TW200952495A - Apparatus for combining aplurality of views of real-time streaming interactive video - Google Patents

Apparatus for combining aplurality of views of real-time streaming interactive video Download PDF

Info

Publication number
TW200952495A
TW200952495A TW98115436A TW98115436A TW200952495A TW 200952495 A TW200952495 A TW 200952495A TW 98115436 A TW98115436 A TW 98115436A TW 98115436 A TW98115436 A TW 98115436A TW 200952495 A TW200952495 A TW 200952495A
Authority
TW
Taiwan
Prior art keywords
video
game
frame
user
server
Prior art date
Application number
TW98115436A
Other languages
Chinese (zh)
Inventor
Der Laan Roger Van
Stephen G Perlman
Original Assignee
Onlive Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onlive Inc filed Critical Onlive Inc
Publication of TW200952495A publication Critical patent/TW200952495A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/107Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2383Channel coding or modulation of digital bit-stream, e.g. QPSK modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • H04N21/2402Monitoring of the downstream path of the transmission network, e.g. bandwidth available
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/266Channel or content management, e.g. generation and management of keys and entitlement messages in a conditional access system, merging a VOD unicast channel into a multicast channel
    • H04N21/2662Controlling the complexity of the video stream, e.g. by scaling the resolution or bitrate of the video stream based on the client capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/478Supplemental services, e.g. displaying phone caller identification, shopping application
    • H04N21/4781Games
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/65Transmission of management data between client and server
    • H04N21/658Transmission by the client directed to the server
    • H04N21/6587Control parameters, e.g. trick play commands, viewpoint selection

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

A system and method are described below for encoding interactive low-latency video using interframe coding. For example, one embodiment of a computer-implemented method for performing video compression comprises: logically subdividing each of a sequence of images into a plurality of tiles, each of the tiles having a defined position within each of the sequence of images, the defined position remaining the same between successive images; detecting motion within the sequence of images occurring at each of the positions of each of the tiles; and encoding each tile within each image of the sequence of images using a first compression format or a second compression format, wherein the frequency at which a particular tile is encoded according to the first compression format across the sequence of images is based on the detected amount of motion at the position of that tile across the sequence of images.

Description

200952495 六、發明說明: 【發明所屬之技術領域】 本揭示案大體而言係關於改良使用者操縱及存取音訊及 視訊媒體之能力的資料處理系統之領域。 本申請案為2002年12月10曰申請之名為「用於無線視訊 遊戲之裝置及方法(Apparatus and Method for Wireless200952495 VI. Description of the Invention: [Technical Field of the Invention] The present disclosure is generally in the field of a data processing system that improves the ability of a user to manipulate and access audio and video media. This application is entitled "Apparatus and Method for Wireless" for the purpose of wireless video game application on December 10, 2002.

Video Gaming)」的第10/315,460號部分接續(CIP)申請案, 該案已讓與給本CIP申請案之受讓人》 【先前技術】 自從托馬斯·愛迪生(Thomas Edison)時代以來,已記錄 之音訊及電影媒體已成為杜會之一方面。在2〇世紀初期, 存在已記錄之音訊媒體(磁柱及唱片)及電影媒體(投幣式自 動點唱機及電影)的廣泛發行,但兩種技術仍處於其起步 階段。在20世紀20年代後期,在暢銷基礎上將電影與音訊 組合’繼之將彩色電影與音訊組合。無線電廣播逐漸演變 成很大程度上支援廣告之形式的廣播暢銷音訊媒體。當在 20世紀40年代中期建立電視(TV)廣播標準時,電視與無線 電以廣播暢銷媒體之形式接合,從而將先前已記錄的或現 場直播的電影帶入家庭中。 至20世紀中期為止,大部分美國家庭已具有用於播放已 §己錄之音訊媒體的唱片播放機(ph〇n〇graph reC()I>d player)、用於接收現場直播之廣播音訊的無線電,及用於 播放現場直播之廣播音訊/視訊(A/V)媒體的電視機。常常 將此等3個「媒體播放機」(唱片播放機、無線電及τν)組 139852.doc 200952495 合於一共用公共揚聲器之櫥櫃中,變成家庭之「媒體中 心」。儘管對於消費者而言媒體選擇有限,但媒體「生態 系統」非常穩定。大多數消費者知道如何使用「媒體播放 機」且能夠享受其能力之全部範圍。同時,媒體之出版商 (大多為電影及電視工作室,及音樂公司)能夠將其媒體分 配給電影院與家庭兩者,而不遭受廣泛的盜版或「二次鎖 售」(亦即,已使用媒體的重新銷售)。通常,出版商不會Video Gaming) No. 10/315, 460 Partial Continuation (CIP) application, which has been assigned to the assignee of this CIP application. [Previous technology] Recorded since the era of Thomas Edison The audio and movie media have become one of the clubs. In the early 2nd century, there were widespread distributions of recorded audio media (magnetic columns and records) and movie media (coin-operated jukeboxes and movies), but the two technologies are still in their infancy. In the late 1920s, film and audio were combined on the basis of a bestseller, followed by a combination of color film and audio. Radio broadcasts have evolved into broadcast-selling audio media that largely support the form of advertising. When the television (TV) broadcast standard was established in the mid-1940s, television and radio were joined in the form of broadcast-selling media to bring previously recorded or live-lived movies to the home. By the middle of the 20th century, most American households had a record player (ph〇n〇graph reC() I>d player) for playing ** recorded audio media, and for receiving live broadcast broadcast audio. Radio, and a television set for playing live broadcast audio/video (A/V) media. These three "media players" (recorders, radios and τν) group 139852.doc 200952495 are often combined into a common public speaker cabinet to become the "media center" of the family. Although media choices are limited for consumers, the media “ecosystem” is very stable. Most consumers know how to use the Media Player and enjoy the full range of capabilities. At the same time, publishers of the media (mostly film and television studios, and music companies) are able to distribute their media to both cinemas and families without extensive piracy or "secondary lock sales" (ie, already used) Resale of the media). Usually, publishers won't

自二次銷售得到收入,且因此,二次銷售減少了出版商對 於新的銷售原本可自已使用媒體的購買者得到的收入。儘 管的確存在於20世紀中期期間出售的已使用之唱片,但該 等:售不會對唱片出版商有大影響,因為不同於電影或視 訊節目(其通常被成年人觀看一次或僅數次),音樂曲目可 被收聽數百次或甚至數千次。因&,音樂媒體遠比電影/ 視訊媒體「經久」(㈣’對於成年消費者而言,其具有 持久價值)。一旦購買了唱片,若消費者喜歡該音樂,則 消費者可能將其保持長時間。 自20世紀中期至當今’媒體生態系統對於消費者與出版 商之利益及損失而言皆已經歷了一系列根本改變。在音訊 記錄器(尤其是具有高品質立體聲之盒式磁帶)之廣泛引入 ϋ情況下’的確存在較高程度之消費者便利。但其亦標德 ::在廣泛的消費者媒體實踐_盜版之開始。的確,許多 =者㈣出於便利起見而使用W磁帶來錄製其自身的 之 二片的消費者(❹,宿舍中準備存取彼此 曰片收集的學生)將進行盜版複製。又,消費者將錄製 139852.doc 200952495 經由無線電播放之音樂,而非自出版商購買唱片或磁帶。 消費者VCR之出現導致更多的消費者便利,因為現在 VCR可設定為記錄TV節目,其可在稍後時間觀看,且VCR 亦導致視訊租賃業之建立,其中電影以及TV節目設計可 在「按要求」基礎上進行存取。自20世紀80年代中期以來 * 的暢銷家庭媒體器件之快速開發已導致消費者之空前的選 擇及便利程度’且亦導致媒體出版市場之快速擴張。 參 現今’消費者面臨過多媒體選擇以及過多媒體器件,其 中之許多者綁定至特定形式之媒體或特定出版商。熱衷的 媒體消費者可能將一堆器件連接至房屋各房間中的TV及 電腦,造成至一或多個電視機及/或個人電腦(PC)之「鼠窩 式」電纜以及一群遠端控制。(在本申請案之上下文中, 術語「個人電腦」或「PC」指代適合於在家庭或辦公室中 使用的任何種類之電腦),包括桌上型電腦、Macintosh(S) 或其他非Windows電腦、與Windows相容之器件、Unix變 e 體、膝上型電腦等)。此等器件可包括視訊遊戲控制台、 VCR、DVD播放機、音訊環繞音效處理器/放大器、衛星 機頂盒、電境TV機頂盒等。此外,對於熱衷的消費者, 可能由於相容性問題而存在多個類似功能之器件。舉例而 σ ’ ’肖費者可能擁有HD-DVD與藍光(Blu-ray)DVD播放機 兩者’或Microsoft Xbox®與 Sony Playstation®視訊遊戲系 統兩者。實際上’由於一些遊戲跨越遊戲控制台之若干版 本的不相容性,消費者可能擁有XBox與稍後之版本(諸 如,Xbox 360®)兩者。經常地,消費者對於使用哪個視訊 139852.doc 200952495 輸入端及哪個遠端感到迷惑。甚至在將光碟置放於正確播 放機(例如,DVD、HD-DVD、藍光、xb〇x 或 Playstati〇n) 中、選擇用於彼器件之視sfl及音訊輸入端且發現正確遠端 控制之後’消費者仍面臨技術挑戰。舉例而言,在寬榮幕 . DVD之狀況下’使用者可能需要首先判定正確的縱橫比 . (例如,4:3、完全、放大、寬放大、電影院寬等)且接著在 其TV或監視器螢幕上設定正確的縱橫比。類似地,使用 ❹ 者可能需要首先判定正確的音訊環繞音效系統格式(例 如,AC-3、杜比數位、DTS等)且接著設定正確的音訊環 繞音效系統格式。時常地’消費者未意識到其可能未享受 到其電視或音訊系統之全部能力下的媒體内容(例如,觀 看以錯誤縱橫比擠壓之電影’或收聽立體聲之音訊而非環 繞音效之音訊)。 日益增加地’已將以網際網路為基礎之媒體器件添加至 器件之堆疊。類似Sonos®數位音樂系統之音訊器件使音訊 ❹ 直接自網際網路串流。同樣地,類似SlingboxTM娛樂播放 機之器件記錄視訊且使其經由家庭網路串流或經由網際網 路串流而出,其中可在PC上於遠端觀看該視訊。且網際網 路協定電視(IPTV)服務經由數位用戶線(DSL)或其他家庭 網際網路連接而提供類似電纜TV之服務。近來亦存在將 多個媒體功能整合於單一器件(諸如,Moxi®媒體中心及執 行Windows XP媒體中心版本之ρ〇中的努力。儘管此等器 件中之每一者對其執行之功能提供一點便利,但每一者缺 乏對大多數媒體之普遍且簡單的存取。另外,常常由於昂 139852.doc 200952495 貴處理及/或本端儲存之需要而使得料器件經常花費數 百美元來製造。另外,此等現代消費者電子器件通常消耗 大量電力,甚至當閒置時亦消耗大量電力,此意謂其隨著 .日㈣而昂貴且浪費能源。舉例而言,若消費者忘記將—器 件切斷或將其切換至不同視訊輸入端,則該器件可能繼續 ' 操作。此外’因為料器件當巾沒有-者為完全解決方 案,所以必須將其與家庭中之其他器件堆疊整合,此仍對 使用者留下鼠窩式線及許多遠端控制。 響 此外,當許多較新的以網際網路為基礎之器件適當地工 作時,其通常提供更-般形 與其原本可能可用之形式 相比)之媒體。舉例而言,使視訊經由網際網路串流之器 件常常僅使視訊材料串流,而不能使常常伴隨dvd互動式 「額外計費項目」串流,如視訊之「製作」、遊戲或導演 評論。此係由於以下事實:纟動式材料經常係以意欲用於 在本端處理互動性之特定器件的特定格式而製作。舉例而 ❷ 言,DVD、HD_DVD及藍光光碟中之每一者具有其自身的 特定互動格式《任何家庭媒體器件或本端電腦(其可能經 開發以支援所有風行格式)將需要一定程度的尖端性 (sophistication)及靈活性,其將可能對於消費者操作而言 過於昂貴及複雜。 使該問題加重,若稍後在將來引入新格式,則本端器件 可能不具有支援新格式之硬體能力,此將意謂消費者將必 /頁麟貝升級的本知媒體器件。舉例而言,若在稍後之曰期 引入較高解析度之視訊或立體視訊(例如,每—隻眼一視 •39852.doc 200952495 訊流)’則本端器件可能不具有解碼該視訊之計算能力’ 或其可能不具有用於以新格式輸出該視訊的硬體(例如, 假疋藉由與遮光眼鏡(shuttered glassess)同步之120 fps視 訊來達成立體視覺’其中將60 fpS遞送至每一隻眼,若消 費者之視訊硬體僅可支援60 fpS視訊,則此選項在缺乏升 • 級的硬體購買之情況下將不可用)。 當談及尖端的互動式媒體(尤其是視訊遊戲)時,媒體器 件廢棄及複雜度之問題為一嚴重問題。 現代視訊遊戲應用基本上劃分成四個主要非可攜式硬體 平台:Sony PlayStation® 1、2及 3(PS1、PS2,及 PS3); Microsoft Xbox®及 Xbox 360® ;及 Nintendo Gamecube®及Revenues are derived from secondary sales, and as a result, secondary sales reduce the publisher's revenue for new sales of purchasers who would otherwise be able to use the media themselves. Although there are indeed used records sold during the mid-20th century, these: sales will not have a big impact on record publishers, because they are different from movies or video shows (which are usually viewed once or only several times by adults) Music tracks can be listened to hundreds or even thousands of times. Because of &, the music media is far more durable than the film/video media ((4)’ for adult consumers). Once a record is purchased, if the consumer likes the music, the consumer may keep it for a long time. From the mid-20th century to the present, the media ecosystem has undergone a series of fundamental changes for the interests and losses of consumers and publishers. In the case of the widespread introduction of audio recorders (especially cassettes with high quality stereo), there is indeed a high degree of consumer convenience. But it also marks the beginning of :: in the broad consumer media practice _ piracy. Indeed, many = (4) consumers who use W tape to record their own two pieces of convenience for convenience (ie, students in the dorm who are ready to access each other's slap collection) will be pirated. Also, consumers will record music played on the radio by 139852.doc 200952495 instead of buying a record or tape from the publisher. The emergence of consumer VCRs has led to more consumer convenience, as VCRs can now be set up to record TV shows, which can be viewed at a later time, and VCRs have also led to the creation of a video rental industry where movies and TV programming can be designed. Access on an as-needed basis. The rapid development of popular home media devices since the mid-1980s has led to unprecedented choice and convenience for consumers' and has led to a rapid expansion of the media publishing market. Today's consumers are faced with multimedia choices and multimedia devices, many of which are tied to specific forms of media or to specific publishers. A keen media consumer may connect a bunch of devices to the TVs and computers in each room of the house, resulting in a "snake" cable to one or more televisions and/or personal computers (PCs) and a group of remote controls. (In the context of this application, the term "personal computer" or "PC" refers to any type of computer suitable for use in a home or office), including desktop computers, Macintosh(s) or other non-Windows computers. , Windows compatible devices, Unix variants, laptops, etc.). Such devices may include video game consoles, VCRs, DVD players, audio surround sound processors/amplifiers, satellite set-top boxes, and TV set-top boxes. In addition, for enthusiastic consumers, there may be multiple devices with similar functions due to compatibility issues. For example, σ' ‘Shaokes may have both HD-DVD and Blu-ray DVD players, or both Microsoft Xbox® and Sony Playstation® video game systems. In fact, due to the incompatibility of several games across several versions of the game console, consumers may have both XBox and later versions (such as Xbox 360®). Frequently, consumers are confused about which video 139852.doc 200952495 input and which remote end to use. Even after placing the disc in the correct player (eg DVD, HD-DVD, Blu-ray, xb〇x or Playstati〇n), selecting the video sfl and audio input for the device and finding the correct remote control 'Consumers still face technical challenges. For example, in the case of Wide Wing. DVD, the user may need to first determine the correct aspect ratio. (eg, 4:3, full, zoom, wide zoom, cinema wide, etc.) and then on their TV or surveillance Set the correct aspect ratio on the screen. Similarly, users who use the device may need to first determine the correct audio surround sound system format (for example, AC-3, Dolby Digital, DTS, etc.) and then set the correct audio surround sound system format. Often, 'consumers are unaware that they may not have access to the media content of their television or audio system's full capabilities (for example, watching movies that are squeezed in the wrong aspect ratio) or listening to stereo audio rather than surround sound. . Increasingly, Internet-based media devices have been added to the stack of devices. Audio devices like the Sonos® digital music system allow audio to stream directly from the Internet. Similarly, devices like the SlingboxTM entertainment player record video and stream it through the home network or via the Internet, where the video can be viewed remotely on the PC. And Internet Protocol Television (IPTV) services provide cable TV-like services via digital subscriber line (DSL) or other home Internet connections. There have also been recent efforts to integrate multiple media functions into a single device, such as the Moxi® Media Center and the implementation of the Windows XP Media Center version, although each of these devices provides a convenience to the functions it performs. However, each lacks universal and simple access to most media. In addition, it is often the case that the device often costs hundreds of dollars to manufacture due to the high processing and/or local storage requirements of the 139852.doc 200952495. These modern consumer electronics devices typically consume a lot of power and consume a lot of power even when idle, which means that they are expensive and waste energy with the day (4). For example, if the consumer forgets to cut the device Or switching it to a different video input, the device may continue to operate. In addition, because the device is not a complete solution, it must be integrated with other devices in the family. Leaving the sniffer line and many remote controls. In addition, when many newer Internet-based devices work properly, Usually offer more - as compared to its original shape of the possible forms available) of the media. For example, devices that stream video over the Internet often stream only video material, rather than being able to accompany dvd interactive "extra billing" streams, such as video "production", games, or director reviews. . This is due to the fact that turbulent materials are often made in a specific format intended for the particular device that handles interactivity at the local end. For example, each of DVD, HD_DVD, and Blu-ray Disc has its own specific interactive format. "Any home media device or local computer (which may be developed to support all popular formats) will require some degree of sophistication. (sophistication) and flexibility, which may be too expensive and complicated for consumer operations. This problem is exacerbated. If a new format is introduced in the future, the local device may not have the hardware capability to support the new format, which would mean that the consumer would upgrade the known media device. For example, if a higher resolution video or stereoscopic video is introduced later in the future (for example, per-eye view • 39852.doc 200952495 traffic), the local device may not have the decoding to decode the video. Capabilities' or it may not have hardware for outputting the video in a new format (eg, false-twisting to achieve stereo vision by 120 fps video synchronized with shuttered glasses) where 60 fpS is delivered to each In the eye, if the consumer's video hardware can only support 60 fpS video, this option will not be available in the absence of upgraded hardware purchases. When it comes to cutting-edge interactive media (especially video games), the problem of media device obsolescence and complexity is a serious problem. Modern video game applications are basically divided into four main non-portable hardware platforms: Sony PlayStation® 1, 2 and 3 (PS1, PS2, and PS3); Microsoft Xbox® and Xbox 360®; and Nintendo Gamecube® and

WiPM ;以及以pc為基礎之遊戲。此等平台中之每一者不 同於其他者,使得經編寫以在一平台上執行之遊戲通常不 會在另一平台上執行。亦可能存在一代器件與下一代器件 之相容性問題。即使大多數軟體遊戲開發者建立獨立於特 ❹ 定平台而設計之軟體遊戲,為了在特定平台上執行特定遊 戲,亦需要專有軟體層(其經常被稱為「遊戲開發弓丨擎」) 來調適遊戲以在特定平台上使用。每一平台以「控制台」 (亦即,附接至TV或監視器/揚聲器之獨立盒子)之形式二 «給消費者或其本身為-PC。通常,視訊遊戲係在諸如藍 光DVD、DVD-ROM或CD-ROM之光學媒體上出售,該光 學媒體含有體現為尖端的即時軟體應用程式之視訊遊戲 隨著家庭寬頻帶速度增加,視訊遊戲正日益變得可用於 載。 :下 J39852.doc 200952495 由於高階視訊遊戲之即時性及高計算要求而使得達成與 視訊遊戲軟體之平台相容性的特殊性要求極端苛刻。舉例 而言,吾人可能期望自一代視訊遊戲至下一代視訊遊戲 (例如,自 XBox 至 XBox 360,或自 PlayStation 2 (「ps2」) • 至Pbystation 3 (「PS3」))的完全遊戲相容性,正如存在 • 自一 PC至具有較快處理單元或核心之另一 pc的生產力應 用程式(例如’ Microsoft Word)之普遍相容性。然而,對於 _ 視訊遊戲並非為此狀況。因為當發行一代視訊遊戲時,視 訊遊戲製造商通常尋求對於給定價格點之最高可能效能, 所以經常對系統進行動態架構改變,以使得經編寫以用於 前代系統之許多遊戲在稍後一代系統上不工作。舉例而 s ’ XBox係基於χ86系列處理器,而χΒ〇χ 36〇係基於 PowerPC系列。 可利用技術來模擬先前架構,但假定視訊遊戲為即時應 用程式’則在模擬中達成完全相同之行為常常不切實際。 φ 此係對消費者、視訊遊戲控制台製造商及視訊遊戲軟體出 版商之損失。對於消費者而言,其意謂保持將舊的一代視 5孔遊戲控制台與新的一代視訊遊戲控制台 兩者接通至TV 以便此夠玩所有遊戲的必要性。對於控制台製造商而言, 其意謂與新控制台之模擬及較緩慢採用相關聯的成本。且 對於出版商而言,其意謂可能必須發行新遊戲之多個版本 以便涵蓋所有潛在的消費者_不僅發行用於視訊遊戲之每 商私(例如,XBox、Playstation)的版本,而且常常發行 用於給定商標之每一版本(例如,pS2及ps3)的版本。舉例 139852.doc 200952495 而言’開發電子藝術「瘋狂撖欖細」之單獨版本以用於 XBox、XBox 36〇、ps2、pS3、Gam_be、侧及 % 平台 以及其他平台。 可攜式器件(諸如,蜂巢式電話及可攜式媒體播放機)亦 • 對遊戲開發商提出挑戰。日益增加地,該等器件連接至無 . 線資料網路且能夠下載視訊遊戲。但是,市場中存在具有 多種不同顯示解析度及計算能力的多種蜂巢式電話及媒體 參 器件。又,因為該等器件通常具有電力消耗、成本及重量 約束,所以其通常缺乏類似圖形處理單元(「GPU」)之高 階圖^/加速硬體(諸如,由CA之Santa Clara之NVIDIA製造 的器件)。因此,遊戲軟體開發商通常開發同時用於許多 不同類型之可攜式器件的給定遊戲標題。使用者可發現: 給定遊戲標題不可用於其特定蜂巢式電話或可攜式媒體播 放機。 在家庭遊戲控制台之狀況下,硬體平台製造商通常向軟 ❹ 體遊戲開發商索要用於在其平台上發布遊戲之能力的版 稅。蜂巢式電話無線通信公司通常亦向遊戲出版商索要用 於將遊戲下載至蜂巢式電話中之版稅。在%遊戲之狀況 下,不存在用於發布遊戲所支付之版稅,但由於用於支援 多種PC組態及可能引起的安裝問題的較高消費者服務負擔 而使得遊戲開發商通常面臨高成本。又,PC通常較少對遊 戲軟體之盜版提出障礙,因為其可由技術上博學之使用者 容易地重新程式化且遊戲可更容易地被盜版且更容易地被 分配(例如,經由網際網路)。因此,對於軟體遊戲開發商 139852.doc ,, 200952495 而言’在遊戲控制台、蜂巢式電話及PC上發現存在成本及 不利之處。 對於控制台及PC軟體之遊戲出版商而言,成本不止於 此。為了經由零售通道分配遊戲,出版商向零售商索要低 • 於出售價格之批發價格以使零售商具有利潤率。出版商通 . 常亦必須支付製造及分配保存遊戲之實體媒體的成本。零 售商經常亦向出版商索要「價格保護費」以涵蓋可能的意 ❿ 外費用(諸如,遊戲售不出,或遊戲之價格降低,或零售 商必須退還部分或所有批發價格及/或自購買者收回遊 戲)。另外,零售商通常亦向出版商索要用於幫助在廣告 傳單中銷售遊戲之費用。此外,零售商日益增加地自已完 成遊戲之使用者購買回遊戲,且接著將該等遊戲以已使用 之遊戲出售,通常不與遊戲出版商分享已使用遊戲之收 入。以下事實添加施加於遊戲出版商之成本負擔:遊戲常 常被經由網際網路盜版及分配以供使用者下載及進行免費 ❹ 複製。 隨著網際網路寬頻帶速度增加且寬頻帶連接性在美國及 王世界變得更廣泛(特定言之,至家庭及至租賃連接網際 網路之PC的「網咖」)’遊戲日益增加地被經由下載而分 配至PC或控制台。X,寬頻帶連接日益增加地用於玩多人 及大型多人線上遊戲(該兩者在本揭示案中藉由首字母縮 寫詞「MMOG」來指稱卜此等改變減輕了與零售分配相 關聯之-些成本及問題。下載線上遊戲解決了遊戲出版商 之些不利之處,因為分配成本通常較小且存在較少或不 139852.doc 12 200952495 存在未出售媒體之成本。但已下載的遊戲仍經受盜版,且 由於/、大小(大小常常為許多個十億位元組)而使得其可能 花費非常長之時間來下载。另外,多個遊戲可填料磁: 機諸如連同可攜式電腦一起或連同視訊遊戲控制台一起 出售之彼等磁碟機。然而’就遊戲或MMOG需要線上連接 . 以使侍遊戲可玩之程度而言,盜版問題得以減輕,因為通 常需要使用者具有有效的使用者帳戶。不同於可藉由相機 ❹ _顯示螢幕之視訊或藉由麥克風記錄來自揚聲器之音訊 來複製的線性媒體(例如,視訊及音樂),每一視訊遊戲體 驗係唯$,且不可使用帛單視訊/音訊記錄來複製。因 此’甚至在未強力執行版權法且盜版猖獗的區域中,亦可 保護MMOG免於被盜版且因此可支援商業。舉例而言,已 成功地部署Vivendi SA之「魔獸世界」mm〇g,而在全世 界未遭受盜版。且許多線上*MM0G遊戲(諸如,Linden Lab之「第二人生」MM〇G)經由建置於遊戲中之經濟模型 © ""產生遊戲運營商的收入,其中資產可使用線上工具而帶 來、出售且甚至建立。因此,可使用除習知遊戲軟體麟買 或訂用之外的機制來為線上遊戲之使用付費。 儘管由於線上或MMOG之性質而使得常常可減輕盜版, 仁線上遊戲運營商仍面臨其餘挑戰。許多遊戲需要大量的 % (亦即,豕庭内)處理資源以供線上或適當地工 作。若使用者具有低效能之本端電腦(例如,不具有σρυ 之電腦,諸如低端膝上型電腦)’則其可能不能夠玩該遊 另外,隨者遊戲控制台老化,其遠落後於目前技術狀 I39852.doc -13- 200952495 態且可能不能夠處理更高階之遊戲。即使假定使用者之本 端pc能夠處理遊戲之計算要求,常常亦存在安裝複雜度。 可忐存在驅動器不相容性(例如,若下載新遊戲,則可能 安裝新版本的圖形驅動器,其致使依賴於舊版本圖形驅動 器之先前已安裝之遊戲不可操作)。隨著下載更多遊戲, 控制台可能用完本端磁碟空間。當發現缺陷並修復時或若 對遊戲進行了修改(例如,若遊戲開發商發現遊戲之級別 ❹ 太難玩或太容易玩),複雜遊戲通常隨著時間推移而自遊 戲開發商接收下載之修補程式(patch)。此等修補程式需要 新的下載。但有時並非所有使用者完成所有修補程式之下 載。在其他時候,下載之修補程式引入其他相容性或磁碟 空間消耗問題。 又,在遊戲播放期間,可能需要大資料下載以將圖形或 行為資訊提供至本端PC或控制台。舉例而言,若使用者進 入MMOG中之-房間中,且遭遇由圖形資料組成或具有在 〇 使用者之本端機器上不可用之行為的場景或人物,則必須 下載彼場景或人物之資料P若網際網路連接不夠快,則此 可導致玩遊戲期間的實質延遲。此外,若所遭遇之場景戋 人物需要超過本端pc或控制台之儲存空間或計算能力的^ 存空間或計算能力,則其可產生一情形:其中使用者不可 在遊戲中繼續,或必須以品質降低之圖形繼續。因此,線 上或MMOG遊戲常常限制其儲存及/或計算複雜度要求1 另外,其常常限制遊戲期間之資料傳送的量。線上 MMOG遊戲亦可使可玩遊戲之使用者之市場變窄。 3 139852.doc 200952495 此外,技術上博學之使用者日益增加地反向工程設計遊 戲之本端複本且修改遊戲以使得其可作弊。作弊可能與進 行比用人力可能的速度快的重複按紐按壓(例如,以便非 常快速地射擊)一般簡單。在支援遊戲中資產交易之遊戲 中,作弊可達到導致欺騙性交易涉及具有實際經濟價值之 • 資產的欺詐程度。當線上或MMOG經濟模型係基於該等資 產交易時’此可導致對遊戲運營商之實質有害後果。 • 開發新遊戲之成本隨著PC及控制台能夠製作愈加尖端的 遊戲(例如’具有更逼真之圖形(諸如,即時光線追縱),及 更逼真之行為(諸如,即時物理學仿真而增長。在視訊遊 戲業之早期,視訊遊戲開發係與應用程式軟體開發非常類 似之過程;亦即,大多數開發成本係在軟體之開發中(與 圖形、音訊及行為要素或「資產」之開發相對比),諸如 可經開發以用於具有廣泛特殊效果之電影的彼等軟體開 發。現今,許多尖端的視訊遊戲開發努力比軟體開發更類 〇 似於富有特殊效果之電影開發。舉例而言,許多視訊遊戲 提供3-D世界之仿真,且產生日益真實(亦即,看似與攝影 拍攝的活人動作影像一般逼真的電腦圖形)的人物、道具 及環境。照片般逼真的遊戲開發之最具挑戰方面中之一者 為建立不能區別於活人動作人面的電腦產生之人面。面部 孚獲技術(諸如,由CA之San Franeisc〇之開發的 Contour™真實性俘豸系統)俘獲表演者之面部之精確幾何 形狀並在表演者處於運動中時以高解析度追縱表演者之面 部之精確幾何形狀。此技術允許在PC或遊戲控制台上再現 139852.doc -15- 200952495 3D面部,該3D面部實際上不能區別於所俘獲的活人動作 面部。精確地俘獲及再現「照片般逼真的」人面在若干方 面有用。首先,高度可辨識之名人或運動員常常用於視訊 遊戲中(常常以高成本雇用),且不完美性可能對於使用者 而s顯而易見’從而使檢視體驗分心或令人不愉快。經常 . 地,需要高度細節來達成高度照片般逼真感-潛在地需要 再現大量多邊形及高解析度紋理(在多邊形及/或紋理在圖 框接圖框基礎上隨著面部移動而改變之情況下)。 ❹ 當具有詳細紋理之高多邊形計數場景快速改變時,支援 遊戲之PC或遊戲控制台可能不具有足夠的尺八“來儲存用 於遊戲片段中所產生的所需數目之動晝圖框的足夠多邊形 及紋理資料。另外,通常可用於PC或遊戲控制台上之單一 光碟機或單一磁碟機通常比RAM緩慢得多,且通常不可跟 上GPU在再現多邊形及紋理中可接受的最大資料速率。當 前遊戲通常將大多數多邊形及紋理載入至RAM中,此意謂 〇 給定場景在複雜度及持續時間上很大程度上受RAM之容量 限制。在(例如)面部動畫製作之狀況下,此可能將PC或遊 戲控制台限制於並無真實感之低解析度面部,或限制於僅 可在遊戲暫停且載入用於更多圖框之多邊形及紋理(及其 他貝料)之前在有限數目之圖框中製作成動晝的真實感面 部。 田PC或控制台顯示類似於「正在載入…」之訊息時觀看 進程條跨越螢幕緩慢地移動由現今的複雜視訊遊戲之使用 者公認為内在缺點。下一個場景自磁碟(除非另外有條 J39852.doc 200952495 件’否則本文中之「磁碟」指代非揮發性光學媒體或磁性 媒體,以及諸如半導體「快閃」記憶體之非磁碟媒體)載 入時之延遲可花費若干秒或甚至若干分鐘。此浪費時間且 可能使遊戲玩家相當受挫。如先前所論述’大量或所有延 遲可能係由於來自磁碟之多邊形、紋理或其他資料之載入 . 時間,但亦可能係以下狀況:當pc或控制台中之處理器及/ 或GPU準備用於場景之資料時,花費一部分載入時間。舉 ❹ 例而言,英式足球視訊遊戲可允許玩家在大量玩家、小 組運動場及天氣條件當中選擇。因此,取決於選擇何特 定組合,可能需要用於場景之不同多邊形、紋理及其他資 料(統稱「物件」)(例如,不同小組在其制服上具有不同色 彩及圖案)。有可能列舉各種排列中之許多或所有者且提 前預先计算物件中之許多或所有者並將物件儲存於用於儲 存遊戲之磁碟上。但是,若排列之數目大,則所有物件所 需之儲存量可能過大以致不能安裝在磁碟上(或太不切實 ❹ 際以致不能下載)。因此,現存之PC及控制台系統通常在 給定場景之複雜度與播放持續時間兩者上受約束且對於複 雜場景遭受長載入時間。 先前技術視訊遊戲系統及應用程式軟體系統之另一顯著 限制在於:其日益增加地使用(例如)3D物件之大資料庫 (諸如,多邊形及纹理),該等大資料庫需要被載入至^或 遊戲控制台中以用於處理。如上所述,當將該等資料庫在 2端儲存於磁碟上時,該等f料庫可花費長時間來載入。 、而右資料庫係儲存於遠端位置且經由網際網路來存 139852.doc -17- 200952495 取則載入時間通常嚴重得多。在此 料庫可能花費幾分鐘、幾小時或甚至幾天丄下=資資 :::::生大量費用(例如,用於遊戲、電影或歷: ==細的高有槐帆船之3D模型)且意欲用於銷售給 使用者。然而,-旦資料庫被下載至本端使用 者’其就有被W姆咖,㈣者== 估計資料庫以查看其是否適合使用者之需要(例如,當使WiPM; and PC-based games. Each of these platforms is different from the others, so that games written to be executed on one platform are typically not executed on another platform. There may also be compatibility issues between a generation of devices and next-generation devices. Even though most software game developers build software games designed to be independent of the specific platform, in order to execute specific games on a specific platform, a proprietary software layer (which is often referred to as "game development") is required. Adapt the game to use on a specific platform. Each platform is in the form of a "console" (ie, a separate box attached to a TV or monitor/speaker) «for the consumer or itself - PC. Typically, video games are sold on optical media such as Blu-ray DVD, DVD-ROM or CD-ROM, which contain video games embodied in sophisticated real-time software applications. As home broadband speeds increase, video games are increasingly Become available for loading. :下下J39852.doc 200952495 Due to the immediacy and high computing requirements of high-end video games, the special requirements for achieving platform compatibility with video game software are extremely demanding. For example, we may expect full game compatibility from a generation of video games to next-generation video games (for example, from XBox to XBox 360, or from PlayStation 2 ("ps2") to Pbystation 3 ("PS3")). As is the case, there is a universal compatibility of productivity applications (such as 'Microsoft Word) from one PC to another with a faster processing unit or core. However, this is not the case for _ video games. Because when a video game is released, video game manufacturers often seek the highest possible performance for a given price point, so the system is often dynamically architected so that many games written for the previous generation are in the next generation. Not working on the system. For example, s ’ XBox is based on the χ86 series processor, while the χΒ〇χ 36〇 is based on the PowerPC series. Techniques can be used to simulate the previous architecture, but assuming that the video game is an instant application, it is often impractical to achieve the exact same behavior in the simulation. φ This is a loss to consumers, video game console manufacturers and video game software publishers. For the consumer, it means keeping the old generation of 5-hole game consoles and the new generation of video game consoles connected to the TV so that it is enough for all games. For console manufacturers, it means the costs associated with the simulation and slower adoption of the new console. And for publishers, it means that multiple versions of new games may have to be released to cover all potential consumers - not only for each commercial (eg, XBox, Playstation) version of the video game, but also often The version used for each version of a given trademark (for example, pS2 and ps3). For example, 139852.doc 200952495 For the purpose of developing a separate version of the electronic art "Crazy" for XBox, XBox 36, ps2, pS3, Gam_be, side and % platforms and other platforms. Portable devices such as cellular phones and portable media players also challenge game developers. Increasingly, these devices are connected to a wireless data network and are capable of downloading video games. However, there are a variety of cellular phones and media reference devices in the market that have a variety of display resolutions and computing capabilities. Also, because such devices typically have power consumption, cost, and weight constraints, they typically lack high-level graphics/acceleration hardware like graphics processing units ("GPUs") (such as those manufactured by NVIDIA of Santa Clara, CA). ). Therefore, game software developers typically develop a given game title that is used for many different types of portable devices. The user can find that the given game title is not available for its particular cellular phone or portable media player. In the case of a home game console, hardware platform manufacturers typically ask software game developers for a version of the tax on their ability to publish games on their platform. Honeycomb telephony wireless communication companies often also ask game publishers for royalties to download games to cellular phones. In the case of % games, there is no royalties paid for publishing games, but game developers often face high costs due to the high consumer service burden used to support multiple PC configurations and possible installation issues. Moreover, PCs often have fewer obstacles to piracy of game software because they can be easily reprogrammed by technically savvy users and games can be more easily pirated and more easily distributed (eg, via the Internet). . Therefore, for software game developers 139852.doc, 200952495, there are costs and disadvantages found in game consoles, cellular phones and PCs. For game publishers of consoles and PC software, the cost is not limited to this. In order to distribute the game via the retail channel, the publisher asks the retailer for a lower wholesale price of the sale price to give the retailer a profit margin. Publishers must also pay for the cost of manufacturing and distributing physical media for games. Retailers often also ask publishers for "price protection fees" to cover possible out-of-pocket expenses (such as games not being sold, or the price of the game is reduced, or the retailer must refund some or all of the wholesale price and / or purchase Retract the game). In addition, retailers often ask publishers for help in selling games in advertising flyers. In addition, retailers are increasingly purchasing back games from users who have completed the game, and then the games are sold as used games, and the revenue of the used games is typically not shared with the game publisher. The following facts add to the cost burden imposed on game publishers: games are often pirated and distributed via the Internet for users to download and perform free copying. As the Internet broadband speed increases and broadband connectivity becomes more widespread in the United States and the world (specifically, the "Internet cafes" to the home and to the PCs that lease the Internet) are increasingly being Assigned to a PC or console via download. X, wideband connections are increasingly used to play multiplayer and massively multiplayer online games (both of which are referred to in this disclosure by the acronym "MMOG" to mitigate the association with retail distribution Some of the costs and issues. Downloading online games solves some of the disadvantages of game publishers because the distribution costs are usually small and there are fewer or no 139852.doc 12 200952495 There is a cost of unsold media. But the downloaded games Still subject to piracy, and due to /, size (often a large number of billions of bytes), it may take a very long time to download. In addition, multiple games can be magnetic: such as with a portable computer Or they are sold together with the video game console. However, 'the game or MMOG needs to be connected online. To make the game playable, the piracy problem is alleviated because it usually requires effective use by the user. Account. It is different from linear media that can be copied by camera ❹ _ display screen video or by microphone recording audio from the speaker (eg Video and music), each video game experience is only $, and can't be copied using single video/audio recordings. Therefore, MMOG can be protected from piracy even in areas where copyright law is not enforced and pirated. And thus can support business. For example, Vivendi SA's "World of Warcraft" mm〇g has been successfully deployed, and has not been pirated around the world. And many online *MM0G games (such as Linden Lab's "Second Life" MM〇G) generates revenue from game operators via the economic model built into the game. The assets can be brought, sold and even built using online tools. Therefore, software games other than the familiar game can be used. Mechanisms other than buying or ordering to pay for the use of online games. Although online piracy is often mitigated due to the nature of online or MMOG, the online game operators still face the remaining challenges. Many games require a large percentage (ie, Processing resources for online or appropriate work. If the user has a low-performance local computer (for example, a computer that does not have σρυ, such as the low end "Upper computer") 'They may not be able to play the game. In addition, the game console ages, which is far behind the current state of the art I39852.doc -13- 200952495 and may not be able to handle higher-order games. Even if assumed The native PC can handle the calculation requirements of the game, and often there is installation complexity. There may be drive incompatibility (for example, if a new game is downloaded, a new version of the graphics driver may be installed, which results in relying on the old version. The previously installed game of the graphics drive is not operational. As more games are downloaded, the console may run out of local disk space. When bugs are found and fixed, or if the game is modified (for example, if the game developer It is found that the level of the game is too difficult or too easy to play. Complex games usually receive download patches from game developers over time. These patches require a new download. But sometimes not all users complete all patch downloads. At other times, the downloaded patch introduces additional compatibility or disk space consumption issues. Also, during game play, large data downloads may be required to provide graphical or behavioral information to the local PC or console. For example, if a user enters a room in a MMOG and encounters a scene or character consisting of graphic material or having an action that is not available on the user's home machine, then the information of the scene or person must be downloaded. P If the internet connection is not fast enough, this can result in substantial delay during game play. In addition, if the scene encounters a character who needs more than the storage space or computing power of the local PC or console, it may generate a situation in which the user cannot continue in the game, or must The graphics of reduced quality continue. Therefore, online or MMOG games often limit their storage and/or computational complexity requirements. In addition, they often limit the amount of data transfer during the game. Online MMOG games can also narrow the market for users of playable games. 3 139852.doc 200952495 In addition, technically knowledgeable users are increasingly reversing the native copy of the game and modifying the game to make it cheating. Cheating can be as simple as pressing a repeat button that is faster than possible with human power (for example, to shoot very quickly). In games that support in-game asset trading, cheating can lead to fraudulent transactions involving fraudulent transactions involving assets of real economic value. When online or MMOG economic models are based on such asset transactions, this can result in substantial harmful consequences for game operators. • The cost of developing new games grows as PCs and consoles become more sophisticated (such as 'having more realistic graphics (such as instant light tracking), and more realistic behaviors such as real-time physics simulation. In the early days of the video game industry, video game development was very similar to the development of application software; that is, most of the development costs were in the development of software (as opposed to the development of graphics, audio and behavioral elements or "assets"). ), such as software development that can be developed for use in films with a wide range of special effects. Today, many cutting-edge video game development efforts are more similar to software development than software development. For example, many Video games provide simulations of the 3-D world, and produce characters, props, and environments that are increasingly realistic (that is, computer graphics that look like real-life images of live action shots). Photo-realistic game development is the most One of the challenges is to create a human face that cannot be distinguished from the human face of a living person. Techniques such as the ContourTM Authenticity Captive System developed by CA's San Franeisc〇 capture the precise geometry of the performer's face and track the performer's face with high resolution while the performer is in motion Geometry. This technology allows the reproduction of a 139852.doc -15- 200952495 3D face on a PC or game console. The 3D face can't actually be distinguished from the captured live action face. Accurately capture and reproduce "photo-realistic Human faces are useful in several ways. First, highly recognizable celebrities or athletes are often used in video games (often hired at high cost), and imperfections may be obvious to the user's and thus distracting the viewing experience or Unpleasant. Often, it requires a high degree of detail to achieve a high degree of photorealism - potentially the need to reproduce a large number of polygons and high-resolution textures (with polygons and/or textures moving over the frame based on the frame In the case of a change) 支援 A PC or game that supports the game when the high-polygon count scene with detailed texture changes quickly The console may not have enough shakuhachi "to store enough polygons and textures for the required number of frames generated in the game clip. In addition, it can usually be used on a single disc player on a PC or game console. Or a single disk drive is usually much slower than RAM, and usually cannot keep up with the maximum data rate that the GPU can accept in rendering polygons and textures. Current games usually load most polygons and textures into RAM, which means 〇 Given the complexity and duration of a given scene is largely limited by the capacity of the RAM. In the case of facial animation, for example, this may limit the PC or game console to a low-resolution face that is not realistic. Or limited to making a realistic face in a limited number of frames before the game is paused and the polygons and textures (and other bedding) for more frames are loaded. The field PC or console displays a message similar to "Loading...". Watching the progress bar moving slowly across the screen is recognized by users of today's complex video games as an inherent disadvantage. The next scene is from the disk (unless there is another J39852.doc 200952495 piece) otherwise the "disk" in this article refers to non-volatile optical media or magnetic media, as well as non-magnetic media such as semiconductor "flash" memory. The delay in loading can take several seconds or even a few minutes. This wastes time and can make gamers quite frustrated. As previously discussed, 'large or all delays may be due to loading of polygons, textures, or other material from the disk. Time may also be the case when the processor and/or GPU in the pc or console is ready for use. When loading the data of the scene, it takes a part of the loading time. For example, a soccer video game allows players to choose among a large number of players, group sports fields, and weather conditions. Therefore, depending on the particular combination selected, different polygons, textures, and other materials (collectively "objects") may be needed for the scene (for example, different groups have different colors and patterns on their uniforms). It is possible to enumerate many or all of the various arrangements and pre-calculate many or all of the objects in advance and store the objects on a disk for storing the game. However, if the number of arrays is large, the storage required for all objects may be too large to be mounted on the disk (or too unrealistically impossible to download). As a result, existing PC and console systems are typically constrained in both the complexity and playback duration of a given scene and suffer long loading times for complex scenes. Another significant limitation of prior art video game systems and application software systems is that they increasingly use large databases such as 3D objects (such as polygons and textures) that need to be loaded into ^ Or in the game console for processing. As described above, when the databases are stored on the disk at the 2nd end, the f library can take a long time to load. The right database is stored in a remote location and stored via the Internet. 139852.doc -17- 200952495 The load time is usually much more severe. It may take a few minutes, a few hours or even a few days to drop in the library. = Capital::::: A lot of money (for example, for games, movies or calendars: == fine 3D model of tall sailing ships) And intended to be sold to users. However, once the database is downloaded to the local user, it is used by Wm, (4) == Estimate the database to see if it is suitable for the user (for example, when

用者執仃特定移動時,用於遊戲人物之扣服裝是否具有滿 意的外觀或外表)的目的而希望下載資料庫。對於在決定 進行購買之前估計3D資料庫之使用者而言,長載入時間可 能係一阻礙。It is desirable to download the database for the purpose of whether the user's buckled clothing for the game character has a satisfactory appearance or appearance when performing the specific movement. Long load times can be a hindrance to users who estimate the 3D database before deciding to make a purchase.

類似問題在MMOG(特定言之,如允許使用者利用日益 定製化人物之遊戲)中出現。對於顯示人物之pc或遊戲控 制台,其需要能夠存取具有3D幾何形狀(多邊形、紋理等) 以及彼人物之行為(例如,若人物具有盾牌,則盾牌是否 足夠強以使矛偏轉)的資料庫。通常,當MM〇G由一使用 者初次玩時,用於人物之大量資料庫在遊戲之初始複本下 已經可用,遊戲之初始複本在本端在遊戲光碟上可用或經 下載至磁碟。但是,隨著遊戲進展,若使用者遭遇資料庫 在本端不可用之人物或物件(例如,若另一使用者已建立 一定製人物),則在可顯示彼人物或物件之前,必須下載 其資料庫。此可導致遊戲之實質延遲。 給定視訊遊戲之尖端性及複雜度,則在先前技術視訊遊 戲控制台情況下對視訊遊戲開發商及出版商之另一挑戰在 139852.doc -18· 200952495Similar problems arise in MMOGs (specifically, games that allow users to take advantage of increasingly customized characters). For pcs or game consoles that display characters, they need to be able to access data with 3D geometry (polygons, textures, etc.) and the behavior of the characters (for example, if the character has a shield, then the shield is strong enough to deflect the spear) Library. Typically, when MM〇G is played for the first time by a user, a large database for the character is available under the initial copy of the game, and the initial copy of the game is available on the game disc or downloaded to the disk at the local end. However, as the game progresses, if the user encounters a person or object that the database is not available at the local end (for example, if another user has created a custom character), the user or the object must be downloaded before the person or object can be displayed. database. This can result in a substantial delay in the game. Given the sophistication and complexity of video games, another challenge for video game developers and publishers in the case of prior art video game consoles was at 139852.doc -18· 200952495

於:開發視訊遊戲經常花費2年至3年,成本在數千萬美 元。假定新視訊遊戲控制台平台係以大致每隔五年一欠之 速率引入,則遊戲開發商需要在新遊戲控制台發行之前的 數年開始彼等遊戲之開發玉作,以便在發行新平台時使視 訊遊戲同時可用。來自競爭性製造商之若干個控制台有時 大約同時發行(例如,彼此在-年或兩年内),但尚待分曉 的係每一控制台之風行性(例如,哪個控制台將產生最大 視訊遊戲軟體銷售)。舉例而言,在近來的控制台循環 中,Microsoft χΒοχ 36〇、s〇ny piaystati〇n 3及施_〇 職 預定為在大約相同的一般時間框引入。但在該等引入之前 的數年中,遊戲開發商實質上必須「壓注」哪些控制台平 台將比其他者更成功,且相應地投入其開發資源。電影製 作公司亦必須在電影發行之前很長時間基於其估計可能成 功之電影而分攤其有限的製作資源。給定視訊遊戲所需之 投資之增長程度,則遊戲製作愈加變得類似電影製作,且 遊戲製作公司常規上基於其對特定視訊遊戲之將來成功的 估計而投入其製作資源。但是,不同於電影公司,此壓注 並非僅基於製作本身之成功;實情為,其依據於遊戲意欲 在其上執行之遊戲控制台的成功。同時在多個控制台上發 行遊戲可減輕風險,但此額外努力增加成本,且經常延遲 遊戲之實際發行。 pc上之應用程式軟體及使用者環境正變得更為計算上密 集、動態及互動,不僅使其在視覺上更吸引使用者,而且 使其更有用及直觀。舉例而言,新Windows VistaTM作業系 139852.doc -19- 200952495 統與Macintosh®作業系統之相繼版本兩者併有視覺動晝效 應。咼階圖形工具(諸如,來自Autodesk公司之MayaTM)提 供非常尖端之3D再現及動畫製作能力(其推動了目前技術 狀態的CPU及GPU之限制)^然而,此等新工具之計算要求 對於該等產品之使用者及軟體開發商而言產生許多實際問 題。 因為作業系統(OS)之視覺顯示必須在多種電腦(包括不 再出售但仍可隨著新OS而升級之前代電腦)上工作,〇s圖 形要求在很大程度上受OS意欲用於之電腦(其通常包括不 包括GPU之電腦)的最少共同點限制。此嚴重地限制〇s之 圖形能力。此外’電池供電之可攜式電腦(例如,膝上型 電腦)限制視覺顯示能力,因為CPU或GPU中之高計算活動 通常導致較高電力消耗及較短電池壽命。可攜式電腦通常 包括在不利用處理器時自動地減低處理器活動性以降低電 力消耗的軟體《在一些電腦型號中,使用者可手動地減低 處理器活動性。舉例而言’ Sony之VGN-SZ280P膝上型電 腦含有在一側上標記為「Stamina」(用於低效能,更長電 池壽命)且另一側上標記為「Speed」(用於高效能,較短電 池壽命)之交換器。在可攜式電腦上執行之OS必須能夠即 使在電腦以其峰值效能能力之一分率執行的情況下亦可用 地起作用。因此,OS圖形效能常常保持為遠低於目前技術 狀態的可用計算能力。 經常出售高端的計算上密集之應用程式(如Maya),期望 該等應用程式將用於高效能卩(:上。此通常產生高得多的效 139852.doc •20- 200952495 能,及更昂貴且可攜性較差、最少共同點之要求。因此, 該等應用程式具有比通用os(或通用生產力應用程式,類 似Microsoft 〇ffice)有限得多的目標受眾且通常以比通用 OS軟體或通用應用程式軟體低得多的量出售。潛在的受眾 • 進一步受限制,因為預期的使用者時常難以提前試用該等 . 计算上密集之應用程式。舉例而言,假設學生希望瞭解如 何使用Maya或已經知道該等應用程式之潛在購買者在購買 ❹ 巾希望在進行投資之前試用Maya(此可能涉及亦購買㈣ 執行Maya之高端電腦當學生或潛在購買者可下載 之演示版本或得到Maya演示版本之實體媒體複本時,若其 缺乏能夠執行Maya至其全部潛能(例如,處理複雜3D場景) 之電腦,則其將不能夠進行產品之全方位評估。此實質上 限制該等高端應用程式之受眾。其亦使出售價格變高因 為開發成本通常經由比通用應用程式之麟買次數小得多之 購買次數而清償。 Θ 高價應用程式亦對使用應用程式軟體之盜版複本之個體 及商業產生更多刺激。因此,高端應用程式軟體遭受猎派 盜版’儘管該軟體之出版商進行了大量努力來藉由各種技 術減輕該盜版。但是,甚至當使用盜版的高端應用程式 時’使用者亦不可能排除投資昂責的目前技術狀態的pc來 執行盜版複本之需要。因此,儘管使用者可以軟體應用程 式之實際零售價格之一分率獲得軟體應用程式之使用,但 盜版軟體之使用者仍需要購買或獲得昂貴的pc,以便完全 利用該應用程式。 139852.doc -21 · 200952495 此對於高效能盜版視訊遊戲之使用者同樣成立。儘管盜 版者可以遊戲之實際價格之一分率得到遊戲,但其仍需要 購買適當地玩遊戲所需的昂貴計算硬體(例如,GPu•增強 型PC,或類似XBox 360之高端視訊遊戲控制台)。假定視 • 訊遊戲通常為消費者之娛樂,則用於高端視訊遊戲系統之 額外成本可為過於昂貴的。此情形在當前工人之平均年收 入相當低(相對於美國之當前工人平均年收入)的國家(例 如’中國)中更糟。因此,小得多的百分比之人口擁有高 ® 端視訊遊戲系統或高端PC。在該等國家中,使用者可支^ 費用以使用連接至網際網路之電腦的「網咖」相當普遍。 經常地,該等網咖具有不具有高效能特徵(諸如,原本可 使玩家能夠玩計算上密集之視訊遊戲的GPU)的較舊型號 或低端PC。此為在低端PC上執行之遊戲成功的關鍵因素 (諸如,Vivendi之「魔獸世界」,其在中國高度成功,且通 常係在中國的網咖中玩)。相比之下,計算上密集之遊戲 φ (如「第二人生」)更不可能在安裝於中國網咖中之PC上 玩該等遊戲實際上達不到僅能夠存取網咖中之低效能pc 的使用者。 對於考慮講貝視訊遊戲且首先願意藉由經由網際網路將 /臾示下载至其豕庭而試用遊戲之示範版本的使用者亦存在 障礙。視訊遊戲演示常常為遊戲之全能版本,其中一些特 徵停用,或對遊戲播放之量施加限制。此可能涉及在可將 遊戲安裝於PC或控制台上且在Pc或控制台上執行之前下 載數十億位元組之資料的長過程(可能幾個小時)。在pc之 139852.doc •22· 200952495 狀況下,其亦可能涉及算出遊戲需要哪些特殊驅動器(例 如,DirectX或0penGL驅動器),下載正確的版本,安裝正 確的版本,及接著判定PC是否能夠播放該遊戲。此後者步 驟可能涉及判定PC是否具有足夠的處理(cpu及㈣)能 • 力、足夠的汉鳩及相容的〇s(例如,一些遊戲在wind〇ws • XP上執行而不在Vista上執行)。因此,在試圖執行視訊遊 戲演示之長過程之後,使用者可能發現視訊遊戲演示不可 ❹能玩(給疋使用者之PC組態)。更糟地,一旦使用者已下載 新驅動器以便嘗試該演示,此等驅動器版本就可能與使用 者在PC上習慣使用的其他遊戲或應用程式不相容,因此, 演示之安裝可致使先前可操作的遊戲或應用程式不能操 作。此等障礙不僅使使用者受挫’而且其對視訊遊戲軟體 出版商及視訊遊戲開發商銷售其遊戲產生障礙。 導致不具經濟效益之另一問題與以下事實有關:給定pc 或遊戲控制台通常經設計以適應對應用程式及/或遊戲的 Φ 特定程度之效能要求。舉例而言,一些PC具有或多或少之 RAM、較緩慢或較快之CPu及較緩慢或較快之GPU(若其 具有GPU) ^ —些遊戲或應用程式利用給定pc或控制台之 全計算能力’而一些遊戲或應用程式卻不利用給定PC或控 制台之全計算能力。若使用者之遊戲或應用程式之選擇未 達到本端PC或控制台之峰值效能能力,則使用者可能由於 未利用之特徵而在PC或控制台上浪費了財力。在控制台之 狀況下’控制台製造商可能支付地比資助控制台成本所要 的多。 139852.doc •23· 200952495Yu: It takes 2 to 3 years to develop video games, and the cost is tens of millions of dollars. Assuming that the new video game console platform is introduced at a rate that is roughly owed every five years, game developers need to start developing their games in the years before the new game console is released, so that when a new platform is released. Make video games available at the same time. Several consoles from competing manufacturers are sometimes released at about the same time (for example, within - or two years of each other), but it remains to be seen that each console is popular (for example, which console will produce maximum video) Game software sales). For example, in recent console loops, Microsoft χΒοχ 36〇, s〇ny piaystati〇n 3, and 〇 〇 jobs are scheduled to be introduced in approximately the same general time frame. But in the years leading up to these introductions, game developers must essentially “press” which console platforms will be more successful than others and invest their development resources accordingly. Film production companies must also share their limited production resources for a long time before the film is released based on the film that it estimates may be successful. Given the degree of investment required for video games, game production is becoming more and more similar to film production, and game production companies are routinely investing in their production resources based on their estimates of the future success of a particular video game. However, unlike film companies, this bet is not based solely on the success of the production itself; the truth is that it is based on the success of the game console on which the game is intended to execute. Simultaneously launching games on multiple consoles mitigates the risk, but this extra effort increases costs and often delays the actual release of the game. The application software and user environment on the PC are becoming more computationally intensive, dynamic and interactive, making it more visually appealing to the user and making it more useful and intuitive. For example, the new Windows VistaTM operating system 139852.doc -19- 200952495 and the successive versions of the Macintosh® operating system have visual effects. Advanced graphics tools (such as MayaTM from Autodesk) provide very sophisticated 3D rendering and animation capabilities (which push the limits of current state of the art CPU and GPU). However, the computational requirements for these new tools are Users of the product and software developers have many practical problems. Because the visual display of the operating system (OS) must work on a variety of computers (including those that are no longer sold but can still be upgraded with the new OS), the graphics requirements are largely influenced by the computer that OS intends to use. The minimum commonality limit (which typically includes computers that do not include GPUs). This severely limits the graphics capabilities of 〇s. In addition, battery powered portable computers (e.g., laptops) limit visual display capabilities because high computing activity in the CPU or GPU typically results in higher power consumption and shorter battery life. Portable computers typically include software that automatically reduces processor activity to reduce power consumption when the processor is not in use. In some computer models, the user can manually reduce processor activity. For example, 'The Sony VGN-SZ280P laptop has a side labeled "Stamina" on one side (for low performance, longer battery life) and the other side is labeled "Speed" (for high performance, Switch for shorter battery life). An OS executing on a portable computer must be able to function even when the computer is executed at one of its peak performance capabilities. As a result, OS graphics performance often remains available at much lower computing power than current state of the art. Frequently selling high-end computing-intensive applications (such as Maya), expecting these applications to be used for high-performance (:. This usually produces much higher efficiency 139852.doc •20- 200952495 can, and more expensive They are less portable and have the least commonality. Therefore, these applications have a much lower target audience than general-purpose os (or universal productivity applications, similar to Microsoft 〇ffice) and are usually more general-purpose OS software or general-purpose applications. The software is sold at a much lower volume. Potential audiences • Further limited because it is often difficult for prospective users to try out these intensive applications in advance. For example, suppose students want to know how to use Maya or already know Potential purchasers of such applications will try to use Maya before purchasing the investment (this may involve also purchasing (4) executing a high-end computer from Maya as a demo version that can be downloaded by a student or potential purchaser or a physical media that is available in a Maya demo version. At the time of the copy, if it lacks the ability to perform Maya to its full potential (for example, to handle complex 3D scenes) , it will not be able to conduct a comprehensive evaluation of the product. This essentially limits the audience of these high-end applications. It also makes the sale price higher because the development cost is usually purchased much less than the number of purchases of the generic application. The number of applications is also paid off. Θ High-priced applications also generate more incentives for individuals and businesses using pirated copies of the application software. Therefore, high-end application software suffers from piracy and piracy, although publishers of the software have made great efforts to Various technologies mitigate this piracy. However, even when using pirated high-end applications, it is impossible for users to exclude the need to invest in the current state of the art pc to perform pirated copies. Therefore, although users can use software applications One of the actual retail prices is used by software applications, but users of pirated software still need to purchase or get expensive PCs to fully utilize the application. 139852.doc -21 · 200952495 This is a high-performance pirated video game. The user is also established. Although the pirates can play the actual game Get a game at a rate, but still need to buy the expensive computing hardware needed to play the game properly (for example, GBu•Enhanced PC, or a high-end video game console like XBox 360). Assume video game Often for consumer entertainment, the extra cost for high-end video game systems can be prohibitively expensive. This situation is in countries where the average annual income of current workers is quite low (relative to the current average annual income of workers in the US) (eg ' China) is even worse. As a result, a much smaller percentage of the population has a high-end video game system or a high-end PC. In these countries, users can pay for the use of computers connected to the Internet. Coffee is quite common. Often, these cybers have older models or low-end PCs that do not have high-performance features, such as GPUs that would otherwise enable players to play computationally intensive video games. This is a key factor in the success of games executed on low-end PCs (such as Vivendi's World of Warcraft, which is highly successful in China and is usually played in Chinese Internet cafes). In contrast, computationally intensive games φ (such as "Second Life") are less likely to play such games on PCs installed in Chinese Internet cafes, which actually do not achieve the low performance of only accessing Internet cafes. User of pc. There are also obstacles to users who are considering a video game and are first willing to try out a demo version of the game by downloading/displaying it to the court via the Internet. Video game demos are often a versatile version of the game, some of which are deactivated or impose limits on the amount of game play. This may involve a long process (possibly several hours) of downloading billions of bytes of data before the game can be installed on a PC or console and executed on a Pc or console. In the case of pc 139852.doc •22· 200952495, it may also involve calculating which special drivers (such as DirectX or 0penGL drivers) the game needs, downloading the correct version, installing the correct version, and then determining if the PC can play the game. The latter steps may involve determining if the PC has sufficient processing (cpu and (iv)) capabilities, sufficient suffixes, and compatible ss (for example, some games are executed on wind〇ws • XP and not on Vista). . Therefore, after attempting to perform the video game demonstration process, the user may find that the video game demo cannot be played (for the user's PC configuration). Worse, once the user has downloaded a new drive to try the demo, these drive versions may be incompatible with other games or applications that the user is accustomed to using on the PC, so the installation of the demo may render the previous operation The game or application cannot be operated. These obstacles not only frustrate users, but they also create obstacles for video game software publishers and video game developers to sell their games. Another problem that leads to non-economic benefits is related to the fact that a given pc or game console is typically designed to accommodate a certain degree of performance requirements for the application and/or game. For example, some PCs have more or less RAM, a slower or faster CPu, and a slower or faster GPU (if they have a GPU). ^ Some games or applications use a given pc or console. Full computing power' while some games or applications don't take advantage of the full computing power of a given PC or console. If the user's game or application selection does not meet the peak performance capabilities of the local PC or console, the user may be wasting money on the PC or console due to unused features. In the case of a console, the console manufacturer may pay more than the cost of funding the console. 139852.doc •23· 200952495

