TW201007993A - Optical device shaping - Google Patents

Optical device shaping Download PDF

Info

Publication number
TW201007993A
TW201007993A TW98121458A TW98121458A TW201007993A TW 201007993 A TW201007993 A TW 201007993A TW 98121458 A TW98121458 A TW 98121458A TW 98121458 A TW98121458 A TW 98121458A TW 201007993 A TW201007993 A TW 201007993A
Authority
TW
Taiwan
Prior art keywords
substrate
light
angle
exit surface
wafer
Prior art date
Application number
TW98121458A
Other languages
Chinese (zh)
Inventor
Paul N Winberg
Dung T Duong
Matthew R Thomas
Elliot M Pickering
Original Assignee
Illumitex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Illumitex Inc filed Critical Illumitex Inc
Publication of TW201007993A publication Critical patent/TW201007993A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)

Abstract

Embodiments described herein provide methods for manufacturing an optical device having shaped sidewalls. A desired substrate shape corresponding to an LED or other optical device can be determined. The optical device can have a substrate comprising an exit face and sidewalls positioned and shaped to reflect light to the exit face to allow light to escape the exit face. A substrate material can be shaped based on the desired substrate shape for one or more LEDs. Shaping can be done using a wire saw, etching, ultrasonic shaping or other technique.

Description

201007993 六、發明說明: 【發明所屬之技術領域】 此揭不内容係關於光學元件且特定言之係關於發光二極 體(「LED」)。更特定言之,此揭示内容係關於成形光學 元件。 此申請案主張至藉由發明者Winberg於2008年6月26曰申 請之名稱為「光學元件成形與研磨之系統及方法」的美國 臨時專利申請案第61/〇75,972號之μ u.s.c. 119(e)下的優 先權之利益。此申請案亦主張作為藉由發明者Du〇ng等人 於2007年10月1曰申請之名稱為「LED系統與方法」的美 國專利申請案第11/906,194號之部分接續申請案,而且作 為藉由發明者Duong等人於2007年1〇月la申請之名稱為 「LED系統與方法」的美國專利申請案第11/906,2 19號之 部分接續申請案之35 U.S.C· 12〇下的優先權之利益,該等 申《肖案之每者主張至藉由發明者Duong等人於2006年1 0 月2日申請之名稱為「成形發光二極體」的美國臨時專利 申請案第60/827,818號,以及至藉由發明者Du〇ng等人於 2〇〇7年1月22日申請之名稱為「成形基板LED之系統與方 法」的美國臨時專利申請案第6〇/881,785號之35 usc. 119(e)下的優先權。以上參考的申請案之每一者係因此完 全以引用的方式併入本文中。 【先前技術】 發光二極體(「LED」)在電子器件中係普遍存在的。其 係用於數位顯示器、照明系統、電腦及電視機、蜂巢式電 141220.doc 201007993 話與各種其他元件中。led技術的發展已導致使用一或多 個LED來產生白光之方法及系統。LED技術的發展已導致 產生更多光子並因而比先前更多之光的LED。極如同電晶 體在電腦中代替真空管,此兩個技術發展之頂點係將led 用以補充或代替許多習知照明來源,例如白熾、螢光或鹵 素燈泡。 LED係以包括紅色、綠色及藍色的若干色彩來產生。一 種產生白光之方法涉及相互組合地使用紅色、綠色及藍色 LED。一種由紅色、綠色及藍色(Rgb)LED之組合所製成 的照明來源將產生藉由人眼感知為白光之光。此因為人眼 具有三個類型的色彩受體(其中每一類型對藍色、綠色或 紅色較敏感)而出現。 自LED來源產生白光之第二方法係自一單色(例如藍 色)、短波長LED建立光,並且將該光之一部分撞擊至碌光 體或類似光子轉換材料上。磷光體吸收較高能量、短波長 光波’並且重新發射較低能量、較長波長光。例如,若選 擇在黃色區(在綠色與紅色之間)中發射光的一磷光體,則 人眼將此光感知此光為白光。此因為黃光刺激在眼睛中的 紅色及綠色受體兩者而出現。諸如奈米粒子或其他類似光 致發光材料的其他材料可用以採用極相同方式來產生白 光。 白光還亦可利用一紫外線(UV)LED及三個分離RGB磷光 體來產生。白光亦可自一藍色LED及一黃色LED產生並且 亦可組合利用藍色、綠色、黃色及紅色LED來產生。 141220.doc 201007993 用於構造LED之當前行業實務係使用一基板(通常為單 晶藍寶石或碳化妙),至其上沈積諸如GaN或InGaN之材料 層。一或多個層(例如GaN或InGaN)可允許光子產生及電流 傳導。通常地,一第一氮化鎵(GaN)層係施加於該基板之 表面以形成自該基板之晶艎結構至摻雜層之晶體結構的一 " 轉變區’從而允許光子產生或電流傳導。此通常後面跟隨 ' 一 N摻雜GaN層。下一層能係產生光子並且採用必需的材 鲁 料加以摻雜以產生期望波長光的一 InGaN、AlGaN、 AlInGaN或另一化合物半導體材料層。下一層通常係一卩摻 雜GaN層。此結構係藉由蝕刻及沈積來進一步修改以建立 用於至該元件之電連接的金屬部位。 在一 LED之操作期間,如在一傳統二極體中,額外電子 自一 N型半導體移動至在一 p型半導體中的電子電洞。在一 LED中’光子係在該化合物半導體層内釋放以在此程序期 間產生光。 • 在一典塑製程中’該基板係以晶圓形式來製作而且該等 層係施加於該晶圓之一表面。—旦穆雜或钮刻該等層而且 已使用提及的各種程序來定義所有特徵,便與該晶圓分離 '㈣㈣。該等LED通常係具有筆直側的正方形或矩形。 . Λ能引起明顯的效率損失並且能使發射的光具有—較差發 射圖案。諸如一塑膠圓頂之一分離 刀離九學7C件係時常放置於 LED之上以達到一更期望的輸出。 【發明内容】 此揭示内容侧於成形光學元件以增加絲取。特定言 141220.doc . 201007993 之,該光學元件㊣包括經成形用則吏用全内反射來引導較 多光至該光學元件之出射面’同時預防或最小化在該出射 面上的全内反射之側壁。此外,該光學元件能包括具有用 以使輻射守恆的足夠區域之一出射面。各種方法能用以成 形一基板材料於製造容限内。 依據一項具體實施例,一方法能包含提供對應於具有包 含一出射面、-介面以及側壁之一集之一基板的一光學元 件之一期望基板形狀。該光學元件之基板能加以成形以增 加光擷取。例如,該光學元件之基板部分的出射面能具有 針對自該光學元件投射的光之期望半角使輻射守恆所必需 之一最小面積的至少70%。此外,該光學元件能具有一介 面及該出射面。此外,該光學元件之成形基板部分的側壁 之該集能經定位並且成形用以使具有自該介面至該側壁之 一直透射路徑的光線之至少多數採用小於或等於在該出射 面上之一臨界角的在該出射面上之一入射角來反射至該出 射面。基於光學元件之期望形狀,能應用一製造方法於— 基板材料以成形該基板材料。 各種技術能用以成形該光學元件,該等技術包括(但不 限於)切割、磨削、超音波加工、超音波切割、蝕刻、水 剝钱、雷射剝蝕、粒子噴射剝蝕以及其他技術。 【實施方式】 參考附圖中說明並且在下列說明中詳細說明之範例性而 且因此非限制性具體實施例來更全面地解釋該揭示内容及 其各種特徵及有利細節。可省略已知起始材料及程序之說 141220.doc -6 · 201007993 明以便免在細節上不必要地使該揭示内容模糊不清。然而 應明白’該詳細說明及該等特定範例在指示較佳具體實施 例時係僅藉由說明而非藉由限制來給定。自此揭示内容, 熟習此項技術者將變得明白在基本發明概念之精神及/或 範疇内的各種替代、修改、添加及/或重新配置。 ' 本文中所用的術語「包含」、「包括」、「具有」或者其任 • 一變化係意欲涵蓋非排外内含物。例如,包含一部件之清 ❿ 單的程序、產品、物品或裝置並非一定僅限於該等部件而 可包括未明確地列舉或者此程序、產品、物品或裝置固有 的其他部件。此外,除非明確相反地加以陳述,否則 「或」指包括性或而非指排外性或。例如,條件Α或β係 藉由下列之任一者滿足:A係正確的(或存在)而且b係錯誤 的(或不存在),A係錯誤的(或不存在)而且6係正確的(或存 在),以及A與B兩者係正確的(或存在)。 此外,本文中給定的任一範例或說明並非以任一方式視 • 為對該等範例或說明所利用的任一術語或多個術語之約 束、對其的限制或其明確定義。相反,此等範例或說明應 視為相對於一項特定具體實施例來說明而且僅為說明性。 -熟習此項技術者應瞭解,此等範例或說明所利用的任一術 語或多個術語包含其他具體實施例及其可能或可能不在該 說明書中隨其或在別處給出之實施方案及適應而且所有此 類具體實施例均係意欲包括於該術語或多個術語之範疇 内扣明此類非限制範例及說明的語言包括(但不限於): 例如」、在一項具體實施例中」及類似語言。 14J220.doc 201007993 現詳細參考該揭示内容之範例性具體實施例,在附圖中 說明其範例。在任何可行的情況下,將貫穿該等圖式使用 相同數字以指各種圖式之相同及對應零件(部件)。 本文中說明的具體實施例提供成形—光 期望基板形狀之可接受容限内的系統與方:?= 一 LED之範例’但是具體實施例能應用於利用―基板以導引 或收集光之其他光學元件。此外’雖然將藍寶石用作一基 板之主要範例,但是亦可使用其他基板材料其包括(但 不限於)碳化矽、玻璃、金剛石或在該技術中已知或開發 的另一基板材料。能如以下論述來定義期望基板形狀以建 立具有期望光學特性的一 LEE^雖然該期望形狀可以係基 於一特定期望LED形狀,但是成形方法之期望形狀可在後 來研磨級期間解決額外改變或修整。 成形方法能成形一基板材料於該期望形狀之可接受容限 内。在一項具體實施例中,該可接受容限能係在該期望形 狀的正或負20〇/。内及甚至更特定地在該期望形狀的1%内。 在其他具體實施例中,應用的成形方法成形該基板材料於 5〇微米内而且甚至更特定地於該期望形狀的1〇微米内。在 某些情況下,該成形方法亦能建立加以研磨至一期望光滑 度的側壁。在其他情況下,能使用一分離研磨方法來研磨 該基板材料。因此’雖然成形所基於的該期望形狀可具有 (例如)經定位並且成形用以反射某一數量的光至該出射面 的側壁’但是所得成形基板在無諸如研磨之額外步驟情況 下可能不會達到此反射。 141220.doc 201007993 圖1至8B以及隨附論述說明具有成形基板的光學元件之 各種具體實施例。一旦決定期望基板形狀,該成形方法就 能相應地成形該基板。 成形基板LED之具體實施例可加以成形以便增加或成形 自該LED的光發射。依據一項具體實施例,成形該基板以 使得藉由該LED之量子井區產生的光之全部或超多數係透 射至該L E D之基板的出射面外。為此目的,可訂制該出射 面以考量輻射守恆原理。在一項具體實施例中,該出射面 可以係允許透過在該量子井區與該基板之間的介面(即, 至一非基板層的介面’其接收在該光學元件之一發光區中 產生的光)進入該基板之光的全部或超多數自該出射面出 射的最小大小,因而組合使輻射守恆之期望與減小大小 (特疋e之為該出射面的大小)之期望。此外,可成形該基 板之該等侧壁以使得反射或全内反射(「TIR」)使入射於 基板側壁上的光束朝該出射面反射並且採用小於或等於該 臨界角的一角度來入射於該出射面上。因此,減小或消除 由於在該出射面上的TIR所致的光損失。在一另一具體實 施例中,為了確保撞擊一側壁之光係在該基板内反射而且 不穿過該側壁,一基板之一側壁或多個侧壁還可採用一反 射性材料加以塗布,該材料反射光以預防光透過該側壁而 出射。 雖然展度方程式顯示理論上自該LED之量子井區傳遞至 該LED之基板中的光之100〇/〇能透過該出射面自該基板出 射’但是各種具體實施例可使較少數量的光自該出射面出 141220.doc 201007993 射’同時仍提供優於先前LED光發射的重大改良。例如, 可採用10至60度的錐半角以近似79%的效率(由於2.73折射 率的碳化矽基板材料之菲涅耳(作⑶印叫損失而存在近似 21%的效率損失)採用期望強度輪廓、出射率輪廓或另一光 輸出輪廓自該出射表面發射自該LED之出射表面發射的 光0 當光自較兩折射率之媒介橫越至較低折射率之媒介時, 菲涅耳損失(例如在兩個媒介之間的介面上(例如在一 LED 與空氣或另一媒介之出射面上)的損失)會出現。正常入射 菲涅耳損失係藉由下列方程式說明: (N1-N2)2)/((N,+N2)2) > 其中N!及N2係兩個媒介的折射率。作為一範例,對於具有 碳化矽基板的一 LED,Νι=2·73(碳化矽之近似l〇R), N2 1 (工氣之近似IOR),從而產生似近2丨5%的菲涅耳損 失。若該LED利用量子井區中的GaN,則在量子井區 (^=2.49)與該碳化矽基板(乂=2 73)之間之介面上的菲涅耳 知失將係0%。在該出射面至空氣介面上的菲涅耳損失可 加以減小或採用抗反射塗層加以克服。 小以使輻射守怪。沿在 個媒介之一光學路徑的 藉由下列展度方程式加 [方程式1] 能選擇一 LED基板的出射面之大 一單一媒介内或自一個媒介至另一 光之傳遞係藉由亦稱為亮度定理的 以表達的輻射守恆定律來控制: 展度方程式:-φι = ^ι^ιΩ, ν[α^Ω~2 141220.doc 201007993 Φΐ =區1之光通量(流明)201007993 VI. Description of the Invention: [Technical Field of the Invention] This disclosure relates to optical elements and, in particular, to light-emitting diodes ("LEDs"). More specifically, this disclosure relates to forming optical elements. U.S. Patent Application Serial No. 61/75,972, to U.S. Patent Application Serial No. 61/75,972, filed on Jun. The priority of the priority. This application also claims to be part of the continuation application of U.S. Patent Application Serial No. 11/906,194, entitled "LED System and Method", filed on Jan. 1, 2007 by the inventor. U.S. Patent Application Serial No. 11/906, No. 19, entitled "LED Systems and Methods", filed by Inventor Duong et al. in the first quarter of 2007, under 35 USC. The interests of the priority, each of the applications of the syllabus to the United States Provisional Patent Application No. 60, entitled "Formed Light Emitting Diode", filed by the inventor Duong et al. on October 2, 2006 U.S. Provisional Patent Application Serial No. 6/881,785, entitled "System and Method for Forming Substrate LEDs", filed on January 22, 2007 by the inventor Du. 35 usc. Priority under 119(e). Each of the above-referenced applications is hereby incorporated by reference in its entirety. [Prior Art] Light-emitting diodes ("LEDs") are ubiquitous in electronic devices. It is used in digital displays, lighting systems, computers and televisions, cellular 141220.doc 201007993 and various other components. The development of led technology has led to methods and systems for generating white light using one or more LEDs. The development of LED technology has led to LEDs that generate more photons and thus more light than before. Rather than replacing the vacuum tube in a computer, the culmination of these two technologies is to complement or replace many known sources of illumination, such as incandescent, fluorescent or halogen bulbs. LEDs are produced in several colors including red, green, and blue. One method of producing white light involves the use of red, green, and blue LEDs in combination with one another. A source of illumination made from a combination of red, green, and blue (Rgb) LEDs will produce light that is perceived by the human eye as white light. This occurs because the human eye has three types of color receptors, each of which is more sensitive to blue, green or red. A second method of producing white light from an LED source is to establish light from a monochromatic (e.g., blue), short wavelength LED and to strike a portion of the light onto a photo or similar photon conversion material. Phosphors absorb higher energy, short wavelength light waves' and re-emit lower energy, longer wavelength light. For example, if a phosphor that emits light in the yellow zone (between green and red) is selected, the human eye perceives the light as white light. This occurs because yellow light stimulates both red and green receptors in the eye. Other materials such as nanoparticle or other similar photoluminescent materials can be used to produce white light in much the same way. White light can also be produced using an ultraviolet (UV) LED and three separate RGB phosphors. White light can also be generated from a blue LED and a yellow LED and can also be produced using a combination of blue, green, yellow and red LEDs. 141220.doc 201007993 The current industry practice for constructing LEDs uses a substrate (usually monocrystalline sapphire or carbonized) onto which a layer of material such as GaN or InGaN is deposited. One or more layers (e.g., GaN or InGaN) may allow for photon generation and current conduction. Typically, a first gallium nitride (GaN) layer is applied to the surface of the substrate to form a "transition region' from the crystalline germanium structure of the substrate to the crystal structure of the doped layer to allow photon generation or current conduction. . This is usually followed by an 'N-doped GaN layer. The next layer can be a layer of InGaN, AlGaN, AlInGaN or another compound semiconductor material that is photon and is doped with the necessary material to produce light of the desired wavelength. The next layer is typically a doped GaN layer. This structure is further modified by etching and deposition to establish a metal portion for electrical connection to the component. During operation of an LED, such as in a conventional diode, additional electrons move from an N-type semiconductor to an electron hole in a p-type semiconductor. In an LED, a photonic system is released within the compound semiconductor layer to produce light during this process. • In a plastic process, the substrate is fabricated in wafer form and the layers are applied to one surface of the wafer. Once the layers are patterned and the various procedures mentioned have been used to define all the features, they are separated from the wafer '(4)(4). The LEDs are typically square or rectangular with straight sides. Λ can cause significant loss of efficiency and can cause the emitted light to have a poorer emission pattern. Separating a knife, such as a plastic dome, is often placed over the LED to achieve a more desirable output. SUMMARY OF THE INVENTION This disclosure is directed to shaping optical elements to increase wire drawing. In particular, 141220.doc. 201007993, the optical element is comprising, after forming, using total internal reflection to direct more light to the exit surface of the optical element while preventing or minimizing total internal reflection on the exit surface. Side wall. Moreover, the optical component can include an exit surface having a sufficient area for conserving radiation. Various methods can be used to form a substrate material within manufacturing tolerances. According to a specific embodiment, a method can include providing a desired substrate shape corresponding to one of the optical elements having a substrate comprising an exit face, an interface, and a sidewall. The substrate of the optical component can be shaped to increase light extraction. For example, the exit face of the substrate portion of the optical component can have at least 70% of the minimum area necessary to conserve the radiation for a desired half angle of light projected from the optical component. Furthermore, the optical element can have a interface and the exit surface. Furthermore, the collection of sidewalls of the shaped substrate portion of the optical component can be positioned and shaped to cause at least a majority of the light having a transmission path from the interface to the sidewall to be less than or equal to a critical one on the exit surface. An angle of incidence of the corner on the exit surface is reflected to the exit surface. Based on the desired shape of the optical component, a fabrication method can be applied to the substrate material to shape the substrate material. Various techniques can be used to shape the optical component, including but not limited to cutting, grinding, ultrasonic machining, ultrasonic cutting, etching, water stripping, laser ablation, particle jet ablation, and other techniques. The disclosure and its various features and advantageous details are explained more fully hereinafter with reference to the exemplary embodiments illustrated in the accompanying drawings. The description of known starting materials and procedures can be omitted to avoid obscuring the disclosure unnecessarily in detail. It should be understood, however, that the description of the particular embodiments of the invention may It will be apparent to those skilled in the art from this disclosure that various alternatives, modifications, additions and/or re-configurations within the spirit and/or scope of the basic inventive concept. 'The terms 'including', 'including', 'having' or any of the variations used herein are intended to cover non-exclusive inclusions. For example, a program, product, article, or device that includes a list of components is not necessarily limited to such components and may include other components not specifically recited or inherent to the program, product, article, or device. In addition, unless expressly stated to the contrary, "or" is meant to be inclusive or not exclusive. For example, the condition Α or β is satisfied by either: A is correct (or exists) and b is erroneous (or non-existent), A is erroneous (or non-existent) and 6 is correct ( Or exists), and both A and B are correct (or exist). In addition, any examples or descriptions given herein are not intended to be in any way limiting, limiting, or clearly defining the term or terms used in the examples or description. Instead, such examples or descriptions are to be considered as illustrative and not restrictive. It should be understood by those skilled in the art that any term or terms used in such examples or descriptions include other specific embodiments and embodiments and adaptations that may or may not be provided therewith or elsewhere. Furthermore, all such specific embodiments are intended to be included within the scope of the term or a plurality of terms, and the language in which such non-limiting examples and descriptions are included, including but not limited to: ", in a particular embodiment" And similar languages. 14J220.doc 201007993 Reference is now made in detail to the exemplary embodiments of the disclosure, Wherever practicable, the same numbers are used throughout the drawings to refer to the same and corresponding parts (parts) of the various figures. The specific embodiments described herein provide a system and a square within an acceptable tolerance of the shape of the desired substrate of the shaped light: ? = an example of an LED 'but the specific embodiment can be applied to other uses of the substrate to guide or collect light Optical element. Further, although sapphire is used as a prime example of a substrate, other substrate materials may be used including, but not limited to, tantalum carbide, glass, diamond, or another substrate material known or developed in the art. The desired substrate shape can be defined as discussed below to establish a LEE having desired optical characteristics. Although the desired shape can be based on a particular desired LED shape, the desired shape of the forming method can address additional changes or trimming during subsequent grinding stages. The forming method is capable of forming a substrate material within an acceptable tolerance of the desired shape. In a specific embodiment, the acceptable tolerance can be between plus or minus 20 〇 / of the desired shape. Within and even more specifically within 1% of the desired shape. In other embodiments, the forming method employed shapes the substrate material within 5 microns and even more specifically within 1 inch of the desired shape. In some cases, the forming process can also establish sidewalls that are ground to a desired smoothness. In other cases, a separate grinding process can be used to grind the substrate material. Thus 'although the desired shape upon which the shaping is based may have, for example, been positioned and shaped to reflect a certain amount of light to the sidewall of the exit face', but the resulting shaped substrate may not be in the absence of additional steps such as grinding. Reach this reflection. 141220.doc 201007993 Figures 1 through 8B and accompanying discussion illustrate various specific embodiments of optical components having shaped substrates. Once the desired substrate shape is determined, the forming method can shape the substrate accordingly. A particular embodiment of a shaped substrate LED can be shaped to increase or shape the light emission from the LED. According to a specific embodiment, the substrate is shaped such that all or a majority of the light generated by the quantum well region of the LED is transmitted out of the exit face of the substrate of the L E D . For this purpose, the exit surface can be customized to take into account the principle of conservation of radiation. In a specific embodiment, the exit surface may allow an interface between the quantum well region and the substrate (ie, an interface to a non-substrate layer) to be received in a light-emitting region of the optical component. Light) the minimum amount of light entering the substrate, or the majority of the light exiting the exit face, thus combining the desire to preserve the conservation of radiation and reduce the size (especially the size of the exit face). Additionally, the sidewalls of the substrate can be shaped such that reflection or total internal reflection ("TIR") causes a beam of light incident on the sidewall of the substrate to be reflected toward the exit face and incident at an angle less than or equal to the critical angle The exit surface. Therefore, the light loss due to the TIR on the exit surface is reduced or eliminated. In another embodiment, in order to ensure that the light striking a sidewall is reflected in the substrate and does not pass through the sidewall, one side wall or sidewalls of a substrate may also be coated with a reflective material. The material reflects light to prevent light from exiting through the sidewall. Although the spread equation shows that 100 〇/〇 of light transmitted from the quantum well region of the LED to the substrate of the LED can exit the substrate through the exit surface, but various embodiments may enable a smaller amount of light. From the exit surface, 141220.doc 201007993 shots while still providing significant improvements over previous LED light emissions. For example, a cone half angle of 10 to 60 degrees can be used with an efficiency of approximately 79% (the Fresnel of the tantalum carbide substrate material having a refractive index of 2.73 (there is approximately 21% efficiency loss due to (3) printing loss) using the desired intensity profile , the exit rate profile or another light output profile emitted from the exit surface from the exit surface of the LED 0. When the light traverses from a medium of a lower refractive index to a medium of lower refractive index, Fresnel loss ( For example, the loss between the interface between two media (for example, the loss of an LED and air or the exit surface of another medium) occurs. The normal incident Fresnel loss is explained by the following equation: (N1-N2) 2) / ((N, + N2) 2) > where N! and N2 are the refractive indices of the two media. As an example, for an LED with a tantalum carbide substrate, Νι=2·73 (approximate l〇R of tantalum carbide), N2 1 (approximate IOR of the gas), resulting in nearly 2丨5% of Fresnel loss. If the LED utilizes GaN in the quantum well region, the Fresnel loss at the interface between the quantum well region (^ = 2.49) and the tantalum carbide substrate (乂 = 2 73) will be 0%. The Fresnel loss at the exit face to the air interface can be reduced or overcome with an anti-reflective coating. Small to make the radiation blame. Along the optical path of one of the media, the following spread equation can be added to [Equation 1] to select the exit surface of an LED substrate in a single medium or from one medium to another. The brightness theorem is controlled by the expressed law of conservation of radiation: Spread equation: -φι = ^ι^ιΩ, ν[α^Ω~2 141220.doc 201007993 Φΐ = luminous flux of zone 1 (lumen)

