display structure; 10A'~ red display unit; 10B'~ green display unit; 10C'~ blue display unit; 20 201024886 11~ transparent electrode; 11A~ transparent electrode; 11 A'~ Transparent electrode; 11B~transparent electrode; 11B'~transparent electrode; 11C~transparent electrode; 11C'~transparent electrode; 12~electrode; β13~semi-reflective electrode; 13'~semi-reflective electrode, 14~total-reflective electrode; ~ transparent electrode; 17 ~ notch; 17 Α ~ notch; 17 Β ~ notch; 17C ~ notch; ® 20 ~ + reliance; 30 ~ isolation structure; 31 ~ isolation layer; 31 ' ~ absorbance black isolation 40~liquid crystal layer; 50~ display unit; 50A~red display unit; 50B~green display unit; 21 201024886 50C~blue display unit; 60~ display unit; 60'~ display unit; 60A~red display unit; 60A '~Red display unit; 60B~green display unit; 60B'~green display unit; 60C~blue display unit; ❹60C'~blue display unit.

22twenty two

Claims (1)

201024886 十、申請專利範園: 一種顯示器結構,包括: 一第一電極; 一透明之第二電極; 一電泳溶液,設置於該第一電極及該第二電極之間, 且係由複數個反射帶電粒子及吸光介質溶劑所組成;以及 一半反射膜,設置於該第二電極上方。 2. 如申請專利範圍第1項所述之顯示器結構,其中該 _ 第二電極包括氧化銦錫(ITO)或氧化銦鋅(IZO)。 3. 如申請專利範圍第1項所述之顯示器結構,其中該 吸光介質溶劑之顏色包括黑色。 4. 如申請專利範圍第1項所述之顯示器結構,更包括: 一第一基板,設置於該第一電極下方;以及 一透明之第二基板’設置於該半反射膜上方。 5. 如申請專利範圍第1項所述之顯示器結構,更包括 @ —擋牆結構,設置於該第二電極、電泳溶液及半反射膜之 相對側壁上。 6. 如申請專利範圍第1項所述之顯示器結構,其中該 半反射膜包括金屬。 7. 如申請專利範圍第6項所述之顯示器結構,其中該 半反射膜之厚度介於100 nm 至 1 mm ° 8. 如申請專利範圍第1項所述之顯示器結構,更包括: 一透明之第三電極;以及 一液晶層,設置於該第二電極及該第三電極之間。 23 201024886 9.如申請專利範圍第8項所述之顯示器結構,更包括 一擋牆結構,設置於該第二電極、電泳溶液、半反射膜及 液晶層之相對侧壁上。 10·如申請專利範圍第8項所述之顯示器結構,更包括: 一第一基板,設置於該第一電極下方;以及 一透明之第二基板,設置於該第三電極上方。 11.如申請專利範圍第8項所述之顯示器結構,其中該 第三電極包括氧化銦錫QTO)或氧化銦鋅(IZO)。 魯 12.—種顯示器結構,包括: 一半反射電極; 一全反射電極;以及 一電泳溶液,係由複數個吸光帶電粒子及透明介電質 溶劑所組成,其中該電泳溶液設置於該半反射電極及該全 反射電極之間。 13·如申請專利範圍第12項所述之顯示器結構,更包 括: 一第一基板,設置於該全反射電極下方;以及 一透明之第二基板,位於該半反射電極上方。 14. 如申請專利範圍第12項所述之顯示器結構,更包 括一分隔材料,具有一凹口,從該凹口之底部依序設置有 該全反射電極、電泳溶液及半反射電極。 15. 如申請專利範圍第12項所述之顯示器結構,其中 該半反射電極包括金屬。 16. 如申請專利範圍第15項所述之顯示器結構,其中 24 201024886 該半反射電極之厚度介於100 nm至1 mm。 17. 如申請專利範圍第π項所述之顯示器結構,其中 該全反射電極包括金屬。 18. 如申請專利範圍第17項所述之顯示器結構,其中 全反射電極之厚度大於1〇 nm。 19. 如申請專利範圍第12項所述之顯示器結構,更包 括: 一透明電極;以及 一液晶層,設置於該半反射電極及該透明電極之間。 20. 如申請專利範圍第19項所述之顯示器結構,更包 括一分隔材料’具有一凹口,從該凹口之底部依序設置有 該全反射電極、電泳溶液、半反射電極、液晶層及透明電 極0 21. 如申請專利範圍第19項所述之顯示器結構,更包 括: 一第一基板’設置於該全反射電極下方;以及 一透明之第二基板,位於該透明電極上。 22. 如申請專利範圍第19項所述之顯示器結構,其中 該透明電極包括氧化銦錫(ITO)或氧化銦鋅(ιζο)。 23. —種顯示器結構,包括: 一半反射電極; 一第一透明電極;以及 一電泳溶液’係由複數個全反射帶電粒子及透明介電 質溶劑所組成’其中該電泳溶液設置於該半反射電極及該 25 201024886 透明電極之間。 24. 如申請專利範圍第23項所述之顯示器結構,更包 括: 一第一基板,設置於該第一透明電極下方;以及 一透明之第二基板,位於該半反射電極上方。 25. 如申請專利範圍第23項所述之顯示器結構,更包 括一吸光分隔材料,具有一凹口,從該凹口之底部依序設 置有該第一透明電極、電泳溶液及半反射電極。 ❹ 26.如申請專利範圍第23項所述之顯示器結構,其中 該半反射電極包括金屬。 27. 如申請專利範圍第26項所述之顯示器結構,其中 該半反射電極之厚度介於100 nm至1 mm。 28. 如申請專利範圍第23項所述之顯示器結構,更包 括: 一第二透明電極;以及 一液晶層,設置於該半反射電極及該第二透明電極之 ❹間。 29. 如申請專利範圍第28項所述之顯示器結構,更包 括一吸光分隔材料,具有一凹口,從該凹口之底部依序設 置有該第一透明電極、電泳溶液、半反射電極、液晶層及 第二透明電極。 30. 如申請專利範圍第28項所述之顯示器結構,更包 括: 一第一基板,設置於該第一透明電極下方;以及 26 201024886 一透明之第二基板,位於該第二透明電極上201024886 X. Patent application garden: A display structure comprising: a first electrode; a transparent second electrode; an electrophoretic solution disposed between the first electrode and the second electrode and having a plurality of reflections The charged particles and the light absorbing medium are composed of a solvent; and a semi-reflective film is disposed above the second electrode. 2. The display structure of claim 1, wherein the second electrode comprises indium tin oxide (ITO) or indium zinc oxide (IZO). 3. The display structure of claim 1, wherein the color of the solvent of the light absorbing medium comprises black. 4. The display structure of claim 1, further comprising: a first substrate disposed under the first electrode; and a transparent second substrate disposed above the semi-reflective film. 5. The display structure of claim 1, further comprising a @-retaining wall structure disposed on opposite sidewalls of the second electrode, the electrophoretic solution, and the semi-reflective film. 6. The display structure of claim 1, wherein the semi-reflective film comprises a metal. 7. The display structure of claim 6, wherein the semi-reflective film has a thickness of between 100 nm and 1 mm. 8. The display structure of claim 1, further comprising: a transparent a third electrode; and a liquid crystal layer disposed between the second electrode and the third electrode. The display structure of claim 8 further comprising a retaining wall structure disposed on the opposite side walls of the second electrode, the electrophoretic solution, the semi-reflective film, and the liquid crystal layer. 