TW200937485A - Electron emission device - Google Patents

Electron emission device Download PDF

Info

Publication number
TW200937485A
TW200937485A TW97107089A TW97107089A TW200937485A TW 200937485 A TW200937485 A TW 200937485A TW 97107089 A TW97107089 A TW 97107089A TW 97107089 A TW97107089 A TW 97107089A TW 200937485 A TW200937485 A TW 200937485A
Authority
TW
Taiwan
Prior art keywords
electron
electrode
emitting device
carbon nanotube
electrodes
Prior art date
Application number
TW97107089A
Other languages
Chinese (zh)
Other versions
TWI366212B (en
Inventor
Yang Wei
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097107089A priority Critical patent/TWI366212B/en
Publication of TW200937485A publication Critical patent/TW200937485A/en
Application granted granted Critical
Publication of TWI366212B publication Critical patent/TWI366212B/en

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

The present invention relates to an electron emission device. The electron emission device includes an insulated substrate, a number of first electrodes and a number of second electrodes disposed on the insulated substrate, and a number of electron emission units. Every two adjacent first electrodes and every two adjacent second electrodes form a grid. Each electron emission unit is disposed in and corresponding to one grid. Each electron emission unit includes an electron emitter. The first electrodes and second electrodes are electrically connected to the electron emitters. The electron emitter includes two tips separated therefrom.

Description

200937485 九、發明說明: •【發明所屬之技術領域】 - 本發明涉及一種電子發射器件,尤其涉及一種基於奈 米碳管的電子發射器件。 $ 【先前技術】 常見的電子發射器件一般為場發射電子器件和表面傳 導電子發射器件。場發射電子器件和表面傳導電子發射哭 ❾,於低溫或者室溫下工作,與電真空器件中的熱發‘電; 盗件相比具有能耗低、响應速度快及低放氣等優點,因此 用場發射電子器件或者表面傳導電子發射器件有望替代電 〃卫:件中的熱發射電子器件。大面積電子發射器件於平 板顯示器等裝置中有著廣闊的應用前景,因此,製備大面 積電子發射器件成為目前研究的一個熱點。 «•月參閱圖1 ’先前技術中的場發射電子器件,包括 一絕緣基底30 ’複數個電子發射單元%設置於該絕緣基 ©底上,及複數個陰極電極34與複數個柵極電極Μ設置於 該絕緣基底30上。其中,所述陰極電極%與栅極電極^ 之間由介質絕緣層33隔離’以防止短路。每個電子發射單 疋36包括至少一陰極發射體%,該陰極發射们8與所述 陰極電極34電連接並與所述栅極電極%間隔設置。所述 陰極發射體38於所述栅極電極32順向偏壓的作用下發射 電子。β該類電子發射器件300的電子發射效率較高。然, 斤述琢發射電子盗件3〇〇中柵極電極%的位置通常高於陰 極電極34的位置,陰極發㈣%於柵極電極32的作用下 200937485 發射電子,因此需要陰極電 ^ & 4興栅極電極32的距離很 ’·近。,、、:而陰極電極3 4和拇極雷极^ 0 ^ Ba H , 冊極電極32的間距不能精確控制, -且所尚的驅動電壓較高,接古了跡心而 °杈同了驅動電路的成本。 