N1 =區1之媒介的IORN1 = IOR of the medium of zone 1

Af至區1的入口之面積 Ω!=完全含有區1之光的立體角(立體弧度) Φ2=區2之光通量(流明)Area of the entrance from Af to Zone 1 Ω! = solid angle of the light completely containing Zone 1 (stereo radians) Φ2 = Luminous flux of Zone 2 (lumen)

’ Ν2=區2之媒介的IOR • 八2=至區2的入口之面積 Ω2=完全含有區2之光的立體角·(立體弧度) 能選擇一成形基板之出射面的面積以針對一期望半角使 自該量子井進入該基板的光之輻射守恆。因此,能以一期 望半角採用高效率來發射光。此係不像傳統LED,其既採 用對於許多應用係不期望的半角來發射光,因此需要額外 光學元件以成形該光;又透過該等側壁來發射光之一重大 百分比’因為該出射面並非大到足以使輻射守恆;同時亦 遭受由於從不逃離該基板的光所致的吸收損失。 鲁 此外’藉由司乃耳定律(Snell’s Law)控制自一個折射率 之媒介至一不同IOR之媒介的光之傳遞。司乃耳定律定義 如自法線至介面表面測量之光線的接近角與自該介面之光 線的遠離角之間的關係’其與兩個媒介的折射率成函數關 - 係。 司乃耳定律:% = ΛΓ2 sin(©2) [方程式2]' Ν 2 = IOR of the medium of zone 2 • 8 2 = area of the entrance to zone 2 Ω2 = solid angle of light containing zone 2 · (stereo arc) The area of the exit face of a shaped substrate can be selected to meet a desired The half angle preserves the radiation of light entering the substrate from the quantum well. Therefore, it is possible to emit light with high efficiency at a half angle. This is unlike conventional LEDs, which use both half angles that are undesirable for many applications to emit light, so additional optical components are needed to shape the light; and a significant percentage of the light is emitted through the sidewalls because the exit surface is not Large enough to conserve radiation; it also suffers from absorption losses due to light that never escapes from the substrate. Lu also's control of the transmission of light from a medium of refractive index to a medium of a different IOR by Snell's Law. Syner's Law defines the relationship between the angle of approach of the light measured from the normal to the interface surface and the angle of departure from the light of the interface, which is a function of the refractive indices of the two media. Snell's law: % = ΛΓ2 sin(©2) [Equation 2]

@ 1 =接近介面表面的光線之入射角 Ne媒介1之IOR 6>2=遠離介面表面的光線之入射角 141220.doc 201007993@ 1 = incident angle of light close to the surface of the interface. IOR 6 of the medium 1 > 2 = angle of incidence of light away from the interface surface 141220.doc 201007993

N2=媒介2之I〇R 在自較高IOR之媒介至較低IOR之媒介的光之傳遞的情 況下’一光線可撞擊該等媒介之間的介面表面並且仍通過 該介面所採用的最大角係稱為臨界角。基本上,若源自較 高IOR之媒介的光欲通過該介面並且傳遞至較低I〇R之媒 介中’則該光必須以不超過該臨界角之角接近媒介介面。 例如’在包含一基板及一量子井區的一 Led中,基板媒介 及量子井媒介可形成藉由量子井區產生的光所橫越的一介 面。以大於該臨界角之角接近的光線將在較高I〇R之媒介 内於該等媒介之間的介面上反射回而且將不傳遞至較低 IOR之媒介中。此係稱為全内反射(「TIR」)。 在一典型GaN LED中,該量子井區具有近似厶的的 IOR。當在具有丨.77之I〇R的一藍寶石基板上構造此等層 時,藉由司乃耳定律及亮度定理之應用固有地限制能透射 至該藍寶石中的光。對於採用可具有近似2 73之i〇r的碳 化矽之基板的LED,該量子井區具有比碳化矽低的I〇R(例 如近似2.49),而且因此司乃耳定律並不禁止所產生的光之 任何部分傳遞至碳化矽中。 在傳統LED中,遇到基板至空氣介面的光之一重大部分 將由於TIR而在該基板中加以截獲。在某些情況下,一分 離光學元件(例如固體塑膠圓頂或透鏡)係用以增加光自該 基板傳遞至#中的媒介之職,從而減小該基板中的 TIR。此等分離光學元件仍可能遭受由於TIR所致的損失, 而且圓頂之擷取效率保持相對較低。此外,一圓頂之使用 14I220.doc 201007993N2 = I 〇 R of the medium 2 In the case of light transmission from a medium of a higher IOR to a medium of a lower IOR, 'a ray can strike the interface surface between the mediums and still pass the maximum of the interface The horn is called the critical angle. Basically, if the light from the medium of the higher IOR is intended to pass through the interface and pass to the medium of lower I 〇 R, then the light must approach the media interface at an angle not exceeding the critical angle. For example, in a Led comprising a substrate and a quantum well region, the substrate dielectric and quantum well media can form a interface that is traversed by light generated by the quantum well region. Light that is closer at an angle greater than the critical angle will be reflected back at the interface between the media in the medium of higher I 〇 R and will not be passed to the medium of lower IOR. This is called total internal reflection ("TIR"). In a typical GaN LED, the quantum well region has an IOR that is approximately 厶. When such layers are constructed on a sapphire substrate having 〇.77 I 〇 R, the light transmitted into the sapphire is inherently limited by the application of the Snell's law and the brightness theorem. For an LED using a substrate that can have a tantalum carbide of approximately 2 73, the quantum well region has a lower I 〇 R than the tantalum carbide (eg, approximately 2.49), and thus the Snell's law does not prohibit the generation. Any part of the light is transferred to the tantalum carbide. In conventional LEDs, a significant portion of the light that encounters the substrate to air interface will be intercepted in the substrate due to TIR. In some cases, a separate optical component (e.g., a solid plastic dome or lens) is used to increase the transfer of light from the substrate to the medium in #, thereby reducing TIR in the substrate. These separate optical components may still suffer from losses due to TIR, and the dome picking efficiency remains relatively low. In addition, the use of a dome 14I220.doc 201007993

需要在形成該LED後之製造中的額外步驟。另一方面,成 形基板LED之具體實施例能經成形用以最小化或消除由於 在該基板之出射面上的TIR所致的光損失。依據一項具體 實施例’該基板之出射面能自與該量子井區之介面隔開一 距離以使得沒有具有至該出射面的直接透射路徑之光線會 經歷在該出射面上的TIR。此外,該等側壁能經成形用以 採用在該出射面上不大於該臨界角的一入射角來反射遇到 該等側壁的光線至該出射面,因此允許所有内部反射光線 亦自該LED基板之出射面出射。 圖1A係包括一基板1〇及量子井區ι5(其可包含一或多個 摻雜層或區)的一LED 20之一項具體實施例的概略代表。 里子井£15包括通常為諸如inGaN或AlInGaP或GaN的化合 物半導體之發光區25,或另一量子井組合物❶自量子井區 15的光子可透過介面5〇進入基板1〇。led 20能係一線接 合、覆晶或該技術中已知或開發的另一 LED。在圖1A中, 基板10及量子井區15兩者形成側壁6〇、側壁65或其他側 壁°換言之,量子井區15係符合基板1〇而成形。在其他具 體實施例中’量子井區i 5可以不加以成形,而相反,具有 直側壁。LED 20進一步包括出射面55,其可在製程之容限 内與介面50實質上形狀相同、實質上平行並且實質上旋轉 地對準。能選擇出射面55之面積以針對一期望半角依據輻 射寸’良(有時稱為亮度守恆)方程式來使亮度守恆: [方程式1] Φ2ηΐΑλΟ.} Φ]/^Ω2 141220.doc -13· 201007993 Φι=橫越介面50之光通量; Φ2=自出射面55出射之光通量,基於亮度守恆,故 —Φ]=Φ2 ; Ω]=有效立體角,因而光橫越介面5〇; 〇2=有效立體角,因而光離開出射面55; Α!==介面50之面積; 八2=出射面55之面積; ηι =基板1〇之材料的折射率; Π2-在基板10外部之物質(例如空氣或另一媒介)的折射 _ 率。 Α2代表出射面55的最小表面積以使得光係根據以上方程 弋而寸丨互例如假疋·量子井區15形成一 1 mm正方形以使 知介面50具有近似1 mm正方形之一區域,, h-l,Ω丨=3,〇2=1 ’則As必須係至少9 3987 mm2以使輻射 守恆(即出射面55的最小大小以使得橫越介面5〇的光之全 部能針對一期望半角自出射面55發射)。雖然在此範例中 給出該有效立體角,但是以下結合圖6八至砧論述針對一❹ 期望半角決定Ω4Ω2之方法。應注意,正方形輪廓係具有 相等長度之側的一矩形輪廓。 - 依據方程式1的Α2係用以使輻射守恆的一給定輪出錐角 或發射半角之最小可行大小。因此,為了使輻射守恆,Α2 應該至少係自方程式1決定的大小,但是可以係較大。例 如,可使八2略微較大以補償製程中的容限、量子井區η之 大小或形狀中的誤差或其他因素。 141220.doc -14- 201007993 在其中使A2大於藉由方程式!決定之數值的情況下,將 使通量守恆,但是可自最大可獲得數值減小出射率(定義 為每單位面積通量)。 然而,為了減小該出射面之面積,可能期望使八2儘可能 小。例如,八2可以係在使輻射守恆所必需的的最小面積之 5%内。若某光功率(發光通量)可能已犧牲,則A2能係小於 藉由輕射寸怪規定的大小。作為一個範例對於具有1Additional steps in the fabrication after the formation of the LED are required. In another aspect, a particular embodiment of a shaped substrate LED can be shaped to minimize or eliminate light loss due to TIR on the exit surface of the substrate. According to a specific embodiment, the exit face of the substrate can be spaced from the interface of the quantum well region such that no light having a direct transmission path to the exit face experiences TIR on the exit face. Additionally, the sidewalls can be shaped to reflect light incident on the sidewalls to the exit surface using an angle of incidence that is no greater than the critical angle on the exit surface, thereby allowing all internally reflected light to also be from the LED substrate. The exit surface is emitted. 1A is a schematic representation of one embodiment of an LED 20 including a substrate 1 and a quantum well region ι5 (which may include one or more doped layers or regions). The lining well £15 includes an illuminating region 25, typically a compound semiconductor such as inGaN or AlInGaP or GaN, or another quantum well composition ❶ from the photon permeable interface 5 of the quantum well region 15 into the substrate 1〇. The led 20 can be a one-wire bond, flip chip or another LED known or developed in the art. In Fig. 1A, both the substrate 10 and the quantum well region 15 form side walls 6, side walls 65 or other side walls. In other words, the quantum well regions 15 are formed in conformity with the substrate 1〇. In other embodiments, the quantum well region i 5 may be unformed and, conversely, have straight sidewalls. The LED 20 further includes an exit surface 55 that is substantially identical in shape, substantially parallel, and substantially rotationally aligned with the interface 50 within the tolerances of the process. The area of the exit surface 55 can be selected to maintain the brightness for a desired half angle according to the radiation 'good (sometimes referred to as brightness conservation) equation: [Equation 1] Φ2ηΐΑλΟ.} Φ]/^Ω2 141220.doc -13· 201007993 Φι=the luminous flux across the interface 50; Φ2=the luminous flux emitted from the exit surface 55, based on the conservation of brightness, so—Φ]=Φ2; Ω]=effective solid angle, thus the light crosses the interface 5〇; 〇2=effective stereo An angle, thus the light leaves the exit surface 55; Α! = = the area of the interface 50; 八 2 = the area of the exit surface 55; ηι = the refractive index of the material of the substrate 1 ; 2 - the substance outside the substrate 10 (such as air or Another medium) refraction _ rate. Α2 represents the minimum surface area of the exit surface 55 such that the light system forms a 1 mm square according to the above equations, for example, the pseudo-quantum well region 15 such that the interface 50 has a region of approximately 1 mm square, hl, Ω 丨 = 3, 〇 2 = 1 ' then As must be at least 9 3987 mm 2 to keep the radiation conserved (ie the minimum size of the exit face 55 such that all of the light traversing the interface 5 能 can be directed to a desired half angle from the exit face 55 emission). Although the effective solid angle is given in this example, the method of determining Ω4 Ω2 for a desired half angle is discussed below in conjunction with Fig. 6 to the anvil. It should be noted that the square profile has a rectangular profile with sides of equal length. - Α 2 according to Equation 1 is the minimum feasible size for a given wheel-out cone angle or emission half-angle for the conservation of radiation. Therefore, in order to keep the radiation conserved, Α2 should be at least the size determined by Equation 1, but it can be larger. For example, 八 2 can be made slightly larger to compensate for tolerances in the process, errors in the size or shape of the quantum well region η, or other factors. 141220.doc -14- 201007993 In which A2 is greater than by equation! In the case of a determined value, the flux will be conserved, but the rate of emergence (defined as flux per unit area) can be reduced from the maximum available value. However, in order to reduce the area of the exit surface, it may be desirable to make 八2 as small as possible. For example, VIII can be within 5% of the minimum area necessary to conserve radiation. If a certain optical power (light flux) may have been sacrificed, then A2 can be less than the size specified by the light shot. As an example for having 1

mmxi mm正方形介面50之一項具體實施例,出射面”能係 2.5 mm2至5 mm2(例如,4.62 mm2)。作為另一個範例,對 於具有0.3 mmx〇.3 mm介面50之一具體實施例,出射面乃 能係0.2 mm2至0.5 mm2(例如,〇 42 _2)。然而應該注 意在先前範例中提供的大小範圍係僅藉由範例來提供,而 且各種具體實施例能具有小於或大於範例範圍的各種大 小。然而’在-項具體實施例中,、係、如藉由方程心決 定的數值之至少70%。此外’出射面55之形狀可以係不同 於介面50之形狀。 介面50與基板10的出射表面55之間的距離(其在本文中 稱為「高度」,儘管該距離可在除垂直方向以外的方向上 延伸)可經選擇用以減小或最小化自介面5〇直接行進至出 射面55的光線iTIR。當光係以大於藉由下列方程式定義 的臨界角之角入射於該表面時,TIR會出現.A specific embodiment of the mmxi mm square interface 50, the exit face" can be from 2.5 mm2 to 5 mm2 (eg, 4.62 mm2). As another example, for one embodiment having a 0.3 mm x 〇.3 mm interface 50, The exit face can be from 0.2 mm2 to 0.5 mm2 (eg, 〇42_2). However, it should be noted that the size ranges provided in the previous examples are provided by way of example only, and that various embodiments can have less than or greater than the example range. Various sizes. However, in the specific embodiment, the system is at least 70% of the value determined by the equation. Further, the shape of the exit surface 55 may be different from the shape of the interface 50. The interface 50 and the substrate 10 The distance between the exit surfaces 55 (which is referred to herein as "height", although the distance may extend in a direction other than the vertical direction) may be selected to reduce or minimize the self-interface 5 〇 direct travel to The light iTIR of the exit surface 55. TIR occurs when the light system is incident on the surface at an angle greater than the critical angle defined by the equation below.