存在於視訊遊戲之銷售及享受中的另一問題涉及在使用 者實施購買遊戲之前允許使用者觀看他人玩遊戲。存在用 於記錄視訊遊戲以在稍後時間重放的若干先前技術方法。 舉例而言,美國專利第5,558,339號教示了在「遊戲播放」 期間將遊戲狀態資訊(包括遊戲控制器動作)記錄於視訊遊 戲用戶端電腦(由同一或不同使用者擁有)中。此狀態資訊 可在稍後時間使用以在視訊遊戲用戶端電腦(例如,pc或 控制台)上重放一些或所有遊戲動作。此方法之顯著缺點 在於:對於檢視已記錄之遊戲的使用者,使用者必須具有 能夠播放該遊戲之視訊遊戲用戶端電腦且必須具有在彼電 腦上執行之視訊遊戲應用程式,以使得當重放已記錄之遊 戲狀態時遊戲播放係等㈣。除此之外’視訊遊戲應用程 式必須係以在已記錄之遊戲與經回放之遊戲之間不存在可 能的執行差異的此種方式編寫。 舉例而言,遊戲圖形大體係在圖框接圖框基礎上計算。 對於許多遊戲,取決於場景是否特別複雜 執行之其他延遲(例如,在-上,另-過程可能正在I 行,以致自遊戲應用程式奪走CPU循環),遊戲邏輯有時可 能花費比一圖框時間短或比一圖框時間長之時間來計算為 下-個圖框而顯示之圖形。在此種遊戲中,以比一圖框時 間稍少之時間(例如,少幾個CPU時脈循環)計算的「臨限 值」圖框最終可出現。當使用穿令 S使用凡全相冋之遊戲狀態資訊再 次計算彼同一場景時,可能容易;?f鲁!^ 今易知費比一圖框時間多幾個Another problem that exists in the sale and enjoyment of video games involves allowing the user to watch others play the game before the user implements the purchase of the game. There are several prior art methods for recording video games for playback at a later time. For example, U.S. Patent No. 5,558,339 teaches that game state information (including game controller actions) is recorded during a "game play" on a video game client computer (owned by the same or different users). This status information can be used at a later time to replay some or all of the game actions on a video game client computer (e.g., a pc or console). A significant disadvantage of this method is that for a user who views a recorded game, the user must have a video game client computer capable of playing the game and must have a video game application executing on the computer to enable playback. The game play status, etc. when the game state has been recorded (4). In addition to this, the video game application must be written in such a way that there is no possible difference in execution between the recorded game and the played back game. For example, the game graphics system is calculated based on the frame of the frame. For many games, depending on whether the scene is particularly complex to perform other delays (for example, on-the, another-process may be on the I line, so that the CPU loop is taken away from the game application), the game logic may sometimes cost a frame The time is short or longer than a frame time to calculate the graphic displayed as the next frame. In such a game, a "threshold value" frame calculated with less time than a frame time (for example, a few CPU clock cycles) may eventually appear. It may be easy to use the wear order S to calculate the same scene again using the game state information of all the relatives; ^ This time I know a few more than a frame time

CPU時脈循環之時間(例如,若内部cPU 匯流排稍微與外部 139852.doc •24- 200952495CPU clock cycle time (for example, if the internal cPU bus is slightly externally 139852.doc •24- 200952495

RAM匯流排不同相’且即使不存在來自自遊戲處理奪走 數毫秒咖時間之另一過程的大延遲,其亦^幾個CPU 循環時間之延遲)。因此,當回放遊戲時,圖框變成以兩 個圖框時間計算而非以單一圖框時間計算。一些行為係基 於遊戲計算新圖框之頻率(例如,當遊戲取樣來自遊戲控 制器之輸人時)。當播放遊戲時,用於不同行為的時間參 考中之此偏差不會影響遊戲播放,但其可導致所回放之遊 戲產生不同結果。舉例而言,若籃球之軌道係以穩定的 fps速率來計算,但遊戲控制器輸入係基於經計算之圖框 之速率來取樣,則當記錄遊戲時,經計算之圖框之速率可 能為53 fps,而當重放遊戲時,經計算之圖框之速率可能 為52 fps,此可使得籃球是否被阻止進入籃中存在差異, 從而導致不同結果。因此,使用遊戲狀態記錄視訊遊戲需 要非常謹1"真之遊戲軟體設計,以確保使用同一遊戲狀態資 訊重放產生完全相同之結果。 用於s己錄視訊遊戲之另一先前技術方法係僅記錄pc或視 訊遊戲系統之視訊輸出(例如,至VCR、DVD記錄器,或 至PC上之視訊俘獲板)。接著可將視訊回倒及重放,或替 代地’將已記錄之視訊上載至網際網路(通常在將視訊壓 縮之後)。此方法之不利之處在於:當回放3D遊戲序列 時’使用者限於僅自檢視點(序列被自其記錄)來檢視序 列。換言之’使用者不可改變場景之檢視點。 另外,當經由網際網路而使在家庭PC或遊戲控制台上播 放的已記錄之遊戲序列的經壓縮之視訊為其他使用者可用 139852.doc -25- 200952495 時,即使視訊係即時壓縮,亦不可能即時地將經壓縮之視 訊上載至網際網路。其原因係因為世界上連接至網際網路 之許多家庭具有高度不對稱之寬頻帶連接(例如,DSL及電 纜數據機通常具有比上傳頻寬高得多的下傳頻寬)。經壓 _ 縮之高解析度視訊序列常常具有比網路之上傳頻寬容量高 的頻寬,使得其不可能即時上載。因此,在播放遊戲序列 之後(可此幾分鐘或甚至幾小時),在網際網路上之另一使 參用者能夠檢視該遊戲之前,將存在顯著延遲。儘管此延遲 在特定情形下(例如,觀看在先前時間出現的遊戲玩家之 成果)可容忍,但其消除了觀看遊戲現場直播(例如,由優 勝玩家玩的籃球錦標赛)之能力或現場直播地播放遊戲時 的「即刻重放」能力。 另一先前技術方法允許具有電視接收器之檢視者觀看視 汛遊戲現場直播’但僅在電視製作人員之控制下。美國與 其他國家中的一些電視頻道提供視訊遊戲檢視頻道,其中 φ 電視觀眾能夠在視訊遊戲頻道上觀看特定視訊遊戲使用者 (例如,參加錦標赛之頂級玩家)β此藉由將視訊遊戲系統 (pc及/或控制台)之視訊輸出饋送至用於電視頻道之視訊分 配及處理設備中來完成。此正如電視頻道廣播現場直播之 藍球比賽時的情況,其中若干個相機自籃球場周圍之不同 角度提供現場直播之饋送。電視頻道接著能夠利用其視訊/ 音訊處理及效應設備來操縱來自各種視訊遊戲系統之輸 出。舉例而言,電視頻道可在來自視訊遊戲的視訊之上上 覆指示不同玩家之狀態的文字(正如其可在現場直播之籃 139852.doc -26- 200952495 球比赛期間上覆文字),且電視頻道可加錄來自評論員(其 可論述在比赛期間出現之動作)之音訊。另外,可將視訊 遊戲輸出與記錄遊戲之實際玩家之視訊的相機(例如,展 示玩家對遊戲之情緒反應)組合。 此方法之一問題在於:必須即時地使該等現場直播之視 訊饋送為電視頻道之視訊分配及處理設備可用,以便使其 具有現場直播之廣播的刺激性。然而,如先前所論述,當 視訊遊戲系統係自家庭執行時(尤其是當廣播之一部封包 化括來自正俘獲遊戲玩家之真實世界視訊之相機的現場直 播之視訊時)’此常常不可能。另外,在錦標賽情形下, 所關注的為家庭中遊戲者可修改遊戲及作弊,如先前所描 述》由於此等原因,電視頻道上之該等視訊遊戲廣播常常 配置有聚集於公共位置處(例如,在電視演播室處或在競 技場中)之播放器及視訊遊戲系統,其中電視製作設備可 接受來自多個視訊遊戲系統及潛在的現場直播之相機的視 訊饋送。 儘管該等先前技術視訊遊戲電視頻道可為電視觀眾提供 非常刺激之演出(其為與現場直播之運動事件同類(例如, 運動員」呈現之視訊遊戲玩家同類)的體驗,不僅 根據其在視訊遊戲纟界中之動# ’而且根據其在真實世界 中之動作),但此等視訊遊戲系統常常限於玩家彼此實體 極接近之情形。此外’因為電視頻道係經廣播,所以每一 經廣播之頻道僅可展示由電視頻道之製作人員選擇的一視 訊流。由於此等限制及廣播時間、製作設備及製作人員之 139852.doc -27· 200952495 高成本’該等電視頻道通常僅展示參加頂級錦標賽之頂級 玩家。 另外,向全部電視觀眾廣播視訊遊戲之全螢幕影像的給 定電視頻道每次僅展示一視訊遊戲《此嚴重地限制電視檢 視者之選擇。舉例而言,電視檢視者可能對給定時間展示 之遊戲不感興趣。另一檢視者可能僅對觀看並非由電視頻 道在給定時間放映的特定玩家之遊戲播放感興趣。在其他The RAM bus is out of phase' and even if there is no large delay from another process that takes a few milliseconds of coffee time from the game processing, it also has a delay of several CPU cycles. Therefore, when the game is played back, the frame becomes calculated in two frame times instead of a single frame time. Some behaviors are based on the frequency at which the game calculates new frames (for example, when the game samples from the game controller's input). This deviation in the time reference for different behaviors does not affect the game play when the game is played, but it can cause the game being played back to produce different results. For example, if the basketball track is calculated at a stable fps rate, but the game controller input is sampled based on the calculated frame rate, the calculated frame rate may be 53 when the game is recorded. Fps, and when replaying the game, the calculated frame rate may be 52 fps, which can cause differences in whether basketball is prevented from entering the basket, resulting in different results. Therefore, the use of game state recording video games requires a very good 1"true game software design to ensure that the same game state information playback produces exactly the same results. Another prior art method for recording video games is to record only the video output of the pc or video game system (e.g., to a VCR, a DVD recorder, or to a video capture board on a PC). The video can then be rewinded and replayed, or alternatively the recorded video can be uploaded to the Internet (usually after video compression). The disadvantage of this method is that the user is limited to viewing only the self-test viewpoint (the sequence is recorded from it) when playing back the 3D game sequence. In other words, the user cannot change the view point of the scene. In addition, when the compressed video of the recorded game sequence played on the home PC or the game console via the Internet is available to other users 139852.doc -25- 200952495, even if the video system is compressed immediately, It is not possible to upload compressed video to the Internet in real time. The reason for this is because many homes connected to the Internet in the world have highly asymmetric broadband connections (for example, DSL and cable modems typically have a much lower downlink bandwidth than the upload bandwidth). High-resolution video sequences that are compressed and often have a higher bandwidth than the bandwidth of the network's upload bandwidth, making it impossible to upload on the fly. Therefore, after playing the game sequence (which may take a few minutes or even hours), there will be a significant delay before another participant on the Internet can view the game. Although this delay can be tolerated in certain situations (eg, viewing the outcome of a game player that appeared at a previous time), it eliminates the ability to watch a live game of the game (eg, a basketball tournament played by a winning player) or live broadcast. The "immediate playback" capability when playing a game. Another prior art method allows a viewer with a television receiver to watch a video game live broadcast 'but only under the control of the television producer. Some TV channels in the United States and other countries provide video game detection video channels, in which φ TV viewers can view specific video game users on the video game channel (for example, participate in the top players of the tournament) β by using the video game system ( The video output of the pc and/or console is fed into the video distribution and processing device for the television channel. This is the case when the TV channel broadcasts a live broadcast of the basketball game, several of which provide live feeds from different angles around the basketball court. The television channel can then utilize its video/audio processing and effects devices to manipulate the output from various video game systems. For example, a television channel can overlay text indicating the status of different players on top of the video from the video game (as it can be overwritten during the live broadcast of the basket 139852.doc -26-200952495 ball game), and the television The channel can add audio from commentators who can discuss the actions that occur during the game. In addition, the video game output can be combined with a camera that records the video of the actual player of the game (e.g., exhibiting the player's emotional response to the game). One of the problems with this approach is that the live video feeds must be made available instantly to the video distribution and processing equipment of the television channel to make it stimulating for live broadcasts. However, as previously discussed, when the video game system is from home execution (especially when a broadcast packet is included in a live broadcast video from a camera that captures the real world video of the game player), this is often impossible. . In addition, in the case of tournaments, the focus is on the game in the home where the player can modify the game and cheat, as described previously, for these reasons, the video game broadcasts on the television channel are often configured to be gathered at a common location (eg A player and video game system at a television studio or in an arena where the television production device can accept video feeds from multiple video game systems and potentially live broadcast cameras. Although such prior art video game television channels can provide a very stimulating performance for a television viewer (which is the same experience as a live video event (eg, an athlete) presented by a video game player, not only based on its video game 纟The movement in the world # 'and according to its actions in the real world), but these video game systems are often limited to situations where players are physically close to each other. In addition, because the television channels are broadcast, each broadcast channel can only display a video stream selected by the producer of the television channel. Due to these restrictions and broadcast time, production equipment and production staff, 139852.doc -27· 200952495 high cost 'these TV channels usually only show top players participating in the top tournaments. In addition, a given television channel that broadcasts a full screen image of a video game to all television viewers displays only one video game at a time. This severely limits the choice of television viewers. For example, a TV viewer may not be interested in a game displayed at a given time. Another viewer may only be interested in watching a particular player's game play that is not shown by the video channel at a given time. In other

狀況下’檢視者可能僅對觀看内行玩家如何處理遊戲中之 特定級別感興趣。其他檢視者可能希望控制檢視點(視訊 遊戲係自其來看),該檢視點不同於由製作小組等選擇之 檢視點。簡S之,電視檢視者在觀看視訊遊戲中可能具有 無數的偏好(即使若干個不同電視頻道可用,電視網路之 特疋廣播亦不適應該等偏好由於所有上述原因,使得 先前技術視訊遊戲電視頻道在向電視檢視者呈現視訊遊戲 中具有顯著限制。 先前技術視訊遊戲系統及應用程式軟體系統之另一缺點 在於:其複雜’且通常遭受錯誤、崩潰及/或非所欲且不 需要的行為(統稱「缺陷」)°儘管遊戲及制程式在發行 之前通常經歷除錯及調譜過程(經f稱為「軟體品質保 證」或SQA)’但幾乎不變的是:—旦遊戲或應用程式被 發行至領域令之廣大受眾,缺陷就會突然出現。遺憾的 疋’軟體開發商難以在發行之後識別及追縱到許多缺陷。 軟體開發商可能難以意識到缺陷。即使當其瞭解一缺陷 時,亦可㈣存在其可心朗是㈣引起㈣陷的有限 139852.doc •28· 200952495 量之資訊。舉例而言,使用者可打電話給遊戲開發商之消 費者服務熱線且留下訊息,該訊息陳述:當玩遊戲時,榮 幕開始閃爍,接著改變成固體藍且PC凍結。其為Sqa小組 提供了在追蹤缺陷中有用的非常少之資訊。線上連接之一 • 些遊戲或應用程式在特定狀況下有時可提供更多資訊。舉 • 例而言,有時可使用「看門狗」過程來監視遊戲或應用程 式是否「崩潰」。看門狗過程可收集遊戲或應用程式崩潰 ❹ 時關於遊戲或應用程式過程之狀態(例如,記憶體堆疊之 使用狀態、遊戲或應用程式進展至之程度等)的統計,且 接著經由網際網路而將彼資訊上載至SQA小組。但在複雜 遊戲或應用程式中,該資訊可花費非常長之時間來解密, 以便準確地判定在崩潰時使用者正在進行什麼。儘管如 此’亦不可能判定何事件序列導致崩潰。 與pc及遊戲控制台相關聯之又一問題在於:其經受使消 費者極不便利之服務問題。服務問題亦影響PC或遊戲控制 Φ 台之製造商,因為其通常需要發送特殊盒子以安全地裝運 破損的PC或控制台,且因而招致修理之成本(若pc或控制 台處於保修期内)。遊戲或應用程式軟體出版商亦可受處 於修理狀態中之p c及/或控制台引㈣銷售損失(或線上服 務使用)影響。 圖 1 說明諸如 Sony Playstation(g) 3、Micr〇s〇ft xb〇x 36〇®、Nintendo WiiTM、WWind〇ws為基礎之個人電腦或 APPle Macintosh的先前技術視訊遊戲系统。此等系統中之 每-者包括用於執行程式碼之中央處理單元(cp叫通常為 139852.doc -29· 200952495In the case of a 'viewer' may only be interested in seeing how an insider handles a particular level in the game. Other viewers may wish to control the view point (from which the video game is viewed), which is different from the view point selected by the production team or the like. Jane S, TV viewers may have countless preferences in watching video games (even if several different TV channels are available, the special broadcast of the TV network should not be suitable for preference for all of the above reasons, making the prior art video game TV channel There are significant limitations in presenting video games to television viewers. Another disadvantage of prior art video game systems and application software systems is that they are complex and often suffer from errors, crashes, and/or unwanted and unwanted behaviors ( Collectively referred to as "defects") ° Although games and programming programs usually undergo debugging and grading processes (called "software quality assurance" or SQA), they are almost unchanged: - games or applications are Defects will suddenly appear in a wide range of audiences issued to the field. Unfortunately, software developers have difficulty identifying and tracking many defects after they are released. Software developers may find it difficult to recognize defects, even when they understand a defect. It can also be (4) that there is a limited amount of 139852.doc •28·200952495 information that can be caused by (4). For example, the user can call the game developer's consumer service hotline and leave a message stating that when playing the game, the glory begins to flash, then changes to solid blue and the PC freezes. It is the Sqa group. Provides very little information useful in tracking defects. One of the online connections • Some games or applications sometimes provide more information under certain conditions. For example, sometimes a “watchdog” can be used. The process of monitoring whether a game or application "crashes." The watchdog process collects information about the state of the game or application process when the game or application crashes (for example, the state of use of the memory stack, the game or application progresses to it) Statistics of the degree, etc., and then uploading the information to the SQA team via the Internet. However, in a complex game or application, the information can take a very long time to decrypt, in order to accurately determine the user at the time of the crash. What is going on. However, it is impossible to determine what sequence of events caused the crash. Another question associated with pc and game console It is: it suffers from service problems that are extremely inconvenient for consumers. Service issues also affect manufacturers of PCs or game consoles because they usually need to send special boxes to safely ship damaged PCs or consoles, and thus incur repairs. Cost (if the pc or console is under warranty). The game or application software publisher may also be affected by the loss of sales (or online service usage) in the repaired state of the pc and/or console. For example, Sony Playstation(g) 3, Micr〇s〇ft xb〇x 36〇®, Nintendo WiiTM, WWind〇ws-based PC or APPle Macintosh's prior art video game system. Each of these systems includes Central processing unit for executing code (cp is usually 139852.doc -29· 200952495

用於執行高階圖形操作之圖形處理單元(GPU)),及用於與 外部器件及使用者通信的多個形式之輸入/輸出(I/O)。為 簡單起見,將此等組件展示為組合在一起為單一單元 1〇〇。圖1之先前技術視訊遊戲系統亦展示為包括光學媒體 驅動器104(例如,DVD-ROM驅動器);用於儲存視訊遊戲 程式碼及資料之硬碟機103;用於播放多人遊戲、用於下 載遊戲、修補程式、演示或其他媒體之網路連接1〇5;用 於儲存當前正由CPU/GPU 100執行之程式碼的隨機存取記 憶體(RAM)lOl ;用於在遊戲播放期間接收來自使用者之 輸入命令的遊戲控制器106;及顯示器件1〇2(例如,SDTV/ HDTV或電腦監視器)。 圖1中所展示之先前技術系統遭受若干限制。首先,與 RAM 101之存取速度相比較,光碟機1〇4及硬碟機1〇3往往 具有緩慢得多的存取速度。當直接經由RAM 1〇1工作時, 由於RAM 101通常具有高得多的頻寬且不會遭受光碟機構 之相對長的搜尋延遲的事實,CPU/GPU 1〇〇在實踐中可處 理比直接自硬碟機103或光碟機104讀出程式碼及資料時可 能的每秒多邊形數多得多的每秒多邊形數。但僅有限量之 RAM提供於此等先前技術系統中(例如,256 512死位元 組)。因此’常常需要「正在載入…」序列,其中rami〇i 被週期性地填以用於視訊遊戲之下一個場景的資料。 -些系統試圖同時地重疊程式碼之載入與遊戲播放,但 此僅可在存在已知序収事件時進行⑷如,若正沿道路 氣驶車’則可在駕駛車的同時載人路旁之正接近的建築物 139852.doc •30- 200952495 的幾何形狀)。對於複雜及/或快速場景改變,此類型之重 叠通常不起作業。舉例而言,在使用者處於戰役進行之中 且在彼時刻之視圖内RAM 101完全被填滿表示物件之資料 的狀況下’右·使用者將視圖快速地向左移動以檢視當前未 載入於RAM 1 01中之物件,則將導致動作之不連續性,因 為不存在足夠的時間來將新物件自硬碟機1〇3或光碟機1〇4 載入至RAM 101中。 圖1之系統的另一問題係由於硬碟機103及光學媒體1〇4 之儲存容量之限制引起。儘管磁碟儲存器件可被製造成有 相對大之儲存容量(例如,500億位元組或5〇〇億位元組以 上),但其仍不提供用於在當前視訊遊戲中所遭遇之特定 情況的足夠儲存容量。舉例而言,如先前所敍述,英式足 球視訊遊戲可允許使用者在全世界的許多小組、玩家及運 動場當中選擇。對於每一小組、每一玩家及每一運動場, 需要大量紋理映射及環境映射來特徵化世界上之3D表面 〇 (例如,每一小組具有一唯一運動衫,每一者需要一唯一 紋理映射)》 用於解決此後者問題之—技術係:對於遊戲,-旦使用 者選擇了、,文理及環境映射,就預先計算紋理及環境映射。 此可涉及許多„十算上密集之過程,包括解塵縮影像、3D映 Μ陰t/組織資料結構等。因此,當視訊遊戲執行此 等冲算時’對於使用者可能存在延遲。減少此延遲之一方 法原則^為.最初開發遊戲時執行所有此等計算-包括小 豕名冊及運動場之每—排列。遊戲之發行版本因而 139852.doc .31 - 200952495 將包括儲存於光學媒體104上或網際網路上之一或多個伺 服器上的所有此經預先處理之資料,當使用者作出選擇 時,僅經由網際網路將用於給定小組、玩家名冊、運動場 選擇的選疋之預先處理之資料下載至硬碟機1〇3。然而, 作為實際問題,遊戲播放中可能的每個排列之該預先載入 ' 之貝料可能輕易地為數太位元組(terabyte)之資料,其遠超 過現今的光學媒體器件之容量。此外,用於給定小組、玩 φ 家名冊、運動場選擇之資料可能輕易地為數億位元組之資 料或數億位元組以上之資料。在家庭網路連接之情況下 (例如,10 Mbps),經由網路連接1〇5下載此資料將比在本 端計算資料花費更長時間。 因此,圖1中所展示之先前技術遊戲架構使使用者在複 雜遊戲之較大場景轉變之間經受顯著延遲。 諸如圖1中所展示之先前技術方法的先前技術方法的另 一問題在於:這些年來,視訊遊戲傾向於變得更高階且需 ⑩ 要更多CPU/GpU處理能力。因此,即使採用無限量之 RAM,視訊遊戲硬體要求亦超過此等系統中可用之處理能 力的峰值位準。因此,需要使用者每隔幾年升級遊戲硬體 以保持同步(或以較低品質水準玩較新遊戲)。比以往更高 階之視訊遊戲之趨勢的一後果為:用於家庭用途的玩視訊 遊戲之機器通常不具經濟效益,因為其成本通常係由其可 支援之最兩效能遊戲的要求來判定。舉例而言,可能使用 XBox 360來玩類似「戰爭機器(Gears War)」之遊戲, 該遊戲要求高效能之CPU、GPU及數億位元組之RAM,或 139852.doc 32· 200952495 者可能使用XBox 360來玩「吃豆(Pac Man)」,其為來自2〇 世紀70年代之遊戲,其僅需要數千位元組之RAM及非常低 效能之CPU。實際上,XBox 36〇具有同時主機代管許多同 時的「吃豆」遊戲的足夠計算能力。 在一週之大多數小時中,通常切斷視訊遊戲機。根據 • 2006年7月Nlelsen娛樂對丨3歲及13歲以上之活躍遊戲者的 研究,平均起來,活躍遊戲者一週中花費十四個小時或一 ❹ 週中的全部小時之僅12〇/〇來玩控制台視訊遊戲。此意謂平 均視訊遊戲控制台在88%之時間内閒置,此為昂貴資源之 無效率使用》假定視訊遊戲控制台常常係由製造商來資助 以降低購買價格(期望該資助將藉由來自未來視訊遊戲軟 體購買之版稅來賺回),則此特別有意義。 視訊遊戲控制台亦招致與幾乎任何消費者電子器件相關 聯的成本。舉例而言,需要將系統之電子器件及機構容納 於外殼中。製造商需要提供服務保證。出售該系統之零售 φ 商需要收取關於系統之銷售及/或關於視訊遊戲軟體之銷 售的利潤。所有此等因素添加視訊遊戲控制台之成本,該 成本必須由製造商來資助、傳遞至消費者,或者由製造商 與消費者兩者來資助》 另外’盜版係視訊遊戲工業之較大問題。實際上每個較 大視訊遊戲系統上所利用的安全機構這些年來已「破 裂」’導致視訊遊戲之未經授權的複製。舉例而言,Xb〇x 360安全系統在2006年7月破裂且使用者現在能夠線上下載 非法複本。可下載之遊戲(例如,用於PC或Mac之遊戲)特 139852.doc -33· 200952495 別易受經受盜版。在世界之特定區域(其中盜版管制不強) 中,實質上不存在獨立視訊遊戲軟體之可行市場,因為使 用者可與合法複本一般容易地以成本之一微小分率購買盜 版複本。又,在世界之許多地方,遊戲控制台之成本係收 入之高百分比’以致即使盜版受控制,亦很少有人可買得 起目前技術狀態之遊戲系統。 另外,已使用之遊戲的市場減少了視訊遊戲業之收入。 當使用者變得對遊戲厭倦時,其可將遊戲出售給將遊戲轉 售給其他使用者之店鋪。此未經授權但普遍的實踐顯著減 少了遊戲出版商之收入。類似地,當每隔幾年存在平台轉 變時,通常出現大約5 0 %的銷售減少。此係因為:當使用 者知道即將發行較新版本之平台時,使用者停止購買用於 較舊平台之遊戲(例如,當即將發行Playstati〇n 3時,使用 者停止購買Playstation 2遊戲)。組合起來’銷售之損失及 與新平台相關聯之增加的開發成本可對遊戲開發商之收益 性有非常顯著之不利影響。 新遊戲控制台亦非常昂貴eXbox 36〇、Nintend〇忉丨及A graphics processing unit (GPU) for performing high-level graphics operations, and multiple forms of input/output (I/O) for communicating with external devices and users. For the sake of simplicity, these components are shown as being grouped together into a single unit. The prior art video game system of FIG. 1 is also shown to include an optical media drive 104 (eg, a DVD-ROM drive); a hard drive 103 for storing video game code and data; for playing a multiplayer game, for downloading Network connection for games, patches, demos, or other media; a random access memory (RAM) 101 for storing code currently being executed by the CPU/GPU 100; used to receive from during game play The game controller 106 that inputs the command by the user; and the display device 1〇2 (for example, SDTV/HDTV or computer monitor). The prior art system shown in Figure 1 suffers from several limitations. First, the optical disk drive 1 〇 4 and the hard disk drive 1 〇 3 tend to have a much slower access speed than the RAM 101 access speed. When working directly via RAM 1〇1, since RAM 101 typically has a much higher bandwidth and does not suffer from the relatively long search delay of the disc mechanism, CPU/GPU 1 can be processed in practice than directly from The number of polygons per second that the hard disk drive 103 or the optical disk drive 104 can read a lot more than the number of polygons per second. However, only a limited amount of RAM is provided in such prior art systems (e.g., 256 512 dead bits). Therefore, a sequence of "Loading..." is often required, where rami〇i is periodically filled with data for a scene under the video game. - Some systems attempt to overlap the loading of code and game play at the same time, but this can only be done when there is a known order event (4) If, if you are driving along the road, you can carry the road while driving the car. The geometry of the building 139852.doc •30- 200952495). For complex and/or fast scene changes, this type of overlay usually does not work. For example, in the case where the user is in the middle of the campaign and the RAM 101 is completely filled with the data representing the object in the view of the moment, the user rightly moves the view to the left to view that the current is not loaded. The object in the RAM 101 will cause a discontinuity in motion because there is not enough time to load the new object from the hard disk drive 1〇3 or the optical disk drive 1〇4 into the RAM 101. Another problem with the system of Figure 1 is due to the limitations of the storage capacity of the hard disk drive 103 and the optical media 1〇4. Although a disk storage device can be fabricated to have a relatively large storage capacity (eg, 50 billion bytes or more than 500 million bytes), it does not provide the specifics encountered in current video games. Sufficient storage capacity for the situation. For example, as previously described, a British football video game may allow a user to select among many groups, players, and sports fields around the world. For each group, each player, and each field, a large amount of texture mapping and environment mapping is required to characterize the 3D surface defects in the world (for example, each group has a unique jersey, each requiring a unique texture mapping) 》 Used to solve this latter problem—Technology: For games, users select text, texture, and environment mapping to pre-calculate texture and environment mapping. This can involve a number of tens of intensive processes, including dust-removing images, 3D mapping, and organizational data structures. Therefore, when video games perform such impulses, there may be a delay for the user. One of the method principles of delay is to perform all of these calculations when the game is initially developed - including the roster of rosters and the per-arrangement of the stadium. The release version of the game thus 139852.doc .31 - 200952495 will be stored on optical media 104 or All pre-processed data on one or more servers on the Internet, when the user makes a selection, pre-processes only the selections for a given group, player roster, and sports field selection via the Internet. The data is downloaded to the hard disk drive 1〇3. However, as a practical matter, the pre-loaded material of each permutation that may be played in the game play may easily be a terabyte of data, which is far away. Exceeding the capacity of today's optical media devices. In addition, the information used for a given group, playing the φ family roster, and playing field selections may easily be hundreds of millions of bytes of data or numbers. Information above the byte. In the case of a home network connection (for example, 10 Mbps), downloading this data via the network connection 1〇5 takes longer than calculating the data on the local end. Therefore, in Figure 1 The prior art game architecture demonstrated exposes users to significant delays between large scene transitions of complex games. Another problem with prior art methods such as the prior art method shown in Figure 1 is that video games tend to It becomes higher order and requires more CPU/GpU processing power. Therefore, even with an unlimited amount of RAM, the video game hardware requirements exceed the peak level of processing power available in these systems. Therefore, users are required. Upgrade game hardware every few years to stay in sync (or play newer games at a lower quality level). One consequence of the trend of higher-order video games over the past is that machines for home video games are usually not available. Economic efficiency, because its cost is usually determined by the requirements of the two most effective games it can support. For example, XBox 360 may be used to play similar battles. "Gears War" game, which requires high-performance CPU, GPU and hundreds of millions of bytes of RAM, or 139852.doc 32· 200952495 may use XBox 360 to play Pac Man. It is a game from the 1970s that requires only a few thousand bytes of RAM and a very low-performance CPU. In fact, XBox 36 has enough computing power to host many of the same "Pacman" games at the same time. In most hours of the week, the video game console is usually cut off. According to • July 2006 Nlelsen Entertainment's research on active gamers aged 3 and over, on average, active players spend 14 hours a week or only 12 weeks in a week. To play console video games. This means that the average video game console is idle 88% of the time, which is the inefficient use of expensive resources. It is assumed that the video game console is often funded by the manufacturer to reduce the purchase price (hope that the funding will come from the future) It’s especially meaningful to earn back the royalties of video game software purchases.) Video game consoles also incur costs associated with virtually any consumer electronics device. For example, the electronics and mechanisms of the system need to be housed in a housing. Manufacturers need to provide service guarantees. Selling the retail of the system φ Merchants are required to receive sales for the system and/or for the sales of video game software. All of these factors add to the cost of the video game console, which must be funded by the manufacturer, delivered to the consumer, or funded by both the manufacturer and the consumer. Another piracy is a major problem in the video game industry. In fact, the security agencies used on each of the larger video game systems have been "broken" over the years, resulting in unauthorized copying of video games. For example, the Xb〇x 360 security system ruptured in July 2006 and users are now able to download illegal copies online. Downloadable games (for example, games for PC or Mac) Special 139852.doc -33· 200952495 Don't be vulnerable to piracy. In certain regions of the world (where piracy is not strong), there is virtually no viable market for independent video game software, as users can easily purchase pirated copies at a fraction of the cost with legitimate copies. Moreover, in many parts of the world, the cost of the game console is a high percentage of revenues so that even if piracy is controlled, few people can afford the current state of the art gaming system. In addition, the market for used games has reduced the revenue of the video game industry. When the user becomes bored with the game, they can sell the game to a store that resells the game to other users. This unauthorized but widespread practice significantly reduces the revenue of game publishers. Similarly, when there is a platform change every few years, there is usually a sales reduction of about 50%. This is because when the user knows that a newer version of the platform is about to be released, the user stops buying the game for the older platform (for example, when the Playstati〇n 3 is about to be released, the user stops purchasing the Playstation 2 game). The combined loss of sales and the increased development costs associated with the new platform can have a significant adverse impact on the profitability of game developers. The new game console is also very expensive eXbox 36〇, Nintend〇忉丨 and

Sony Playstation 3均以數百美元零售。高能力之個人電腦 遊戲系統可花費高達$8000。此表示使用者之顯著投資, 特定言之,考慮到硬體在幾年後變陳舊及許多系統係為孩 子而購買的事實。 上述問題之-方法係線上遊戲,其巾將遊戲程式碼及資 料主機代管於《器上且按要求將其遞送至好端機器, 經壓縮之視訊及音訊經由數位寬頻帶網路而串流。一些公 139852.doc •34· 200952495 司(諸如,Finland之G-Cluster,其現在為日本之 SOFTBANK Broadmedia的子公司)當前線上提供此等服 務。類似遊戲服務變得在本端網路(諸如,旅館内及由dsl 及電規電視提供者提供之彼等網路)中可用。此等系統之 • 冑大缺點係延時之問題,料,信號行進至遊戲飼服器及 • 自遊戲伺服器行進所花費的_,遊戲伺服器通常定位於 運營商之「頭端」中。快速動作視訊遊戲(亦稱為「極速 (twitch)」視訊遊戲)在使用者藉由遊戲控制器執行動作之 時間與更新顯示螢幕以展示使用者動作之結果的時間之間 需要非常低的延時。需要低延時,以使得使用者感覺到遊 戲「即刻地」回應。可視遊戲之類型及使用者之熟練程度 而以不同延時間隔來滿足使用者β舉例而言,對於緩慢的 非正式遊戲(類似西洋雙陸棋)或緩慢動作角色扮演遊戲而 言,100毫秒之延時可能係可容忍的,但在快動作遊戲 中,超過70毫秒或80毫秒之延時可引起使用者在遊戲中更 φ 拙劣地表現,且因此不可接受。舉例而言,在需要快反應 時間之遊戲中’當延時自50毫秒增加至1〇〇毫秒時,存在 準確度之銳降》 當遊戲或應用伺服器安裝於附近的受控網路環境或至使 用者之網路路徑可預測及/或可容忍頻寬峰值的網路環境 中時’在最大延時以及延時之一致性方面,控制延時容易 得多(例如,因此使用者經由網路觀察到來自數位視訊串 流之穩定運動該程度之控制可在以下達成:在電覜τν 網路頭端至電纜TV用戶之家庭之間,或自DSL中央辦公室 139852.doc -35· 200952495 至DSL·用戶之家庭’或在來自祠服器或使用者之商業辦公 室區域網路(LAN)環境中。又,有可能獲得商業之間的具 有得到保證之頻寬及延時的經特定分級的點到點私用連 接。但在將遊戲主機代管於連接至通用網際網路之飼服器 • 中心中且接著經由寬頻帶連接而使經壓縮之視訊串流至使 • 用者的遊戲或應用系統中,許多因素招致延時,導致先前 技術系統之部署中的嚴重限制。 在典型的連接寬頻帶之家庭中’使用者可具有用於寬頻 ❹ 帶服務之DSL或電纜數據機。該等寬頻帶服務通常招致使 用者之家庭與通用網際網路之間的多達25毫秒之來回行程 延時(且有時更多)。另外,存在由於經由網際網路將資料 路由至伺服器中心而招致的來回行程延時。經由網際網路 之延時基於給出資料之路線及資料被路由時資料所招致之 延遲而改變。除路由延遲之外,亦由於光穿過互連大多數 網際網路之光纖的迷度而招致來回行程延時。舉例而言, ❹ 對於每一 1000英里,由於光穿過光纖之速度及其他耗用而 招致約22毫秒之來回行程延時。 額外延時可由於經由網際網路串流之資料的資料速率而 招致。舉例而言’若使用者具有以「6 Mbps dsl服務」出 售之DSL服務’則在實踐中,使用者將很可能最多得到小 於5 Mbps之下行輸送量’謂可能週期性地看見由於各種 因素(諸如,峰值载入時間期間在數位用戶線存取多工器 (DSLAM)處之擁掛)產生的連接降級。若經由相鄰者循環 之本端共用同軸電纜中存在擁擠或電纜數據機系統網路中 139852.doc • 36 - 200952495 之其他地方存在擁擠’則類似問題可出現,從而將用於以 「6 Mbps電纜數據機服務」出售之連接的電纜數據機之資 料速率減小至遠小於彼資料速率。若使4 Mbps之穩定速率 下的資料封包以使用者資料報協定(UDp)格式單向地自伺 . 服器中心經由該等連接而串流,若一切皆適當地工作,則 . 資料封包將通過而不招致額外延時,但若存在擁擠(或其 他妨礙)且僅3.5 Mbps可用於使資料串流至使用者,則在典 ❹ ㈣形下’封包將被丟棄’導致丟失資料,或者封包將在 擁擠點處排入佇列直至其可被發送為止,藉此引入了額外 延時。不同擁擠點具有用於保存經延遲之封包的不同排入 仲列容量,因此在一些狀況下,立即將不可成功解決擁擠 t封包去棄。在其他狀況下,將數百萬位元之資料排入仔 列且最終將其發送。但是,在幾乎所有狀況下’擁擠點處 之佇列具有容量限制,且一旦超過彼等限制,佇列將溢出 且封包將被丟棄。因此,為了避免招致額外延時(或更糟 © 地,封包之丟失),必須避免超過自遊戲或應用伺服器至 使用者之資料速率容量。 亦由於在伺服器中壓縮視訊及在用戶端器件中解壓縮視 訊所需之時間而招致延時。當在伺服器上執行之視訊遊戲 正在計算待顯示之下一個圖框時,進一步招致延時。當前 可用之視訊壓縮演算法遭受高資料速率或高延時。舉例而 言,運動JPEG為僅框内有損之壓縮演算法,其特徵為低延 =。視訊之每一圖框獨立於視訊之每一其他圖框而壓縮。 當用戶端器件接收經壓縮之運動;1^(3視訊的一圖框時,其 139852.doc -37· 200952495 可立即解壓縮該圖框且顯示該圖框,從而導致非常低之延 時。但因為每一圖框係分開進行壓縮,所以演算法不能夠 利用相繼圖框之間的類似性,且因此僅框内視訊壓縮演算 法遭受非常高之資料速率。舉例而言,60 fps(每秒圖框 數)640M80運動JPEG視訊可能需要40 Mbps(每秒百萬位 元)或40 Mbps(每秒百萬位元)以上之資料。用於該等低解 析度視訊窗之該等高資料速率在許多寬頻帶應用程式中將 係過於昂貴(且對於大多數消費者的以網際網路為基礎之 應用程式的確如此)。另外,因為每一圖框經獨立壓縮, 所以可能由於有損壓縮而產生的圖框中之假影可能出現於 相繼圖框中之不同位置處。此可導致當解壓縮視訊時,在 檢視者看來為移動的視覺假影。 其他壓縮演算法(諸如,來自Microsoft公司之MPEG2、 H.264或VC9)當用於先前技術組態中時,可達成高壓縮比 率’但以高延時為代價》該等演算法利用框間壓縮以及框 内壓縮。週期性地,該等演算法執行圖框之僅框内壓縮。 此種圖框被稱為關鍵圖框(通常稱作「I」圖框)。接著,此 等演算法通常將I圖框與先前圖框與相繼圖框兩者相比 較。並非獨立地壓縮先前圖框及相繼圖框,而是演算法判 定影像自I圖框至先前圖框及相繼圖框有何改變,且接著 將彼等改變儲存為:「B」圖框(對於I圖框之前的改變)及 「P」圖框(對於I圖框之後的改變)。此導致比僅框内壓縮 低得多的資料速率《但是,其通常以較高延時為代價。I 圖框通常比B圖框或P圖框大得多(常常大10倍),且因此, 139852.doc -38- 200952495 以給定資料速率傳輸成比例地花費較長之時間。 考慮(例如)一情形:其中Σ圖框為B圖框及p圖框之大小 的10倍,且對於每個單一 框内,存在29個8圖框+3〇個卩圖 框=59個框間,或對於每一「圖框群」(G〇p)總共6〇個圖 框。因此’在6〇 fps下,每秒存在丨個⑼圖框G〇p。假設傳 • ㈣道具有2 Mbps之最大資料速率。為了在頻道中達成最 高品質之視訊,壓縮演算法將產生2 Mbps資料流,且給定 ❹ 上述比率’此將產生每框内2百萬位元(Mb)/(59+10)=30,394 個位元及每I圖框303,935個位元。當藉由解壓縮演算法接 收經壓縮之視訊流時,為了穩定地播放視訊,需要以規則 間隔(例如’ 60 fps)解壓縮及顯示每一圖框。為了達成此 結果’若任何圖框經受傳輸延時,則需要將所有圖框延遲 至少彼延時’因此最糟狀況的圖框延時將界定用於每個視 訊圖框之延時。因為丨圖框最大,所以I圖框引入最長傳輸 延時’且整個I圖框將必須在可解壓縮及顯示I圖框(或取決 ❹ 於1圖框之任何框間)之前接收。假定頻道資料速率為2Sony Playstation 3 is retailed for hundreds of dollars. High-capacity PC gaming systems can cost up to $8000. This represents a significant investment by the user, in particular, considering the fact that the hardware became obsolete in a few years and many systems were purchased for the child. The above-mentioned method is an online game in which the game code and data host are hosted on the device and delivered to the good machine as required, and the compressed video and audio are streamed via a digital broadband network. . Some of the 139852.doc •34·200952495 divisions (such as F-land's G-Cluster, which is now a subsidiary of SOFTBANK Broadmedia in Japan) currently offer these services online. Similar gaming services become available in local networks such as hotels and their networks provided by dsl and electric TV providers. The biggest drawback of these systems is the delay, the signal, the signal travels to the game server and the _ from the game server. The game server is usually located in the "head end" of the operator. Fast motion video games (also known as "twitch" video games) require very low latency between when the user performs the action by the game controller and when the display screen is updated to show the result of the user action. A low latency is required to make the user feel the game respond "immediately". For the type of visual game and the proficiency of the user, the user is satisfied at different delay intervals. For example, for a slow informal game (like a backgammon) or a slow action role-playing game, 100 milliseconds. The delay may be tolerable, but in a fast action game, a delay of more than 70 milliseconds or 80 milliseconds may cause the user to perform worse in the game and is therefore unacceptable. For example, in a game that requires fast response time, 'when the delay increases from 50 milliseconds to 1 millisecond, there is a sharp drop in accuracy." When the game or application server is installed in a nearby controlled network environment or to When the user's network path is predictable and/or tolerant of bandwidth peaks in the network environment, control delays are much easier in terms of maximum latency and latency consistency (eg, so users observe from the network) The degree of stability of the digital video stream can be controlled as follows: between the τν network head end and the cable TV user's home, or from the DSL central office 139852.doc -35· 200952495 to the DSL user family 'Or in a commercial office area network (LAN) environment from a server or user. Also, it is possible to obtain a specific hierarchical point-to-point private connection between businesses with guaranteed bandwidth and latency. However, the game console is hosted in a feeder connected to the universal Internet and then the compressed video stream is streamed to the user via a broadband connection. In applications, many factors contribute to latency, leading to severe limitations in the deployment of prior art systems. In a typical broadband-connected home, users can have DSL or cable modems for broadband piggyback services. Banding services typically result in up to 25 milliseconds of travel delay (and sometimes more) between the user's home and the universal Internet. In addition, there is a problem caused by routing data to the server center via the Internet. Round trip delay. The delay through the Internet changes based on the route given the data and the delay caused by the data being routed. In addition to the routing delay, it also passes through the fiber that interconnects most of the Internet. The inconvenience leads to a round trip delay. For example, ❹ For every 1000 miles, a round trip delay of about 22 milliseconds is incurred due to the speed of light passing through the fiber and other consuming. Additional delays may be due to the internet via the Internet. In the case of the data rate of the data of the stream, for example, 'If the user has a DSL service sold under the "6 Mbps dsl service", then In practice, the user will most likely get at most less than 5 Mbps under the line throughput 'that is likely to be periodically seen due to various factors (such as peak load time at the Digital Subscriber Line Access Multiplexer (DSLAM)) Hanging) the resulting connection is degraded. A similar problem can arise if there is congestion in the shared coaxial cable at the local end of the neighboring loop or there is congestion in other places in the cable modem system network 139852.doc • 36 - 200952495 Reduce the data rate of the cable modem used for the connection sold by the "6 Mbps Cable Data Server Service" to much less than the data rate. If the data packet at a stable rate of 4 Mbps is made to the user datagram protocol (UDp) The format is self-serving unidirectionally. The server center streams through these connections. If everything works properly, the data packet will pass without incurring additional delay, but if there is congestion (or other obstruction) and only 3.5 Mbps can be used to stream data to the user, then in the pattern (4), the 'packet will be discarded' resulting in lost data, or the packet will be queued at the congestion point Which may be sent to the far, thereby introducing additional latency. Different congestion points have different secondary queue capacity for storing delayed packets, so in some cases, the congestion cannot be successfully resolved. In other cases, millions of bits of data are queued and eventually sent. However, in almost all cases, the queue at the 'crowding point' has a capacity limit, and once it exceeds these limits, the queue will overflow and the packet will be discarded. Therefore, in order to avoid incurring additional delays (or worse, loss of packets), data rate capacity beyond the game or application server to the user must be avoided. Delays are also incurred due to the time required to compress the video in the server and decompress the video in the client device. When the video game executed on the server is calculating the next frame to be displayed, further delay is incurred. Currently available video compression algorithms suffer from high data rates or high latency. For example, Motion JPEG is an in-frame lossy compression algorithm characterized by low delay =. Each frame of the video is compressed independently of each other frame of the video. When the client device receives the compressed motion; 1^ (3 frames of video), its 139852.doc -37· 200952495 can immediately decompress the frame and display the frame, resulting in very low latency. Because each frame is compressed separately, the algorithm cannot take advantage of the similarity between successive frames, and therefore only the in-frame video compression algorithm suffers from very high data rates. For example, 60 fps (per second) Frame number) 640M80 Motion JPEG video may require 40 Mbps (megabits per second) or 40 Mbps (megabits per second) data. These high data rates for these low resolution video windows It will be too expensive in many broadband applications (and indeed for most consumer Internet-based applications). Also, because each frame is independently compressed, it may be due to lossy compression. The artifacts in the resulting frame may appear at different locations in successive frames. This can result in visual artifacts that appear to the viewer when the video is decompressed. Other compression algorithms (such as, From Microsoft Corporation's MPEG2, H.264, or VC9) when used in prior art configurations, high compression ratios can be achieved 'but at the expense of high latency." These algorithms utilize inter-frame compression and in-frame compression. The algorithm performs only in-frame compression of the frame. Such a frame is called a key frame (commonly referred to as an "I" frame). Then, these algorithms usually have an I frame and a previous image. The box is compared with successive frames. Instead of compressing the previous frame and the successive frames independently, the algorithm determines how the image changes from the I frame to the previous frame and the subsequent frame, and then changes them. Save as: "B" frame (for changes before I frame) and "P" frame (for changes after I frame). This results in a much lower data rate than just in-frame compression. Usually at the expense of higher latency. The I frame is usually much larger (often 10 times larger) than the B or P frame, and therefore, 139852.doc -38- 200952495 is proportionally costly for a given data rate transfer. For a longer period of time. Consider (for example) a situation where the frame is B The size of the box and the p frame is 10 times, and for each single frame, there are 29 8 frames + 3 卩 卩 frames = 59 frames, or for each "frame group" (G〇 p) A total of 6 frames. Therefore, at 6〇fps, there is one (9) frame G〇p per second. Assume that the (4) channel has a maximum data rate of 2 Mbps. In order to achieve the highest quality in the channel. Video, the compression algorithm will generate a 2 Mbps stream, and given the above ratio 'this will result in 2 million bits per frame (Mb) / (59 + 10) = 30,394 bits and each I frame 303, 935 One bit. When receiving a compressed video stream by a decompression algorithm, in order to play video stably, it is necessary to decompress and display each frame at regular intervals (for example, '60 fps). In order to achieve this result, if any frame is subjected to a transmission delay, all frames need to be delayed by at least one delay'. Therefore, the worst case frame delay will define the delay for each video frame. Because the frame is the largest, the I frame introduces the longest transmission delay' and the entire I frame will have to be received before the I frame can be decompressed and displayed (or between any frames in the 1 frame). Assume that the channel data rate is 2

Mbps,則傳輸一 I圖框將花費303,935/2 Mb=145毫秒。 使用傳輸頻道之頻寬之大百分比的框間視訊壓縮系統 (如上所述)將由於I圖框相對於圖框之平均大小的大的大小 而經受長延時。或者’換言之’當先前技術框間壓縮演算 法達成比僅框内壓縮演算法低之平均每圖框資料速率(例 如’ 2 Mbps對40 Mbps)時,其由於大ϊ圖框而仍遭受高的 峰值每圖框資料速率(例如,3〇3,935*6〇=18 2 Mbps)。但 請記住:上述分析假定p圖框及B圖框均比I圖框小得多。 139852.doc •39· 200952495 儘管此大體成立’但對於具有與先前圖框、高運動或場景 改變不相關之高影像複雜度的_,此不成立。在該等情 形下’ P圖框或B圖框可變得與1圖框—般大(SP圖框或B圖 框變得比1圖框大,則尖端壓縮演算法通常將「強制」!圖 框且用1圖框替換1>圖框或B圖框)。因Λ,I圖框大小之資 料速率峰值可在任何_出現於數位視訊流卜因此,對 於經壓縮之視訊’當平均視訊資料速率接近傳輸頻道之資At Mbps, transmitting an I frame will cost 303,935/2 Mb=145 milliseconds. An inter-frame video compression system (as described above) that uses a large percentage of the bandwidth of the transmission channel will experience long delays due to the large size of the I frame relative to the average size of the frame. Or 'in other words' when the prior art interframe compression algorithm achieves a lower average data rate per frame than the in-frame compression algorithm (eg '2 Mbps vs. 40 Mbps), it still suffers high due to the large frame Peak data rate per frame (for example, 3〇3,935*6〇=18 2 Mbps). But keep in mind that the above analysis assumes that both the p-frame and the B-frame are much smaller than the I-frame. 139852.doc •39· 200952495 Although this is generally true, 'this is not true for _ with high image complexity that is not related to previous frames, high motion or scene changes. In these cases, the 'P frame or B frame can become as large as 1 frame (SP frame or B frame becomes larger than 1 frame, then the tip compression algorithm will usually be "forced"! Frame and replace 1> frame or B frame with 1 frame. Because, the peak data rate of the I frame size can appear in any video stream, so for compressed video, when the average video data rate is close to the transmission channel.

料速率容量時(經常為該狀況,給定對於視訊之高資料速 率要求),來自I圖框或大的ρ圖框或Β囷框之高峰值資料速 率導致高圖框延時。At the rate rate capacity (often in this case, given the high data rate requirements for video), high peak data rates from I frames or large ρ frames or frames result in high frame delays.

當然,上述論述僅特徵化由GOP中之大的Β圖框、ρ圖框 或I圖框產生的壓縮演算法延時。若使用Β圖框,則延時 將更高。此之原因係因為在可顯示6圖框之前,必須接收 Β圖框之後的所有Β圖框及I圖框。因此,在諸如 ΒΒΒΒΒΙΡΡΡΡΡΒΒΒΒΒΙΡΡΡΡΡ之圖片群(g〇P)序列中,其中 在每一 I圖框之前存在5個Β圖框,只有在接收到隨後的β圖 框及I圖框之後才可由視訊解壓縮器顯示第一Β圖框。因 此’若使視訊以60 fps(亦即,16.67毫秒/圖框)串流,則在 可解壓縮第一B圖框之前,不管頻道頻寬如何快,接收五 個B圖框及I圖框將花費ι6.67*6=1〇〇毫秒,且此係僅5個β 圖框之情況。具有3〇個B圖框的經壓縮之視訊序列相當普 遍。此外,在如2 Mbps之低頻道頻寬下,由於I圖框之大 小而引起的延時影響很大程度上添加至由於等待B圖框到 達而產生的延時影響。因此,在2 Mbps頻道上,在大量B 139852.doc -40- 200952495 圖框之情況下,使用先前技術視訊壓縮技術超過5〇〇毫秒 或500毫秒以上之延時相當容易。若不使用b圖框(對於給 定品質水準,以較低壓縮比率為代價),則不招致B圖框延 時,但仍招致上文所描述的由於峰值圖框大小而引起的延 * 時〇 • 問題恰恰由於許多視訊遊戲之性質而加重。利用上文所 描述之GOP結構的視訊壓縮演算法很大程度上被最佳化以 ❹ 用於連同意欲用於被動檢視的現場直播之視訊或電影材料 一起使用。通常’相機(真實相機,或者電腦產生之動畫 之狀況下的虛擬相機)及場景相對穩定,僅因為若相機或 場景太顛簸地來回移動,則視訊或電影材料(a)通常觀看起 來令人不愉快,且(b)若其正被觀看,當相機突然來回顛簸 時,檢視者通常不能夠緊密地跟隨該動作(例如,若相機 在拍攝吹滅生日蛋糕上之蠟濁的孩子時被擾動且突然在蛋 糕之間來回顛簸,則檢視者通常集中於孩子及蛋糕上,而 〇 不理會相機突然移動時之簡短中斷)。在視訊會談或視訊 電活會議之狀況下,可將相機固持於固定位置中且根本不 移動,從而導致根本非常少之資料峰值。但31)高動作視訊 遊戲係藉由恆定運動來特徵化(例如,考慮3D競赛,其中 整個圖框在競賽之持續時間中處於快速運動中,或者考慮 第人稱射擊遊戲,其中虛擬相機恆定地顛簸地來回移 動)。該等視訊遊戲可產生具有大的及頻繁的峰值之圖框 序列,其中使用者可能需要清楚地看見在彼等突然運動期 間發生了什麼。因此,在3D高動作視訊遊戲中,壓縮假影 139852.doc -41 · 200952495 遠不可容忍。因此,許多視訊遊戲之視訊輸出(由於其性 質)產生具有非常高且頻繁之峰值的經壓縮之視訊流。 假定快動作視訊遊戲之使用者對於高延時具有小的容忍 度,且給定所有上述延時原因,至今存在對於使視訊在網 際網路上串流的伺服器主機代管之視訊遊戲的限制。另 外,若需要高度互動性之應用程式係主機代管於通用網際 網路上且使視訊串流,則該等應用程式之使用者遭受類似 _ 限制。該等服務需要網路組態,其中主機代管伺服器直接 設置於頭端(在電纜寬頻帶之狀況下)或中央辦公室(在數位 用戶線(DSL)之狀況下)中,或商業背景中之LAN内(或經特 別分級之私用連接上),以便控制自用戶端器件至伺服器 之路線及距離以最小化延時且可適應峰值而不招致延時。 LAN(通常額定在1〇〇 Mbps-1 Gbps)及具有足夠頻寬之租用 線路通常可支援峰值頻寬要求(例如,18 Mbps峰值頻寬為 100 Mbps LAN容量之一小分率)。 • 若進行特殊適應,則峰值頻寬要求亦可由住宅寬頻帶基 礎架構來適應。舉例而言’在電纜TV系統上,可為數位 視訊訊務給出專用頻寬’該專用頻寬可處理諸如大I圖框 之峰值。此外,在DSL系統上,可供應較高速度之DSL數 據機(慮及高峰值),或可供應可處理較高資料速率之經特 別分級的連接。但是,附接至通用網際網路之習知電规數 據機及DSL基礎架構對於用於經壓縮之視訊的峰值頻寬要 求而言遠不能容忍。因此,線上服務(將視訊遊戲或應用 程式主機代管於距用戶端器件長距離之伺服器中心中,且 139852.doc •42- 200952495 接著經由習知的住宅寬頻帶連接經由網際網路而使經壓縮 之視訊輸出串流)遭受顯著之延時及峰值頻寬要求-尤其對 於需要非常低之延時的遊戲及應用程式(例%,第—人稱 射擊遊戲及其他多使用者、互動式動作遊戲,&需要快回 應時間之應用程式)。 【實施方式】 、本揭示案將自以下[實施方式]及附圖而更完全地理解, Φ *然而’其不應用於將所揭示之標的物限於所展示之特定實 施例,而僅用於說明及理解。 在以下描述中闡述特定細節(諸如,器件類型、系統組 態、通信方法等)’以便提供對本揭示案之徹底理解。然 而,一般熟習相關技術者應瞭解,實踐所描述之該等實施 例可能不需要此等特定細節。 圖2a至圖2b提供兩個實施例之高階架構,其中視訊遊戲 及軟體應用程式由主機代管服務21〇主機代管且在訂用服 ❹ 務下由使用者場所川(注意,「使用者場所」意謂使用者 所定位的無論何處之位置’若使用行動器件則包括室外) 處之用戶端器件205經由網際網路2〇6(或其他公眾網路或 私用網路)來存取。用戶端器件2〇5可為具有至網際網路之 有線或無線連接、具有内部或外部顯示器件222的通用電 腦(諸如,以Mi⑽oft Window^Lim^基礎之pc或 APple公司之Macintosh電腦),《者其可為將視訊及音訊輸 出至監視器或電視機222之諸如機頂盒之專用用戶端器件 (具有至網際網路之有線或無線連接),或者其可為推測起 139852.doc -43· 200952495 來具有至網際網路之無線連接的行動器件。 此等器件中之任一者可具有其自身的使用者輸入器件 (例如,鍵盤、按鈕、觸摸螢幕、追蹤板(track pad)或慣性 感測棒(inertial-sensing wand)、視訊俘獲相機及/或運動追 蹤相機等),或者其可使用藉由線連接或無線地連接之外 • 部輸入器件221(例如,鍵盤、滑鼠、遊戲控制器、慣性感 測棒、視訊俘獲相機及/或運動追蹤相機等)^如下文更詳 ❹ 細描述’主機代管服務210包括各種效能位準之伺服器(包 括具有高能力CPU/GPU處理能力之彼等伺服器)。在播放 遊戲或使用主機代管服務210上之應用程式期間,家庭或 辦公室用戶端器件205接收來自使用者之鍵盤及/或控制器 輸入’且接著其將控制器輸入經由網際網路206傳輸至主 機代管服務210,主機代管服務21〇回應於此而執行遊戲程 式碼並產生用於遊戲或應用程式軟體的視訊輸出(視訊影 像序列)之相繼圖框(例如’若使用者按壓將會指引榮幕上 ❿ 之人物向右移動的按鈕,則遊戲程式接著將產生展示人物 向右移動的視訊影像序列)。接著使用低延時視訊壓縮器 壓縮此視訊影像序列,且主機代管服務21〇接著經由網際 網路206而傳輸低延時視訊流。家庭或辦公室用戶端器件 接著解碼經壓縮之視訊流並將經解壓縮之視訊影像再現於 監視器或τν上。因此,顯著地減少用戶端器件2〇5之計算 及圖形硬體要求。用戶端205僅需要具有用於將鍵盤/控制 器輸入轉遞至網際網路206且解碼並解壓縮自網際網路2〇6 所接收的經壓縮之視訊流的處理能力,實際上現今任 139852.doc 200952495 何個人電腦均能夠在其CPU上以軟體來進行此(例如,以 約2 GHZ執行之Intei公司雙核cpu能夠解壓縮使用諸如 H.264及Windows媒體VC9之壓縮器編碼的72〇p hdtv)。Of course, the above discussion only characterizes the compression algorithm delays produced by large Β, ρ or I frames in the GOP. If you use a frame, the delay will be higher. The reason for this is because all the frames and I frames after the frame must be received before the 6 frame can be displayed. Therefore, in a sequence of picture groups (g〇P) such as ΒΒΒΒΒΙΡΡΡΡΡΒΒΒΒΒΙΡΡΡΡΡ, where there are 5 frames before each I frame, the video can only be decompressed after receiving the subsequent β frame and I frame. The first frame is displayed. Therefore, if the video is streamed at 60 fps (ie, 16.67 ms/frame), before the first B frame can be decompressed, no matter how fast the channel bandwidth is, five B frames and I frames are received. It will cost ι6.67*6=1〇〇 milliseconds, and this is only the case of 5 β frames. A compressed video sequence with 3 frames of B is quite common. In addition, at low channel bandwidths such as 2 Mbps, the effects of delay due to the size of the I frame are largely added to the delay caused by waiting for the B frame to arrive. Therefore, on the 2 Mbps channel, in the case of a large number of B 139852.doc -40 - 200952495 frames, it is quite easy to use a prior art video compression technique with a delay of more than 5 milliseconds or more than 500 milliseconds. If you do not use the b-frame (for a given quality level, at the expense of a lower compression ratio), then the B-frame delay is not incurred, but the delay caused by the peak frame size described above is still incurred. • The problem is aggravated by the nature of many video games. The video compression algorithm utilizing the GOP structure described above is largely optimized for use with live video or movie material that is intended to be used for passive viewing. Usually 'cameras (real cameras, or virtual cameras in the case of computer-generated animations) and scenes are relatively stable, just because the camera or scene moves too far and bumpy, video or movie material (a) is usually unpleasant to watch. And (b) if it is being viewed, when the camera suddenly bumps back and forth, the viewer is usually unable to follow the action closely (for example, if the camera is disturbed and suddenly when shooting a child who is smouldering on the birthday cake) When bumping back and forth between the cakes, the viewers usually focus on the children and the cake, and ignore the brief interruption when the camera suddenly moves. In the case of video conferencing or video conferencing, the camera can be held in a fixed position and not moved at all, resulting in very little data spikes. But 31) high-motion video games are characterized by constant motion (for example, considering 3D competitions where the entire frame is in fast motion during the duration of the competition, or considering a first-person shooter game where the virtual camera is constantly Move back and forth bumpyly). These video games can produce a sequence of frames with large and frequent peaks, where the user may need to clearly see what happens during their sudden movements. Therefore, in 3D high motion video games, compression artifacts 139852.doc -41 · 200952495 are far intolerable. Therefore, the video output of many video games (due to their nature) produces a compressed video stream with very high and frequent peaks. Assuming that the user of the fast motion video game has a small tolerance for high latency, and given all of the above delay reasons, there have been limitations to video games hosted by server hosts that stream video over the Internet. In addition, users of such applications suffer from similar _ restrictions if highly interactive application hosts are hosted on a common Internet and video is streamed. These services require network configuration, where the colocation server is placed directly at the headend (in the case of cable broadband) or in the central office (in the case of Digital Subscriber Line (DSL)), or in a commercial context Within the LAN (or on a specially graded private connection) to control the route and distance from the client device to the server to minimize latency and adapt to peaks without incurring delays. LANs (typically rated at 1 Mbps to 1 Gbps) and leased lines with sufficient bandwidth typically support peak bandwidth requirements (for example, 18 Mbps peak bandwidth is one of the 100 Mbps LAN capacity fractions). • If special adaptation is made, the peak bandwidth requirement can also be accommodated by the residential broadband infrastructure. For example, on a cable TV system, a dedicated bandwidth can be given for digital video traffic. This dedicated bandwidth can handle peaks such as large I frames. In addition, on DSL systems, higher speed DSL modems (considering high peaks) can be supplied, or specially graded connections that can handle higher data rates can be supplied. However, conventional electronic data processors and DSL infrastructure attached to the universal Internet are far from tolerable for peak bandwidth requirements for compressed video. Therefore, the online service (hosting the video game or application host in a server center that is long distances from the client device, and 139852.doc • 42- 200952495 is then connected via the Internet via a conventional residential broadband connection. The compressed video output stream) suffers from significant latency and peak bandwidth requirements - especially for games and applications that require very low latency (eg %, first-person shooter and other multi-user, interactive action games, & requires an application that responds quickly.) The present disclosure will be more fully understood from the following description of the embodiments and the accompanying drawings, which are not intended to limit the scope of the disclosure to the particular embodiments shown, but only Explain and understand. Specific details (such as device types, system configurations, communication methods, etc.) are set forth in the following description in order to provide a thorough understanding of the disclosure. However, it will be appreciated by those skilled in the art that the specific embodiments described in the practice may not require such specific details. 2a to 2b provide a high-level architecture of the two embodiments, in which the video game and the software application are hosted by the host hosting service 21 and hosted by the user service under the subscription service (note, "user “Location” means that the user device 205 at any location where the user is located 'including the mobile device if it is outdoor” is stored via the Internet 2〇6 (or other public network or private network). take. The client device 2〇5 may be a general-purpose computer having an internal or external display device 222 with a wired or wireless connection to the Internet (such as a PC based on Mi(10)oft Window^Lim^ or a Macintosh computer of the APple company), It can be a dedicated client device (such as a wired or wireless connection to the Internet) that outputs video and audio to a monitor or television 222, such as a set-top box, or it can be speculated as 139852.doc -43· 200952495 A mobile device with a wireless connection to the Internet. Any of these devices may have its own user input device (eg, keyboard, button, touch screen, track pad or inertial-sensing wand, video capture camera and/or Or a motion tracking camera, etc., or it can be connected by a wire connection or wirelessly connected to the input device 221 (eg, keyboard, mouse, game controller, inertial sensing stick, video capture camera, and/or motion) Tracking cameras, etc.) ^ As described in more detail below, the "hosting service 210" includes servers of various performance levels (including those with high-capacity CPU/GPU processing capabilities). During playback of the game or use of the application on the colocation service 210, the home or office client device 205 receives the keyboard and/or controller input from the user' and then transmits the controller input via the Internet 206 to The colocation service 210, the colocation service 21, in response to this, executes the game code and generates successive frames for the video output (video sequence) of the game or application software (eg 'if the user presses The button that directs the person on the screen to move to the right will then generate a sequence of video images showing the person moving to the right. The video image sequence is then compressed using a low latency video compressor, and the colocation service 21 then transmits the low latency video stream over the internet 206. The home or office client device then decodes the compressed video stream and reproduces the decompressed video image on a monitor or τν. Therefore, the calculation and graphics hardware requirements of the client device 2〇5 are significantly reduced. The client 205 only needs to have the processing capability for forwarding the keyboard/controller input to the Internet 206 and decoding and decompressing the compressed video stream received from the Internet 2〇6, actually 139852 .doc 200952495 Any personal computer can do this in software on its CPU (for example, Intei's dual-core cpu running at about 2 GHz can decompress 72 〇p using compressor encoding such as H.264 and Windows Media VC9 Hdtv).