器件二=閱^:圖3 ’先前技術中的表面傳導電子發射 1 I絕緣基底40 ’複數個電子發射單元46 叹置於該絕緣基底4〇上,及兹叙袖她 次複數個柵極電極42與複數個 陰極電極44設置於該絕緣基底 啄丞低4ϋ上。其中,所述的複數 為個彳冊極電極42盘藉齡袖恰枝帝k h、 Ο ”復歎個陰極電極44分別平行且等間隔設 置於、邑緣基底40上’而且,栅極電極42與陰極電極料 垂直設置並於交又處由介質絕緣層43隔離,以防止短路。 每個柵,電極42複數個等間隔設置的延伸部421。每個電 子發射單元46包括-電子發射體48分別與所述陰極電極 栅極電極42的延伸部電連接,該電子發射體牝包括 一電子發射區(請參見,A 36_inch Surfacec〇nducti〇n200937485 IX. Description of the invention: • Technical field to which the invention pertains - The present invention relates to an electron-emitting device, and more particularly to an electron-emitting device based on a carbon nanotube. $ [Prior Art] Common electron-emitting devices are generally field emission electronic devices and surface conduction electron-emitting devices. Field emission electronics and surface conduction electrons emit crying, work at low temperature or room temperature, and have the advantages of low energy consumption, fast response, and low venting compared with the heat generated in electric vacuum devices. Therefore, the use of field emission electronics or surface conduction electron-emitting devices is expected to replace the electronically-defended electronic heat-emitting devices. Large-area electron-emitting devices have broad application prospects in devices such as flat panel displays. Therefore, the preparation of large-area electron-emitting devices has become a hot research topic. «•月月 Referring to Figure 1 'The field emission electronic device of the prior art, comprising an insulating substrate 30', a plurality of electron-emitting units % are disposed on the bottom of the insulating substrate, and a plurality of cathode electrodes 34 and a plurality of gate electrodes It is disposed on the insulating substrate 30. Wherein, the cathode electrode % is separated from the gate electrode ^ by the dielectric insulating layer 33 to prevent short circuit. Each of the electron-emitting cells 36 includes at least one cathode emitter, which is electrically connected to the cathode electrode 34 and spaced apart from the gate electrode. The cathode emitter 38 emits electrons under the forward bias of the gate electrode 32. The electron emission efficiency of the electron-emitting device 300 of this type β is