[方程式2] 空氣或另一物 n1sin(ec)=n2sin(90) 其中nf基板10之IOR ; η,在基板10之出射面外部的媒介(例如 141220.doc -15- 201007993 質)之IOR ;以及 ec=臨界角。 例如’ 而且n2=1,則0c=34.4度。因此,基板 10之鬲度能經選擇用以限制入射於出射表面55上的光線之 臨界角於在垂直於出射表面55與小於或等於該臨界角之間 的範圍。 參考圖2及3’圖2係自入射於表面55上的點57行進的光 線之一集的概略代表(以自點57的不同距離代表為表面 55a、55b及5 5c)。在表面55a之範例中,某些光線(例如, 光線5 6)係以大於該臨界角之角入射於表面55a上,從而引 起由於TIR所致的光之損失。相反地,在表面55b之範例 中’將以該臨界角或稍小於該臨界角之角入射於表面55b 上的某些光線(例如光線57)將相反係入射於該等侧壁上。 在期望情況下,預防此等光線之損失能使側壁設計之複雜 性增加。此外,額外高度需要較多空間以適應該LED(即, 因為該LED係較高)。最後’在表面55c的情況下,以該臨 界角或小於其的光線係入射於表面55c上,而相反以大於 出射表面5 5c上的臨界角之角的光線係入射於該等側壁 上。TIR或反射能用以引導入射於該等側壁上的光線至出 射表面55c,如以下論述。 依據一項具體實施例,用於選擇高度的限制光線係行進 自介面50至出射面55的最長直線距離並且係以該臨界角入 射於出射面55上的光線。可存在能加以選擇為該限制光線 的一個以上光線。在一正方形或矩形組態中,此係以介面 141220.doc •16· 201007993 50的邊角進入基板10並且以一直線行進至出射面55之對角 線相對邊角的光線以使得該光線將係以該臨界角入射於出 射面55上。 圖3提供基板丨〇以及用於正方形組態的限制光線5 9之一 俯視圖的概略代表。雖然在一項具體實施例中基板1〇之高 度經選擇用以限制入射於出射面55上的光線之臨界角於在 垂直於出射面55與小於或等於該臨界角之間的範圍,但是 能選擇其他高度,儘管其他高度的使用可能會減少led2〇 之效率。在一項具體實施例中,在其他層與該基板之間的 介面與該基板的出射面之間距離可以係在最小高度之 内,該最小咼度使具有自該介面至該出射面的直透射路徑 之所有光線具有小於或等於該臨界角的在該出射面上之一 入射角。 返回至圖1A,採用介面5〇之大小及形狀、出射面“之大 小及形狀、介面50與出射面55之間的距離之選定邊界條 件,基板10之側壁(例如,側壁6〇、側壁65及其他側壁)能 經成形用以引導入射於該等側壁之内側上的光至出射面Μ 以產生一期望光輸出輪廓(例如,強度輪廓、出射率輪廓 或另一光輸出輪廓)。雖然對於多數應用,期望強度輪廓 係均勻或接近於均勻的,但是其他分佈輪廓能藉由改變該 等侧壁之高度及形狀來達到。 廣義上而言,決定側壁形狀以使得入射於一側壁上的任 一光線係反射至出射面55並且係以該臨界角或較小角入射 於出射面55上(即,使得不存在由於出射面55上的内部反 141220.doc •17· 201007993 射所致的相失)。此係藉由光線7〇顯示於圖ία中,該光線 具有相對於側壁65的入射角75,其係大於1以使得光線7〇 係反射至出射面55並且具有小於或等於qc的一入射角 雖然在一項具體實施例中,成形該等側壁以使得遇到該等 側壁之内表面的所有光線經歷至出射面55的全内反射並且 係以該臨界角或較小角入射於出射面5 5上,但是能使用允 許某損失的其他側壁形狀。 返回至圖1B,圖1B係一LED 20的另一具體實施例之概 略代表。LED 20包含一基板1〇及一量子井區15。量子井區 15包括通常為諸如inGaN或AlInGaP或AlGaN的化合物半導 體之發光區25。自量子井區15的光子可透過介面5〇進入基 板10。在圖1B中可能存在由於該量子井區中的TIR所致的 較多損失’因為該量子井區未經成形用以適當地引導光至 介面50及/或出射面55。雖然在圖1A及1B之具體實施例中 某些側壁形狀可能未引導藉由LED 20產生的所有光至出射 面55以外’但是未自出射面55出射的光之部分將自側壁65 發射並且可在出射面55附近發射,因此允許藉由LED 20產 生的光有用地加以捕獲。 圖4A係用於決定侧壁形狀的一 LED之一模型或一 LED之 一基板的斷面之概略代表。能使用電腦輔助設計來決定側 壁形狀。能在電腦輔助設計封裝及模擬運行中建立該侧壁 之一模型以決定一適當側壁形狀。 依據一項具體實施例’每一側壁能劃分成η個小面,其 中每一小面係一平面區段。例如,側壁1 〇〇係由十五個平 141220.doc -18- 201007993 面小面1〇2a至1020而非-連續曲線製成。能反覆地調整每 一小面之變數並且能分析所得分佈輪廓,直至達到-令人 滿意的輪廓,如以下說明。雖然使用十五個小面之範例, 但是每一侧壁能劃分成任—數目之小面,包括二十或二十 個以上小面。在另一具體實施例中,該側壁能劃分成三個 小面,如以下說明。 能相對於反射—基板内的光線之—某子集來分析每-小 面。此關注的區域能加以定義為「角對邊」。可根據自一 預定義點放射的光線之角來定義—小面之角對邊。選定點 能係將採用該小面上的最高入射角來給出光線的點,因為 此類光線係最不可能經歷該小面上的tir。例如在具有正 方形成形介面區域的-基板令’此將係該介面之相對邊緣 上的一點。 —依據-項具體實施例,對於_選定〜、A2及高度,能決 定在未先前藉由另一侧壁加以反射的情況下將入射於一給 出侧壁⑽如,㈣1GG)上的任—光線之最大㈣。在此範 例中,自點115放射的光線11G設立用於側壁刚的最大角 心若最大角95係48度而且存在用於侧壁⑽的15個小 面’則每-小面(假定角對邊之均勾分佈)將對應於角乃之 3.2度帶(例如,第一小面將係上面入射採用〇至3二度之角 %自點115放射的光線之區域’第二小面將係上面入射採 用3.2至6.4度之角95於點115處放射的光線之區域等等)。 對於每-小面,能設U射角、小面大小、傾斜角或該 小面之另-參數以使得人射於料面上的所有光線經歷 141220.doc -19· 201007993 TIR並且係反射至出射表面55以使得其係採用小於或等於 該臨界角的入射角而入射於出射表面55上。亦能成形該等 側壁以使得在斷面圖中檢視的一光線僅碰撞一側壁一次。 然而,可存在自該區段之平面以外的一側壁之額外反射。 對於一完全3D分析,撞擊一邊角附近的第一側壁之一光線 可因此彈跳至鄰近於第一侧壁的第二側壁,並且自第二側 壁彈跳至該㈣面。可實行曲線擬合或另—數值分析以建 立一彎曲侧壁形狀,其最佳地擬合期望小面。例如在圖4A 中,側壁105係彎曲的而非平面小面之一集。 為了最佳化用於每一小面的冑數,能設立一模擬價測器 平面120。偵測器平面12〇能包括乂個數目之偵測器以獨立 地記錄入射功率。可實行通過該基板的光之模擬並且可分 析如藉由偵測器平面12〇接收的強度及輻射照度分佈。若 強度及輻射照度分佈對於一特定應用並非令人滿意則能 調整該等小面之角及角對邊,產生新彎曲表面以及重新實 打模擬,直至達到令人滿意的強度輪廓、出射率輪廓或另 -光輸出輪IP。能分析額外㈣器平面以確保近場及遠場 圖案兩者係令人滿意的。或者,能使用小面而非彎曲表面 來實行模擬並且在達到期望光輸出輪廓之後決^表面曲 線。在另一具體實施例中,該等侧壁能保持小面型並且不 產生曲線。 依據另一具體實施例,能基於多個拋物線來選擇側壁形 狀,其中每-平面小面代表—拋物線之-部分的線性^ 似。例如,圖4B係一LED之一部分4〇〇的概略代表。在圖 I41220.doc 201007993 4B中,描述一假設光線410,其自一拋物線415之焦點412 放射並且與側壁420相交以使得其係由於TIR而自側壁42〇 反射並且橫越該基板以採用小於該臨界角之出射角44〇與 出射面430相交並且自該基板出射至空氣或另一媒介中。 自圖4B能看出,在自該基板至空氣的轉變中,光線41〇臂 曲,如藉由司乃耳定律所說明。因為自一拋物線決定該側 壁之切點而且因為入射於該側壁上並且自其反射的光線係 在相同媒介中,故該光線將平行於該拋物線之光軸。因 此’採用半角450來投射光。可調整定義側壁420之形狀的 角對邊以使得假設光線410自側壁420反射以使得光線410 採用一期望出射角440橫越出射¢ 430或者採用一期望半角 450來投射光。 在一項具體實施例中,當製作一側壁或計算一側壁之角 對邊時,可朝該側壁之基底(即更接近於該量子井區)使用 較精細對邊’因為在該基底附近反射之後該對邊之效應係 更大或更敏銳’並且因此較精細對邊允許具有較佳TIR性 質的一側壁’而自該基底更遠’其中該等對邊之效應係較 小’該等對邊可以係較粗糙。因此,一側壁之小面可以係 朝一成形基板LED之基底在數值上更大。在一項具體實施 例中’ 一侧壁可具有20個或20個以上小面,較精細小面係 在該侧壁之基底處’其中該等小面接近一或多個對邊。 一小面能係拋物線41 5之一部分4丨7的線性近似。能調整 拋物線415的參數,直至部分417達到入射於部分417上且 反射至出射面430的所有光線以使得該等光線具有小於該 141220.doc -21 - 201007993 臨界角之出射角440的期望目標。能自具有不同參數的一 拋物線形成每一小面。因此,用於一個角對邊的一小面可 以係基於一拋物線而非一鄰接小面。例如一 2〇小面側壁可 以係基於20個不同拋物線。 圖4C係說明能使用諸如Microsoft Excel的電腦程式來定 義用於一側壁之小面的概略代表(Micr〇s〇ft& Excel係總部 位於華盛頓州雷德蒙市的微軟公司之商標)^在Micr〇s〇ft Excel中的繪圖特徵能用以建立一側壁形狀之一圖形,其 係顯示於125處。相同一般形狀能用於每一側壁或不同形 狀用於不同側壁。能在(例如)Zemax光學設計程式中分析 具有心疋側壁形狀(或具有基於指定小面之彎曲側壁形狀) 的一成形基板(Zemax係華盛頓州貝爾優市Zernax開發公司 之商標)。能在Zemax中進行電腦模擬以產生一光線跡線以 及一強度與輻射照度分佈輪廓。若所得強度及輻射照度輪 廓具有一不令人滿意之分佈或者成形基板之透射效率係太 低,則能調整各種小面之變數並且再次實行該等模擬。此 程序可透過使用一電腦程式以自動地調整小面變數來加以 自動化。 更明確而言,圖4C繪示一試算表500,其能用以透過角 對邊之規格來設計如曲線圖51 0中所示的一側壁形狀。投 射半角行550含有對應於圖4B之投射半角450的複數個角。 出射角行540a(以弧度)及540b(以度)含有對應於圖4B之出 射角440的複數個出射角。更明確而言,行54〇a中的角之 全部或一子集可以係小於該臨界角之角以使得以該等角與 141220.doc -22- 201007993 該出射面相交的光線橫越該出射面,從而自該基板出射。 行540a及540b可用以展開拋物線焦點行56〇,其含有定義 不同拋物線的複數個焦點。角對邊行565含有複數個角(以 弧度),其定義一角對邊之極限,該角對邊能結合拋物線 焦點行560使用以定義一側壁之形狀以使得自該量子井區 的一光線自該侧壁反射以採用小於該臨界角之角自該出射 面出射。使用拋物線焦點行560及角對邊行565中含有的數 _ 值,能展開e行57〇及半徑行575,其中行570及575中的對 應數值對應於用於角對邊之一期望拋物線上的點。依次 地,Θ行570及半徑行575能用以展開用於一侧壁(例如座標 變換行577)上的點之笛卡爾(cartesian)座標,該側壁接近 用於角對邊之拋物線。 例如,一使用者能指定LED大小(即,該基板與量子井 區之間的介面之面積)及材料折射率。使用具有i之大小以 及1.77之折射率的一 LED之範例,能如下完成螢幕5〇〇中的 • 一列。該使用者能指定行550中之空氣中的一出射角(假定 空氣係其中該LED將操作的媒介)。在第一列之範例中該 使用者已選擇55.3792度。該基板中的出射角能加以計算 - 為 3ίη(55.3792/18〇*π)/1·77 或 0.4649323 弧度,行 540a。行 - 540b 能加以計算為 sin(0.4649323)/Tt*180=27.2058407。該 拋物線之焦點能加以計算為i(大小)/2*(1 + e〇s〇x/2_ 27·2058407/180*π)) 0.732466。角對邊行 565 能基於下一 行中的數目(代表一特定小面之相對大小)加以計算為(9〇· 27.7058047)/20=3.114708。能使用小面之一選定數目(在此 141220.doc -23- 201007993 範例中為20)來計算Θ行570。例如,在第一列中,Θ係計算 為(90-27.7058407)+3,114708*20=124.5883。用於第一小面 的拋物線之半徑(行575)能加以計算為2*0.732466/ (1+cos(124.5883/180*t〇)。座標變換行577之内容能針對第 一列如下加以計算:x=-3.3885*cos(124.5883/180*7t)= 1.923573 ; y=-3.3885*sin(124.5883/180*7C)=2.789594 , X=1.923 573*cos(27.7058407/180*;c)+2.789594*sin(27.705 8 407/180*π) ; Y=2.789594*cos(27.7058407/180*T〇-1.923573*sin (27·7058407/180*π)-1(大小)/2=1.075452 以及 Υ,=-Υ。χ、γ 座標能因此加以用作用於Excel中的形狀擬合圖之資料點 輸入。例如,曲線圖510係基於X及γ行中的資料點(在曲線 圖510中Y行數值係用作x轴座標而且χ行數值係用作y軸座 標)。除X及Y數值以外,還能設定一啟動值(例如,5及 〇)。自曲線圖510的形狀能加以輸入至一光學設計封裝及 模擬運行。若一模擬係不令人滿意的,則該使用者能調整 試算表500中的數值,直至達到一令人滿意的輪廓。 在-項具體實施財,f達到一令人滿意的《透射效率 及輻射照度與強度輪廓時,能產生採用具有指定參數的一 基板之-LED。圖4D中顯示此一 LED之一範例,其提供具 有一基板的一 LED之一項具體實施例的概略代表,該基板 具有經成形用以引起TIR的侧壁以使得光線係自該等側壁 反射至該出射表面。在此具體實施例中,每一側壁之形^ 係如藉由各種小面所定義的多個外形表面之重疊。雖=。 針對可製造性之便利而實行—曲線擬合,但= 141220.doc -24- 201007993 施例能保持小面型側壁。雖然在圖4D中,該量子井區之區 域係顯示為正方形或矩形,但是此係藉由說明而非限制。 例如,該量子井區之區域的形狀能係各種形狀(例如圓 形、矩形、三角形)之任一者。同樣地,該LED之出射面的 形狀能係各種形狀(例如圓形、矩形、三角形)之任一者。 返回至圖1A及1B,如以上關於圖丨八及1B所說明,針對 基板10決定各種邊界條件(特定言之為基板1〇之出射面” 的面積)以使得使光守恆。能自以上方程式工決定出射面55 的最小面積,其依賴於各種有效立體角。通常地基於得 自理想化來源之方程式來決定光之有效立體角,該等來源 作為朗伯(Lambertian)發射器而輻射,但是其係視為點, 因為關注的距離係甚大於該來源之大小。一朗伯發射器之 觀察輻射強度(通量/立體弧度)隨至該來源之法線的角藉由 該角之餘弦而變化。此會出現,因為儘管輻射(通量/立體 弧度/m2)在所有方向上保持相同,但是該發射器之有效區 域隨著觀察角自法線增加至90度而減少至零。此效率在整 個半球體之上的整合會產生等於冗立體弧度的投射立體角 值。 參考圖5,假定給出半徑(R)之球體13〇包圍點來源 132(在此範例中’點來源132以一重大距離接近一朗伯來 源)。該球體之一半球體的投射面積係兀尺2而且整個球體之 投射面積係2πβ_2。此模型能用以設計一 led,因為一量子 井區與一基板之間的一介面能加以模型化為一朗伯發射器 以使得自中心處於該介面之上的一假設半球體上的任一 141220.doc •25· 201007993 點,該介面上的一給出點將具有相同輻射。面積&能加以 計算為平坦圓形表面(例如,表面136),其係藉由關注的光 束立體角使用自垂直光線至球體表面的相交點之距離的圓 134之半徑(1{_(;)來對向。對於該光束之0的給出半角137,11。 係R(該球體之半徑)與角Θ之餘弦的乘積,以使得[Equation 2] Air or another substance n1sin(ec)=n2sin(90) wherein the IOR of the nf substrate 10; η, the IOR of the medium outside the exit surface of the substrate 10 (for example, 141220.doc -15-201007993); And ec = critical angle. For example, 'and n2=1, then 0c=34.4 degrees. Thus, the temperature of the substrate 10 can be selected to limit the critical angle of light incident on the exit surface 55 to a range between perpendicular to the exit surface 55 and less than or equal to the critical angle. Referring to Figures 2 and 3', Figure 2 is a representative representation of a set of light rays traveling from a point 57 incident on surface 55 (represented by surfaces 65a, 55b, and 55c from different distances from point 57). In the example of surface 55a, some of the light (e.g., light ray 56) is incident on surface 55a at an angle greater than the critical angle, thereby causing loss of light due to TIR. Conversely, in the example of surface 55b, certain rays (e.g., rays 57) incident on surface 55b at or near the critical angle will be incident on the sidewalls in the opposite direction. Preventing such light loss can increase the complexity of the sidewall design, if desired. In addition, the extra height requires more space to accommodate the LED (ie, because the LED is higher). Finally, in the case of the surface 55c, the light rays at or near the boundary angle are incident on the surface 55c, and the light rays at the angle larger than the critical angle on the exit surface 55c are incident on the side walls. TIR or reflection can be used to direct light incident on the sidewalls to the exit surface 55c, as discussed below. According to a specific embodiment, the limiting ray for selecting the height travels the longest straight line distance from the interface 50 to the exit surface 55 and is incident on the exit surface 55 at the critical angle. There may be more than one light that can be selected to be the limited light. In a square or rectangular configuration, this enters the substrate 10 at the corners of the interface 141220.doc •16·201007993 50 and travels in a straight line to the opposite corners of the exit surface 55 such that the light will be The critical angle is incident on the exit surface 55. Figure 3 provides a schematic representation of a top view of one of the substrate defects and one of the limiting rays for a square configuration. Although in one embodiment the height of the substrate 1 经 is selected to limit the critical angle of the light incident on the exit surface 55 to a range between perpendicular to the exit surface 55 and less than or equal to the critical angle, Choose other heights, although other heights may reduce the efficiency of led2〇. In a specific embodiment, the distance between the interface between the other layer and the substrate and the exit surface of the substrate may be within a minimum height that has a straight line from the interface to the exit surface. All rays of the transmission path have an angle of incidence on the exit face that is less than or equal to the critical angle. Returning to FIG. 1A, the side walls of the substrate 10 (eg, side walls 6 〇, side walls 65) are selected using the size and shape of the interface 5 、, the size and shape of the exit surface, and the selected boundary conditions between the interface 50 and the exit surface 55. And other sidewalls can be shaped to direct light incident on the inside of the sidewalls to the exit face Μ to produce a desired light output profile (eg, an intensity profile, an exit profile, or another light output profile). For most applications, it is desirable that the intensity profile be uniform or nearly uniform, but other profiles can be achieved by varying the height and shape of the sidewalls. Broadly speaking, the shape of the sidewall is determined such that it is incident on a sidewall. A light ray is reflected to the exit surface 55 and is incident on the exit surface 55 at the critical angle or a smaller angle (ie, such that there is no phase due to the internal inverse 141220.doc • 17· 201007993 on the exit surface 55 This is shown by the light 7〇 in the image, the light has an angle of incidence 75 with respect to the side wall 65, which is greater than 1 so that the light 7 is reflected to the exit surface 55 and has An angle of incidence less than or equal to qc, although in one embodiment, the sidewalls are shaped such that all of the light rays encountering the inner surface of the sidewalls experience total internal reflection to the exit surface 55 and are at the critical angle or The smaller angle is incident on the exit surface 5 5, but other sidewall shapes that allow for some loss can be used. Returning to Figure 1B, Figure 1B is a schematic representation of another embodiment of an LED 20. The LED 20 includes a substrate 1 And a quantum well region 15. The quantum well region 15 includes a light-emitting region 25 of a compound semiconductor such as inGaN or AlInGaP or AlGaN. The photon permeable through the interface 5 from the quantum well region 15 enters the substrate 10. This may exist in Figure 1B. More loss due to TIR in the quantum well region' because the quantum well region is not shaped to properly direct light to interface 50 and/or exit surface 55. Although in the specific embodiment of Figures 1A and 1B Some of the sidewall shapes may not direct all of the light generated by the LED 20 to the outside of the exit surface 55, but portions of the light that are not emitted from the exit surface 55 will be emitted from the sidewall 65 and may be emitted near the exit surface 55, thus allowing for borrowing The light generated by the LED 20 is usefully captured. Figure 4A is a schematic representation of a section of an LED used to determine the shape of the sidewall or a section of a substrate of an LED. Computer aided design can be used to determine the shape of the sidewall. A model of the sidewall is established in a computer-aided design package and simulation run to determine a suitable sidewall shape. According to one embodiment, each sidewall can be divided into n facets, each of which is a planar section For example, the side wall 1 is made up of fifteen flat 141220.doc -18- 201007993 facets 1〇2a to 1020 instead of a continuous curve. The variables of each facet can be adjusted repeatedly and analyzed. The profile is distributed until a - satisfactory profile is reached, as explained below. Although fifteen facets are used, each side wall can be divided into any number of facets, including twenty or more facets. In another embodiment, the sidewall can be divided into three facets as explained below. Each facet can be analyzed relative to a subset of the reflection-light in the substrate. This area of interest can be defined as "corner-to-edge". It can be defined by the angle of the light radiated from a predefined point—the opposite side of the facet. The selected point can be the point at which the highest angle of incidence on the facet is used to give the ray, since such ray is the least likely to experience tir on that face. For example, a substrate having a square shaped interface region will be a point on the opposite edge of the interface. - depending on the specific embodiment, for _selection ~, A2 and height, it can be decided that if it is not previously reflected by the other side wall, it will be incident on a given side wall (10) such as (4) 1GG). The biggest light (four). In this example, the ray 11G emitted from the point 115 is set for the maximum angular center of the side wall if the maximum angle is 95 degrees and 48 degrees and there are 15 facets for the side wall (10), then each facet (assuming a pair of angles) The edge of the hook distribution will correspond to the 3.2 degree band of the angle (for example, the first facet will be incident on the area where the angle of incidence from 〇 to 3 degrees is used to emit light from point 115. The second facet will be The upper incidence is an area of light that is emitted at an angle 95 of 3.2 to 6.4 degrees at point 115, etc.). For each-small face, U-angle, facet size, tilt angle or another parameter of the facet can be set so that all light rays hitting the face are subjected to 141220.doc -19· 201007993 TIR and reflected to The exit surface 55 is incident on the exit surface 55 such that it adopts an angle of incidence less than or equal to the critical angle. The side walls can also be shaped such that a light viewed in the cross-section only hits one side of the wall. However, there may be additional reflection from a side wall other than the plane of the section. For a full 3D analysis, light striking one of the first side walls near the corner can thus bounce to a second side wall adjacent the first side wall and bounce from the second side wall to the (four) side. A curve fit or another-value analysis can be performed to create a curved sidewall shape that best fits the desired facet. For example, in Figure 4A, the side walls 105 are curved rather than one of the planar facets. To optimize the number of turns for each facet, a simulated price detector plane 120 can be created. The detector plane 12 can include a number of detectors to independently record the incident power. Simulation of light through the substrate can be performed and the intensity and irradiance distribution as received by the detector plane 12A can be analyzed. If the intensity and irradiance distribution are not satisfactory for a particular application, the corners and corners of the facets can be adjusted to create a new curved surface and re-implement simulation until a satisfactory strength profile, exit profile is achieved Or another-light output wheel IP. The additional (four) plane can be analyzed to ensure that both the near field and far field patterns are satisfactory. Alternatively, the facet can be performed using a facet instead of a curved surface and the surface curve is determined after the desired light output profile is reached. In another embodiment, the sidewalls are capable of maintaining a small face shape and do not create a curve. According to another embodiment, the sidewall shape can be selected based on a plurality of parabolas, wherein each-plane facet represents a linearity of the parabolic-partial portion. For example, Figure 4B is a schematic representation of a portion 4 of an LED. In FIG. I41220.doc 201007993 4B, a hypothetical ray 410 is described that radiates from a focal point 412 of a parabola 415 and intersects the sidewall 420 such that it is reflected from the sidewall 42 due to TIR and traverses the substrate to adopt less than The exit angle 44 of the critical angle intersects the exit surface 430 and exits the substrate into the air or another medium. As can be seen from Figure 4B, in the transition from the substrate to the air, the light rays 41 are curved, as illustrated by the Snell's law. Since the tangent to the side wall is determined from a parabola and because the light incident on the side wall and reflected from it is in the same medium, the light will be parallel to the optical axis of the parabola. Therefore, a half angle 450 is used to project light. The opposite sides of the shape defining the sidewall 420 can be adjusted such that the hypothetical ray 410 is reflected from the sidewall 420 such that the ray 410 traverses the exit pupil 430 with a desired exit angle 440 or a desired half angle 450 to project light. In a specific embodiment, when making a sidewall or calculating the opposite side of a sidewall, a finer opposite edge can be used toward the base of the sidewall (ie, closer to the quantum well region) because it is reflected near the substrate The effect of the opposite side is then greater or sharper' and thus the finer opposite sides allow a side wall with better TIR properties to be further from the substrate 'where the effect of the opposite sides is smaller' The edges can be rough. Thus, the facets of a side wall can be numerically larger toward the base of a shaped substrate LED. In one embodiment, a side wall can have 20 or more facets, with finer facets at the base of the side wall where the facets are close to one or more opposite sides. A facet can be a linear approximation of a portion 4丨7 of a parabola 41 5 . The parameters of parabola 415 can be adjusted until portion 417 reaches all of the rays incident on portion 417 and reflected to exit face 430 such that the rays have a desired target that is less than the exit angle 440 of the critical angle of 141220.doc -21 - 201007993. Each facet can be formed from a parabola with different parameters. Thus, a facet for a corner-to-edge can be based on a parabola rather than an adjacent facet. For example, a 2-sided facet can be based on 20 different parabolas. Figure 4C illustrates the use of a computer program such as Microsoft Excel to define a representative representation of a facet for a side wall (Micr〇s〇ft& Excel is a trademark of Microsoft Corporation based in Redmond, Washington)^ at Micr The drawing feature in 〇s〇ft Excel can be used to create a pattern of one of the sidewall shapes, which is shown at 125. The same general shape can be used for each side wall or a different shape for different side walls. A shaped substrate having a enamel sidewall shape (or having a curved sidewall shape based on a designated facet) can be analyzed, for example, in a Zemax optical design program (Zemax is a trademark of Zernax Development Corporation, Bellevue, WA). Computer simulations can be performed in Zemax to produce a ray trace and a contour of intensity and irradiance distribution. If the resulting intensity and irradiance illuminance profile has an unsatisfactory distribution or the transmission efficiency of the shaped substrate is too low, the various facet variables can be adjusted and the simulations performed again. This program can be automated by using a computer program to automatically adjust the facet variables. More specifically, FIG. 4C illustrates a trial spreadsheet 500 that can be used to design a sidewall shape as shown in graph 51 0 by angularly edged specifications. The projected half-angle row 550 contains a plurality of corners corresponding to the projected half-angle 450 of Figure 4B. The exit angle lines 540a (in radians) and 540b (in degrees) contain a plurality of exit angles corresponding to the exit angles 440 of Figure 4B. More specifically, all or a subset of the angles in row 54A may be less than the angle of the critical angle such that the light intersecting the exit surface at 141220.doc -22-201007993 traverses the exit The surface is thus emitted from the substrate. Rows 540a and 540b can be used to expand the parabolic focus line 56〇, which contains a plurality of focal points defining different parabolas. The diagonally opposite row 565 has a plurality of angles (in radians) that define a corner-to-edge limit that can be used in conjunction with the parabolic focus line 560 to define the shape of a sidewall such that a light from the quantum well region The sidewall reflections are emitted from the exit face at an angle less than the critical angle. Using the number _ value contained in the parabolic focus line 560 and the edge-to-edge line 565, the e-line 57 〇 and the radius line 575 can be expanded, wherein the corresponding values in the rows 570 and 575 correspond to the desired parabola on one of the opposite sides. Point. In turn, limp 570 and radius row 575 can be used to develop a cartesian coordinate for a point on a side wall (e.g., coordinate transformation line 577) that is adjacent to the parabola for the opposite sides. For example, a user can specify the LED size (i.e., the area of the interface between the substrate and the quantum well region) and the refractive index of the material. Using an example of an LED having a size of i and a refractive index of 1.77, one of the columns of the screen 5 can be completed as follows. The user can specify an exit angle in the air in row 550 (assuming air is the medium in which the LED will operate). In the example of the first column, the user has selected 55.3792 degrees. The exit angle in the substrate can be calculated as -3ίη(55.3792/18〇*π)/1·77 or 0.4649323 radians, line 540a. Line - 540b can be calculated as sin(0.4649323)/Tt*180=27.2058407. The focus of the parabola can be calculated as i (size)/2*(1 + e〇s〇x/2_ 27·2058407/180*π)) 0.732466. The edge-to-edge row 565 can be calculated as (9〇· 27.7058047)/20=3.114708 based on the number in the next row (representing the relative size of a particular facet). You can use the selected number of one of the facets (20 in the 141220.doc -23- 201007993 example) to calculate the line 570. For example, in the first column, the tether is calculated as (90-27.7058407) + 3, 114708 * 20 = 124.5883. The radius of the parabola for the first facet (line 575) can be calculated as 2*0.732466/(1+cos(124.5883/180*t〇). The content of the coordinate transformation line 577 can be calculated for the first column as follows: x=-3.3885*cos(124.5883/180*7t)= 1.923573 ; y=-3.3885*sin(124.5883/180*7C)=2.789594 , X=1.923 573*cos(27.7058407/180*;c)+2.789594*sin (27.705 8 407/180*π) ; Y=2.789594*cos(27.7058407/180*T〇-1.923573*sin (27·7058407/180*π)-1(size)/2=1.075452 and Υ,=-Υ The χ, γ coordinates can thus be used as data point inputs for shape fitting maps in Excel. For example, the graph 510 is based on data points in the X and γ rows (the Y row values are used in the graph 510) The x-axis coordinates and the numerical values are used as the y-axis coordinates. In addition to the X and Y values, a starting value (for example, 5 and 〇) can be set. The shape of the graph 510 can be input to an optical design package. And the simulation run. If a simulation is unsatisfactory, the user can adjust the value in the spreadsheet 500 until a satisfactory contour is reached. The satisfactory "transmission efficiency and irradiance and intensity profile can produce LEDs with a substrate with specified parameters. An example of this LED is shown in Figure 4D, which provides a specific LED with a substrate. The schematic representation of an embodiment has a substrate having sidewalls shaped to cause TIR such that light is reflected from the sidewalls to the exit surface. In this embodiment, the shape of each sidewall is such as by various The overlap of multiple contour surfaces defined by the facets. Although =. For the convenience of manufacturability - curve fitting, but = 141220.doc -24- 201007993 The example can keep the small side walls. Although in Figure 4D The area of the quantum well region is shown as a square or a rectangle, but this is by way of illustration and not limitation. For example, the shape of the region of the quantum well region can be any shape (for example, circular, rectangular, triangular). Similarly, the shape of the exit surface of the LED can be any of various shapes (for example, circular, rectangular, or triangular). Returning to FIGS. 1A and 1B, as described above with reference to FIGS. 8 and 1B, The substrate 10 determines various boundary conditions (specifically, the area of the exit surface of the substrate 1) to conserve the light. The minimum area of the exit surface 55 can be determined from the above equation, which depends on various effective solid angles. The effective solid angle of the light is determined based on an equation derived from an idealized source that radiates as a Lambertian emitter, but which is considered a point because the distance of interest is much larger than the source. The observed radiation intensity (flux/stereoarc) of a Lambertian emitter varies with the angle of the normal to the source by the cosine of the angle. This occurs because although the radiation (flux/stereoradian/m2) remains the same in all directions, the effective area of the emitter is reduced to zero as the viewing angle increases from normal to 90 degrees. This integration of efficiency over the entire hemisphere produces a projected solid angle value equal to the redundant solid curvature. Referring to Figure 5, it is assumed that a sphere 13 给出 giving a radius (R) surrounds the point source 132 (in this example, the point source 132 approaches a Lambertian source at a significant distance). The projection area of one of the spheres of the sphere is 兀2 and the projection area of the entire sphere is 2πβ_2. This model can be used to design a led because an interface between a quantum well region and a substrate can be modeled as a Lambertian emitter such that any 141220 on a hypothetical hemisphere from the center above the interface .doc •25· 201007993, a given point on the interface will have the same radiation. The area & can be calculated as a flat circular surface (e.g., surface 136) which is the radius of the circle 134 using the distance from the vertical ray to the intersection of the sphere surfaces by the solid angle of the beam of interest (1{_(; ) to the opposite direction. For the zero of the beam, give the half angle 137,11. The product of R (the radius of the sphere) and the cosine of the corner , so that

Rc=R*Sin(0) [方程式 3] 面積等於: A3^Rc2=,(R*Sin(e))2 [方程式 4A] 面積As係隨著該立體角與該球體相交,該立體角之投射 面積。面積As係除以該半球體之投射面積(Ah=7iR2)並且商 係乘以整個半球體之投射立體角(等於π)以獲得投射立體 角Ω,以使得 〇 = 71*{期望立體角之投射面積}/ (半球體之投射面積) Q=(^}*[{7i(R*Sin(0))2}}(7tR2)] =7t*Sin2(9) 例如對於圖1之介面50,Θ係90度 [方程式4Β] [方程式4C]Rc=R*Sin(0) [Equation 3] The area is equal to: A3^Rc2=, (R*Sin(e))2 [Equation 4A] The area As is intersected with the sphere with the solid angle, the solid angle Projection area. The area As is divided by the projected area of the hemisphere (Ah=7iR2) and the quotient is multiplied by the projected solid angle of the entire hemisphere (equal to π) to obtain the projected solid angle Ω so that 〇=71*{desired solid angle Projection area} / (projected area of the hemisphere) Q = (^} * [{7i (R * Sin (0)) 2}} (7tR2)] = 7t * Sin2 (9) For example, for interface 50 of Figure 1, Θ system 90 degrees [Equation 4Β] [Equation 4C]

[方程式5] 從而導致7:*Sin2(90)=K 之投射立體角;而且對於30度之期望半角,投射立體角係 π*8ίη2(30)=π/4。將此等數值用於方程式1之〇1及以,能針 對任一半角決定Α2。 在以上範例中,使用模型化為點來源的朗伯來源導出的 方程式來決定該立體角。此等方程式並不考量光可自一量 子井區透過可以係正方形、矩形、圓形、卵形或另外形狀 的介面進入一基板的事實。雖然以上說明的方法能給出該 141220.doc • 26- 201007993 立體角之良好估計,其能在必要情況下基於經驗或電腦模 擬測試稍後加以調整,但是能使用決定有效立體角的其他 方法。[Equation 5] thus results in a projected solid angle of 7:*Sin2(90)=K; and for a desired half angle of 30 degrees, the projected solid angle π*8ίη2(30)=π/4. Use these values for Equation 1 and Equation 1 to determine Α2 for any half angle. In the above example, the solid angle is derived using the equation derived from the Lambertian source of the point source. These equations do not consider the fact that light can enter a substrate from a quantum well region through a interface that can be square, rectangular, circular, oval or otherwise shaped. Although the method described above gives a good estimate of the solid angle of 141220.doc • 26-201007993, it can be adjusted later based on experience or computer simulation if necessary, but other methods of determining the effective solid angle can be used.