此外’在任何用戶端器件之狀況下,專用晶片亦可以比通 用CPU低得多的成本及比通用CPU少得多的電力消耗(諸 如現代PC所需的)來即時地執行用力該等標準之視訊解 壓縮。值得注意地,為了執行轉遞控制器輸入及解壓縮視 訊的力纥豕庭用戶端器件205不需要任何專門化的圖形 處理單元(GPU)、光碟機或硬碟機㈣,圖】中所展示之 先前技術視訊遊戲系統)。 隨著遊戲及制程式軟體變得更複雜及更具照片般逼真 感,其將需要較高效能之CPU、Gpu、較多ram,及較大 且較快之磁碟機,且可使主機代管服務2H)處之計算能力 不斷地升級’但終端使用者將不需要使家庭或辦公室用戶 :平台205升級,因為將藉由給定視訊解壓縮演算法而使 豕庭或辦公室用戶端平台2〇5之處理要求對於顯示解析度 ^圓框速率保持值定。因此,圖“至圖辦所說明之系統 中不存在現今所見的硬體_及相容性問題。 另外’因為遊戲及應用程式軟體僅在主機代管服務㈣ 另:中執行’所以在使用者之家庭或辦公室(除非 二否則如本文中所使用之「辦公室」將包括任 ==,包括(例如)教室)中決不存在遊戲或應用程 式軟體之複本(光學媒體之形式,或者為經下載之軟體)。 此顯著減輕遊戲或應用程式軟體被非法複製(盜版)之可能 139852.doc •45· 200952495 性’以及減輕可由遊戲或應用程式軟體使用的有價值之資 料庫被盜版之可能性。實際上,若需要專門化的伺服器 (例如,需要非常昂貴的、大的或有噪音的設備)來播放對 於家庭或辦公室使用不可行之遊戲或應用程式軟體,則即 使獲得遊戲或應用程式軟體之盜版複本,其亦將不可在家 庭或辦公室中操作。 在一實施例中,主機代管服務210向設計視訊遊戲之遊 戲或應用程式軟體開發商(其大體指代軟體開發公司、遊 戲或電影工作室,或遊戲或應用程式軟體出版商)220提供 軟體開發工具’以使得其可設計能夠在主機代管服務21 〇 上執行之遊戲。該等工具允許開發商利用主機代管服務之 特徵(該等特徵通常在獨立PC或遊戲控制台中將不可 用)(例如,快速存取複雜幾何形狀的非常大之資料庫(除非 另外有條件’否則「幾何形狀」將在本文中用於指代界定 3D資料集之多邊形、紋理、索具、照明、行為及其他組件 及參數))。 在此架構下’不同商業模型係可能的。在一模型下,主 機代管服務210自終端使用者收取訂用費用且向開發商22〇 支付版稅,如圖2a中所展示。在替代實施中(圖沘中所展 不),開發商220直接自使用者收取訂用費用且向主機代管 服務210支付用於主機代管遊戲或應用程式内容的費用。 此等基本原理不限於用於提供線上遊戲或應用程式主機代 管之任何特定商業模型。 經壓缩之視訊特性 139852.doc -46· 200952495 如先前所論述,線上提供視訊遊戲服務或應用程式軟體 服務之一顯著問題在於延時。70毫秒_8〇毫秒之延時(自輸 入器件被使用者致動之時刻至在顯示器件上顯示回應時之 時刻)為用於需要快回應時間之遊戲及應用程式的上限。 然而,由於大量實際及實體約束而使得此在圖2a及圖孔中 所展示之架構的情況下非常難以達成。 如圖3中所指示’當使用者訂用網際網路服務時,連接 ❹ 通常額定為至使用者之家庭或辦公室的標稱最大資料速率 301。取決於提供者之策略及路由設備能力,彼最大資料 速率可或多或少被嚴格地強制執行’但通常由於許多不同 原因中之一者而使得實際可用資料速率較低。舉例而言, 可能在DSL·中央辦公室處或在本端電纜數據機迴路上存在 過多網路訊務’或可能在電纜線上存在雜訊,從而引起丟 棄之封包’或提供者可能建立每使用者每月最大數目之位 元。當前,用於電纜及DSL服務之最大下行資料速率通 φ 常在數百千位元/秒(Kbps)至30 Mbps之範圍内。蜂巢式 服務通常限於數百Kbps之下行資料。然而,寬頻帶服務之 速度及訂用寬頻帶服務之使用者之數目將隨著時間而急劇 增加。當前’一些分析者估計33%之美國寬頻帶用戶具有 2 Mbps或2 Mbps以上之下行資料速率。舉例而言,一些分 析者預測:至2010年止,超過85%之美國寬頻帶用戶將具 有2 Mbps或2 Mbps以上之資料速率。 如圖3中所指示’實際可用最大資料速率3〇2可隨著時間 而波動。因此’在低延時、線上遊戲或應用程式軟體情況 139852.doc •47· 200952495 下有時難以預測用於特定視訊流之實際可用資料速率。 右對於特定量之場景複雜度及運動在給定數目之每秒圖框 數(fpS)下以給定解析度(例如,64〇><480 @ 60 fps)維持給 疋口口處位準所需的資料速率3〇3升高高於實際可用最大資 料速率302(如藉由圖3中之峰值指示),則可出現若干問 . 題。舉例而言,一些網際網路服務將僅丟棄封包,從而導 致使用者之視訊螢幕上的丟失的資料及失真的/丟失的影 ❹ m服務將暫時緩衝(亦即,排人仵列)額外封包且以 可用資料速率將該等封包提供至用戶端,從而導致延時之 增加-對於許多視訊遊戲及應用程式而言為不可接受的結 果。最後,一些網際網路服務提供者將資料速率之增加視 為惡意攻擊(諸如,否認服務攻擊(由電腦黑客用以使網路 連接停用的熟知技術)),且將在特定時間週期中切斷使用 者之網際網路連接。因此,本文中所描述之實施例設法確 保用於視訊遊戲的所需資料速率不會超過最大可用資料速 ❹ 率。 主譏代管服務架構 圖4a說明根據一實施例之主機代管服務21〇的架構。主 機代管服務210可定位於單一伺服器中心中,或者可跨越 複數個伺服器中心而分散(以為具有比其他者低延時的至 特定伺服器中心之路徑的使用者提供低延時連接,以在使 用者之間提供負載平衡’且在一或多個伺服器中心出故障 之狀況下提供冗餘)。主機代管服務21〇最終可包括成千上 萬個或甚至數百萬個伺服器402,從而伺服非常大之使用 139852.doc -48· 200952495 者基礎(user base)。主機代管服務控制系統401提供對主機 代管服務210之總體控制,且指引路由器、伺服器、視訊 壓縮系統、計費及帳務系統等。在一實施例中,主機代管 服務控制系統401實施於以Linux為基礎之分散式處理系統 • 上’該處理系統綁定至用於儲存用於使用者資訊、伺服器 . 資訊及系統統計資料之資料庫的RAID陣列。在上述描述 中’除非歸因於其他特定系統,否則由主機代管服務21〇 實施之各種動作由主機代管服務控制系統401來起始及控 V 制。 主機代管服務210包括許多伺服器402,諸如當前可自 Intel、IBM及Hewlett Packard及其他者得到的彼等伺服 器。或者,可將伺服器402裝配成定製組件組態,或者最 終可將伺服器402整合以便將整個伺服器實施為單一晶 片。儘管此圖為說明起見而展示少數伺服器402,但在實 際部署中,可能存在少至一伺服器402或多達數百萬個或 _ 數百萬個以上伺服器402的飼服器。祠服器402均可以相同 方式組態(作為一些組態參數之實例’具有相同CPU類型及 效能;具有或不具有GPU,且若具有GPU,則具有相同 GPU類型及效能;具有相同數目之CPU及GPU ;具有相同 量及相同類型/速度之RAM ;及具有相同RAM組態),或伺 服器402之各種子集可具有相同組態(例如,25%之祠服器 可以一特定方式組態,50%之祠服器以一不同方式組態, 且2 5 %之祠服器以又一方式組態),或每個飼服器4 〇 2可不 同。 139852.doc -49- 200952495 在一實施例中,伺服器402無磁碟,亦即,並非具有其 自身的本端大容量儲存器(其為光學或磁性儲存器,或者 以半導體為基礎之儲存器’諸如快閃記憶體或伺服類似功 能之其他大容量儲存構件),每—伺服器經由快速底板或 • 網路連接而存取共用的大容量儲存器。在一實施例中,此 _ 快速連接為連接至獨立冗餘磁碟陣列(RAID) 405系列之儲 存區域網路(SAN) 403,在使用超高速乙太網路實施之器 參 件之間具有連接。如熟習此項技術者已知的,s AN 403可 用於將許多RAID陣列405組合在一起,從而導致極高之頻 寬·接近或可能超過可自用於當前遊戲控制台及pC中之 RAM得到的頻寬。此外,儘管基於諸如磁性媒體之旋轉媒 體的RAID陣列經常具有顯著的搜尋時間存取延時,但基 於半導體儲存器之RAID陣列可實施為具有低得多的存取 延時。在另一組態中,一些或所有伺服器4〇2在本端提供 些或所有其自身的大容量儲存器。舉例而言,伺服器 ❹ 402可將頻繁存取之資訊(諸如,其作業系統及視訊遊戲或 應用程式之複本)儲存於以低延時本端快閃記憶體為基礎 之儲存器上’但其可利用SAN來存取基於旋轉媒體之具有 較高搜尋延時之RAID陣列405,以較不頻繁地存取幾何形 狀或遊戲狀態資訊之大資料庫。 另外’在一實施例中’主機代管服務210使用下文詳細 描述的低延時視訊壓縮邏輯404。視訊壓縮邏輯4〇4可以軟 體、硬體或其任何組合來實施(下文描述其特定實施例)。 視訊壓縮邏輯404包括用於壓縮音訊以及視覺材料之邏 139852.doc -50- 200952495 輯。 在操作中,當經由鍵盤、滑鼠、遊戲控制器或其他輸入 器件421而玩視訊遊戲或使用使用者場所211處之應用程式 時,用戶端415上之控制信號邏輯413將表示由使用者致動 之按鈕按壓(及其他類型之使用者輸入)的控制信號406a_ b(通常為UDP封包之形式)傳輸至主機代管服務210«將來 自給定使用者之控制信號路由至適當伺服器(或若多個伺 ❹ 服器回應於使用者之輸入器件,則路由至多個伺服器) 402。如圖4a中所說明,可經由san而將控制信號406&路 由至伺服器402。或者或另外,可經由主機代管服務網路 (例如,以乙太網路為基礎之區域網路)而將控制信號4〇6b 直接路由至伺服器402。不管控制信號4〇6a-b係如何被傳 輸,該或該等伺服器均回應於控制信號406a-b而執行遊戲 或應用程式軟體。儘管圖43中未說明,但各種網路連接組 件(諸如’防火牆及/或閘道器)可處理主機代管服務21〇之 φ 邊緣處(例如,主機代管服務210與網際網路410之間)及/或 使用者場所211之邊緣處(網際網路41〇與家庭或辦公室用 戶端415之間)的傳入及傳出的訊務。所執行的遊戲或應用 程式軟體之圖形及音訊輸出(亦即,新的視訊影像序列)提 供至低延時視訊壓縮邏輯4〇4,低延時視訊壓縮邏輯4〇4根 據低延時視訊壓縮技術(諸如,本文中所描述之彼等技術) 而壓縮視訊影像序列且經由網際網路41〇(或,如下文所描 述,經由繞過通用網際網路的最佳高速網路服務)而將經 壓縮之視訊流(通常具有經壓縮或未經壓縮之音訊)傳輸回 139852.doc •51- 200952495 至用戶端415。接著,用戶端415上之低延時視訊解壓縮邏 輯412解壓縮視訊及音訊流並再現經解壓縮之視訊流,且 通常在顯示器件422上播放經解壓縮之音訊流。或者,可 在與顯示器件422分開之揚聲器上播放音訊或根本不播放 . 音訊。注意,儘管輸入器件421及顯示器件422在圖2a及圖 2b中展示為獨立式器件’但其可整合於諸如可攜式電腦或 行動器件之用戶端器件内。 ❹ 家庭或辦公室用戶端415(先前在圖2a及圖2b中描述為家 庭或辦公室用戶端205)可為非常低廉且低能力之器件,其 具有非常有限之計算或圖形效能且可能具有非常有限之本 端大容量儲存器或不具有本端大容量儲存器。相比之下, 耦合至SAN 403及多個RAID 405之每一伺服器402可為格 外高效能之計算系統,且實際上,若多個伺服器以一並列 處理組態合作地使用,則幾乎不存在對可承受的計算量及 圖形處理能力的限制。此外,由於低延時視訊壓縮4〇4及 〇 低延時視訊解壓縮412(由使用者感知地),所以將伺服器 402之計算能力提供給使用者。當使用者按壓輸入器件42 i 上之按鈕時,顯示器422上之影像被回應於按鈕按壓而更 新(在感知上無有意義之延遲),好像遊戲或應用程式軟體 係在本端執行。因此,對於為非常低效能之電腦或僅為實 施低延時視訊解壓縮及控制信號邏輯413之低廉晶片的家 庭或辦公室用戶端415,自看來在本端可用之遠端位置有 效地為使用者提供任意計算能力。此為使用者給出用於玩 最网階、處理器密集的(通常為新的)視訊遊戲及最高效能 139852.doc •52· 200952495 之應用程式的能力。 圖4c展示非常基礎且低廉的家庭或辦公室用戶端器件 465。此器件為來自圖4a及圖4b之家庭或辦公室用戶端415 之一實施例。其為約2吋長。其具有與具有乙太網路供電 (PoE)之乙太網路電規介接的乙太網路插孔462,該器件自 乙太網路插孔462得到其電力及其至網際網路之連接性。 该器件能夠在支援網路位址轉譯(NAT)之網路内執行 ❹ NAT。在辦公室環境中,許多新的乙太網路交換器具有In addition, in the case of any client device, the dedicated chip can also perform the power of these standards in real time at a much lower cost than the general purpose CPU and much less power consumption than the general purpose CPU (such as required by modern PCs). Video decompression. Notably, in order to perform the transfer controller input and decompress the video, the client device 205 does not require any special graphics processing unit (GPU), CD player or hard disk drive (4), as shown in the figure. Prior art video game system). As gaming and programming software become more complex and more photo-realistic, they will require higher performance CPUs, Gpus, more rams, and larger and faster drives, and will enable The computing power at the service 2H) is constantly being upgraded' but the end user will not need to upgrade the home or office user: platform 205, as the court or office client platform will be enabled by a given video decompression algorithm 2 The processing requirement of 〇5 is fixed for the display resolution ^ round frame rate. Therefore, the figure "The system described in the diagram does not have the hardware _ and compatibility issues seen today. In addition, because the game and application software is only executed in the colocation service (4) Home or office (unless otherwise the "office" as used herein will include any ==, including, for example, classrooms), there will never be a copy of the game or application software (in the form of optical media, or downloaded) Software). This significantly reduces the possibility of illegal copying (piracy) of games or application software. 139852.doc •45· 200952495 sex and the possibility of mitigating the piracy of valuable libraries that can be used by games or application software. In fact, if you need a specialized server (for example, a very expensive, large or noisy device) to play games or application software that is not feasible for home or office use, even if you get a game or application software. A copy of the pirated copy will not be operated in the home or office. In one embodiment, the colocation service 210 provides software to a game or application software developer (which is generally referred to as a software development company, a game or movie studio, or a game or application software publisher) 220 that designs a video game. The development tool 'so that it can design a game that can be executed on the colocation service 21 。. These tools allow developers to take advantage of the features of colocation services (the features are usually not available in a standalone PC or game console) (for example, very fast access to very large databases of complex geometries (unless otherwise conditional) Otherwise, "geometry" will be used herein to refer to the polygons, textures, rigging, lighting, behavior, and other components and parameters that define the 3D dataset). Under this architecture, different business models are possible. Under a model, the host hosting service 210 charges a subscription fee from the end user and pays a royalty to the developer 22, as shown in Figure 2a. In an alternate implementation (not shown in the figure), the developer 220 charges the subscription fee directly from the user and pays the colocation service 210 for the cost of hosting the game or application content. These basic principles are not limited to any particular business model used to host an online game or application host. Compressed video features 139852.doc -46· 200952495 As previously discussed, one of the significant issues with online video game services or application software services is latency. The 70 ms _ 8 〇 millisecond delay (the time from when the input device is actuated by the user to when the response is displayed on the display device) is the upper limit for games and applications that require fast response times. However, this is very difficult to achieve in the case of the architecture shown in Figure 2a and the hole due to a large number of actual and physical constraints. As indicated in Figure 3, when a user subscribes to an internet service, the connection is typically rated at a nominal maximum data rate 301 to the user's home or office. Depending on the provider's policy and routing device capabilities, the maximum data rate may be more or less strictly enforced', but typically the actual available data rate is lower due to one of many different reasons. For example, there may be too many network traffic at the DSL central office or on the local cable modem loop 'or there may be noise on the cable, causing the dropped packets' or the provider may establish per user The maximum number of digits per month. Currently, the maximum downlink data rate for cable and DSL services is often in the range of hundreds of kilobits per second (Kbps) to 30 Mbps. Honeycomb services are typically limited to hundreds of Kbps of data. However, the speed of broadband services and the number of users subscribed to broadband services will increase dramatically over time. Currently, some analysts estimate that 33% of US broadband users have data rates below 2 Mbps or above 2 Mbps. For example, some analysts predict that by 2010, more than 85% of US broadband users will have data rates of 2 Mbps or more. As indicated in Figure 3, the actual available maximum data rate of 3 〇 2 may fluctuate over time. Therefore, it is sometimes difficult to predict the actual available data rate for a particular video stream in low latency, online gaming or application software situations 139852.doc •47· 200952495. The right is for a given amount of scene complexity and motion to maintain a given resolution (eg, 64〇><480 @ 60 fps) for a given number of frames per second (fpS) A quasi-required data rate of 3〇3 rises above the actual available maximum data rate 302 (as indicated by the peak in Figure 3), and several questions may arise. For example, some Internet services will only discard packets, causing lost data and distorted/lost effects on the user's video screen. The service will temporarily buffer (ie, queue) additional packets. These packets are provided to the client at the available data rate, resulting in an increase in latency - an unacceptable result for many video games and applications. Finally, some Internet service providers view the increase in data rate as a malicious attack (such as a denial of service attack (a well-known technique used by computer hackers to disable network connections)) and will be cut in a specific time period. Disconnect the user's internet connection. Thus, the embodiments described herein seek to ensure that the required data rate for a video game does not exceed the maximum available data rate. Master Managed Service Architecture Figure 4a illustrates the architecture of a hosted service 21〇 according to an embodiment. The colocation service 210 can be located in a single server center or can be spread across multiple server centers (to provide a low latency connection to users with a lower latency to a particular server center than others) to Provides load balancing between users' and provides redundancy in the event of one or more server center failures. The colocation service 21〇 can eventually include tens of thousands or even millions of servers 402, so that the servo is very large. 139852.doc -48· 200952495 The user base. The colocation service control system 401 provides overall control over the host escrow service 210 and directs routers, servers, video compression systems, billing and accounting systems, and the like. In one embodiment, the hosted service control system 401 is implemented on a Linux-based distributed processing system. • The processing system is bound to storage for user information, server information, and system statistics. The RAID array of the database. In the above description, the various actions implemented by the colocation service 21 are initiated and controlled by the colocation service control system 401 unless otherwise attributed to other specific systems. The colocation service 210 includes a number of servers 402, such as those currently available from Intel, IBM, and Hewlett Packard, among others. Alternatively, the server 402 can be assembled into a custom component configuration, or the server 402 can ultimately be integrated to implement the entire server as a single wafer. Although this figure shows a small number of servers 402 for purposes of illustration, in actual deployments there may be as few as one server 402 or up to millions or tens of millions of servers 402. Server 402 can be configured in the same way (as an example of some configuration parameters) with the same CPU type and performance; with or without GPU, and with GPU, with the same GPU type and performance; with the same number of CPUs And GPU; RAM with the same amount and the same type/speed; and with the same RAM configuration), or various subsets of the server 402 can have the same configuration (for example, 25% of the servers can be configured in a specific way) 50% of the servers are configured in a different way, and 25% of the servers are configured in another way), or each of the feeders 4 〇2 can be different. 139852.doc -49- 200952495 In one embodiment, the server 402 is free of magnetic disks, that is, does not have its own native mass storage device (which is an optical or magnetic storage device, or a semiconductor-based storage device). 'Other large-capacity storage components such as flash memory or servo-like functions, each server accessing a shared mass storage via a fast backplane or a network connection. In one embodiment, the _quick connection is a storage area network (SAN) 403 connected to a series of independent redundant disk arrays (RAID) 405, with a parameter between the devices implemented using the ultra-high speed Ethernet connection. As is known to those skilled in the art, s AN 403 can be used to combine many RAID arrays 405, resulting in extremely high bandwidths that are close to or possibly exceed those available from current game consoles and RAM in pC. bandwidth. Moreover, while RAID arrays based on rotating media such as magnetic media often have significant seek time access latency, RAID arrays based on semiconductor memories can be implemented with much lower access latency. In another configuration, some or all of the servers 4〇2 provide some or all of their own mass storage at the local end. For example, the server ❹ 402 can store frequently accessed information (such as a copy of its operating system and video game or application) on a low-latency local flash memory-based storage. The SAN can be used to access a RAID array 405 with higher seek latency based on rotating media to access a large database of geometry or game state information less frequently. In addition, in one embodiment, the colocation service 210 uses the low latency video compression logic 404 described in detail below. The video compression logic 410 can be implemented in software, hardware, or any combination thereof (the specific embodiments thereof are described below). Video compression logic 404 includes logic for compressing audio and visual material 139852.doc -50-200952495. In operation, when a video game is played via a keyboard, mouse, game controller or other input device 421 or an application at the user location 211 is used, the control signal logic 413 on the client 415 will indicate A push button press (and other types of user input) control signals 406a_b (typically in the form of a UDP packet) are transmitted to the colocation service 210 to route control signals from a given user to the appropriate server (or Multiple servos are routed to multiple servers 402 in response to the user's input device. As illustrated in Figure 4a, control signals 406 & can be routed to server 402 via san. Alternatively or additionally, control signals 4〇6b may be routed directly to server 402 via a hosted service network (e.g., an Ethernet-based local area network). Regardless of how the control signals 4〇6a-b are transmitted, the or the servers execute the game or application software in response to the control signals 406a-b. Although not illustrated in FIG. 43, various network connection components (such as 'firewalls and/or gateways') can handle the φ edge of the colocation service 21 (eg, colocation service 210 and internet 410) Incoming and outgoing traffic at the edge of the user premises 211 (between the Internet 41〇 and the home or office client 415). The graphics and audio output of the executed game or application software (ie, the new video image sequence) is provided to the low-latency video compression logic 4〇4, and the low-latency video compression logic 4〇4 is based on the low-latency video compression technique (such as The video image sequence is compressed and compressed via the Internet 41 (or, as described below, via the best high speed network service bypassing the universal Internet). The video stream (usually with compressed or uncompressed audio) is transmitted back to 139852.doc • 51- 200952495 to the client 415. Next, the low latency video decompression logic 412 on the client 415 decompresses the video and audio streams and reproduces the decompressed video stream, and typically plays the decompressed audio stream on the display device 422. Alternatively, the audio may be played on a separate speaker from the display device 422 or not played at all. Note that although input device 421 and display device 422 are shown as stand-alone devices in Figures 2a and 2b, they can be integrated into a client device such as a portable computer or mobile device. ❹ Home or office client 415 (described previously as home or office client 205 in Figures 2a and 2b) can be a very low cost and low power device with very limited computational or graphical performance and possibly very limited The local mass storage device does not have a local large-capacity storage. In contrast, each of the servers 402 coupled to the SAN 403 and the plurality of RAIDs 405 can be an exceptionally efficient computing system, and in fact, if multiple servers are cooperatively used in a side-by-side configuration, almost There are no restrictions on the amount of computation and graphics processing that can be tolerated. In addition, the computational power of the server 402 is provided to the user due to the low latency video compression 4〇4 and the low latency video decompression 412 (perceptually perceived by the user). When the user presses the button on the input device 42 i , the image on the display 422 is updated in response to the button press (with no meaningful delay in perception) as if the game or application software was executing at the local end. Thus, for a very low-performance computer or a home or office client 415 that is only a low-cost chip that implements low-latency video decompression and control signal logic 413, it is effectively available to the user from a remote location that appears to be available at the local end. Provide any computing power. This gives the user the ability to play the most network-level, processor-intensive (usually new) video games and applications with the highest performance 139852.doc •52· 200952495. Figure 4c shows a very basic and inexpensive home or office client device 465. This device is an embodiment of the home or office client 415 from Figures 4a and 4b. It is about 2 inches long. It has an Ethernet jack 462 that interfaces with an Ethernet power over Ethernet (PoE), which receives its power from the Ethernet jack 462 and its connection to the Internet. Sex. The device is capable of performing ❹ NAT over a network that supports Network Address Translation (NAT). In an office environment, many new Ethernet switches have

PoE且將PoE直接帶至辦公室中之乙太網路插孔。在此種PoE and bring the PoE directly to the Ethernet jack in the office. In this way

If形下’所需的為自壁式插孔至用戶端465之乙太網路電 纜。若可用的乙太網路連接不載運電力(例如,在具有dsl 或電纜數據機但無PoE之家庭中),則存在可用的低廉的壁 式「磚塊(brick)」(亦即,電源),其將接受無電力之乙太 網路電規且輸出具有P〇E之乙太網路。 用戶端465含有耦合至藍芽無線介面之控制信號邏輯 〇 413(圖4a),該藍芽無線介面與諸如鍵盤、滑鼠、遊戲控制 器及/或麥克風及/或耳機之藍芽輸入器件479介接。又,用 戶端465之一實施例在與顯示器件468耦合的情況下能夠以 120 fps輸出視訊’顯示器件468能夠支援120 fps視訊且向 一對遮光眼鏡466發信號(通常經由紅外)以對於每一相繼圖 框交替地遮蔽一隻眼接著遮蔽另一隻眼。使用者所感覺之 效應為「跳出」顯示螢幕之立鱧3£)影像。支援該操作之一 種該顯示器件468為Samsung HL-T5076S。因為用於每一隻 眼之視訊流係單獨的,所以在兩個獨立視訊流係由主機代 139852.doc •53· 200952495 管服務210壓縮的一實施例中,圖框在時間上交錯,且圖 框在用戶端465内係以兩個獨立解壓縮過程來解壓縮。 用戶端465亦含有低延時視訊解壓縮邏輯412,其解壓縮 傳入的視訊及音訊且經由HDMI(高清晰度多媒體介面)、 連接器463輸出,HDMI(高清晰度多媒體介面)、連接器 463插入於SDTV(標準清晰度電視)或HDTV(高清晰度電 視)468中,從而向TV提供視訊及音訊,或插入於支援 ❿ HDMI之監視器468中。若使用者之監視器468不支援 HDMI ’則可使用HDMI至DVI(數位視覺介面),但音訊將 丟失。在HDMI標準下,顯示能力(例如,所支援之解析 度’圖框速率)464係自顯示器件468傳達,且接著經由網 際網路連接462將此資訊傳回至主機代管服務21〇,因此主 機代管服務21 0可使經壓縮之視訊以適合於該顯示器件之 格式串流。 圖4d展示家庭或辦公室用戶端器件475,除了用戶端器 ❿ 件475具有更多外部介面之外,其與圖4c中所展示之家庭 或辦公至用戶端器件465相同。又,用戶端475可接受P〇E 來供電’或者其可佔用插入牆壁中之外部電源配接器(未 圖示)。視訊相機477使用用戶端475 USB輸入將經壓縮之 視訊提供至用戶端475,經壓縮之視訊由用戶端475上載至 主機代管服務210以用於下文所描述之用途。將利用下文 所描述之麗縮技術將低延時壓縮器建置於相機477中。 除具有用於其網際網路連接之乙太網路連接器之外,用 戶端475亦具有至網際網路之8〇211 g無線介面。兩種介面 139852.doc -54· 200952495 均能夠在支援NAT之網路内使用NAT。 又,除具有用於輸出視訊及音訊之HDMI連接器之外, 用戶端475亦具有雙鏈接DVI-I連接器,雙鏈接DVI-I連接 器包括類比輸出端(且具有將提供VGA輸出之標準配接器 • 電纜)。其亦具有用於複合視訊及S視訊之類比輸出端。 對於音訊,用戶端475具有左/右類比立體RCA插孔,且 對於數位音訊輸出’其具有TOSLINK輸出端。 除了至輸入器件479之藍芽無線介面之外,其亦具有用 於介接至輸入器件之USB插孔。 圖4e展示用戶端465之内部架構之一實施例Q該圖中所 展示的所有器件或一些器件可實施於場可程式化邏輯陣 列、定製ASIC中或若干個離散器件(定製設計或者現成的) 中。 具有PoE之乙太網路497附接至乙太網路介面481。電力 499係自具有P〇E之乙太網路497得到且連接至用戶端465中 ❹ 之其餘器件。匯流排480為用於器件之間的通信之公同匯 流排。 執行來自快閃記憶體476之小用戶端控制應用程式的控 制CPU 483(幾乎任何小CPU係適當的,諸如具有嵌入式 RAM的100 MHz下的MIPS R4000系列CPU)實施用於網路 (亦即,乙太網路介面)之協定堆疊且亦與主機代管服務21〇 通信’並組態用戶端465中之所有器件。其亦處理與輸入 器件469之介面並將封包(必要時,連同受前向錯誤校正保 "蒦之使用者控制器資料一起)發送回至主機代管服務21 〇。 139852.doc •55· 200952495 又,控制CPU 483監視封包訊務(例如,封包係I失還是延 遲,以及其到逹之時間戳)。將此資訊發送回至主機代管 服務210,以使得其可恆定地監視網路連接且相應地調整 其發送之内谷。最初在製造時為快閃記憶體476載入用於 控制CPU 483之控制程式以及對於特定用戶端465單元而言 • 唯一的序號。此序號允許主機代管服務210唯一地識別用 戶端465單元。 藍芽介面484經由其天線(在用戶端465内部)無線地通信 至輸入器件469。 視訊解壓縮器486為經組態以實施本文中所描述之視訊 解壓縮的低延時視訊解壓縮器。大量視訊解壓縮器件存 在’或者為現成產品,或者作為具有可整合於FPga或定 製ASIC中的設計之智慧產權(Ip)。一提供用於H 264解碼 器之 IP的公司為NSW Australia 之 Ocean Logic of Manly。 使用IP之優點在於:本文中所使用之壓縮技術與壓縮標準 〇 不相符。一些標準解壓縮器足夠靈活以經組態以適應本文 中之壓縮技術’但一些標準解壓縮器可能並非如此。但 是,在IP之情況下,在視需要而重新設計解壓縮器中存在 完全靈活性》 視讯解壓縮器之輸出端耦合至視訊輸出子系統487,視 訊輸出子系統487將視訊耦合至HDMI介面490之視訊輸出 端。 音訊解壓縮子系統488或者使用可用的標準音訊解壓縮 器來實施,或者其可實施為,或者可在可(例如)實施 139852.doc -56- 200952495In the shape of If, the required Ethernet cable from the wall jack to the client 465 is required. If the available Ethernet connection does not carry power (for example, in a home with a dsl or cable modem but no PoE), there is a low-cost wall-type "brick" (ie, power supply) available. It will accept an Ethernet-free electrical meter without power and output an Ethernet network with P〇E. The client 465 contains control signal logic 413 (FIG. 4a) coupled to the Bluetooth wireless interface with a Bluetooth input device 479 such as a keyboard, mouse, game controller and/or microphone and/or headset. Interface. Moreover, one embodiment of the client 465 can output video at 120 fps with the display device 468. The display device 468 can support 120 fps video and signal a pair of shading glasses 466 (typically via infrared) for each One successive frame alternately shades one eye and then covers the other eye. The effect that the user feels is "jumping out" to show the image of the screen. One of the operations is supported. The display device 468 is a Samsung HL-T5076S. Since the video stream for each eye is separate, in an embodiment where the two independent video streams are compressed by the host 139852.doc • 53·200952495 pipe service 210, the frames are interleaved in time, and The box is decompressed in client 465 in two separate decompression processes. The client 465 also includes low-latency video decompression logic 412, which decompresses incoming video and audio and outputs via HDMI (High Definition Multimedia Interface), connector 463, HDMI (High Definition Multimedia Interface), connector 463 It is inserted in SDTV (Standard Definition Television) or HDTV (High Definition Television) 468 to provide video and audio to the TV, or to be inserted into the monitor 468 supporting HDMI. If the user's monitor 468 does not support HDMI ’, HDMI to DVI (digital visual interface) can be used, but the audio will be lost. Under the HDMI standard, display capabilities (eg, supported resolution 'frame rate') 464 are conveyed from display device 468 and then transmitted back to colocation service 21 via Internet connection 462, thus The colocation service 210 can cause the compressed video to be streamed in a format suitable for the display device. Figure 4d shows a home or office client device 475 that is identical to the home or office to client device 465 shown in Figure 4c, except that the client device 475 has more external interfaces. Again, the client 475 can accept P〇E to power 'or it can occupy an external power adapter (not shown) that is plugged into the wall. The video camera 477 provides the compressed video to the client 475 using the client 475 USB input, and the compressed video is uploaded by the client 475 to the colocation service 210 for use as described below. The low latency compressor will be built into the camera 477 using the squeezing technique described below. In addition to having an Ethernet connector for its Internet connection, the client 475 also has an 8 〇 211 g wireless interface to the Internet. Both interfaces 139852.doc -54· 200952495 are capable of using NAT within a network that supports NAT. In addition to the HDMI connector for outputting video and audio, the client 475 also has a dual-link DVI-I connector, and the dual-link DVI-I connector includes an analog output (and has a standard that will provide VGA output). Adapter • Cable). It also has an analog output for composite video and S video. For audio, the client 475 has a left/right analog stereo RCA jack and has a TOSLINK output for digital audio output. In addition to the Bluetooth wireless interface to input device 479, it also has a USB jack for interfacing to the input device. Figure 4e shows one of the internal architectures of the client 465. Embodiments Q. All of the devices or devices shown in the figure can be implemented in a field programmable logic array, a custom ASIC, or several discrete devices (custom design or off-the-shelf). In the middle. Ethernet 497 with PoE is attached to the Ethernet interface 481. Power 499 is derived from Ethernet 497 with P〇E and is connected to the remaining devices in user terminal 465. Bus 480 is a common bus for communication between devices. The control CPU 483 that executes the small client control application from flash memory 476 (almost any small CPU is suitable, such as the MIPS R4000 series CPU at 100 MHz with embedded RAM) is implemented for the network (ie The protocol of the Ethernet interface is stacked and also communicates with the colocation service 21' and configures all devices in the client 465. It also processes the interface with the input device 469 and sends the packet (along with the forward error correction " user controller data) back to the colocation service 21 . 139852.doc • 55· 200952495 In addition, the control CPU 483 monitors the packet traffic (e.g., whether the packet is lost or delayed, and its timestamp). This information is sent back to the colocation service 210 so that it can constantly monitor the network connection and adjust its inner valley accordingly. The control program for controlling the CPU 483 and the unique serial number for the particular client 465 unit are initially loaded for the flash memory 476 at the time of manufacture. This sequence number allows the colocation service 210 to uniquely identify the user 465 unit. The Bluetooth interface 484 wirelessly communicates to the input device 469 via its antenna (within the client 465). Video decompressor 486 is a low latency video decompressor configured to implement the video decompression described herein. A large number of video decompression devices exist either as off-the-shelf products or as intellectual property (Ip) with designs that can be integrated into FPga or custom ASICs. One company that provides IP for the H 264 decoder is Ocean Logic of Manly of NSW Australia. The advantage of using IP is that the compression technique used in this article does not match the compression standard. Some standard decompressors are flexible enough to be configured to accommodate the compression techniques in this article' but some standard decompressors may not. However, in the case of IP, there is full flexibility in redesigning the decompressor as needed. The output of the video decompressor is coupled to the video output subsystem 487, which couples the video to the HDMI interface. 490 video output. The audio decompression subsystem 488 can be implemented using an available standard audio decompressor, or it can be implemented as, or can be, for example, implemented 139852.doc -56- 200952495

Vorbis音訊解壓縮器之控制處理器483内實施音訊解壓縮。 實施音訊解壓縮之器件耦合至音訊輸出子系統489,音 訊輸出子系統489將音訊耦合至HDMI介面490之音訊輸出 端。 圖4f展示用戶端475之内部架構之一實施例。如可見, 除額外介面及來自插入牆壁中之電源配接器的可選外部 DC電力(且若如此使用,則可選外部DC電力替換將來自乙 太網路PoE 497之電力)之外,該架構與用戶端465之架構 相同。下文中將不重複與用戶端465共同之功能性,但將 額外功能性描述如下。 CPU 483與額外器件通信且組態額外器件。The audio decompression is implemented in the control processor 483 of the Vorbis audio decompressor. The device that implements the audio decompression is coupled to an audio output subsystem 489 that couples the audio to the audio output of the HDMI interface 490. Figure 4f shows an embodiment of the internal architecture of the client 475. As can be seen, in addition to the additional interface and optional external DC power from the power adapter plugged into the wall (and if so, the optional external DC power replacement will be from the Ethernet PoE 497), The architecture is the same as that of the client 465. The functionality common to the client 465 will not be repeated below, but the additional functionality will be described below. The CPU 483 communicates with additional devices and configures additional devices.

WiFi子系統482經由其天線提供無線網際網路存取,作 為對乙太網路497之替代。WiFi子系統可購自多家製造 商,包括 CA之 Santa Clara之 Atheros Communications ° USB子系統485提供對用於有線USB輸入器件479之藍芽 通信的替代。USB子系統相當標準且可容易地用於FPGA 及ASIC,且經常建置於執行如視訊解壓縮之其他功能的現 成器件中。 與用戶端465内之視訊輸出相比較,視訊輸出子系統487 產生較寬範圍之視訊輸出。除提供HDMI 490視訊輸出之 外,其提供DVI-I 491、S-視訊492及複合視訊493。又’當 DVI-I 49 1介面係用於數位視訊時,將顯示能力464自顯示 器件傳回至控制CPU 483,以使得其可向主機代管服務210 通知顯示器件478之能力。由視訊輸出子系統487提供之所 139852.doc -57· 200952495 有介面均為相當標準之介面且容易以許多形式可用。 音訊輸出子系統489經由數位介面494(S/PDIF及/或 Toslink)數位地輸出音訊且經由立體類比介面495輸出類比 形式之音訊。 來回行程延時分析 當然’為了實現前一段之利益’使用者使用輸入器件 421之動作與在顯示器件420上看見彼動作之後果之間的來 回行程延時應不大於7〇毫秒·8〇毫秒。此延時必須考慮在 自使用者場所211中之輸入器件421至主機代管服務21〇及 再次返回至使用者場所211至顯示器件422之路徑中的所有 因素。圖4b說明各種組件及網路(信號必須經由其行進卜 且此等組件及網路上方的為時刻表,該時刻表列出實際實 施中可預期的例示性延時。注意,圖4b經簡化以便僅展示 重要路徑路由。下文描述用於系統之其他特徵之資料的其 他路由。雙頭箭頭(例如,箭頭453)指示來回行程延時且單 =頭⑽如’箭頭457)指示單向延時’且「〜」表示近似 量測。應彳旨iH ’將存在所狀㈣不可達 形,但在大一在美國 ==機連:,此等延時可在下-段中所描述之 達成又,,主意,儘管至網際網 接性的翁/ Μ - β 簡網路之蜂巢式無線連 接丨的確將在所展不之系統中工作, 巢式資料系統(諸如,EVD〇)招致非美國蜂 夠達成圖财所展示之延時。然而,2時且將不能 能能夠貧施此㈣之料的未來蜂巢ς本原理可在可 139852.doc •58· 200952495 ❹The WiFi subsystem 482 provides wireless internet access via its antenna as an alternative to Ethernet 497. The WiFi subsystem is available from a number of manufacturers, including the Atheros Communications ° USB Subsystem 485 of Santa Clara, CA, which provides an alternative to Bluetooth communication for wired USB input device 479. The USB subsystem is fairly standard and can be easily used in FPGAs and ASICs, and is often built into existing devices that perform other functions such as video decompression. The video output subsystem 487 produces a wider range of video outputs than the video output in the client 465. In addition to providing HDMI 490 video output, it provides DVI-I 491, S-Video 492 and Composite Video 493. Also, when the DVI-I 49 1 interface is used for digital video, the display capability 464 is passed back from the display device to the control CPU 483 so that it can notify the host escrow service 210 of the capabilities of the display device 478. The 139852.doc -57· 200952495 interface provided by the video output subsystem 487 is a fairly standard interface and is readily available in many forms. The audio output subsystem 489 digitally outputs audio via the digital interface 494 (S/PDIF and/or Toslink) and outputs an analog form of audio via the stereo analog interface 495. Round trip delay analysis Of course, in order to achieve the benefits of the previous paragraph, the user's action of using the input device 421 and the effect of seeing the motion on the display device 420 should be no more than 7 〇·8 〇 milliseconds. This delay must account for all factors in the path from the input device 421 in the user premises 211 to the colocation service 21A and back to the user premises 211 to the display device 422 again. Figure 4b illustrates the various components and networks (signals must travel through them and above the components and the network are timetables that list the exemplary delays that can be expected in actual implementation. Note that Figure 4b is simplified so that Only important path routing is shown. Other routes for other features of the system are described below. A double-headed arrow (eg, arrow 453) indicates a round trip delay and a single = head (10) such as 'arrow 457' indicates a one-way delay 'and' ~" indicates approximate measurement. Should be the purpose of iH 'will exist in the shape of (four) unreachable shape, but in the freshman in the United States == machine connection:, these delays can be achieved in the following paragraphs, the idea, although to the Internet Weng/Μ-β The cellular wireless connection of the network will indeed work in the system that is not being implemented. The nested data system (such as EVD〇) incurs the delay that non-American bees can achieve the money shown. However, at 2 o'clock, the future honeycombs that cannot be used to deplete this (4) material can be used at 139852.doc •58· 200952495 ❹