high. However, it is generally higher that the position of the gate electrode % in the electron-emitting device 3 is higher than the position of the cathode electrode 34, and the cathode (four)% emits electrons under the action of the gate electrode 32, 200937485, thus requiring a cathode electric ^ & The distance between the 4th gate electrode 32 is very close. ,,,: and the cathode electrode 34 and the thumb-pole lightning pole ^ 0 ^ Ba H , the spacing of the book electrode 32 can not be precisely controlled, and the driving voltage is still high, and the ancient heart is different. The cost of the drive circuit. Device 2 = read: Figure 3 'Surface-conducting electron emission in the prior art 1 I insulating substrate 40' A plurality of electron-emitting units 46 are placed on the insulating substrate 4〇, and the plurality of gate electrodes are next to each other. 42 and a plurality of cathode electrodes 44 are disposed on the insulating substrate at a lower side. Wherein, the plural number is a singular pole electrode 42 disk sleeving sleeve qizhi kh, ” ” 复 个 a cathode electrode 44 are respectively parallel and equally spaced on the rim edge substrate 40 ′′, and the gate electrode 42 It is disposed perpendicular to the cathode electrode material and is separated from the dielectric insulating layer 43 to prevent short circuit. Each gate, the electrode 42 is provided with a plurality of equally spaced extensions 421. Each electron emission unit 46 includes an electron emitter 48. Connected to an extension of the cathode electrode gate electrode 42 respectively, the electron emitter 牝 includes an electron emission region (see, A 36_inch Surfacec〇nducti〇n

Electron-emitter Display(SED), T.Oguchi et al., SIDO5 ❹Digest’ V36, P1929-1931 ( 2005))。該電子發射區係由極小 顆粒構成的薄膜。通過於所述電子發射區兩端施加電壓, 並且該電子發射區通常需要一些表面處理工藝使其啟動, 電子才能形成表面傳導電流,並於陽極電場的作用下發射 電子。所述表面傳導電子發射器件400的結構簡單。然, 由於電子發射區薄膜内的顆粒間距極小,使陽極電場不易 渗透至所述電子發射區内部,導致所述表面傳導電子發射 器件400的電子發射效率低。 有馨於此’提供一種結構簡單,且電子發射效率高的 200937485 ~ 大面積電子發射器件實為必要。 •【發明内容】 - 一種電子發射器件,其包括:一絕緣基底;複數個平 订且等間隔排列的第一電極與複數個平行且等間隔排列的 第二電極設置於絕緣基底上,每兩個相鄰的第一電極與每 兩個相鄰的第二電極形成一個網格;複數個電子發射單元 分別對應設置於每個網格内,每個電子發射單元中設有至 ❹少一個電子發射體,該電子發射體的兩端分別與所述第一 電極和第二電極電連接,所述電子發射體具有一間隙,並 於該間隙處形成兩個尖端。 