圖6A至6E說明用於決定用於一 LED之一基板的有效立體 角之另一方法。圖6A係一介面150之一項具體實施例以及 一成形基板160(顯示於圖印中)之一出射面155與上面投射 光的一假設目標平面156之概略代表。圖6A說明一有效來 源起源152、中心法線153以及有效輸出起源154之一位置 的範例。基於進一步論述之目的,假定介面15〇的中心係 在笛卡爾座標系統中的〇、〇、0處。目標平面丨56代表所得 圖案之參數(例如,藉由另一光學元件使用的大小及半 角)。依據一項具體實施例,對角線處的半角(在圖6β中顯 示為αΟ係該啟動點。例如,若目標平面156上的期望光具 有30度的最大半角’則用於正方形或矩形小面型基板的% 係30度。成形基板16〇内的半角(標識為I而且亦顯示於圖 6C中)能因此依據下列方程式來決定: n2Sin(ai)=nlSin(Pl) [方程心] 其中η!係成形基板160之IOR ; η2係其中自成形基板16〇投射光的材料(通常為空氣)之 IOR ; 〜係在該基板外部之媒介(通常為空氣)中的出射面上的 半角; βι係該基板中的期望半角。 例如,若期望半角%係30度,而且具有177之i〇r的一 141220.doc •27- 201007993 成形基板在投射至具有的空氣中,則βι = 1641度。 能針對自入口面150之長及短側上的一點投射之一光線來 實行一類似計算。例如,如圖6B及6C中所示,能針對自 介面150上的一個邊緣之中心進行至出射面ι55的相對邊緣 之中心的一光線來決定h及β2。(該臨界角在16 41情況下 係相同的,但是β!並非與β2相同。藉由該等側之幾何結構 以及該成形基板之高度來決定β2。) 使用计算的角,能決定一有效點來源之位置。對於長度 1!之一正方形介面150,該有效點來源將加以定位為χ=〇、 _ Υ=0以及 Ζ 一篆' eps [方程式 7] 其中Zeps係該有效點來源自成形基板16〇之入口面15〇錯置 的距離。 依據下列方程式,假定F〗與統一半徑之一球體相交, 計算自該有效點來源至點F!&F2的X、丫及2距離: XFi=cos(y1)sin(P1) Υρι=8ίη(ψ,)8ΐη(β1) Zfi=cos(P!) Xp2 = 0 [方程式8] [方程式9] [方程式10] [方程式11]Figures 6A through 6E illustrate another method for determining an effective solid angle for a substrate of an LED. Figure 6A is a schematic representation of a specific embodiment of an interface 150 and an exit surface 155 of a shaped substrate 160 (shown in the image) and a hypothetical target plane 156 of projected light thereon. Figure 6A illustrates an example of a valid source origin 152, center normal 153, and one of the effective output origins 154. For the purposes of further discussion, it is assumed that the center of the interface 15〇 is at 〇, 〇, 0 in the Cartesian coordinate system. The target plane 丨 56 represents the parameters of the resulting pattern (e.g., the size and half angle used by another optical component). According to a specific embodiment, the half angle at the diagonal (shown as αΟ in the Fig. 6β is the starting point. For example, if the desired light on the target plane 156 has a maximum half angle of 30 degrees), it is used for square or rectangular small The % of the face substrate is 30 degrees. The half angle of the shaped substrate 16 (labeled I and also shown in Figure 6C) can therefore be determined according to the following equation: n2Sin(ai) = nlSin(Pl) [Eq.] η! is the IOR of the shaped substrate 160; η2 is the IOR of the material (usually air) from which the light is projected from the shaped substrate 16〇; the half angle of the exit surface in the medium (usually air) outside the substrate; Ιι is the desired half angle in the substrate. For example, if a half angle % is desired to be 30 degrees, and a 141220.doc • 27-201007993 having a 177 i〇r is projected into the air, βι = 1641 degrees A similar calculation can be performed for one light projected from a point on the long and short sides of the entrance face 150. For example, as shown in Figures 6B and 6C, the center of one edge on the self interface 150 can be directed to the exit. The opposite edge of the face ι55 A ray at the center determines h and β2. (The critical angle is the same in the case of 16 41, but β! is not the same as β2. β2 is determined by the geometry of the sides and the height of the shaped substrate. Using the calculated angle, you can determine the location of a valid point source. For a square interface 150 of length 1!, the effective point source will be positioned as χ=〇, _ Υ=0, and Ζ a 篆 'eps [Equation 7 Where Zeps is the distance from which the effective point originates from the entrance surface 15〇 of the forming substrate 16〇. According to the following equation, it is assumed that F〗 intersects one sphere of the uniform radius, and the source from the effective point is calculated to point F!& X, 丫 and 2 distances of F2: XFi=cos(y1)sin(P1) Υρι=8ίη(ψ,)8ΐη(β1) Zfi=cos(P!) Xp2 = 0 [Equation 8] [Equation 9] [Equation 10] [Equation 11]