自使用者場所211處之輸人器件421開始’―旦使用者致 動輸入器件421 ’ $將使用者控制信號發送至用戶端 叫其可為諸如機頂盒之獨立器件,或其可為在諸如㈣ 订動器件之另-器件中執行的軟體或硬體),且將其封包 化(在一實_巾以職格式)並為封包給出目的地位址以 到達主機代管服務210。封包將亦含有用於指示控制信號 係來自哪個使用者的資訊。接著經由防火牆/路由器/ NAT(網路位址轉譯)器件443將控制信號封包轉遞至wan介 面442。WAN介面442為由使用者之lsp(網際網路服務提供 者)提供至使用者場所211的介面器件。WAN介面442可為 電纜或DSL數據機、WiMax收發器、光纖收發器、蜂巢式 資料介面、電力線網際網路協定介面(Internet pr〇t〇e〇i_ over-powerline interface),或至網際網路之許多介面中的 任何其他介面。另外,可將防火牆/路由器/NAT器件 443(及(可能地)WAN介面442)整合於用戶端415中。此之一 實例將為行動電話’其包括用於實施家庭或辦公室用戶端 415之功能性的軟體,以及用於經由某一標準(例如, 802.11 g)而無線地路由及連接至網際網路的構件。 WAN介面442接著將控制信號路由至本文中所稱的用於 使用者之網際網路服務提供者(isp)的「存在點」441 WAN介面442為提供連接至使用者場所211之WAN輸送器與 通用網際網路或私用網路之間的介面的設施。存在點之碎寺 性將視所提供之網際網路服務的性質而改變〇對於DSL, 其通常將為DSLAM所定位之電話公司中央辦公室β對於 139852.doc •59- 200952495 電纜數據機,其通常將為電纜多系統運營商(Ms〇)頭端。 對於蜂巢式系統,其通常將為與蜂巢式塔相關聯的控制 室。但無論存在點之性質怎樣’其均將接著將控制信號封 包路由至通用網際網路4Η)。接著經由將最可能係光纖收 發器介面之介面將控制信號封包路由至WAN介面444至主 機代管服務210。WAN 444將接著將控制信號封包路由至 路由邏輯409(其可以許多不同方式來實施,包括乙太網路 交換器及路由伺服器),路由邏輯4〇9估計使用者之位址且 將控制信號路由至用於給定使用者之正確的伺服器4〇2。 伺服器402接著將該等控制信號視為在伺服器4〇2上執行 之遊戲或應用程式軟體的輸入且使用該等控制信號來處理 遊戲或應用程式之下一個圖框。一旦產生下一個圖框,就 將視訊及音訊自伺服器402輸出至視訊壓縮器4〇4。可經由 各種構件將視訊及音訊自伺服器402輸出至壓縮器404。首 先’可將壓縮器404建置於伺服器402中,因此可在祠服器 402内在本端實施壓縮。或者,可經由至網路(其或者為祠 服器402與視訊壓縮器404之間的私用網路,或者為經由諸 如SAN 403之共用網路的網路)之網路連接(諸如,乙太網 路連接)以封包化形式輸出視訊及/或音訊。或者,可經由 視訊輸出連接器(諸如,DVI或VGA連接器)將視訊自伺服 器402輸出,且接著由視訊壓縮器404來俘獲。又,可將音 訊自伺服器402輸出為數位音訊(例如,經由TOSLINK或 S/PDIF連接器)或類比音訊,類比音訊由視訊壓縮器404内 之音訊壓縮邏輯來數位化並編碼。 139852.doc -60- 200952495 一旦視訊壓縮器404已俘獲來自伺服器402之視訊圖框及 在彼圖框時間期間所產生之音訊,則視訊壓縮器將使用下 文所描述之技術壓縮視訊及音訊。一旦視訊及音訊被壓 縮’就藉由一位址將其封包化以將其發送回至使用者之用 • 戶端415,且將其路由至WAN介面444,WAN介面444接著 • 經由通用網際網路410路由視訊及音訊封包,通用網際網 路410接著將視訊及音訊封包路由至使用者之lsp的存在點 0 441存在點441將視訊及音訊封包路由至使用者場所處之 WAN介面442 ’ WAN介面442將視訊及音訊封包路由至防 火牆/路由器/NAT器件443 ’防火牆/路由器/NAT器件443接 著將視訊及音訊封包路由至用戶端415。 用戶端415解壓縮視訊及音訊,且接著在顯示器件 422(或用戶端之内置顯示器件)上顯示視訊並將音訊發送至 顯示器件422或至單獨的放大器/揚聲器或至建置於用戶端 中之放大器/揚聲器。 〇 為使使用者感覺到剛才所描述之整個過程在感知上無滞 後,來回行程延遲需要小於70毫秒或80毫秒。所描述之來 回行程路徑中的-些延時延遲受主機代管服務210及/或使 用者之控制,而其他的延時延遲不受主機代管服務210及/ 或使用者之控制。儘管如此,基於大量真實世界情況之分 析及測試,以下為近似量測。 用於發送控制信號之單向傳輸時間451通常小於!毫秒, 經由使:者場所之來回行程路由452通常係使用乙太網路 上的易得之4費者級防火牆/路由器/nat交換器而在約丄毫 139852.doc •61· 200952495 秒内完成。使用者ISP廣泛地改變其來回行程延遲453,但 在DSL及電纜數據機提供者之情況下,通常看見其在1〇毫 秒與25毫秒之間》通用網際網路410上之來回行程延時可 視訊務被如何路由及路線上是否存在任何故障(且此等問 ' 題在下文加以論述)而極大地改變’但通常通用網際網路 • 提供相當最佳的路由且延時很大程度上係由光穿過光纖之 速度(給定至目的地之距離)來判定。如下文進一步論述, ❹ 已確定1000英里作為期望將主機代管服務210遠離使用者 場所211置放的大致最遠距離。在1〇〇〇英里處(來回行程 2000英里)’用於信號經由網際網路之實際傳輸時間為約 22毫秒。至主機代管服務210之WAN介面444通常為具有可 忽略之延時的商業級光纖高速介面。因此,通用網際網路 延時454通常係在丨毫秒與10毫秒之間。經由主機代管服務 210之單向路由455延時可在小於1毫秒内達成。伺服器4〇2 通常將在小於一圖框時間(其在60 fps下為167毫秒)之時間 ❷ 中計算用於遊戲或應用程式之新圖框,因此16毫秒為將使 用的合理的最大單向延時456。在本文中所描述之視訊壓 縮及音訊壓縮演算法之最佳硬體實施中,壓縮457可在1毫 秒内完成。在次佳版本中,壓縮可花費多達6毫秒(當然, 更欠佳之版本可花費更長時間,但該等實施將影響來回行 程之總延時且將需要其他延時較短(例如,可減小經由通 用網際網路之可允許的距離)以維持70毫秒-80毫秒延時目 標)。已經考慮網際網路454、使用者lsp 453及使用者場所 .路由452之來回行程延時,因此剩餘的為視訊解壓縮458延 139852.doc •62- 200952495 時,視訊解壓縮458延時取決於視訊解壓縮458是實施於專 用硬體中還是實施於用戶端器件415(諸如,…或行動器 件)上之軟體中’可視顯示器之大小及解壓縮CPU之效能而 改變通常,解壓縮458花費1毫秒與8毫秒之間的時間。 • 因此’可藉由將在實踐中所見的所有最糟狀況之延時加 ' 在-起來判定圖4a中所展示之系統之使用者可預期將經歷的 最糟狀況之來回行程延時。其為:1 + 1+25+22+1 + 16+6+8=8〇 春 *卜Μ ’實際上’在實踐中(具有下文所論述的防止 誤解之說明)’此大致為使用圖4a中所展示之系統之原型 版本(在美國使用現成的Windows PC作為用戶端器件及家 庭DSL及電纜數據機連接)所見的來回行程延時。當然,優 於最糟狀況之情況可導致短得多的延時,但不可依賴其來 開發廣泛使用之商業服務。 為了經由通用網際網路達成圖讣中所列出之延時,需要 用戶端415中之視訊壓縮器4〇4及視訊解壓縮器412(來自圖 φ 4a)產生具有非常特定的特性之封包流,以使得經由自主 機代管服務210至顯示器件422之整個路徑所產生的封包序 列不經受延遲或過多封包丟失,且詳言之,始終如一地落 在經由使用者之網際網路連接(經由WA N介面4 4 2及防火牆/ 路由器/NAT 433)而可用於使用者的頻寬之約束内。另 外,視訊壓縮器必須產生足夠強健之封包流,以使得其可 容忍在正常網際網路及網路傳輸中出現的不可避免的封包 丟失及封包重排序。 低廷時视訊壓缩 139852.doc 63. 200952495 為了完成上述目標,一實施例採用新的視訊壓縮方法, 該方法降低用於傳輸視訊之延時及峰值頻寬要求。在描述 此等實施例之前,將關於圖5及圖6a至圖6b提供對當前視 訊壓縮技術之分析。當然,若使用者具備足以處理此等技 • 術所需之資料速率的頻寬,則此等技術可根據基本原理來 • 使用。注意,本文中不解決音訊壓縮,而是陳述音訊壓縮 係與視訊壓縮同時且同步地來實施。滿足用於此系統之要 求的先前技術音訊壓縮技術存在。 〇 圖5說明用於壓縮視訊之一特定先前技術,其中由壓縮 邏輯520使用特定壓縮演算法來壓縮每一個別視訊圖框 501-503以產生一系列經壓縮之圖框511_513。此技術之一 實施例係「運動JPEG」’其中根據聯合圖像專家群(jpeg) 壓縮演算法基於離散餘弦變換(DCT)來壓縮每一圖框。可 使用各種不同類型之壓縮演算法,然而,仍遵守此等基本 原理(例如’以小波為基礎之壓縮演算法,諸如JpEG_ ❹ 2000)。 此類型壓縮之一問題在於:其減小了每一圖框之資料速 率’但其不利用相繼圖框之間的類似性來減小總視訊流之 資料速率。舉例而言’如圖5中所說明,假定64〇χ48〇χ24 位元/像素=640*480*24/8/1024=900千位元組/圖框(KB/圖 框)之圖框速率,則對於給定品質之影像,運動JpEG可能 僅將該流壓縮1 /10,從而產生90 KB/圖框之資料流。在60 圖框/秒下,此將需要90 KB*8位元*60圖框/秒=42 2 Mbps 之頻道頻寬,其對於美國現今幾乎所有的家庭網際網路連 139852.doc 200952495 接而言將為極高之頻寬,且對於許多辦公室網際網路連接 而言為過高之頻寬。實際上,假定其在此種高頻寬之情況 下要求恆定資料流,且其將僅伺服一使用者,則即使在辦 公室LAN環境中,其亦將消耗1〇〇 Mbps6太網路LAN之頻 寬的大百分比及支援LAN之負擔沉重的乙太網路交換器。 因此,當與其他壓縮技術(諸如下文所描述之彼等技術)相 比較時,用於運動視訊之壓縮無效率。此外,使用有損壓 ❹縮演算法之單一圖框壓縮演算法(如JpEG&〗1^〇} 2〇〇〇)產 生在靜止影像中可能不引人注意的壓縮假影(例如,場景 中之密集樹葉内之假影可能不呈現為假影,因為眼並不確 切地知道密集樹葉應如何呈現)^但是,一旦場景係在運 動中,假影就可能突出,因為眼偵測到自圖框至圖框而改 變之假影,儘管假影係在場景之區域(在該區域中,假影 在靜止影像中可能不引人注意)中。此導致圖框序列中之 「背景雜訊」之感知,該「背景雜訊」之外觀與邊緣類比 ❹ TV接收期間可見的「雪」雜訊類似。當然,此類型之壓 縮仍可用於本文中所描述之特定實施例中,但一般而言, 為了避免場景中之背景雜訊,對於給定感知品質,需要高 資料速率(亦即,低壓縮比率)。 其他類型之壓縮(諸如,H.264,或Windows媒體VC9、 MPEG2及MPEG4)在壓縮視訊流中均更有效,因為其利用 相繼圖框之間的類似性。此等技術均依賴於用於壓縮視訊 之相同的一般技術。因此’儘管將描述H.264標準,但相 同的一般原理適用於各種其他壓縮演算法。大量H.264壓 139852.doc -65- 200952495 縮器及解壓縮器可用,包括用於壓縮Η·264之x264開放源 軟體庫及用於解壓縮H.264之FFmpeg開放源軟體庫。 圖6a及圖6b說明例示性先前技術壓縮技術,其中由壓縮 邏輯620將一系列未經壓縮之視訊圖框5〇1_503、559_561壓 縮成一系列Γι圖框」611、671 ;「P圖框」612-613 ;及 . 「B圖框」670。圖6a中之垂直轴大體表示經編碼之圖框中 之每一者的所得大小(儘管該等圖框未按比例進行繪製)。 如上所述’熟習此項技術者良好地理解使用I圖框、B圖框 及P圖框之視訊寫碼。簡言之,I圖框611為完全未壓縮之 圖框501的以DCT為基礎之壓縮(類似於如上所述的經壓縮 之JPEG影像)。P圖框612-613之大小通常顯著小於I圖框 611之大小’因為其利用先前I圖框或p圖框中之資料;亦 即,其含有指示先前I圖框或P圖框之間的改變的資料。除 B圖框使用隨後參考圖框中的圖框以及(可能地)之前參考 圖框中的圖框之外,B圖框670類似於p圖框。 φ 對於以下論述’將假定所要之圖框速率為60圖框/秒, 每一 I圖框為約160 Kb,平均P圖框及B圖框為16 Kb且每隔 一秒產生一新的I圖框》在此組參數下,平均資料速率將 為:160 Kb+16 Kb*59=l.l Mbps。此資料速率適當地落在 用於至家庭及辦公室之許多當前寬頻帶網際網路連接之最 大資料速率内。此技術亦傾向於避免來自僅框内編碼之背 景雜sfL問題’因為P圖框及B圖框追蹤圖框之間的差異,因 此壓縮假影傾向於不自圖框至圖框而呈現及消失,藉此減 少上文所描述之背景雜訊問題。 139852.doc -66 - 200952495 上述類型之壓縮之一問題在於:儘管平均資料速率相對 低(例如’ 1·1 Mbps) ’但單一 I圖框可能花費若干個圖框時 間來傳輸。舉例而言’使用先前技術,2.2 Mbps網路連接 (例如,DSL或電纜數據機’其具有來自圖3a的最大可用資 料速率302之2.2 Mbps峰值)通常將足夠使視訊以丨1 Mbps 串流’每60個圖框一 160 Kbps I圖框。此將藉由使解壓縮 器在解壓縮視訊之前將1秒視訊排入佇列來完成。在j秒 内,將傳輸1.1 Mb之資料’其將藉由2.2 Mbps最大可用資 料速率來容易地適應’即使假定可用資料速率可能週期性 地下降多達50%亦如此。遺憾地’此先前技術方法將由於 接收器處之1秒視訊緩衝而導致視訊之1秒延時。此種延遲 對於許多先前技術應用程式(例如,線性視訊之回放)而言 足夠’但對於不可容忍大於70毫秒_8〇毫秒之延時的快動 作視訊遊戲而言其為極長之延時。 若進行嘗試來消除1秒視訊緩衝,其仍將不會導致用於 快動作視訊遊戲之足夠延時減少。舉例而言,如先前所描 述,B圖框之使用將需要接收I圖框之前的所有b圖框以及I 圖框。若假定在P圖框與B圖框之間大致分裂59個非工圖 框,則將存在至少29個B圖框且可顯示任何B圖框之前所 接收的I圖框。因此,不管頻道之可用頻寬如何,均需要 29+1=30個圖框每一者1/6〇秒持續時間之延遲,或5〇〇毫秒 之延時。顯而易見,彼時間極長。 因此’另一方法將為消除B圖框且僅使用I圖框及P圖 框。(此之一後果為··對於給定品質位準,資料速率將增 I39852.doc •67- 200952495 加但出於此實例中之一致性起見,繼續假定每一 i圖框 之大小為160 Kb且平均P圖框之大小為16 Kb,且因此資料 速率仍為1.1 Mbps)。此方法消除了 圖框引入的不可避 免之延時,因為每一P圖框之解碼僅依賴於先前所接收之 圖框。此方法仍存在的問題在於:I圖框比平均p圖框大得 * 多’以致在低頻寬頻道上(如大多數家庭中及許多辦公室 中典型的),I圖框之傳輸添加實質延時。此在圖6b中加以 ❹ 說明。視訊流資料速率624低於可用最大資料速率621(除 對於I圖框之外),其中I圖框所需之峰值資料速率623遠超 過可用最大資料速率622(且甚至超過額定最大資料速率 621) ^ P圖框所需之資料速率小於可用最大資料速率。即 使在2.2 Mbps之可用最大資料速率峰值穩定地保持在其2 2 Mbps峰值速率,亦將花費16〇 Kb/2.2 Mb=71毫秒來傳輸I 圖框,且若可用最大資料速率622下降50°/。(1.1 Mbps),則 將花費142毫秒來傳輸I圖框。因此,傳輸1圖框中之延時將 ❷ 落在71毫秒與142毫秒之間的某處。此延時添加至圖扑中 所識別之延時(該等延時在最糟狀況下總計達70毫秒),因 此’此將導致自使用者致動輸入器件421之時刻直至影像 呈現於顯示器件422上的為141-222毫秒之總來回行程延 時’其極高。且若可用最大資料速率下降至低於2.2 Mbps,則延時將進一步增加。 亦注意’以遠超過可用資料速率622之峰值資料速率623 使ISP「堵塞」通常存在嚴重後果。不同ISP中之設備將不 同地表現,但當以比可用資料速率622高得多的資料速率 139852.doc .68· 200952495 =封以下行為在亂及電緵數據機ISP當中相當 =⑷藉由將封包排入仔列而使封包延遲(引入延時), 、一些或所有封包,(C)停用連接歷 可能因為ISP擔憂其為亞音4教 ]巧期(最 ❹From the user device 421 at the user location 421, the user-inducing input device 421 '$ sends a user control signal to the client that can be a stand-alone device such as a set-top box, or it can be at (iv) The software or hardware executed in the other device of the device is subscribed and packetized (in a real format) and the destination address is given to the packet to reach the colocation service 210. The packet will also contain information indicating which user the control signal is from. The control signal packet is then forwarded to the wan interface 442 via a firewall/router/NAT (Network Address Translation) device 443. The WAN interface 442 is an interface device provided by the user's lsp (Internet Service Provider) to the user premises 211. The WAN interface 442 can be a cable or DSL modem, a WiMax transceiver, a fiber optic transceiver, a cellular data interface, an Internet pr〇t〇e_i-over-powerline interface, or an Internet connection. Any of a number of other interfaces. Additionally, firewall/router/NAT device 443 (and (possibly) WAN interface 442) can be integrated into client 415. An example of this would be a mobile phone that includes software for implementing the functionality of the home or office client 415, and for wirelessly routing and connecting to the Internet via a certain standard (eg, 802.11g). member. The WAN interface 442 then routes the control signals to the "presence point" 441 WAN interface 442 for the user's Internet service provider (ISSP) herein to provide a WAN conveyor that is connected to the user premises 211. A facility between the Internet or a private network. The existence of a broken temple will vary depending on the nature of the Internet service provided. For DSL, it will usually be the central office of the telephone company located in the DSLAM. For the 139852.doc • 59- 200952495 cable modem, which usually It will be the head end of the cable multi-system operator (Ms〇). For a honeycomb system, it will typically be the control room associated with the honeycomb tower. But regardless of the nature of the point, it will then route the control signal packet to the Universal Internet. The control signal packets are then routed to the WAN interface 444 to the host escrow service 210 via the interface that is most likely to be the fiber optic transceiver interface. WAN 444 will then route the control signal packets to routing logic 409 (which can be implemented in many different ways, including Ethernet switches and routing servers), routing logic 4〇9 to estimate the user's address and control signals Routed to the correct server 4〇2 for a given user. The server 402 then treats the control signals as inputs to the game or application software executing on the server 4〇2 and uses the control signals to process the next frame of the game or application. Once the next frame is generated, the video and audio are output from the server 402 to the video compressor 4〇4. Video and audio can be output from the server 402 to the compressor 404 via various components. Compressor 404 can be built into server 402 first, so compression can be performed at the local end within server 402. Alternatively, it may be connected via a network to a network (either a private network between the server 402 and the video compressor 404, or a network via a shared network such as the SAN 403) (such as B Too network connection) Output video and/or audio in a packetized form. Alternatively, the video may be output from the server 402 via a video output connector, such as a DVI or VGA connector, and then captured by the video compressor 404. Alternatively, the audio can be output from the server 402 as digital audio (e.g., via a TOSLINK or S/PDIF connector) or analog audio, and the analog audio is digitized and encoded by the audio compression logic within the video compressor 404. 139852.doc -60- 200952495 Once the video compressor 404 has captured the video frame from the server 402 and the audio generated during the frame time, the video compressor will compress the video and audio using the techniques described below. Once the video and audio are compressed, it is packetized by a single address to send it back to the user's client 415 and routed to the WAN interface 444, the WAN interface 444 then • via the universal Internet The path 410 routes the video and audio packets, and the universal Internet 410 then routes the video and audio packets to the user's lsp presence point. 0 441 The presence point 441 routes the video and audio packets to the WAN interface 442 'WAN at the user's premises. Interface 442 routes the video and audio packets to firewall/router/NAT device 443 'Firewall/Router/NAT device 443 and then routes the video and audio packets to client 415. The client 415 decompresses the video and audio, and then displays the video on the display device 422 (or the built-in display device of the user terminal) and sends the audio to the display device 422 or to a separate amplifier/speaker or to the user terminal. Amplifier/speaker. 〇 In order for the user to feel that the entire process just described is perceptually free of lag, the round trip delay needs to be less than 70 milliseconds or 80 milliseconds. Some of the delay delays described in the return path are controlled by the colocation service 210 and/or the user, while other delay delays are not controlled by the colocation service 210 and/or the user. Nonetheless, based on the analysis and testing of a large number of real-world situations, the following are approximate measurements. The one-way transmission time 451 for transmitting control signals is usually less than! In milliseconds, routing 452 via the round-trip route of the place is typically completed within approximately 139852.doc • 61· 200952495 seconds using an easy-to-use 4 level firewall/router/nat switch on the Ethernet. User ISPs widely change their round trip delay 453, but in the case of DSL and cable modem providers, they typically see a round trip delay video on the universal Internet 410 between 1 and 25 milliseconds. How to be routed and whether there are any faults on the route (and these questions are discussed below) and greatly changed 'but usually the universal Internet • Provides the best route and the delay is largely due to light Determined by the speed of the fiber (given the distance to the destination). As discussed further below, 1000 has determined 1000 miles as the approximate farthest distance from which the colocation service 210 is expected to be placed away from the user premises 211. At 1 mile (2,000 miles back and forth), the actual transmission time for signals via the Internet is approximately 22 milliseconds. The WAN interface 444 to the colocation service 210 is typically a commercial grade fiber optic high speed interface with negligible latency. Therefore, the universal internet latency 454 is typically between 丨 milliseconds and 10 milliseconds. The one-way routing 455 delay via the colocation service 210 can be achieved in less than one millisecond. Server 4〇2 will typically calculate a new frame for the game or application in less than a frame time (which is 167 milliseconds at 60 fps), so 16 milliseconds is the reasonable maximum size that will be used. The delay is 456. In the preferred hardware implementation of the video compression and audio compression algorithms described herein, compression 457 can be accomplished in less than 1 millisecond. In the next best version, compression can take up to 6 milliseconds (of course, a less desirable version can take longer, but these implementations will affect the total latency of the round trip and will require other delays to be shorter (eg, subtractable) Small via the allowable distance of the universal Internet) to maintain the 70ms-80ms delay target). The round trip delay of Internet 454, user lsp 453 and user location. Route 452 has been considered, so the remaining video decompression 458 extension 139852.doc • 62- 200952495, the video decompression 458 delay depends on the video solution Whether the compression 458 is implemented in a dedicated hardware or in a software implemented on a client device 415 (such as a mobile device), the size of the visual display and the performance of the decompressing CPU are changed. Generally, decompression 458 takes 1 millisecond and Time between 8 milliseconds. • Therefore, it is possible to delay the round-trip travel of the worst-case conditions that the user of the system shown in Figure 4a can expect to experience by delaying all the worst-case delays seen in practice. It is: 1 + 1+25+22+1 + 16+6+8=8〇春*卜Μ 'In fact' in practice (with the explanation of misunderstanding discussed below) 'This is roughly the use of Figure 4a The prototype version of the system shown in the show (the use of off-the-shelf Windows PCs in the US as a client device and home DSL and cable modem connections) sees the round trip delay. Of course, situations that are better than the worst can lead to much shorter delays, but you can't rely on them to develop widely used business services. In order to achieve the delays listed in the figure via the universal internet, the video compressor 4〇4 and the video decompressor 412 (from Figure φ 4a) in the client 415 are required to generate a packet stream with very specific characteristics. So that the sequence of packets generated via the entire path from the colocation service 210 to the display device 422 is not subject to delay or excessive packet loss, and in detail, consistently falls over the Internet connection via the user (via WA) N interface 4 4 2 and firewall / router / NAT 433) can be used within the constraints of the user's bandwidth. In addition, the video compressor must generate a sufficiently robust packet stream to withstand the inevitable packet loss and packet reordering that occurs in normal Internet and network transmissions. Low-Temperature Video Compression 139852.doc 63. 200952495 To accomplish the above objectives, an embodiment employs a new video compression method that reduces the delay and peak bandwidth requirements for video transmission. Prior to describing such embodiments, an analysis of current video compression techniques will be provided with respect to Figures 5 and 6a through 6b. Of course, if the user has sufficient bandwidth to handle the data rate required by such techniques, then these techniques can be used according to the basic principles. Note that this does not address audio compression, but rather states that audio compression is implemented concurrently and synchronously with video compression. Prior art audio compression techniques that meet the requirements for this system exist. Figure 5 illustrates a particular prior art for compressing video in which each individual video frame 501-503 is compressed by compression logic 520 using a particular compression algorithm to produce a series of compressed frames 511-513. One embodiment of this technique is "Motion JPEG" where each frame is compressed based on a discrete cosine transform (DCT) according to a joint image expert group (jpeg) compression algorithm. A variety of different types of compression algorithms can be used, however, these basic principles are still adhered to (e. g. 'wavelet based compression algorithms such as JpEG_❹ 2000). One problem with this type of compression is that it reduces the data rate of each frame' but it does not utilize the similarity between successive frames to reduce the data rate of the total video stream. For example, as illustrated in Figure 5, assume a frame rate of 64〇χ48〇χ24 bits/pixel=640*480*24/8/1024=900 kbytes/frame (KB/frame) , for a given quality image, the motion JpEG may only compress the stream by 1/10, resulting in a stream of 90 KB/frame. At 60 frames per second, this would require 90 KB * 8 bits * 60 frames / sec = 42 2 Mbps channel bandwidth, which is now available for almost all home Internet connections in the United States today 139852.doc 200952495 It will be extremely high bandwidth and too high bandwidth for many office internet connections. In fact, assuming that it requires a constant data stream in such a high bandwidth, and it will only serve one user, it will consume 1 Mbps 6 too wide LAN LAN bandwidth even in an office LAN environment. A large percentage and a heavy Ethernet switch that supports the LAN. Therefore, compression for motion video is inefficient when compared to other compression techniques, such as those described below. In addition, a single frame compression algorithm (such as JpEG& 1^〇} 2〇〇〇) using a lossy pressure collapse algorithm produces compression artifacts that may be unobtrusive in still images (eg, in a scene) The artifacts in the dense leaves may not appear as artifacts, because the eyes do not know exactly how the dense leaves should be presented. ^ However, once the scene is in motion, the artifacts may protrude because the eye detects the self. The artifacts that change from frame to frame, although the artifacts are in the area of the scene where artifacts may not be noticeable in still images. This results in the perception of "background noise" in the sequence of frames. The appearance and edge analogy of the "background noise" is similar to the "snow" noise visible during TV reception. Of course, this type of compression can still be used in the specific embodiments described herein, but in general, in order to avoid background noise in the scene, a high data rate (ie, a low compression ratio) is required for a given perceived quality. ). Other types of compression (such as H.264, or Windows Media VC9, MPEG2, and MPEG4) are more efficient in compressing video streams because they exploit the similarities between successive frames. These techniques all rely on the same general techniques for compressing video. Thus, although the H.264 standard will be described, the same general principles apply to various other compression algorithms. A large number of H.264 compressions 139852.doc -65- 200952495 Restrictors and decompressors are available, including the x264 open source software library for compression Η·264 and the FFmpeg open source software library for decompressing H.264. 6a and 6b illustrate an exemplary prior art compression technique in which a series of uncompressed video frames 5〇1_503, 559_561 are compressed by compression logic 620 into a series of 图ι frames 611, 671; "P-frames" 612 -613; and. "B frame" 670. The vertical axis in Figure 6a generally represents the resulting size of each of the encoded frames (although the frames are not drawn to scale). As described above, those skilled in the art are well aware of the video writing codes using the I frame, the B frame, and the P frame. Briefly, block I 611 is a DCT-based compression of frame 501 that is completely uncompressed (similar to a compressed JPEG image as described above). The size of P-frames 612-613 is typically significantly smaller than the size of I-frame 611 'because it utilizes the material of the previous I-frame or p-frame; that is, it contains an indication between the previous I-frame or P-frame Changed information. The B-frame 670 is similar to the p-frame except that the B-frame uses the frame of the subsequent reference frame and (possibly) the frame of the previous reference frame. φ For the following discussion, 'will assume that the required frame rate is 60 frames per second, each I frame is about 160 Kb, the average P frame and B frame are 16 Kb and a new I is generated every second. Frame, under this set of parameters, the average data rate will be: 160 Kb + 16 Kb * 59 = ll Mbps. This data rate falls appropriately within the maximum data rate for many current broadband Internet connections to homes and offices. This technique also tends to avoid background sfL problems from only intra-frame coding. Because the difference between the P-frame and the B-frame tracking frame, the compression artifact tends to appear and disappear from the frame to the frame. To reduce the background noise problem described above. 139852.doc -66 - 200952495 One of the problems with compression of the above type is that although the average data rate is relatively low (e.g., '1.1 Mbps), a single I-frame may take several frame times to transmit. For example, using prior art, a 2.2 Mbps network connection (eg, a DSL or cable modem with a 2.2 Mbps peak from the maximum available data rate 302 of Figure 3a) would typically be sufficient to stream video at 丨1 Mbps ' One 160 Kbps I frame per 60 frames. This will be done by having the decompressor put a 1 second video into the queue before decompressing the video. Within j seconds, 1.1 Mb of data will be transmitted 'which will be easily accommodated by the 2.2 Mbps maximum available data rate' even if it is assumed that the available data rate may periodically drop by as much as 50%. Unfortunately, this prior art method would result in a 1 second delay in video due to the 1 second video buffer at the receiver. This delay is sufficient for many prior art applications (e.g., playback of linear video), but it is an extremely long delay for fast motion video games that cannot tolerate delays greater than 70 milliseconds _8 milliseconds. If an attempt is made to eliminate the 1 second video buffer, it will still not result in a sufficient delay reduction for fast motion video games. For example, as previously described, the use of a B-frame will require receipt of all b-frames and I-frames before the I-frame. If it is assumed that approximately 59 non-work frames are split between the P frame and the B frame, there will be at least 29 B frames and the I frame received before any B frames can be displayed. Therefore, regardless of the available bandwidth of the channel, a delay of 1/6 sec duration for each of the 29+1=30 frames, or a delay of 5 〇〇 milliseconds is required. Obviously, his time is extremely long. Therefore, another method would be to eliminate the B frame and only use the I frame and the P frame. (One of the consequences is that for a given quality level, the data rate will increase by I39852.doc •67- 200952495. But for consistency in this example, continue to assume that each i frame is 160 in size. Kb and the average P frame size is 16 Kb, and therefore the data rate is still 1.1 Mbps). This method eliminates the unavoidable delay introduced by the frame because the decoding of each P-frame depends only on the previously received frame. The problem with this approach is that the I frame is much larger than the average p frame so that on the low frequency wide channel (as is typical in most homes and many offices), the transmission of the I frame adds substantial delay. This is illustrated in Figure 6b. The video stream data rate 624 is lower than the available maximum data rate 621 (except for the I frame), where the peak data rate 623 required for the I frame is well above the maximum available data rate 622 (and even exceeds the nominal maximum data rate 621). ^ The data rate required for the P frame is less than the maximum available data rate. Even if the peak maximum data rate peak at 2.2 Mbps is steadily maintained at its 2 2 Mbps peak rate, it will take 16 〇Kb/2.2 Mb=71 ms to transmit the I frame, and if the maximum data rate 622 is available, it drops 50°/ . (1.1 Mbps), it will take 142 milliseconds to transmit the I frame. Therefore, the delay in the transmission 1 frame will fall somewhere between 71 milliseconds and 142 milliseconds. This delay is added to the delay identified in the map (the delays are up to 70 milliseconds in the worst case), so this will result from the moment the user actuates the input device 421 until the image is presented on the display device 422. The total round trip delay of 141-222 milliseconds is extremely high. And if the maximum available data rate drops below 2.2 Mbps, the delay will increase further. It is also noted that ‘blocking" by ISPs that exceed the peak data rate 623 of the available data rate 622 typically has serious consequences. Devices in different ISPs will behave differently, but when the data rate is much higher than the available data rate 622, 139852.doc .68· 200952495 = the following behavior is quite equal in the mess and the data ISP = (4) by The packet is queued to delay the packet (introduction delay), some or all packets, (C) the connection history may be disabled because the ISP is worried that it is a sub-sound 4

擊)。因此’以全資料速率傳輸封包流(具有諸如圖6b中所 ,不之彼等特性的特性)並非為可行的選項。可在主機代 官服務21G處將峰值623排人❹且以低於可用最大資料速 率之貝料速率進行發送,從而m段巾所 接受之延時。 J 「另外’圖6b中所展示之視訊流資料迷率序列似為非常 「馴服的(Ume)」⑨訊流資料速率序列,且將係由於廢縮 來自視訊序列之視訊而預期產生的該種資料速率序列,該 視訊序列並不改變很A且具有非常少之運動(例如,如在X 視訊電話會議中將係普遍的,在視訊電話會議中,相機處 於固定位置中且具有非常少之運動,且場景(例如,就座 的人5炎話)中之物件展示較少運動)。 圖6c中所展示之視訊流資料速率序列634為自具有多得 多的動作之視訊(諸如,可能在電影或視訊遊戲中或在某 一應用程式軟體中產生)預期可見的典型序列。注意,除工 圖框峰值633之外,亦存在相當大且在許多場合上超過可 用最大資料速率之P圖框峰值(諸如,635及636)。儘管此 等P圖框峰值並不如I圖框峰值一般相當大,但其仍極大以 致不能由頻道以全資料速率來載運’且如同I圖框峰值一 樣,P圖框峰值必須緩慢地傳輸(藉此增加延時)。 \39S52.doc -69- 200952495 在一南頻寬頻道(例如,100 Mbps LAN,或高頻寬1⑼ Mbps私用連接)上,網路將能夠容忍諸如1圖框峰值或p 圖框峰值636之大峰值,但原則上,可維持低延時。但 是,該等網路經常在許多使用者當中共用(例如,在辦公 室環境中),且該「有峰」資料將影響LAN之效能,尤其 • 在網路訊務經路由至私用共用連接(例如,自遠端資料中 心至辦公室)之情況下。首先,記住此實例係6〇 fps下 640x480像素的相對低解析度的視訊流的實例。6〇 fps下之 1920x1 080的HDTV流容易由現代電腦及顯示器來處理,且 60 fps下之2560x1440解析度顯示器日益可用(例如,Apple 公司之30"顯示器)。使用h_264壓縮,60 fps下之 1920X1080之高動作視訊序列可能需要4 5 Mbps以獲得合 理品質位準。若假定丨圖框峰值為標稱資料速率之1〇倍, 則其將產生45 Mbps峰值,以及較小但仍相當大的p圖框峰 值。若若干個使用者正在同一 100 Mbps網路(例如,辦公 ❹ 室與資料中心之間的私用網路連接)上接收視訊流,則容 易看見來自若干使用者之視訊流之峰值可如何碰巧對準, 從而淹沒網路之頻寬,且可能淹沒網路上支援使用者之交 換器的底板之頻寬。即使在超高速乙太網路之狀況下,若 足夠的使用者具有同時對準的足夠峰值,則其可淹沒網路 或網路交換器《此外,一旦2560x1440解析度視訊變得更 常見’平均視訊流資料速率就可能為9·5 Mbps,從而或許 產生95 Mbps峰值資料速率。不用說,資料中心與辦公室 之間的100 Mbps連接(其在現今為格外快之連接)將完全被 139852.doc -70- 200952495 來自單一使用者之峰值訊務擊潰。因此,即使LAN及私用 網路連接對有峰串流視訊可具有更高容忍度,具有高峰值 之串流視訊亦係不需要的且可能需要辦公室之汀部門之特 殊計劃及適應^ . 當然,對於標準線性視訊應用程式,此等問題並非問 題’因為資料速率在傳輸點「經平滑化」且用於每一圖框 之資料低於最大可用資料速率622,且在解壓縮ϊ圖框、p @ 囷框及B圖框序列之前,用戶端中之緩衝器儲存丨圖框、p 圖框及B圖框序列。因此,網路上之資料速率保持接近於 視訊流之平均資料速率。遺憾地,此引入延時,即使不使 用B圖框’對於諸如需要快回應時間之視訊遊戲及應用程 式的低延時應用程式而言,彼亦係不可接受的。 用於減輕具有高峰值之視訊流的一先前技術解決方法係 使用常常被稱作「恆定位元速率」(CBr)編碼之技術。儘 管術語CBR看來似乎暗示將所有圖框壓縮以具有相同位元 ❹ 速率(亦即’大小),但其經常提及的為壓縮範例,在壓縮 範例中,允許跨越特定數目之圖框(在吾人之狀況下,1個 圖框)的最大位元速率。舉例而言,在圖6〇之狀況下,若 對編碼施加CBR約束(其將位元速率限於(例如)額定最大資 料速率621之70%),則壓縮演算法將限制該等圖框中之每 一者的壓縮,以使得通常將使用額定最大資料速率621之 70%以上來壓縮的任何圖框將以較少位元來壓縮。此之結 果為.將使通常將需要更多位元來維持給定品質位準之圖 框「極度缺乏」位元且彼等圖框之影像品質將比不需要比 139852.doc •71 · 200952495 額定最大資料速率621之70%多的位元的其他圖框之影像 品質糟。此方法對於特定類型的經a縮視訊(其巾⑷預期 較少運動或場景改變且(b)使用者可接受週期性的品 級)可產生可接受的結果。適合CBR之應用的良好實例為 視訊電話會議,因為存在較少峰值,且在品質暫時降級之 情況下(例如’若使相機掃視’ &而導致顯著場景運動及 大峰值,則在掃視期間可能不存在足夠的位元用於高品質 ❹ 影像壓縮’其將導致降級的影像品f),以數使用者可 接受。遺憾地,CBR並非良好地適合具有高複雜度之場景 或大量運動及/或需要合隸定之品f位準的許多其他應 用。 1 在一實施例中所使用之低延時壓縮邏輯404使用若干不 同技術來解決串流低延時經壓縮視訊同時維持高品質之許 多問題H低延時壓縮邏輯4G4僅產生!圖框及p圖 框,藉此緩解等待若干個圖框時間來解碼每一叫框的需 要。另外’如圖7a中所說明,在一實施例中,低延時壓: 邏輯404將每—未經壓縮之圖框7gi_7叫分成—系列「影 像塊陶」且將每一影像塊個別地編碼為工圖框或p圖框: 在本文中將該群經㈣之I圖框及P圖框稱作「R圓框 711_770。在圖7&中所展示之特定實例中,將每—未經壓 縮之圖框再分成4M矩陣的16個影像塊u,基 原理不限於任何特定再分機制。 ,列中’低延時壓縮邏輯4°4將視訊圖框劃分成 許夕影像塊,且將來自每一圖框之一影像塊編瑪(亦即, 139852.doc •71· 200952495 壓縮)為i圖框(亦即’將該影像塊壓縮,好像其為全影像之 大小之1/16的單獨視訊圖框,且用於此「迷你型」圖框之 壓縮為I圖框壓縮)並將剩餘影像塊編碼為p圖框(亦即,用 於每一「迷你型」丨/16圖框之壓縮為p圖框壓縮)。經壓縮 • 為1圖框之影像塊及經壓縮為P圖框之影像塊將分別被稱作 * 「1影像塊」及「p影像塊」。隨著每一相繼視訊圖框而改 變待編碼為I影像塊之影像塊。因此,在給定圖框時間 ❹ 中,視訊圖框中之該等影像塊中僅一影像塊為I影像塊, 且該等影像塊中之剩餘者為P影像塊。舉例而言,在圖7a 中,未經壓縮之圖框701之影像塊〇經編碼為1影像塊1〇且剩 餘的1 - 1 5影像塊經編竭為P影像塊(P 1至P ! 5)以產生R圖框 711。在下一個未經壓縮之視訊圖框7〇2中,未經壓縮之圖 框701之影像塊1經編碼為〖影像塊^且剩餘的影像塊〇及2至 1 5經編碼為P影像塊(p〇 ’及P2至Pi5)以產生R圖框712。因 此,用於影像塊之I影像塊及P影像塊在相繼圖框上逐漸地 _ 在時間上交錯。該過程繼續,直至產生R影像塊770(矩陣 中最末影像塊經編碼為I影像塊(亦即’ 115))為止。該過程 接著重新開始’從而產生諸如圖框711(亦即,對於影像塊 〇 ’編碼I影像塊)等之另一 R圖框。儘管圖以中未說明,但 在一實施例中,R圖框之視訊序列之第一 R圖框僅含有j影 像塊(亦即,以使得隨後之P圖框具有參考影像資料(自其 開始計算運動))^或者’在一實施例中,啟動序列使用與 正常相同的I影像塊型樣,但不包括用於尚未連同I影像塊 一起編碼之彼等影像塊的p影像塊。換言之,在第一丨影像 i39852.doc •73· 200952495 塊到達之前不連同任何資料一起編碼特定影像塊,藉此避 免圖9a中的視訊流資料速率93 4中之啟動峰值,其在下文 進一步詳細說明。此外,如下所述,各種不同大小及形狀 可用於該等影像塊同時仍遵守此等基本原理。 • 在用戶端41 5上執行之視訊解壓縮邏輯412解壓縮每一影 . 像塊’好像其為小I圖框及P圖框之單獨視訊序列,且接著 將每一影像塊再現給驅動顯示器件422之圖框緩衝器。舉 ©例而言,使用來自R圖框711至770之1〇及P〇來解壓縮並再現 視訊影像之影像塊0。類似地,使用來自R圖框7〗丨至77〇之 工1及Pi來重建影像塊1 ’等等。如上所述,I圖框及P圖框之 解壓縮係此項技術中眾所熟知的,且像塊及p影像塊之 解壓縮可藉由使視訊解壓縮器之多個執行個體在用戶端 415上執行來完成。儘管倍增過程看來似乎增加用戶端 上之e十算負擔,但實際上其不會增加用戶端415上之計算 負擔,因為影像塊本身成比例地較小(相對於額外處理之 〇 數目而言),因此所顯示之像素之數目相同,好像存在一 個處理且使用習知的全大小之J圖框及p圖框。 此R圖框技術顯著減輕通常與5圖框相關聯之頻寬峰值 (圖6b及圖6c中所說明), 因為任何給定圖框主要係由通常hit). Therefore, transmitting packet streams at full data rate (having characteristics such as those in Figure 6b, which are not their characteristics) is not a viable option. The peak 623 can be queued at the host agent service 21G and sent at a bet rate lower than the maximum available data rate, thereby accepting the delay of the m-segment. J "Additionally" the video stream data rate sequence shown in Figure 6b appears to be a very "tamed" (Ume) 9 stream data rate sequence, and will be expected due to the shrinking of video from the video sequence. Data rate sequence, the video sequence does not change very A and has very little motion (for example, as will be common in X video conference calls, in video conference calls, the camera is in a fixed position and has very little motion And the objects in the scene (for example, the seated person's 5 words) show less movement). The video stream data rate sequence 634 shown in Figure 6c is a typical sequence that is expected to be visible from video with much more motion, such as may be produced in a movie or video game or in an application software. Note that in addition to the peak 633 of the worksite, there are also P-frame peaks (such as 635 and 636) that are quite large and in many cases exceed the maximum available data rate. Although the peaks of these P-frames are not quite as large as the I-frame peaks, they are still so large that they cannot be carried by the channel at full data rate' and like the I-frame peaks, the P-frame peaks must be transmitted slowly (borrowed) This increases the delay). \39S52.doc -69- 200952495 On a South Broadband channel (for example, 100 Mbps LAN, or a high-bandwidth 1 (9) Mbps private connection), the network will be able to tolerate large peaks such as 1 frame peak or p frame peak 636 However, in principle, low latency can be maintained. However, these networks are often shared among many users (for example, in an office environment), and the "peak" data will affect the performance of the LAN, especially • The network traffic is routed to a private shared connection ( For example, from a remote data center to an office. First, remember that this example is an example of a relatively low resolution video stream of 640x480 pixels at 6〇 fps. The 1920x1 080 HDTV stream at 6〇 fps is easily handled by modern computers and monitors, and the 2560x1440 resolution display at 60 fps is increasingly available (for example, Apple's 30" display). With h_264 compression, a high motion video sequence of 1920X1080 at 60 fps may require 4 5 Mbps to achieve a reasonable quality level. If the peak of the frame is assumed to be 1〇 of the nominal data rate, it will produce a 45 Mbps peak and a small but still large p-frame peak. If several users are receiving video streams on the same 100 Mbps network (for example, a private network connection between the office and the data center), it is easy to see how the peak of the video stream from several users can happen to The bandwidth of the network is flooded and may overwhelm the bandwidth of the backplane of the switch supporting the user on the network. Even in the case of ultra-high-speed Ethernet, if enough users have enough peaks for simultaneous alignment, they can flood the network or network switch. "In addition, once the 2560x1440 resolution video becomes more common, the average The video stream data rate may be 9·5 Mbps, which may result in a 95 Mbps peak data rate. Needless to say, the 100 Mbps connection between the data center and the office (which is now an extraordinarily fast connection) will be completely defeated by the peak traffic of 139852.doc -70- 200952495 from a single user. Therefore, even if LAN and private network connections are more tolerant to peak-streaming video, streaming video with high peaks is not required and may require special planning and adaptation of the office's Ting department. For standard linear video applications, these issues are not a problem 'because the data rate is "smoothed" at the transmission point and the data for each frame is below the maximum available data rate 622, and in the decompressed frame, Before the p @ frame and B frame sequence, the buffer in the client side stores the frame, the p frame and the B frame sequence. Therefore, the data rate on the network remains close to the average data rate of the video stream. Unfortunately, this introduction delay, even if the B-frame is not used, is unacceptable for low-latency applications such as video games and applications that require fast response times. A prior art solution for mitigating video streams with high peaks is to use techniques often referred to as "constant bit rate" (CBr) encoding. Although the term CBR appears to imply that all frames are compressed to have the same bit rate (ie, 'size'), it is often referred to as a compression paradigm, in which a certain number of frames are allowed to be crossed (in In the case of our person, the maximum bit rate of a frame). For example, in the case of Figure 6, if a CBR constraint is applied to the code that limits the bit rate to, for example, 70% of the nominal maximum data rate 621, the compression algorithm will limit the frames. Each of the frames is compressed such that any frame that would normally be compressed using more than 70% of the nominal maximum data rate 621 will be compressed with fewer bits. The result of this is that it will normally require more bits to maintain the "extremely lacking" bit of the frame of a given quality level and the image quality of these frames will be better than the 139852.doc •71 · 200952495 The image quality of other frames rated for more than 70% of the maximum data rate of 621 is poor. This method produces acceptable results for a particular type of ablation (whose towel (4) is expected to have less motion or scene change and (b) the user can accept periodic grades. A good example of a suitable CBR application is a video conference call, because there are fewer peaks, and in the case of temporary quality degradation (such as 'if the camera is glanced' & causing significant scene motion and large peaks, it may be during the glance There are not enough bits for high quality 影像 image compression 'which will result in a degraded image f), which is acceptable to a number of users. Unfortunately, CBR is not well suited for many applications with high complexity scenes or a large amount of motion and/or the need to align the f-level. 1 The low latency compression logic 404 used in one embodiment uses a number of different techniques to solve the problem of streaming low latency compressed video while maintaining high quality. H low latency compression logic 4G4 is only generated! The frame and the p-frame, thereby alleviating the need to wait for several frame times to decode each call frame. In addition, as illustrated in Figure 7a, in one embodiment, low latency pressure: logic 404 divides each uncompressed frame 7gi_7 into a series of "image blocks" and individually encodes each image block as Work frame or p-frame: In this paper, the I frame and P frame of the group are referred to as "R round frame 711_770. In the specific example shown in Figure 7 &, each will be uncompressed. The frame is subdivided into 16 image blocks u of the 4M matrix. The base principle is not limited to any specific sub-dividing mechanism. In the column, the low-latency compression logic 4°4 divides the video frame into Xu image blocks, and will be from each One of the frames of the image block (ie, 139852.doc •71·200952495 compression) is the i frame (ie, 'the image block is compressed as if it were 1/16 of the size of the full image. Frame, and the compression for this "mini" frame is I frame compression) and encodes the remaining image blocks into p frames (ie, for each "mini" / 16 frame compression Compressed for the p frame). Compressed • Image blocks that are 1 frame and image blocks that are compressed into P frames will be referred to as *1 image block and p image block, respectively. The image block to be encoded as an I image block is changed with each successive video frame. Therefore, in a given frame time 仅, only one of the image blocks in the video frame is an I image block, and the remaining ones of the image blocks are P image blocks. For example, in FIG. 7a, the image block of the uncompressed frame 701 is encoded as 1 image block 1 and the remaining 1 - 15 image blocks are compiled into P image blocks (P 1 to P ! 5) to generate R frame 711. In the next uncompressed video frame 7〇2, the image block 1 of the uncompressed frame 701 is encoded as an image block and the remaining image blocks 2 and 2 to 15 are encoded as P image blocks ( P〇' and P2 to Pi5) to generate R block 712. Therefore, the I image block and the P image block used for the image block are gradually _ time-interleaved on successive frames. The process continues until an R image block 770 is generated (the last image block in the matrix is encoded as an I image block (i.e., '115)). The process then resumes' to produce another R frame such as frame 711 (i.e., for the image block ’ 'encoded I image block). Although not illustrated in the figures, in one embodiment, the first R frame of the video sequence of the R frame contains only j image blocks (ie, such that subsequent P frames have reference image data (from which Computational motion)) or 'In one embodiment, the start sequence uses the same I picture block pattern as normal, but does not include p picture blocks for their image blocks that have not been encoded with the I picture block. In other words, the specific image block is not encoded with any data before the arrival of the first image i39852.doc • 73· 200952495, thereby avoiding the start-up peak in the video stream data rate 934 in Figure 9a, which is further detailed below. Description. In addition, as described below, various sizes and shapes can be used for the image blocks while still complying with these basic principles. • The video decompression logic 412 executing on the client terminal 41 5 decompresses each image. The image block appears as a separate video sequence of the small I frame and the P frame, and then each image block is reproduced to the drive display. The frame buffer of device 422. For example, image block 0 of the video image is decompressed and reproduced using 1〇 and P〇 from R frames 711 to 770. Similarly, the image block 1' and the like are reconstructed using the work 1 and Pi from R frame 7 to 77. As described above, the decompression of the I frame and the P frame is well known in the art, and the decompression of the image block and the p image block can be performed by causing multiple execution entities of the video decompressor to be at the user end. Execute on 415 to complete. Although the multiplication process appears to increase the burden on the UE, it does not actually increase the computational burden on the client 415 because the image block itself is proportionally smaller (relative to the number of additional processing) Therefore, the number of pixels displayed is the same, as if there is a processing and using a conventional full-size J-frame and p-frame. This R-frame technique significantly mitigates the peak bandwidth typically associated with the 5 frame (as illustrated in Figures 6b and 6c), since any given frame is primarily

可為大致1 Kb。最終結果為約1〇 Kb+15M -每一者的P圖框 Kb=25 Kb之R圖 139852.doc .74· 200952495 因此母60圖框序列將係25 Kb*60=l .5 Mbps。因 此’在6〇圖框/秒下,此將需要能夠維持i.5 Mbps之頻寬的 頻道由於I影像塊係貫穿6〇圖框間隔而分散而使得具 有低得多的峰值。 注意,在先前實例中,在用圖框及p圖框之相同假定 資料迷率情況下’平均資料速率為hl Mbps。此係因為在 先前實例中,每隔60個圖框時間僅引入一新1圖框,而在 此實例中,構成I圖框之〗6個影像塊在〗6個圖框時間中循 環,且因此,每隔16個圖框時間引入一1圖框之均等物, 從而導致稍高之平均資料速率。儘管如此,但在實踐中, 引入更頻繁之I圖框並不會線性地增加資料速率。此係由 於以下事實:P圖框(或p影像塊)主要編碼自先前圖框至下 一個圖框之差異。因此,若先前圖框與下一個圖框相當類 似,則P圖框將非常小,若先前圖框與下一個圖框相當不 同’則P圖框將非常大。但因為p圖框很大程度上係自先前 圖框導出,而非自實際圖框導出,所以所得的經編碼圖框 可能含有比具有足夠數目之位元之I圖框多的錯誤(例如, 視覺假影)。此外,當一 P圖框跟隨另一P圖框時,可出現 錯誤累加(當存在長P圖框序列時,變得更糟現在,尖 端的視訊壓縮器將偵測到影像之品質在一序列p圖框之後 降級的事實,且必要時,其將更多位元分配給隨後之P圖 框以提高品質,或若其為最有效之動作過程,則用1圖框 替換P圖框。因此,當使用長P圖框序列(例如,59個p圖 框,如上文先前實例中)時,特定言之當場景具有大量複 139852.doc -75- 200952495 雜度及/或運動時’通常,對於p圖框而言需要更多位元(因 為其變得距I圖框更遠 或者,自相對檢視點看P圖框,緊密地跟隨J圖框之P圖 框傾向於需要比距1圖框更遠之P圖框少的位元。因此,在 圖7a中所展不之實例中,無p圖框比距1圖框隔開15個圖框 • 更遠(在1圖框之前),而在先前實例中,P圖框可為自I圖框 隔開59個圖柩。因此’在更頻繁之〗圖框情況下,p圖框較 @ 小。當然’確切相對大小將基於視訊流之性質而改變,但 在圖7&之實例中,若1影像塊為10 Kb,則P影像塊之大小平 均可為僅0.75 kb ’ 從而導致1〇 Kb+15*0.75 Kb=21.25 Kb, 或在60圖框/秒下,資料速率將為21.25 Kb*60 = l.3 Mbps, 或比1.1 Mbps下的具有一 i圖框繼之以59個p圖框之流之資 料速率高約16%。再一次,用於視訊壓縮之此等兩種方法 之間的相對結果將視視訊序列而改變,但通常,吾人憑經 驗發現,對於給定品質位準,使用R圖框比使用I/p圖框序 〇 列需要多約20%之位元。但是,當然,R圖框急劇地減少 峰值’此使視訊序列在遠小於I/p圖框序列之延時下可用。 可視視訊序列之性質、頻道之可靠性及可用資料速率而 以多種不同方式來組態R圖框。在替代實施例中,在4χ4組 態中使用不同於16之數目之影像塊。舉例而言,可在2χ1 或1x2組態中使用2個影像塊,可在2x2、4x1或lx4組態中 使用4個影像塊,可在3x2、2x3、6x1或1x6組態中使用6個 影像塊或可在4χ2(如圖7b中所展示)、2M、8x1或1x8組態 中使用8個影像塊。注意,影像塊不需要為方形,視訊圖 139852.doc •76- 200952495 框亦不必為方形,或甚至矩形。可將影像塊分解成最佳地 適合所使用之視訊流及應用程式的無論什麼形狀。 在另一實施例中,〗影像塊及P影像塊之循環不鎖定至影 像塊之數目。舉例而言,在8影像塊4x2組態中,仍可如圖 ' 7b巾所㈣而使用16循環相。順序的未經壓縮之圖框 • 721、722、723各自經劃分成8個影像塊0_7,且每一影像 塊經個別壓縮。自R圖框731,僅影像塊〇經壓縮為〗影像 ❹ 塊,且剩餘影像塊經壓縮為P影像塊。對於隨後之R圖框 732,所有8個影像塊經壓縮為p影像塊,且接著對於隨後 之R圖框733,影像塊丨經壓縮影像塊且其他影像塊均經 壓縮為P影像塊。此外,如此對於16個圖框繼續進行排 序,僅每隔一圖框產生一丨影像塊,因此在第15個圖框時 間期間(圖7b中未圖示)及在第16個圖框時間期間產生用於 影像塊7之最末I影像塊(使用所有的p影像塊壓縮R圖框 780)。接著,序列再次以影像塊〇經壓縮影像塊且其他 〇 影像塊經壓縮為P影像塊開始。如在先前實施例中,整個 視訊序列之第一圖框通常將均為J影像塊,以提供用於自 彼點向前之P影像塊的參考。!影像塊及p影像塊之循環甚 至不需要為影像塊之數目之偶倍數。舉例而言,在8個影 像塊之情況下,在使用另一;[影像塊之前,具有一 J影像塊 之每一圖框之後可為所有皆為P影像塊之2個圖框》在又一 實施例中,若(例如)已知螢幕之特定區域具有更多運動(需 要更頻繁之I影像塊)’而其他區域更為靜態(例如,展示遊 戲之分數)(需要較不頻繁之I影像塊),則與其他影像塊相 139852.doc •77· 200952495 比可更經常地將特定影像塊連同〗影像塊一起進行排 序此外,儘官在圖7a-圖7b中說明每一圖框具有單一 !影 像塊,但可η, u_ , 圖框中編碼多個I影像塊(取決於傳輸頻 道之頻寬)。相反地,特定圖框或圖框序列可在不具有I影 像塊(亦即,僅p影像塊)的情況下傳輸。 . 則。^之方法適當起作用之原因在於:儘管不具有跨越 每個單—圓框而分散之〗影像塊看來似乎導致較大峰值, 參 ㈣統之行為並不如此簡單》因為每-影像塊係與其他影 像塊分開進行壓縮’所以當影像塊變小時,每一影像塊之 編碼可變得較不有效,因為給定影像塊之壓縮器不能夠利 用來自其他影像塊之類似影像特徵及類似運動。因此,與 將螢幕劃分成8個影像塊相比較,將螢幕劃分成丨6個影像 塊通常將導致較不有效之編碼。但是,若將螢幕劃分成8 個影像塊且其引起每隔8個圖框(而非每隔丨6個圖框)引入一 完全I圖框之資料,則其導致總體上高得多的資料速率。 _ 因此,藉由每隔16個圖框(而非每隔8個圖框)引入一完全j 圖框,減小了總資料速率。又,藉由使用8個較大影像塊 (而非16個較小影像塊),減小了總資料速率,其亦將由較 大影像塊引起之資料峰值減輕至某種程度。 在另一實施例中,圖7a及圖7b中之低延時視訊壓縮邏輯 404藉由基於待壓縮之視訊序列之已知特性而藉由設定預 先組態或者基於每一影像塊中之影像品質的正在進行之分 析而自動地控制至R圖框中之各影像塊之位元的分配。舉 例而言,在一些競赛視訊遊戲中,玩家之汽車(其為場景 139852.doc -78· 200952495 中相對無運動的)之前方佔據螢幕之下半部之大部分’而 螢幕之上半部完全被填滿正接近的道路、建築物及風景, 其幾乎總是在運動中。若壓縮邏輯404將相等數目之位元 分配給每一影像塊,則圖7b中的未經壓縮之圖框72ι中的 . 螢幕之下半部上之影像塊(影像塊4-7)通常將以比圖7b中的 . 未經壓縮之圖框721中的榮幕之上半部中之影像塊(影像塊 〇-3)高的品質而壓縮。若已知此特定遊戲或遊戲之此特定 場景具有該等特性,則主機代管服務210之運營商可組態 壓縮邏輯404以將更多位元分配給螢幕之頂部之影像塊(與 分配給螢幕之底部處之影像塊的位元相比或者,壓縮 邏輯404可在壓縮圖框之後估計影像塊之壓縮品質(使用許 多壓縮品質度量中之一或多者’諸如峰值信號雜訊比 (PSNR)) ’且若判定在特定時間窗上,特定影像塊始終如 一地產生較佳品質結果,則其逐漸地將更多位元分配給產 生較低品質結果之影像塊,直至各種影像塊達到類似位準 〇 之品質為止。在替代實施例中,壓縮器邏輯404分配位元 以在特定影像塊或影像塊群中達成較高品質。舉例而言, 卜觀在榮幕 之中心具有比邊 緣處高之品質。 在一實施例中’為了改良視訊流之特定區域之解析度, 視訊壓縮邏輯404使用較小影像塊來編碼視訊流之具有相 對多之場景複雜度及/或運動的區域(與視訊流之具有相對 少之場景複雜度及/或運動的區域相比)。舉例而言,如圖8 中所說明’在-R圖框811(可能繼之以具有相同影像塊大 139852.doc -79· 200952495 小之一系列R圖框(未圖示))之一區域中的移動人物8〇5之周 圍使用較小影像塊。接著,當人物8〇5移動至影像之新區 域時,在另一R圖框812内之此新區域之周圍使用較小影像 塊如所說明。如上所述,各種不同大小及形狀可用作 「影像塊」同時仍遵守此等基本原理。 儘管上文所描述之循環I / P影像塊實質上減小視訊流之 資料速率中的峰值,但其並不完全消除峰值,尤其在快速 改變或高度複雜之視訊影像(諸如在電影、視訊遊戲及某 一應用程式軟體下出現)的狀況下。舉例而言,在突然場 景轉變期間’一複雜圓框可能繼之以完全不同之另一複雜 圖框。即使若干個I影像塊可領先於場景轉變僅幾個圖框 時間,其在此情形下亦無助益,因為新圖框之材料與先前 I影像塊無關。在此種情形下(及在即使並非一切皆改變, 大量影像亦改變的其他情形下)’視訊壓縮器4〇4將判定將 許多(若並非所有)P影像塊更有效地寫碼影像塊,且所 導致的為彼圖框之資料速率中的非常大之峰值。 如先前所論述’其僅為對於大多數消費者級網際網路連 接(及許多辦公室連接)之狀況,其僅不可「堵塞」超過圖 6c中展示為622之可用最大資料速率以及額定最大資料速 率621的資料。注意’額定最大資料速率62丨(例如,「6 Mbps DSL」)實質上為對於考慮購買網際網路連接的使用 者之銷售數字’但通常其不保證效能位準。出於此應用之 目的’其不相關,因為吾人僅關注經由連接使視訊串流時 之可用最大資料速率622。因此,在圖9a及圖9c中,當描 139852.doc -80- 200952495 述對峰值問題之解決方法時,自曲線圖省略額定最大資料 速率,且僅展示可用最大資料速率922。視訊流資料速率 不得超過可用最大資料速率922。 為了解決此問題,視訊壓縮器404進行的第一件事係判 定峰值資料速率941,其為頻道能夠穩定地處理之資料速 率。此速率可藉由許多技術來判定。一種該技術係將愈加Can be roughly 1 Kb. The final result is about 1 〇 Kb + 15M - P frame for each Kb = 25 Kb R map 139852.doc .74 · 200952495 So the parent 60 frame sequence will be 25 Kb * 60 = 1.5 Mbps. Therefore, at 6 frames/sec, this would require a channel capable of maintaining a bandwidth of i.5 Mbps which has a much lower peak due to the dispersion of the I picture block through the 6 frame interval. Note that in the previous example, the average data rate was hl Mbps in the case of the same assumed data rate with the frame and the p-frame. This is because in the previous example, only a new 1 frame is introduced every 60 frame time, and in this example, the 6 image blocks constituting the I frame are cycled in the 6 frame time, and Therefore, an equalization of one frame is introduced every 16 frame times, resulting in a slightly higher average data rate. Despite this, in practice, the introduction of more frequent I frames does not linearly increase the data rate. This is due to the fact that the P-frame (or p-image block) mainly encodes the difference from the previous frame to the next frame. Therefore, if the previous frame is similar to the next frame, the P frame will be very small. If the previous frame is quite different from the next frame, the P frame will be very large. However, because the p-frame is largely derived from the previous frame, rather than being derived from the actual frame, the resulting coded frame may contain more errors than I frames with a sufficient number of bits (for example, Visual artifacts). In addition, when a P frame follows another P frame, error accumulation can occur (when there is a long P frame sequence, it gets worse now, the sophisticated video compressor will detect the quality of the image in a sequence The fact that the p-frame is demoted afterwards, and if necessary, it assigns more bits to subsequent P-frames to improve quality, or if it is the most efficient action process, replaces the P-frame with a 1 frame. When using a long P-frame sequence (for example, 59 p-frames, as in the previous example above), the specific scene has a large number of complex 139852.doc -75 - 200952495 noise and / or motion 'usually, More bits are needed for the p-frame (because it becomes farther away from the I-frame or P-frame from the relative view point, the P-frame that closely follows the J-frame tends to require a distance of 1 The farther P frame has fewer bits. Therefore, in the example shown in Figure 7a, the p-free frame is 15 frames away from the 1 frame. • Farther (before the 1 frame) In the previous example, the P frame can be separated from the I frame by 59. Therefore, in the case of the more frequent frame, p The frame is smaller than @. Of course, the exact relative size will vary based on the nature of the video stream, but in the example of Figure 7 & if the image block is 10 Kb, the size of the P block can be only 0.75 kb ' Resulting in 1〇Kb+15*0.75 Kb=21.25 Kb, or at 60 frames per second, the data rate will be 21.25 Kb*60 = l.3 Mbps, or with an i frame at 1.1 Mbps followed by The data rate of the 59 p-frame streams is about 16% higher. Once again, the relative results between the two methods for video compression will vary depending on the video sequence, but usually, we have discovered by experience that To set the quality level, it takes about 20% more bits to use the R frame than to use the I/p frame sequence. However, of course, the R frame sharply reduces the peak value. This makes the video sequence much smaller than I/p. The delay of the frame sequence is available. The R frame is configured in a number of different ways depending on the nature of the video sequence, the reliability of the channel and the available data rate. In an alternative embodiment, a different from 16 is used in the 4χ4 configuration. Number of image blocks. For example, 2 image blocks can be used in a 2χ1 or 1x2 configuration 4 image blocks can be used in 2x2, 4x1 or lx4 configurations, 6 image blocks can be used in 3x2, 2x3, 6x1 or 1x6 configurations or can be 4χ2 (as shown in Figure 7b), 2M, 8x1 or 8 image blocks are used in the 1x8 configuration. Note that the image block does not need to be square, and the video frame 139852.doc •76- 200952495 does not have to be square or even rectangular. The image block can be decomposed into the best fit. Regardless of the shape of the video stream and the application. In another embodiment, the loop of the image block and the P image block is not locked to the number of image blocks. For example, in the 8 image block 4x2 configuration, 16 cycle phases can still be used as shown in Fig. 7b. Sequential uncompressed frames • 721, 722, and 723 are each divided into 8 image blocks 0_7, and each image block is individually compressed. From R frame 731, only the image block is compressed into an image block, and the remaining image blocks are compressed into P blocks. For subsequent R frame 732, all eight image blocks are compressed into p image blocks, and then for subsequent R frame 733, the image blocks are compressed and the other image blocks are compressed into P image blocks. In addition, the 16 frames continue to be sorted so that only one image block is generated every other frame, so during the 15th frame time (not shown in FIG. 7b) and during the 16th frame time The last I image block for image block 7 is generated (using all p image blocks to compress R frame 780). Then, the sequence starts again by compressing the image block by the image block and compressing the other 影像 image blocks into P image blocks. As in the previous embodiment, the first frame of the entire video sequence will typically be a J-picture block to provide a reference for the P-picture block forward from the other point. ! The loop of image blocks and p-image blocks does not even need to be an even multiple of the number of image blocks. For example, in the case of 8 image blocks, another one is used; [before the image block, each frame having a J image block can be followed by 2 frames of all P image blocks] In one embodiment, if, for example, a particular area of the screen is known to have more motion (requiring more frequent I image blocks) and other areas are more static (eg, showing game scores) (requires less frequent I) Image block), and other image blocks can be sorted together with the image block more often than 139852.doc •77·200952495. In addition, each frame is illustrated in Figures 7a-7b. single! The image block, but η, u_ , encodes multiple I image blocks in the frame (depending on the bandwidth of the transmission channel). Conversely, a particular frame or frame sequence can be transmitted without an I-picture block (i.e., only a p-picture block). Then. The reason why the method works properly is that although the image block that does not have a spread across each single-round frame seems to cause a large peak, the behavior of the reference is not so simple because each image block is Separate compression from other image blocks' so that when the image block becomes smaller, the encoding of each image block can become less effective because the compressor of a given image block cannot utilize similar image features and similar motion from other image blocks. . Therefore, dividing the screen into 影像6 image blocks will generally result in less efficient coding than dividing the screen into 8 image blocks. However, if the screen is divided into 8 image blocks and it causes the introduction of a full I frame every 8 frames (rather than every 6 frames), it results in a much higher overall data. rate. _ Therefore, by introducing a full j frame every 16 frames instead of every 8 frames, the total data rate is reduced. Moreover, by using eight larger image blocks (rather than 16 smaller image blocks), the total data rate is reduced, which also reduces the peak of the data caused by the larger image blocks to some extent. In another embodiment, the low latency video compression logic 404 of FIGS. 7a and 7b is configured by pre-configuration or based on image quality in each image block by virtue of known characteristics of the video sequence to be compressed. The ongoing analysis automatically controls the allocation of bits to each of the image blocks in the R frame. For example, in some competitive video games, the player's car (which is relatively motionless in scene 139852.doc -78· 200952495) occupies most of the lower half of the screen before the top half of the screen. It is completely filled with roads, buildings and landscapes that are approaching, which is almost always in motion. If compression logic 404 assigns an equal number of bits to each image block, then the image block (image block 4-7) on the lower half of the screen in uncompressed frame 72i in Figure 7b will typically It is compressed at a higher quality than the image block (image block 〇-3) in the upper half of the screen in the uncompressed frame 721 in Fig. 7b. If it is known that this particular scenario of the particular game or game has such characteristics, the operator of the colocation service 210 can configure the compression logic 404 to allocate more bits to the image block at the top of the screen (and to assign Alternatively, compression logic 404 may estimate the compression quality of the image block after compressing the frame (using one or more of a number of compression quality metrics such as peak signal to noise ratio (PSNR) compared to the bit of the image block at the bottom of the screen. ))) and if it is determined that a particular image block consistently produces better quality results over a particular time window, it gradually assigns more bits to the image block that produces lower quality results until the various image blocks are similar In an alternative embodiment, the compressor logic 404 assigns a bit to achieve a higher quality in a particular image block or image block group. For example, the view is at the center of the glory than at the edge. High quality. In one embodiment, 'in order to improve the resolution of a particular region of the video stream, the video compression logic 404 uses a smaller image block to encode the video stream with relatively more. The complexity of the scene and/or the area of motion (compared to the area of the video stream that has relatively little scene complexity and/or motion). For example, as illustrated in Figure 8 'in the -R frame 811 ( It is possible to use smaller image blocks around the moving characters 8〇5 in one of the areas with the same image block size 139852.doc -79·200952495 small one series R frame (not shown). Then, when When the character 8〇5 moves to a new area of the image, a smaller image block is used around the new area in the other R frame 812 as described. As described above, various sizes and shapes can be used as the “image block”. While still adhering to these basic principles. Although the cyclic I / P image blocks described above substantially reduce the peak in the data rate of the video stream, they do not completely eliminate the peaks, especially in fast changes or highly complex In the case of video images (such as in movies, video games, and an application software). For example, during a sudden scene transition, a complex round frame may be followed by another complex frame that is completely different. Even Several I shadows Blocks can be only a few frames away from the scene transition, which is not helpful in this case, because the material of the new frame is independent of the previous I image block. In this case (and even if not everything changes, In other cases where a large number of images are also changed) 'Video Compressor 4〇4 will determine that many, if not all, P-picture blocks will be more efficiently coded for image blocks and result in very high data rates for the frame. The peak of the big. As previously discussed, it is only for most consumer-grade Internet connections (and many office connections), it can only be "blocked" beyond the maximum data rate available as shown at 622 in Figure 6c and Information for the rated maximum data rate of 621. Note that the rated maximum data rate of 62 丨 (for example, "6 Mbps DSL") is essentially a sales figure for users considering purchasing an internet connection' but usually does not guarantee performance levels. . For the purposes of this application, it is irrelevant because we only focus on the maximum data rate 622 available when streaming video over a connection. Thus, in Figures 9a and 9c, when the solution to the peak problem is described in 139852.doc -80-200952495, the nominal maximum data rate is omitted from the graph and only the maximum data rate 922 is shown. The video streaming data rate must not exceed the maximum available data rate of 922. To solve this problem, the first thing the video compressor 404 does is to determine the peak data rate 941, which is the data rate at which the channel can be processed steadily. This rate can be determined by a number of techniques. One of the technologies will be more