相較于先荊技術,所述電子發射器件中的第一電極、 第二電極和電子發射體共面設置,結構簡單;所述電子發 射體具有一間隙,於所述第一電極和第二電極之間施加一 電壓時,可以於所述第一電極和第二電極之間形成較大的 電%,電子容易從所述電子發射體的尖端射出,提高了所 ©述電子發射器件的電子發射效率,所發射電子的整體 性好。 【實施方式】 以下將結合附圖對本技術方案的電子發射器件作進一 步的詳細說明。 請參閱圖4及圖5,本技術方案實施例提供一種電子 發射器件·,包括-絕緣基底1G及設置於該絕緣基底ι〇 上的複數個電子發射單元22、複數個第一電極12鱼複數 個第二電極14。所述的複數個第—電極12與複數個第二 200937485 鄰的第―雷二 置於該絕緣基底10上。每兩個相 兩個相鄰的第二電極14相互垂直地交 成一網格16,且每個網格16内對應地設置有一 射單元22。於第_電極12與第二電極μ交叉處 第m絕^層2〇,該介質絕緣層2〇將第一電極12與 弟一電極14電隔離,以防止短路。 Ο 板、二述緣基底10為陶兗基板、玻璃基板、樹脂基 術人^。絕緣基底1G大小與厚度不限,本領域技 優二了以根據實際需要選擇。本實施例巾,絕緣基底 優選為一玻璃基板。 ,所述複數個第—電極12與複數個第:電極Μ為一導 -托―’如金屬層等。該複數個第一電極12與複數個第二電 =行距和列距均為3〇〇微米〜5〇〇微米。該第一電: 弟一電極14的寬度均為3〇微米〜1〇〇微米厚度均 〇數Γ平微未〜50 -微米。所述每個第一電極12進一步包括複 仃且間隔排列的延伸部121。該複數個延伸部121 格= :電極12的同一側,並至少部分與相應網 电極14正對。所述每個延伸部121對應設置於 内的電子發射單元22中。所述延伸部121之 2的間距為300微米〜500微米。所述延伸部121的形狀不 限本實^例中,該複數個第一電極12與複數個第二電極 優選為採用導電漿料印製的平面導電體,所述第一電極 的、伸邛均為等大的立方體結構’長度為60微米,寬 度為2〇微米,厚度為20微米。 200937485 每個電子發射單元22中設有至少一個電子發射體 » 18,該電子發射體18的兩端181分別與所述第一電極Μ <和第二電極14電連接。所述電子發射體18與絕緣基底1〇 間隔設置或直接設置於所述絕緣基底10上。所述電子發射 8 /、有間距為1微米〜20微米的間隙182,並於該間 隙182處形成有兩個尖端183。該尖端183為類圓錐形, 可以作為電子發射端。由於所述電子發射體18具有一間隙 ❹ 2於所述苐一電極12和第二電極14之間施加一電壓 時’可以於所述第一電極12和第二電極14之間形成較大 的電%’電子容易從所述電子發射體18的尖端射出, 提高了所述電子發射器件100的電子發射效率。所述電子 發射體18為金屬絲、碳纖維或者奈米碳管線。可以理解, 所述電子發射體18的兩端可通過一導電膠分別與所述第 一電極12和第二電極14電連接,也可以通過分子間力或 者其他方式來實現電連接。 ❹ 所述電子發射器件100中每個電子發射單元22可進一 步包括複數個電子發射體18,為了使該電子發射器件1〇〇 所發射電子的整體均勻性好,每個電子發射單元中具有相 同數量且等間隔排列的複數個電子發射體18。所述每個電 子發射體18分別沿從所述第二電極14向所述第一電極12 的延伸部121延伸的方向排列。 本技術方案實施例的電子發射體18優選為奈米碳管 線。該奈米碳管線係由複數個首尾相連且擇優取向排列的 奈米碳管束組成的束狀結構。所述相鄰的奈米碳管束之間 200937485 通過凡德瓦爾力連接。該奈米碳管束中包括複數個定向排 ‘列的奈米碳管。所述奈米碳管線中的奈米碳管為單壁、雙 -壁或多壁奈米碳管。該奈米碳管線的直徑均為2微米〜1〇 微米,長度為50微米〜400微米。該奈米碳管線中奈米碳 管沿所述第二電極14向第一電極12 .的延伸部121延伸的 方向排列。請參閱圖6及圖7,所述奈米碳管線的尖端均 包括複數個基本平行的奈米碳管,該複數個奈米碳管之間 ❹通過凡德瓦爾力緊密結合。該尖端的頂端突出有一根奈米 碳管。 所述電子發射器件100的每個電子發射單元22進一步 包括複數個固定元件24,分別設置於所述第一電極12和/ 或第二電極14上。所述固定元件24的材料不限,用於將 .所述電子發射體18更好地固定於所述第一電極12和/或第 二電極上。可以理解,所述複數個固定元件以可通過 一導電膠分別設置於所述第一電極12和/或第二電極Μ ❹上,也可以通過分子間力或者其他方式設置。 所述電子發射器件1〇〇可以庫 张H 〇 1 以應用於%發射顯示器,於 所述苐一電極12和第二電極14 壓,所述第二電極14於第 ^加—定的順向偏 子,並於陽極電壓的作用下所心的牵们乍用下發射電 螢光粉層,從而實現場發射顯示器_ 轟=極處的 第一電極12和第-雷坧' 月。虽於所述 不罘一窀極U之間施加一定 述第一電極12還可以於笸_ ^ 疋的負电壓時,所 子。 於第二電極14的牵弓I作用下發射電 11 200937485 請參閱圖8,本技術方案實施例提供—種上述電 射器件100的製備方法,具體包括以下步驟: x 步驟一:提供一絕緣基底10。 本實知例中’絕緣基底10優選為—玻璃絕緣基板。 