[方程式12] [方程式13] YF2=cos(y2)*sin(Pi) Zf2 = C0S(Pj) 其中^係又-丫平面中的對角線光線之角(對於正方形為化 度)而且其中對於自平行於如圖6C中所示的乂軸的—側之中 間投射的一光線,Ψ2=90度。如圖6A中所示,因為156在四 141220.doc •28- 201007993 個點處與球體表面相交,而且角P2之大小係小於臨界角h 之大小,故基於以角β〗投射一對角線至該側光線之平面上 來計算點F2之數值。基於先前計算的幾何結構之類似方法 能用以決定其他點(例如,能基於點^及匕之位置以及目標 平面156上的光之期望半角來決定點几及丁2之位置)。 圖6D說明對角線光線以及自針對出射面155投射於一球 體159上以及針對目標平面} 56投射於球體i 6丨上的短側之 ,一個光線。對於出射面155,在球體159上的邊緣光線之相 父點於出射面155之平面上的投射會形成橢圓片段。同樣 地,在目標面之邊緣上的折射出射光線之投射會與球體 161相交。例如圖沾指出位於藉由與球體161相交的目標面 156之邊緣163形成之平面中的光線之圓形相交點(顯示於 162處)’以及該相交點至目標平面156上的投射(顯示於164 處)。藉由计算包圍該目標面之正方形的橢圓片段之每一 者的面積並且添加該面積至該目標面之面積吾人找到該 | 目標面的總投射面積。能針對目標平面使用方程式4B來決 疋该有效立體角。同樣地,藉由使用球體159及藉由光線 形成於其上的橢圓片段,能決定用於該LED之有效立體 角。例如,總投射面積係如在以上說明而決定並且在方程 式4B中插入為r期望立體角之投射面積」。 作為一個說明性範例,使用以上方法以採用3〇度之半角 使用具有帶有正方形成形介面及出射面之基板的led來投 射光會產生至空氣中的目標之〇 552立體狐度的有效立體 角藉由對比’使用具有30度半角投射規格的傳統圓形投 141220.doc -29- 201007993 射區域將產生0.785立體弧度之有效立體角。當此等數值 係接著在方程式1中用於給出的I〇R及通量時,傳統(圓形) 汁算產生大小減小約30%之需要的出射區域。若吾人欲使 用此方法設計一系統,則適用物理學(即輻射守恆)將減小 最佳設計之上30%的光輸出。相反,使用以上說明的校正 有效立體角計算一出射面面積,其將產生比可採用圓形計 算所達到的光輸出多42%的光輸出。 儘管以上說明決定用於一 LED的有效立體角之特定方 法,但是能使用該技術中已知或開發的任一方法。或者, 能憑經驗決定用以使光守恆的最小表面積。此外雖然以 上的最小表面積計算假定光係在橫跨非基板層與該基板之 間的介面之整個表面而進入該基板,但是在實務元件中, 光可以不纟均勻分佈中橫跨該彳面之整個表面而進入該基 板。該出射面之最小面積的計算能經調制以解決橫越二 介面的光之實際分佈,而非完全基於該介面之面積的= 小。在一項#體實施例中,錢入絲板所透過的介面之 實際面積能係用作Αι。 LED之具體實施例能投射光至1〇至6〇度之期望錐角理 响效率係最冋至89%(意指進入該基板的光之89%係以期望 半角發射,菲淫耳損失係11%),取決於基板材料及菲淫耳 損失。該效率能係100%而&菲淫耳損失。即使在僅7〇%效 率的情況下,LED之具體實施例仍提供比其他哪技術更 大的效率’同時亦允許近場及遠場處的均句或近均句強度 分佈。 141220.doc 201007993 能藉由施加抗反射塗層於該基板之出射面來克服在該基 板至空氣(或另一媒介)介面上的菲涅耳損失。能使用的抗 反射塗層係將為熟習此項技術者所知並且包括單層或 MgF多層塗層或其他抗反射塗層的任一塗層。透過利用 抗反射塗層,能減小或消除菲涅耳損失,從而增加一 LED 之光輸出效率。 一 LED之一具體實施例可具有一個以上出射面。例如, 一成形基板可允許藉由該LED產生的實質上所有光自該 LED出射,但是透過一個以上的單一出射面。圖7係具有 一個以上出射面的一LED 700之一範例的概略代表。在圖7 中’顯示LED 700之出射面71〇a及710b。具有一個以上出 射面的一LED可發射光至大於一半球體的一立體角中。為 了最大化自該等出射面出射的光,具有一個以上單一出射 面的一基板之側壁可具有多個彎曲或小面型表面。 對於具有兩個或兩個以上出射面的一led,該led之立 體發射角可以係大於一半球體(而且投射立體角可以係大 於pi)。此LED之一範例將係,若代替單一平面出射面,則 該LED具有出射面之四側錐體集,若該led之基板的側壁 經成形用以透過該介面引導進入該基板的光至四個出射面 之一者以便以不大於該臨界角之角撞擊該出射面,則進入 該基板的所有光可透過四個出射面之一者自該LED出射。 因為錐體之面並非在一平面中,而相反係彼此成角,故 以至一出射面的臨界角撞擊該出射面的任一光線將折射至 一 90度之出射角。以此方式定義的總立體角空間將因此係 H1220.doc •31- 201007993 四個出射面之角關係的函數。為了滿足展度方程式,此範 例中的四個出射面將必須具有至少等於將該有效立體角用 於該構造的計算值的總表面積。 仍可採用諸如使輕射守怪之方式來構造此多出射面構 &。即,藉由使總投射出現面面積等於計算值,並且藉由 設計該㈣壁以提供至料出射面之每—料的光之均句 分佈’能使輻射守卜若使該等出射面大於需要的數值, 則進入該基板的光可透過該等出射面而出射,其中發光強 度會對應減小。 具有多個出射面的一成形基板之另一具體實施例係其中 該成形基板之侧壁本身係出射面的具體實施例。取決於一 給出光線之一入口點,該光線可以不大於該臨界角之角撞 擊-給出側壁’並且通過該側壁,或其可以大於該臨界角 之角撞擊並且可内部地反射至另一面或側壁。 若設計側壁出射面及側壁以使得自該介面上的任一點進 入該基板的任一光線通過一側壁出射面,因此進入該基板 的光之全部將自該基板出射。 具有多個出射面的成形基板LED對於用於其中期望寬區 域發射之一般照明應用可能係適當的。可結合將引導藉由 該LED產生的光至一較小立體角中的額外透鏡或反射器部 件來使用此類LED。 具有多個出射面或其中側壁用作出射面的一成形基板之 潛在利益係該LED可具有一較小體積或可具有更輕易地加 以製造的一形狀’例如平面而非彎曲表面。 141220.doc •32· 201007993 能採用一 LED陣列來配置LED…LED陣列能用以產生 期望數目之光以及期望光圖案。例如,可採用正方形或另 一形狀來配置LED。使用一LED陣列以產生期望數量之光 可能更具效率或可能比使用單一 LED消耗較少空間。能在 製造期間形成一 LED陣列。例如,能採用相同晶圓形成一 . LED陣列。在圖8A中’ LEDP車列800包含採用相同晶圓形 成的LED 810a至810c。移除晶圓材料82〇以形成“Μ Φ 至810°。1^〇81〇&於點83〇&處保持附接於1^1)81〇13。同樣 地,LED 810b於點830b處保持附接於LED 81〇ce因此, 透過基板材料之選擇性移除,可形成1^]〇陣列。圖8代表 形成LED陣列之一個方法並且係說明性的而非限制性的: 如將為熟習此項技術者所知的用於形成LED陣列之其他方 法係在本發明之範疇内。 使用LED陣列之-個優點係該陣列中的多個咖之成形 基板可以係比用於具有相同數量之光輸出的單一 之成 • 形基板薄。此外,一較小led陣列可以係比單一 LED更有 效率,即消耗某一數量的輸入功率之一較小列可比 相同出射面大小及輸入功率之單一大LED產生更多的光。 . 一或多個方法可用以成形或形成一LED或一 [ΕΕ)(或另一 光子元件)之基板。如以下說明的成形一基板之方法係範 例性的而且包含許多可用方法之一子集。以下說明的方法 及該LED或光學行業中使用的其他方法可用以產生lED。 該等方法可用於包括藍寶石、碳化矽、玻璃或其他基板材 料之各種基板材料上。 141220.doc -33- 201007993 在成形一基板材料之前,能製備用於成形包括該基板材 料的晶圓或晶粒以提供一或多個保護性塗層或支撐層。一 般地’製備用於成形的晶粒能包括安裝該基板至一支撐結 構’其能用以一旦形成就將各種光學元件固持一起,在製 造期間提供結構支撐及/或用作可能在製造期間遭受損壞 的犧牲層。能在取決於所用的成形方法之任一適當材料上 · 製成該支撐結構。支撐結構之範例包括玻璃、環氧樹脂、 藍寶石、聚矽氧或採用環氧樹脂或其他黏性材料接合至該 基板的另一材料層。黏著劑之範例包括(但不限於)藉由賓 ❹ 夕法尼亞州Sanatoga市之Valtech公司生產的Valtron AD4010-A/AD4015-B熱釋放環氧樹脂系統(Μρ4〇ι〇Α/ 1〇15B_50)、藉由康乃迪克州Rocky Hill市之Henkel公司生 產的Li〇fol UR 9640或另一黏著劑。添加金屬層至該基板 材料或支揮結構能改良黏著強度。例如,蒸發丁丨之1微米 厚塗層可施加於該基板材料或支撐結構以提升黏著。其他 金屬層包括(但不限於)鈦鎢(Tiw)或能提升黏著的另一材料 層。 © 製備亦能包括添加一或多個保護性材料層以保護任一金 屬或電性層免於遭受磨餘劑、化學品或工具的損壞。能選 . 擇該保護性層以使得成形程序能透過該保護性層來成形該 基板材料。依據一項具體實施例,該保護性層能係彈性熱 塑性塑膠,其將黏著於該晶圓之最外層。能基於待使用的 製造方法、時間約束及其他因素來選擇該保護性層之材 料。例如,一相對黏著保護性層可能適合於線鋸成形方 141220.doc -34- 201007993 法,但是可能會弄壞超音波成形工具。能用作保護性層的 材料之範例包括(^〇〇1<;3〇1181&>^丨]<:3 93接合黏著劑及其他熱 塑性塑膠。該保護性層之厚度能取決於該保護性層中使用 的材料以及製程參數。在其他具體實施例中,該晶圓能以 其他方式加以製備或留下不製備。 依據一項具體實施例,一線鋸能用以切割該基板材料。 圖9係切割用於LED的晶圓900之一項具體實施例的概略代. 表。在此範例中,晶圓900係安裝至安裝區塊902,該區塊 能除晶圓900以外加以切割,從而允許晶圓900徹底加以切 割。因此,安裝區塊902能用作一支撐結構及一犧牲層。 依據一項具體實施例,安裝區塊902能係環氧樹脂、蠟或 較佳係低成本並且在切割下穩定的另一材料。黏性層904 能係任一適當黏著劑,並且在特定具體實施例中能係允許 成形元件在切割或另一處理之後自該安裝區塊清潔地加以 移除之黏著劑。依據一項具體實施例,該黏著劑能係諸如 在藉由賓夕法尼亞州Sanatoga市之Valtech公司生產之 Valtron AD4010-A/AD4015-B熱釋放環氧樹脂系統 (MP4010A/1015B-50)中提供的環氧樹脂之環氧樹脂。雖然 顯示晶圓900之基板層,但是晶圓900及針對其他方法繪示 的晶圓亦能包括發光層及電性層。 一磨蝕切割線906係用以採用期望形狀來切割晶圓900。 藉由範例而非限制,能使用具有近似20微米之金剛石粒子 的直徑為155微米至250微米之磨蝕切割線906。然而,熟 習此項技術者將瞭解能使用具有各種直徑、磨蝕粒子類 141220.doc •35· 201007993 型、磨蝕粒子大小或其他特徵 望侧壁形狀。 的各種磨姓切割線 以達到期 在操作中,磨餘線906及晶圓_能沿多個轴彼此相對移 動。例如,能在水平地移動晶圓9〇〇時在直垂直路徑中降 低磨蝕線9〇6。若線906的垂直速度保持怪定則能連續地 调整晶圓_之水平速度以達到期望形狀。或者,晶圓_ 之速度能在短時間週期内保持恆定以建立多個平坦小面於 該側壁上。在另-具體實施财,水平速度能保持怪定,' 同時調整線9 0 6的垂直速度以建立一彎曲小面型或另一侧 壁形狀。在另-具體實施例中’能調整線9〇6及晶圓9〇〇兩 者的速度。雖然在上述具體實施例中藉由移動線9〇6及晶 圓900兩者來達到線906及晶圓9〇〇的相對移動但是其他 具體實施例能包括水平及垂直地移動線9〇6及/或晶圓9〇〇 以建立期望形狀。當通道910之一集已在一個方向上加以 切J時,Ba圓900能旋轉選擇度數(在正方形或矩形面 之情況下為90度或用於諸如六邊形狀led之其他形狀的其 他旋轉度)而且重複切割程序,直至成形採用該晶圓製成 的元件之所有側壁。 一線鑛固有地產生低接觸力於該基板上並且採用低質量 線完成切割。使用一線鋸之某些優點係:⑴能程式化地產 生該形狀’因此消除用於一特定形狀的任何固定工具成 本’以及用於獲得該工具的相關聯前置時間;(u)能回應 於不同設計條件而迅速地修改該形狀;(iii)能改變程式化 路徑以隨著程序條件改變而較佳地匹配設計的形狀;(iv) 141220.doc -36· 201007993 該晶圓能加以安裝(如採用環氧樹脂黏著劑)至一犧牲區塊 上,從而允許成形切割完全透過單一操作中的晶圓來進 行;(V)該晶圓能接著完全加以研磨於所有側壁上,同時仍 在原始陣列中。能藉由此方法產生如自頂部檢視的具有帶 有底切表面之曲線的形狀。 依據一項具體實施例,一線切割系統能包括一線切片機 器以及一運動控制系統,其協調至該晶圓中的切割速率與 該晶圓或線之側向錯置以使得能進行一給出成形切割。圖 10係用以切割成形基板的一線切割機器1〇〇〇之一特定範例 的概略代表。應瞭解藉由範例而非限制來提供所說明的2 割機器並且能使用任一適當的線切割系統。依據一項具體 實施例,該切割機器能係藉由科羅拉多州科羅拉多泉市之 金剛石線技術LLC公司生產的修改型RTS44〇。切割機器 1000之組件能由任一適當材料製成。依據各種具體實施 例,使用諸如陽極氧化鋁之抗腐蝕材料。切割機器ι〇〇〇能 包括纏繞的一切割線《僅顯示切割線1〇1〇之路徑的—部 分,然而,切割線1〇10能在任一方向上透過滑輪1〇2〇、 1022、1024、1026自捲轴1028至捲轴1〇3〇運行。能調整各 種滑輪以拉緊線1〇1〇。切割機器1〇〇〇能產生最高至每分鐘 3000英呎的線速度並且具有1〇〇〇〇英呎的能力儘管能使 用其他速度及能力。切割機器1〇〇〇亦能包括一冷卻系統 1038。冷卻系統1038能使用任一適當冷卻劑。在基礎切割 機器之範例中,冷卻系統1〇38能使用壓縮空氣幫浦產生最 多至5 gpm以水為基礎的冷卻劑。切割線1〇1〇、滑輪 141220.doc -37- 201007993 1020、1022、1024、1026以及捲轴1028與1030能加以安裝 至一輛1040,其在垂直方向上(基於此應用之目的而沿z軸) 平移。藉由一步進馬達控制平移。各種滑輪能加以安裝於 能程式化地使該線傾斜之一搖桿機構(未顯示)上。雖然僅 顯不單一切割線,但是切割機器丨〇〇〇能支撐多個切割線。 在一項具體實施例中,切割機器1 〇〇〇包括一平台1〇5〇, 其可藉由一步進馬達沿一轴(基於此應用之目的而稱為X轴) 移動。能藉由具有一期望解析度的一 X轴步進馬達來控制 移動。在一項具體實施例中,該步進馬達具有〇〇〇〇5英吋 的轴解析度以及〇.〇〇〇 1英吋的精度。其他具體實施例能利 用線性致動器、無刷直流馬達或另一機構以使該晶圓或切 割線相對於彼此而平移。此外,在其他具體實施例中能組 態線切割機器以使得該線相對於該晶圓沿X轴而移動。 圖11係用於切割一工件11〇5的修改切割機器1〇〇〇之一項 具體實施例的概略代表。切割機器1000能包括一或多個z 軸編碼器111 〇(在圖11中顯示兩個)。z轴編碼器允許準確決 定軛1040之z軸位置。雖然在此範例中使用編碼器,但是 其他系統能用於位置決定,該等系統如能用以提供位置之 準確測量的超音波感測器、紅外線感測器或其他系統。一 編碼器之一範例係自康乃迪克州Gold Tailings市之rsf電 子公司的具有270 mm行程之RSF線性編碼器,其端部安裝 延伸部分具有〇.1微米解析度,零件編號為 BK71202AC016。儘管未顯示’但是一類似編碼器或另一 編碼器能加以添加以允許沿X轴決定平台1〇5〇之位置。 141220.doc -38· 201007993 依據一項具體實施例,該線切割機器能包括用於決定該 切割線相對於該晶圓之位置的相機、感測器或其他元件。 在圖11之範例中,切割機器1000能包括具有可沿一或多個 軸平移的一相機1122之一相機系統1120。一相機座架1123 能耦合至一致動器或另一移動系統1124。依據一具體實施 例移動系統112 4能包括一馬達112 6,其用以透過一驅動 轴、鏈接件或另一機構來移動相機座架丨丨23。一編碼器 (未顯示)能用以決定相機座架1123之y轴位置。依據一項具 體實施例’移動系統1124能係液密的以預防漿料、冷卻劑 或切割機器1〇〇〇中的其他液體損壞移動系統1124。相機 1122能包括用以限制相機1124之視野的管子1128。任一數 目的透鏡、濾波器或其他光學元件能包括於管子1128中。 一光源1130能提供對相機1122的照明《光源1130能加以安 裝至相機座架1123以隨相機1122移動。在一具體實施例 中’相機1122係在切割線1 〇 1 〇的中心線之2英忖内。然 而,相機1122能放置於較接近於該中心線或離其較遠的任 一適當位置中。依據一項具體實施例,相機1122能使影像 具備每像係1微米或更佳的解析度並且提供至少8〇〇 x6〇〇個 像素之影像大小。 依據一項具體實施例,馬達11 26及y轴編碼器能包括於 藉由明尼蘇達州Forest Lake市之Aerotech公司生產的 八以〇加1^丁8100系列(具有8]^無刷伺服馬達之1〇〇111111級) 中,其零件編號為ATS 100-100 ;相機1122能係自賓夕法尼 亞州Exton市之Basler公司生產的Basler %,C- Mount 141220.doc -39- 201007993 1392x1040,18·7 fps,Mono,CCD ;管子 1128 能係 Mitutoyo至C-Mount 152.5 mm延伸管子;該鏡頭能係 Mitutoyo Telecentric Objective 10X Lens,光源 1130能係自 佛蒙特州 Rochester 市之 Advanced Illumination 公司的 Advanced Illumination,SL2420 Spotlight,Bright Field, Blu 470nm 24V-XL。相機 1122 能採用用於 A630、A640鋁 型系列相機之Basler三角架座加以安裝至相機座架1123。 馬達1126能藉由Aerotech總體運動控制器(零件編號為 MP10,自Aerotech公司)及/或具有I/O擴充板的Aerotech總 體運動控制器(零件編號為MP10-IO)。相機系統1120能允 許透鏡視野的中心行進至少2英吋,其中5微米内的運動之 平直度在兩英忖内。 一旋轉級1150能耦合至平台1050以允許工件1105圍繞z 軸旋轉。依據一項具體實施例,旋轉級的中心係在平台 1050上於正或負5 mm内。依據各種具體實施例,旋轉級 11 50能具有正或負5弧秒之可重複性。在一項具體實施例 中,旋轉級1150為一旋轉馬達(稱為θ-ζ馬達)及一旋轉編碼 器提供一液密外殼1152。該旋轉馬達旋轉轉盤1154。依據 一項具體實施例,旋轉級11 50能係藉由加州Mission Viejo 市之Newmark Systems公司生產的包括一編碼器之能潛水5 英吋旋轉級,其零件編號為RMS-5-11。 一傾覆/傾斜級1160能加以安裝至轉盤1154。傾覆/傾斜 級11 60能包括用以相對於水平方向繞兩個軸調整工作平台 1162之角的伺服系統及樞轴。雖然僅說明伺服系統1164, 141220.doc -40- 201007993 但是傾覆/傾斜級1160能包括用以調整工作平台1162的額 外伺服系統。一夾子1166能關閉以將工件丨1〇5固持在適當 位置。在其他具體實施例中’真空、緊固器、黏著劑或另 機構此用以將工件1105固持在適當位置。如以上論述, 工件1105能包括能耦合至一犧牲層的一晶圓(以下稱為鉚 釘)。 在校準期間,一人類或機器人元件能將工件11〇5放置於 工作平台1162上並且關閉夾子。平台1〇5〇、旋轉級 1150及傾覆/傾斜級116〇能對準該晶圓以進行切割。依據 一項具體實施例,此能使用自相機1122的資訊來達到。該 晶圓能包括標記或基準,其能採用相機丨122藉由檢視自相 機1122的影像之一人類使用者或處理自相機丨丨以的影像資 料之一程式來暫存。該等基準標記能具有任一適當組態。 藉由範例而非限制,該等標記能係具有約1〇微米之線寬度 以及約100微米之長度的十字絲,或具有指定長度(例如數 毫米)的線。能接近於藉由線1〇1〇切割的一特定通道之端 部來放置標記。 依據一項具體實施例,平台1〇5〇係沿\軸移動而且相機 1122係沿y軸移動以將第一基準標記帶入相機ιι22之視野 以對準該相機中的該基準標記(例如,藉由使標記居中, 將該標記與十字絲對準或藉由另一方法卜能調整工作平 台1162以聚f、該標記。平台胸及旋轉㈣观按需要加 以調整以將一第二基準與相機1122對準。能反覆地調整平 台1050及旋轉級115〇,直至能在無需旋轉調整的情況下完 141220.doc -41- 201007993 成自第基準至第一基準的整個行程。此外, 傾斜級1160以使得兩個椤 整傾覆/ 及射禮者 對準。能採用一操作者 及/或影像處理程式之協助達到對準。 採用適當對準中的晶圓,能移動平台1請—衫數量並 且使用定義參數來實行一測試切割。測試切割係名義上在 y轴之方向上。該晶圓能加以移除並且採用諸如工匠之範 疇或其他儀器之儀器來檢驗。能測量第一與第二基準之間 的切割之傾斜度及偏移。此等數值提供能用以相對於相機 位置來校準線位置的偏移資料。在另一具體實施例中,在 進行第—切割之後,能藉由旋轉級U5G來旋轉晶圓119〇, 該旋轉應該係90度。亦能測量第二切割以校準旋轉級η% 以使得旋轉級⑽確實旋轉崎(在其容限内卜依據—具 體實施例,能實行校準以確保在該晶圓中心線附近,在自、 該晶圓之一個邊緣至相對邊緣的±2微米内該晶圓之街道 係平行於該切割線之轴。 在一項具體實施例中,該晶圓能平行於第一軸加以切割 多次並且接著針對切割平行於另一轴加以旋轉。在切割期 間,能控制軛1040及平台1050之運動以使得線〗〇1〇以期望 形狀切割該晶圓。能選擇線1〇1〇之速度及其他切割參數以 減小線10 10上的力來最小化曲折。 圖12係切割機器1 〇〇〇之一部分的概略代表,該切割機器 說明平台1050、旋轉級1150以及包括用以傾覆/傾斜工作 平台1162之伺服系統ι164及121〇的傾覆/傾斜級116〇。伺服 系統1164及1210能係(例如)具有編碼器的直流伺服馬達。 141220.doc • 42- 201007993 傾覆/傾斜級1160包括(例如)自麻薩諸塞州Auburn市之[Equation 12] [Equation 13] YF2=cos(y2)*sin(Pi) Zf2 = C0S(Pj) where ^ is the angle of the diagonal ray in the 丫 plane (for squares) and where A ray projected from the middle parallel to the side of the x-axis as shown in Fig. 6C, Ψ 2 = 90 degrees. As shown in FIG. 6A, since 156 intersects the surface of the sphere at four 141220.doc • 28-201007993 points, and the size of the angle P2 is smaller than the critical angle h, the projection is based on the angle β. The value of point F2 is calculated on the plane of the side ray. A similar method based on previously calculated geometries can be used to determine other points (e.g., to determine the position of the points and the squares based on the position of the points and 匕 and the desired half angle of the light on the target plane 156). Figure 6D illustrates a diagonal ray and a ray that is projected onto a sphere 159 from the exit surface 155 and projected onto the short side of the sphere i6丨 for the target plane 156. For the exit face 155, the projection of the edge of the edge ray on the sphere 159 on the plane of the exit face 155 forms an elliptical segment. Similarly, the projection of the refracted ray at the edge of the target surface will intersect the sphere 161. For example, the image indicates a circular intersection (shown at 162) of the ray in the plane formed by the edge 163 of the target surface 156 intersecting the sphere 161 and the projection of the intersection onto the target plane 156 (shown on 164 places). The total projected area of the target face is found by calculating the area of each of the elliptical segments surrounding the square of the target face and adding the area to the area of the target face. Equation 4B can be used to determine the effective solid angle for the target plane. Similarly, the effective solid angle for the LED can be determined by using the sphere 159 and the elliptical segments formed by the light. For example, the total projected area is determined as explained above and inserted as the projected area of r desired solid angle in Equation 4B. As an illustrative example, the above method is used to use an LED having a square forming interface and an exit surface to project a light to produce an effective solid angle of 〇 立体 立体 狐By comparing 'using a conventional circular cast with a 30 degree half-angle projection specification, the 141220.doc -29-201007993 shot area will produce an effective solid angle of 0.785 solid curvature. When these values are then used in Equation 1 for the given I 〇 R and flux, the conventional (circular) juice is calculated to produce the desired exit area that is reduced by about 30% in size. If we want to use this method to design a system, then physics (ie, radiation conservation) will reduce the light output by 30% above the optimal design. Instead, an exit face area is calculated using the corrected effective solid angle described above, which will produce 42% more light output than can be achieved with a circular calculation. Although the above description determines a particular method for the effective solid angle of an LED, any method known or developed in the art can be used. Alternatively, the minimum surface area for conservation of light can be determined empirically. Furthermore, although the above minimum surface area calculation assumes that the light system enters the substrate across the entire surface of the interface between the non-substrate layer and the substrate, in a practical element, light may not evenly distribute across the surface. Enter the substrate over the entire surface. The calculation of the minimum area of the exit face can be modulated to account for the actual distribution of light across the interface, rather than being based entirely on the area of the interface. In a #body embodiment, the actual area of the interface through which the money is fed into the wire can be used as the Αι. The specific embodiment of the LED can project light to a desired cone angle of 1 to 6 degrees, and the efficiency is up to 89% (meaning that 89% of the light entering the substrate is emitted at a desired half angle, the Philippine ear loss system 11%), depending on the substrate material and Philippine loss. This efficiency can be 100% & Even in the case of only 7〇% efficiency, the specific embodiment of the LED provides greater efficiency than any other technology' while allowing the mean or near-sequence intensity distribution at the near and far fields. 141220.doc 201007993 The Fresnel loss from the substrate to the air (or another medium) interface can be overcome by applying an anti-reflective coating to the exit surface of the substrate. The antireflective coatings that can be used will be any coating known to those skilled in the art and including single layer or MgF multilayer coatings or other antireflective coatings. By using an anti-reflective coating, Fresnel losses can be reduced or eliminated, thereby increasing the light output efficiency of an LED. One embodiment of an LED can have more than one exit surface. For example, a shaped substrate may allow substantially all of the light generated by the LED to exit the LED, but pass through more than one single exit surface. Figure 7 is a schematic representation of an example of an LED 700 having more than one exit surface. In Fig. 7, 'the exit faces 71a and 710b of the LEDs 700 are displayed. An LED having more than one exit surface can emit light into a solid angle of more than half of the sphere. To maximize the light exiting the exit faces, the sidewalls of a substrate having more than one single exit face may have a plurality of curved or faceted surfaces. For a led having two or more exit faces, the led launch angle of the led can be greater than half of the sphere (and the projected solid angle can be greater than pi). An example of such an LED would be that if a single planar exit surface is replaced, the LED has a four-sided cone set of the exit surface, if the sidewall of the led substrate is shaped to direct light entering the substrate through the interface to four One of the exit faces is configured to strike the exit face at an angle no greater than the critical angle, and all of the light entering the substrate can be emitted from the LED through one of the four exit faces. Since the faces of the cones are not in a plane, but instead are angled to each other, any light striking the exit face at a critical angle of the exit face will be refracted to an exit angle of 90 degrees. The total solid angle space defined in this way will therefore be a function of the angular relationship of the four exit faces of H1220.doc •31- 201007993. To satisfy the spread equation, the four exit faces in this example would have to have a total surface area at least equal to the calculated value for the effective solid angle for the configuration. It is still possible to construct such a multi-ejecting surface structure, such as by making a light-fired blame. That is, by making the total projected surface area equal to the calculated value, and by designing the (four) wall to provide a uniform distribution of light to the material exit surface, the radiation can be made larger than the exit surface. If the value is required, the light entering the substrate can be emitted through the exit surfaces, and the luminous intensity is correspondingly reduced. Another embodiment of a shaped substrate having a plurality of exit faces is a specific embodiment in which the sidewalls of the shaped substrate are themselves exit faces. Depending on an entry point of a given ray, the ray may strike no more than the angle of the critical angle - giving the sidewall 'and through the sidewall, or it may strike at an angle greater than the critical angle and may internally reflect to the other side Or side walls. If the sidewall exit surface and sidewall are designed such that any light entering the substrate from any point on the interface passes through a sidewall exit surface, all of the light entering the substrate will exit the substrate. Shaped substrate LEDs having multiple exit faces may be suitable for general lighting applications where wide area emission is desired. Such LEDs can be used in conjunction with additional lens or reflector components that will direct light generated by the LEDs into a smaller solid angle. A potential benefit of having a plurality of exit faces or a shaped substrate on which the sidewalls are used to make the face is that the LED can have a smaller volume or can have a shape that is more easily fabricated, such as a flat rather than a curved surface. 141220.doc •32· 201007993 An LED array can be used to configure the LEDs... LED arrays can be used to produce the desired amount of light as well as the desired light pattern. For example, a square or another shape can be used to configure the LEDs. Using an array of LEDs to produce the desired amount of light may be more efficient or may consume less space than using a single LED. An array of LEDs can be formed during manufacture. For example, an LED array can be formed using the same wafer. In Fig. 8A, the 'LEDP train 800' includes LEDs 810a to 810c which are formed in the same crystal. Wafer material 82 is removed to form "Μ Φ to 810°. 1^〇81〇& remains attached to 1^1 at point 83〇& 81〇13. Similarly, LED 810b is at point 830b Maintaining attachment to the LED 81 〇ce, therefore, through the selective removal of the substrate material, an array of ^ 〇 can be formed. Figure 8 represents one method of forming an LED array and is illustrative and not limiting: Other methods for forming LED arrays known to those skilled in the art are within the scope of the present invention. One advantage of using LED arrays is that the shaped substrates of the plurality of coffee in the array can be used to have the same A single source of light output • Thin substrate. In addition, a smaller LED array can be more efficient than a single LED, ie consume a certain amount of input power. A smaller column can be compared to the same exit surface size and input power. A single large LED produces more light. One or more methods can be used to shape or form a substrate of an LED or a [ΕΕ) (or another photonic element). The method of forming a substrate as described below is exemplary. And contains a subset of many of the available methods. The methods described and other methods used in the LED or optical industry can be used to generate lED. The methods can be used on a variety of substrate materials including sapphire, tantalum carbide, glass or other substrate materials. 141220.doc -33- 201007993 Prior to a substrate material, a wafer or die for forming the substrate material can be prepared to provide one or more protective coatings or support layers. Generally, preparing a die for forming can include mounting the substrate to A support structure 'which can be used to hold various optical components together once formed, provide structural support during manufacturing and/or serve as a sacrificial layer that can be damaged during manufacturing. Can depend on any of the forming methods used The support structure is made of a suitable material. Examples of the support structure include glass, epoxy, sapphire, polyoxyn oxide or another material layer bonded to the substrate using epoxy or other viscous material. Examples of adhesives This includes, but is not limited to, Valtron AD4010-A/AD4015-B heat release epoxy manufactured by Valtech, Sanatoga, Pennsylvania. Liquor system (Μρ4〇ι〇Α/ 1〇15B_50), Li〇fol UR 9640 or another adhesive manufactured by Henkel Corporation of Rocky Hill, Connecticut. Adding a metal layer to the substrate material or supporting structure It can improve the adhesion strength. For example, a 1 micron thick coating of evaporating butyl can be applied to the substrate material or support structure to enhance adhesion. Other metal layers include, but are not limited to, titanium tungsten (Tiw) or another which can enhance adhesion. The material layer. The preparation may also include the addition of one or more layers of protective material to protect any metal or electrical layer from damage from abrasives, chemicals or tools. The protective layer can be selected such that the forming process can form the substrate material through the protective layer. According to a specific embodiment, the protective layer can be an elastic thermoplastic plastic that will adhere to the outermost layer of the wafer. The material of the protective layer can be selected based on the manufacturing method to be used, time constraints, and other factors. For example, a relatively adhesive protective layer may be suitable for wire sawing 141220.doc -34- 201007993, but may damage the ultrasonic forming tool. Examples of materials that can be used as the protective layer include (^〇〇1<;3〇1181&>^丨]<:3 93 bonding adhesives and other thermoplastic plastics. The thickness of the protective layer can depend on the The materials used in the protective layer and process parameters. In other embodiments, the wafer can be prepared in other ways or left unprepared. According to one embodiment, a wire saw can be used to cut the substrate material. 9 is a schematic representation of a particular embodiment of a wafer 900 for cutting LEDs. In this example, wafer 900 is mounted to mounting block 902, which can be cut in addition to wafer 900. Thus, wafer 900 is allowed to be completely cut. Thus, mounting block 902 can be used as a support structure and a sacrificial layer. According to one embodiment, mounting block 902 can be epoxy, wax or preferably low. Another material that is cost effective and stable under cutting. The adhesive layer 904 can be any suitable adhesive and, in certain embodiments, allows the shaped element to be cleanly cleaned from the mounting block after cutting or another process. Removed adhesive According to a specific embodiment, the adhesive can be, for example, a ring provided in a Valtron AD4010-A/AD4015-B heat release epoxy system (MP4010A/1015B-50) manufactured by Valtech, Inc. of Sanatoga, Pa. Epoxy resin epoxy resin. Although the substrate layer of the wafer 900 is displayed, the wafer 900 and the wafers described for other methods can also include a light emitting layer and an electrical layer. An abrasive cutting line 906 is used to adopt a desired shape. The wafer 900 is cut. By way of example and not limitation, an abrasive cut line 906 having a diameter of from about 155 microns to 250 microns with diamond particles of approximately 20 microns can be used. However, those skilled in the art will appreciate that various diameters can be used. Abrasive particles 141220.doc •35· 201007993, abrasive particle size or other features of the sidewall shape. Various grinding line cutting lines to achieve the operation, the grinding line 906 and the wafer _ can be along multiple axes Moving relative to each other. For example, it is possible to reduce the abrasion line 9〇6 in a straight vertical path while moving the wafer 9〇〇 horizontally. If the vertical velocity of the line 906 remains strange, the crystal can be continuously adjusted. The horizontal speed of the circle _ to achieve the desired shape. Or, the speed of the wafer _ can be kept constant for a short period of time to establish a plurality of flat facets on the side wall. In another implementation, the horizontal speed can remain ambiguous. , 'The vertical velocity of line 906 is simultaneously adjusted to create a curved facet or another sidewall shape. In another embodiment, the speed of both wire 9〇6 and wafer 9〇〇 can be adjusted. Although in the above-described embodiment, the relative movement of the line 906 and the wafer 9 is achieved by moving both the line 9〇6 and the wafer 900, other embodiments can include horizontally and vertically moving the line 9〇6 and / or wafer 9 〇〇 to establish the desired shape. When a set of channels 910 has been cut in one direction, the Ba circle 900 can be rotated to select degrees (90 degrees in the case of square or rectangular faces or other degrees of rotation for other shapes such as hexagonal leds) And repeat the cutting process until all sidewalls of the component made of the wafer are formed. The first line ore inherently produces a low contact force on the substrate and the cutting is done with a low quality wire. Some of the advantages of using a wire saw are: (1) the ability to programmatically produce the shape 'thus eliminating any fixed tool cost for a particular shape' and the associated lead time for obtaining the tool; (u) can respond to The shape is quickly modified by different design conditions; (iii) the stylized path can be changed to better match the shape of the design as the program conditions change; (iv) 141220.doc -36· 201007993 The wafer can be mounted ( If an epoxy adhesive is used to a sacrificial block, allowing the forming cut to be completely through the wafer in a single operation; (V) the wafer can then be completely ground on all sidewalls while still being original In the array. By this method, a shape having a curve with an undercut surface as viewed from the top can be produced. According to a specific embodiment, a wire cutting system can include a wire slicing machine and a motion control system that coordinates the cutting rate in the wafer and the lateral misalignment of the wafer or wire to enable a given shaping Cutting. Fig. 10 is a schematic representation of a specific example of a wire cutting machine 1 for cutting a formed substrate. It will be appreciated that the illustrated 2 cutting machine is provided by way of example and not limitation and any suitable wire cutting system can be used. According to a specific embodiment, the cutting machine can be a modified RTS 44® produced by Diamond Line Technology LLC of Colorado Springs, Colorado. The components of the cutting machine 1000 can be made of any suitable material. Corrosion resistant materials such as anodized aluminum are used in accordance with various embodiments. The cutting machine ι can include a cutting line of the winding line "only showing the path of the cutting line 1〇1〇", however, the cutting line 1〇10 can pass through the pulleys 1〇2〇, 1022, 1024 in either direction. 1026 runs from reel 1028 to reel 1〇3〇. Various pulleys can be adjusted to tighten the wire 1〇1〇. The cutting machine can produce line speeds of up to 3,000 inches per minute and has a capacity of 1 inch, although other speeds and abilities can be used. The cutting machine 1 can also include a cooling system 1038. Cooling system 1038 can use any suitable coolant. In the example of a basic cutting machine, the cooling system 1〇38 can generate up to 5 gpm of water-based coolant using a compressed air pump. Cutting line 1〇1〇, pulley 141220.doc -37- 201007993 1020, 1022, 1024, 1026 and reels 1028 and 1030 can be mounted to a 1040, in the vertical direction (for the purpose of this application along the z Axis) Translation. The translation is controlled by a stepper motor. Various pulleys can be mounted on one of the rocker mechanisms (not shown) that can be programmed to tilt the line. Although only a single cutting line is shown, the cutting machine can support multiple cutting lines. In a specific embodiment, the cutting machine 1 includes a platform 1〇5〇 that can be moved by a stepper motor along an axis (referred to as the X-axis for the purposes of this application). The movement can be controlled by an X-axis stepper motor having a desired resolution. In a specific embodiment, the stepper motor has an axis resolution of 〇〇〇〇5 inches and an accuracy of 〇.〇〇〇1 inch. Other embodiments may utilize a linear actuator, a brushless DC motor, or another mechanism to translate the wafer or cutting line relative to each other. Moreover, in other embodiments, the wire cutting machine can be configured to move the wire relative to the wafer along the X axis. Figure 11 is a schematic representation of one embodiment of a modified cutting machine 1 for cutting a workpiece 11〇5. The cutting machine 1000 can include one or more z-axis encoders 111 两个 (two are shown in Figure 11). The z-axis encoder allows accurate determination of the z-axis position of the yoke 1040. While encoders are used in this example, other systems can be used for position determination, such as ultrasonic sensors, infrared sensors, or other systems that can be used to provide accurate measurement of position. An example of an encoder is the 270 mm stroke RSF linear encoder from rsf Electronics, Gold Tailings, Connecticut, with an end-mounted extension of 1.1 micron resolution and part number BK71202AC016. Although not shown 'but a similar encoder or another encoder can be added to allow the position of the platform 1〇5〇 to be determined along the X axis. 141220.doc -38· 201007993 According to a specific embodiment, the wire cutting machine can include a camera, sensor or other component for determining the position of the cutting line relative to the wafer. In the example of Figure 11, cutting machine 1000 can include a camera system 1120 having a camera 1122 that is translatable along one or more axes. A camera mount 1123 can be coupled to an actuator or another mobile system 1124. The mobile system 112 4 can include a motor 112 6 for moving the camera mount 丨丨 23 through a drive shaft, link or another mechanism in accordance with an embodiment. An encoder (not shown) can be used to determine the y-axis position of the camera mount 1123. The mobile system 1124 can be liquid-tight in accordance with a specific embodiment to prevent damage to the mobile system 1124 by slurry, coolant, or other liquids in the cutting machine. Camera 1122 can include a tube 1128 to limit the field of view of camera 1124. Any number of lenses, filters or other optical components can be included in the tube 1128. A light source 1130 can provide illumination to the camera 1122. The light source 1130 can be mounted to the camera mount 1123 for movement with the camera 1122. In a specific embodiment, the camera 1122 is within 2 inches of the centerline of the cutting line 1 〇 1 。. However, camera 1122 can be placed in any suitable location that is closer to or farther from the centerline. According to a specific embodiment, the camera 1122 can provide an image with a resolution of 1 micron or better per image and provide an image size of at least 8 〇〇 x 6 像素 pixels. According to a specific embodiment, the motor 11 26 and the y-axis encoder can be included in an eight-in-one 8100 series (with 8) brushless servo motor manufactured by Aerotech Corporation of Forest Lake, Minnesota. 〇〇111111), its part number is ATS 100-100; camera 1122 can be Basler %, C- Mount 141220.doc -39- 201007993 1392x1040,18·7 fps, produced by Basler Company, Exton, Pennsylvania. Mono, CCD; tube 1128 can be Mitutoyo to C-Mount 152.5 mm extension tube; this lens can be Mitutoyo Telecentric Objective 10X Lens, light source 1130 can be from Advanced Illumination, Advanced Illumination, Rochester, Vermont, SL2420 Spotlight, Bright Field , Blu 470nm 24V-XL. The camera 1122 can be mounted to the camera mount 1123 using a Basler tripod mount for the A630 and A640 aluminum series cameras. The motor 1126 can be powered by the Aerotech Total Motion Controller (part number MP10 from Aerotech) and/or the Aerotech Total Motion Controller with I/O expansion board (part number MP10-IO). Camera system 1120 can allow the center of the field of view of the lens to travel at least 2 inches, with the flatness of motion within 5 microns being within two inches. A rotating stage 1150 can be coupled to the platform 1050 to allow the workpiece 1105 to rotate about the z-axis. According to a specific embodiment, the center of the rotating stage is within the positive or negative 5 mm of the platform 1050. According to various embodiments, the rotational stage 11 50 can have a repeatability of plus or minus 5 arc seconds. In one embodiment, the rotary stage 1150 provides a fluid-tight housing 1152 for a rotary motor (referred to as a θ-ζ motor) and a rotary encoder. The rotary motor rotates the turntable 1154. According to one embodiment, the rotary stage 11 50 can be a 5-inch rotary stage including an encoder manufactured by Newmark Systems, Inc. of Mission Viejo, Calif., with part number RMS-5-11. A tilt/tilt stage 1160 can be mounted to the turntable 1154. The tilt/tilt stage 11 60 can include a servo system and pivot for adjusting the angle of the work platform 1162 about two axes relative to the horizontal. Although only the servo system 1164, 141220.doc -40-201007993 is illustrated, the capping/tilting stage 1160 can include an additional servo system for adjusting the work platform 1162. A clip 1166 can be closed to hold the workpiece 丨1〇5 in place. In other embodiments, a vacuum, fastener, adhesive or other mechanism is used to hold the workpiece 1105 in place. As discussed above, the workpiece 1105 can include a wafer (hereinafter referred to as a rivet) that can be coupled to a sacrificial layer. During calibration, a human or robotic component can place the workpiece 11〇5 on the work platform 1162 and close the clip. The platform 1〇5〇, the rotating stage 1150, and the tilting/tilting stage 116〇 can be aligned to the wafer for cutting. According to a specific embodiment, this can be achieved using information from camera 1122. The wafer can include indicia or fiducials that can be temporarily stored by the camera 丨 122 by viewing a human user of the image from the camera 1122 or a program of image data processed from the camera. These fiducial markers can have any suitable configuration. By way of example and not limitation, the markers can be a crosshair having a line width of about 1 micron and a length of about 100 microns, or a wire having a specified length (e.g., a few millimeters). The mark can be placed close to the end of a particular channel cut by the line 1〇1〇. According to a specific embodiment, the platform 1〇5〇 moves along the \axis and the camera 1122 moves along the y-axis to bring the first fiducial mark into the field of view of the camera ι to align the fiducial mark in the camera (eg, By centering the mark, aligning the mark with the crosshair or by another method, the work platform 1162 can be adjusted to gather the f. The mark. The platform chest and the rotation (4) view are adjusted as needed to set a second reference The camera 1122 is aligned. The platform 1050 and the rotating stage 115〇 can be repeatedly adjusted until the entire stroke from the first reference to the first reference is completed without the need for rotational adjustment. In addition, the tilt level 1160 to align two tilting/planing rudders. Alignment can be achieved with the help of an operator and/or image processing program. With properly aligned wafers, the number of shirts can be moved. And use a defined parameter to perform a test cut. The test cut is nominally in the direction of the y-axis. The wafer can be removed and inspected using instruments such as artisans or other instruments. The slope and offset of the cut between the second references. These values provide offset data that can be used to calibrate the position of the line relative to the camera position. In another embodiment, after the first cut, Rotating the wafer 119 by rotating the stage U5G, the rotation should be 90 degrees. The second cut can also be measured to calibrate the rotation level η% so that the rotation stage (10) does rotate (in its tolerance) For example, calibration can be performed to ensure that the street of the wafer is parallel to the axis of the cutting line within ±2 microns from one edge of the wafer to the opposite edge near the centerline of the wafer. In an embodiment, the wafer can be cut multiple times parallel to the first axis and then rotated parallel to the other axis for the cutting. During the cutting, the movement of the yoke 1040 and the platform 1050 can be controlled such that the line is It is desirable to shape the wafer. The speed of the line 1 〇 1 及 and other cutting parameters can be selected to minimize the force on the line 10 10 to minimize the tortuosity. Figure 12 is a schematic representation of a portion of the cutting machine 1 , Cutting machine The platform 1050, the rotating stage 1150, and the tilting/tilting stage 116A including the servo systems ι 164 and 121 用以 for tilting/tilting the work platform 1162. The servo systems 1164 and 1210 can be, for example, a DC servo motor with an encoder. 141220.doc • 42- 201007993 Overturn/tilt level 1160 includes, for example, from Auburn, Massachusetts