❹ 變高的資料速率測試流自主機代管服務21〇逐漸發送至用 戶端415(圖4a及圖4b中),且使用戶端將關於封包丟失及延 時之位準的反饋提供至主機代管服務。當封包丟失及/或 延時開始展示尖銳增加時,其為達到可用最大資料迷率 922之指示。之後,主機代管服務21〇可逐漸地減小測試流 之資料速率,直至用戶端415報告在合理之時間週期中已 接收到測試流(封包丟失及延時之可接受位準接近最小)為 止。此確定峰值最大資料速率941,其接著將用作用於串 流視訊之峰值資料速率。隨著時間的推移,峰值資料速率 9仰波動(例如,若家庭中之另—使用者開始嚴重地使用 網際網路連接),且用戶端415將需要恆定地監視峰值資料 速率941以查看封包丢失或延時是否増加(指示可用最大資 料速率922下降至低於^所確定的峰值f料速率941), 且若如此’則峰值資料速率94卜類似地,若隨著時間的 推移’用戶端415發現封包丢失及延時保持在最佳位準, 則其可請求視訊壓縮H緩慢地增加f料速率以查看可用最 大資料速率是否增加(例如,若家庭中之 止對網際網路連接之嚴重使用),且再次等待直至封包去 139852.doc 200952495 失及/或較高延時指示已超過可用最大資料速率922為止, 且可再次發現用於峰值資料速率941之較低位準,但該較 低位準可能高於測試增加的資料速率之前的位準。因此, 可藉由使用此技術(及類似其之其他技術)而發現峰值資料 速率941 ’且視需要而週期性地進行調整。峰值資料速率 . 941確定可由視訊壓縮器4〇4使用以使視訊串流至使用者的 最大資料速率。用於判定峰值資料速率之邏輯可在使用者 ❹場所211處及/或在主機代管服務21〇上加以實施。在使用 者場所211處,用戶端器件415執行計算以判定峰值資料速 率且將此資訊傳輸回至主機代管服務21〇 ;在主機代管服 務210處,主機代管服務處之伺服器4〇2執行計算以基於自 用戶端415所接收之統計資料(例如,峰值丟失、延時、最 大資料速率等)而判定峰值資料速率。 圖9a展示具有實質場景複雜度及/或運動之實例視訊流 資料速率934,其係使用先前所描述且在圖7a、圖几及圖8 〇 巾加以說明的循環I/p影像塊壓縮技術而產生。視訊麼縮器 404經組態而以低於峰值資料速率941之平均資料速率輸出 經壓縮之視訊,且注意,大部分時間,視訊流資料速率保 持低於峰值資料速率941。資料速率934與圖&中所展示之 視訊流資料速率634(其係使用I/p/B或I/p圖框而產生)的比 較展示循環Ι/P影像塊壓縮產生平滑得多的資料速率。但在 圖框2倍峰值952(其接近2倍峰值資料速率942)及圖框4倍峰 值954(其接近4倍峰值資料速率944)下,資料速率仍超過峰 值-貝料速率941 ’其為不可接受的。在實踐中,即使對於 139852.doc -82- 200952495 來自快速改變之視訊遊戲的高動作視訊,超過峰值資料速 率941之峰值亦在小於2〇/〇之圖框中出現,超過2倍峰值資 料速率942之峰值很少出現,且超過3倍峰值資料速率943 之峰值難得出現。但是,當其確實出現時(例如,在場景 轉變期間),其所需之資料速率必須產生良好品質之視訊 . 影像。 解决此問題之一方式係簡單地組態視訊壓縮器404以使 ❹ 得其最大資料速率輸出為峰值資料速率941。遺憾地,峰 值圖框期間的所得視訊輸出品質不良,因為壓縮演算法 極度缺乏」位元。所導致的為當存在突然轉變或快速運 動時出現壓縮假影,且及時地,使用者開始認識到:當存 在突然改變或快速運動時假影總是突然出現,且其可變得 相當討厭。 儘管人的視覺系統對在突然改變或快速運動期間出現的 視覺假影相當敏感,但對在該等情形下偵測到圊框速率之 © 減小並不是非常敏感。事實上,當該等突然改變出現時’ 看來似乎人的視覺系統專注於追蹤該等改變,且若圖框速 率暫時自60 fps下降至30 fps且接著立即返回至6〇 fps,則 :的視覺系統不會注意到。此外,在非常急劇之轉變(如 突然場景改變)的狀況下,若圖框速率下降至2〇 fps或甚至 15 fps且接著立即返回至60 fps,則人的視覺系統不會注意 到。只要圖框速率減小僅偶爾出現,對於人觀察者而言, 看來似乎視訊係以60 fps不斷地執行。 口 藉由圖9b中所說明之技術來利用人的視覺系統之此特 J39852.doc -83 - 200952495 性。伺服器402(來自圖4a及圖4b)以穩定圖框速率(在一實 施例中,在60 fps下)產生未經壓縮之視訊輸出流。時刻表 展示每一 1/60秒每一圖框961_97〇輸出。自圖框961開始, 將每一未經壓縮之視訊圖框輸出至低延時視訊壓縮器 . 404,低延時視訊壓縮器404在小於一圖框時間之時間中壓 • 縮該圖框,產生用於第一圖框之經壓縮之圖框丨981。經 產生用於經壓縮之圖框丨981的資料可視如先前所描述之 許多因素而較大或較小。若資料足夠小以致可以峰值資料 速率9 41在一圖框時間(1 / 6 0秒)或小於一圖框時間内將其傳 輸至用戶端415,則在傳輸時間(xmit時間)99丨(指示傳輸時 間之持續時間的箭頭之長度)期間將其傳輸。在下一個圖 框時間中,伺服器402產生未經壓縮之圖框2 962,將其壓 縮成經壓縮之圖框2 982,且在小於一圖框時間之傳輸時 間992期間以峰值資料速率941將其傳輸至用戶端415。 接著,在下一個圖框時間中,伺服器4〇2產生未經壓縮 〇 之圖框3 963。當由視訊壓縮器404來壓縮未經壓縮之囷框 3 963時,所得的經壓縮之圖框3 983為比可以峰值資料速 率941在一圖框時間中傳輸之資料多的資料。因此,在傳 輸時間(2倍峰值)993期間將其傳輸,其佔據所有圖框時間 及下一個圖框時間之一部分。現在,在下一個圖框時間期 間,伺服器402產生另一未經壓縮之圖框4 964且將其輸出 至視訊壓縮器404,但資料被忽略且藉由974來說明。此係 因為視訊壓縮器404經組態以忽略在其仍傳輸先前經壓縮 之圖框時到達的其他未經壓縮之視訊圖框。當然,用戶端 胃84 · 139852.doc 200952495 415之視訊解壓縮器將未能接收到圖框4,但其簡單地繼續 在顯示器件422上顯示圖框3歷時2個圖框時間(亦即,暫時 將圖框速率自60 fpS減小至3〇 fp〇。 對於下一個圖框5,伺服器4〇2輸出未經壓縮之圖框$ . 965,將其壓縮成經壓縮之圖框5 985且在傳輸時間995期 . 間在1圖框内將其傳輸。用戶端415之視訊解壓縮器解壓縮 圖框5並將其顯示於顯示器件422上。接著伺服器輸 ❹ 出未經壓縮之圖框6 966,視訊壓縮器404將其壓縮成經壓 縮之圖框6 986,但此時所得的資料非常大。在傳輸時間 倍峰值)996期間以峰值資料速率941傳輸經壓縮之圖框, 但花費幾乎4個圖框時間來傳輸圖框。在接下來的3個圖框 時間期間,視訊壓縮器404忽略來自伺服器4〇2之3個圖 框,且用戶端41 5之解壓縮器將圖框6穩定地保持在顯示器 件422上歷時4個圖框時間(亦即,暫時將圖框速率自6〇 fps 減小至15 fps)。接著最後,伺服器4〇2輸出圖框1〇 97〇,視 ❹ 訊壓縮器404將其壓縮成經壓縮之圖框1〇 987,且在傳輸 時間997期間將其傳輸,且用戶端415之解壓縮器解壓縮圖 框ίο並將其顯示於顯示器件422上且再一次視訊以6〇印3重 新開始。 /主意’儘管視訊壓縮器4〇4丟棄了來自由伺服器4〇2產生 之視訊流的視訊圖框’但其不會丟棄音訊資料(不管音訊 係以什麼形式來的),且當丟棄視訊圖框時視訊壓縮器4〇4 繼續壓縮音訊資料並將其傳輸至用戶端415,用戶端415繼 續解麼縮音訊資料並將音訊提供至由使用者使用以回放音 139852.doc •85- 200952495 訊之’·、、》«什麼器件。因此在丢棄圖框之週期期間,音訊繼 續而不減$肖、經壓縮之視訊相&,經壓縮之音訊消耗相 對小百分比之頻寬,且因此不會對總資料速率有較大影 響。儘管在資料速率圖中之任一者中皆未說明,但峰值資 料速率941内U是存在經保留用於經壓縮音訊流的資料速 率容量。 選擇剛剛在®9b巾所描述之實例來說明在㈣速率峰值 期間圖框速率如何下降,但未說明的係當使用先前所描述 之循環Ι/p影像塊技術時’該等資料速率峰值及隨之發生的 丢棄的圖框很少’即使在高場景複雜度/高動作序列(諸如 在視訊遊戲、電影及某—應用程式軟體中出現的彼等)期 間亦如此。因此’減小的圖框速率罕有且暫時,且人的視 覺系統不會债測到它們β 若將剛剛所描述之圖框速率減小機制應用於09a中所說 明之視訊流資料速率,則在圖9。中說明所得的視訊流資料 速率。在此實例巾’ 2倍峰值952已減小至平坦化的2倍峰 值953,且4倍峰值955已減小至平坦化的*倍峰值奶,且 整個視訊流資料速率934彳车姓考μ + 逐年934保持處於或低於峰值資料速率 941。 ^ 因此’使用上文所描述之技術,可經由通用網際網路及 消費者級網際網路連接而以低延時來傳輸高動作視訊流。 另外,在LAN(例如,⑽編乙太網路或嫩 線 路)上或私用網路(例如,資料中心與辦公室之間的= Mbps連接)上之辦公室環境中’可在無峰值情況下傳輸高 139852.doc -86 · 200952495 動作視訊流,以使得多個使用者(例如,以45 Mbps傳輸6〇 fps下之1920χ1080)可使用LAN或共用私用資料連接,而不 使重疊峰值淹沒網路或網路交換器底板。 資料速率詷整 在一實施例中,主機代管服務21 〇最初評估頻道之可用 . 最大資料速率622及延時以判定用於視訊流之適當資料速 率且接著回應於此而動態地調整資料速率。為了調整資料 ❻速率,主機代管服務210可(例如)修改待發送至用戶端415 之視訊流的影像解析度及/或每秒圖框數。又,主機代管 服務可調整經壓縮視訊的品質位準。當改變視訊流之解析 度時(例如’自128〇x 720解析度至640x360),用戶端41 5上 之視訊解壓縮邏輯412可將影像按比例增加以在顯示榮幕 上維持相同影像大小。 在一實施例中,在頻道完全退出之情形下,主機代管服 務210將遊戲暫停。在多人遊戲之狀況下,主機代管服務 φ 向其他使用者報告該使用者已退出遊戲及/或將遊戲暫停 以用於其他使用者。 丟棄或延遲的封包 在一實施例中,若資料由於圖4a或圖4b中的視訊壓縮器 4〇4與用戶端41 5之間的封包丟失而丟失,或由於到達得過 晚以致不能解壓縮及滿足經解壓縮圖框之延時要求的封包 被無次序地接收而丟失,則視訊解壓縮邏輯412能夠減輕 視覺假影。在串流Ι/P圖框實施中,若存在丟失/延遲的封 包’則整個螢幕受影響,從而可能引起螢幕完全凍結歷時 139852.doc -87- 200952495 一時間週期或展示其他螢幕寬視覺假影。舉例而言,若丟 失/延遲的封包引起!圖框之丟失,則在接收新的!圖框之 前,解壓縮器將缺乏用於跟隨的所有p圖框之參考。若丟 失P圖框,則其將影響跟隨的用於整個螢幕之p圖框。視工 . 圖框出現之前有多久,此將具有較長或較短之視覺影響。 使用如圖7a及圖几中所展示之交錯Ι/p影像塊,丟失/延遲 的封包不太可能影響整個螢幕,因為其僅影響受影響之封 ❹ 包中所含有的影像塊。若每一影像塊之資料係在個別封包 内發送,則若封包丟失,則其僅影響一影像塊。當然,視 覺假影之持續時間將取決於Ϊ影像塊封包是否丟失及在p影 像塊丟失之情況下在丨影像塊出現之前將花費多少個圖 框。但是,假定螢幕上之不同影像塊係藉由丨圖框非常頻 繁地(可能每個圖框)更新,則即使螢幕上之一影像塊受影 響,其他影像塊亦可能不受影響。另外,若某一事件引起 若干封包同時丟失(例如,鄰接DSL線之電力中的暫時中斷 Φ 資料流之尖峰信號),則一些影像塊將比其他影像塊受到 更大衫響,但因為一些影像塊將藉由新的j影像塊迅速地 更新’所以其僅暫時受影響。又,在串流I/p圖框實施之情 況下,不僅I圖框為最關鍵圖框,而且丨圖框極大,因此若 存在引起丢棄/延遲的封包之事件,則與小得多的磷 2比,I圖框受影響存在較高機率(亦即,若〗圖框之任何部 分丟失,則根本不可能可解壓縮J圖框)。由於所有此等原 因,與Ι/p圖框之情況相比,當封包被去棄/延遲時,使用 Ι/P影像塊導致小得多的視覺假影。 139852.doc -88- 200952495 一實施例試圖藉由將經壓縮之影像塊智慧地封裝於 TCP(傳輸控制協定)封包或UDP(使用者資料報協定)封包内 而減少丟失封包之效應。舉例而言,在一實施例中,只要 可能,即將影像塊與封包邊界對準。圖10a說明可如何在 . 不實施此特徵之情況下將影像塊封裝於一系列封包1001_ • 1005内。具體言之,在圖中,影像塊越過封包邊界且 經無效率地封裝以致單一封包之丟失導致多個圖框之丟 失。舉例而言,若封包1003或1004丟失,則丟失三個影像 塊’導致視覺假影。 相比之下,圖10b說明用於將影像塊智慧地封裝於封包 内以減少封包丟失之效應的影像塊封裝邏輯1〇〗〇。首先, 影像塊封裝邏輯1010將影像塊與封包邊界對準。因此,影 像塊ΤΙ、T3、T4、T7及T2分別與封包1001_1005之邊界對 準。影像塊封裝邏輯亦試圖以可能的更有效之方式將影像 塊組合於封包内,而不越過封包邊界。基於影像塊中之每 Φ 一者的大小,將影像塊T1與T6組合於一封包1〇〇1中;將 T3與T5組合於一封包1〇〇2中;將影像塊T4與丁8組合於一 封包1003中;將影像塊T8添加至封包1004;且將影像塊T2 添加至封包1005。因此,在此方案下,單一封包丢失將導 致不多於2個影像塊(而非如圖l〇a中所說明的3個影像塊)之 丟失。 圖l〇b中所展示之實施例的一額外益處在於:影像塊係 以其在景;Μ象内被顯示之不同次序進行傳輸。若鄰近封包由 於干擾傳輸之同一事件(其將影響螢幕上彼此不接近之區 139852.doc -89- 200952495 域)而丟失,則此方式在顯示器上產生較不引人注意的假 影。 一實施例使用前向錯誤校正(FEC)技術來保護視訊流之 特定部分以使其免受頻道錯誤之影響。如此項技術中已 ‘ 知,諸如里德-所羅門及Viterbi之FEC技術產生錯誤校正資 • 料資訊並將其附加至經由通信頻道而傳輸之資料。若錯誤 在基本資料(例如,I圖框)中出現,則FEC可用於校正該錯 誤。 φ FEC碼增加傳輸之資料速率,因此理想地,其僅在最需 要時使用。若資料正被發送,且其將不導致非常引人注意 之視覺假影,則可較佳不使用FEC碼來保護資料。舉例而 言,緊接於丟失的I影像塊之前的P影像塊將僅在螢幕上產 生1/60秒之視覺假影(亦即,螢幕上之影像塊將不被更 新)。此種視覺假影幾乎不能被人眼偵測到。隨著p影像塊 自I影像塊進一步向後,丟失P影像塊愈加變得更引人注 Φ 意。舉例而言,若影像塊循環型樣為在I影像塊再次可用 之前一 I影像塊繼之以15個P影像塊,則若緊接於〗影像塊 之後之P影像塊丟失,則其導致彼影像塊展示不正確之影 像歷時15個圖框時間(在60 fps下,彼將為250毫秒p人眼 將容易偵測到250毫秒的流之中斷。因此,p影像塊距新的 I影像塊愈向後(亦即,P影像塊跟隨丨影像塊愈接近),則假 影愈引人注意。如先前所論述,儘管如此,但一般而言, P影像塊跟隨I影像塊愈接近,用於彼p影像塊之資料愈 小。因此’跟隨I影像塊之P影像塊不僅對於保護以免丟失 139852.doc 90- 200952495 而§更關鍵’而且其大小較小。此外,一般而言,需要保 護之資料愈小,保護其所需之FEC碼愈小。 因此’如圖11a中所說明,在一實施例中,由於j影像塊 在視訊流中之重要性,僅I影像塊具備FEC碼。因此,FEC 1101含有用於I影像塊1100之錯誤校正碼且柯匚11〇4含有 用於I影像塊1103之錯誤校正碼。在此實施例中,對於卩影 像塊不產生FEC。❹ The increased data rate test stream is gradually sent from the colocation service 21〇 to the client 415 (in Figures 4a and 4b), and the UE is provided with feedback on the level of packet loss and delay to the colocation. service. When the packet is lost and/or the delay begins to show a sharp increase, it is indicative of the maximum available data rate 922. Thereafter, the colocation service 21 can gradually reduce the data rate of the test stream until the client 415 reports that the test stream has been received within a reasonable period of time (the packet loss and the acceptable level of the delay are near minimum). This determines the peak maximum data rate 941, which will then be used as the peak data rate for streaming video. Over time, the peak data rate 9 fluctuates (eg, if another in the family - the user begins to seriously use the internet connection), and the client 415 will need to constantly monitor the peak data rate 941 to see packet loss. Or whether the delay is increased (indicating that the maximum data rate 922 is available to fall below the peak f rate 941 determined by ^), and if so 'the peak data rate 94 is similarly, if the user 415 finds over time Packet loss and delay remain at the optimal level, then it can request video compression H to slowly increase the f rate to see if the maximum available data rate is increased (for example, if the family is severely connected to the Internet connection), And wait again until the packet goes to 139852.doc 200952495 and/or the higher delay indication has exceeded the maximum data rate 922 available, and the lower level for the peak data rate 941 can be found again, but the lower level may Above the level before the increased data rate of the test. Thus, the peak data rate 941' can be found by using this technique (and other techniques like it) and periodically adjusted as needed. The peak data rate 941 determines the maximum data rate that can be used by the video compressor 4〇4 to stream the video to the user. The logic for determining the peak data rate can be implemented at the user's location 211 and/or on the colocation service 21'. At the user premises 211, the client device 415 performs computations to determine the peak data rate and transmits this information back to the colocation service 21; at the colocation service 210, the courier service server 4〇 2 Performing a calculation to determine the peak data rate based on statistics received from the client 415 (eg, peak loss, delay, maximum data rate, etc.). Figure 9a shows an example video stream data rate 934 with substantial scene complexity and/or motion, using the cyclic I/p image block compression techniques previously described and illustrated in Figures 7a, 8 and 8 produce. The video buffer 404 is configured to output the compressed video at an average data rate lower than the peak data rate 941, and note that most of the time, the video stream data rate remains below the peak data rate 941. A comparison of the data rate 934 with the video stream data rate 634 shown in Figure & which is generated using I/p/B or I/p frames shows that the cyclic P/P image block compression produces much smoother data. rate. However, at frame 2 times peak 952 (which is close to 2 times peak data rate 942) and frame 4 times peak 954 (which is close to 4 times peak data rate 944), the data rate still exceeds the peak-beat rate 941 ' unacceptable. In practice, even for 139852.doc -82- 200952495 high-motion video from fast-changing video games, peaks above the peak data rate 941 appear in frames less than 2〇/〇, more than 2 times the peak data rate The peak of 942 is rare, and the peak of more than 3 times the peak data rate of 943 is rare. However, when it does occur (for example, during a scene transition), the data rate required must produce a good quality video. Image. One way to solve this problem is to simply configure the video compressor 404 to output its maximum data rate to the peak data rate 941. Unfortunately, the resulting video output quality during the peak frame is poor because the compression algorithm is extremely lacking. What is caused is that compression artifacts occur when there is a sudden transition or rapid motion, and in time, the user begins to realize that artifacts always appear suddenly when there is a sudden change or rapid motion, and it can become quite annoying. Although the human visual system is quite sensitive to visual artifacts that occur during sudden changes or rapid motion, it is not very sensitive to the reduction in the detection of the frame rate in such situations. In fact, when these sudden changes occur, it seems that the human visual system is focused on tracking these changes, and if the frame rate temporarily drops from 60 fps to 30 fps and then immediately returns to 6〇fps, then: The vision system won't notice. In addition, in the case of very sharp transitions (such as sudden scene changes), if the frame rate drops to 2 〇 fps or even 15 fps and then immediately returns to 60 fps, the human visual system will not notice. As long as the frame rate reduction occurs only occasionally, it seems to the human observer that the video system is continuously executed at 60 fps. The use of the human visual system is exploited by the technique illustrated in Figure 9b. Server 402 (from Figures 4a and 4b) produces an uncompressed video output stream at a stable frame rate (in one embodiment, at 60 fps). The timetable shows the output of each frame 961_97 per 1/60 second. Starting from frame 961, each uncompressed video frame is output to the low latency video compressor. 404, the low latency video compressor 404 compresses the frame for less than one frame time. The compressed frame 丨 981 in the first frame. The data produced for the compressed frame 丨 981 may be larger or smaller depending on a number of factors as previously described. If the data is small enough to transmit it to the client 415 at a frame time (1 / 60 seconds) or less than one frame time, then the transmission time (xmit time) is 99 丨 (indication) It is transmitted during the length of the arrow of the duration of the transmission time. In the next frame time, the server 402 generates an uncompressed frame 2 962, which is compressed into a compressed frame 2 982, and at a peak data rate 941 during a transmission time 992 of less than one frame time. It is transmitted to the client 415. Next, in the next frame time, the server 4〇2 generates an uncompressed frame 963. When the uncompressed frame 3 963 is compressed by the video compressor 404, the resulting compressed frame 3 983 is more data than can be transmitted at a peak data rate 941 in a frame time. Therefore, it is transmitted during the transmission time (2 times peak) 993, which occupies one of the frame time and the next frame time. Now, during the next frame time, the server 402 generates another uncompressed frame 4 964 and outputs it to the video compressor 404, but the data is ignored and illustrated by 974. This is because video compressor 404 is configured to ignore other uncompressed video frames that arrive when they are still transmitting previously compressed frames. Of course, the video decompressor of the client's stomach 84 139 852.doc 200952495 415 will fail to receive frame 4, but it simply continues to display frame 3 on display device 422 for 2 frame times (ie, Temporarily reduce the frame rate from 60 fpS to 3〇fp〇. For the next frame 5, the server 4〇2 outputs the uncompressed frame $.965, which is compressed into a compressed frame 5 985 And transmitting it in frame 1 during transmission time 995. The video decompressor of client 415 decompresses frame 5 and displays it on display device 422. Then the server outputs uncompressed At block 6 966, video compressor 404 compresses it into compressed frame 6 986, but the resulting data is very large. The compressed frame is transmitted at peak data rate 941 during transmission time peak 996. But it takes almost 4 frames to transfer the frame. During the next three frame times, the video compressor 404 ignores the three frames from the server 4〇2, and the decompressor of the client 41 5 stably holds the frame 6 on the display device 422 for a duration. 4 frame times (ie, temporarily reduce the frame rate from 6〇fps to 15 fps). Finally, the server 4〇2 outputs the frame 1〇97〇, which is compressed by the video compressor 404 into the compressed frame 1〇987, and transmitted during the transmission time 997, and the user terminal 415 The decompressor decompresses the frame ίο and displays it on the display device 422 and restarts the video again with 6 prints 3. / idea 'Although the video compressor 4〇4 discards the video frame from the video stream generated by the server 4〇2' but it does not discard the audio material (regardless of the form of the audio system), and discards the video When the frame is compressed, the video compressor 4〇4 continues to compress the audio data and transmits it to the client 415. The client 415 continues to decode the audio data and provides the audio to the user for playback of the sound 139852.doc •85- 200952495 News of '·,,》 «What device. Therefore, during the period of discarding the frame, the audio continues without subtracting the reduced, compressed video phase & the compressed audio consumes a relatively small percentage of the bandwidth, and thus does not have a significant impact on the total data rate. . Although not illustrated in any of the data rate maps, U in the peak data rate 941 is the data rate capacity reserved for the compressed audio stream. Select the example just described in the ® 9b towel to illustrate how the frame rate drops during the (iv) rate peak, but not illustrated when using the previously described cyclic p/p image block technique, 'the data rate peaks and Discarding frames that occur are rare 'even during high scene complexity/high action sequences (such as those found in video games, movies, and some-application software). Therefore, the reduced frame rate is rare and temporary, and the human visual system does not measure them. If the frame rate reduction mechanism just described is applied to the video stream data rate described in 09a, then Figure 9. The resulting video stream data rate is described. In this example, the '2 times peak 952 has been reduced to the flattened 2 times peak 953, and the 4 times peak 955 has been reduced to the flattened * times the peak milk, and the entire video stream data rate 934 彳 car surname μ + Year 934 remains at or below the peak data rate of 941. ^ Therefore, using the techniques described above, high motion video streams can be transmitted with low latency via a common Internet and consumer Internet connection. In addition, in an office environment on a LAN (for example, (10) Ethernet or Nen line) or private network (for example, = Mbps connection between data center and office), it can be transmitted without peaks. 139852.doc -86 · 200952495 Motion video streaming so that multiple users (for example, 1920 χ 1080 at 6 〇 fps at 45 Mbps) can use LAN or shared private data connections without flooding the overlapping peaks Or network switch backplane. Data Rate Tuning In one embodiment, the colocation service 21 initially evaluates the availability of the channel. The maximum data rate 622 and the delay determine the appropriate data rate for the video stream and then dynamically adjust the data rate in response thereto. To adjust the data rate, the colocation service 210 can, for example, modify the image resolution and/or the number of frames per second of the video stream to be sent to the client 415. In addition, the colocation service can adjust the quality level of the compressed video. When changing the resolution of the video stream (e.g., from 128 〇 x 720 resolution to 640 x 360), video decompression logic 412 on client 41 5 can scale the image to maintain the same image size on the display glory. In one embodiment, the colocation service 210 suspends the game in the event that the channel is completely exited. In the case of a multiplayer game, the colocation service φ reports to other users that the user has quit the game and/or paused the game for other users. Discarded or delayed packet In one embodiment, if the data is lost due to packet loss between the video compressor 4〇4 and the client 415 in FIG. 4a or 4b, or cannot be decompressed due to being too late to arrive. And the packets satisfying the delay requirements of the decompressed frame are lost without being received in order, and the video decompression logic 412 can mitigate visual artifacts. In the streaming/P-frame implementation, if there is a lost/delayed packet, the entire screen is affected, which may cause the screen to freeze completely. 139852.doc -87- 200952495 A time period or display other screen wide visual artifacts . For example, if a lost/delayed packet is caused! If the frame is lost, you will receive a new one! Before the frame, the decompressor will lack a reference for all the p-frames to follow. If the P frame is lost, it will affect the p frame that is used for the entire screen. Depending on how long before the frame appears, this will have a longer or shorter visual impact. Using the interleaved Ι/p blocks shown in Figure 7a and the following, the lost/delayed packets are less likely to affect the entire screen because it only affects the image blocks contained in the affected packets. If the data of each image block is sent in an individual packet, if the packet is lost, it affects only one image block. Of course, the duration of the visual artifact will depend on whether the image block is lost and how many frames will be spent before the image block appears in the event of a loss of the image block. However, assuming that the different image blocks on the screen are updated very frequently (perhaps with each frame), even if one of the image blocks on the screen is affected, the other image blocks may not be affected. In addition, if an event causes several packets to be lost at the same time (for example, a temporary interrupt in the power of the DSL line, the spike of the data stream Φ), some of the image blocks will be larger than other image blocks, but because of some images The block will be updated quickly by the new j image block' so it is only temporarily affected. Moreover, in the case of the implementation of the streaming I/p frame, not only the I frame is the most critical frame, but also the frame is extremely large, so if there is an event causing the discarded/delayed packet, it is much smaller. Phosphorus 2 ratio, I frame is affected by the high probability (that is, if any part of the frame is lost, it is impossible to decompress the J frame). For all of these reasons, the use of Ι/P blocks results in much smaller visual artifacts when the packet is discarded/delayed compared to the Ι/p frame. 139852.doc -88- 200952495 An embodiment attempts to reduce the effects of lost packets by intelligently encapsulating compressed video blocks into TCP (Transmission Control Protocol) packets or UDP (User Datagram Protocol) packets. For example, in one embodiment, the image block is aligned with the packet boundary whenever possible. Figure 10a illustrates how the image block can be encapsulated within a series of packets 1001_ • 1005 without implementing this feature. Specifically, in the figure, the image block crosses the packet boundary and is inefficiently packaged such that the loss of a single packet results in the loss of multiple frames. For example, if the packet 1003 or 1004 is lost, the three image blocks are lost' resulting in visual artifacts. In contrast, Figure 10b illustrates image block packaging logic for intelligently encapsulating image blocks within a packet to reduce the effects of packet loss. First, image block encapsulation logic 1010 aligns the image block with the packet boundary. Therefore, the image blocks ΤΙ, T3, T4, T7, and T2 are aligned with the boundaries of the packets 1001_1005, respectively. Image block encapsulation logic also attempts to combine image blocks into packets in a potentially more efficient manner without crossing the packet boundaries. Combining image blocks T1 and T6 in one packet 1〇〇1 based on the size of each Φ in the image block; combining T3 and T5 in one packet 1〇〇2; combining image block T4 with D8 In a packet 1003; the image block T8 is added to the packet 1004; and the image block T2 is added to the packet 1005. Therefore, under this scheme, a single packet loss will result in the loss of no more than 2 image blocks (rather than the 3 image blocks as illustrated in Figure 〇a). An additional benefit of the embodiment shown in Figure 10b is that the image blocks are transmitted in a different order in which they are displayed within the scene; This approach produces less noticeable artifacts on the display if the adjacent packets are lost due to the same event that interferes with the transmission (which would affect areas that are not in close proximity to each other on the screen 139852.doc -89 - 200952495 domain). An embodiment uses forward error correction (FEC) techniques to protect a particular portion of the video stream from channel errors. As is known in the art, FEC techniques such as Reed-Solomon and Viterbi generate error correction information and attach it to the material transmitted via the communication channel. If an error occurs in the basic data (for example, I frame), FEC can be used to correct the error. The φ FEC code increases the data rate of the transmission, so ideally it is used only when it is most needed. If the material is being sent and it will not result in a very noticeable visual artifact, then the FEC code may preferably not be used to protect the material. For example, a P-Picture block immediately before a lost I-picture block will only produce a 1/60 second visual artifact on the screen (ie, the image block on the screen will not be updated). This visual artifact can hardly be detected by the human eye. As the p-image block is further backwards from the I-image block, the loss of the P-image block becomes more and more noticeable. For example, if the image block cycle pattern is that an I image block is followed by 15 P image blocks before the I image block is available again, if the P image block immediately after the image block is lost, it leads to The image block shows an incorrect image for 15 frame times (at 60 fps, it will be 250 milliseconds. The human eye will easily detect a 250 millisecond flow interruption. Therefore, the p image block is a new I image block. The more backward (that is, the closer the P image block follows the 丨 image block), the more noticeable the artifact is. As discussed earlier, in general, the closer the P image block follows the I image block, the closer it is to The smaller the data of the image block, the smaller the P block that follows the I image block is not only protected from loss 139852.doc 90- 200952495 but § more critical' and its size is smaller. In addition, in general, protection is required. The smaller the data, the smaller the FEC code needed to protect it. Thus, as illustrated in Figure 11a, in one embodiment, only the I image block has an FEC code due to the importance of the j image block in the video stream. , FEC 1101 contains an error for I image block 1100 N and Ke Fang 11〇4 containing code for an I image block 1103 an error correction code. In this embodiment, Jie Movies for the FEC as no blocks.

在圖lib中所說明之一實施例中,對於在丟失時最可能 引起視覺假影之P影像塊亦產生。在此實施例中, FEC 11 05提供用於前3個p影像塊但不用於跟隨的p影像塊 之錯誤校正碼。在另一實施例中,對於資料大小最小之p 影像塊產生FEC碼(其將傾向於自選在j影像塊之後最早出 現的P影像塊,其對於保護最為關鍵)。 在另一實施例中,並非將FEC碼連同影像塊一起發送, 而是將影像塊傳輸兩次,每次在不同封包中傳輸。若一封 包丟失/延遲’則使用另一封包。 在圖11c中所展示之一實施例中,產生分別用於與視訊 同時自主機代管服務傳輸之音訊封包⑴的咖碼 1111及1113。維持視訊流中之音訊之完整性特別重要因 為失真之音訊(例如’滴答聲或嘶嘶聲)將導致特別不人需 要之使用者體驗。FEC碼幫助確保音訊内容在 415處無失真地再現。 响电腦 在另一實施例中,並非將FEC碼連同音訊資料一起發 送’而是將音訊資料傳輸兩次,每次在不同封包中傳輸。 139852.doc •91- 200952495 若一封包丟失/延遲,則使用另一封包。 另外’在圖lid中所說明之一實施例中,feC碼1121及 1123分別用於自用戶端415上行傳輸至主機代管服務21〇之 使用者輸入命令(例如,按奴按壓)1120及1122。此係重要 的’因為在視訊遊戲或應用程式中漏掉按紐按壓或滑鼠運 . 動可能導致不合需要之使用者體驗。 在另一實施例中,並非將FEC碼連同使用者輸入命令資 @ 料一起發送,而是將使用者輸入命令資料傳輸兩次,每次 在不同封包中傳輸。若一封包丟失/延遲,則使用另一封 包。 在一實施例中,主機代管服務210評估與用戶端415之通 仏頻道之品質’以判定是否使用FEC,且若使用,則判定 應對視訊、音訊及使用者命令之何部分應用FEC。評估頻 道之「品質」可包括如上所述的諸如估計封包丟失、延時 等之功能。若頻道特別不可靠,則主機代管服務2丨〇可對 ❿ 所有I影像塊、P影像塊、音訊及使用者命令應用FEC。相 比之下,若頻道可靠,則主機代管服務2丨〇可僅對音訊及 使用者命令應用FEC,或可不對音訊或視訊應用FEC,或 可根本不使用FEC。可使用FEC之應用之各種其他排列, 同時仍遵守此等基本原理。在一實施例中,主機代管服務 210不斷地監視頻道之狀況且相應地改變FEC策略。 在另一實施例中,參看圖4a及圖4b,當封包丟失/延 遲,從而導致影像塊資料之丟失時,或若可能由於特別糟 之封包丟失而使得FEC不能夠校正丟失的影像塊資料,用 139852.doc -92- 200952495 戶端415評估在將接收新的i影像塊之前剩餘多少個圖框且 將其與自用戶端415至主機代管服務210之來回行程延時相 比較。若來回行程延時小於新的〗影像塊應到達之前的圖 框之數目,則用戶端415向主機代管服務21〇發送訊息,嘈 • 求新的1影像塊。將此訊息路由至視訊壓縮器4〇4,且其並 . 非產生用於資料已丟失之影像塊的P影像塊,而是產生工影 像塊。假定圖4a及圖4b中所展示之系統經設計以提供通常 ❿ 小於80毫秒之來回行程延時,則此導致影像塊被校正於8〇 毫秒内(在60 fps下,圖框具有16 67毫秒之持續時間,因此 在全圖框時間中,80毫秒延時將導致83.33毫秒内的經校 正之影像塊,83.33毫秒為5個圖框時間,其為引人注意的 中斷,但遠不及(例如)對於15個圖框25〇毫秒中斷引人注 意)‘壓縮器404脫離其通常的循環次序而產生此種I影像 塊時’若I影像塊將引起彼圖框之頻寬超過可用頻寬,則 壓縮器404將延遲其他影像塊之循環,以使得其他影像塊 ❹ 在彼圖框時間期間接收P影像塊(即使在彼圖框期間一影像 塊通常將應為I影像塊),且接著通常的循環將自下一個圖 框開始繼續,且通常將已接收到先前圖框中之像塊的 影像塊將接收I影像塊。儘管此動作暫時延遲R圖框循環之 階段,但其通常將在視覺上不引人注意。 視訊及音訊壓縮器/解壓缩器實施 圖12說明一特定實施例,其中使用多核及/或多處理器 1200來並行地壓縮8個影像塊。在一實施例中,使用在 2.66 GHz或更高下執行之雙核處理器、四核Xe〇n cpu電腦 139852.doc •93· 200952495 系統,每一核心作為獨立過程實施開源χ264 H.264壓縮 器。然而,可使用各種其他硬體/軟體組態,同時仍遵守 此等基本原理。舉例而言,CPU核心中之每一者可藉由以 FPGA實施之H.264壓縮器來替換。在圖12中所展示之實例 中,核心1201 -1208用於作為八個獨立線緒來同時處理j影 • 像塊及P影像塊。如此項技術中眾所熟知的,當前多核及 多處理器電腦系統與諸如Microsoft Windows XP專業版(64 位元版或者32位元版)及Linux之多線緒處理作業系統整合 時,其固有地能夠進行多線緒處理。 在圖12中所說明之實施例中,因為該8個核心中之每一 者僅負責一影像塊,所以其很大程度上獨立於其他核心而 操作’每一者執行x264之單獨實例化。使用以pci Express xl為基礎之DVI俘獲卡(諸如’來自Netherlands的 Microtronix 〇f 〇osterhout 之 Sender。視訊成像 ip 開發板)來 俘獲640x480、800x600或1280x720解析度下的未經壓縮之 φ 視訊,且卡上之FPGA使用直接記憶體存取(DMA)來將所 俘獲之視訊經由DVI匯流排傳送至系統ram中。將該等影 像塊配置成4x2配置1205(儘管其說明為方形影像塊,但在 此實施例中’其具有160x240解析度)。χ264之每一實例化 經組態以壓縮該8個160x240影像塊中之一者,且其經同步 化以使得在初始I影像塊壓縮之後每一核心進入一循環, 每一圖框與另一圖框不同相,以壓縮一 I影像塊繼之以七 個P影像塊,如圖12中所說明。 在每一圖框時間’使用先前所描述之技術將所得的經髮 139852.doc • 94· 200952495 縮影像塊組合成封包流’且接著將經壓縮影像塊傳輸至目 的地用戶端4 1 5。 儘管圖12中未說明,但若組合的8個影像塊之資料速率 超過指定峰值資料速率941,則所有8個x264過程將暫時中 止歷時達必要的圖框時間,直至已傳輸用於組合的8個影 像塊之資料為止。 在一實施例中’將用戶端415實施為執行FFmpeg之8個 實例化之PC上的軟體。接收過程接收8個影像塊,且將每 一影像塊路由至FFmpeg實例化,FFmpeg實例化解壓縮影 像塊並將其再現至顯示器件422上之適當影像塊位置。 用戶端415接收來自PC之輸入器件驅動器的鍵盤、滑鼠 或遊戲控制器輸入並將其傳輸至伺服器402。伺服器402接 著應用所接收之輸入器件資料並將其應用於在伺服器402 上執行之遊戲或應用程式,伺服器402為使用Intel 2.16 GHz雙核CPU執行Windows之PC。伺服器402接著產生新圖 框並經由其DVI輸出端將新圖框自以主機板為基礎之圖形 系統或者經由NVIDIA 8800GTX PCI Express卡之DVI輸出 端輸出。 同時,伺服器402經由其數位音訊輸出端(例如, S/PDIF)輸出由遊戲或應用程式產生之音訊,該數位音訊 輸出端耦合至實施視訊壓縮的以雙四核Xeon為基礎之PC 上的數位音訊輸入端。Vorbis開源音訊壓縮器用於使用可 用於處理線緒之無論什麼核心來與視訊同時地壓縮音訊。 在一實施例中’完成壓縮其影像塊之核心首先執行音訊壓 139852.doc -95- 200952495 縮。接著將經壓縮之音訊連同經壓縮之視訊一起傳輸,並 在用戶端41 5上使用Vorbis音訊解壓縮器來解壓縮經壓縮之 音訊。 主襪代管服務伺服器中心分配 經由玻璃(諸如,光纖)之光以光在真空中之速度的某一 分率行進,且因此可判定光在光纖中之確切傳播速度。但 是,在實踐中,考慮用於路由延遲、傳輸無效率及其他耗 用之時間,吾人觀察到網際網路上之最佳延時反映較接近 光速之50%的傳輸速度。因此,最佳1〇〇〇英里來回行程延 時為約22毫秒,且最佳3000英里來回行程延時為約64毫 秒。因此,一美國海岸上之單一伺服器將距離過遠以致不 能以所要之延時伺服另一海岸上之用戶端(其可能達3〇〇〇 英里遠)。然而,如圖13a中所說明,若主機代管服務21〇 词服器中心1300定位於美國之中心(例如,Kansas、 Nebraska等)’以致至美國大陸中之任何點之距離為約15〇〇 英里或1500英里以下’來回行程網際網路延時可低至32毫 秒。參看圖4b ’注意:儘管使用者ISP 453所允許之最糟狀 況延時為25毫秒’但通常’在DSL及電纜數據機系統之情 況下吾人觀察到較接近10-15毫秒之延時。又,圖4b假定 自使用者場所211至主機代管中心210之最大距離為1〇〇〇英 里。因此’在所使用的典型的15毫秒之使用者isp來回行 程延時及對於32毫秒之來回行程延時的1500英里之最大網 際網路距離的情況下,自使用者致動輸入器件42 1之時刻 至在顯示器件422上看見回應的總來回行程延時為 139852.doc 96· 200952495 1 + 1+ 15+32 + 1+ 16+6 + 8=80毫秒。因此,通常可在15〇〇英里 之網際網路距離上達成8〇毫秒回應時間。此將允許美國大 陸中具有足夠短之使用者ISP延時453的任何使用者場所存 - 取在中心定位之單一伺服器中心。 - 在圖Ub中所說明之另一實施例中,主機代管服務210伺 服器中cHS1-HS6戰略上定位於美國(或其他地理區域)之 周圍,特定較大之主機代管服務伺服器中心接近高人口中 ⑩ 〜而疋位(例如,HS2及HS5)。在一實施例中’伺服器中心 HS1-HS6經由網路1301交換資訊,網路13〇1可為網際網路 .或私用網路或兩者之組合。在多個伺服器中心之情況下, 可以較低延時向具有高使用者lsp延時453之使用者提供服 務。 儘管網際網路上之距離的確為對經由網際網路之來回行 程延時有影響的因素,但有時很大程度上與延時無關之其 他因素亦起作用。有時經由網際網路將封包流路由至距離 Θ 遠之位置且再次返回,從而導致來自長循環之延時❶有時 在路徑上存在不適當操作之路由設備,從而導致傳輸之延 遲。有時存在使路徑超載之訊務,其引入延遲。此外,有 時,根本係存在防止使用者之Isp路由至給定目的地的故 障。因此,儘管通用網際網路通常以相當可靠且最佳之路 由及延時來提供自一點至另一點之連接,該相當可靠且最 佳之路線及延時很大程度上係藉由距離來判定(尤其是在 導致路由至使用者之本端區域之外部的長距離連接的情況 下),但該可靠性及延時得不到任何保證且常常不可自使 139852.doc •97· 200952495 用者之場所至通用網際網路上之給定目的地而達成β 在一實施例中,當使用者用戶端415最初連接至主機代 管服務210以玩視訊遊戲或使用應用程式時,用戶端在啟 • 動時與可用的主機代管服務伺服器中心HS1-HS6中之每一 者通信(例如,使用上文所描述之技術)。若延時對於特定 • 連接而言足夠低,則使用彼連接。在一實施例中,用戶端 與所有主機代管服務伺服器中心或主機代管服務伺服器中 ❻ 心之一子集通信’選擇具有最低延時連接之主機代管服務 飼服器中心。用戶端可選擇具有最低延時連接之服務中 〜’或伺服器中心可識別具有最低延時連接之伺服器中心 並將此資訊(例如,以網際網路位址之形式)提供給用戶 端。 若特定主機代管服務伺服器中心超載及/或使用者之遊 戲或應用程式可容忍至另一、較少載入之主機代管服務飼 服器中心的延時,則可將用戶端415重定向至另一主機代 _ 管服務伺服器中心。在此種情形下,將使使用者正執行之In one embodiment illustrated in Figure lib, P-blocks that are most likely to cause visual artifacts when lost are also generated. In this embodiment, FEC 11 05 provides error correction codes for the first 3 p-image blocks but not for the following p-image blocks. In another embodiment, an FEC code is generated for the p-image block with the smallest data size (which would tend to be the P-block that was originally generated after the j-image block, which is most critical for protection). In another embodiment, instead of transmitting the FEC code along with the image block, the image block is transmitted twice, each time in a different packet. If one packet is lost/delayed, another packet is used. In one embodiment shown in Figure 11c, coffee codes 1111 and 1113 are generated for the audio packets (1) for simultaneous transmission from the colocation service to the video. Maintaining the integrity of the audio in the video stream is especially important because distorted audio (such as 'clicks or clicks') can result in a user experience that is particularly undesirable. The FEC code helps ensure that the audio content is reproduced without distortion at 415. Ringing the Computer In another embodiment, instead of sending the FEC code along with the audio material, the audio data is transmitted twice, each time in a different packet. 139852.doc •91- 200952495 If one packet is lost/delayed, another packet is used. In addition, in one embodiment illustrated in the figure, the feC codes 1121 and 1123 are used for user input commands (eg, pressing by slaves) 1120 and 1122 for uplink transmission from the client terminal 415 to the colocation service 21, respectively. . This is important because 'missing button presses or mouse movements in video games or applications can lead to an undesirable user experience. In another embodiment, instead of transmitting the FEC code along with the user input command material, the user input command data is transmitted twice, each time in a different packet. If a packet is lost/delayed, another packet is used. In one embodiment, the colocation service 210 evaluates the quality of the channel with the client 415 to determine whether to use the FEC, and if so, determines which portion of the video, audio, and user commands should be applied for FEC. The "quality" of the evaluation channel may include functions such as estimating packet loss, delay, etc. as described above. If the channel is particularly unreliable, the colocation service 2 can apply FEC to all I image blocks, P blocks, audio and user commands. In contrast, if the channel is reliable, the colocation service 2 can apply FEC only for audio and user commands, or FEC may not be applied to audio or video, or FEC may not be used at all. Various other arrangements of FEC applications can be used while still adhering to these basic principles. In an embodiment, the colocation service 210 constantly monitors the status of the channel and changes the FEC policy accordingly. In another embodiment, referring to FIG. 4a and FIG. 4b, when the packet is lost/delayed, resulting in loss of image block data, or if the FEC is unable to correct the lost image block data due to the particularly bad packet loss, The 139852.doc -92-200952495 client 415 evaluates how many frames remain before receiving a new i-picture block and compares it to the round-trip delay from the client 415 to the colocation service 210. If the round trip delay is less than the number of frames before the new image block should arrive, the client 415 sends a message to the colocation service 21, requesting a new 1 image block. This message is routed to the video compressor 4〇4, and instead of generating a P-picture block for the image block in which the data has been lost, a work image block is generated. Assuming that the system shown in Figures 4a and 4b is designed to provide a round trip delay of typically less than 80 milliseconds, this results in the image block being corrected to within 8 milliseconds (at 60 fps, the frame has 16 67 milliseconds) Duration, so in full frame time, an 80 millisecond delay will result in a corrected image block within 83.33 milliseconds, and 83.33 milliseconds is 5 frame time, which is an attractive interruption, but far less than (for example) 15 frames 25 〇 millisecond interrupts attract attention) 'When the compressor 404 is out of its normal loop order to generate such an I image block', if the I image block will cause the bandwidth of the frame to exceed the available bandwidth, then compression The 404 will delay the looping of other image blocks so that other image blocks will receive the P image block during the frame time (even if the image block will normally be an I image block during the frame), and then the usual loop The image frame will continue to be continued from the next frame, and the image block that has received the block in the previous frame will typically receive the I image block. Although this action temporarily delays the phase of the R frame cycle, it will usually be visually unobtrusive. Video and Audio Compressor/Decompressor Implementation Figure 12 illustrates a particular embodiment in which multiple cores and/or multiple processors 1200 are used to compress eight image blocks in parallel. In one embodiment, a dual-core processor running at 2.66 GHz or higher, a quad-core Xe〇n cpu computer 139852.doc • 93· 200952495 system, each core is implemented as an independent process open source χ264 H.264 compressor . However, a variety of other hardware/software configurations can be used while still adhering to these basic principles. For example, each of the CPU cores can be replaced by an H.264 compressor implemented in an FPGA. In the example shown in Figure 12, cores 1201 - 1208 are used to process j shadow blocks and P blocks as eight independent threads. As is well known in the art, current multi-core and multi-processor computer systems are inherently integrated with multi-threaded processing operating systems such as Microsoft Windows XP Professional (64-bit or 32-bit) and Linux. Ability to perform multi-thread processing. In the embodiment illustrated in Figure 12, since each of the eight cores is only responsible for one image block, it operates largely independently of the other cores' each performing a separate instantiation of x264. Use a PVI Express xl-based DVI capture card (such as 'Sender from Microtronix 〇f 〇osterhout in Netherlands. Video Imaging ip Development Board) to capture uncompressed φ video at 640x480, 800x600 or 1280x720 resolution, and The FPGA on the card uses Direct Memory Access (DMA) to transfer the captured video to the system ram via the DVI bus. The image blocks are configured in a 4x2 configuration 1205 (although this is illustrated as a square image block, in this embodiment 'which has a 160x240 resolution). Each instantiation of χ264 is configured to compress one of the eight 160x240 image blocks, and is synchronized such that each core enters a loop after initial I image block compression, each frame and another The frames are out of phase to compress an I image block followed by seven P image blocks, as illustrated in FIG. The resulting transmitted 139852.doc • 94·200952495 reduced image blocks are combined into a packet stream at each frame time using the previously described technique and the compressed image block is then transmitted to the destination client terminal 4 1 5 . Although not illustrated in Figure 12, if the data rate of the combined 8 image blocks exceeds the specified peak data rate 941, all 8 x264 processes will temporarily suspend the necessary frame time until the 8 for the combination has been transmitted. The data of the image block. In one embodiment, the client 415 is implemented as a software on a PC that implements 8 instantiations of FFmpeg. The receiving process receives eight image blocks and routes each image block to FFmpeg for instantiation, and FFmpeg instantiates the decompressed image block and reproduces it to the appropriate image block location on display device 422. The client 415 receives the keyboard, mouse or game controller input from the input device driver of the PC and transmits it to the server 402. The server 402 then receives the input device data received by the application and applies it to the game or application executed on the server 402. The server 402 is a PC that executes Windows using an Intel 2.16 GHz dual-core CPU. Server 402 then generates a new frame and exports the new frame to the motherboard based graphics system via its DVI output or via the DVI output of the NVIDIA 8800GTX PCI Express card. At the same time, the server 402 outputs audio generated by the game or application via its digital audio output (eg, S/PDIF), which is coupled to a dual quad-core Xeon-based PC that implements video compression. Digital audio input. The Vorbis open source audio compressor is used to compress audio simultaneously with video, regardless of the core that can be used to process the thread. In one embodiment, the core of the image block is first compressed. First, the audio pressure is 139852.doc -95-200952495. The compressed audio is then transmitted along with the compressed video and the Vorbis audio decompressor is used on the client 41 5 to decompress the compressed audio. The main sock escrow server center distributes light through a glass (such as an optical fiber) at a fraction of the speed of light in the vacuum, and thus the exact rate of propagation of light in the fiber can be determined. However, in practice, considering the routing delay, transmission inefficiency, and other elapsed time, we have observed that the optimal delay on the Internet reflects a transmission speed that is closer to 50% of the speed of light. Therefore, the optimal 1 mile round trip delay is about 22 milliseconds, and the optimal 3000 mile round trip delay is about 64 milliseconds. Therefore, a single server on the US coast will be too far apart to serve the client on the other coast (which may be up to 3 miles away) with the desired delay. However, as illustrated in Figure 13a, if the colocation service 21 is located at the center of the United States (e.g., Kansas, Nebraska, etc.), the distance to any point in the continental United States is about 15 〇〇. Miles or 1500 miles or less 'round trip internet latency can be as low as 32 milliseconds. See Figure 4b. Note: Although the worst case delay allowed by the user ISP 453 is 25 milliseconds, 'usually, in the case of DSL and cable modem systems, we observed a delay of closer to 10-15 milliseconds. Further, Fig. 4b assumes that the maximum distance from the user premises 211 to the colocation center 210 is 1 mile. Thus, in the case of the typical 15 millisecond user isp round trip delay used and the maximum internet distance of 1500 miles for a 32 millisecond round trip delay, the time from when the user actuates the input device 42 1 The total round trip delay for seeing a response on display device 422 is 139852.doc 96· 200952495 1 + 1+ 15+32 + 1+ 16+6 + 8 = 80 milliseconds. As a result, 8 milliseconds of response time is typically achieved over an Internet distance of 15 miles. This will allow any user location in the US mainland with a sufficiently short user ISP delay of 453 to be taken from a single server center located at the center. - In another embodiment illustrated in Figure Ub, cHS1-HS6 in the colocation service 210 server is strategically located around the United States (or other geographic area), a larger hosted service server center Close to the high population of 10 ~ while the 疋 position (for example, HS2 and HS5). In one embodiment, the server center HS1-HS6 exchanges information via the network 1301, which may be the Internet or a private network or a combination of the two. In the case of multiple server centers, services can be provided to users with high user lsp delays 453 at a lower latency. Although the distance on the Internet is indeed a factor in the latency of travel back and forth via the Internet, other factors that are largely unrelated to latency also work. Sometimes the packet flow is routed over the Internet to a distance away and back again, resulting in delays from long loops, sometimes routing devices that are not operating properly on the path, resulting in delays in transmission. There are sometimes traffic that overloads the path, which introduces delays. In addition, sometimes, there is a failure to prevent the user's Isp from routing to a given destination. Therefore, although the universal Internet usually provides connections from one point to another with fairly reliable and optimal routing and latency, this fairly reliable and optimal route and delay is largely determined by distance (especially In the case of a long-distance connection that leads to the outside of the user's local area, but the reliability and delay are not guaranteed and often cannot be used by 139852.doc •97· 200952495 Achieving β for a given destination on the universal Internet In one embodiment, when the user client 415 is initially connected to the colocation service 210 to play a video game or use an application, the client is Each of the available colocation service server centers HS1-HS6 communicates (e.g., using the techniques described above). If the delay is low enough for a particular • connection, use the connection. In one embodiment, the client communicates with all of the colocation service server centers or a subset of the colocation service servers to select the courier service center with the lowest latency connection. The client can select the service with the lowest latency connection ~' or the server center can identify the server center with the lowest latency connection and provide this information (for example, in the form of an internet address) to the client. The client 415 can be redirected if the specific colocation service server center is overloaded and/or the user's game or application can tolerate the delay to another, less loaded colocation service server center. Go to another host _ server service server center. In this case, the user will be executed

遊戲或應用程式在使用者之超載伺服器中心處的伺服器 402上暫停,且將遊戲或應用程式狀態資料傳送至另一主 機代管服務伺服器中心處之祠服器4〇2。接著將重新開始 該遊戲或應用程式。在一實施例中,主機代管服務21〇將 等待直至遊戲或應用程式達到自然暫停點(例如,遊戲中 級别之間 <者在使用者在應用程式中起始「保存」操 =後)才進行傳送。在又—實施例中,主機代管服務21〇 將等待直至使用者活動停止歷時指定時間週期(例如,W 139852.doc -98- 200952495 鐘)為止且接著將在彼時起始傳送。 如上所述,在一實施例中,主機代管服務210訂用圖14 之網際網路繞過服務440以試圖將得到保證的延時提供給 , 其用戶端。如本文中所使用之網際網路繞過服務係提供自 * 網際網路上之一點至另一點之具有得到保證之特性(例 » 如’延時、資料速率等)的私用網路路線的服務。舉例而 e ’若主機代管服務210正使用在San Francisco提供的 AT&T之DSL服務接收來自使用者之大量訊務(而非路由至 以AT&T之San Francisco為基地的中央辦公室),則主機代 管服務210將在以San Francisco為基地之中央辦公室與用 於主機代管服務210之伺服器中心中的一或多者之間租用 來自服務提供者(可能為AT&T本身或另一提供者)之高容量 私用資料連接。接著,若自所有主機代管服務伺服器中心 HS1-HS6經由通用網際網路至San Francisc〇中使用Ατ&τ DSL之使用者的路線導致過高延時,則可改為使用私用資 〇 料連接。儘管私用資料連接通常比經由通用網際網路之路 線更昂貝,但只要其保持主機代管服務210之一小百分比 連接至使用者’總成本影響就低,且使用者將體驗到更一 貫之服務體驗。 在電力故障之情況下,飼服器中心常常具有兩個備用電 力層。第一層通常為來自電池(或來自替代的立即可用之 能量源,諸如保持運轉且附接至發電機之飛輪)之備用電 力,其在電力幹線出故障時立即提供電力且保持飼服器中 心運轉。若電力故障為暫時的,且電力幹線迅速返回(例 139852.doc -99- 200952495 如在刀鐘内),則電池所需的係保持 轉。但若電力故障歷時較長之時間週期,則2心運 機(例如’柴油機供電)來取代電池且發 =發電 ^ 一 機極昂貝’因為其必須能夠產生多这 飼服器中心通常自電力幹線所得到的電力。 二=,主機代管服務中之每-者彼此 ==,以便在一伺服器中心具有電力故障時, 二==的遊戲及應用程式暫停,且接著將遊戲或 應用程式狀態資料自每一飼服器術傳送至其他伺服器中 心處之飼服器402,且接著將通知每—使用者之用戶端化 以指導其傳達至新的词服器術。假定該等情形偶爾出 現’則將使用者轉移至不能夠提供最佳延時之主機代管服 務飼服器中心(亦即,使用者將僅必須容忍較高延時歷時 電力故障之持續時間)可為可接受的,其將允許用於轉移 使用者之寬得多的範圍的選項。舉例而言,給定跨越美國 之時區差,則東海岸上之使用者在u:3〇pm可能將要睡 眠’而西海岸上之使用者在8:30PM正開始在視訊遊戲使用 上達到峰值。若彼時西海岸上之主機代管服務㈣器中心 中存在電力故障,則其他主機代管服務飼服器中心處可能 不存在用於處理所有使用者之足夠的西海岸伺服器4〇2。 在此種情形下,可將一些使用者轉移至東海岸上具有可用 伺服器402之主機代管服務伺服器中心,且對於使用者而 吕的唯一後果將係較高延時。一旦將使用者自失去電力之 飼服器中心轉移,伺服器中心接著就可開始其伺服器及設 139852.doc •100- 200952495 以便在電池(或其他立即電力備用)耗盡之 。以此方式,可避免用於伺服器中心之發 在-實施例中,在主機代管服務21〇之嚴重載入之時間 期間(或者由於峰值使用者载入’或者因為一或多個词服 器中心出故障),基於使用者正使用之遊戲或應用程式之 延時要求將使用者轉移至其他伺服器中心。因此,將為使 _ 用需要低延時之遊戲或應用程式的使用者給出對存在有限 供應之可用低延時伺服器連接的優選。 主機代管服務特徵 圖15說明在以下特徵描述中利用的用於主機代管服務 210之伺服器中心之組件的實施例。如同圖2a中所說明之 主機代管服務210—樣,除非另外有條件’否則此伺服器 中心之組件由主機代管服務210控制系統4〇1來控制及協 調。The game or application is suspended on the server 402 at the user's overloaded server center and the game or application status data is transferred to the server 4〇2 at the center of the other host hosting server. The game or application will then restart. In an embodiment, the colocation service 21 will wait until the game or application reaches a natural pause point (eg, between in-game levels < after the user initiates a "save" operation in the application =) Only transfer. In still another embodiment, the colocation service 21 will wait until the user activity ceases for a specified period of time (e.g., W 139852.doc -98 - 200952495) and then the transmission will begin at that time. As described above, in one embodiment, the colocation service 210 subscribes to the Internet bypass service 440 of FIG. 14 in an attempt to provide a guaranteed delay to its client. The Internet Bypass Service, as used herein, provides services from a point in the Internet to another point with a guaranteed private network route (eg, 'delay, data rate, etc.'). For example, if the host hosting service 210 is using the AT&T DSL service provided by San Francisco to receive a large amount of traffic from the user (rather than routing to the central office based in AT&T San Francisco), The colocation service 210 will then lease from the service provider between one or more of the central office based in San Francisco and the server center for the colocation service 210 (possibly AT&T itself or another A high-capacity private data connection for a provider). Then, if all the hosted service server centers HS1-HS6 use the 网τ&τ DSL user's route through the universal Internet to San Francisc〇 to cause excessive delay, then the private information can be used instead. connection. Although the private data connection is generally more expensive than the route through the universal Internet, as long as it maintains a small percentage of the colocation service 210 connected to the user, the total cost impact is low and the user will experience more consistent Service experience. In the event of a power failure, the feeder center often has two spare power layers. The first layer is typically backup power from a battery (or from an alternate ready-to-use energy source, such as a flywheel that remains operational and attached to the generator) that provides power immediately when the mains fails and maintains the center of the feeder Running. If the power failure is temporary and the mains return quickly (eg 139852.doc -99- 200952495 as in the knife), the required battery remains. However, if the power failure lasts for a long period of time, then 2 heart transport machines (such as 'diesel power supply') replace the battery and send = power generation ^ a machine Angbei' because it must be able to produce more of this feeder center usually self-powered The electricity obtained by the main line. Two =, each of the colocation services is ==, so that in the event of a power failure in a server center, the game and application of the second == are suspended, and then the game or application status data is fed from each The device is transmitted to the feeder 402 at the center of the other server, and then the user is notified to each user to direct it to the new word processor. Assuming that such occasions occur occasionally, the user is transferred to a colocation service feeder center that is unable to provide the optimal delay (ie, the user will only have to tolerate the duration of the higher latency duration power failure). Acceptable, it will allow for the option of transferring a much wider range of users. For example, given the time difference across the United States, users on the East Coast may be sleeping at u:3 pm while users on the West Coast are starting to peak in video game usage at 8:30 PM. If there is a power failure in the colocation service (4) center on the West Coast, there may not be enough West Coast servers to handle all users at the other colocation service center. In such a case, some users may be transferred to the colocation service server center with the available server 402 on the East Coast, and the only consequence for the user will be a higher latency. Once the user has transferred from the center of the feeder that lost power, the server center can then start its server and set it up in order to drain the battery (or other immediate power backup). In this way, it can be avoided that the server for the server is in the embodiment, during the time of the severe loading of the colocation service 21 (or because the peak user loads 'or because of one or more words The device center fails. The user is transferred to another server center based on the delay of the game or application being used by the user. Therefore, a preference will be given to users of games or applications that require low latency to have available low latency server connections with limited supply. Hosted Hosting Service Features Figure 15 illustrates an embodiment of the components of the server center for the hosted hosting service 210 utilized in the following description of the features. As with the colocation service 210 illustrated in Figure 2a, the components of this server center are controlled and coordinated by the colocation service 210 control system 4〇1 unless otherwise conditional.