10. The display structure of claim 8, further comprising: a first substrate disposed under the first electrode; and a transparent second substrate disposed over the third electrode. 11. The display structure of claim 8, wherein the third electrode comprises indium tin oxide (TOTO) or indium zinc oxide (IZO). Lu 12. A display structure comprising: a semi-reflective electrode; a total reflection electrode; and an electrophoretic solution consisting of a plurality of light-absorbing charged particles and a transparent dielectric solvent, wherein the electrophoretic solution is disposed on the semi-reflective electrode And between the total reflection electrodes. 13. The display structure of claim 12, further comprising: a first substrate disposed under the total reflection electrode; and a transparent second substrate over the semi-reflective electrode. 14. The display structure of claim 12, further comprising a spacer material having a recess from which the total reflection electrode, the electrophoretic solution and the semi-reflective electrode are disposed in sequence. 15. The display structure of claim 12, wherein the semi-reflective electrode comprises a metal. 16. The display structure of claim 15 wherein 24 201024886 the semi-reflective electrode has a thickness between 100 nm and 1 mm. 17. The display structure of claim π, wherein the total reflection electrode comprises a metal. 18. The display structure of claim 17, wherein the total reflection electrode has a thickness greater than 1 〇 nm. 19. The display structure of claim 12, further comprising: a transparent electrode; and a liquid crystal layer disposed between the semi-reflective electrode and the transparent electrode. 20. The display structure of claim 19, further comprising a spacer material having a notch, the total reflection electrode, the electrophoresis solution, the semi-reflective electrode, and the liquid crystal layer are sequentially disposed from the bottom of the recess The display structure of claim 19, further comprising: a first substrate disposed under the total reflection electrode; and a transparent second substrate disposed on the transparent electrode. 22. The display structure of claim 19, wherein the transparent electrode comprises indium tin oxide (ITO) or indium zinc oxide (ITO). 23. A display structure comprising: a semi-reflective electrode; a first transparent electrode; and an electrophoretic solution 'composed of a plurality of total reflection charged particles and a transparent dielectric solvent, wherein the electrophoretic solution is disposed in the semi-reflection The electrode and the 25 201024886 transparent electrode. 24. The display structure of claim 23, further comprising: a first substrate disposed under the first transparent electrode; and a transparent second substrate over the semi-reflective electrode. 25. The display structure of claim 23, further comprising a light absorbing spacer material having a recess from which the first transparent electrode, the electrophoretic solution and the semi-reflective electrode are sequentially disposed. The display structure of claim 23, wherein the semi-reflective electrode comprises a metal. 27. The display structure of claim 26, wherein the semi-reflective electrode has a thickness of between 100 nm and 1 mm. 28. The display structure of claim 23, further comprising: a second transparent electrode; and a liquid crystal layer disposed between the semi-reflective electrode and the second transparent electrode. 29. The display structure of claim 28, further comprising a light absorbing partition material having a notch, the first transparent electrode, the electrophoresis solution, the semi-reflective electrode, and the like are disposed in sequence from the bottom of the recess a liquid crystal layer and a second transparent electrode. 30. The display structure of claim 28, further comprising: a first substrate disposed under the first transparent electrode; and 26 201024886 a transparent second substrate on the second transparent electrode 2727
TW97151200A 2008-12-29 2008-12-29 Display structure TW201024886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97151200A TW201024886A (en) 2008-12-29 2008-12-29 Display structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97151200A TW201024886A (en) 2008-12-29 2008-12-29 Display structure