Physik Instrumente L.P.公司的零件編號M-044 D01,其向 上提供一傾覆/傾斜級至工作平台1162。能藉由自physikPhysik Instrumente L.P., part number M-044 D01, provides a tipping/tilting level to the working platform 1162. By physik

Instrumente L.P.公司的Mercury-DC Mike控制器(零件編號 C-863.10)來控制該傾覆/傾斜級。在圖12之具體實施例 中’工件1105能包括晶圓1212及鉚釘12 14。工件1105能包 ’ 括能藉由夾子1166捕獲的凸緣1220。當關閉夾子1166時, 籲 忐移動臂1230以捕獲夾子1166之對應特徵來穩固夾子 1166。當關閉夾子1166時,底側上的橡膠墊能斷定凸緣 1220上的壓力以穩固地固持鉚釘1214 ^圖12亦說明用於至 該旋轉級馬達及編碼器的電連接件之埠125〇及1252。 圖13說明用於切割機器1000的一控制系統之一項具體實 施例。切割機器1000能包括相機1122、z軸馬達1310、2轴 編碼器liio、X軸馬達1320、x轴編碼器1322、7轴步進馬 達1126、y軸編碼器(未顯示)、0轴馬達133〇、θ轴控制器 • (未顯示)、傾覆及傾斜級馬達與各別編碼器(未顯示)。此 外,切割機器1 〇〇〇能包括用以依據如提供之RTS440上可用 的常式來控制z軸馬達13 10及X軸馬達1320的一馬達控制器 ' 1332。一管理站1350能控制工具1〇〇〇。依據一項具體實施 .例,管理站1350能係個人電腦、膝上型電腦或另一計算元 件,其具有足夠的處理及記憶體以為切割機器丨〇〇〇提供程 式控制。依據一項具體實施例’管理站135〇能係一電腦, 其運行以Windows為基底的作業系統(Wind〇ws係總部位於 華盛頓州雷德蒙的微軟公司之商標),例如Wind〇ws χρ或 141220.doc .43· 201007993 具有SP1的Windows Vista。然而,任一適當計算元件均能 作用一管理站而且在各種具體實施例中管理站135〇可加以 提供為切割機器1〇00之一部分。依據一項具體實施例,管 理站1350能包括用以接收並且處理自相機1122之影像資料 的軟體1352。此外’管理站1350能包括一運動控制器系統 13 54 ’例如由德州奥斯汀之國家儀器公司生產的Ni pC][ 7356 6通道運動控制器。能藉由管理站135〇提供Gm、 MMI或另一介面。例如,藉由國家儀器公司生產的 LabView 8.5.1能用以為控制切割機器1〇〇〇提供一使用者介 春 面。該介面能使(例如)在LabView内的即時顯示(nVe View) 相機影像視窗具備一影像視窗以在垂直及水平方向上具有 可調整十字絲。位置控制按鈕/視窗能提供命令移動以及 指示位置。螢幕指示器能顯示任一命令移動之完成。各種 級亦可以藉由螢幕上「操縱桿」或用於該等系統之互動式 運動的另一控制類型來命令。 依據一項具體實施例,管理站1350能與一馬達控制系統 1360介接,該系統能包括一步進馬達控制器系統1362,例 β 如國家儀器ΝΙ MID 7604 4通道馬達控制器。步進馬達控 制器系統1362能與切割機器1000之步進馬達及編碼器介接 以自編碼器擷取資料並且轉遞馬達控制信號至各種馬達。 此外’馬達控制系統136〇能包括以下論述的—控制多工器 1364。馬達控制系統136〇能具有各種形狀因數並且能係封 閉於NEMA外罩中。 一般地,管理站1350能產生至步進馬達控制器系統^以 141220.doc -44· 201007993 的命令,該系統能繼而產生馬達控制信號以控制切割機器 1000之各種馬達。在某些情況下,若該使用者希望使用切 割機器1_之内建馬達控制常式,則能發出命令及資料至 藉由切割機器1 〇〇〇提供的馬達控制系統。 圖14提供用於一個移動轴的馬達控制系統以及用以控制 用於切割側壁形狀之運動的馬達控制系統1360之概略代 表雖然顯不用於僅一個轴的控制,但是馬達控制系統 1360能控制多個馬達(例如Z軸、y轴、x軸、θ-y軸、Θ-Ζ 轴θ-χ軸馬達或其他馬達)。馬達控制器系統^的能包括 控制選擇邏輯141G ’其決定是否轉遞命令至馬達控制器 1332微步預處理器邏輯142()能處理發送至馬達控制器 332的七號,以允許馬達控制器採取比rtm4〇之機載 程式化可用之步長小的步長。否則,用於各種馬達的信號 此在多工器1430中加以多工並且加以提供至步進馬達控制 器系統1362。步進馬達控制器系統1362能與各種馬達及編 碼器,丨接以使切割機依據不可用於供應有切割機器 之控制器1332的常式來操作。例如,能操作切割機器 1000之各種馬達以使㈣線切割用於如以上說明之一元件 的側壁形狀。此運動並非可用於線切割機器之標準馬達 控制器,因為線切割機器一般進行直切割。 雖然圖13及14中的馬達控制係顯示為分佈式,但是在其 他具體實施例中管理站1350能直接與切割機器胸之-馬 達控制器介接以程式地控制切割機器丨静在其他具體實 施例中,切割機器劃能提供—使用者介面,其允許控制 141220.doc •45· 201007993 切割機器1000以切割期望側壁形狀。 雖然在以上具體實施例中使用特㈣割機器之範例,作 是應該瞭解能修改或設計其他適當切割機器以允許該晶圓Instrumente L.P.'s Mercury-DC Mike controller (part number C-863.10) controls the overturn/tilt level. In the embodiment of Figure 12, the workpiece 1105 can include a wafer 1212 and rivets 12 14 . The workpiece 1105 can include a flange 1220 that can be captured by the clip 1166. When the clip 1166 is closed, the arm 1230 is urged to capture the corresponding feature of the clip 1166 to secure the clip 1166. When the clip 1166 is closed, the rubber pad on the bottom side can determine the pressure on the flange 1220 to securely hold the rivet 1214. Figure 12 also illustrates the electrical connections for the rotary stage motor and encoder. 1252. Figure 13 illustrates a specific embodiment of a control system for cutting machine 1000. The cutting machine 1000 can include a camera 1122, a z-axis motor 1310, a 2-axis encoder liio, an X-axis motor 1320, an x-axis encoder 1322, a 7-axis stepper motor 1126, a y-axis encoder (not shown), and a 0-axis motor 133. 〇, θ-axis controller • (not shown), tilting and tilting motor and individual encoders (not shown). In addition, the cutting machine 1 can include a motor controller '1332 for controlling the z-axis motor 13 10 and the X-axis motor 1320 in accordance with the routines available on the RTS 440 as provided. A management station 1350 can control the tool 1〇〇〇. According to one embodiment, the management station 1350 can be a personal computer, laptop, or another computing component that has sufficient processing and memory to provide program control for the cutting machine. According to a specific embodiment, the management station 135 can be a computer running a Windows-based operating system (Wind〇ws is a trademark of Microsoft Corporation headquartered in Redmond, Washington), such as Wind〇ws χρ or 141220.doc .43· 201007993 Windows Vista with SP1. However, any suitable computing element can function as a management station and in various embodiments the management station 135 can be provided as part of the cutting machine 100. According to a specific embodiment, the management station 1350 can include software 1352 for receiving and processing image data from the camera 1122. Further, the management station 1350 can include a motion controller system 13 54 ', such as the Ni pC] [ 7356 6 channel motion controller manufactured by National Instruments of Austin, Texas. The Gm, MMI or another interface can be provided by the management station 135. For example, LabView 8.5.1, produced by National Instruments, can be used to provide a user interface for controlling the cutting machine. The interface enables, for example, an instant view (nVe View) camera image window in LabView to have an image window with adjustable crosshairs in both vertical and horizontal directions. The position control button/window provides command movement and indication of position. The screen indicator can show the completion of any command movement. The various levels can also be commanded by the "joystick" on the screen or another type of control for the interactive motion of the systems. According to a specific embodiment, the management station 1350 can interface with a motor control system 1360 that can include a stepper motor controller system 1362, such as a National Instruments ΝΙ MID 7604 4-channel motor controller. The stepper motor controller system 1362 can interface with the stepper motor and encoder of the cutting machine 1000 to retrieve data from the encoder and to relay motor control signals to various motors. Further, the 'motor control system 136' can include the control multiplexer 1364 discussed below. The motor control system 136 can have a variety of form factors and can be enclosed in a NEMA enclosure. In general, the management station 1350 can generate commands to the stepper motor controller system 141220.doc -44. 201007993, which in turn can generate motor control signals to control the various motors of the cutting machine 1000. In some cases, if the user wishes to use the built-in motor control routine of the cutting machine 1_, the command and data can be issued to the motor control system provided by the cutting machine 1 . Figure 14 provides a motor control system for a moving shaft and a schematic representation of a motor control system 1360 for controlling the motion of the cut sidewall shape. Although not shown for control of only one axis, the motor control system 1360 can control multiple Motor (for example, Z-axis, y-axis, x-axis, θ-y-axis, Θ-Ζ axis θ-axis motor or other motor). The motor controller system can include control selection logic 141G 'which determines whether to relay commands to the motor controller 1332. The microstep preprocessor logic 142 () can process the number seven sent to the motor controller 332 to allow the motor controller Take a step size that is smaller than the available step size of the rtm4 机 onboard. Otherwise, the signals for the various motors are multiplexed in multiplexer 1430 and provided to stepper motor controller system 1362. The stepper motor controller system 1362 can be coupled to various motors and encoders to operate the cutter in accordance with a routine that is not available to the controller 1332 that supplies the cutting machine. For example, the various motors of the cutting machine 1000 can be operated to cause (iv) wire cutting for the sidewall shape of one of the elements as explained above. This movement is not a standard motor controller that can be used in wire cutting machines because wire cutting machines typically perform straight cuts. Although the motor control systems of Figures 13 and 14 are shown as being distributed, in other embodiments the management station 1350 can interface directly with the cutting machine chest-motor controller to programmatically control the cutting machine to be quietly implemented in other implementations. In an example, the cutting machine can provide a user interface that allows control of 141220.doc • 45· 201007993 cutting machine 1000 to cut the desired sidewall shape. Although an example of a special (four) cutting machine is used in the above specific embodiments, it should be understood that other suitable cutting machines can be modified or designed to allow the wafer.