備之有序切斷, 前切斷所有設備 電機的成本。 將來自使用者用戶端415之入埠網際網路訊務15〇1指引 至入埠路由1502。通常,入埠網際網路訊務15〇1將經由至 網際網路之高速光纖連接而進入飼服器中心,但具有足夠 頻寬、可靠性及低延時之任何網路連接構件將係足夠的。 入埠路由15〇2係網路(該網路可實施為乙太網路、光纖頻 道網路’或經由任何其他輸送構件)交換器及支援該等交 換器之路由伺服器的系統’其取得到達的封包且將每一封 包路由至適當應用程式/遊戲伺服器1521-1525。在一實施 例中,遞送至特定應用程式/遊戲伺服器之封包表示自用 139852.doc -101 - 200952495 戶端所接收之資料之一子集及/或可由資料中心内之其他 組件(例如,網路連接組件,諸如閘道器及路由器)來轉譯/ 改變。在一些狀況下,(例如)若遊戲或應用程式同時並行 . 地在多個伺服器上執行,則每次將封包路由至一個以上伺 : 月艮器1521·1525。RAID陣列15ii-1512連接至入琿路由網路The orderly cut off, before cutting off the cost of all equipment motors. The incoming Internet traffic 15〇1 from the user client 415 is directed to the incoming route 1502. Usually, the Internet traffic 15〇1 will enter the center of the feeder via a high-speed fiber connection to the Internet, but any network connection component with sufficient bandwidth, reliability and low latency will be sufficient. . Inbound routing 15〇2 network (which can be implemented as an Ethernet, fiber channel network 'or via any other transport component) switch and a system that supports the routing servers of the switches The arriving packets are routed to the appropriate application/game server 1521-1525. In one embodiment, the packet delivered to the particular application/game server represents a subset of the data received by the client 139852.doc -101 - 200952495 and/or may be other components within the data center (eg, Road connection components, such as gateways and routers, are used to translate/change. In some cases, for example, if a game or application is concurrently executed on multiple servers, each time the packet is routed to more than one server: 1521·1525. RAID array 15ii-1512 is connected to the inbound routing network

1502,以使得應用程式/遊戲伺服器1521-1525可讀取rAID 陣列1511-1512及寫入1^10陣列1511_1512。另外,1^11) ❹ 陣列1515(其可實施為多個RAID陣列)亦連接至入埠路由 1502,且來自RAID陣列1515之資料可自應用程式/遊戲伺 服器1521-1525來讀取。入埠路由15〇2可在多種先前技術 網路架構(包括樹結構之交換器,入埠網際網路訊務〗5〇】 在其根部)中實施;在互連所有各種器件之網狀結構中實 施;或作為互連之子網路序列(互通器件當中之集中訊務 與其他器件當中之集十訊務隔離)來實施。一類型之網路 組態為S AN,其儘管通常用於儲存器件,但其亦可用於器 Q 件之間的通用高速資料傳送。又,應用程式/遊戲伺服器 1521-1525可各自具有至入埠路由15〇2之多個網路連接。 舉例而言,飼服器1521-1525可具有至附接至RAID陣列 1511-15 12之子網路的網路連接及至附接至其他器件之子 網路的另一網路連接。 應用程式/遊戲伺服器1521_1525可經相同地、有些不同 地或全部不同地來組態,如先前關於圖4a中所說明之實施 例中之飼服器402所描述的。在一實施例中,每一使用者 當使用主機代管服務時通常為至少一應用程式/遊戲伺服 139852.doc •102· 2009524951502, so that the application/game server 1521-1525 can read the rAID arrays 1511-1512 and write the 1105 arrays 1511_1512. In addition, 1^11) 阵列 array 1515 (which can be implemented as multiple RAID arrays) is also coupled to incoming routing 1502, and data from RAID array 1515 can be read from application/game servers 1521-1525. Incoming routing 15〇2 can be implemented in a variety of prior art network architectures (including tree-structured switches, inbound Internet traffic) in its roots; in interconnecting the mesh structures of all various devices Implemented in ; or as a sub-network sequence of interconnects (concentrated traffic among interworking devices is isolated from the set of traffic in other devices). One type of network is configured as S AN, which, although commonly used for storage devices, can also be used for general high-speed data transfer between devices. Also, the application/game servers 1521-1525 can each have multiple network connections to the incoming route 15〇2. For example, the feeders 1521-1525 can have a network connection to a subnet attached to the RAID arrays 1511-15 12 and another network connection to a subnet attached to other devices. The application/game server 1521_1525 can be configured identically, somewhat differently, or all differently, as previously described with respect to the feeder 402 in the embodiment illustrated in Figure 4a. In one embodiment, each user typically has at least one application/game servo when using the colocation service 139852.doc • 102· 200952495

器1521-1525。出於說明之簡單起見,將假定給定使用者 正使用應用程式/遊戲伺服器1521,但多個伺服器可由— 使用者使用,且多個使用者可共用單一應用程式/遊戲伺 服器1521-1525。自用戶端415(如先前所描述)所發送的使 用者之控制輸入經接收為入埠網際網路訊務15〇1,且經由 入埠路由1502而路由至應用程式/遊戲伺服器1521。應用 程式/遊戲伺服器1521使用使用者之控制輸入作為至在祠 服器上執行之遊戲或應用程式的控制輸入,且計算視訊及 與其相關聯之音訊的下一個圖框。應用程式/遊戲伺服器 1521接著將未經壓縮之視訊/音訊1529輸出至共用視訊壓 縮1530。應用程式/遊戲伺服器可經由任何構件(包括一戋 多個超高速乙太網路連接)而輸出未經壓縮之視訊,但在 一實施例中,視訊係經由DVI連接而輸出,且音訊及其他 壓縮及通頻道狀態資訊係經由通用串列匯流排(Usb)連 接而輸出。 共用視訊壓縮1530壓縮來自應用程式/遊戲飼服器1521_ 1525的未經壓縮之視訊及音訊。該廢縮可完全以硬趙或以 執行軟體之硬體來實施。可存在用於每一應用程式/遊戲 伺服器1521 -1 525之專用壓縮器’或若壓縮器足夠快,則 可使用給定壓縮器來壓縮來自一個以上應用程式/遊戲伺 服器1521-1525之視訊/音訊。舉例而言,在6〇 fps下,視 訊圖框時間為16.67毫秒。若一壓縮器能夠在i毫秒内壓縮 1圖框’則彼壓縮器可用於藉由取得來自一個接一個之伺 服器的輸入而壓縮來自多達16個應用程式/遊戲伺服器 139852.doc -103- 200952495 1521-1525之視訊/音訊,該壓縮器保存每一視訊/音訊壓縮 過程之狀態且當其在來自伺服器之視訊/音訊流當中循環 時切換背景。此導致壓縮硬體的實質成本節省。因為不同 伺服器將在不同時間完成圖框,所以在一實施例中,壓縮 器資源係處於具有用於儲存每一壓縮過程之狀態之共用儲 存構件(例如,RAM,快閃記憶體)的共用集區153〇中,且 當伺服器1521 -1525圖框完整且準備被壓縮時,控制構件 Ο1521-1525. For simplicity of description, it will be assumed that a given user is using the application/game server 1521, but multiple servers may be used by the user, and multiple users may share a single application/game server 1521 -1525. The user's control input sent from the client 415 (as previously described) is received as an incoming Internet service 15〇1 and routed to the application/game server 1521 via the incoming route 1502. The application/game server 1521 uses the user's control input as a control input to the game or application executing on the server and calculates the video and the next frame of the audio associated therewith. The application/game server 1521 then outputs the uncompressed video/audio 1529 to the shared video compression 1530. The application/game server can output uncompressed video via any component (including one or more ultra-high speed Ethernet connections), but in one embodiment, the video is output via a DVI connection, and the audio and Other compression and channel status information is output via a Universal Serial Bus (Usb) connection. The shared video compression 1530 compresses uncompressed video and audio from the application/game feeder 1521_1525. This abolition can be implemented entirely in hard or hard hardware. There may be a dedicated compressor for each application/game server 1521 - 525' or if the compressor is fast enough, a given compressor may be used to compress from more than one application/game server 1521-1525 Video/audio. For example, at 6〇 fps, the video frame time is 16.67 milliseconds. If a compressor can compress 1 frame in i milliseconds, then the compressor can be used to compress from up to 16 applications/game servers 139852.doc -103 by taking input from one server after another. - 200952495 1521-1525 video/audio, which stores the state of each video/audio compression process and switches the background as it cycles through the video/audio stream from the server. This results in substantial cost savings for the compressed hardware. Since different servers will complete the frame at different times, in one embodiment, the compressor resources are in a shared state with shared storage components (eg, RAM, flash memory) for storing the state of each compression process. In the cluster 153, and when the server 1521-1525 is complete and ready to be compressed, the control memberΟ

判定彼時哪個壓縮資源可用,為該壓縮資源提供伺服器之 壓縮過程之狀態及待壓縮的未經壓縮之視訊/音訊之圖 框0 注意,用於每一伺服器之壓縮過程的狀態之一部封包化 括關於>1縮本身之資訊,諸如先前圖框之經解壓縮之圖框 緩衝資料(其可用作用於p影像塊之參考)、視訊輸出之解 析度縮之品質;影像塊結構;㈣像塊之位元之分 配1縮品質、音訊格式(例如,立體聲、環繞音效、 祕y® AC-3)。但是壓縮過程狀態亦包括關於以下之通信 頻道狀態資訊:峰值資料速率941,及先前圖框(如圖扑中 所說明)當前是否正被輸出(且因此應忽略當前圖框),及潛 在地是否存在應在I缩中考慮的(諸如,過多封包丢失)影 響壓縮決策(例如,在!影像塊之頻率方面,”的_特 性。因為峰值資料速率941或其他頻道特性隨著時間而改 變,如由支援每一使用去龄鉬ώ m 使用者皿視自用戶端415所發送之資料 的應用程式/遊戲伺服器1521〗 上— 1525所判定的,所以應用程 式/遊戲伺服器152 1 -1 525將相sa达 將相關資訊發送至共用硬體壓縮 139852.doc -104. 200952495 1530。 共用硬體壓縮1530亦使用諸如先前所描述之彼等構件之 構件將經壓縮之視訊/音訊封包化,且在適當時,應用 竭’複製特定資料,或採取其他步驟,以便充分地確保視 ; 訊/音訊資料流由用戶端415接收且以可行之高品質及可靠 /性解壓縮的能力、 一些應用程式(諸如’下文所描述之彼等應用程式)需要 ❹ 給定應用程式/遊戲伺服器1521-1525之視訊/音訊輸出同時 在多個解析度下(或以其他多個格式)可用。若應用程式/遊 戲伺服器1521-1525如此通知共用硬體壓縮1530資源,則 彼應用程式/遊戲伺服器1521 -1525的未經壓縮之視訊音訊 1529將被以不同格式、不同解析度及/或在不同封包/錯誤 校正結構中同時壓縮。在一些狀況下,一些壓縮資源可在 壓縮同一視訊/音訊之多個壓縮過程當中共用(例如,在許 多壓縮演算法中,存在藉以在應用壓縮之前將影像按比例 ❹ 調整至多個大小的步驟。若需要輸出不同大小之影像,則 此步驟可用於同時伺服若干個壓縮過程)。在其他狀況 下,對於每一格式將需要單獨的壓縮資源。在任何狀況 下’將用於給定應用程式/遊戲伺服器1521·1525( 一或多 個)所需的所有各種解析度及格式的經壓縮之視訊/音訊 W39同時輸出至出埠路由154〇。在一實施例中,經壓縮之 視訊/音訊1539之輸出係處於UDP格式,因此其為單向封包 流。 出埠路由網路1540包含一系列路由伺服器及交換器該 I39852.doc 200952495 系列路由伺服器及交換器將每一經壓縮之視訊/音訊流經 由出埠網際網路訊務1599介面(其通常將連接至至網際網 路之光纖介面)而指引至所欲使用者或其他目的地及/或返 回至延遲緩衝器1515,及/或返回至入埠路由15〇2,及/或 經由私用網路(未圖示)而輸出以供進行視訊分配。注意(如 下所述广出埠路由154〇可將給定視訊/音訊流同時輸出至 多個目的地。在一實施例中,此係使用網際網路協定(ιρ) 多播來實施,其中廣播意欲同時_流至多個目的地之給定 UDP流’且該廣播由出埠路由1540中之路由伺服器及交換 器來重複。廣播之#亥多個目的地可係經由網際網路而至多 個使用者之用戶端415、經由入埠路由15〇2而至多個應用 程式/遊戲4司服器1521-1525 ’及/或至一或多個延遲緩衝器 1515。因此’將給定伺服器1521-1522之輸出壓縮成一或 多個格式’且將每一經壓縮之流指引至一或多個目的地。 另外’在另一實施例中,若多個應用程式/遊戲伺服器 1521-1525同時由一使用者使用(例如,在用於產生具有複 雜場景之3D輸出的並行處理組態中)且每一词服器產生所 得影像之部分’則可由共用硬體壓縮15 3 0將多個祠服器 1521-1525之視訊輸出組合成一組合圖框,且自彼點向前 如上所述處理該組合圖框’好像其來自單一應用程式/遊 戲伺服器1521-1525。 注意,在一實施例中,將由應用程式/遊戲伺服器1521_ 1525產生之所有視訊的複本(至少以由使用者檢視之視訊 之解析度或更高解析度)記錄於延遲緩衝器1515中歷時至 139852.doc 200952495 少某一數目之分鐘(在一實施例中為15分鐘)。此允許每一 使用者「回倒」來自每一會話之視訊,以便核查先前工作 或業績(在遊戲之狀況下)。因此,在一實施例中,將路由 . 至使用者用戶端415的每一經壓縮視訊/音訊輸出1539流亦 多播至延遲緩衝器1515。當將視訊/音訊儲存於延遲緩衝 器1515上時’延遲緩衝器1515上之目錄提供應用程式/遊 戲伺服器1521-1525(其為延遲之視訊/音訊之來源)之網路 位址與延遲緩衝器1515上可發現延遲之視訊/音訊之位置 ® 之間的交又參考。 現場直播的、可即刻檢視的、可即刻播放的遊戲 應用程式/遊戲伺服器1521-1 525不僅可用於執行使用者 之給定應用程式或視訊遊戲,而且其可用於建立用於支援 經由主機代管服務210之導航及其他特徵之主機代管服務 210的使用者介面應用程式。一種該使用者介面應用程式 之螢幕拍攝展示於圖16中(「遊戲取景器」螢幕此特定 φ 使用者介面螢幕允許使用者觀看由其他使用者現場玩的 (或延遲的)1 5個遊戲。「縮略圖」視訊窗中之每一者(諸 如’ 1600)為在運動中的現場直播之視訊窗,其展示來自 一使用者之遊戲的一視訊。縮略圖中所展示之視圖可為使 用者正看之同一視圖,或其可為延遲的視圖(例如,若使 用者正玩搏鬥遊戲,則使用者可能不希望其他使用者看見 其隱藏在哪裡且其可選擇將其遊戲播放之任何視圖延遲一 時間週期⑽如,齡鐘))。_亦可為不同靠何使用者 之視圖的遊戲之相機視圖。使用者可基於多種標準而經由 I39852.doc -107. 200952495 選單選擇(此說明中未圖示)來選擇待同時檢視之遊戲之選 擇°作為例示性選擇之小取樣,使用者可選擇遊戲之隨機 選擇(諸如圖16中所展示之彼等遊戲)、所有一類別之遊戲 * (均由不同玩家來玩)、僅遊戲之頂級玩家、遊戲中之給定 級別的玩家’或較低級玩家(例如,若玩家正學習基礎)、 為「搭權」(或為競爭者)之玩家、具有最多數目檢視者的 遊戲等。 注意’通常,每一使用者將決定來自其遊戲或應用程式 馨 之視訊是否可由他人檢視,且若如此,則決定該視訊可由 哪些他人檢視及何時可由他人檢視,決定該視訊是否僅可 在具有延遲之情況下檢視。 產生圖16中所展示之使用者介面螢幕的應用程式/遊戲 伺服器1521-1 525藉由向每一使用者(該應用程式/遊戲伺服 器1521-1525正請求來自該使用者之遊戲)之應用程式/遊戲 伺服器1521-1 525發送訊息而獲取該15個視訊/音訊饋送。 ❹ 該訊息係經由入埠路由1502或另一網路來發送。該訊息將 包括被請求之視訊/音訊之大小及格式,且將識別檢視使 用者介面螢幕之使用者。給定使用者可選擇選擇「盜版」 模式且不准許任何其他使用者檢視其遊戲之視訊/音訊(自 其檢視點或者自另-檢視點),或如先前段中所描述,使 用者可選擇允許檢視來自其遊戲之視訊/音訊,但延遲所 檢視之視訊/音訊。使用者應用程式/遊戲伺服器ΜΗ· ⑽(其接收並接受允許其視訊/音訊被檢視之請求)將因此 向請求伺服器確認,且其亦將通知共用硬體壓縮1530需要 139852.doc -108- 200952495 產生被°用求格式或螢$大小(假定格式及螢幕大小不同於 已.’·呈產生的袼式及螢幕大小)的額外經壓縮視訊流,且其 亦將扎示經壓縮視訊的目的地(亦即,請求祠服器)。若被 請求的視訊/音訊僅被延遲,則請求應用程式/遊戲伺服器 1521-1525將被如此通知,且其將藉由查找延遲緩衝器 1515上之目錄中的視訊/音訊之位置及為延遲的視訊/音訊 之來源的應用程式/遊戲伺服器1521_1525之網路位址而自 延遲緩衝器15 15獲取延遲的視訊/音訊。一旦所有此等請 求被產生並處理,則將高達15個現場直播之縮略圖大小之 視訊流自出埠路由1540路由至入埠路由15 〇2、至產生使用 者介面發幕之應用程式/遊戲伺服器1521_1525,且將由該 伺服器來解壓縮及顯示。延遲的視訊/音訊流可能處於過 大之螢幕大小,且若如此,則應用程式/遊戲伺服器152i_ 1525將解壓縮該等流並將視訊流按比例縮減至縮略圖大 小。在一實施例中,將對音訊/視訊之請求發送至與圖4a 之主機代管服務控制系統類似之中央r管理」服務(圖】5 中未展示)(且由中央「管理」服務來管理),中央「管理」 服務接著將該等請求重定向至適當應用程式/遊戲飼服器 1521 -1525。此外’在一實施例中,可能不需·要請求’因 為縮略圖被「推送」至允許其之彼等使用者的用戶端。 來自15個遊戲之所有同時混合的音訊可能產生刺耳的聲 音。使用者可選擇以此方式將所有聲音混合在一起(可能 就為得到由被檢視之所有動作產生的「喧囂」之感覺), 或者使用者可選擇每次僅聽取來自一遊戲之音訊《單一遊 139852.doc -109^ 200952495 戲之選擇係藉由將黃色選擇框16G1移動至給定遊戲來完成 (黃色框移動可藉由使用鍵盤上之箭頭鍵、藉由移動滑 鼠、藉由移動操縱桿或藉由推動諸如行動電話之另一器件 上之方向按鈕來完成)。一旦選擇了單一遊戲,則僅來自 彼遊戲之音訊播放。又,展示遊戲資訊16〇2。在此遊戲之 狀況下例如,出版商標諸(「EA」)及遊戲標結「極品飛 車卡本峽谷」及橙色橫條在相對條件下指示在彼特定時刻 玩遊戲或檢視遊戲之人的數目(在此狀況下,許多,因此 遊戲為「熱門」)。另外提供「狀態」,指示存在145個玩 家正積極地玩極品飛車遊戲之80個不同實例化(亦即,該 遊戲可藉由個別玩家遊戲或多人遊戲來玩),且存在68〇個 檢視者(此使用者係其中之一)。注意,此等統計資料(及其 他統計資料)由主機代管服務控制系統4〇1來收集並儲存於 RAID陣列1511-1512上’以用於保持主機代管服務21〇操作 之曰諸且用於適當地向使用者計費並向提供内容之出版商 支付費用。一些統計資料係由於由服務控制系統4〇丨進行 之動作而記錄,且一些統計資料係由個別應用程式/遊戲 伺服器1521-1525報告給服務控制系統401。舉例而言,當 遊戲正被檢視時(及當遊戲被停止檢視時),執行此遊戲取 景器應用程式之應用程式/遊戲伺服器1521-1525向主機代 管服務控制系統401發送訊息,以使得主機代管服務控制 系統401可更新多少個遊戲處於檢視中的統計資料《—些 統計資料可為使用者介面應用程式(諸如,此遊戲取景器 應用程式)所用。 139852.doc -110· 200952495 右使用者單擊其輸人器件上之啟動按知,則其將看見黃 色框中之縮略圖視訊放大同時縮略圖視訊保持現場直播為 =幕大小。此效應展示於圖17中之過程中。注意,視訊 窗1700之大小增大。為了實施此效應,應用程“遊戲飼 ❹ 服器1521,1525自執行敎之軸之應心式/遊戲飼服器 152M525請求具有路由至其之輯之全螢幕大小(以使用 者之顯示器件422之解析度)的視訊流之複本。執行遊戲之 應用程式/遊戲㈣器1521_1525通知制硬㈣縮器⑽ 不再需要遊戲之縮略圖大小之複本(除非另一應用程式/遊 戲伺服器1521-1525需要此種縮略圖),且接著其指引共用 硬體壓縮器1530將視訊之全螢幕大小之複本發送至放大視 訊之應用程式/遊戲伺服器1521_1525。玩該遊戲之使用者 可或可不具有解析度與將遊戲放大之使用者之彼顯示器件 的解析度相同的顯示器件422。另外,遊戲之其他檢視者 可或可不具有解析度與將遊戲放大之使用.者相同的顯示器 件422(且可具有不同的音訊回放構件,例如,立體聲或環 繞音效)。因此,共用硬體壓縮器153〇判定是否已經產生 滿足請求視訊/音訊流之使用者之要求的合適的經壓縮視 訊/音訊流’且若合適的經壓縮視訊/音訊流確實存在,則 共用硬體壓縮器1530通知出埠路由154〇將該流之複本路由 至放大該視訊之應用程式/遊戲伺服器1521-1525,且若合 適的經壓縮視訊/音訊流不存在,則壓縮視訊之適合於彼 使用者的另一複本並指導出琿路由將該流發送回至入埠路 由15 02及放大該視訊之應用程式/遊戲伺服器1521_1525。 139852.doc • 111 - 200952495 現在接收選定視訊之全螢幕版本的此伺服器將解壓縮該全 螢幕版本並將其逐漸地按比例放大至全大小。 圖18說明在將遊戲完全放大至全螢幕且以使用者之顯示 . 器件422之全解析度展示遊戲之後螢幕看起來如何(如藉由 箭頭1800指向之影像所指示的)。執行遊戲取景器應用程 式之應用程式/遊戲伺服器1521-1525向提供縮略圖之其他 應用程式/遊戲伺服器1521-1525發送訊息以指示該等縮略 Ο 圖不再需要且向主機代管服務控制伺服器4〇 i發送訊息以 . 指示不再檢視其他遊戲。此時,產生的唯一顯示為螢幕頂 部的上覆1801,其將資訊及選單控制提供給使用者。注 意’隨著此遊戲進展,觀眾增長至2,5〇3個檢視者。在如 此多的檢視者之情況下’必然存在具有顯示器件422之許 多檢視者,該等顯示器件422具有相同或接近之解析度(每 應用程式/遊戲伺服器1521-1525具有按比例調整視訊以 用於調整配合度之能力)。 〇 因為所展示之遊戲為多人遊戲,所以使用者可決定在某 時刻加入該遊戲。由於多種原因,主機代管服務210可或 可不允許使用者加入該遊戲。舉例而言,使用者可能必須 支付玩遊戲之費用而選擇不支付,使用者可能不具有足以Determining which compression resource is available at that time, providing the compression resource with the state of the compression process of the server and the uncompressed video/audio frame to be compressed. Note that one of the states of the compression process for each server The packet encapsulation information about the >1 shrink itself, such as the decompressed frame buffer data of the previous frame (which can be used as a reference for the p image block), the quality of the resolution of the video output; the image block structure (4) The allocation of bits in the block is limited to the quality and audio format (for example, stereo, surround sound, secret y® AC-3). However, the compression process state also includes information about the following communication channel status: peak data rate 941, and whether the previous frame (as illustrated in the flap) is currently being output (and therefore the current frame should be ignored), and potentially There are _ characteristics that should be considered in I (such as excessive packet loss) that affect compression decisions (eg, in terms of the frequency of the video block), because the peak data rate 941 or other channel characteristics change over time, such as The application/game server 1521 is determined by the application/game server 1521, which is determined by the application/game server 1521, which is used by each user to use the information sent from the client 415, so the application/game server 152 1 -1 525 The relevant information is sent to the shared hardware compression 139852.doc -104. 200952495 1530. The shared hardware compression 1530 also encapsulates the compressed video/audio using components such as those previously described, and Where appropriate, the application will 'copy specific data, or take other steps to fully ensure that the video/audio data stream is received by the client 415 and is feasible. Quality and reliability/sex decompression capabilities, some applications (such as the applications described below) require video/audio output from a given application/game server 1521-1525 simultaneously at multiple resolutions (or in multiple other formats). If the application/game server 1521-1525 thus notifies the shared hardware compression 1530 resource, the uncompressed video audio 1529 of the application/game server 1521-1525 will be Simultaneous compression in different formats, different resolutions, and/or in different packet/error correction structures. In some cases, some compression resources may be shared among multiple compression processes that compress the same video/audio (eg, in many compression calculations) In the method, there is a step of scaling the image to multiple sizes before applying compression. If it is necessary to output images of different sizes, this step can be used to simultaneously servo several compression processes.) In other cases, for each case The format will require a separate compression resource. In any case 'will be used for a given application/game server 1521·15 25 (one or more) of all the various resolutions and formats of compressed video/audio W39 are simultaneously output to the outgoing route 154. In one embodiment, the output of the compressed video/audio 1539 is UDP format, so it is a one-way packet flow. The outgoing routing network 1540 contains a series of routing servers and switches. The I39852.doc 200952495 series routing server and switch will stream each compressed video/audio stream. Internet traffic 1599 interface (which will typically be connected to the optical interface to the Internet) directed to the intended user or other destination and/or back to delay buffer 1515, and/or back to incoming routing 15〇2, and/or output via a private network (not shown) for video distribution. Note that a given video/audio stream can be simultaneously output to multiple destinations as described below. In one embodiment, this is implemented using Internet Protocol (ιρ) multicast, where the broadcast is intended At the same time, _ flows to a given UDP stream of multiple destinations' and the broadcast is repeated by the routing server and switch in the outgoing route 1540. The multiple destinations of the broadcast may be used over the Internet to multiple uses. The client 415, via the incoming route 15〇2, to the plurality of application/game 4 server 1521-1525 'and/or to one or more delay buffers 1515. Therefore, the server 1521 will be given The output of 1522 is compressed into one or more formats' and each compressed stream is directed to one or more destinations. In addition, in another embodiment, if multiple application/game servers 1521-1525 are simultaneously The user uses (for example, in a parallel processing configuration for generating a 3D output with a complex scene) and each word processor produces a portion of the resulting image', which can be compressed by a shared hardware 15 3 0 Video output combination of 1521-1525 Form a combo frame and process the combined frame as described above from the other side as if it were from a single application/game server 1521-1525. Note that in an embodiment, it will be used by the application/game server 1521_ A copy of all video generated by 1525 (at least at a resolution or higher resolution of the video viewed by the user) is recorded in delay buffer 1515 for a certain number of minutes to 139852.doc 200952495 (in one embodiment) 15 minutes). This allows each user to "rewind" the video from each session in order to check previous work or performance (in the case of the game). Therefore, in one embodiment, the route will be routed to the user. Each compressed video/audio output 1539 stream of the client 415 is also multicast to the delay buffer 1515. When the video/audio is stored on the delay buffer 1515, the directory on the delay buffer 1515 provides the application/game server. The network address of 1521-1525 (which is the source of the delayed video/audio) and the location of the delayed video/audio location on the delay buffer 1515 are referenced. The live, instantly viewable, instantly playable game application/game server 1521-1 525 can be used not only to execute a given application or video game of the user, but also can be used to establish support for hosting via the host. A user interface application of the host service 210 of the navigation and other features of the service 210. A screen shot of the user interface application is shown in Figure 16 ("game viewfinder" screen for this particular φ user interface screen Allow users to view 15 games played (or delayed) by other users. Each of the "thumbnail" video windows (such as '1600) is a live video window in motion, showing A video from a user's game. The view shown in the thumbnail may be the same view that the user is looking at, or it may be a delayed view (eg, if the user is playing a fighting game, the user may not want other users to see where they are hidden and It can choose to delay any view of its game play for a period of time (10), such as age clock). _ can also be a camera view of the game with different views of the user. The user can select the game selection to be simultaneously viewed based on a plurality of criteria via the I39852.doc -107. 200952495 menu selection (not shown in this description) as a small sample of the exemplary selection, and the user can select the random game. Choose (such as those shown in Figure 16), all categories of games* (both played by different players), only top players in the game, players of a given level in the game' or lower level players ( For example, if the player is learning the basics, the player who is "right" (or a competitor), the game with the most number of viewers, and the like. Note that 'usually, each user will decide whether the video from their game or application can be viewed by others, and if so, decide which other people can view and when they can be viewed by others, and decide whether the video can only have View in case of delay. The application/game server 1521-1 525 that produces the user interface screen shown in FIG. 16 is provided to each user (the application/game server 1521-1525 is requesting a game from the user) The application/game server 1521-1 525 sends the message to retrieve the 15 video/audio feeds. ❹ The message is sent via the incoming route 1502 or another network. The message will include the size and format of the requested video/audio and will identify the user viewing the user interface screen. A given user may choose to select the "Piracy" mode and not allow any other user to view the video/audio of their game (from their view point or from another view point), or as described in the previous paragraph, the user may choose Allow viewing of video/audio from its games, but delay the video/audio being viewed. The user application/game server ( (10) (which receives and accepts requests for permission to view its video/audio) will therefore confirm with the requesting server, and it will also notify the shared hardware compression 1530 that 139852.doc -108 is required. - 200952495 Generates an additional compressed video stream that is formatted by the use or fired by the size (assuming the format and screen size are different from the size and screen size produced), and it will also display the compressed video. Destination (ie, request server). If the requested video/audio is only delayed, the requesting application/game server 1521-1525 will be notified as such, and will find the location of the video/audio in the directory on the delay buffer 1515 as a delay. The video/audio source of the application/game server 1521_1525 is derived from the delay buffer 15 15 to obtain delayed video/audio. Once all such requests have been generated and processed, up to 15 live broadcast thumbnail-sized video streams are routed from the outgoing route 1540 to the incoming route 15 〇 2, to the application/game that generates the user interface. The server 1521_1525 will be decompressed and displayed by the server. The delayed video/audio stream may be at an excessive screen size, and if so, the application/game server 152i-1525 will decompress the streams and scale the video stream down to the thumbnail size. In one embodiment, the request for audio/video is sent to a central r management service (not shown in Figure 5) similar to the colocation service control system of Figure 4a (and managed by a central "management" service) The central "management" service then redirects the requests to the appropriate application/games feeders 1521-1525. Further, in an embodiment, it may not be necessary to request 'because the thumbnails are "pushed" to the user of the user who is allowed to do so. All of the simultaneous audio from 15 games can produce harsh sounds. The user can choose to mix all the sounds together in this way (maybe to get the feeling of "喧嚣" generated by all the actions being viewed), or the user can choose to listen to the audio from one game at a time. 139852.doc -109^ 200952495 The choice of play is done by moving the yellow selection box 16G1 to the given game (the yellow frame can be moved by using the arrow keys on the keyboard, by moving the mouse, by moving the joystick) Or by pushing a direction button on another device such as a mobile phone). Once a single game is selected, it is only played from the audio of the game. Also, show game information 16〇2. In the case of this game, for example, the publication of the trademark ("EA") and the game label "Need for Speed Card Canyon" and the orange bar indicate the number of people who play or view the game at a particular time under relative conditions ( In this case, a lot, so the game is "hot". In addition, a "status" is provided indicating that there are 80 different instantiations in which 145 players are actively playing Need for Speed games (ie, the game can be played by individual player games or multiplayer games), and there are 68 views. (This user is one of them). Note that such statistics (and other statistics) are collected by the hosted service control system 4.1 and stored on the RAID arrays 1511-1512' for maintaining the hosted service 21 operations. The user is billed appropriately and paid to the publisher who provided the content. Some statistics are recorded as a result of actions performed by the service control system 4, and some statistics are reported to the service control system 401 by the individual application/game servers 1521-1525. For example, when the game is being viewed (and when the game is stopped viewing), the application/game server 1521-1525 executing the game viewfinder application sends a message to the colocation service control system 401 to The colocation service control system 401 can update how many games are in view of the statistics "some statistics can be used by user interface applications (such as this game viewfinder application). 139852.doc -110· 200952495 When the right user clicks on the activation button on his input device, he will see the thumbnail video in the yellow frame and the thumbnail video will be live broadcast as the screen size. This effect is shown in the process of Figure 17. Note that the size of the video window 1700 is increased. In order to implement this effect, the application "game feed device 1521, 1525 from the execution of the axis of the heart / game feeder 152M525 request has a full screen size routed to it (with the user's display device 422 Resolution of the video stream. Execution of the game application/game (4) 1521_1525 notification hard (four) retractor (10) Replica of the thumbnail size of the game is no longer needed (unless another application/game server 1521-1525 Such a thumbnail is required, and then it directs the shared hardware compressor 1530 to send a copy of the full screen size of the video to the application/game server 1521_1525 that amplifies the video. The user playing the game may or may not have resolution. The display device 422 has the same resolution as the display device of the user who enlarges the game. In addition, other viewers of the game may or may not have the same display device 422 as the resolution to use the game. Different audio playback components, such as stereo or surround sound.) Therefore, the shared hardware compressor 153 determines whether a request has been satisfied. A suitable compressed video/audio stream is required by the user of the video/audio stream and if a suitable compressed video/audio stream does exist, the shared hardware compressor 1530 notifies the routing 154 to copy the stream. Routing to the application/game server 1521-1525 that amplifies the video, and if the appropriate compressed video/audio stream does not exist, compressing the video is suitable for another copy of the user and directing the routing to the stream Send back to Route 15 02 and the application/game server 1521_1525 to enlarge the video. 139852.doc • 111 - 200952495 This server that receives the full screen version of the selected video will now decompress the full screen version and Gradually scale up to full size. Figure 18 illustrates the full zoom of the game to full screen and display by the user. The full resolution of device 422 shows how the screen looks after the game (as directed by the arrow 1800) Instructed to execute the game viewfinder application/game server 1521-1525 to other applications/game servers 1521-15 that provide thumbnails 25 sends a message to indicate that the thumbnails are no longer needed and sends a message to the colocation service control server 4〇i to indicate that the other games are no longer viewed. At this time, the only display generated is the top of the screen. 1801, which provides information and menu control to the user. Note that as the game progresses, the viewer grows to 2, 5, 3 viewers. In the case of so many viewers, there must be a display device 422 Many viewers have the same or close resolution (the ability of each application/game server 1521-1525 to scale the video for adjustment of fit). 〇 Because the game shown is a multiplayer game, the user can decide to join the game at some point. The colocation service 210 may or may not allow users to join the game for a variety of reasons. For example, the user may have to pay for the game and choose not to pay, the user may not have enough

被遠距離地(實際上, ,因此可在無延時關注之情況下檢視 在另一大陸上)玩的遊戲,但對於待 139852.doc -112- 200952495 玩之遊戲而言’延時必須足夠低以使使用者(a)享受該遊 戲’且(b)處於與可能具有較低延時連接之其他玩家相等的 地位)°若不准許使用者玩,則為使用者提供遊戲取景器 使用者介面之應用程式/遊戲伺服器1521-1 525將請求主機 代管服務控制伺服器401起始(亦即,定位並啟動)經合適地 組態以用於播放特定遊戲之應用程式/遊戲伺服器1521·A game that is played remotely (in fact, so it can be viewed on another continent without delay), but for games played 139852.doc -112- 200952495, the delay must be low enough Having the user (a) enjoy the game 'and (b) is in the same position as other players who may have a lower latency connection) ° If the user is not allowed to play, the user is provided with the application of the game viewfinder user interface The program/game server 1521-1 525 will request the colocation service control server 401 to initiate (ie, locate and launch) the application/game server 1521 that is suitably configured for playing a particular game.

1525以自RAiD陣列ι511_1512載入該遊戲,且接著主機代 管服務控制伺服器401將指導入埠路由1502將來自使用者 之控制信號傳送至現在主機代管遊戲之應用程式/遊戲祠 服器且現在主機代管遊戲之應用程式/遊戲伺服器將指導 共用硬體塵縮1530自壓縮來自主機代管遊戲取景器應用程 式之應用程式/遊戲伺服器之視訊/音訊切換至壓縮來自現 在主機代管遊戲之應用程式/遊戲伺服器之視訊/音訊。遊 戲取景器應用程式/遊戲服務與主機代管遊戲之新的應用 程式/遊戲伺服器之垂直同步並不同步,且因此在該兩個 同步之間可能存在時間差。因為共用視訊壓縮硬體153〇將 在應用程式/遊戲伺服器1521-1525完成視訊圖框之後即開 始慶縮視訊,所以來自新伺服器之第一圖框可比舊伺服器 之全圖框時間完成得早,來自新伺服器之第一圖框可能在 先前經壓縮之圖框完成其傳輸之前(例如,考慮圖外之傳 輸時間992 :若未經壓縮之圖框3 963完成地早一圖框時間 之一半’則其將衝擊傳輸時間992)。在此種情形下,共用 視訊壓縮硬體1530將忽略來 如’如忽略(974)圖框4 964), 丨新伺服器之第一圖框(例 且用戶端41 5將來自舊伺服 139852.doc •113· 200952495 器之最末圖框保持一額外圖框時間,且共用視訊壓縮硬趙 1530將開始壓縮來自主機代管遊戲之新應用程式/遊戲伺 服器的下一圖框時間視訊 '對於使用者而言,在視覺上, 自一應用程式/遊戲伺服器至另一應用程式/遊戲伺服器之 轉變將係無縫的。主機代管服務控制伺服器401接著將通 知主機代管遊戲取景器之應用程式/遊戲伺服器1521_1525 切換至閒置狀態,直至再次需要其為止。 ❹ 使用者接著能夠玩該遊戲。此外,例外的係遊戲將在感 知上係即刻地播放(因為遊戲已被以十億位元/秒速度自 1^1(1陣列1511-1512載入至應用程式/遊戲伺服器1521_1525 上)’且將藉由理想的驅動器、暫存器組態(在貿匕如…之 狀況下)將遊戲連同經確切組態以用於該遊戲之作業系統 一起載入至確切適合於該遊戲之伺服器上,且無可能與該 遊戲之操作競爭的其他應用程式在該伺服器上執行。 又,隨著使用者在遊戲中進展,遊戲之片段中之每一者 ❹ 將以十億位元/秒速度(亦即,8秒丨次十億位元組載入)自 RMD陣列1511-1512載入伺服器中,且由於raid陣列 WU-BU之巨大儲存容量(因為其為許多使用者之共用資 源,所以其可能非常大,但仍具成本效益),使得可預先 計算幾何形狀設置或其他遊戲片段設置並將其儲存於 RAID陣列1511-1512上且極快速地進行载入。此外,因為 每-應用程式’遊戲祠服器1521_1525之硬體組態及計算能 力係已知的,所以可預先計算像素及頂點著色。 因此,遊戲可幾乎即刻啟動’其將在理想環境中執行, 139852.doc -114- 200952495 且隨後之片段將幾乎即刻載入。 但是’除此等優點之外’使用者將能夠檢視他人玩遊戲 (經由先前所描述之遊戲取景器,及其他構件),且兩者均 決定遊戲是否有趣,且若如此,則自觀看他人而學習技 π。此外’使用者將能夠即刻地演示該補,而不必等待 大的下載及/或安裝’且使用者將能夠即刻玩該遊戲(可能 在較小費用之試用基礎上,或在較長期基礎上)。此外, 使用者將能夠藉由足夠低延時之無線連接而在Windows PC、Macintosh上、在電視機上、在家裏、在行進時且甚 至在打動電話上玩該遊戲。此外,此均可在並非曾經實體 擁有遊戲複本的情況下完成》 如先前所敍述,使用者可決定不允許其遊戲播放可被他 人檢視’允許其遊戲可在延遲之後檢視,允許其遊戲可被 選定使用者檢視,或允許其遊戲可被所有使用者檢視。不 管怎樣,在一實施例中,將視訊/音訊儲存於延遲緩衝器 ⑩ 1515中歷時15分鐘,且使用者將能夠「回倒」並檢視其先1525 loads the game from the RAiD array ι511_1512, and then the colocation service control server 401 will direct the routing control 1502 to transmit the control signal from the user to the application/game server of the current colocation game and Now the hosted game application/game server will guide the shared hardware dust reduction 1530 self-compression video/audio from the hosted game viewfinder application/game server switch to compression from the current colocation Video/audio of the game application/game server. The vertical synchronization of the game viewfinder application/game service with the new application/game server of the colocation game is not synchronized, and thus there may be a time lag between the two synchronizations. Since the shared video compression hardware 153 will start to freeze the video after the application/game server 1521-1525 completes the video frame, the first frame from the new server can be completed than the full frame time of the old server. Earlier, the first frame from the new server may be before the transmission is completed in the previously compressed frame (for example, consider the transmission time outside the picture 992: if the uncompressed frame 3 963 is completed earlier) One and a half of the time will impact the transmission time 992). In this case, the shared video compression hardware 1530 will be ignored as 'Ignore (974) frame 4 964), the first frame of the new server (for example and the client 41 5 will come from the old servo 139852. Doc •113· 200952495 The last frame of the device maintains an extra frame time, and the shared video compression hard camera 1530 will begin to compress the next frame time video from the new application/game server of the hosted game. For the user, visually, the transition from one application/game server to another application/game server will be seamless. The colocation service control server 401 will then notify the host to host the game framing. The app/game server 1521_1525 switches to the idle state until it is needed again. 使用者 The user can then play the game. In addition, the exception game will be played instantly in the sense (because the game has been ten The bite/second speed is from 1^1 (1 array 1511-512 is loaded onto the application/game server 1521_1525)' and will be configured by the ideal driver and scratchpad (in the case of trade In the case of loading the game along with the operating system configured for the game, to the server that is exactly suitable for the game, and other applications that are unlikely to compete with the operation of the game on the server Also, as the user progresses through the game, each of the segments of the game will be loaded from the RMD array at a rate of one billion bits per second (ie, 8 seconds per billion bytes). The 1511-1512 is loaded into the server and due to the huge storage capacity of the raid array WU-BU (because it is a shared resource for many users, it can be very large, but still cost effective), allowing pre-computation of geometry Set or other game clip settings and store them on the RAID arrays 1511-1512 and load them very quickly. In addition, because the hardware configuration and computing power of each application 'game server 1521_1525 is known So the pixels and vertex shading can be pre-computed. So the game can be launched almost instantly 'it will be executed in an ideal environment, 139852.doc -114- 200952495 and the subsequent clips will load almost instantly. In addition to these advantages, the user will be able to view other people's playing games (via the previously described game viewfinder, and other components), and both determine whether the game is interesting, and if so, learn from watching others. In addition, 'the user will be able to demonstrate the supplement immediately, without having to wait for a large download and/or installation' and the user will be able to play the game instantly (perhaps on a less expensive trial basis, or in a longer term) In addition, the user will be able to play the game on a Windows PC, Macintosh, on a television, at home, while traveling, and even on a mobile phone with a wireless connection of sufficiently low latency. In addition, this can be done without having a physical copy of the game. As previously stated, the user can decide not to allow his game to be played by others. 'Allow his game to be viewed after a delay, allowing his game to be Select a user view or allow their games to be viewed by all users. In any embodiment, in one embodiment, the video/audio is stored in the delay buffer 10 1515 for 15 minutes, and the user will be able to "rewind" and view the first.

前的遊戲播放,且將遊戲暫停,將遊戲緩慢地回放,將遊 戲快進等’正如其在觀看具有數位視訊記錄器(DVr)之τν 時所能夠進行的。儘管在此實例t,使用者係在玩遊戲, 但若使用者正使用應用程式’則相同「dvr」能力係可用 的。此在核查先前工作中及在如下詳述之其他應用中可係 有用的。另外,若遊戲經設計為具有基於利用遊戲狀態資 訊而回倒之能力’以便可改變相機視圖等,則亦將支援此 「3D DVR」能力’但其將需要將遊戲設計為支援r3D 139852.doc • 115· 200952495 能力。使用延遲緩衝器叫之「請」能力將連同 任何遊戲或應用程式(當然,限於在使用遊戲或應用程式 時所產生的視訊)-起起作用,但在具有3d賺能力之遊 胃的狀況下’使用者可控制先前所播放之片段的3D「穿 越」,且使延遲緩衝器1515記錄所得視訊並記錄遊戲片段 之遊戲狀態。因此’將特定「穿越」記錄為經壓縮之視 訊,但因為亦將記錄遊戲狀態,所以不同的穿越將可能在 遊戲之同一片段之稍後日期。 如下所述,主機代管服務2丨〇上之使用者將各自具有一 使用者頁面’在該使用者頁面中,使用者可公布關於其本 身之資訊及其他資料。使用者將能夠公布之事情之一為來 自其已保存之遊戲播放之視訊片段。舉例而言,若使用者 已克服遊戲中之特別困難之挑戰,則使用者可剛好「回 倒」至其在遊戲中獲得其大成果之地點之前,且接著指導 主機代管服務210將某一持續時間(例如,3〇秒)之視訊片段 φ 保存在使用者之使用者頁面上以供其他使用者觀看。為實 施此’使用者正使用之應用程式/遊戲伺服器1521_1525僅 要做的事情係將儲存於延遲緩衝器1515中之視訊回放至 RAID陣列15 11-1 5 12且接著將彼視訊片段編索引於使用者 之使用者頁面上。 若遊戲具有3D DVR之能力,如上所述,則亦可由使用 者來記錄3D DVR所需之遊戲狀態資訊且使其為使用者之 使用者頁面可用。 在遊戲經設計為除具有活躍玩家外亦具有「旁觀者」 139852.doc -116 - 200952495 (亦即,能夠在不參與的情況下在3D世界行進並觀察到動 作的使用者)的情況下,則遊戲取景器應用程式將使使用 者能夠作為旁觀者以及玩家加入遊戲。自檢視之實施點 看’對於主機代管系統210而言,使用者為旁觀者而非活 躍玩家不存在差異。將遊戲載入應用程式/遊戲词服器 1521-1525上且使用者將控制該遊戲(例如,控制檢視世界 之虛擬相機)。唯一差異將係使用者之遊戲體驗。 ©多個使用者合作 主機代管服務210之另一特徵係多個使用者在檢視現場 直播之視訊的同時合作的能力(即使使用迴然不同之器件 來檢視亦如此)。當玩遊戲時及當使用應用程式時,此均 有用。 許多PC及行動電話裝備有視訊相機且具有進行即時視訊 壓縮之能力(尤其當影像小時)。又’小相機可用,可附接 至電視’且以軟體或使用用於壓縮視訊之許多硬體壓縮器 〇 件中之一者來實施即時壓縮並不困難。又,許多PC及所有 行動電話具有麥克風,且耳機在具有麥克風情況下可用。 組合有本端視訊/音訊壓縮能力(特定言之,使用本文中 所描述之低延時視訊壓縮技術)之該等相機及/或麥克風將 使使用者能夠將視訊及/或音訊連同輸入器件控制資料一 起自使用者場所211傳輸至主機代管服務21〇。當使用該等 技術時,則可達成圖19中所說明之能力:使用者可使其視 訊及音訊1900出現於另一使用者之遊戲或應用程式内的螢 幕上。此實例為多人遊戲,其中隊友在赛車中合作。使用 139852.doc • 117- 200952495 者之視訊/音訊僅可被其隊友選擇性地檢視/聽到。此外, 因為使用上文所描述之技術將有效地不存在延時,所以玩 家將能夠即時地彼此談話或進行運動而無可感知的延遲。 • 此視訊/音訊整合係藉由使來自使用者之相機/麥克風的 經壓縮視訊及/或音訊作為入埠網際網路訊務1501到達而 完成。接著,入埠路由1502將該視訊及/或音訊路由至被 准許檢視/聽到視訊及/或音訊之應用程式/遊戲伺服器 ^ 1521-1525。接著,選擇使用視訊及/或音訊之各別應用程 式/遊戲伺服器1521-1525的使用者解壓縮視訊及/或音訊且 視需要而將其整合以出現於遊戲或應用程式内,諸如藉由 1900所說明的。 圖19之實例展示如何在遊戲中使用該合作,但該合作可 為用於應用程式之極其強大的工具。考慮一情形:其中一 大建築物正由在芝加哥的建築師為以紐約為基地之房地產 開發商為紐約市設計,但該決策涉及在行進中且碰巧處於 ❹ 邁阿密機場之財務投資者,且需要關於建築物之特定設計 要素(在其如何搭配其附近之建築物方面)進行決策,以滿 足投資者與房地產開發商兩者。假定建築公司在芝加哥具 有具有附接至PC之相機的高解析度監視器,房地產開發商 在紐約具有具有相機的膝上型電腦,且投資者在邁阿密具 有具有相機的行動電話。建築公司可使用主機代管服務 210來主機代管能夠高度逼真3D再現的強大的建築設計應 用程式’且其可利用紐約市之建築物之大資料庫,以及正 設計的建築物之資料庫。建築設計應用程式將在應用程式/ 139852.doc -118· 200952495 遊戲伺服器1521-1525中之一者上(或若其需要大量計算能 力’則在若干者上)執行。處於全異位置處之3個使用者中 之每一者將連接至主機代管服務21〇,且每一者將具有對 . 建築設計應用程式之視訊輸出的同時檢視,但其將被針對 每一使用者具有的給定器件及網路連接特性而由共用硬體 壓縮1530適當地定大小(例如,建築公司可經由2〇 Mbps商 用網際網路連接看見2560xl440 6〇 fps顯示’紐約之房地 ❹ 產開發商可經由其膝上型電腦上之6 Mbps DSL連接看見 1280x720 60 fpS影像,且投資者可經由其行動電話上之 250 Kbps蜂巢式資料連接看見32〇x18〇 6〇 fps影像卜每一 方將聽到其❿方之語音(將藉由應用程式/遊戲飼月艮器i52i_ 1525中的許多廣泛可用之會議呼叫套裝軟體中之任一者來 處理會議哗叫),且經由使用纟輸入器件上之按紐之致 動使用者將能夠使用其本端相機使視訊出現。隨著會議 進行’建築師將能夠藉由極具照片般逼真感之3D再現展示 〇 #其使建築物旋轉且使其鄰接該區域中之另-建築物穿越 時建築物看起來像什麼,且所有方均將在各方之顯示器件 之解析度下可見到相同視訊。由任何方使用之本端器件中 之任-者均能夠以該真實感處理3D動畫不係問a,更不用The previous game is played, and the game is paused, the game is played back slowly, the game is fast forwarded, etc. as it is when viewing τν with a digital video recorder (DVr). Although in this example t, the user is playing the game, the same "dvr" capability is available if the user is using the application. This may be useful in verifying previous work and in other applications as detailed below. In addition, if the game is designed to have the ability to fall back based on the use of game state information so that the camera view can be changed, it will also support this "3D DVR" capability but it will need to design the game to support r3D 139852.doc • 115· 200952495 Ability. Using the delay buffer called "please" capability will work with any game or application (of course, limited to the video generated when using the game or application), but in the case of a 3d earning stomach The user can control the 3D "travel" of the previously played clip and cause the delay buffer 1515 to record the resulting video and record the game state of the game segment. Therefore, the specific "traversal" is recorded as compressed video, but since the game state will also be recorded, different crossings may be at a later date in the same segment of the game. As described below, users on the colocation service 2 will each have a user page' in which the user can post information about himself and other materials. One of the things that the user will be able to announce is a video clip from a game that has been saved. For example, if the user has overcome the particular difficulty of the game, the user may just "rewind" to the location where he or she has achieved great results in the game, and then instruct the colocation service 210 to The video clip φ of duration (for example, 3 seconds) is saved on the user's user page for viewing by other users. The only thing to do to implement this application/game server 1521_1525 that the user is using is to play back the video stored in the delay buffer 1515 to the RAID array 15 11-1 5 12 and then index the video segments. On the user's user page. If the game has the ability to have a 3D DVR, as described above, the user can also record the game state information required by the 3D DVR and make it available to the user's user page. In the case where the game is designed to have "bystanders" in addition to active players, 139852.doc -116 - 200952495 (that is, users who can travel in the 3D world without observing and observe the action) The game viewfinder app will enable the user to join the game as a bystander and player. Self-examination implementation point of view For the colocation system 210, there is no difference between the user being a bystander and not the active player. The game is loaded onto the application/game word server 1521-1525 and the user will control the game (e.g., control the virtual camera viewing the world). The only difference will be the user's gaming experience. © Multiple User Cooperation Another feature of the colocation service 210 is the ability of multiple users to collaborate while viewing live video broadcasts (even if they are viewed using a different device). This is useful when playing games and when using an application. Many PCs and mobile phones are equipped with video cameras and have the ability to perform instant video compression (especially when the image is small). Also, 'small camera is available, attachable to the TV' and it is not difficult to implement instant compression in software or using one of many hardware compressors for compressing video. Also, many PCs and all mobile phones have a microphone and the headset is available with a microphone. The cameras and/or microphones combined with native video/audio compression capabilities (specifically, using the low latency video compression techniques described herein) will enable the user to combine video and/or audio with input device control data. Together, it is transmitted from the user premises 211 to the colocation service 21〇. When using these techniques, the capabilities illustrated in Figure 19 can be achieved: the user can have their video and audio 1900 appear on the screen of another user's game or application. This example is a multiplayer game where teammates collaborate in the car. Video/audio using 139852.doc • 117- 200952495 can only be selectively viewed/heard by their teammates. Moreover, because there is effectively no delay in using the techniques described above, the player will be able to talk to each other or exercise at once without an appreciable delay. • This video/audio integration is accomplished by having compressed video and/or audio from the user's camera/microphone as incoming Internet traffic 1501. Next, the incoming route 1502 routes the video and/or audio to the application/game server 1521-1525 that is permitted to view/hear the video and/or audio. Then, the user selecting the respective application/game server 1521-1525 using video and/or audio decompresses the video and/or audio and integrates it as needed to appear in the game or application, such as by 1900 explained. The example in Figure 19 shows how to use this collaboration in a game, but this collaboration can be an extremely powerful tool for applications. Consider a scenario where a large building is being designed by the architects in Chicago for a New York-based real estate developer for New York City, but the decision involves financial investors who are on the move and happen to be at Miami Airport, and need Make decisions about specific design elements of the building (how it relates to the buildings in the vicinity) to meet both investors and real estate developers. Suppose the construction company has a high-resolution monitor with a camera attached to the PC in Chicago, the real estate developer has a laptop with a camera in New York, and the investor has a mobile phone with a camera in Miami. The construction company can use the colocation service 210 to host a powerful architectural design application that is highly realistic 3D reproduction' and it can utilize the large database of New York City buildings and the library of buildings being designed. The architectural design application will execute on one of the applications / 139852.doc - 118 · 200952495 game server 1521-1525 (or on several if it requires a lot of computing power). Each of the three users at the disparate location will be connected to the colocation service 21〇, and each will have a simultaneous view of the video output of the architectural design application, but it will be targeted for each A user has a given device and network connectivity characteristics that are appropriately sized by the shared hardware compression 1530 (eg, a building company can see 2560xl440 6〇fps display via the 2 Mbps commercial internet connection. Production developers can see 1280x720 60 fpS images via a 6 Mbps DSL connection on their laptops, and investors can see 32〇x18〇6〇fps images via a 250 Kbps cellular connection on their mobile phones. One party will hear the voice of the other party (the conference call will be handled by any of the many widely available conference call suites in the app/game calendar i52i_ 1525), and via the input device The user of the button will be able to use their local camera to make the video appear. As the meeting proceeds, 'architects will be able to demonstrate with 3D renderings that are photorealistic and realistic. #其使建筑的建筑进行进行进行进行进行进行的建筑物的建筑物的建筑物的建筑物的,其所有的方的的相相的相相的相相。 The party will rotate the building and make it adjacent to the other in the area - the building will look like the building, and all parties will see the same video at the resolution of the display devices of the parties. Any one of the local devices used can handle 3D animation with this realism without asking a, not to use

說下載或甚至储存再現紐約市之周圍建築物所需的巨大資 料庫。自使用者中之畚 ’但其將簡單地在難以置信之真實感 。此外,當一方希望其面部被看來較Say the huge library of resources needed to download or even reproduce the buildings surrounding New York City. Since the user's ’' but it will simply be incredibly realistic. In addition, when a party wants its face to be seen