步驟一 ·於該絕緣基底10上分別製備複數個平行且 間隔排列的第-電極12與第二電極14,該複數個第—電 極與第二電極14交叉設置,每兩個相鄰的第-電極12 〇與每兩個相鄰的第二電極14相互交又形成-網格16。 所述製備複數個第—電極12與複數個第二電極14可 以通過絲網印刷法、賤射法或蒸鍍法等方法實現。可以理 _ f,在製備過程中,可以通過上述製備方法控制, 、,第一電極12與複數個第二電極14交又設置。同時, 需確保第-電極12與第二電極14之間電絕緣,形成门可時定 ^電,’以便於在不同第—電極12與第二電極14之間施 d第2址電壓。本實施例中,採用絲網印刷法製備複數個 © 電極12與複數個第二電極14,其具體包括以下步驟: 一 先’採用絲網印刷法於絕緣基底! Q上印製複數 仃且等間隔排列的第一電極12。 本實施例中,通過絲網印刷法將導電漿料印製於 :底10上製備第一電極12。該導電漿料的成分包括金屬 炫點辆粉和枯結劑。其中,該金屬粉優選為銀粉, ^ ;、、、、。劑優選為松油醇或乙基纖維素。該導電衆料中,金 '柘的重里比為5〇〜9〇%,低熔點玻璃粉反 2〜1〇%,枯結劑的重量比為10〜40%。 為 12 200937485 其次,採用絲網印刷法於第一電極12與待形成的第一 -電極14交叉處印製複數個介質絕緣層2〇。 • 最後,採用絲網印刷法於絕緣基底1〇上印製複數個平 行且等間隔排列設置的第二電極14,且複數個第一電極I] 與複數個第二電極14相互交叉形成網路,每兩個相鄰的第 一電極12與每兩個相鄰的第二電極14相互交又形成— 網格16。 〇 可以理解,本實施例中,也可以先印製複數個平行且 等間隔排列設置的第二電極14,再印製複數個介質絕緣層 20,最後印製複數個平行且等間隔排列設置的第一電ς 12且複數個第一電極12與複數個第二電極相互交又 形成複數個網格16。 步驟三:形成複數個電子發射體18於上述設置有電極 的絕緣基底ίο上’該電子發射體18沿從第二電極14向第 一電極12延伸的方向排列。 ❹ 該電子發射體18為金屬絲、碳纖維或者奈米碳管線。 2述每個網格16内的至少一個電子發射體18位於所述第 -電極12和第二電極14之間。可以理解,為了將該電子 發射體18更牢固的固定於第一電極12和第二電極14之 上並更有效的與第一電極12和第二電極14電連接,在 形成電子發射體18之前,還可以於第—電極12和第二電 極14上預先塗敷一層導電膠。進一步,還可以採用絲網印 刷去於所述第一電極12和第二電極14上製備複數個固定 電極14,將電子發射體18更好地固定於所述第一電極u 13 200937485 和/或第二電極14上。 ' 右電子發射體18為金屬絲或者碳纖維時,可將所述金 、屬絲或者碳纖維直接沿從第二電極14向第一電極12延伸 的方向鋪没於設置有電極的絕緣基底1〇上形成電子發射 體18。 右包子發射體18為奈米碳管線,則所述奈米碳管線鋪 設於上述設置有電極的絕緣基底1〇上形成電子發射體Μ ❹的方法具體包括以下步驟: (1)製備至少一奈米碳管結構。 首先,提供一奈米碳管陣列,優選地,該陣列為超順 排奈米礙管陣列。 本實施例中’奈米碳管陣列的製備方法採用化學氣相 沈積法,其具體步驟包括:(a)提供一平整基底,該基底 可選用P型或N型矽基底,或選用形成有氧化層的矽基 底’本實施例優選為採用4英寸的矽基底;(b)於基底表 ❹面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe )、 録(Co)、鎳(Ni)或其任意組合的合金之一;(c)將上 述形成有催化劑層的基底於7〇(Tc〜900°C的空氣中退火約 30分鐘〜90分鐘;(d)將處理過的基底置於反應爐中,於 保遵氣體環境下加熱到5〇〇〇c〜74(rc,然後通入碳源氣體 反應約5分鐘〜3〇分鐘’生長得到奈米碳管陣列,其高度 大於100微米。該奈米碳管陣列為複數個彼此平行且垂直 於基底生長的奈米碳管形成的純奈米碳管陣列。該奈米碳 官陣列的面積與上述基底面積基本相同。通過上述控制生 14 200937485 長條件,該超順排奈米碳管陣列中基本不含有雜質,如石 •墨或殘留的催化劑金屬顆粒等。 - 上述碳源氣可選用乙炔、乙烯、甲烷等化學性質較活 潑的碳氫化合物,本實施例優選的碳源氣為乙炔;保^氣 體為氮氣或惰性氣體,本實施例優選的保護氣體為氯氣: 可以理解,本實施例提供的奈米碳管陣列不限於上述 製備方法,也可為石墨電極恒流電弧放電沈積法、鐳 Λ發沈積法等。 … ❹ 其次,採用一拉伸工具從奈米碳管陣列中拉取獲得一 奈米碳管結構。 該奈米碳管結構的製備具體包括以下步驟:(a)從上 述奈米碳管陣列中選定複數個奈米碳管片斷 .速度沿基本垂直于奈米碳管陣列生長方向拉伸所述複數個 奈米碳管,以形成一奈米碳管結構,該奈米碳管結構為一 連續的奈米碳管線或者奈米碳管薄膜。 〇 I實施例優選為採用#有一定寬度的膠帶接觸奈米碳 管陣列以選定一定寬度的複數個奈米碳管束,在上述拉伸 過程中,該複數個奈米礙管束在拉力作用下沿拉伸方向逐 漸脫離基底的同時,由於凡德瓦爾力作用,該選定的複數 個奈米碳管束分別與其他奈米碳管束首尾相連地連續地被 拉出,從而形成一奈米碳管結構。所述奈米碳管結構包括 複數個首尾相連且擇優取向排列的奈米碳管束,相鄰的奈 米碳管束之間通過凡德瓦爾力連接。