及切割線相對於每一者而銘叙w法A U 有而移動以建立期望側壁形狀。雖然 已說明各種零件及特徵’但是應該瞭解此類零件及特徵係 範例性的並且能使用能如w (_ 月b如乂上s兒明來切割侧壁形狀的任— 切割機器。 在一線敎操作期間,切割機器1_之組件可暴露於冷 卻劑流,例如去離子水。此外,將自該晶圓移除顆粒物 質。能選擇各種組件以加以密封來針對水及顆粒 保護。 雖然圖10至14提供一錄h堂,丨| gg Λ ,丄 权供線切割機器之一特定範例具體實施 例,但是應該瞭解藉由範例而非限制來提供此等具體實施 例。例如在其他具體實施例中,多個線能用以同時切割側 壁之列。 上當使用金剛石塗佈線時,通常*存在自由磨#劑,因此 亥的粒之作用區域並非暴露於磨蝕動作。或者,具有自由 磨钱劑漿料之簡單線亦可用以產生形狀。在此__情況下, 能‘取預防措施以保護該晶粒之作用區域免於自由磨蚀劑 的影響。例如蓋子能用以保護該晶粒之作用區域,同 時提供槽,透過該等槽該線能移動以切割該曰曰曰11。以下結 合圖21及22論述蓋子的具體實施例。在其他具體實施例 中,旎施加保護性材料層以保護該晶粒。 產生成形側壁之另一方法係使用磨削程序。圖15係採用 141220.doc 201007993 一成形磨姓輪1 702磨削一晶粒之一項具體實施例的概略代 表。依據圖17之具體實施例,在一工作表面上安裝一晶圓 1700,其可針對成形而加以製備,如以上論述。磨钱輪 1702係以高速度旋轉並且與晶圓1700接觸。該磨蝕輪之組 成物能取決於所切割的基板、磨損及其他因素。磨餘輪能 係以金屬複合、玻璃質、樹脂為基礎的輪或另一類型的 • 輪。作為一個範例,具有金剛石的金屬(Ni-P合金)刀片戋 _ 具有選定粒子大小的另一磨蝕粒子矩陣能用以切割藍寶 石。一具體實施例中的粒子矩陣具有20微米之平均大小, 儘管能使用其他粒子大小》成形輪17〇2具有成形區17〇6, 其經成形用以自一期望圖案中的晶圓17〇〇移除材料。依據 一項具體實施例,成形區1706經成形用以切割該基板至期 望基板形狀。 隨著藉由成形輪1702自晶圓17〇0移除材料’降低 蘭至-期望深度以建立通道17⑷在其他具體實施: # 中,一系列輪1702能用於具有連續較接近於期望LED形狀 之倒轉的成形區1706之每一輪。藉由進行多個傳遞,能使 一側壁較接近於期望形狀。 來回移動該晶圓及磨削輪之任一者或兩者,直至達到期 望切割深度。—旦在一個方向上切割所有街道(通道),則 能旋轉該晶圓90度並且在另一個方向上進行切割,從而產 生成形基板之矩形陣列。因為磨削中所需要的高力,可能 難以在徹底㈣該晶圓的情況下保持該等元件對準。因 此’能留下-網構狀材料! 7〇8(web 〇f滅㈣)以使該陣列 141220.doc •47- 201007993 中的各種元件保持附接於彼此。藉由範例而非限制,該網 構狀(web)能係近似175至200微米厚。能在後續處理中移 除該網構狀部分。在其他具體實施例中,該網構狀能保 持。在此一情況下’該基板之形狀能使用至網構狀部分的 入口加以選擇為該LED之出射面(例如,藉由171〇指示)。 因為能設計該等侧壁以使得在區17 1 〇事實上係該出射面的 情況下光不會TIR(或TIR加以減小),光將不會在該網構狀 之表面1712上TIR。 雖然成形輪1702係顯示為兩側上具有成形區17〇6,但是 _ 成形輪1702可以僅具有一成形區17〇6。在此一情況下,可 能必需多個傳遞以成形通道1704之兩側上的側壁。在其他 具體實施例中,多個平行輪可用以同時切割多個通道。 依據另具體只施例,未成形磨削輪(例如,無成形區 1706的磨削輪)能用以切割基板材料中的期望數目之直小 面。圖16A至C說明使用一未成形磨削輪以切割一基板令 的小面之具體實施例。在圖16A之具體實施例中,在一工 作表面上安裝一晶圓18〇〇。使一磨蝕輪18〇2旋轉並且與晶❿ 圓1800接觸。隨著藉由輪18〇2自晶圓18〇〇移除材料,移動 輪1802至一期望深度以建立切割18〇4。能針對任一數目的 額外角重複此程序以建立小面。在圖16B中,輪讀係相 對於其在圖16A中的位置而成角並且再次移動期望數量以· 同樣地’在圖16C中’輪贈係相對於其 在圖中的位置而成角並且移動期望數量以建立切割 808此外’如圖16c中所示,能進行該等切割以視需要 141220.doc •48. 201007993 地留下一較小網構狀材料。 可進行多個傳遞或使用多個輪以建立側壁之列。輪18〇2 因此能成角,或者另一輪能用以切割通道1814之另一側。 一旦在一個方向上運行的通道結束,則能在垂直方向(或 另一方向)上切割通道。亦能以其他順序切割側壁。 在一項具體實施例中,能以下列角i、7及20度自垂直方 向進行針對一側壁的二個切割(例如,切割1 、1 806及 1808)。該等側壁能因此透過研磨而彎曲以建立具有期望 輪廓或切割之數目的曲線或者其角能經選擇用以建立小面 型側壁。雖然在此範例中使用三個小面,但是任一數目的 小面均能加以選擇並且切割。此外,能使用諸如線鋸、超 音波銑削或另一機構之任一期望切割機構來進行該等切 割。 在圖16A至C之範例中,使用具有直側的一磨削輪。如 圖16D至F之具體實施例中所示,能使用具有成角部分的磨 削輪而非使整個輪成角來切割相同角。例如在圖16D之具 體實施例中’磨削輪1812能包括兩個區段丨8丨4及丨8丨區 段1814能具有任一期望輪廓,例如典型直磨削輪之輪廓。 形成區段1 816的外部區亦能係直的,但是能以期望角而成 角以使知磨削輪1 812以期望角在基板材料中進行切割。能 針對母一角採用不同輪重複磨削。例如,除區段1816以 外,該磨削輪能具有如圖1 6E中所示的以不同於區段18 16 之角的區段1818或圖16F中以不同於區段1816或1818之角 的區段1820。 141220.doc -49· 201007993 圖16G至L係具有用以切割如圖丨6D至f中所示之類似角 的區段之輪1822的其他具體實施例之部分的概略代表。在 圖16G至I之具體實施例中,輪i812包括對應於圖16D至F 之區段1816、1818及1820的區段1824、1826及1828。此 外’圖16G至I之具體實施例包括用以一次性成形一通道之 兩側的輪之另一側上的成角區段。圖〗6J至L之具體實施例 包括對應於圖16D至F之區段1816、1818及1820的區段 1830、1832及1834。因此,具有成角區段的磨削輪之各種 形狀能用以進行直切割。 在上述具體實施例中’該磨削輪切割該基板材料中的單 一角。然而,在其他具體實施例中,該磨削輪能切割任一 數目的期望角。圖16M至N係一輪1836之一項具體實施例 的概略代表,該輪在一或兩側上具有諸如區段1838、184〇 及1 842之多個成角區段以採用一個輪建立多小面型側壁。 雖然僅顯示三個小面,但是能建立更多小面。此外,使用 磨削輪來成形能使用具有如所需要或期望之各種組態的多 個磨削輪而出現。圖16D至N及圖15之具體實施例的一個 優點係驅動該磨削輪的轉轴或其他組件能保持在一固定方 位上。 蝕刻說明以高度受控制方式來移除基板材料以便產生適 當形狀之化學程序。通常存在兩種類型的蝕刻方法:濕式 姓刻及乾式蚀刻。濕式蝕刻涉及使用液相蝕刻劑以移除該 基板材料。在乾式蝕刻、電槳蝕刻及反應性離子蝕刻中, 離子加以建立並賦予至該基板上。此處,基於化學反應或 141220.doc •50· 201007993 粒子動量自該基板移除材料。以基板材料之一晶圓(其 可進-步包括包含量子井區之材料)開始,能在該晶圓之 一側上沈積一特定光阻圖案。接著蝕刻該晶圓。在採用光 阻加以覆蓋之晶圓上的位置將不加以蝕刻,而沒有光阻之 地方處將使材料加以移除。存在許多方式來調諧該程序以 在光阻之邊緣處獲得期望外形。例如,能施加較厚光阻層 並且接著在蝕刻程序期間犧牲性移除該光阻層,或能結合 光阻使用其他犧牲層。此等層係隨時間以諸如產生led基 板之期望外形的方式藉由該蝕刻劑來移除。此能用以準確 地钮刻該晶圓以便產生成形基板。另—方式係使用多個抗 蝕劑及多個蝕刻步驟。每一光阻及蝕刻步驟能用以移除一 較小材料層。能使用多個小步驟以得到期望3D形狀。 圖17係蝕刻之一範例的概略代表。在圖17中,晶圓19〇〇 經蝕刻用以形成成形基板193〇&amp;至193〇&lt;^光阻191〇係施加 於期望圖案中的晶圓1900之一表面以使得晶圓19〇〇之該表 面的部分係採用光阻1910覆蓋。隨光阻1910之施加後,施 加一蝕刻劑於施加光阻的晶圓1900之相同表面。該蝕刻劑 移除基板材料1920,從而形成成形基板193〇&amp;至193(^。能 在連續層及圖案中施加光阻及蝕刻劑以達到一期望側壁形 狀。 蝕刻參數可基於該基板材料。蝕刻速率取決於該蝕刻劑 及該基板而變化。對於LED應用中所使用的諸如藍寶石及 碳化矽之基板材料,使用反應離子蝕刻之蝕刻速率的範圍 能係自每分鐘250nm至2.5uni。碳化矽係在以上蝕刻速率之 141220.doc -51 · 201007993 ’、 %上。一蝕刻程序之一優點係其能 達到不需要後續研磨之令人滿意的表面光製。 形成該等側壁的另-方法係使用超音波成形。依據超音 波成形之一項具體實施例,超音波成形能利用具有一或多 個成形棒的適當硬質材料(例如,㈣另—材料)之成形工 --亥等成形棒能係待自該晶粒加以移除的材料之形狀。 施加磨料料於該❹並且超音波絲動料棒以使聚料 自該基板移除材料。 圖18係超音波成形之—項具體實施例的概略代表。一晶 圓2000此加以安裝於一工作表面。一磨蝕漿料能連續 地施加於晶圓2000之表面,晶圓2〇〇〇能係完全或部分地浸 、支於磨钮漿料2001中或者晶圓2〇〇〇能在磨姓漿料1中加 以塗布。降低工具頭2〇〇2,直至其係幾乎與該晶圓接觸。 工具頭2002在垂直於該晶圓之平面的方向上超音波地振動 (藉由箭頭2004指示),從而使漿料2〇〇1中的磨蝕粒子切割 通道2006。雖然移動方向在圖18中係顯示為垂直但是晶 圓2000能加以安裝於其他方位上。因此,工具2〇〇2之移動 可以係在另一方向上,例如水平或以某角。能基於該基板 材料及其他因素來選擇振動之頻率及振幅。熟習此項技術 者將瞭解,用於切割藍寶石晶粒的超音波工具通常以 17kHz以上並且一般大約2〇kHz之頻率而操作。峰值對峰 值振幅通常係大約20微米《然而,能使用任一適當頻率及 振幅而且藉由範例提供上述參數。 隨著藉由磨蝕漿料2001不斷地磨損掉通道2006,降低工 I41220.doc -52- 201007993 具2002至該晶圓中至期望深度。工具·2能徹底㈣該基 板材料或留下一網構狀材料2010,如以上說明。一般地, 磨蝕漿料2001能包括一或多個適當材料之任一適當大小粒 子藉由範例而非限制,該漿料能由含有直徑係約2〇至6〇 微米之粒子的去離子水製成。 依據一項具體實施例,一旦建立單一方向上的所有街 道,就相對於該工具來旋轉該晶圓並且建立另一方向(通 常為正交)上的街道。在其他具體實施例中,能每次切割 單一通道2006。依據另一具體實施例,工具2〇〇2能具有允 許所有侧壁一次性加以切割的一「格狀(waffle)」形狀。 依據另一具體實施例,能使用雷射剝蝕。雷射剝蝕係使 用南功率雷射以藉由移除或排出量子井區或基板材料來產 生LED的程序。每一雷射脈衝將僅移除一微量材料。平移 該雷射以採用每一後續脈衝來移除材料。藉由在χ_γ&amp; z 方向上平移,能移除一3D形狀。圖29係雷射剝蝕之概略代 表。在圖29之範例中,視需要地安裝一晶圓21〇〇至一支撐 材料2102。施加雷射2110至晶圓21〇〇以剝蝕基板材料 2120 ’從而形成成形基板2130a、2130b等。使用已知技 術’雷射剝钱能在碳化石夕及藍寶石中移除每分鐘大約5〇〇 um至1 mm的厚度。 圖20係用於雷射剝蝕的一系統之另一具體實施例的概略 代表。在圖20之具體實施例中,安裝晶圓22〇〇至支撐結構 2202。施加雷射2210至晶圓2200以剝姓基板材料2220,從 而形成成形基板2230a至223 Ob。在圖22之具體實施例中, 141220.doc -53- 201007993 一水柱2240用作用於雷射2210的波導。使用一水柱波導之 一個優點係,該水柱能用以冷卻基板材料222〇並且運走移 除的材料。然而,其他具體實施例能利用其他波導,例如 光纖波導。 依據另一具體實施例,水噴射可用以剝姓一晶圓以形成 一期望形狀之基板。圖21係水喷射剝蝕之一項具體實施例 的概略代表。如圖21中所繪示’ 一晶圓23 〇〇係安裝於支撐 結構23 03上並且放置於一工作表面上。水喷射23 〇4提供具 有足夠速度以剝姓各級中的基板2308的水2306之連續流或 參 短脈衝。使用水脈衝以剝蝕一晶圓所藉由的程序可以係關 於雷射剝蝕而類似於以上所說明的程序。在水噴射剝蝕之 一項具體實施例中,水喷射能用以以某一角度完全地切割 透過該晶圓,接著略微偏移該角並且使用水喷射以一略微 較高角切割透過該晶圓,從而最終產生成形基板233〇a、 2330b等。在另一具體實施例中,該水噴射可採用磨蝕材 料(例如工業金剛石粒子)加以裝填以增加剝蝕材料所用的 速率。能選擇該等粒子的大小以建立具有規定光滑度的側 ® 壁形狀。例如,粒子能係近似2〇至6〇微米或另一選定大 I 蓋子2340此用以保§蔓§亥晶圓之區域免於水喷射2306 - 及任一顆粒物質的影響。蓋子2340能具有開口,其經隔開 用以允許水撞擊於晶圓23〇〇上,同時保護所形成的光學元 件之電性區域。除提供保護以外’蓋子234〇還能用以抑制 晶圓2300於該工具中。 依據另—具體實施你J,一粒子嘴射能用α剝餘基板材 141220.doc • 54- 201007993 料。圖22係粒子喷射剝蝕之概略代表。在圖22之具體實施 例中,一晶圓2400能加以安裝至一支撐結構。一來源2404 能提供撞擊於晶圓2400上的粒子2406之流以自基板2408移 除材料。粒子2406之流能用以以某一角完全切割透過該晶 圓。能進行多個傳遞以以較高角切割該等晶圓,從而最終 產生期望形狀之基板。能選擇該等粒子的大小以建立具有 規定光滑度的側壁形狀。例如,粒子能係近似20至60微米 或另一選定大小。 取決於粒子大小、粒子噴射之功率及其他因素,粒子喷 射2406可具有一特性角,其係太大以致不能形成一側壁之 所有小面。然而,因為藉由一粒子喷射提供的快速材料移 除,故能有利的係使用粒子噴射以進行塊材移除或開始成 形程序並且使用諸如蝕刻、超音波加工或磨削之其他方法 以完成該等側壁。 一蓋子2440能用以保護該晶圓之區域免於粒子2406之流 的影響。蓋子2440能具有開口,其經隔開用以允許粒子撞 擊於晶圓2400上,同時保護所形成的光學元件之電性區 域。除提供保護以外,蓋子2440還能用以抑制晶圓2400於 該工具中。 雖然已個別說明以上剝蝕一材料晶圓以形成成形基板之 方法,但是仍可組合以上方法。例如,粒子流剝姓或水喷 射剝蝕能在第一傳遞中用於塊材移除並且接著超音波切 割、銑削、磨削、蝕刻或另一方法能用於更準確的成形。 能以任一順序使用各種方法以成形該等光學元件。 141220.doc -55- 201007993 同樣地,能適當地取決於基板材料來使用用於自一晶圓 移除基板材料以產生led之方法及技術的各種其他組合。 此外,諸如超音波加工之其他方法能用以形成成形基板。 此外,能使用諸如超音波銑削之技術。 雖然此揭示内容說明特定具體實施例,但是應明白該等 具體實施例係說明性的而且本發明之範疇並非限於此等具 體實施例。對以上說明的具體實施例之許多變更、修改、 添加及改良係可行的。例如,藉由範例提供各種範圍及尺And the cutting line is moved relative to each of the w methods A U to create the desired sidewall shape. Although various parts and features have been described, it should be understood that such parts and features are exemplary and can be used with any cutting machine capable of cutting the shape of the side wall, such as in the case of a b. During operation, the components of the cutting machine 1_ may be exposed to a coolant stream, such as deionized water. In addition, particulate matter will be removed from the wafer. Various components can be selected to seal against water and particulate protection. </ RTI> </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> In the middle, a plurality of wires can be used to simultaneously cut the side walls. When a diamond coated wire is used, there is usually a free-grinding agent, so that the active region of the particles is not exposed to the abrasive action. Or, there is a free grinding agent. A simple line of slurry can also be used to create a shape. In this case, precautions can be taken to protect the area of action of the die from free abrasives. For example, the cover can be used. To protect the active area of the die while providing a groove through which the wire can be moved to cut the crucible 11. A specific embodiment of the cover is discussed below in connection with Figures 21 and 22. In other embodiments, A layer of protective material is applied to protect the die. Another method of creating a shaped sidewall is to use a grinding procedure. Figure 15 is a specific embodiment of grinding a die with a shape grinding wheel 1 702 using 141220.doc 201007993 A schematic representation of a particular embodiment of Figure 17, a wafer 1700 is mounted on a work surface that can be prepared for forming, as discussed above. The money wheel 1702 is rotated at high speed and is in contact with the wafer 1700. The composition of the abrasive wheel can depend on the substrate being cut, wear and other factors. The grinding wheel can be a metal composite, vitreous, resin based wheel or another type of wheel. As an example, Diamond metal (Ni-P alloy) blade 戋_ Another matrix of abrasive particles with a selected particle size can be used to cut sapphire. The particle matrix in a particular embodiment has a 20 micron level The average size, although other particle size can be used, the forming wheel 17〇2 has a forming zone 17〇6 that is shaped to remove material from the wafer 17〇〇 in a desired pattern. According to a particular embodiment, forming Zone 1706 is shaped to cut the substrate to a desired substrate shape. As material is removed from wafer 17〇0 by forming wheel 1702, the blue to-desired depth is lowered to establish channel 17(4) in other implementations: #中,一Series wheel 1702 can be used for each of the shaped zones 1706 having an inversely closer to the desired LED shape. By performing multiple transfers, a side wall can be brought closer to the desired shape. Moving the wafer and grinding wheel back and forth Either or both until the desired depth of cut is reached. Once all streets (channels) are cut in one direction, the wafer can be rotated 90 degrees and cut in the other direction, resulting in a rectangular shape of the formed substrate Array. Because of the high forces required in grinding, it may be difficult to maintain alignment of such components in the event of a thorough (d) wafer. Therefore, it can leave a mesh-like material! 7〇8 (web 〇f (4)) to keep the various components in the array 141220.doc •47- 201007993 attached to each other. By way of example and not limitation, the web can be approximately 175 to 200 microns thick. The mesh configuration portion can be removed in subsequent processing. In other embodiments, the mesh configuration can be maintained. In this case, the shape of the substrate can be selected as the exit face of the LED using the entrance to the mesh portion (e.g., indicated by 171 )). Because the sidewalls can be designed such that the light does not TIR (or TIR is reduced) in the case where the region 17 1 〇 is in fact the exit surface, the light will not TIR on the surface 1712 of the mesh configuration. Although the forming wheel 1702 is shown as having a forming zone 17〇6 on both sides, the _forming wheel 1702 may have only one forming zone 17〇6. In this case, multiple transfers may be necessary to form the sidewalls on both sides of the channel 1704. In other embodiments, multiple parallel wheels can be used to simultaneously cut multiple channels. According to another specific embodiment, an unformed grinding wheel (e.g., a grinding wheel without forming zone 1706) can be used to cut a desired number of straight faces in the substrate material. Figures 16A through C illustrate a specific embodiment of the use of an unformed grinding wheel to cut a facet of a substrate. In the embodiment of Figure 16A, a wafer 18 is mounted on a working surface. An abrasive wheel 18〇2 is rotated and brought into contact with the wafer circle 1800. As the material is removed from wafer 18 by wheel 18〇2, wheel 1802 is moved to a desired depth to establish a cut 18〇4. This procedure can be repeated for any number of extra corners to create a facet. In FIG. 16B, the wheel reading is angled relative to its position in FIG. 16A and moved again by the desired number to likewise 'in FIG. 16C' the rounded corner is angled relative to its position in the figure and The desired amount is moved to create the cut 808. Further, as shown in Figure 16c, the cuts can be made to leave a smaller web of material as needed 141220.doc • 48. 201007993. Multiple passes can be made or multiple wheels can be used to create a list of side walls. The wheel 18〇2 can thus be angled or the other wheel can be used to cut the other side of the channel 1814. Once the channel running in one direction ends, the channel can be cut in the vertical direction (or the other direction). The side walls can also be cut in other orders. In one embodiment, two cuts (e.g., cuts 1, 1, 806, and 1808) for one sidewall can be made from the vertical direction at the following angles i, 7, and 20 degrees. The sidewalls can thus be curved by grinding to create a curve having the desired profile or number of cuts or the corners can be selected to create a small profile sidewall. Although three facets are used in this example, any number of facets can be selected and cut. In addition, such cutting can be performed using any desired cutting mechanism such as wire saw, ultrasonic milling or another mechanism. In the example of Figures 16A-C, a grinding wheel having a straight side is used. As shown in the specific embodiment of Figures 16D-F, the same angle can be cut using a grinding wheel having an angled portion instead of angling the entire wheel. For example, in the particular embodiment of Figure 16D, the grinding wheel 1812 can include two sections 丨8丨4 and 丨8丨 sections 1814 that can have any desired contour, such as the contour of a typical straight grinding wheel. The outer region forming section 1 816 can also be straightened, but can be angled at a desired angle to cause known grinding wheel 1 812 to cut in the substrate material at a desired angle. It can be used for different rounds of grinding for the parent corner. For example, in addition to section 1816, the grinding wheel can have a section 1818 that is different from section 16 16 as shown in Figure 16E or an angle other than section 1816 or 1818 in Figure 16F. Section 1820. 141220.doc -49· 201007993 Figures 16G through L are schematic representations of portions of other specific embodiments having wheels 1822 for cutting segments of similar angles as shown in Figures 6D-f. In the particular embodiment of Figures 16G through I, wheel i812 includes segments 1824, 1826, and 1828 corresponding to segments 1816, 1818, and 1820 of Figures 16D through F. Further, the embodiment of Figures 16G through I includes angled sections on the other side of the wheel for forming one side of a channel at a time. Specific embodiments of Figures 6J through L include sections 1830, 1832, and 1834 corresponding to sections 1816, 1818, and 1820 of Figures 16D through F. Therefore, various shapes of the grinding wheel having the angled section can be used for straight cutting. In the above specific embodiment, the grinding wheel cuts a single corner of the substrate material. However, in other embodiments, the grinding wheel can cut any number of desired angles. 16M through N are schematic representations of a particular embodiment of a wheel 1836 having a plurality of angled sections, such as sections 1838, 184A, and 1 842, on one or both sides to establish a small size with one wheel. Faceted side wall. Although only three facets are displayed, more facets can be created. In addition, the use of a grinding wheel for forming can occur using multiple grinding wheels having various configurations as needed or desired. One advantage of the embodiment of Figures 16D-N and Figure 15 is that the shaft or other component that drives the grinding wheel can be held in a fixed position. Etching illustrates a chemical process that removes substrate material in a highly controlled manner to produce the proper shape. There are generally two types of etching methods: wet type engraving and dry etching. Wet etching involves the use of a liquid phase etchant to remove the substrate material. In dry etching, paddle etching, and reactive ion etching, ions are built up and applied to the substrate. Here, the material is removed from the substrate based on chemical reactions or 141220.doc • 50· 201007993 particle momentum. Starting with a wafer of substrate material that can further include a material comprising a quantum well region, a specific photoresist pattern can be deposited on one side of the wafer. The wafer is then etched. The location on the wafer covered by the photoresist will not be etched, and the material will be removed where there is no photoresist. There are many ways to tune the program to achieve the desired shape at the edge of the photoresist. For example, a thicker photoresist layer can be applied and then the photoresist layer can be sacrificially removed during the etching process, or other sacrificial layers can be used in conjunction with the photoresist. These layers are removed by time with the etchant in a manner such as to produce the desired shape of the led substrate. This can be used to accurately engrave the wafer to produce a shaped substrate. Another way is to use multiple resists and multiple etching steps. Each photoresist and etch step can be used to remove a smaller layer of material. Multiple small steps can be used to get the desired 3D shape. Figure 17 is a schematic representation of one example of etching. In FIG. 17, the wafer 19 is etched to form a shaped substrate 193 amp amp 〇 ^ ^ 光 光 施加 施加 施加 施加 施加 applied to one surface of the wafer 1900 in the desired pattern to make the wafer 19 〇 The portion of the surface of the crucible is covered with a photoresist 1910. After application of the photoresist 1910, an etchant is applied to the same surface of the photoresist 1900 to which the photoresist is applied. The etchant removes the substrate material 1920 to form the shaped substrate 193 amp amps to 193. The photoresist and etchant can be applied in successive layers and patterns to achieve a desired sidewall shape. The etch parameters can be based on the substrate material. The etch rate varies depending on the etchant and the substrate. For substrate materials such as sapphire and tantalum carbide used in LED applications, the etch rate using reactive ion etching can range from 250 nm to 2.5 uni per minute. It is based on the above etch rate of 141220.doc -51 · 201007993 ', %. One of the advantages of an etching procedure is that it can achieve a satisfactory surface light that does not require subsequent grinding. Another method of forming such sidewalls is used Ultrasonic shaping. According to one embodiment of ultrasonic shaping, ultrasonic forming can utilize a suitable hard material (e.g., (4) another material) having one or more shaped rods. The shape of the material to be removed from the die. An abrasive is applied to the crucible and the ultrasonic filament is activated to remove the material from the substrate. Ultrasonic forming is a schematic representation of a specific embodiment. A wafer 2000 is mounted on a working surface. An abrasive slurry can be continuously applied to the surface of the wafer 2000, and the wafer 2 can be completely or Partially immersed, supported in the grinder slurry 2001 or wafer 2 can be coated in the grind slurry 1. Lower the tool head 2〇〇2 until it is almost in contact with the wafer. Ultrasonic vibration (indicated by arrow 2004) in a direction perpendicular to the plane of the wafer, thereby causing the abrasive particles in the slurry 2〇〇1 to cut the channel 2006. Although the direction of movement is shown in Figure 18 as Vertical but the wafer 2000 can be mounted in other orientations. Therefore, the movement of the tool 2〇〇2 can be in another direction, such as horizontal or at an angle. The frequency of the vibration can be selected based on the substrate material and other factors. Amplitude. Those skilled in the art will appreciate that ultrasonic tools for cutting sapphire grains typically operate at frequencies above 17 kHz and typically at about 2 kHz. Peak to peak amplitudes are typically about 20 microns. The above parameters are provided by any of the appropriate frequencies and amplitudes and by way of example. As the channel 2006 is continuously worn away by the abrasive slurry 2001, the I41220.doc-52-201007993 is lowered to 2002 to the desired depth in the wafer. Tool 2 can thoroughly (d) the substrate material or leave a web of material 2010, as explained above. In general, the abrasive slurry 2001 can include any suitable size of one or more suitable materials by way of example and not limitation. The slurry can be made from deionized water containing particles having a diameter of from about 2 to about 6 microns. According to one embodiment, once all streets in a single direction are established, the crystal is rotated relative to the tool. Circle and build a street in the other direction (usually orthogonal). In other embodiments, a single channel 2006 can be cut at a time. According to another embodiment, the tool 2〇〇2 can have a "waffle" shape that allows all of the side walls to be cut at one time. According to another embodiment, laser ablation can be used. Laser ablation uses a South Power laser to generate LEDs by removing or discharging quantum well regions or substrate materials. Each laser pulse will remove only a trace amount of material. The laser is translated to remove material with each subsequent pulse. A 3D shape can be removed by translating in the χ_γ &amp; z direction. Figure 29 is a schematic representation of laser ablation. In the example of Fig. 29, a wafer 21 to a support material 2102 is optionally mounted. The laser 2110 is applied to the wafer 21A to ablate the substrate material 2120' to form the formed substrate 2130a, 2130b, and the like. The use of known techniques 'laser stripping" removes approximately 5 um to 1 mm per minute in carbon carbide and sapphire. Figure 20 is a schematic representation of another embodiment of a system for laser ablation. In the particular embodiment of Figure 20, wafer 22 is mounted to support structure 2202. A laser 2210 is applied to the wafer 2200 to strip the substrate material 2220, thereby forming the shaped substrates 2230a through 223 Ob. In the particular embodiment of FIG. 22, 141220.doc -53-201007993 a water column 2240 is used as a waveguide for the laser 2210. One advantage of using a water column waveguide is that the water column can be used to cool the substrate material 222 and transport the removed material. However, other embodiments can utilize other waveguides, such as fiber waveguides. According to another embodiment, water jetting can be used to strip a wafer to form a substrate of a desired shape. Figure 21 is a schematic representation of one embodiment of water jet ablation. As shown in Fig. 21, a wafer 23 is mounted on the support structure 23 03 and placed on a work surface. The water jet 23 〇 4 provides a continuous flow or short pulse of water 2306 having sufficient velocity to strip the substrate 2308 in each of the stages. The procedure by which water pulses are used to ablate a wafer can be related to laser ablation similar to the procedure described above. In a specific embodiment of water jet ablation, the water jet can be used to completely cut through the wafer at an angle, then slightly offset the corner and use water jet to cut through the wafer at a slightly higher angle. Thereby, the formed substrates 233a, 2330b and the like are finally produced. In another embodiment, the water jet can be filled with an abrasive material (e.g., industrial diamond particles) to increase the rate at which the material is ablated. The size of the particles can be chosen to create a side ® wall shape with a defined smoothness. For example, the particles can be approximately 2 〇 to 6 〇 microns or another selected large I cover 2340 which is used to protect the area of the wafer from water spray 2306 - and any particulate matter. The cover 2340 can have openings that are spaced to allow water to impinge on the wafer 23 while protecting the electrical regions of the formed optical components. In addition to providing protection, the cover 234 can also be used to inhibit the wafer 2300 in the tool. According to another - specific implementation of your J, a particle nozzle can be used to remove the base plate 141220.doc • 54- 201007993. Figure 22 is a schematic representation of particle jet ablation. In the embodiment of Figure 22, a wafer 2400 can be mounted to a support structure. A source 2404 can provide a flow of particles 2406 impinging on the wafer 2400 to remove material from the substrate 2408. The flow of particles 2406 can be used to completely cut through the circle at a certain angle. Multiple transfers can be made to cut the wafers at a higher angle, ultimately resulting in a substrate of the desired shape. The size of the particles can be chosen to create a sidewall shape with a defined smoothness. For example, the particles can be approximately 20 to 60 microns or another selected size. Depending on the particle size, the power of the particle jet, and other factors, the particle spray 2406 can have a characteristic angle that is too large to form all of the facets of a sidewall. However, because of the rapid material removal provided by a particle jet, it is advantageous to use particle jetting for bulk removal or to begin the forming process and use other methods such as etching, ultrasonic machining or grinding to accomplish this. Wait for the side walls. A cover 2440 can be used to protect the area of the wafer from the flow of particles 2406. The cover 2440 can have openings that are spaced to allow particles to strike the wafer 2400 while protecting the electrical regions of the formed optical components. In addition to providing protection, the cover 2440 can also be used to inhibit the wafer 2400 from being in the tool. Although the above method of abating a material wafer to form a formed substrate has been separately described, the above method can be combined. For example, particle flow stripping or water jet ablation can be used for bulk removal in the first transfer and then ultrasonic cutting, milling, grinding, etching or another method can be used for more accurate shaping. Various methods can be used in any order to shape the optical elements. 141220.doc -55- 201007993 Similarly, various other combinations of methods and techniques for removing substrate material from a wafer to produce LEDs can be used as appropriate depending on the substrate material. In addition, other methods such as ultrasonic machining can be used to form the shaped substrate. In addition, techniques such as ultrasonic milling can be used. While the disclosure has been described with respect to the specific embodiments, it is understood that the specific embodiments are illustrative and the scope of the invention is not limited to the specific embodiments. Many variations, modifications, additions and improvements to the specific embodiments described above are possible. For example, by providing examples of various ranges and sizes