儘管係全異本端器件, 程度下具有無縫體驗。 佳地傳達其情緒狀態時 139852.doc •119· 200952495 開發商或投資者希望控制建築程式且使用其自身的輸入器 件(其為鍵盤、滑鼠、小鍵盤或觸携螢幕),則其可如此, 且其"T以無感知的延時來回應(假定其網路連接不具有不 合理的延時)。舉例而言,在行動電話之狀況下,若行動 電話連接至機場之WiFi網路,則其將具有非常低之延時。 但若其使用美國現今可用之蜂巢式資料網路,則其很可能 將遭受引人注意的滯後。但是,對於會議之大多數目的 (其中投資者正觀看建築師控制建築物穿越或正談論視訊 電話會議)’甚至蜂巢式延時亦應係可接受的。 最後,在合作性會議呼叫結束時,房地產開發商及投資 者將進行其評論且自主機代管服務停播,建築公司將能夠 「回倒」已記錄於延遲緩衝器1515上之會議的視訊且核查 在會議期間進行的應用於建築物之3D模型的評論、面部表 情及/或動作。若存在其希望保存之特定片段,則可將視 訊/音訊之彼等片段自延遲緩衝器1515移動至RAID陣列 1511-1512以用於檔案儲存及稍後回放。 又,自成本觀點看,若建築師僅需要使用紐約市之計算 能力及大資料庫歷時15分鐘之會議呼叫,則其僅需要支付 該等資源被使用之時間的費用,而不必擁有高能力之工作 台且不必購買大資料庫之昂貴複本。 梘訊ft富之社區服務 主機代管服務210致能用於在網際網路上建立視訊豐富 之社區服務的空前機會。圖2〇展示用於主機代管服務21〇 上之遊戲玩家的例示性使用者頁面。如同⑽取景器應用 139852.doc •120- 200952495 程式一樣’使用者頁面為在應用程式/遊戲词服器mi — 15 25中之一者上執行的應用程式。此頁面上之所有縮略圖 及視訊窗展示恨定地移動的視訊(若片段短,則其循環)。 使用視訊相機或藉由上載視訊,使用者(其用戶名為 「KILLHAZARD」)能夠公布其本身之視訊2〇〇〇(其他使用 者可檢視該視訊)〇該視訊儲存於RAID陣列1511-1512上。 又,當其他使用者來到KILLHAZARD之使用者頁面時,若 KILLHAZARD此時正使用主機代管服務210,貝ij將展示其 正進行的無論什麼的現場直播之視訊2001(假定其准許檢 視其使用者頁面之使用者觀看其)。此將由主機代管使用 者頁面應用程式之應用程式/遊戲伺服器1521-1525自服務 控制系統401請求KILLHAZARD是否為活躍的(且若如此, 則請求其正使用的應用程式/遊戲伺服器1521-1525)來完 成。接著,使用由遊戲取景器應用程式使用之相同方法, 將合適解析度及格式的經壓縮視訊流發送至執行使用者頁 面應用程式之應用程式/遊戲伺服器1521-1525且將其顯 示。若使用者選擇具有KILLHAZARD之現場直播之遊戲播 放的窗口且接著適當地單擊其輸入器件,則該窗口將放大 (再次使用與遊戲取景器應用程式相同之方法),且現場直 播之視訊將以觀看使用者之顯示器件422的解析度(適合於 觀看使用者之網際網路連接的特性)填充螢幕。 此優於先前技術方法之關鍵優點係:檢視使用者頁面之 使用者能夠看見使用者不擁有的現場直播地播放的遊戲, 且可不具有能夠玩該遊戲之本端電腦或遊戲控制台。其為 139852.doc -121 - 200952495 使用者提供看使用者頁面巾展㈣「活動巾」的使用者玩 遊戲之極好機會’且其為瞭解檢視使用者可能希望嘗試或 較擅長之遊戲的機會。 來自KILLHAZARD之搭檔2002之相機記錄的或上載的視 訊剪輯亦展示於使用者頁面上’且每一視訊剪輯之下方為 指示該搭槽是否線上玩遊戲之文字(例#,(相正玩遊 戲「龍騎士(Eragon)」且MrSnuggles99離線等)。藉由單擊 選單項(未圖示),搭檔視訊剪輯自展示已記錄的或上載的 視訊切換至當前正玩主機代管服務21〇上之遊戲之搭檔在 彼時刻在其遊戲中正在進行的内容的現場直播之視訊。因 此,其變成為搭檔分群的遊戲取景器。若選擇搭檔之遊戲 且使用者單擊該遊戲,則該遊戲將放大至全螢幕,且使用 者將能夠觀看全螢幕現場直播地播放的遊戲。 再次,檢視搭檔之遊戲之使用者不擁有遊戲之複本,亦 不擁有用於玩該遊戲之本端計算/遊戲控制台資源。遊戲 檢視係有效瞬時的。 如上文先前所描述,當使用者玩主機代管服務210上之 遊戲時,使用者能夠「回倒」遊戲且發現其希望保存之視 訊片段,且接著將該視訊片段保存至其使用者頁面。此等 被稱為「自賞剪輯(Brag Clip)」e視訊片段2〇〇3均為由 KILLHAZARD自其所玩的先前遊戲保存的自賞剪輯。 數字2004展示自賞剪輯已被檢視多少次,及自賞剪輯何時 被檢視’使用者具有對其評定等級之機會,且橙色瑜匙孔 形狀的圖示2005之數目指示等級係多高。當使用者檢視使 139852.doc • 122· 200952495 用者頁面時,自賞剪輯2003連同頁面上之其餘視訊一起恆 定地循環。若使用者選擇並單擊自賞剪輯2〇〇3中之一者, 則其放大以呈現自賞剪輯2〇〇3,以及允許播放、暫停、回 • 倒、快進、步進等該剪輯之DVR控制。 自賞剪輯2003回放係藉由應用程式/遊戲伺服器ι521_ 1525載入使用者記錄自賞剪輯時儲存於RAID陣列15 j j _ 15 12上的經壓縮視訊片段且將其解壓縮並將其回放來實 施0 ❹ 自賞剪輯2003亦可為來自支援3D DVR能力之遊戲的 「3D DVR」視訊片段(亦即,來自可被重放且允許使用者 改變相機檢視點之遊戲的遊戲狀態序列)。在此狀況下, 除使用者在記錄遊戲片段時進行的特定「穿越」的經壓縮 視訊記錄之外’亦儲存遊戲狀態資訊。當使用者頁面正被 檢視且所有縮略圖及視訊窗均恆定地循環時,3d DVR自 賞剪輯2003將使在使用者記錄遊戲片段之「穿越」時記錄 ❹ 為經壓縮視訊的自賞剪輯2003恆定地循環。但是’當使用 者選擇3D DVR自賞剪輯2003並單擊3D DVR自賞剪輯2003 時,除允許播放經壓縮視訊自賞剪輯的DVR控制之外,使 用者將能夠單擊給出其用於遊戲片段之3D DVR能力的按 紐。其將能夠獨立地控制遊戲片段期間的相機「穿越」, 且若其希望(且擁有使用者頁面的使用者如此允許),則其 將能夠以經壓縮視訊之形式記錄替代性自賞剪輯「穿 越」,替代性自賞剪輯「穿越」將接著可為使用者頁面之 其他檢視者所用(立即地’或者在使用者頁面之擁有者具 139852.doc -123- 200952495 有核查自賞剪輯之機會之後)。 此3D DVR自賞剪輯2003能力係藉由啟動將要在另一應 用程式/遊戲伺服器1521-1 525上重放已記錄之遊戲狀態資 - 訊的遊戲來啟用。因為遊戲可被幾乎瞬時地啟動(如先前 所描述)’所以啟動其(其播放限於由自賞剪輯片段記錄之 遊戲狀態)且接著允許使用者在將經壓縮視訊記錄至延遲 緩衝器1515的同時用相機進行「穿越」並不困難。一旦使 用者完成進行「穿越」,則將遊戲撤銷啟動。 〇 自使用者之觀點看,啟動具有3D DVR自賞剪輯2003之 「穿越」並不比控制線性自賞剪輯2003之DVR控制難。其 可不知道該遊戲或甚至不知道如何玩該遊戲。其僅為盯著 看另一操作者記錄的遊戲片段期間之3D世界的虛擬相機操 作者。 使用者將亦能夠將其自身的音訊加錄於自賞剪輯上(或 者自麥克風記錄或者上載以此方式,可使用自賞剪輯 〇 來使用來自遊戲之人物及動作產生定製動畫。此動晝製作 技術通常被稱為「遊戲電影(machinima)」。 隨著使用者在遊戲中進展,其將達成不同技能級別。所 播放之遊戲將成果報告給服務控制系統4〇1,且此等技能 級別亦將展示於使用者頁面上。 互動式動畫廣告 線上廣告已自文字轉變至靜態影像、視訊,且現在轉變 至互動式片段’通常係使用如Ad〇be Fiash之動畫精簡型用 戶端來實施。使用動畫精簡型用戶端之原因在於:使用者 139852.doc -124- 200952495 通常對於因向其推销產品或服務之特權而被延遲較無耐 心。又,精簡型用戶端在非常低效能之pc上執行,且因此 廣告商可具有高度信心:互動式廣告將適當地丄作。遺憾 地’諸如Adobe Flash之動畫精簡型用戶端在互動性之程产 及體驗(以減少下載時間)之持續時間上受限制。 圖21說明一互動式廣告,其中使用者將在汽車在陳列室 中旋,時選擇汽車之外部及内部色彩,同時即時射線追蹤Despite the disparate native device, it has a seamless experience. When the good news conveys its emotional state 139852.doc •119· 200952495 Developers or investors want to control the building program and use their own input devices (the keyboard, mouse, keypad or touch screen), then it can , and its "T responds with no perceived latency (assuming its network connection does not have unreasonable delays). For example, in the case of a mobile phone, if the mobile phone is connected to the WiFi network of the airport, it will have a very low latency. However, if it uses a cellular data network available in the United States today, it is likely to suffer a noticeable lag. However, for most of the purposes of the conference (where investors are watching architects controlling building crossings or talking about video conference calls), even honeycomb delays should be acceptable. Finally, at the end of the cooperative conference call, the real estate developer and investor will make their comments and stop the colocation service, and the construction company will be able to "rewind" the video of the conference that has been recorded on the delay buffer 1515 and Review comments, facial expressions and/or actions applied to the 3D model of the building during the meeting. If there are specific segments that it wishes to save, then the segments of the video/audio can be moved from the delay buffer 1515 to the RAID arrays 1511-1512 for archival storage and later playback. Also, from a cost perspective, if an architect only needs to use New York City's computing power and a large database for a 15-minute conference call, then it only needs to pay for the time when the resources are used, without having to have high capabilities. Workbench does not have to purchase expensive copies of large databases. FX Rich Community Services Hosting Services 210 is an unprecedented opportunity to build video-rich community services on the Internet. Figure 2A shows an exemplary user page for a game player on the colocation service 21〇. Like the (10) viewfinder application 139852.doc • 120- 200952495 program-like user page is an application executed on one of the application/game word processor mi-1525. All thumbnails and video windows on this page show video that you hate to move (if the clip is short, it loops). By using a video camera or by uploading video, the user (the user name is "KILLHAZARD") can publish his own video 2 (other users can view the video), and the video is stored on the RAID array 1511-512. . Also, when other users come to the user page of KILLHAZARD, if KILLHAZARD is using the colocation service 210 at this time, Beij will display the live video of whatever it is doing 2001 (assuming it is allowed to view its use) The user of the page views it). This will request whether the KILLHAZARD is active from the service control system 401 by the host/host server application application/game server 1521-1525 (and if so, request the application/game server 1521- 1525) to complete. The compressed video stream of the appropriate resolution and format is then sent to the application/game server 1521-1525 executing the user page application and displayed using the same method used by the game finder application. If the user selects a window with a live broadcast of KILLHAZARD and then clicks on their input device appropriately, the window will be enlarged (using the same method as the game viewfinder application again) and the live video will be The resolution of the display device 422 of the user (suitable for viewing the characteristics of the user's internet connection) is filled in the screen. The key advantage of this prior art approach is that the user viewing the user page can see the live broadcast of the game that the user does not own, and may not have a local computer or game console capable of playing the game. It is 139852.doc -121 - 200952495. The user provides an excellent opportunity to view the user's page towel exhibition (4) "active towel" for users to play games. It is an opportunity to understand the game that the user may wish to try or be good at. . Video clips recorded or uploaded from the camera of KILLHAZARD's partner 2002 are also displayed on the user's page and below each video clip is the text indicating whether the slot is playing online or not (example #, (相正玩游戏" Dragon Knight (Eragon) and MrSnuggles99 offline, etc.) By clicking on the menu item (not shown), the partner video clip switches from displaying the recorded or uploaded video to the game currently playing the colocation service 21〇 The partner is in the live broadcast of the content being played in his game at that time. Therefore, it becomes a game viewfinder that is grouped by the partner. If the game of the partner is selected and the user clicks on the game, the game will be enlarged to Full screen, and the user will be able to watch the game played live on the full screen. Again, the user of the game viewing the partner does not own the copy of the game, nor does it have the local computing/game console resources for playing the game. The game view is valid instantaneous. As described earlier, when the user plays the game on the colocation service 210, the user can " Pour the game and find the video clip it wishes to save, and then save the video clip to its user page. These are called "Brag Clip" e video clips 2〇〇3 are all by KILLHAZARD The self-reward clip saved from the previous game played by it. The number 2004 shows how many times the self-review clip has been viewed, and when the self-respect clip is viewed 'the user has the opportunity to rate it, and the shape of the orange keyhole The number of graphs 2005 indicates how high the rating is. When the user views the 139852.doc • 122· 200952495 user page, the self-review clip 2003 is continuously cycled along with the rest of the video on the page. If the user selects and clicks One of the clips 2〇〇3 is zoomed in to present the clip 2〇〇3, and the DVR control that allows playback, pause, back/reverse, fast forward, step, etc. the clip. The 2003 playback system loads the compressed video clips stored on the RAID array 15 jj _ 15 12 by the application/game server ι521_ 1525 and decompresses them and plays them back. 0 ❹ Self-recruiting clip 2003 can also be a "3D DVR" video clip from a game that supports 3D DVR capabilities (ie, a sequence of game states from a game that can be played back and allows the user to change the camera view point). In this case, in addition to the specific "crossing" compressed video recordings that the user performs while recording the game segment, the game state information is also stored. When the user page is being viewed and all thumbnails and video windows are constantly looped The 3d DVR self-reward clip 2003 will cause the user to record the "travel" of the game clip as a compressed video of the self-reward clip 2003 constantly looping. But 'when the user selects the 3D DVR self-reward clip 2003 and clicks When the 3D DVR is self-recommended with Clip 2003, in addition to allowing DVR control of the compressed video capture clip, the user will be able to click on the button that gives its 3D DVR capability for the game clip. It will be able to independently control the camera "crossing" during the game segment, and if it wishes (and the user of the user page so allows), it will be able to record the alternate self-reward clip in the form of compressed video. The alternative self-reward clip "crossing" will then be available to other viewers of the user page (immediately) or after the owner of the user page has 139852.doc -123- 200952495 with the opportunity to verify the clip ). This 3D DVR Self-Camp Clip 2003 capability is enabled by launching a game that will replay the recorded game state message on another application/game server 1521-1 525. Because the game can be launched almost instantaneously (as previously described), so it is activated (its playback is limited to the game state recorded by the self-reward clip) and then the user is allowed to record the compressed video to the delay buffer 1515. It is not difficult to "cross" with a camera. Once the user completes the "crossing", the game is deactivated. 〇 From the user's point of view, launching the “crossing” with the 3D DVR Self-Camp Editing 2003 is no more difficult than controlling the DVR control of the Linear Self-Review Clip 2003. It does not know the game or even know how to play the game. It is only a virtual camera operator staring at the 3D world during the game segment recorded by another operator. Users will also be able to add their own audio to the self-reward clips (or record or upload them from the microphone in this way, and use the self-reported clips to create custom animations using characters and actions from the game.) Production techniques are often referred to as "machinima." As the user progresses through the game, they will reach different skill levels. The played game reports the results to the service control system 4〇1, and these skill levels It will also be displayed on the user page. Interactive animated online advertising has changed from text to still images, video, and now to interactive clips 'usually using an animated thin client like Ad〇be Fiash. The reason for using the animated thin client is that the user 139852.doc -124- 200952495 is usually less impatient with the privilege of selling products or services to them. Also, the thin client is on a very low performance PC. Execution, and therefore advertisers can have a high level of confidence: interactive ads will work properly. Unfortunately, 'animated like Adobe Flash The short client is limited in the duration of the interactive process and experience (to reduce download time). Figure 21 illustrates an interactive ad where the user will select the outside of the car while the car is spinning in the showroom. And internal color, while simultaneous ray tracing

展示汽車看起來如何。接著使用者選擇化身來駕驶汽車, 且接著使用者可採㈣汽車來用於在競赛軌道上或者穿過 諸如M〇naco之外國場所駕駛。使用者可選擇較大引擎或較 佳輪胎,且接著可看見改變的組態如何影響汽車加速或保 持穩定之能力。 當然,廣告有效地的為尖端的3D視訊遊戲。但對於可在 PC或視訊遊戲控制台上播放之此種廣告,其將需要可能 100 MB下載,且在PC之狀況下,其可能需要安裝特殊驅 動器,且可能在PC缺乏足夠CPU或GPU計算能力時根本不 執行。因此’該等廣告在先前技術組態中不切實際。 在主機代管服務210中,該等廣告幾乎即刻地投放,且 較佳地執行,無論使用者之用戶端415能力如何。因此, 其比精簡型用戶端互動式廣告更迅速地投放,體驗上更加 豐富’且高度可靠。 即時動畫期間串流幾何形狀 RAID陣列1511-1512及入埠路由1502可提供如此快之資 料速率且具有如此低之延時,以致有可能設計依賴於 139852.doc -125- 200952495 RAID陣列15 11-1 5 12及入埠路由1502來在即時動畫(例如, 具有複雜資料庫之穿越)期間於遊戲播放之中間或應用程 式中可靠地直接遞送幾何形狀的視訊遊戲及應用程式。 在先前技術系統(諸如,圖1中所展示之視訊遊戲系統) 下,可用的大量儲存器件(尤其是在實用的家庭器件中)極 緩慢以致不能在遊戲播放期間串流幾何形狀(除了所需之 幾何形狀稍微可預測的情形之外舉例而言,在存在指 定道路之駕駛遊戲中,可合理地適當預測用於進入視野内 之建築物的幾何形狀且大量儲存器件可提前搜尋即將到來 的幾何形狀所定位的位置。 但在具有不可預測之改變的複雜場景中(例如,在周圍 具有複雜人物之戰役場景中),若PC或視訊遊戲系統上之 RAM完全被填滿用於當前在視圖中之物件的幾何形狀,且 接著使用者突然將其人物轉向以檢視其人物之後為何,若 未將幾何形狀預先載入RAM中,則可能在可顯示幾何形狀 之前存在延遲。 在主機代管服務210中,RAID陣列1 5 11 -1 512可以超過超 高速乙太網路速度之速度串流資料,且在SAN網路下,有 可能達成優於10個十億位元乙太網路或優於其他網路技術 的100億位兀/秒之速度.1〇〇億位元/秒將在小於一秒内載 入十億位7G組之資料。在6〇 fps圖框時間(16 67毫秒)内, 可載入約170百萬位元(21 MB)之資料。當然甚至在 RAID組態中,旋轉媒體亦仍將招致大於一圖框時間之延 時,但以快閃記憶體為基礎之RAID儲存器最終將與旋轉 139852.doc -126- 200952495 媒體RAID陣列一般大且將不會招致該高延時。在一實施 例中,使用經由大量RAM寫入之快取來提供非常低延時之 存取。 . 因此,在足夠高之網路速度,以及足夠低延時的大量儲 存器下,可與CPU及/或GPU可處理3D資料一般快地將幾 何形狀串流至應用程式/遊戲伺服器1521-1525中》因此, 在先前所給出的實例中,其中使用者突然將其人物轉向且 向後看,可在人物完成旋轉之前載入其身後的所有人物之 ❹ 幾何形狀,且因此,對於使用者而言,將看來似乎其處於 與現場直播之動作一般真實的照片般逼真的世界中。 如先前所論述,照片般逼真的電腦動畫中之最後的邊界 中之一者為人面部,且由於人眼對於不完全性之敏感性, 來自照片般逼真的面部之最輕微錯誤可導致來自檢視者之 負面反應。圖22展示使用Contour™真實性俘獲技術(以下 同在申請中之申請案的主題:2004年9月15曰申請之第 ❹ 10/942,609 號「Apparatus and method for capturing the motion of a performer」;2004 年 9 月 15 曰申請之第 10/942,413 號「Apparatus and method for capturing the expression of a performer」;2005 年 2月 25 曰申請之第 11/066,954號「Apparatus and method for improving marker identification within a motion capture system」;2005年 3 月 10 曰申請之第 11/077,628 號「Apparatus and method for performing motion capture using shutter synchronization」; 2005 年 10 月 20 曰申請之第 11/255,854 號「Apparatus and 139852.doc -127- 200952495 method for performing motion capture using a random pattern on capture surfaces」;2006 年 6月 7 日申請之第 1 1/449,131 號「System and method for performing motion capture using phosphor application techniques」; 2006 年 6 月 7 日申請之第 11/449,043 號「System and method for performing motion capture by strobing a fluorescent lamp」;2006年 6月 7 日申請之第 1/449,127 號「System and method for three dimensional capture of stop-motion animated characters」,該等申請案中之每一者已讓於給本 CIP申請案之受讓人)俘獲的現場直播之表演如何導致非常 平滑之俘獲表面,既而達成高多邊形計數的追蹤表面(亦 即,多邊形運動精確地追隨面部之運動)。最後,當將現 場直播之表演之視訊映射於追蹤表面上以產生紋理表面 時,產生照片般逼真的結果。 儘管當前GPU技術能夠再現追蹤表面及紋理中的許多多 邊形且即時地照明該表面,但若多邊形及紋理每一圖框時 間改變(其將產生最具照片般逼真感之結果),則其將迅速 地消耗現代PC或視訊遊戲控制台之所有可用RAM。 使用上文所描述之串流幾何形狀技術,將幾何形狀不斷 地饋送至應用程式/遊戲伺服器1521-1525中以使得其可不 斷地動畫製作照片般逼真的面部從而允許產生具有幾乎不 能區別於現場直播之動作面部之面部的視訊遊戲變得實 際。 線性内容舆互動式特徵之整合 139852,doc -128· 200952495 電影、電視節目及音訊材料(統稱「線性内容」)廣泛地 以許多形式可用於家庭及辦公室使用者。線性内容可在如 CD、DVD、HD-DVD及藍光媒體之實體媒體上獲取。其亦 • 可藉由來自衛星及電纜TV廣播之DVR來記錄。此外,其 可以經由衛星及電纜τν之即付即看(PPV)内容及以電纜TV 上之視訊點播(VOD)可用。 日益增加的線性内容可經由網際網路以下載的内容及串 ❹ 流内容可用。現今,確實不存在一能體驗與線性媒體相關 聯之所有特徵的位置。舉例而言,DVD及其他視訊光學媒 體通常具有在其他位置處不可用之互動式特徵(如導演之 ”平响、铯絮」短片等p線上音樂站點具有通常在cD上不 可用之封面藝術及歌曲資訊,但並非所有CD線上可用。 且與電視節目相關聯之網站常常具有額外特徵、網志 (blog)及有時來自演員或創作人員之評論。 另外,在許多電影或運動事件之情況下,常常存在常常 ® 連同線性媒體—起發行(在電影之狀況下)或(在運動之狀況 下)可緊密地聯繫至真實世界事件(例如,玩家之交易)的視 訊遊戲。 主機代管服務210非常適合於在將全異形式之相關内容 連^在-起時遞送線性内纟。㈣,遞送電影電影不如遞 送门度互動式視訊遊戲有挑戰,且主機代管服務2⑺能夠 將線I·生内备遞送至家庭或辦公室中的多種器件,或遞送至 行動器件。圖23展示用於主機代管服務21〇之例示性使用 者介面頁面,其展示線性内容之選擇。 Ϊ 39852.doc -129. 200952495 但是,不同於大多數線性内容遞送系統,主機代管服務 210亦能夠遞送相關的互動式成份(例如,DVD上之選單及 特徵、HD-DVD上之互動式上覆,及網站上之Adobe Flash 動晝(如下文所說明))。因此,用戶端器件415限制不再引 入關於哪些特徵可用之限制。 另外,主機代管系統210能夠動態且即時地將線性内容 與視訊遊戲内容連結在一起。舉例而言,若使用者正觀看 哈利波特電影中之Quidditch比賽,且決定其願意嘗試玩 Quidditch,則其可僅僅單擊按鈕且電影將暫停且其將被立 即輸送至哈利波特視訊遊戲之Quidditch片段。在玩 Quidditch比賽之後’另一次單擊按紐,且電影將即刻重新 開始。 在照片般逼真的圖形及製作技術之情況下,其中攝影俘 獲的視訊不能區別於現場直播之動作人物,當使用者進行 自現場直播之動作電影中之Quidditch遊戲至主機代管服務 上之視訊遊戲中之Quidditch遊戲的轉變時(如本文中所描 述),該兩個場景實際上不能區別。此為線性内容與互動 式(例如,視訊遊戲)内容兩者之導演提供全新的創作選 項因為該兩個世界之間的線變得不能區別。 利用圖14中所展示之主機代管服務架構,可將3D電影中 之虛擬相機之控制提供給檢視者。舉例而言,在發生於列 車内之場景中,將有可能允許檢視者在故事進展時控制虛 擬相機且環顧列車。此假定列車中之所有3D物件(「資 產」)以及能夠即時地再現該等場景以及原始電影的足夠 139852.doc -130- 200952495 計算能力位準可用。 且甚至對於非電腦產生之娛樂,存在可提供的非常刺激 之互動式特徵。舉例而言,2005電影「傲慢與偏見」具有 • 裝飾華麗的舊英國大厦中之許多場景。對於特定大廈場 . 景,使用者可將視訊暫停且接著控制相機以巡視大厦,或 可能的周圍區域。為實施此,可載運具有廣、眼透鏡之相機 穿過大廈,當其追蹤其位置時,非常類似於實施先前技術 φ Apple公司之QuickTime VR。各種圖框接著將被轉換,因 此影像不失真,且接著其連同電影一起被儲存於尺八1〇陣 列1511-1512上,且在使用者選擇繼續虛擬巡視時被回 放。 在運動事件之情況下,可經由主機代管服務21〇來串流 現場直播之運動事件(諸如,籃球比赛)以供使用者觀看(如 同其對於常見TV所想要的那樣p在使用者觀看特定播放 之後,遊戲之視訊遊戲(最終籃球玩家看起來與真實玩家 Φ 一般照片般逼真)可趕上在同一位置中開始的玩家,且使 用者(可能各自控制一玩家)可重新玩以查看其是否可比該 等玩家做得更佳* 本文中所描述之主機代管服務210極其適合於支援此未 來世界,因為其能夠承受不切實際以致不能安裝於家庭中 或大多數辦公室背景中的計算能力及大容量儲存資源,而 且其計算資源總是最新的(在可用的最新的計算硬體之情 況下),但是在家庭背景中,將總是存在具有較舊代之PC 及視訊遊戲的家庭β此外,在主機代管服務210中,使用 B9852.doc -131- 200952495 者被隱瞒所有此計算複雜度,因此,即使使用者可能正使 用非*尖端之系統,自使用者之觀點看,亦如改變電視上 之頻道一般簡單。另外,使用者將能夠存取所有計算能力 - 及計算能力將自任何用戶端415帶來的體驗。 多人遊戲 至遊戲為多人遊戲之程度,則其將能夠不僅經由入淳·路 由1502網路傳達至應用程式/遊戲伺服器1521-1525而且藉 0 由網路橋接器傳達至具有不在主機代管服務210中執行之 伺服器或遊戲機器的網際網路(未圖示當藉由通用網際 網路上之電腦玩多人遊戲時,則應用程式/遊戲伺服器 1521-1525將具有極快存取網際網路之益處(與遊戲係在家 庭中之飼服器上執行的情況相比)’但其將受在較緩慢連 接上玩遊戲之其他電腦的能力限制,且亦潛在地受網際網 路上之遊戲伺服器經設計以適應最少共同點(該等遊戲伺 服器將為相對緩慢之消費者網際網路連接上的家庭電腦) φ 的事實限制。 但當完全在主機代管服務21〇伺服器中心内玩多人遊戲 時’則可達成極大差異。主機代管用於使用者之遊戲之每 一應用程式/遊戲伺服器1521-1525將與其他應用程式/遊戲 伺服器1521-1525以及藉由極高速度、極低延時連接性及 巨大、非常快之儲存陣列主機代管對多人遊戲之中央控制 的任何伺服器互連。舉例而言,若超高速乙太網路用於入 棒路由1502網路’則應用程式/遊戲伺服器ι521_1525將在 彼此當中傳達,且傳達至以十億位元/秒速度在潛在的僅1 139852.doc -132- 200952495 毫秒或1毫秒以下之延時下主機代管對多人遊戲之中央控 制的任何伺服器。另外,RAID陣列1511_1512將能夠非常 快速地回應且接著以十億位元/秒速度傳送資料。作為一 ' 實例,若使用者在外表及服裝方面定製人物,以使得人物 , 具有對於人物而言唯一的大量幾何形狀及行為,在限於在 家庭中在PC或遊戲控制台上執行之遊戲用戶端的先前技術 系統下,若彼人物將進入另一使用者之視野中,則使用者 Φ 將必須等待直至長的緩慢下載完成為止,以便將所有幾何 形狀及行為資料載入其電腦中。在主機代管服務210内, 彼相同下載可優於以十億位元/秒速度自RAID陣列1511· 1512伺服的超高速乙太網路。即使家庭使用者具有8 Mbps 網際網路連接(其根據現今之標準來看極快),超高速乙太 網路亦快1 〇〇倍。因此,在快的網際網路連接上花費一分 鐘進行的工作在超高速乙太網路上將花費小於一秒。 頂級玩家分群及錦標赛 φ 主機代管服務210極其適合於錦標赛。因為無遊戲係在 本端用戶端中執行,所以不存在使用者作弊之機會。又, 由於輸出路由1540多播UDp流之能力,使得主機代管服務 210此夠同時向觀眾中的數千人廣播較大錦標賽。 事實上,當存在如此風行以致數千名使用者正接收相同 流的特定視訊流時(例如,展示較大錦標赛之視圖),將視 訊流發送至内容遞送網路(CDN)(諸如,Akamai或Show how the car looks. The user then selects the avatar to drive the car, and then the user can pick up (4) the car for driving on a race track or through a country other than M〇naco. The user can select a larger engine or a better tire and then see how the changed configuration affects the car's ability to accelerate or maintain stability. Of course, advertising is effectively a cutting-edge 3D video game. But for such ads that can be played on a PC or video game console, it will require 100 MB downloads, and in the case of a PC, it may require a special drive and may lack sufficient CPU or GPU computing power on the PC. It is not executed at all. Therefore, such advertisements are impractical in prior art configurations. In the colocation service 210, the advertisements are placed almost immediately, and are preferably executed regardless of the capabilities of the user's client 415. As a result, it delivers more quickly than a streamlined, user-friendly ad, with a richer experience and a high degree of reliability. Streaming geometry RAID arrays 1511-512 and inbound routing 1502 during instant animation provide such fast data rates with such low latency that it is possible to design depending on 139852.doc -125- 200952495 RAID array 15 11-1 5 12 and routing 1502 to reliably deliver geometric video games and applications directly in the middle of the game play or in an application during instant animation (eg, traversal with complex databases). In prior art systems, such as the video game system shown in Figure 1, the large number of storage devices available (especially in practical home devices) is so slow that it is not possible to stream geometry during game play (except for the required In addition to the slightly predictable geometry, for example, in a driving game where a designated road exists, the geometry of the building used to enter the field of view can be reasonably properly predicted and a large number of storage devices can search for the upcoming geometry in advance. The location where the shape is located. But in complex scenes with unpredictable changes (for example, in a battle scene with complex characters around), if the RAM on the PC or video game system is completely filled for the current view The geometry of the object, and then after the user suddenly turns his character to view his character, if the geometry is not preloaded into the RAM, there may be a delay before the geometry can be displayed. Medium RAID array 1 5 11 -1 512 can exceed the speed data of ultra-high speed Ethernet speed, and Under the SAN network, it is possible to achieve a speed of 10 billion bits per second that is better than 10 billion bit Ethernet or better than other network technologies. 1 billion bits per second will be less than one. Loads 1 billion 7G data in seconds. It can load about 170 million bits (21 MB) in 6〇fps frame time (16 67 ms). Of course, even in RAID configuration, Rotating media will still incur a delay greater than one frame time, but the flash memory based on the flash memory will eventually be larger than the rotating 139852.doc -126- 200952495 media RAID array and will not incur this high latency. In one embodiment, a very low latency access is provided using a cache of large RAM writes. Thus, with a sufficiently high network speed and a large amount of memory with low latency, the CPU and / or the GPU can process 3D data to quickly stream geometry to the application/game server 1521-1525. Thus, in the previously given example, where the user suddenly turns his character and looks backwards, Loads all characters behind them before the character finishes spinning The geometry, and therefore, for the user, will appear to be in a world that is as realistic as the live action of the live action. As discussed earlier, in the final border of a photorealistic computer animation One is a human face, and because of the sensitivity of the human eye to incompleteness, the slightest error from a photo-realistic face can lead to negative reactions from the viewer. Figure 22 shows the use of ContourTM authenticity capture technology (below) Subject of the same application: Application No. 10/942,609, "Apparatus and method for capturing the motion of a performer", September 15th, 2004; September 10, 2004, Application No. 10/942,413 "Apparatus and method for capturing the expression of a performer"; February 25, 2005 App Application No. 11/066,954 "Apparatus and method for improving marker identification within a motion capture system"; March 10, 2005 11/077,628 "Apparatus and method for performing motion capture using shutter synchronization" Application No. 11/255,854, October 20, 2005, “Apparatus and 139852.doc -127- 200952495 method for performing motion capture using a random pattern on capture surfaces”; 1st of application on June 7, 2006 / 449,131 "System and method for performing motion capture using sulphur application techniques"; "System and method for performing motion capture by strobing a fluorescent lamp"; June 7, 2006 Japanese Application No. 1/449, 127 "System and method for three dimensional capture of stop-motion animated characters", each of which has been captured by the assignee of this CIP application) How the live broadcast performance results in a very smooth capture surface that achieves a high polygon count tracking surface (i.e., the polygon motion accurately follows the motion of the face). Finally, photo-realistic results are produced when the live broadcast of the live video is mapped onto the tracking surface to create a textured surface. Although current GPU technology is capable of reproducing many polygons in the tracking surface and texture and illuminating the surface in real time, if the polygon and texture each frame time changes (which will produce the most photorealistic result), it will quickly All available RAM of a modern PC or video game console is consumed. Using the stream geometry technique described above, the geometry is continuously fed into the application/game server 1521-1525 so that it can continually animate a photo-realistic face to allow for almost indistinguishable The video game of the facial face of the live action becomes practical. Integration of Linear Content and Interactive Features 139852, doc -128· 200952495 Movies, TV shows and audio materials (collectively, “Linear Content”) are widely available in many forms for home and office users. Linear content is available on physical media such as CD, DVD, HD-DVD and Blu-ray media. It can also be recorded by DVRs from satellite and cable TV broadcasts. In addition, it can be used via pay-as-you-go (PPV) content for satellite and cable τν and video on demand (VOD) on cable TV. Increasing linear content is available via the Internet for downloaded content and streaming content. Today, there is really no place to experience all the features associated with linear media. For example, DVD and other video optical media typically have interactive features that are not available at other locations (such as director's "flat, slap" shorts, etc. p-line music sites have cover art that is not normally available on cD. And song information, but not all CDs are available. Websites associated with TV shows often have additional features, blogs, and sometimes comments from actors or creators. Also, in many movie or sports events Often, there are often video games that are often associated with linear media—from distribution (in the case of a movie) or (in the case of sports) to real-world events (eg, player transactions). 210 is very suitable for delivering linear guilt when connecting related content in disparate form. (4) Delivering movie movies is not as challenging as delivering interactive video games, and colocation service 2(7) can line I· Delivery to a variety of devices in a home or office, or delivery to a mobile device. Figure 23 shows an illustration for a colocation service 21 User interface page, which displays the choice of linear content. Ϊ 39852.doc -129. 200952495 However, unlike most linear content delivery systems, colocation service 210 is also capable of delivering relevant interactive components (eg, on DVD) Menus and features, interactive overlays on HD-DVD, and Adobe Flash on the website (as explained below). Therefore, the client device 415 limits no restrictions on which features are available. The escrow system 210 is capable of dynamically and instantly linking linear content to video game content. For example, if a user is watching a Quidditch game in a Harry Potter movie and decides that he or she is willing to try to play Quidditch, then Just click the button and the movie will pause and it will be immediately sent to the Quidditch clip of the Harry Potter video game. After playing Quidditch, click another button and the movie will start over immediately. Photorealistic In the case of graphics and production technology, the video captured by the camera cannot be distinguished from the live action characters, when the user From the transition of the Quidditch game in the live action movie to the Quidditch game in the video game on the colocation service (as described in this article), the two scenes can't actually be distinguished. This is linear content and interaction. The director of both styles (eg, video games) offers a new creative option because the lines between the two worlds become indistinguishable. Using the colocation service architecture shown in Figure 14, you can put in 3D movies. The control of the virtual camera is provided to the viewer. For example, in a scene occurring within the train, it will be possible to allow the viewer to control the virtual camera and look around the train as the story progresses. This assumes all 3D objects in the train ("assets ") and the ability to instantly reproduce these scenes as well as the original movie 139852.doc -130- 200952495 computing power level is available. And even for non-computer-generated entertainment, there are very stimulating interactive features that can be provided. For example, the 2005 film "Pride and Prejudice" has many scenes in the ornately decorated old British mansion. For a particular building, the user can pause the video and then control the camera to patrol the building, or possibly the surrounding area. To accomplish this, a camera with a wide, eye lens can be carried through the building, and when it tracks its position, it is very similar to implementing the prior art φ Apple's QuickTime VR. The various frames will then be converted so that the image is not distorted and then stored along with the movie on the shakuhachi arrays 1511-1512 and played back when the user chooses to continue the virtual tour. In the case of a sports event, a live broadcast of a sports event (such as a basketball game) can be streamed via the colocation service 21 for the user to view (as it would be for the user to see p as desired for a typical TV) After a specific play, the video game of the game (finally the basketball player looks as realistic as the real player Φ normal photo) can catch up with the player starting in the same position, and the user (possibly controlling one player each) can replay to view it. Can it be better than these players? The colocation service 210 described in this article is extremely suitable for supporting this future world because it can withstand the computing power that is impractical to be installed in the home or in most office settings. And large-capacity storage resources, and their computing resources are always up-to-date (in the case of the latest computing hardware available), but in the home background, there will always be households with older PCs and video games. In addition, in the colocation service 210, those using B9852.doc -131- 200952495 are concealed of all this computational complexity, therefore, Even if the user may be using a non-technical system, it is as simple as changing the channel on the TV from the user's point of view. In addition, the user will be able to access all computing power - and computing power will be from any client 415 The experience brought. Multiplayer to the extent that the game is multiplayer, it will be able to communicate not only to the application/game server 1521-1525 via the portal/route 1502 network but also by the network bridge To the Internet with a server or gaming machine that is not executing in the colocation service 210 (not shown when the multiplayer game is played by a computer on the universal Internet, the application/game server 1521-1525 will Has the benefit of extremely fast access to the Internet (compared to what the game system does on the feeder in the home) 'but it will be limited by the capabilities of other computers playing games on slower connections, and potentially The game servers on the Internet are designed to accommodate the least commonalities (the game servers will be home computers on a relatively slow consumer Internet connection) φ Really limited. But when playing a multiplayer game entirely in the colocation service 21 server center, then a great difference can be achieved. The host hosts each application/game server 1521-1525 for the user's game. It will be interconnected with other application/game servers 1521-1525 and any server that centrally controls multiplayer games with extremely high speed, very low latency connectivity and a large, very fast storage array host. For example, if SuperSpeed Ethernet is used to enter the 1502 network, then the application/game server ι521_1525 will be communicated to each other and communicated to a potential of only 1 139852 at a bite/second speed. .doc -132- 200952495 Any server that centrally controls the central control of multiplayer games in milliseconds or less than 1 millisecond. In addition, RAID arrays 1511_1512 will be able to respond very quickly and then transfer data at a gigabit per second rate. As an example, if a user customizes a character in appearance and clothing so that the character has a large number of geometric shapes and behaviors unique to the character, the game user is limited to playing on a PC or a game console in the home. In the prior art system, if the character enters the field of view of another user, the user Φ will have to wait until a long slow download is completed in order to load all geometry and behavioral data into his computer. In the colocation service 210, the same download can be superior to the ultra-high-speed Ethernet from the RAID array 1511·1512 at a rate of one billion bits per second. Even if the home user has an 8 Mbps Internet connection (which is extremely fast based on today's standards), the ultra-fast Ethernet network is 1x faster. Therefore, it takes less than a second to spend a minute on a fast internet connection on a super-fast Ethernet. Top Player Grouping and Tournament φ Colocation Service 210 is ideal for tournaments. Since no game is executed in the local client, there is no chance for the user to cheat. Again, due to the ability of the output route 1540 to multicast the UDp stream, the colocation service 210 is sufficient to simultaneously broadcast a larger tournament to thousands of viewers. In fact, when there are so popular that thousands of users are receiving a particular stream of the same stream (for example, showing a larger tournament view), the video stream is sent to a content delivery network (CDN) (such as Akamai). or

Limehght)以供至大量分配至許多用戶端器件415可能更有 效。 139852.doc 133· 200952495 當使用CDN來展示頂級玩家分群之遊戲取景器頁面時, 可獲得類似位準之效率。 對於較大錦標赛,可使用現場直播的名人解說員來在特 ' 定比赛期間提供評論。儘管大量使用者將係在觀看較大錦 杯賽,且相對小數目將係在錦標賽中玩。可將來自名人解 說員之音訊路由至主機代管在錦標賽_玩之使用者且主機 代管錦標賽中之遊戲之任何旁觀者模式複本的應用程式/ φ 遊戲伺服器1521-1525,且可將音訊加錄於遊戲音訊之 上。可在遊戲上(亦可能剛好在旁觀者視圖上)上覆名人解 說員之視訊。 網頁載入之加速 全球資訊網之主要輸送協定、超文字傳送協定(HTT^係 經構想並界定於一其中僅商業具有高速網際網路連接,且 線上之消費者使用撥號數據機或ISDN的時代中。此時, 用於快速連接之「黃金標準」為τι線,其對稱地提供15 ❹ Mbps資料速率(亦即,兩個方向中具有相等資料速率)。 現今’情形完全不同《大量發達世界中經由dSL或電纜 數據機連接之平均家庭連接速度具有比丁丨線高得多的下行 資料速率。事實上,在世界之一些地方中,光纖至路邊 (fiber-to-the-curb)正將高達50 ]^1)1)3至1〇〇 Mbps之資料速 率引入家庭。 遺憾地,HTTP未經架構(亦未實施)以有效地利用此等急 劇速度改良。網站為遠端伺服器上之檔案之集合。非常簡 單地說HTTP凊求第一構案,等待下載該播案,且接著 139852.doc -134- 200952495 請求第二播案’等待下裁該槽案等。事實上,Ηττρ允許 一個以上「開放連接」(亦即,每次請求一個以上檔案), 但由於議定的標準(及防止網路伺服器被超載之願望)而使 • 得僅准許非常少之開放連接。此外,由於網頁經構造之方 式,潘I覽器常常未意識到可用於立即下載之多個同時頁面 (亦即,僅在刳析一頁面之後才變得顯而易見:需要下載 如影像之新檔案)。因此,網站上之檔案實質上係逐個地 φ 載入。此外,由於由HTTP使用之請求及回應協定,存在 與所載入之每一檔案相關聯的大致(存取美國的典型網路 伺服器)100毫秒之延時。 在相對低速連接之情況下,此不會引入大量問題,因為 用於檔案本身之下載時間決定網頁之等待時間。但是,隨 著連接速度增大(尤其是複雜網頁情況下),開始引起問 題。 在圖24中所展示之實例中,展示典型商業網站(此特定 φ 網站係來自較大運動鞋商標網站上具有54個檔案。檔 案包括 HTML、CSS、JPEG、PHP、JavaScript及 Flash檔 案,且包括視訊内容。在現場直播網頁(亦即,使用者可 單擊其並開始使用其)之前,必須載入總共15 Μ位元組。 對於大量檔案存在許多原因。首先’其為複雜且尖端之網 頁’且其次,其為基於關於存取該頁面之使用者之資訊動 癌地組合的網頁(例如,使用者來自哪個國家,何種語 使用者之前是否進行購買等),且視所有此等因素而 下載不同槽案。但是,其仍為非常典型的商業網頁。 139852.doc -135· 200952495 圖=展不隨著連接速度增大在現場直播網頁之前消逝的 時間里。在1.5 Mbps連接速度24〇1下,使用具有習知網路 劉覽器之習知網路伺服器,在現場直播網頁之前花費13.5 、在2 Mbps連接速度2402下,載入時間減少至6.5秒, 或約快一倍。但在96 Mbps連接速度2403下,載入時間僅 減少至約5·5秒。此之原因係因為在此種高下載速度下, 下載檔案本身之時間最小,但每檔案各自大致1 00毫秒之 ❹ 延時仍保持,從而導致54個檔案*1〇〇毫秒=5.4秒之延時。 因此,無論至家庭之連接多快,此網站在現場直播之前將 總是花費至少5.4秒。另一因素係伺服器側排入佇列;每 個HTTP請求係在佇列之後部添加,因此在忙碌伺服器 上,此將具有顯著影響,因為對於待自網路伺服器得到的 每個小項目’ HTTP請求需要等待其返回。 解決此等問題之一方式係廢棄或重新界定HTTP。或 者’可能使網站擁有者較佳地將其檔案合併成單一檔案 ⑩ (例如,以Adobe Flash格式卜但是,作為一實際問題,此 公司以及許多他人在其網站架構中具有大量投資。另外, 儘管一些家庭具有12-100 Mbps連接,但大多數家庭仍具 有較緩慢之速度,且HTTP在緩慢速度下確實工作良好。 一替代方法係將網路瀏覽器主機代管於應用程式/遊戲 祠服器1521-1525上,且將用於網路伺服器的檔案主機代 管於RAID陣列1511-1512上(或潛在地主機代管於主機代管 網路瀏覽器之應用程式/遊戲伺服器1521-1 525上的RAM中 或本端儲存器上)。由於經由入埠路由1502(或至本端儲存 139852.doc -136- 200952495 器)之非常快之互連,並非在使用HTTP下每檔案具有1〇〇 毫秒之延時’而是在使用HTTP下將存在每檔案最小延 時。接著,並非使家庭中之使用者經由ΗΤτρ存取網頁, 而是使用者可經由用戶端41 5存取網頁。接著,甚至5 Mbps連接下(因為此網頁不需要大量頻寬來用於其視訊), 網頁亦將在每一線2400小於1秒之時間内處於現場直播。 實質上,在應用程式/遊戲伺服器1521_1525上執行之網路 ❹劉覽器顯示現場直播之頁面之前將不存在延時,且在用戶 端415顯示來自網路瀏覽器之視訊輸出之前將不存在可債 測到的延時。當使用者使用滑鼠搜尋網頁及/或在網頁上 鍵入字時’將使用者之輸入資訊發送至在應用程式,遊戲 伺服器1521-1525上執行之網路瀏覽器,且網路瀏覽器將 相應地作出回應。 此方法之一不利之處係:若壓縮器正怪定地傳輸視訊資 料’則使用頻寬,即使網頁變成靜態亦如此。此可藉由組 ❹ 態壓縮器以僅在(且若)網頁改變時才傳輸資料且接著僅將 資料傳輸至發生改變之頁面部分來補救。當存在具有恆定 地改變的快閃標語等之一些網頁時,該等網頁傾向於令人 討厭’且除非存在要移動某物(例如,視訊剪輯)之原因, 否則通常網頁為靜態的。對於該等網頁,可能為以下狀 況:使用主機代管服務210將傳輸較少資料(與習知網路伺 服器相比),因為將僅傳輸實際顯示的影像,無精簡型用 戶端可執行碼,且無可能從不被檢視之大物件(諸如,滾 動翻轉影像)。 139852.doc -137· 200952495 因此,使用主機代管服務210來主機代管舊版網頁’可 將網頁載入時間減少至打開網頁係類似改變電視上之頻= 的程度:有效地即刻地現場直播該網頁。 促進遊戲及應用程式之除錯 如先前所敍述,具有即時圖形之視訊遊戲及應用程式為 非常複雜之應用程式且通常當其被發行至該領域中時,其 含有缺陷。儘管軟體開發商將自使用者得到關於缺陷之反 ❹饋,且其可能具有用於在崩潰之後將機器狀態傳回之—歧 方式,但確切地識別是什麼引起遊戲或即時應用程式崩潰 或不適當地執行非常困難。 當遊戲或應用程式在主機代管服務21〇中執行時,將遊 戲或應用程式之視訊/音訊輸出怪定地記錄於延遲緩衝器 1515上。另外,看門狗過程執行每一應用程式/遊戲伺服 器1521-1525,該看門狗過程將向主機代管服務控制系統 401定期地報告應用程式/遊戲伺服器1521·1525正平滑地執 ❹ 行。若看門狗過程未能報告,則伺服器控制系統401將試 圖與應用程式/遊戲伺服器1521-1 525通信,且若成功,則 將收集可用的無論什麼機器狀態。將無論什麼可用之資訊 連同由延遲緩衝器1515記錄之視訊/音訊一起發送至軟體 開發商。 因此,當遊戲或應用程式軟體開發商自主機代管服務 210得到崩潰之通知時,其得到導致崩潰之原因的圖框接 圖框之紀錄。此資訊在追蹤到缺陷並將其修復中可極具價 值0 139852.doc -138- 200952495 亦注意,當應用程式/遊戲伺服器1521_1525崩潰時,在 最近的可重新啟動之時刻重新啟動伺服器,且將訊息提供 給使用者,從而就技術困難道歉。 資源共用及成本節省Limehght) may be more efficient for distribution to a large number of client devices 415. 139852.doc 133· 200952495 When CDN is used to display the game viewfinder page of the top player group, a similar level of efficiency can be obtained. For larger tournaments, live celebrity commentators can be used to provide comments during the special competition. Although a large number of users will be watching a larger tournament, a relatively small number will be played in the tournament. The audio from the celebrity commentator can be routed to the application/φ game server 1521-1525, which can host any of the bystander mode replicas of the game in the tournament_player and hosted tournaments, and the audio can be Added to the game audio. The video of the celebrity commentator can be overlaid on the game (and possibly just on the bystander view). Web page loading accelerates the World Wide Web's main delivery agreement, hypertext transfer protocol (HTT^ is conceived and defined in an era where only commercial high-speed Internet connections are used, and online consumers use dial-up modems or ISDN At this time, the "gold standard" for fast connection is the τι line, which symmetrically provides a data rate of 15 Mbps Mbps (that is, equal data rates in both directions). Today's situation is completely different "a large number of developed worlds" The average home connection speed via a dSL or cable modem connection has a much higher downlink data rate than the Dingsian line. In fact, in some parts of the world, fiber-to-the-curb is positive Introduce data rates up to 50 ]^1)1)3 to 1 Mbps into the home. Unfortunately, HTTP has not been architected (and not implemented) to effectively utilize these dramatic speed improvements. The website is a collection of files on the remote server. Quite simply, HTTP asks for the first configuration, waiting to download the broadcast, and then 139852.doc -134- 200952495 requests the second broadcast 'waiting for the next case. In fact, Ηττρ allows more than one "open connection" (ie, more than one file at a time), but because of the agreed standards (and the desire to prevent the web server from being overloaded), only a very small number of open connection. In addition, because web pages are structured, Pan browsers are often unaware of multiple simultaneous pages that can be used for immediate downloading (ie, only after analyzing a page: it is necessary to download new files like images) . Therefore, the files on the website are essentially loaded one by one. In addition, due to the request and response protocol used by HTTP, there is a roughly 100 millisecond delay associated with each file loaded (accessing a typical US network server). In the case of a relatively low speed connection, this does not introduce a lot of problems, because the download time for the file itself determines the waiting time of the web page. However, as the connection speed increases (especially in the case of complex web pages), it starts to cause problems. In the example shown in Figure 24, a typical commercial website is shown (this particular φ website is from a larger sports shoe trademark website with 54 files. The files include HTML, CSS, JPEG, PHP, JavaScript, and Flash files, and include Video content. A total of 15 bytes must be loaded before the live web page (that is, the user can click on it and start using it). There are many reasons for a large number of files. First of all, it is a complex and sophisticated web page. 'and secondly, it is a webpage based on a combination of information about the user accessing the page (eg, from which country the user came from, what language the user had previously purchased, etc.), and depending on all of these factors And download different slots. However, it is still a very typical commercial web page. 139852.doc -135· 200952495 Figure = Show does not increase with the connection speed before the live broadcast of the web page. At 1.5 Mbps connection speed 24 〇1, using a conventional web server with a conventional web browser, it takes 13.5 before the live webpage, at 2 Mbps connection speed 2402, The entry time is reduced to 6.5 seconds, or approximately doubled, but at 96 Mbps connection speed 2403, the load time is only reduced to approximately 5.9 seconds. This is because at this high download speed, the file itself is downloaded. The time is the smallest, but each file is approximately 100 milliseconds. The delay is still maintained, resulting in a delay of 54 files *1〇〇 milliseconds = 5.4 seconds. Therefore, no matter how fast the connection to the family, this site is before the live broadcast. It will always take at least 5.4 seconds. Another factor is the server side of the queue; each HTTP request is added after the queue, so on the busy server, this will have a significant impact, because for the network Each small item that the server gets is 'HTTP requests need to wait for it to return. One way to solve this problem is to discard or redefine HTTP. Or 'may make the site owner better merge their files into a single file 10 ( For example, in Adobe Flash format, however, as a practical matter, this company and many others have invested heavily in their website architecture. In addition, although some families have 12-100 Mbps connections But most families still have slower speeds, and HTTP does work well at slow speeds. An alternative is to host a web browser host on the app/game server 1521-1525 and The file host for the web server is hosted on the RAID array 1511-1512 (or potentially hosted in the RAM on the application/game server 1521-1 525 hosted on the web browser) On the end of the storage). Because of the very fast interconnection via the incoming route 1502 (or to the local storage 139852.doc -136-200952495), it is not a delay of 1 millisecond per file under HTTP. There is a minimum latency per file under HTTP. Next, instead of allowing the user in the family to access the web page via ΗΤτρ, the user can access the web page via the user terminal 41 5 . Then, even under a 5 Mbps connection (because this page does not require a lot of bandwidth for its video), the web page will be live broadcast in less than 1 second per line 2400. In essence, there will be no delay before the web browser displayed on the application/game server 1521_1525 displays the live broadcast page, and will not exist until the user terminal 415 displays the video output from the web browser. The delay measured by the debt. When the user uses the mouse to search the webpage and/or type a word on the webpage, 'the user's input information is sent to the web browser executed on the application server 1521-1525, and the web browser will Respond accordingly. One of the disadvantages of this method is that if the compressor is arbitrarily transmitting video data, then the bandwidth is used, even if the web page becomes static. This can be remedied by the group state compressor to transmit data only when (and if) the web page changes and then only transfer the data to the changed page portion. When there are some web pages with a flashing slogan or the like that are constantly changing, the web pages tend to be annoying' and unless the reason is to move something (e.g., a video clip), the web page is typically static. For such web pages, it may be that the use of colocation service 210 will transfer less data (compared to the conventional web server), since only the actual displayed image will be transmitted, no thin client executable code And there are no large objects that may never be viewed (such as scrolling over images). 139852.doc -137· 200952495 Therefore, using the colocation service 210 to host the old webpages can reduce the webpage loading time to the extent that the webpage is similar to changing the frequency on the TV: effectively live broadcast instantly The page. Promoting the Debugging of Games and Applications As mentioned earlier, video games and applications with instant graphics are very complex applications and often have defects when they are released into the field. Although the software developer will get feedback from the user about the defect and it may have a way to return the machine state after the crash, it is exactly what is causing the game or instant application to crash or not. Proper execution is very difficult. When the game or application is executed in the colocation service 21, the video/audio output of the game or application is recorded on the delay buffer 1515. In addition, the watchdog process executes each application/game server 1521-1525, which will periodically report to the colocation service control system 401 that the application/game server 1521·1525 is smoothly executing. Row. If the watchdog process fails to report, the server control system 401 will attempt to communicate with the application/game server 1521-1 525, and if successful, will collect whatever machine state is available. Information about whatever is available is sent to the software developer along with the video/audio recorded by the delay buffer 1515. Therefore, when the game or application software developer gets a notification of a crash from the colocation service 210, it gets a record of the frame of the frame that caused the crash. This information can be extremely valuable in tracking down defects and fixing them. 0 139852.doc -138- 200952495 Also note that when the app/game server 1521_1525 crashes, the server is restarted at the most recent restartable time. And apologize for technical difficulties by providing the message to the user. Resource sharing and cost savings

圖4a及圖4b中所展示之系統為終端使用者與遊戲及應用 程式開發商兩者提供多種益處。舉例而言,通常,家庭及 辦公室用戶端系統(例如,PC或遊戲控制台)僅在一週中之 小百分比之小時中處於使用中。根據由Nielsen娛樂「活 躍遊戲者基準點研究」(http://www.prnewswire.com/cgi-bin/stories.pl?ACCT=104&STORY=/www/story/l 0-05-2006/ 〇〇〇4446115&EDATE=)的2006年10月5曰通信稿,活躍遊戲 者一週平均花費14個小時來在視訊遊戲控制台上玩且約一 週17個小時在掌上型器件上玩。該報告亦陳述:對於所有 遊戲播放活動(包括控制台、掌上型器件及pc遊戲播放), 活躍遊戲者平均一週13個小時。考慮較高數字之控制台視 訊遊戲播放時間,存在一週24*7;=168個小時,彼暗示在活 躍遊戲者之豕中,視訊遊戲控制台僅在一週之17/168 = 1〇〇/〇 的小❹處於使用+。或者,9G%之時間,視訊遊戲控制 台係閒置的m訊遊戲控制台之高成本,及製造商資 助該等器件之事實’此為昂責資源之非常無效率之使用。 商業内之PC通常亦僅在—週之—分率小時中使用,尤其是 门端應用程式(諸如’ Aut()desk Maya)常常所需的非可攜式 桌上PC 儘管-些商業在所有小時及假日操作且一些 c(例如冑回豕以用於在晚上進行工作的可攜式ρ〇係在 139852.doc •139· 200952495 所有小時及假日使用’但大多數商業活動傾向於在給定商 業時區中集中於自週一至週五的約9 am至5 PM,較少假 曰及斷開時間(諸如’午餐),且因為大多數PC使用在使用 者積極地利用PC時出現,所以其遵循:桌上型PC利用傾 向於遵循此等操作小時數。若假定一週中之五天的自9 AM 至5 PM恆定地利用pc,則彼將暗示pc在一週之 4〇/168=24%之小時中被利用。高效能桌上型PC為用於商 ❹ 業之非常昂貴的投資,且此反映非常低之利用度。在桌上 型電腦上教學之學校可在一週之甚至更小分率中使用電 腦,且儘管其視教學之小時數而改變,但大多數教學在自 週至週五之日間小時期間出現。因此,一般而言,pc及 視訊遊戲控制台僅在一週之小分率小時中被利用。 值得/主意地,因為許多人在非假日之週一至週五之日間 小時期間在商業或在學校工作,所以此等人通常在此等小 時期間不玩視訊遊戲,且因此當其確實玩視訊遊戲時,其 Ο 通常係在其他小時期間(諸如,晚上、週末及假曰)。The systems shown in Figures 4a and 4b provide multiple benefits to both end users and game and application developers. For example, in general, home and office client systems (e.g., PCs or game consoles) are only in use for a small percentage of the week. According to Nielsen Entertainment "Active Player Benchmark Study" (http://www.prnewswire.com/cgi-bin/stories.pl?ACCT=104&STORY=/www/story/l 0-05-2006/ 〇 〇〇4446115&EDATE=) October 5th, 2006, the active gamer spends an average of 14 hours a week on the video game console and plays on the handheld device for about 17 hours a week. The report also states that active gamers average 13 hours a week for all game play activities, including consoles, handheld devices, and PC game play. Considering the higher number of console video game play time, there is 24*7;=168 hours a week, he implies that in the middle of active players, the video game console is only 17/168 = 1〇〇/〇 in a week. The little cockroach is in use +. Or, at 9G% of the time, the high cost of the video game console's idle m-game console and the fact that the manufacturer is funding the devices' is a very inefficient use of resources. PCs in the business are usually only used in weeks-minutes, especially for non-portable desktop PCs that are often required by door-end applications (such as 'Aut()desk Maya). Hour and holiday operations and some c (for example, the portable system used for work at night is used in 139852.doc • 139· 200952495 for all hours and holidays 'but most business activities tend to be given The business time zone is concentrated from about 9 am to 5 PM from Monday to Friday, with less false and disconnected time (such as 'lunch), and because most PC usage occurs when the user actively uses the PC, so Follow: Desktop PCs tend to follow these hours of operation. If assuming a constant use of pc from 9 AM to 5 PM for five days of the week, then he would imply that pc is 4〇/168=24% of the week. It is used in the hour. High-performance desktop PCs are very expensive investments for business, and this reflects very low utilization. Schools that teach on desktops can be even smaller in a week. Use computer in the rate, and although it is regarded as the hour of teaching And change, but most of the teaching takes place during the hours of the week from Friday to Friday. Therefore, in general, pc and video game consoles are only used in small fractions of a week. Worth / idea, because many people They work in business or at school during the hours of the non-holiday Monday-Friday, so these people usually do not play video games during these hours, and therefore when they do play video games, they are usually tied to other Hours (such as evenings, weekends, and fakes).