Publications (1)

Publication Number Publication Date
TW201024886A true TW201024886A (en) 2010-07-01

Family

ID=44852347

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97151200A TW201024886A (en) 2008-12-29 2008-12-29 Display structure

Country Status (1)

Country Link
TW (1) TW201024886A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2670574C2 (en) * 2014-01-31 2018-10-23 Клеаринк Дисплейз, Инк. Apparatus and method for reflective image display with dielectric layer
US10203436B2 (en) 2013-05-22 2019-02-12 Clearink Displays, Inc. Method and apparatus for improved color filter saturation
US10261221B2 (en) 2015-12-06 2019-04-16 Clearink Displays, Inc. Corner reflector reflective image display
US10304394B2 (en) 2014-10-08 2019-05-28 Clearink Displays, Inc. Color filter registered reflective display
US10386691B2 (en) 2015-06-24 2019-08-20 CLEARink Display, Inc. Method and apparatus for a dry particle totally internally reflective image display
US10386547B2 (en) 2015-12-06 2019-08-20 Clearink Displays, Inc. Textured high refractive index surface for reflective image displays
US10705404B2 (en) 2013-07-08 2020-07-07 Concord (Hk) International Education Limited TIR-modulated wide viewing angle display
TWI792493B (en) * 2021-08-13 2023-02-11 友達光電股份有限公司 Total internal reflection display

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10203436B2 (en) 2013-05-22 2019-02-12 Clearink Displays, Inc. Method and apparatus for improved color filter saturation
US10705404B2 (en) 2013-07-08 2020-07-07 Concord (Hk) International Education Limited TIR-modulated wide viewing angle display
RU2670574C2 (en) * 2014-01-31 2018-10-23 Клеаринк Дисплейз, Инк. Apparatus and method for reflective image display with dielectric layer
US10304394B2 (en) 2014-10-08 2019-05-28 Clearink Displays, Inc. Color filter registered reflective display
US10386691B2 (en) 2015-06-24 2019-08-20 CLEARink Display, Inc. Method and apparatus for a dry particle totally internally reflective image display
US10261221B2 (en) 2015-12-06 2019-04-16 Clearink Displays, Inc. Corner reflector reflective image display
US10386547B2 (en) 2015-12-06 2019-08-20 Clearink Displays, Inc. Textured high refractive index surface for reflective image displays
TWI792493B (en) * 2021-08-13 2023-02-11 友達光電股份有限公司 Total internal reflection display

Similar Documents

Publication Publication Date Title
TW201024886A (en) Display structure
US6900458B2 (en) Transflective display having an OLED backlight
TWI313770B (en) Liquid crystal display apparatus
TW536688B (en) Liquid crystal display element
KR102071330B1 (en) Organic light emitting display device and method for manufacturing the same
KR102010789B1 (en) Transparent organic light emitting display device and method for manufacturing the same
TWI341948B (en) Display device
US8854589B2 (en) Conducting film or electrode comprising a dielectric intervening layer having electrically conductive pathways disposed between first and second transparent or semi-transparent conductive layers
JP2019220483A (en) Light emitting module
US8704996B2 (en) Cholesteric liquid crystal device with reflection electrodes and partition structures
Lee et al. High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device
TW201033683A (en) Normally black transflective liquid crystal displays
US20030117554A1 (en) Display device including corner cube array
US8339543B2 (en) Plasmonic device tuned using elastic and refractive modulation mechanisms
JP2009289592A (en) Display
JP4741437B2 (en) Organic EL composite element, organic EL display device and illumination device using the same
Wen et al. Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays
CN109656068A (en) A kind of display device
US8531628B2 (en) Display device having improved contrast ratio
CN106527008B (en) A kind of display device and display device
US7667799B2 (en) Liquid crystal display panel and liquid crystal display device using the same
TWI432837B (en) Display panel
JP4895501B2 (en) Liquid crystal display
TW200848892A (en) Transflective pixel
JP5109424B2 (en) Reflective display device