寸而且LED可在其他範圍内使用其他尺寸來操作。藉由範 例,雖然已關於藍寶石及碳化矽說明成形基板,但是可使 用允許光之傳遞的其他基板。例如,基板可由玻璃或金剛 石製成。在一項具體實施例中,可採用可模製玻璃來模製 基板,從而提供成本效率的且容易成形之基板。預期此等 變更、修改、添加及改良落在如下列申請專利範圍&quot;斤詳 細說明的本發明之範疇内。 【圖式簡單說明】Inch and LED can be operated in other sizes using other sizes. By way of example, although the shaped substrate has been described with respect to sapphire and tantalum carbide, other substrates that allow light transmission can be used. For example, the substrate can be made of glass or diamond. In one embodiment, the moldable glass can be used to mold the substrate to provide a cost effective and easily formed substrate. It is intended that such changes, modifications, additions and improvements fall within the scope of the present invention as described in the following claims. [Simple description of the map]

可藉由參考結合附圖進行的以上說明得到對該等罝體實 施例及其優點的更全面瞭解’在該等_中相同參考 指不相同特徵並且其中: 圖1A至1B係LED之具體實施例的概略代表; 圖2係自一點至在自該點之不同距離處 線之一集的概略代表; 的表面行進的光 一俯視圖之概略代 圖3提供一 LED之一具體實施例的 表; 141220.doc •56· 201007993 圖4A係用於決疋側壁形狀的一 led之一模型的斷面 略代表; 圖4B係一 LED之一側壁的一部分之一具體實施例的概略 代表; 圖4C係說明能使用電腦程式來定義用於一側壁的小面 概略代表; 圖4D係一 LED之一項具體實施例的概略代表,其中成形 側壁以引起TIR以使得光線係自該等側壁反射至出射表 面; 圖5係用於估計有效立體角的一項具體實施例之概略代 表; 圖όΑ至6E係說明用於估計有效立體角的另一具體實施 例之概略代表; 圖7係一 LED之一項具體實施例的概略代表; 圖8A至8B係一 LED陣列之具體實施例的概略代表; 圖9係使用一線鑛及其部分來切割一基板之概略代表. 圖10至14係一線鑛之具體實施例的概略代表; 圖15係磨削一晶圓之一具體實施例的概略代表; 圖16A至F係採用一磨削輪切割一基板之一具體實施例 的概略代表而且圖16G至N係磨削輪之額外具體實施例的 概略代表; 圖17係钱刻一晶圓之一具體實施例的概略代表; 圖18係使用超音波成形來成形一基板之一具體實施例的 概略代表; 141220.doc -57- 201007993 圖19係雷射剝蝕之一具體實施例的概略代&amp; 圖2〇係雷射剝蝕之另一具體實施例的概略代表 圖21係水喷射剝蝕之一具體實施例的概略代表’ 圖22係粒子喷射剝餘之一具體實施例的概略 及 【主要元件符號說明】 代表° 1〇 基板 15 20 25 50 55 55a 55b 55c 56 57 59 60 65 70 75 80 95 100 量子井區A more complete understanding of the embodiments of the present invention and the advantages thereof may be obtained by reference to the above description in conjunction with the accompanying drawings in which the same referenced the same features and wherein: FIG. 1A to FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2 is a schematic representation of a set of lines from one point to a different distance from the point; a schematic representation of a top view of the surface traveling light; FIG. 3 provides a table of one embodiment of an LED; .doc •56· 201007993 Figure 4A is a schematic representation of a section of a model of a led for the shape of the sidewall; Figure 4B is a schematic representation of one of the portions of one of the sidewalls of an LED; Figure 4C is an illustration A computer program can be used to define a schematic representation of a facet for a side wall; Figure 4D is a schematic representation of a particular embodiment of an LED in which sidewalls are shaped to cause TIR such that light is reflected from the sidewalls to the exit surface; Figure 5 is a schematic representation of one embodiment for estimating the effective solid angle; Figures 6E are schematic representations of another embodiment for estimating the effective solid angle; Figure 7 is a A schematic representation of a specific embodiment of an LED; Figures 8A through 8B are schematic representations of a specific embodiment of an LED array; Figure 9 is a schematic representation of the use of a line of ore and a portion thereof to cut a substrate. Figures 10 through 14 are a line A schematic representation of a specific embodiment of a mine; FIG. 15 is a schematic representation of one embodiment of grinding a wafer; FIGS. 16A-F are schematic representations of a specific embodiment of cutting a substrate using a grinding wheel and FIG. 16G A schematic representation of an additional embodiment of an N-type grinding wheel; Figure 17 is a schematic representation of one embodiment of a wafer engraved; Figure 18 is a schematic representation of one embodiment of forming a substrate using ultrasonic shaping 141220.doc -57- 201007993 Figure 19 is a schematic representation of one embodiment of laser ablation &amp; Figure 2 is a schematic representation of another embodiment of a laser ablation of Figure 17 which is one of the specific examples of water jet erosion BRIEF DESCRIPTION OF THE DRAWINGS FIG. 22 is a schematic view of one embodiment of particle jet sparing and [description of main component symbols] represents a substrate 1 20 25 50 55 55 55 55 55 55 56 56 59 60 65 70 75 80 95 100 Quantum well area

LED 發光區LED light emitting area

介面 出射面/出射表面 表面 表面 表面/出射表面 光線 點/光線 光線Interface exit surface / exit surface surface surface surface / exit surface light point / light light

側壁 側壁 光線 入射角 入射角 最大角 側壁 141220.doc -58- 201007993 102a至102ο 平面小面 105 側壁 110 光線 115 點 120 偵測器平面 * 130 球體 * 132 點來源 134 圓 w 136 表面 137 半角 150 介'面/入口面 152 有效來源起源 153 中心法線 154 有效輸出起源 155 出射面 φ 156 目標平面 159 球體 160 成形基板 * 161 球體 . 163 邊緣 400 部分 410 光線 412 焦點 415 拋物線 141220.doc -59- 201007993 417 部分 420 側壁 430 出射面 440 出射角 450 半角 500 試算表 510 曲線圖 540a 出射角行 540b 出射角行 550 半角行 560 抛物線焦點行 565 角對邊行 570 Θ行 575 半徑行 577 座標變換行 700 LED 710a 出射面 710b 出射面 800 LED陣列 810a至 810c LED 820 晶圓材料 830a 點 830b 點 900 晶圓 141220.doc -60- 201007993 902 安裝區塊 904 黏性層 906 磨姓切割線 910 通道 1000 切割機器 1010 切割線 1020 滑輪 1022 滑輪 • 1024 滑輪 1026 滑輪 1028 捲轴 1030 捲軸 1038 冷卻系統 1050 平台 1105 工件 φ mo Ζ轴編碼器 1120 相機系統 1122 相機 ' 1123 相機座架 1124 移動系統 1126 馬達/y軸步進馬達 1128 管子 1130 光源 1150 旋轉級 141220.doc -61 - 201007993 1154 轉盤 1160 傾覆/傾斜級 1162 工作平台 1164 伺服系統 1166 夾子 1172 相機 1210 伺服系統 1212 晶圓 1214 鉚釘 1220 凸緣 1230 臂 1250 埠 1252 埠 1310 z軸馬達 1320 X軸馬達 1322 X轴編碼器 1330 Θ轴馬達 1332 馬達控制器 1350 管理站 1352 軟體 1354 運動控制器系統 1360 馬達控制系統 1362 步進馬達控制器系統 1364 控制多工器 141220.doc -62- 201007993 1410 控制選擇邏輯 1420 微步預處理器邏輯 1430 多工器 1432 馬達控制器 1700 晶圓 ' 1702 磨姓輪/成形輪 * 1704 通道 1706 成形區 • 1708 網構狀材料 1710 區 1712 表面 1800 晶圓 1802 磨姓輪 1804 切割 1806 切割 φ 1808 切割 1812 磨削輪 1814 通道/區段 * 1816 區段 1818 區段 1820 區段 1822 輪 1824 區段 1826 區段 141220.doc -63- 201007993 1828 區段 1830 區段 1832 區段 1834 區段 1836 輪 1838 區段 1840 區段 1842 區段 1900 晶圓 1910 光阻 1920 基板材料 1930a至1930c 成形基板 2000 晶圓 2001 磨蝕漿料 2002 工具頭/工具 2004 箭頭 2006 通道 2010 網構狀材料 2100 晶圓 2102 支撐材料 2110 雷射 2120 基板材料 2130a 成形基板 2130b 成形基板 141220.doc ·64· 201007993Side wall side wall ray incident angle incident angle maximum angle side wall 141220.doc -58- 201007993 102a to 102o plane facet 105 side wall 110 light 115 point 120 detector plane * 130 sphere * 132 point source 134 circle w 136 surface 137 half angle 150 'Face / entry face 152 Effective source origin 153 Center normal 154 Effective output origin 155 Exit surface φ 156 Target plane 159 Sphere 160 Forming substrate * 161 Sphere 163 Edge 400 Part 410 Light 412 Focus 415 Parabola 141220.doc -59- 201007993 417 Part 420 Sidewall 430 Exit face 440 Exit angle 450 Half angle 500 Trial balance 510 Curve 540a Exit angle line 540b Exit angle line 550 Half angle line 560 Parabolic focus line 565 Angle to side line 570 Line 575 Radius line 577 Coordinate transformation line 700 LED 710a exit surface 710b exit surface 800 LED array 810a to 810c LED 820 wafer material 830a point 830b point 900 wafer 141220.doc -60- 201007993 902 mounting block 904 adhesive layer 906 grinding name cutting line 910 channel 1000 cutting machine 1010 Cutting line 1020 pulley 1022 sliding Wheel • 1024 Pulley 1026 Pulley 1028 Reel 1030 Reel 1038 Cooling System 1050 Platform 1105 Workpiece φ mo Ζ Axis Encoder 1120 Camera System 1122 Camera ' 1123 Camera Mount 1124 Mobile System 1126 Motor / y-axis Stepper Motor 1128 Tube 1130 Light Source 1150 Rotating Stage 141220.doc -61 - 201007993 1154 Turntable 1160 Overturn/Tilt Stage 1162 Work Platform 1164 Servo System 1166 Clip 1172 Camera 1210 Servo System 1212 Wafer 1214 Rivet 1220 Flange 1230 Arm 1250 埠1252 埠1310 z-Axis Motor 1320 X-Axis Motor 1322 X-axis encoder 1330 X-axis motor 1332 Motor controller 1350 Management station 1352 Software 1354 Motion controller system 1360 Motor control system 1362 Stepper motor controller system 1364 Control multiplexer 141220.doc -62- 201007993 1410 Control selection Logic 1420 Microstep Preprocessor Logic 1430 multiplexer 1432 Motor Controller 1700 Wafer ' 1702 Grinding Wheel / Forming Wheel * 1704 Channel 1706 Forming Zone • 1708 Mesh Material 1710 Zone 1712 Surface 1800 Wafer 1802 Grinding Wheel 1804 cutting 1806 Cutting φ 1808 Cutting 1812 Grinding wheel 1814 Channel/section* 1816 Section 1818 Section 1820 Section 1822 Wheel 1824 Section 1826 Section 141220.doc -63- 201007993 1828 Section 1830 Section 1832 Section 1834 Zone Section 1836 Wheel 1838 Section 1840 Section 1842 Section 1900 Wafer 1910 Photoresist 1920 Substrate Material 1930a to 1930c Forming Substrate 2000 Wafer 2001 Abrasive Slurry 2002 Tool Head/Tool 2004 Arrow 2006 Channel 2010 Mesh Material 2100 Wafer 2102 Support material 2110 Laser 2120 Substrate material 2130a Forming substrate 2130b Forming substrate 141220.doc ·64· 201007993

2200 晶圓 2202 支撐結構 2220 基板材料 2230a至2230b 成形基板 2240 水柱 2300 晶圓 2302 支撐結構 2304 水喷射 2306 水/水噴射 2308 基板 2330a 成形基板 2330b 成形基板 2340 蓋子 2400 晶圓 2404 來源 2406 粒子 2408 基板 2440 蓋子 141220.doc -65-2200 wafer 2202 support structure 2220 substrate material 2230a to 2230b forming substrate 2240 water column 2300 wafer 2302 support structure 2304 water jet 2306 water/water jet 2308 substrate 2330a forming substrate 2330b forming substrate 2340 cover 2400 wafer 2404 source 2406 particle 2408 substrate 2440 Cover 141220.doc -65-

Claims (1)

201007993 七、申請專利範圍: 1· 一種製造一光學元件之方法,其包含: 為一具有一成形基板部分的光學元件提供一期望基板 形狀,該部分包含: 至一非基板層的一介面,其經調適以接收來自該光 學元件之一發光區的光; 一出射面,其具有針對自該LED投射的光之一期望 半角使輻射守’)·互所需的一最小面積之至少7〇%,其中該 出射面係自該介面的一選擇距離; 一組側壁,每一側壁經定位及成形以使具有自該介 面至該侧壁之一直透射路徑的光線中之至少大多數以小 於或等於在該出射面上之一臨界角的在該出射面上之一 入射角來反射至該出射面; 基於該期望基板形狀來成形一基板材料,以使用下 列其中之一來形成一或多個光學元件之成形基板部分: 一線鋸、粒子噴射切割、一組直磨削輪、一組磨削輪, 其中每一磨削輪具有一成角區段以在一期望角度來切割 該基板、或具有一雷射以利用一水柱導引至該基板。 2.如請求項1之方法,其進一步包含: 將—晶圓安裝於一工具中,其中該晶圓包含該基板 料;以及 保護該晶圓之部分以防止在成形期間損壞該等部分。 如求項1之方法,其進一步包含將一晶圓安裝至—支 擇結構’其中該晶圓包含該基板材料。 141220.doc 201007993 4. 如請求項6之方法,其中成形該基板材料進一步包含移 除該支撐結構之一部分。 5. 如請求項1之方法,其中成形該基板材料進一步包含留 下一網構狀材料於用於LED的成形基板部分之間。 6. 如請求項1之方法,其中成形該基板包含以三個或三個 以上選擇角來切割該基板。 7. 如》月求項6之方法,其中以選擇角切割該基板以形成該 側壁包含以八個或八個以下選擇角來切割該基板。 8. 如請求項1之方法,其中該出射面具有用以輻射守恆所❹ 需的最小面積,並且該距離係一最小距離,以使得具有 自該介面至該出射面的一直透射路徑之所有光線將係以 小於在該出射面上的該臨界角之角入射於該出射面上。 9· 一種成形一LED之方法,其包含: 提供曰曰圓,該晶圓包含一基板材料以及用於該[ED 之一量子井區的一或多個層; 決定對應於一LED的一期望基板形狀,其包含: -出射面,其與至-非基板層的一介面相對並且處 _ 於自該介面的一距離,該介面經調適用以接收自該㈣ 之一發光區的光,該出射面具有針對從該成形基板投射 的光之一期望半角以使輻射守恆所需的一最小面積之至 少70% ;以及 一組側壁,其中各側壁係經定位及成形以使得具有 自該介面至該側壁之一直透射路徑的光線中之至少多數 以小於或等於在該出射面上之—臨界㈣在該出射面上 141220.doc -2 - 201007993 之一入射角來反射至該出射面;以及 將該晶圓安裝至一支撐結構; 切割該基板材料以基於該期望纟板形狀形成該LED 之一成形基板部分。 . 10.如請求項9之方法,装中士堂丨 立 兵1P切割該基板包含使用一線錄切 割該基板。 如叻长項9之方法,其中切割該基板包含以選擇角切割 該基板以使用—或多個直磨肖彳輪形成-側壁。 12·如請求項11之方法’其中以選擇角來切割該基板以形成 一側壁包含以三個或三個以上選擇角來切割該基板。 13·如請求項12之方法’其中以選擇角來切割該基板以形成 該側壁包含以八個或八個以下選擇角來切割該基板。 14·如請求項9之方法,其中該出射面具有用以輻射 需的最小面積。 15·如請求項9之方法,其中成形該基板進-步包含以選摆 角切割該基板’以使用三個或三個以上磨削輪形成一側 壁:其中該三個或三個以上磨削輪之每一者係採 擇X用期望角切割該基板的一成角區段而成形。、 141220.doc201007993 VII. Patent Application Range: 1. A method of manufacturing an optical component, comprising: providing a desired substrate shape for an optical component having a shaped substrate portion, the portion comprising: an interface to a non-substrate layer, Adapted to receive light from a light-emitting region of the optical element; an exit surface having at least 7% of a minimum area required for one of a desired half angle of light projected from the LED Wherein the exit surface is a selected distance from the interface; a set of sidewalls, each sidewall being positioned and shaped such that at least a majority of the light having a constant transmission path from the interface to the sidewall is less than or equal to Reflecting onto the exit surface at an incident angle of a critical angle of the exit surface on the exit surface; forming a substrate material based on the desired substrate shape to form one or more opticals using one of the following Forming substrate portion of the component: a wire saw, a particle jet cutting, a set of straight grinding wheels, a set of grinding wheels, wherein each of the grinding wheels has an angular section to Cutting the substrate to the desired angle, or to use a laser having a guiding of water to the substrate. 2. The method of claim 1, further comprising: mounting the wafer in a tool, wherein the wafer comprises the substrate; and protecting portions of the wafer to prevent damage to the portions during forming. The method of claim 1, further comprising mounting a wafer to the support structure wherein the wafer comprises the substrate material. 4. The method of claim 6, wherein forming the substrate material further comprises removing a portion of the support structure. 5. The method of claim 1 wherein forming the substrate material further comprises leaving a web of material between the shaped substrate portions for the LED. 6. The method of claim 1, wherein forming the substrate comprises cutting the substrate in three or more selected angles. 7. The method of clause 6, wherein cutting the substrate at a selective angle to form the sidewall comprises cutting the substrate at eight or eight selection angles. 8. The method of claim 1 wherein the exit surface has a minimum area required for radiation conservation and the distance is a minimum distance such that all rays having a constant transmission path from the interface to the exit surface will The incident surface is incident on an angle smaller than the critical angle on the exit surface. 9. A method of forming an LED, comprising: providing a dome, the wafer comprising a substrate material and one or more layers for the [ED quantum well region; determining an expectation corresponding to an LED a substrate shape comprising: - an exit surface opposite to an interface of the to-non-substrate layer and at a distance from the interface, the interface being adapted to receive light from one of the (four) light-emitting regions, The exit face has at least 70% of a minimum area required for a desired half angle of light projected from the shaped substrate to conserve radiation; and a set of side walls, wherein each side wall is positioned and shaped such that there is from the interface At least a majority of the light rays of the side wall that are always in the transmission path are reflected to the exit surface by an incident angle of less than or equal to - critical (4) on the exit surface on the exit surface 141220.doc -2 - 201007993; The wafer is mounted to a support structure; the substrate material is diced to form one of the LED shaped substrate portions based on the desired gusset shape. 10. The method of claim 9, the mounting of the sergeant 立 1 1P cutting the substrate comprises cutting the substrate using a line of recording. The method of claim 9, wherein the cutting the substrate comprises cutting the substrate at a selected angle to form a sidewall using - or a plurality of straight grinding wheels. 12. The method of claim 11 wherein the cutting the substrate at a selected angle to form a sidewall comprises cutting the substrate in three or more selected angles. 13. The method of claim 12 wherein the substrate is cut at a selected angle to form the sidewall comprising cutting the substrate at eight or eight selection angles. 14. The method of claim 9 wherein the exit surface has a minimum area for radiation. 15. The method of claim 9, wherein forming the substrate further comprises cutting the substrate at a selected angle to form a sidewall using three or more grinding wheels: wherein the three or more grindings Each of the wheels is shaped by cutting an angled section of the substrate with a desired angle. , 141220.doc
TW98121458A 2008-06-26 2009-06-25 Optical device shaping TW201007993A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7597208P 2008-06-26 2008-06-26

Publications (1)

Publication Number Publication Date
TW201007993A true TW201007993A (en) 2010-02-16

Family

ID=41444966

Family Applications (2)

Application Number Title Priority Date Filing Date
TW98121457A TW201009921A (en) 2008-06-26 2009-06-25 Optical device polishing
TW98121458A TW201007993A (en) 2008-06-26 2009-06-25 Optical device shaping

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW98121457A TW201009921A (en) 2008-06-26 2009-06-25 Optical device polishing

Country Status (2)

Country Link
TW (2) TW201009921A (en)
WO (2) WO2009158574A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140126599A1 (en) * 2012-11-06 2014-05-08 The Regents Of The University Of California (Al,In,B,Ga)N BASED SEMIPOLAR AND NONPOLAR LASER DIODES WITH POLISHED FACETS

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114513A (en) * 1988-10-27 1992-05-19 Omron Tateisi Electronics Co. Optical device and manufacturing method thereof
CH691045A5 (en) * 1996-04-16 2001-04-12 Hct Shaping Systems Sa A method for the orientation of several crystalline parts placed side by side on a cutting support for a simultaneous cutting in a cutting machine and device for
US6420266B1 (en) * 1999-11-02 2002-07-16 Alien Technology Corporation Methods for creating elements of predetermined shape and apparatuses using these elements
JP2003053647A (en) * 2001-08-13 2003-02-26 Olympus Optical Co Ltd Method and device for grinding and polishing optical element
US8075372B2 (en) * 2004-09-01 2011-12-13 Cabot Microelectronics Corporation Polishing pad with microporous regions
US7404756B2 (en) * 2004-10-29 2008-07-29 3M Innovative Properties Company Process for manufacturing optical and semiconductor elements
US20070116423A1 (en) * 2005-11-22 2007-05-24 3M Innovative Properties Company Arrays of optical elements and method of manufacturing same
WO2008042351A2 (en) * 2006-10-02 2008-04-10 Illumitex, Inc. Led system and method

Also Published As

Publication number Publication date
TW201009921A (en) 2010-03-01
WO2009158573A1 (en) 2009-12-30
WO2009158574A1 (en) 2009-12-30

Similar Documents

Publication Publication Date Title
US20090275157A1 (en) Optical device shaping
JP2010506402A (en) LED system and method
KR101771420B1 (en) Dividing method
US9649775B2 (en) Workpiece dividing method
EP1733438B1 (en) Laser patterning of light emitting devices and patterned light emitting devices
US10319593B2 (en) Wafer thinning method
US20090275266A1 (en) Optical device polishing
US8518730B2 (en) Sapphire wafer dividing method
US10755980B2 (en) Laser processing method
US10680139B2 (en) Window member for optical device package, optical device package, making methods, and optical device-mountable package
JP6004339B2 (en) Internal stress layer forming single crystal member and single crystal substrate manufacturing method
JP2013258234A (en) Method for processing optical device
WO2019116944A1 (en) Processing device, processing method, machining method, molding device, molding method, computer program, and recording medium
TW201007993A (en) Optical device shaping
JP4251146B2 (en) Manufacturing method of semiconductor device
JP2009236939A (en) Optical waveguide, method for manufacturing the same, and optical waveguide module
WO2018061080A1 (en) Method for manufacturing nitride semiconductor ultraviolet light emitting element, and nitride semiconductor ultraviolet light emitting element
JP6202695B2 (en) Single crystal substrate manufacturing method
JP2008186961A (en) Alignment device, exposure device, and alignment method
JP7408378B2 (en) Wafer generation method and wafer generation device
US20230054939A1 (en) Manufacturing method of single-crystal silicon substrate
US20220088717A1 (en) Wafer manufacturing method