給定圖4a中所展示的主機代管服務之組態,則上述兩段 中所插述之使用型樣導致資源之非常有效之利用。顯而易 見,存在對於可在給定時間由主機代管服務21〇來飼服之 吏用者的數目的限制,尤其在使用者需要用於複雜應用程 式(如尖端30視訊遊戲)之即時回應性的情況下。但是,不 2於家庭中之視訊遊戲控制台或由商業使耗pc(其通常 =多數日㈣閒置放置),飼服器術可㈣同使用者在不 5間重新利用。舉例而言,具有高效能雙CPU及雙GPU H9852.doc -140- 200952495 及大量RAM之高效能伺服器402可由商業及學校在非假日 之9 AM至5 PM利用,但由玩尖端視訊遊戲之遊戲者在晚 上、週末及假日利用。類似地,低效能應用程式可由商業 及學校在商業小時期間在具有Celeron CPU、無GPU(或非 常低端之GPU)及有限RAM之低效能伺服器402上利用且低 效能遊戲可在非商業小時期間利用低效能伺服器4〇2。 另外,在本文中所描述之主機代管服務配置的情況下, ©資源係在數千名(若非數百萬名)使用者當中有效地共用。 一般而言,線上服務僅具有其總使用者基礎的小百分比在 給定時間使用服務。若考慮先前所列出的Nieisen視訊遊戲 使用統計資料,則容易瞭解為什麼。若活躍遊戲者一週僅 17個小時玩控制台遊戲,且若假定遊戲之峰值使用時間係 在晚上(5-12 AM,7*5天=35小時/週)及週末(8 AM-12 AM,16*2=32小時/週)的典型非工作、非商業小時期間, 則對於17個小時之遊戲播放,一週存在35 + 32=65個峰值小 瘳 時。由於以下許多原因而使得難以估計系統上之確切峰值 使用者負載:一些使用者將在峰值外時間期間玩,可能存 在特定日間時間存在使用者之叢集峰值,峰值時間可受所 玩遊戲之類型(例如,孩子之遊戲將可能係在晚上的較早 時間玩)等影響《但是,假定當遊戲者可能玩遊戲時,遊 戲者玩的平均小時數遠小於日間之小時數,則僅主機代管 服務210之一分率數目之使用者將係在給定時間使用主機 代管服務21〇〇為此分析起見,將假定峰值負載為12 5%。 因此,僅12.5%之計算、壓縮及頻寬資源係在給定時間使 139852.doc -141 - 200952495 用’從而由於資源之再使用而導致僅12.5%之硬體成本來 支援給定使用者玩效能遊戲之一給定級別。 此外’假定一些遊戲及應用程式需要比其他者多的計算 能力’則可基於被使用者玩之遊戲或由使用者執行之應用 程式來動態地分配資源。因此,選擇低效能遊戲或應用程 式之使用者將被分配低效能(較低廉)伺服器402,且選擇高 效能遊戲或應用程式之使用者將被分配高效能(較昂貴)词 服器402。實際上,給定遊戲或應用程式可能具有遊戲或 應用程式之較低效能及較高效能區,且可在遊戲或應用程 式之區之間將使用者自一伺服器402切換至另一伺服器 402,以保持使用者在滿足遊戲或應用程式之需要的最低 成本伺服器402上執行。注意,遠比單一磁碟快之rajd陣 列405將可為甚至低效能伺服器402所用,此具有較快磁碟 傳送速率之益處。因此,跨越所有所玩遊戲或所使用之應 用程式的每伺服器402平均成本比玩最高效能遊戲或應用 程式之大多數昂貴伺服器402之成本小得多,然而,即使 低效能伺服器402亦將自RAID陣列405得到磁碟效能益 處。 另外,主機代管服務210中之伺服器402可能僅為不具有 磁碟或周邊介面(不同於網路介面)之PC主機板,且恰好, 可向下整合至剛好具有至SAN 403之快速網路介面的單一 晶片。又,RAID陣列405可能將在比存在磁碟之情況多得 多的使用者當中共用,因此每一活躍使用者之磁碟成本將 遠小於一磁碟機。所有此設備將可能駐留於環境上受控制 139852.doc -142- 200952495 之伺服器室環培& & + β 〇 哀見中的支架中。若伺服器402出故障,則其 可谷$地在主機代管服務2ι〇處進行修理或替換。相比之 下,家庭或辦公室中之仏戈遊戲控制台必須堅固,必須能 ' ,免於合理之磨損及撕裂以防被重擊或降落的獨立器具 ' 而要外殼,具有至少一磁碟機,必須倖免於不利的環境 條件(例如,被勉強塞入具有其他用具之過熱AV櫥櫃中), 需要服務保證,必須被封裝及裝運,且由可能收取零售利 ❹ ㈤之零售商來出售。另外,PC或遊戲控制台必須經組態以 滿足將在未來某一時刻使用的計算上最密集之預期遊戲或 應用程式的峰值效能,即使較低效能遊戲或應用程式(或 遊戲或應用程式之區)亦可能在大多數時間玩。此外,若 PC或控制台出故障,則使其得到修理係一昂貴且耗時之過 程(不利地影響製造商、使用者及軟體開發商)。 因此,假定圖4a中所展示之系統將相當於本端計算資源 之體驗的體驗提供給使用者’以供使用者在家庭、辦公室 φ 或學校中體驗給定位準之計算能力,則經由圖4a中所展示 之架構提供彼計算能力要低廉得多。 消除對升級之需要 另外’使用者不必再擔憂將PC及/或控制台升級以玩新 遊戲或處理較南效能之新應用程式。主機代管服務210上 之任何遊戲或應用程式(不管彼等遊戲或應用程式需要何 類型之伺服器402)均可為使用者所用,且所有遊戲及應用 程式接近即刻地執行(亦即,快速地自RAID陣列405或伺服 器402上之本端儲存器載入)且適當地具有最新更新及缺陷 139852.doc -143- 200952495 修復(亦即,軟體開發商將能夠選擇用於執行給定遊戲或 應用程式之伺服器402的理想伺服器組態,且接著將伺服 器402組態有最佳驅動器,且接著隨著時間的推移,開發 商將能夠同時將更新、缺陷修復等提供給主機代管服務 21〇中之遊戲或應用程式之所有複本)。實際上,在使用者 開始使用主機代管服務21〇之後,使用者可能發現遊戲及 應用程式繼續提供較佳體驗(例如,經由更新及/或缺陷修 藝 復)且可能為以下狀況:使用者一年後發現新遊戲或應用 程式可用於利用計算技術(例如,較高效能之GPlJ)(其在一 年前甚至不存在)之服務210上,因此對於使用者而言,將 不可能購買將在一年後玩遊戲或執行應用程式的一年前之 技術。因為玩遊戲或執行應用程式之計算資源對於使用者 而。不可見(亦即’自使用者之觀點看,使用者僅係選擇 接近即刻地開始執行之遊戲或應用程式-更像使用者改變 電視上之頻道),所以使用者之硬體將在使用者甚至未意 φ 識到升級之情況下已被「升級」。 消除對於備份之需要 對於商業、學校及家庭中之使用者的另一較大問題係備 份。若磁碟出故障,或若存在無意抹除,則儲存於本端pC 或視訊遊戲控制台中之資訊(例如’在控制台之狀況下, 使用者之遊戲成果及等級)可能丢失。存在提供用於PC之 手動或自動備份的許多可用的應用程式,且可將遊戲控制 台狀態上載至線上伺服器以供備份,但通常將本端備份複 製至必須儲存於安全且有組織的某處之另一本端磁蝶(或 139852.doc 200952495 其他非揮發性儲存器件),且由於經由典型低成本網際網 路連接可用t緩慢上行速度而使冑對於線上服務之備份常 常有限。在圖4a之主機代管服務21〇下,儲存於RAID陣列 405中之資料可使用為熟習此項技術者所熟知之先前技術 RAID組態技術來組態,以使得當磁碟出故障時,將不丟 失資料,且將通知容納出故障之磁碟之伺服器中心處的技 術員,且接著技術員將替換該磁碟,該磁碟接著將被自動 地更新以使得RAID陣列再一次容忍故障。另外,因為所 有磁碟機彼此接近且其間具有經由SAN 4〇3之快速本端網 路,所以在伺服器中心中將所有磁碟系統配置為定期地備 份至次級儲存器(其可儲存於伺服器中心處或者經易地重 新定位)並不困難。自主機代管服務21〇之使用者之觀點 看,其資料始終完全安全,且其從不必考慮備份。 對演示之存取 使用者經常希望在購買遊戲或應用程式之前試用遊戲或 ⑩ 應用程式。如先前所描述,存在藉以演示(「演示」之動 詞形式意謂試用演示版本,演示版本亦被稱為「演示」, 但作為一名詞)遊戲及應用程式之先前技術構件,但其中 之每一者遭受限制及/或不便利。使用主機代管服務21〇, 對於使用者而言,容易且便於試用演示。實際上,使用者 所進行的係經由使用者介面(諸如,下文所描述之使用者 介面)選擇演示且試用該演示。演示將幾乎即刻地載入適 合於該演示之伺服器402上,且其將完全類似任何其他遊 戲或應用程式而執行。無論演示需要非常高效能之伺服器 139852.doc -145- 200952495 402還是低效能之伺服器402,且無論使用者使用之家庭或 辦公室用戶端41 5係何類型,自使用者之觀點看,演示均 將工作。遊戲演示或應用程式演示之軟體出版商將能夠確 切地控制准許使用者試用何演示及試用多長時間,且當 然,演示可包括為使用者提供獲得對所演示之遊戲或應用 程式之全版本的存取機會的使用者介面要素。 因為决示可能係低於成本價或免費提供,所以一些使用 ❹ 者可能試圖使用重複的演示(尤其是重複地玩可能有趣的 遊戲演示)。主機代管服務210可使用各種技術來限制用於 給定使用者之演示使用。最直接的方法係建立用於每一使 用者之使用者ID且限制允許給定使用者ID播放演示之次 數。然而,使用者可設置多個使用者ID,尤其是其係自由 的情況下。用於解決此問題之一技術係限制允許給定用戶 端41 5播放演示之次數》若用戶端為獨立器件,則該器件 將具有一序號,且主機代管服務210可限制演示可由具有 φ 彼序號之用戶端存取之次數。若用戶端415正以PC或其他 器件上之軟體執行’則可由主機代管服務21〇來指派序號 且將該序號儲存於PC上並使用該序號來限制演示使用,但 假定PC可由使用者來重新程式化,且序號被抹除或改變, 則另一選項係主機代管服務210保持PC網路配接器媒體存 取控制(MAC)位址(及/或其他機器特定識別符,諸如硬碟 機序號等)之紀錄並將演示使用限制於該MAC位址。假定 可改變網路配接器之MAC位址,然而,此並非極簡單的方 法。另一方法係限制演示可被播放至給定IP位址之次數。 139852.doc -146- 200952495 儘管可由電蜆數據機及DSL提供者來週期性地重新指派Ip 位址’但其在實踐中不會非常頻繁地發生,且若可判定 (例如’藉由聯繫ISP)IP係處於用於住宅DSL或電纜數據機 存取之IP位址之區塊中’則通常可建立用於給定家庭的小 數目之演示使用。又,在家庭中在共用同—Ip位址之ΝΑτ 路由器之後可能存在多個器件,但通常在住宅背景中,將 存在有限數目之該等器件。若IP位址係處於伺服商業之區 ❹ 塊中’則可建立用於商業之較大數目之演示。但是,最 後,所有先前所述方法之組合係限制PC上之演示之數目的 最佳方式。儘管可能不存在使得所判定的且技術上熟練的 使用者可能在重複播放演示之數目中受到限制的極簡單之 方式,但建立大量障礙可建立足夠阻礙以使得大多數pc使 用者不值得費神去濫用演示系統,且相反,其在其意欲試 用新遊戲及應用程式時使用演示。 對學校、商業及其他機構之益處 ❹ 顯著益處尤其出現於利用圖4a中所展示之系統之商業、 學校及其他機構。商業及學校具有與安裝、維護及升級pc 相關聯之實質成本’尤其當談及執行諸如Μ—之高效能應 用程式之PC時。如先前所陳述,pc通常僅在一週之小時 之力率中被利用,且如在家庭中,具有給定位準之效能 月b力的PC在辦公至或學校環境中之成本遠高於在祠服器中 心環境中之成本。 在較大商業或學校(例如,大的大學)之狀況下’該等實 體之IT 門叹置飼服器中心且維護經由LAN級連接而遠端 139852.doc •147- 200952495 地存取之電腦可係實際的。存在用於經由LAN或經由辦公 室之間的私用高頻寬連接而遠端存取電腦的許多解決方 法。舉例而言’藉由Microsoft之Windows終端機伺服器, 或者藉由虛擬網路計算應用程式(如來自RealVNC有限公司 之VNC)或者藉由來自Sun Microsystems之精簡型用戶端構 件,使用者可獲得對PC或伺服器之遠端存取,在圖形回應 時間及使用者體驗中具有一系列品質。另外,該等自行管 ❹ 理之伺服器中心通常專用於單一商業或學校,且因此不能 夠利用在全異應用程式(例如,娛樂及商業應用程式)在一 週之不同時間利用同一計算資源時所可能的使用之重疊。 因此,許多商業及學校缺乏獨立設置具有至每一使用者之 LAN速度之網路連接的伺服器中心之規模、資源或專門技 能。實際上’大百分比之學校及商業具有與家庭相同之網 際網路連接(例如’ DSL、電纜數據機)。 然而’該等組織仍可能具有對於非常高效能之計算的需 φ 要(或者定期地或者週期性地)。舉例而言,小建築公司可 能僅具有小數目之建築師,當進行設計工作時,具有相對 適度之計算需要,但其可能週期性地需要非常高效能之3D 計算(例如’當建立用於用戶端之新建築設計的3D穿越 時)。圖4a中所展示之系統極其適合於該等組織。該等組 織僅需要為提供至家庭之同一種類之網路連接(例如, DSL、電纜數據機)且通常非常低廉。其可利用低廉的 作為用戶端415,或者完全沒有pc亦可,而利用僅實施控 制仏號邏輯413及低延時視訊解壓縮412之低廉的專用器 139852.doc 200952495 件此等特徵對於可能具有pC之偷竊或對PC内之專用組 件之損壞的問題的學校特別有吸引力。 此種配置解決了用於該等組織之許多問題(且許多此等 *點亦為進行通用計算之家庭使用者共用)。舉例而言, 操作成本(其最終必須以某種形式傳遞回至使用者以便具 有可行的商業)可能低得多,因為(a)計算資源係與在一週 有不Π峰值使用時間的其他應用程式共用,(b)該等組 0 織可僅在需要時獲得(且招致成本)對高效能計算資源之存 取,(c)該等組織不必提供用於備份或以其他方式維護高效 能計算資源之資源。 盜版之消除 另外遊戲、應用程式、互動式電影等可能不再如現今 這樣被盜版。因為遊戲係在伺服器中心處執行,所以使用 者不具備對於基本程式碼之存取,因此不存在盜版。即使 使用者將要複製原始碼,使用者亦不能夠在標準遊戲控制 〇 台或家庭電腦上執行該碼。此打開了標準視訊遊戲不可用 之世界各地(諸如’中國)的市場。已使用之遊戲之重新銷 售亦係不可能的。 對於遊戲開發商而言,如同現今之狀況,存在較少市場 不連續性。與全新的一代技術迫使使用者及開發商升級且 遊戲開發商係取決於硬體平台之及時遞送的當前情形對 比,可隨著時間隨著遊戲要求改變而逐漸地更新主機代管 服務210。 串流互動式視訊 139852.doc •149· 200952495 以上描述提供由以通用網際網路為基礎的低延時串流互 動式視訊(其隱含地亦包括連同視訊一起之音訊,如本文 中所使用)之新I貝基本概念致能的多種應用。經由網際網 路而提供串流視訊之先前技術系統僅具有可藉由高延時互 動實施的所致能之應用。舉例而言,用於線性視訊之基本 回放控制(例如,暫停、回倒、快進)在高延時下適當地工 作’且有可能線上性視訊饋送當中進行選擇β此外,如先Given the configuration of the colocation service shown in Figure 4a, the usage patterns interspersed in the above two paragraphs result in very efficient use of resources. Obviously, there is a limit to the number of users who can be served by the hosted service at a given time, especially if the user needs instant responsiveness for complex applications such as cutting-edge 30 video games. In case. However, not in the video game console in the family or by the commercial use of pc (which usually = most days (four) idle placement), the feeding machine can (4) reuse with the user in 5 no. For example, the high-performance server with high-performance dual CPU and dual GPU H9852.doc -140- 200952495 and a large amount of RAM 402 can be used by businesses and schools on non-holiday 9 AM to 5 PM, but by playing cutting-edge video games. The player uses it at night, on weekends and on holidays. Similarly, low-performance games can be utilized by businesses and schools during low-performance servers 402 with Celeron CPUs, GPU-free (or very low-end GPUs), and limited RAM during business hours and low-performance games can be used in non-commercial hours. Use low-performance server 4〇2 during the period. In addition, in the case of the colocation service configuration described herein, the © resource is effectively shared among thousands (if not millions) of users. In general, online services only use a small percentage of their total user base to use the service at a given time. If you consider the Nieisen video game usage statistics listed previously, it is easy to understand why. If the active player plays the console game for only 17 hours a week, and if the peak usage time of the game is assumed to be at night (5-12 AM, 7*5 days = 35 hours/week) and weekend (8 AM-12 AM, During a typical non-working, non-commercial hour of 16*2=32 hours/week, for a 17-hour game, there are 35 + 32=65 peaks in a week. It is difficult to estimate the exact peak user load on the system for a number of reasons: some users will play during the extra-peak time, there may be a cluster peak of the user at a particular daytime, and the peak time may be affected by the type of game being played ( For example, a child's game will probably play at an earlier time in the evening.) However, it is assumed that when the player is likely to play the game, the average number of hours played by the player is much less than the number of hours in the day, then only the hosted service A user of one of the 210 rate fractions will use the colocation service at a given time. For this analysis, the peak load will be assumed to be 12 5%. Therefore, only 12.5% of the computing, compression and bandwidth resources use 139852.doc -141 - 200952495 at a given time, resulting in only 12.5% of the hardware cost to support a given user due to resource reuse. One of the performance games is given a level. In addition, it is assumed that some games and applications require more computing power than others, and resources can be dynamically allocated based on the game played by the user or the application executed by the user. Therefore, users who choose a low-performance game or application will be assigned a low-performance (lower-cost) server 402, and users who choose a high-performance game or application will be assigned a high-performance (more expensive) vocalist 402. In fact, a given game or application may have a lower performance and higher performance area of the game or application, and the user can switch from one server 402 to another between games or applications. 402, to maintain the user's execution on the lowest cost server 402 that satisfies the needs of the game or application. Note that rajd array 405, which is much faster than a single disk, will be used by even low performance server 402, which has the benefit of faster disk transfer rates. Thus, the average cost per server 402 across all played games or applications used is much less than the cost of playing most of the most expensive servers 402 of the highest performance game or application, however, even the low performance server 402 Disk performance benefits will be obtained from RAID array 405. In addition, the server 402 in the colocation service 210 may be only a PC motherboard that does not have a disk or peripheral interface (different from the network interface), and just can be integrated down to a fast network just to the SAN 403. A single wafer of the interface. Also, the RAID array 405 may be shared among a much larger number of users than there are disks, so the cost per disk for each active user will be much less than that of a disk drive. All of this device will likely reside in a rack that is controlled by the environment 139852.doc -142- 200952495 in the server room ring && + β 〇 mourning. If the server 402 fails, it can be repaired or replaced at the host escrow service 2 ι. In contrast, the console in the home or office must be sturdy, must be able to 'freely wear and tear to prevent being hit or dropped by a separate appliance' and have a shell with at least one disk Machines must survive unfavorable environmental conditions (for example, being forced into a heated AV cabinet with other appliances), require service assurance, must be packaged and shipped, and sold by retailers who may receive retail profit (5). In addition, the PC or game console must be configured to meet the peak performance of the most computationally intensive expected game or application that will be used at some point in the future, even for lower performance games or applications (or games or applications). District) may also play most of the time. In addition, if a PC or console fails, it can be a costly and time consuming process (which adversely affects manufacturers, users, and software developers). Therefore, it is assumed that the system shown in FIG. 4a provides the user with an experience equivalent to the experience of the local computing resource for the user to experience the computing power in the home, office, or school, via FIG. 4a. The architecture shown in the middle provides a much lower computational power. Eliminate the need for upgrades. Users don't have to worry about upgrading their PCs and/or consoles to play new games or handle newer applications. Any game or application on the colocation service 210 (regardless of the type of server 402 that the game or application requires) can be used by the user and all games and applications are executed in close proximity (ie, fast) Loaded from the RAID array 405 or the local storage on the server 402) and suitably with the latest updates and defects 139852.doc -143- 200952495 fixes (ie, the software developer will be able to choose to execute the given game) Or the ideal server configuration of the application server 402, and then the server 402 is configured with the best driver, and then over time, the developer will be able to provide updates, bug fixes, etc. to the host generation over time. Manage all copies of the game or application in the 21st). In fact, after the user starts using the colocation service 21, the user may find that the game and the application continue to provide a better experience (eg, via update and/or defect repair) and may be the following: user A year later, it was discovered that new games or applications could be used on services 210 that utilized computing technology (eg, higher performance GPlJ), which did not even exist a year ago, so it would be impossible for users to purchase A year ago technology that played games or executed applications after one year. Because the computing resources for playing games or executing applications are for the user. Invisible (that is, 'from the user's point of view, the user only chooses a game or application that is close to being executed immediately - more like the user changes the channel on the TV), so the user's hardware will be in the user. It has not been "upgraded" even if it is not known to be upgraded. Eliminating the need for backups Another major problem for users in business, schools, and homes is backup. If the disk fails, or if there is an inadvertent erasure, the information stored in the local pC or video game console (for example, 'in the case of the console, the user's game results and ratings) may be lost. There are many available applications that provide manual or automatic backup for PCs, and the game console status can be uploaded to an online server for backup, but the local backup is usually copied to a safe and organized one. The other end of the magnetic butterfly (or 139852.doc 200952495 other non-volatile storage devices), and because of the slow upstream speed available via a typical low-cost Internet connection, the backup of online services is often limited. In the hosted service 21 of Figure 4a, the data stored in the RAID array 405 can be configured using prior art RAID configuration techniques well known to those skilled in the art, such that when the disk fails, The data will not be lost and the technician at the server center hosting the failed disk will be notified, and then the technician will replace the disk, which will then be automatically updated to cause the RAID array to tolerate the failure again. In addition, since all drives are close to each other with a fast local network via SAN 4〇3, all disk systems are configured in the server center to be periodically backed up to secondary storage (which can be stored in It is not difficult to relocate at the center of the server or easily. From the point of view of the hosted service user, the data is always completely secure and never has to be considered for backup. Access to the presentation Users often want to try out the game or 10 applications before purchasing a game or application. As previously described, there are demonstrations (the "verb" form means a trial demo version, and the demo version is also called a "demo", but as a noun) a prior art component of a game and application, but each of them Subject to restrictions and/or inconvenience. With the colocation service 21, it is easy and convenient for the user to try out the demo. In effect, the user performs the presentation and trials the presentation via a user interface, such as the user interface described below. The presentation will load almost instantly onto the server 402 suitable for the presentation, and it will execute exactly like any other game or application. Regardless of whether the presentation requires a very efficient server 139852.doc -145- 200952495 402 is still a low-performance server 402, and regardless of the type of home or office client used by the user, from the perspective of the user, the presentation Will work. A software publisher of a game demo or application demo will be able to precisely control how long the demo and trials are allowed for the user to try, and of course, the demo may include providing the user with a full version of the game or application being demonstrated. The user interface element of the access opportunity. Because the decision may be lower than the cost price or provided free of charge, some users may try to use repeated presentations (especially to repeatedly play interesting game demos). The colocation service 210 can use various techniques to limit the presentation usage for a given user. The most straightforward method is to establish a user ID for each user and limit the number of times the given user ID is allowed to play the presentation. However, the user can set multiple user IDs, especially if they are free. One technique for solving this problem limits the number of times a given client 4 5 can play a presentation. If the client is a standalone device, the device will have a serial number, and the colocation service 210 can limit the presentation to have a φ The number of client accesses of the serial number. If the client 415 is executing as a software on a PC or other device, the host can be assigned a serial number and stored on the PC and used to limit the presentation usage, but the PC is assumed to be available to the user. Reprogramming, and the sequence number is erased or changed, then another option is that the colocation service 210 maintains the PC network adapter media access control (MAC) address (and/or other machine specific identifiers, such as hard Record the number of the disc player, etc.) and limit the use of the demo to the MAC address. It is assumed that the MAC address of the network adapter can be changed, however, this is not an extremely simple method. Another method is to limit the number of times a presentation can be played to a given IP address. 139852.doc -146- 200952495 Although Ip addresses can be reassigned periodically by eDonkey modems and DSL providers', they do not occur very frequently in practice, and if determinable (eg 'by contacting an ISP The IP is in a block of IP addresses for residential DSL or cable modem accesses' and typically can be used for a small number of presentations for a given home. Also, there may be multiple devices in the home following a ΝΑτ router sharing the same Ip address, but typically in a residential setting, there will be a limited number of such devices. If the IP address is in the Servo Business Area 则 block, then a larger number of presentations for the business can be established. However, in the end, all combinations of the previously described methods are the best way to limit the number of presentations on the PC. While there may not be a very simple way to make the determined and technically savvy user likely to be limited in the number of replayed presentations, creating a large number of obstacles can create enough obstacles to make most pc users not worth the trouble To abuse the demo system, and instead, use the demo when it wants to try out new games and applications. Benefits for Schools, Business, and Other Institutions 显 Significant benefits especially occur in commercial, school, and other institutions that utilize the systems shown in Figure 4a. Businesses and schools have substantial costs associated with installing, maintaining, and upgrading PCs, especially when talking about PCs that perform high-performance applications such as Μ. As previously stated, pcs are typically only utilized in the hourly rate of force, and as in the home, the cost of a PC with a given monthly performance is much higher in an office-to-school environment than in a business. The cost in the server center environment. In the case of larger businesses or schools (eg, large universities), the IT gates of these entities sigh at the feeder center and maintain computers that are accessed via LAN-level connections and remote access 139852.doc •147- 200952495 Can be practical. There are many solutions for remote access to a computer via a LAN or via a private high frequency wide connection between offices. For example, 'through Microsoft's Windows terminal server, or through a virtual network computing application (such as VNC from RealVNC Ltd.) or through a thin client-side component from Sun Microsystems, users can get Remote access by a PC or server has a range of qualities in graphical response time and user experience. In addition, these self-managed server centers are typically dedicated to a single business or school and therefore cannot be utilized when disparate applications (eg, entertainment and business applications) utilize the same computing resources at different times of the week. The overlap of possible uses. Therefore, many businesses and schools lack the scale, resources, or expertise to independently set up a server center with a network connection to each user's LAN speed. In fact, a large percentage of schools and businesses have the same Internet connections as homes (eg, 'DSL, cable modems'). However, these organizations may still have the need for very high performance calculations (either periodically or periodically). For example, a small construction company may have only a small number of architects, with relatively modest computing needs when designing, but it may periodically require very efficient 3D calculations (eg 'when built for users When the new building is designed for 3D crossing). The system shown in Figure 4a is extremely suitable for such organizations. These organizations only need to provide the same type of network connection (e.g., DSL, cable modem) to the home and are typically very inexpensive. It can be used as a client 415, or no PC at all, and utilizes an inexpensive specializer 139852.doc 200952495 which only implements control nickname logic 413 and low latency video decompression 412. These features may have pC. The school of stealing or the problem of damage to specialized components within the PC is particularly attractive. This configuration solves many of the problems for such organizations (and many of these * points are also shared by home users for general purpose computing). For example, operating costs (which ultimately must be passed back to the user in some form to have a viable business) may be much lower because (a) computing resources are tied to other applications that have peak usage times in a week. Sharing, (b) these groups can obtain (and incur costs) access to high-performance computing resources only when needed, and (c) such organizations do not have to provide backup or other maintenance of high-performance computing resources. Resources. Elimination of piracy Other games, applications, interactive movies, etc. may no longer be pirated as they are today. Since the game is executed at the server center, the user does not have access to the basic code, so there is no piracy. Even if the user is going to copy the source code, the user cannot execute the code on a standard game console or home computer. This opens up markets around the world where standard video games are not available (such as 'China'). Resale of games that have already been used is also impossible. For game developers, there are fewer market discontinuities as they are today. With the new generation of technology forcing users and developers to upgrade and game developers depending on the current situation of timely delivery of the hardware platform, the colocation service 210 can be gradually updated as the game requirements change over time. Streaming Interactive Video 139852.doc • 149· 200952495 The above description provides low-latency streaming interactive video based on the Universal Internet (which also implicitly includes audio along with video, as used in this article) The new I-be basic concept enables multiple applications. Prior art systems that provide streaming video over the Internet have only those applications that can be implemented by high latency interactions. For example, basic playback controls for linear video (e.g., pause, rewind, fast forward) work properly at high latency' and it is possible to select among the linear video feeds.

前所陳述,一些視訊遊戲之性質允許其以高延時來播放。 但是,用於串流視訊之先前技術方法之高延時(或低壓縮 比率)嚴重限制串流視訊的潛在應用或使其部署變窄至專 門化的網路環境,且甚至在該等環境中,先前技術亦引入 網路上之實質負擔。本文中所描述之技術打開了在經由網 際網路之低延時串流互動式視訊下可能的多種應用的大 門,尤其是經由消費者級網際網路連接而致能之彼尊應 用。 實際上,在與圖乜之用戶端465 一般小之用戶端器件 下,足以藉由有效的任意量之計算能力、任意量之快速儲 存及強大舰II之間的極快網路連接而提供增強的使用者 體驗’其致能新的計算時代。料’因為頻寬要求並不隨 著系統之計算能力增長而增長(亦即,因為頻寬要求僅係 關於顯示解析度、品質及圖框速率),所以一旦寬頻帶網 際網路連接性係、普遍存在的(例如m布廣的低延時 無線涵蓋)、可靠的且具有以滿^所有使用者之顯示器 件422之需要的足夠高之頻寬,貝w題將係典型消費者及 139852.doc 200952495 商業應用所必要的是厚重用戶端(諸如,執行wind〇ws、As stated earlier, the nature of some video games allows them to be played at high latency. However, the high latency (or low compression ratio) of prior art methods for streaming video severely limits the potential application of streaming video or narrows its deployment to a specialized network environment, and even in such environments, The prior art also introduces a substantial burden on the network. The techniques described in this article open the door to a variety of applications that are likely to be possible via low-latency streaming interactive video over the Internet, especially through consumer-grade Internet connections. In fact, it is sufficient to provide enhancements by effectively any amount of computing power, any amount of fast storage, and extremely fast network connections between powerful ships II under the user-side device that is typically small with the client 465 of Figure 乜. The user experience 'enables a new era of computing. [Because the bandwidth requirements do not increase as the computing power of the system grows (ie, because the bandwidth requirements are only about display resolution, quality, and frame rate), once the broadband Internet connectivity, The ubiquitous (eg, m-wide low-latency wireless coverage), reliable, and high enough bandwidth to meet the needs of all users' display devices 422, will be typical consumers and 139,852.doc 200952495 Business applications are necessary for thick clients (such as executing wind〇ws,

Linux、OSX等之PC或行動電話)還是甚至精簡型用戶端(諸 如,Adobe Flash或 Java)。 串流互動式視訊之出現導致關於計算架構之結構的假定 之重新考慮。此之-實例係圖15中所展示之主機代管服務 2U)词服器中心實施例。用於延遲緩衝〇器及/或分群視訊 1550之視訊路徑係反饋迴路,其中應用程式/遊戲词服器 ⑽-肋之經多播之串流互動式視訊輸出經由路徑⑽ 而即時地或者經由路徑1551在可選擇之延遲之後經反饋回 至應用程式/遊戲飼服器1521_1525中。此致能藉由先前技 術祠服器或本端計算架構將係不可能或不可行的多種實際 應用(例如’諸如圖16、圖17及圖2〇中所說明之彼等應 用)仁疋作為更一般之架構特徵,反饋迴路1550所提 供的為串流互動式視訊位準下之遞歸,因為可在應用程式 需要視訊時將視訊無限地循環。此致能之前從未可用的多 種應用可能性^ 另一關鍵架構特徵在於:視訊流係單向_流。此有效 地致能串流互動式視訊之任意程度的多播(相比之下,諸 如TC:/IP流之雙向流將隨著使用者之數目增加而在來自來 口通L之網路上產生愈加更多的訊務停滯)。多播係词服 器中〜内之重要能力’因為其允許系統對網際網路使用者 (且實際上’世界之人口)之增長的需要作出回應以在一對 =甚至多對多基礎上通信。再次’本文中所論述的說明 ^互H視訊遞歸與多播兩者之使用的實例(諸如,圖 139852.doc -151 - 200952495 16)僅為具有可能性之非常大之冰山的尖端。 在-實施射’本文巾所說^各種魏模組及相關聯 之步驟可由含有用於執行該等步驟之固線式邏輯的特定硬 體組件(諸如,特殊應用積體電路(「ASIC」))或由經程式 化之電腦組件與定製硬體組件之任何組合來執行。 > 在-實施例中’可將該等模組實施於諸如仏如儀器的 TMS320X架構(例如,TMS32〇C6〇〇〇、TMS32〇c5〇⑼, ❹ 等)之可程式化數位信號處理器(「DSP」)上。可使用各種 不同的DSP,同時仍遵守此等基本原理。 實施例可包括如上文所㈣之各種步驟。該等步驟可體 現於引起通用或專用處理器執行特定步驟之機器可執行指 令中。已將與此等基本原理無關之各種元件(諸如,電腦 記憶體、硬碟機、輸入器件)自圓中省去以避免混清相關 態樣。 所揭不之標的物之要素亦可作為用於儲存機器可執行指 © 7之機器可讀媒體來提供。機器可讀媒體可包括(但不限 於)快閃記憶體、光碟、CD_R〇M、DVD R〇M、ram、 EPROM、EEPR0M、磁卡或光卡、傳播媒體或適合於儲存 電子指令之其他類型之機器可讀媒體。舉例而言,本發明 可作為電腦程式來下载,該電腦程式可經由通信鏈路(例 如,數據機或網路連接)藉助於體現於載波或其他傳播媒 體中之資料信號而自遠端電腦(例如,伺服器)傳送至請求 電腦(例如,用戶端)。 亦應理解,所揭示之標的物之要素亦可作為電腦程式產 139852.doc •152· 200952495 品來提供,該電腦程式產品可包括在上面儲存有指令之機 15可讀媒體,該等指令可用於程式化電腦(例如,處理Ϊ =他電子器件)以執行-序列操作。或者,該等操= 藉由硬體與軟體之組合來執行。機器可讀媒體可包括“曰 不限於)軟性磁碟、光碟、瓜職,及磁光碟、rom、 ram EPROM、EEPRQM、磁卡或光卡、傳播媒體或適合 於:存電子指令之其他類型之媒體/機器可讀媒體。舉例 而吕,所揭示之標的物之要素可作為電腦程式產品來下 載其中程式可經由通信鏈路(例如,數據機或網路連接) 藉助於體現於載波或其他傳播媒體中之資料信號而自遠端 電腦或電子器件傳送至請求過程。 另外,儘管已結合特定實施例描述所揭示之標的物,但 眾多修改及變更將適當地處於本揭示案之範疇内。因此, 說明書及圖式應視為說明性的而非限制性的意義。 【圖式簡單說明】 Q 圖1說明先前技術視訊遊戲系統之架構。 圖2a至圖2b說明根據一實施例之高階系統架構。 圖3說明用於用戶端與伺服器之間的通信的實際的、額 定的及所需的資料速率。 圖4a說明根據一實施例而使用的主機代管服務及用戶 端。 圖4b說明與用戶端與主機代管服務之間的通信相關聯的 例示性延時。 圖4c說明根據一實施例之用戶端器件。 139852.doc -153- 200952495 圖4d說明根據另一實施例之用戶端器件。 圖4e說明圖4c中之用戶端器件的實例方塊圖。 圖4f說明圖4d中之用戶端器件的實例方塊圖。 圖5說明可根據一實施例而使用的視訊壓縮之一實例形 式。 圖6a說明可在另一實施例中使用的視訊壓縮之一實例形 式。 圖6b說明與傳輸低複雜度、低動作視訊序列相關聯的資 砂 才斗速率中之峰值。 圖說明與傳輸高複雜度、高動作視訊序列相關聯的資 料速率中之峰值。 圖7a至圖7b說明在一實施例中使用之實例視訊壓縮技 術。 圖8說明在一實施例中使用之額外實例視訊壓縮技術。 圖9a至圖9e說明在-實施例中使用以用於緩解資料速率 _ 峰值的實例技術。 圖l〇a至圖1〇b說明將影像影像塊有效地封裝於封包内的 一實施例® 圖11a至圖Ud說明使用前向錯誤校正技術之實施例。 圓12說明使用多核心處理單元來進行壓縮之一實施例。 圖13a至圖13b說明根據各種實施例之主機代管服務之間 的地理定位及通信。 圖14說明與用戶端盘主嫩斗其抓妨 …王機代管服務之間的通信相關聯的 例示性延時。 139852.doc -154- 200952495 圖15說明實例主機代管服務伺服器中心架構。 圖16說明包括複數個現場直播之視訊窗的使用者介面之 一實施例的實例螢幕拍攝。 圖17說明在選擇特定視訊窗之後的圖此使用者介面。 圖18說明在將特定視訊窗放大至全螢幕大小之後的圖17 之使用者介面。 圖19說明上覆於多人遊戲之螢幕上的實例合作使用者視 訊資料。 圖2 0說㈣於主機代管服務上的—遊戲玩家之實例使用 者頁面。 圖21說明實例3D互動式廣告。 圖22說明用於自現場直播之表演的表面俘獲產生具有紋 理表面之照片般逼真的影像的實例步驟序列。 圖23說明允許選擇線性媒體内容之實例使用者介面頁 面。 圖24為說明在現場直播網頁之前消逝的時間量與連接速 度之曲線圖。 【主要元件符號說明】 100 CPU/GPU 101 隨機存取記憶體(RAM) 102 顯示器件(SDTV/HDTV或電腦監視器) 103 硬碟機 104 光學媒體驅動器/光學媒體/光碟機 105 網路連接 139852.doc -155· 200952495 ❹ ❿ 106 遊戲控制器 205 用戶端器件/用戶端/用戶端平台 206 網際網路 210 主機代管服務/主機代管系統 211 使用者場所 220 遊戲或應用程式軟體開發商 221 輸入器件 222 顯示器件/監視器或電視機 301 標稱最大資料速率 302 可用最大資料速率 303 所需的資料速率 401 主機代管服務控制系統/主機代管服務控 制伺服器 402 伺服器 403 儲存區域網路(SAN) 404 視訊壓縮邏輯/視訊壓縮器 405 獨立冗餘磁碟陣列(RAID) 406 控制信號 406a 控制信號 406b 控制信號 409 路由邏輯 410 網際網路 412 低延時視訊解壓縮邏輯 413 控制信號邏輯 139852.doc -156· 200952495 ❹ 415 用戶端/用戶端器件/用戶端電腦 420 顯示器件 421 輸入器件 422 顯示器件/顯示器 440 網際網路繞過服務 441 存在點 442 WAN介面 443 防火牆/路由器/NAT(網路位址轉譯)器件 444 WAN介面 451 用於發送控制信號之單向傳輸時間 452 經由使用者場所之來回行程路由/使用者 場所路由 453 箭頭/來回行程延遲/使用者ISP 454 通用網際網路延時 455 單向路由 456 最大單向延時 457 箭頭/壓縮 458 視訊解壓縮 462 乙太網路插孔/網際網路連接 463 HDMI(高清晰度多媒體介面)、連接器 464 顯示能力 465 用戶端器件/用戶端 466 遮光眼鏡 468 顯示器件/SDTV(標準清晰度電視)或 139852.doc -157· 200952495 HDTV (高清晰度電視)/監視器 469 輸入器件 475 用戶端器件 476 快閃記憶體 477 視訊相機 478 479 480 481PCs or mobile phones such as Linux, OSX, etc. are even thin client (such as Adobe Flash or Java). The emergence of streaming interactive video has led to a reconsideration of assumptions about the structure of the computing architecture. This is an example of the colocation service 2U) word processor center embodiment shown in FIG. A video path feedback loop for the delay buffer buffer and/or the group video 1550, wherein the application/game word processor (10)-ribbed multicast stream interactive video output is immediately or via the path via the path (10) The 1551 is fed back to the application/games feeder 1521_1525 after a selectable delay. This can be achieved by a variety of practical applications (such as 'such as those illustrated in Figures 16, 17, and 2) that are not possible or feasible by prior art servers or local computing architectures. In general architectural features, the feedback loop 1550 provides recursion for streaming interactive video levels because the video can be looped indefinitely when the application requires video. There are many application possibilities that have never been available before. Another key architectural feature is that the video stream is unidirectional. This effectively enables any degree of multicasting of streaming interactive video (in contrast, bi-directional streams such as TC:/IP streams will be generated on the network of incoming port L as the number of users increases) More and more traffic stagnation). The ability to do so within the multicast system is because it allows the system to respond to the growing needs of Internet users (and indeed the 'world's population) to communicate on a pair = even many-to-many basis . Again, the examples discussed in this article ^Examples of the use of both H-Video Recursion and Multicast (such as Figures 139852.doc -151 - 200952495 16) are only the tip of a very large iceberg with the possibility. The various modules and associated steps may be performed by a specific hardware component (such as a special application integrated circuit ("ASIC") containing the fixed-line logic for performing the steps. ) or by any combination of stylized computer components and custom hardware components. > In an embodiment, the modules can be implemented in a programmable digital signal processor such as the TMS320X architecture (e.g., TMS32® C6®, TMS32〇c5〇(9), ❹, etc.) such as an instrument. ("DSP"). A variety of different DSPs can be used while still adhering to these basic principles. Embodiments may include various steps as (4) above. These steps can be embodied in machine executable instructions that cause a general purpose or special purpose processor to perform particular steps. Various components (such as computer memory, hard disk drives, and input devices) that are not related to these basic principles have been omitted from the circle to avoid mixing the relevant aspects. Elements of the subject matter that are not disclosed may also be provided as a machine-readable medium for storing machine executable fingers. A machine-readable medium can include, but is not limited to, a flash memory, a compact disc, a CD_R〇M, a DVD R〇M, a ram, an EPROM, an EEPR0M, a magnetic or optical card, a broadcast medium, or other type suitable for storing electronic instructions. Machine readable medium. For example, the present invention can be downloaded as a computer program that can be accessed from a remote computer via a communication link (eg, a data modem or a network connection) by means of a data signal embodied in a carrier wave or other communication medium ( For example, the server) is transferred to the requesting computer (eg, the client). It should also be understood that the elements of the subject matter disclosed may also be provided as a computer program product 139852.doc • 152·200952495, which may include a readable medium on which the instructions 15 are stored, and such instructions are available On a stylized computer (for example, processing Ϊ = his electronics) to perform - sequence operations. Alternatively, the operations are performed by a combination of hardware and software. The machine-readable medium can include, but is not limited to, a flexible disk, a compact disk, a guilloche, and a magneto-optical disk, a rom, a ram EPROM, an EEPRQM, a magnetic or optical card, a communication medium, or other types of media suitable for: storing electronic instructions. / Machine-readable medium. For example, the elements of the disclosed subject matter can be downloaded as a computer program product, the program can be transmitted via a communication link (for example, a data machine or a network connection) by means of a carrier wave or other communication medium. The data signals are transmitted from the remote computer or electronic device to the requesting process. Further, although the subject matter disclosed has been described in connection with the specific embodiments, numerous modifications and changes are appropriately within the scope of the present disclosure. The specification and drawings are to be regarded as illustrative and not restrictive. FIG. 1 illustrates the architecture of a prior art video game system. Figures 2a-2b illustrate a high level system architecture in accordance with an embodiment. Figure 3 illustrates the actual, nominal and required data rate for communication between the client and the server. Figure 4a illustrates an embodiment in accordance with an embodiment. Host colocation services and clients used. Figure 4b illustrates an exemplary delay associated with communication between the client and the colocation service. Figure 4c illustrates a client device in accordance with an embodiment. 139852.doc -153- Figure 4d illustrates a client device in accordance with another embodiment. Figure 4e illustrates an example block diagram of the client device of Figure 4c. Figure 4f illustrates an example block diagram of the client device of Figure 4d. An example form of video compression used in the embodiment. Figure 6a illustrates an example form of video compression that may be used in another embodiment. Figure 6b illustrates the sanding associated with transmitting a low complexity, low motion video sequence. The peak value in the bucket rate illustrates the peak in the data rate associated with transmitting a high complexity, high motion video sequence. Figures 7a through 7b illustrate an example video compression technique used in an embodiment. Additional example video compression techniques used in the embodiments. Figures 9a through 9e illustrate example techniques used in the embodiment for mitigating data rate _ peaks. Figure 1a to Figure 1 〇b illustrates an embodiment of effectively packaging image image blocks in a package. Figures 11a through Ud illustrate an embodiment using forward error correction techniques. Circle 12 illustrates one embodiment of compression using a multi-core processing unit. Figures 13a-13b illustrate geolocation and communication between colocation services in accordance with various embodiments. Figure 14 illustrates an illustration associated with communication between a client disk master and its host. 139852.doc -154- 200952495 Figure 15 illustrates an example colocation service server central architecture. Figure 16 illustrates an example screen shot of an embodiment of a user interface including a plurality of live video windows. This user interface is shown after selecting a particular video window. Figure 18 illustrates the user interface of Figure 17 after a particular video window has been enlarged to full screen size. Figure 19 illustrates example collaborative user video material overlaid on a multiplayer game screen. Figure 2 shows (4) the instance user page of the game player on the colocation service. Figure 21 illustrates an example 3D interactive advertisement. Figure 22 illustrates an example sequence of steps for surface capture from a live broadcast performance to produce a photorealistic image with a textured surface. Figure 23 illustrates an example user interface page that allows selection of linear media content. Figure 24 is a graph illustrating the amount of time elapsed and the connection speed before the live web page is live. [Main component symbol description] 100 CPU/GPU 101 Random access memory (RAM) 102 Display device (SDTV/HDTV or computer monitor) 103 Hard disk drive 104 Optical media drive/Optical media/CD player 105 Network connection 139852 .doc -155· 200952495 ❹ ❿ 106 Game Controller 205 Client Device/Client/Client Platform 206 Internet 210 Hosting Service/Hosting System 211 User Location 220 Game or Application Software Developer 221 Input Device 222 Display Device/Monitor or TV 301 Nominal Maximum Data Rate 302 Available Maximum Data Rate 303 Required Data Rate 401 Hosted Service Control System/Host Managed Service Control Server 402 Server 403 Storage Area Network Road (SAN) 404 Video Compression Logic/Video Compressor 405 Independent Redundant Disk Array (RAID) 406 Control Signal 406a Control Signal 406b Control Signal 409 Routing Logic 410 Internet 412 Low Latency Video Decompression Logic 413 Control Signal Logic 139852 .doc -156· 200952495 ❹ 415 Client/Client Device/User Computer 420 Display Device 421 Input Device 422 Display Device/Display 440 Internet Bypass Service 441 Presence Point 442 WAN Interface 443 Firewall/Router/NAT (Network Address Translation) Device 444 WAN Interface 451 Single for Sending Control Signals To the transmission time 452, the route to/from the user's premises route/user route 453 arrow/round trip delay/user ISP 454 universal internet delay 455 one-way route 456 maximum one-way delay 457 arrow/compression 458 video decompression 462 Ethernet jack/internet connection 463 HDMI (High Definition Multimedia Interface), Connector 464 Display Capability 465 Client Device / Client 466 Shading Glasses 468 Display Device / SDTV (Standard Definition TV) or 139852 .doc -157· 200952495 HDTV (High Definition Television) / Monitor 469 Input Device 475 Client Device 476 Flash Memory 477 Video Camera 478 479 480 481

顯示器件 藍芽輸入器件/有線USB輸入器件 匯流排 乙太網路介面 482 WiFi子系統 483 控制CPU/控制處理器 484 藍芽介面 485 USB子系統 486 487 488 489Display Devices Bluetooth Input Devices / Wired USB Input Devices Bus Bar Ethernet Interface 482 WiFi Subsystem 483 Control CPU / Control Processor 484 Bluetooth Interface 485 USB Subsystem 486 487 488 489

視訊解壓縮器 視訊輸出子系統 音訊解壓縮子系統 音訊輸出子系統 490 HDMI 介面Video Decompressor Video Output Subsystem Audio Decompression Subsystem Audio Output Subsystem 490 HDMI Interface

491 DVI-I 492 S-視訊 493 複合視訊 494 數位介面 495 立體類比介面 497 乙太網路 139852.doc -158- 200952495 499 電力 501 未經壓縮之視訊圖框 502 未經壓縮之視訊圖框 503 未經壓縮之視訊圖框 511 經壓縮之圖框 512 經壓縮之圖框 513 經壓縮之圖框 520 壓縮邏輯 Ο ^ 559-561 未經壓縮之視訊圖框 611 I圖框 612-613 Ρ圖框 620 壓縮邏輯 621 額定最大資料速率 622 623 φ 624 633 可用最大資料速率/可用資料速率 I圖框所需之峰值資料速率/峰值資料速率 視訊流資料速率/視訊流資料速率序列 I圖框峰值 634 635 視訊流資料速率序列/視訊流資料速率 Ρ圖框峰值 636 Ρ圖框峰值 670 Β圖框 671 I圖框 701-760 未經壓縮之圖框 711-770 R圖框 139852.doc -159- 200952495491 DVI-I 492 S-Video 493 Composite Video 494 Digital Interface 495 Stereo Analog Interface 497 Ethernet 139852.doc -158- 200952495 499 Power 501 Uncompressed Video Frame 502 Uncompressed Video Frame 503 Compressed video frame 511 compressed frame 512 compressed frame 513 compressed frame 520 compressed logic Ο ^ 559-561 uncompressed video frame 611 I frame 612-613 Ρ frame 620 Compression 621 Rated Maximum Data Rate 622 623 φ 624 633 Available Maximum Data Rate / Available Data Rate I Frame Required Peak Data Rate / Peak Data Rate Video Stream Data Rate / Video Stream Data Rate Sequence I Frame Peak 634 635 Video Stream data rate sequence/video stream data rate Ρ frame peak 636 Ρ frame peak 670 Β frame 671 I frame 701-760 uncompressed frame 711-770 R frame 139852.doc -159- 200952495

721-770 未經壓縮之圖框 731-780 R圖框 805 移動人物 811 R圖框 812 R圖框 922 可用最大資料速率 934 視訊流資料速率 941 峰值資料速率/峰值最大資料速率 942 2倍峰值資料速率 943 3倍峰值資料速率 944 4倍峰值資料速率 952 圖框2倍峰值 953 平坦化的2倍峰值 954 圖框4倍峰值 955 平坦化的4倍峰值 961 未經壓縮之圖框1 962 未經壓縮之圖框2 963 未經壓縮之圖框3 964 未經壓縮之圖框4 965 未經壓縮之圖框5 966 未經壓縮之圖框6 967 未經壓縮之圖框7 968 未經壓縮之圖框8 969 未經壓縮之圖框9 139852.doc -160- 200952495721-770 Uncompressed frame 731-780 R frame 805 Mobile character 811 R frame 812 R frame 922 Available maximum data rate 934 Video stream data rate 941 Peak data rate / peak maximum data rate 942 2 times peak data Rate 943 3 times peak data rate 944 4 times peak data rate 952 frame 2 times peak 953 flattened 2 times peak 954 frame 4 times peak 955 flattened 4 times peak 961 uncompressed frame 1 962 without Compressed frame 2 963 Uncompressed frame 3 964 Uncompressed frame 4 965 Uncompressed frame 5 966 Uncompressed frame 6 967 Uncompressed frame 7 968 Uncompressed Box 8 969 Uncompressed frame 9 139852.doc -160- 200952495

970 未經壓縮之圖框10 981 經壓縮之圖框1 982 經壓縮之圖框2 983 經壓縮之圖框3 985 經壓縮之圖框5 986 經壓縮之圖框6 987 經壓縮之圖框10 991 傳輸時間(xmit時間) 992 傳輸時間 993 傳輸時間(2倍峰值) 995 傳輸時間 996 傳輸時間(4倍峰值) 997 傳輸時間 1001-1005 封包 1010 影像塊包裝封裝邏輯 1100 I影像塊 1101 前向錯誤校正碼(FEC) 1103 I影像塊 1104 前向錯誤校正碼(FEC) 1105 前向錯誤校正碼(FEC) 1110 音訊封包 1111 FEC碼 1112 音訊封包 1113 FEC碼 139852.doc -161 - 200952495 ❹970 uncompressed frame 10 981 compressed frame 1 982 compressed frame 2 983 compressed frame 3 985 compressed frame 5 986 compressed frame 6 987 compressed frame 10 991 Transmission time (xmit time) 992 Transmission time 993 Transmission time (2 times peak value) 995 Transmission time 996 Transmission time (4 times peak value) 997 Transmission time 1001-1005 Packet 1010 Image block package package logic 1100 I image block 1101 Forward error Correction Code (FEC) 1103 I Image Block 1104 Forward Error Correction Code (FEC) 1105 Forward Error Correction Code (FEC) 1110 Audio Packet 1111 FEC Code 1112 Audio Packet 1113 FEC Code 139852.doc -161 - 200952495 ❹

1120 使用者輸入命令 1121 FEC碼 1122 使用者輸入命令 1123 F EC碼 1200 多核及/或多處理器 1201-1208 核心 1205 4x2配置/未經壓縮之圖框 1300 伺服器中心/主機代管服務 1301 網路 1501 入埠網際網路訊務 1502 入槔路由/入埤·路由網路 1511 RAID陣列 1512 RAID陣列 1515 RAID陣列/延遲緩衝器 1521-1525 應用程式/遊戲伺服器 1529 未經壓縮之視訊/音訊 1530 共用視訊壓縮/共用集區/共用硬體壓縮/共 用硬體壓縮器/共用視訊壓縮硬體 1539 經壓縮視訊/音訊輸出 1540 出埠路由/出埠路由網路 1550 延遲緩衝器及/或分群視訊/反饋迴路 1551 路徑 1552 路徑 1599 出埠網際網路訊務 139852.doc 162· 2009524951120 User input command 1121 FEC code 1122 User input command 1123 F EC code 1200 Multicore and / or multiprocessor 1201-1208 Core 1205 4x2 configuration / uncompressed frame 1300 Server Center / Host Escrow Service 1301 Network Road 1501 Internet Access 1502 Inbound Routing/Incoming Routing Network 1511 RAID Array 1512 RAID Array 1515 RAID Array/Delay Buffer 1521-1525 Application/Game Server 1529 Uncompressed Video/Audio 1530 Shared Video Compression/Common Cluster/Common Hardware Compression/Common Hardware Compressor/Common Video Compression Hardware 1539 Compressed Video/Audio Output 1540 Outbound Routing/Outbound Routing Network 1550 Delay Buffer and/or Grouping Video/Feedback Loop 1551 Path 1552 Path 1599 Outgoing Internet Traffic 139852.doc 162· 200952495

1600 「縮略圖」視訊窗 1601 黃色選擇框 1602 遊戲資訊 1700 視訊窗 1800 箭頭 1801 上覆 1900 視訊及音訊 2000 使用者本身之視訊 2001 現場直播之視訊 2002 搭檔 2003 視訊片段/自賞剪輯/3D DVR自賞剪輯 2004 數字 2005 圖示 2400 線 2401 1.5 Mbps連接速度 2402 12 Mbps連接速度 2403 96 Mbps連接速度 HS1-HS6 主機代管服務伺服器中心 139852.doc 163-1600 "thumbnail" video window 1601 yellow selection box 1602 game information 1700 video window 1800 arrow 1801 over 1900 video and audio 2000 user's own video 2001 live video 2002 partner 2003 video clip / self-reward clip / 3D DVR from Reward clip 2004 number 2005 icon 2400 line 2401 1.5 Mbps connection speed 2402 12 Mbps connection speed 2403 96 Mbps connection speed HS1-HS6 colocation service server center 139852.doc 163-

Claims (1)

200952495 七、申請專利範圍: 1· 一種裝置,其包含: 配置於一平行處理架構之複數個伺服器,以產生由複 數個使用者控制的串流互動式視訊之複數個串流; 法一單70 ’其結合由該複數個伺服器產生的該複數個串 的子集,並且產生低延遲串流互動式視訊之一新串 流; ❹ 用去^該單4被操作以提供—使用者介面,允許一使 P時互動式操作低延遲串流互動式視訊之複數個串 ❹ 139852.doc200952495 VII. Patent Application Range: 1. A device comprising: a plurality of servers arranged in a parallel processing architecture to generate a plurality of streams of streaming interactive video controlled by a plurality of users; 70' combines a subset of the plurality of strings generated by the plurality of servers and generates a new stream of low latency stream interactive video; ❹ used to select the single 4 to be operated to provide a user interface Allows a P-interactive operation of low-latency streaming interactive video for multiple strings 139852.doc
TW98115436A 2007-12-05 2008-12-04 Apparatus for combining aplurality of views of real-time streaming interactive video TW200952495A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US99958407A 2007-12-05 2007-12-05

Publications (1)

Publication Number Publication Date
TW200952495A true TW200952495A (en) 2009-12-16

Family

ID=40718185

Family Applications (2)

Application Number Title Priority Date Filing Date
TW97147247A TW200943964A (en) 2007-12-05 2008-12-04 System and method for compressing video based on detected intraframe motion
TW98115436A TW200952495A (en) 2007-12-05 2008-12-04 Apparatus for combining aplurality of views of real-time streaming interactive video

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW97147247A TW200943964A (en) 2007-12-05 2008-12-04 System and method for compressing video based on detected intraframe motion

Country Status (10)

Country Link
EP (1) EP2218039A4 (en)
JP (1) JP2011507348A (en)
KR (1) KR20100112568A (en)
CN (1) CN101918958A (en)
AU (1) AU2008333829B2 (en)
CA (1) CA2707705A1 (en)
NZ (1) NZ585901A (en)
RU (1) RU2493588C2 (en)
TW (2) TW200943964A (en)
WO (1) WO2009073827A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404405B (en) * 2009-12-25 2013-08-01 Mstar Semiconductor Inc Image processing apparatus having on-screen display function and method thereof
TWI566201B (en) * 2010-01-06 2017-01-11 蘋果公司 Facilitating efficient switching between graphics-processing units
TWI719699B (en) * 2019-11-04 2021-02-21 建國科技大學 Artificial intelligence-assisted ways to say good things

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8888592B1 (en) 2009-06-01 2014-11-18 Sony Computer Entertainment America Llc Voice overlay
US8147339B1 (en) 2007-12-15 2012-04-03 Gaikai Inc. Systems and methods of serving game video
US8613673B2 (en) 2008-12-15 2013-12-24 Sony Computer Entertainment America Llc Intelligent game loading
US8968087B1 (en) 2009-06-01 2015-03-03 Sony Computer Entertainment America Llc Video game overlay
US8926435B2 (en) 2008-12-15 2015-01-06 Sony Computer Entertainment America Llc Dual-mode program execution
US8506402B2 (en) 2009-06-01 2013-08-13 Sony Computer Entertainment America Llc Game execution environments
US8209730B2 (en) 2009-06-22 2012-06-26 Sony Corporation Speculative video on demand
US8771064B2 (en) 2010-05-26 2014-07-08 Aristocrat Technologies Australia Pty Limited Gaming system and a method of gaming
US8676591B1 (en) 2010-08-02 2014-03-18 Sony Computer Entertainment America Llc Audio deceleration
US9878240B2 (en) 2010-09-13 2018-01-30 Sony Interactive Entertainment America Llc Add-on management methods
KR101956639B1 (en) 2010-09-13 2019-03-11 소니 인터랙티브 엔터테인먼트 아메리카 엘엘씨 A method and system of providing a computer game at a computer game system including a video server and a game server
SG11201501989QA (en) * 2012-09-18 2015-04-29 Razer Asia Pacific Pte Ltd Computing systems, peripheral devices and methods for controlling a peripheral device
CN105323643A (en) * 2014-08-01 2016-02-10 深圳市同方多媒体科技有限公司 Control device for realizing fast switching of television channels and television applications
JP6261020B2 (en) * 2016-06-28 2018-01-17 株式会社Nexpoint Screen image transfer method and screen image restoration method
US10158905B2 (en) * 2016-09-14 2018-12-18 Dts, Inc. Systems and methods for wirelessly transmitting audio synchronously with rendering of video
CN108900916B (en) * 2018-08-15 2021-06-15 深圳Tcl新技术有限公司 Television and information source configuration method and device thereof, and readable storage medium
US10864483B2 (en) * 2018-11-16 2020-12-15 Integrated Protein Technologies, Snc. Molecular weight filtration system and apparatus
CN112969068B (en) * 2021-05-19 2021-08-03 四川省商投信息技术有限责任公司 Monitoring video data storage and playing method and device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5819034A (en) * 1994-04-28 1998-10-06 Thomson Consumer Electronics, Inc. Apparatus for transmitting and receiving executable applications as for a multimedia system
US5793985A (en) * 1996-06-17 1998-08-11 Hewlett-Packard Company Method and apparatus for block-based motion estimation
JP2002027483A (en) * 2000-07-11 2002-01-25 Hitachi Ltd Picture coding system, picture decoding system, and storage media
US8932136B2 (en) * 2000-08-25 2015-01-13 Opentv, Inc. Method and system for initiating an interactive game
US7791641B2 (en) * 2001-09-12 2010-09-07 Samsung Electronics Co., Ltd. Systems and methods for utilizing activity detection information in relation to image processing
US7295608B2 (en) * 2001-09-26 2007-11-13 Jodie Lynn Reynolds System and method for communicating media signals
ATE375187T1 (en) * 2002-08-12 2007-10-15 Alcatel Lucent METHOD AND DEVICES FOR IMPLEMENTING HIGHLY INTERACTIVE ENTERTAINMENT SERVICES USING MEDIA FLOWING TECHNOLOGY, ALLOWING THE DISTANCE DELIVERY OF VIRTUAL REALITY SERVICES
US8568225B2 (en) * 2004-09-16 2013-10-29 Bally Gaming, Inc. User interface system and method for creating and verifying signed content
US8948266B2 (en) * 2004-10-12 2015-02-03 Qualcomm Incorporated Adaptive intra-refresh for digital video encoding
WO2006100664A2 (en) * 2005-03-21 2006-09-28 Yosef Mizrahi Method, system and computer-readable code for providing a computer gaming service
US20060230428A1 (en) * 2005-04-11 2006-10-12 Rob Craig Multi-player video game system
US8777737B2 (en) * 2006-04-13 2014-07-15 Igt Method and apparatus for integrating remotely-hosted and locally rendered content on a gaming device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404405B (en) * 2009-12-25 2013-08-01 Mstar Semiconductor Inc Image processing apparatus having on-screen display function and method thereof
TWI566201B (en) * 2010-01-06 2017-01-11 蘋果公司 Facilitating efficient switching between graphics-processing units
TWI719699B (en) * 2019-11-04 2021-02-21 建國科技大學 Artificial intelligence-assisted ways to say good things

Also Published As

Publication number Publication date
TW200943964A (en) 2009-10-16
EP2218039A4 (en) 2013-06-05
NZ585901A (en) 2012-02-24
JP2011507348A (en) 2011-03-03
RU2010127313A (en) 2012-01-10
AU2008333829B2 (en) 2013-10-03
RU2493588C2 (en) 2013-09-20
EP2218039A1 (en) 2010-08-18
KR20100112568A (en) 2010-10-19
CN101918958A (en) 2010-12-15
CA2707705A1 (en) 2009-06-11
WO2009073827A1 (en) 2009-06-11
AU2008333829A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
TWI399982B (en) System for compressing streaming interactive video
TWI459215B (en) System and method for storing program code and data within an application hosting center
TWI536804B (en) System and method for compressing video based on detected data rate of a communication channel
TWI592198B (en) System and method for accelerated machine switching
TWI528832B (en) System and method for video compression using feedback including data related to the successful receipt of video content
TWI536805B (en) System and method for encoding video using a selected tile and tile rotation pattern
RU2503998C2 (en) Hosting and broadcasting virtual events using streaming interactive video
RU2496141C2 (en) System for combining recorded application state with application streaming interactive video output
TWI554115B (en) System and method for selecting a video encoding format based on feedback data
TWI530163B (en) System and method for compressing video based on latency measurements and other feedback, and machine-readable medium
TWI536806B (en) System and method for multi-stream video compression using multiple encoding formats
TWI501589B (en) System and method for utilizing forward error correction with video compression
TWI545938B (en) Temporary decoder apparatus and method
RU2510591C2 (en) System for combining plurality of views of real-time streaming interactive video
TWI475843B (en) System and method for multi-stream video compression
TWI558109B (en) System and method for compressing video frames or portions thereof based on feedback information from a client device
RU2504908C2 (en) System for collaborative conferencing using streaming interactive video
RU2496135C2 (en) Streaming interactive video integrated with recorded video segments
RU2493583C2 (en) System for recursive reconstruction of streaming interactive video
RU2491756C2 (en) System and method of protecting certain types of multimedia data transmitted over communication channel
RU2493588C2 (en) System and method of compressing video based on detected intraframe motion
RU2493585C2 (en) Video compression system and method for reducing effect of packet loss in communication channel
RU2501180C2 (en) Video compression system and method for compensating for bandwidth limitations of communication channel
TW200951728A (en) Mothod for reporting recorded video preceding system failures
TW200942305A (en) Apparatus for streaming databases serving real-time applications used through streaming interactive video