該奈米碳管束包括複 數個長度相等且相互平行排列的奈米碳管,相鄰奈米石炭管 15 200937485 之間通過凡德瓦爾力連接’且奈米碳管的排列方向基本平 行于奈米碳管結構的拉伸方向。 可以理解,本實施例中,胃奈米石炭管結構的寬产盘太 米碳管陣列所生長的基底的尺寸有關,該奈米碳管二構二 長度不限,可根據實際需求制得。本實施例中採用4英寸 的基底生長超順排奈米碳管陣列,所製備的夺米碳其姓構 的寬度為〇.〇1厘米〜1〇厘米,厚度為1〇奈米〜ι〇〇 =。 Ο 可以理解,當採用較大的基底生長超順排奈米碳管陣列 時’可以得到更寬的奈米碳管結構。 一由於本實施例製備的超順排奈米碳管陣列中的奈米碳 管非常純淨,且由於奈米碳管本身的比表面積非常 該奈米碳管結構本身具有較強的粘性。 (2)將至少一奈米碳管結構沿從所述第二電極14向第 ❹ 一電極12延伸部121延伸的方向鋪設於上述設置有電極的 絕緣基底1〇上,形成至少一電子發射體18。 Θ结將至7纟米碳管結構鋪設於上述設置有電極的 、、、巴緣土底10上的方法中,可以直接將至少 鋪設於整個設置有電極的绍绘I e 反構 置啕%極的絕緣基底10上,通過其本身 性直接㈣於第—電極12與第二電極14表面 碳管結構本身具有良好的導電性,故與第—電極12和= 電極14 Λ現電連接。奈米碳管結構的鋪設方向要確保1令 :奈米碳管的排列方向相同,且在每個電子發射單元、22 中“碳管的排列方向從第二電極u向第一電極 可以理解,尤Τ 在氣備大面積電子發射器件100時,當所 16 200937485 述奈米碳管結構為奈米碳管線時,將該奈米碳管線平行且 ^隔鋪設於整個設置有電極的絕緣基底1〇上。當所述奈米 石反官結構為奈米碳管薄膜時,將該奈米碳管薄膜平行且無 ,隙地鋪設於整個設置有電極的絕緣基底1〇上'。進一步二 還可以將至少兩個奈米碳管薄膜直接重疊鋪設於整 有電極的絕緣基底10上。 若奈米碳管結構為奈米碳管薄膜,上述形 电ΤΙ牙Γ ❹,18覆蓋於上述設置有電極的絕緣基底w上的步驟進一 二=用有機溶劑處理該奈米碳管薄膜,以形成多根奈 y、線作為電子發射體18的步驟。 ^用有機溶劑處理上述奈米碳管薄膜的方法可通過試 =落於所述奈米碳管薄膜表面浸潤整個奈米 =相:該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、 氯乙烷或氣仿’本實施例中優選採用乙醇。該奈 〇 ㈣經有機溶劑制處理後,在揮發性有機溶劑的 斷舍:八的作用下’奈米碳管薄膜中的平行的奈米碳管片 所"Si集成奈米碳管束,從而形成多根奈米碳管線。 米碳管線的表面體積比小,雜降低,且且有 〈好的機械強度及祕,方便應用。 ^驟四:斷開所述電子發射體18,使每個電子發射體 從/彳^間隙182,並於該間隙182處形成兩個尖端183, 攸而仵到一電子發射器件1〇〇。 在大例中’上述斷開所述電子發射體18的方法可以 、衣兄或其他含氧的環境下進行,採用鐳射燒蝕法、 17 200937485 電子束掃描法或真空熔斷法來斷開所述電子發射體18。 ' 當採用鐳射燒蝕法或者電子束掃描法來斷開所述電子 .發射體18時,可以實現對所述電子發射體以的定點熔斷, 即所述每個電子發射體18的間隙182的位置可以控制在該 電子發射體18的任意位置處。 本實轭例中,優選採用真空熔斷法斷開所述電子發射 體18。在真空的環境下,分別於一個所述第一電極和 〇與該第-電極14相鄰的第二電極12施加電壓,通入電流 加熱,使每個電子發射單元22中位於第一電極12和第二 電極14之間的電子發射體! 8溶斷。也可於惰性氣體的環 境下進行溶斷如氦氣或氬氣等。本技術領域人員應當明 白所述電子發射體18兩端所施加的電壓與所選的電子發 射體18的直徑和長度有關。將所述電子發射體18設置於 m低於lxl(rl帕的真空室内或充滿惰性氣體的反 應室,在直流條件下通過焦耳熱加熱電子發射體18。加熱 ❹溫度優選為2000Κ至2800Κ,加熱時間小於工小時。 在溶斷的瞬間,每個電子發射體18會形成—間隙,並 於該間隙處形成兩個尖端182。該間隙182的大小為王微 米20微米同時在炫斷點位置附近,由於電子發射體μ 的洛發,真空度較差,這些因素會使溶斷的瞬間於熔斷點 附近產生氣體電離。電離後的離子雇擊炼斷的電子發射體 18的端部,並於該端部形成一尖端182。 本實施例採用的真空熔斷法來斷開奈米碳管線,獲得 的奈米碳管線的尖端具有很高的表面清潔度,而且,加熱 18 200937485 過程令奈米碳管線的缺陷會大大減少,使得它們 *度會有-定提高’使之具備優良的場發射性能。: .9,為奈米碳管線的尖端的拉曼光譜圖。用拉 二: :=f理的奈米破管線的尖端的缺陷峰有二:; 低,而尖端的缺陷峰更低。也就太輯 “石厌吕在炼斷的過程中質量得到了極大的提高。這 〇 奈米碳管經過熱處理後缺陷減少,另一方面係因 仏缺陷的石墨層容易於高溫下崩潰,剩下 高的石墨層。 一貝里权 接中ϊίΓ述’本發明確6符合發明專利之要件,遂依法 t專利申請°惟’以上所述者僅為本發明之較佳實施例, 不能=此限制本案之申請專利範圍。舉凡熟悉本案技藝 ^人士援依本發明之精神所作之等效修㈣變化,皆應涵 盍於以下申請專利範圍内。 ❹ 19 200937485 【圖式簡單說明】 圖 圖係先月IJ技術中場發射電子器件的側視結構示意 示意=係先前技術中表面傳㈣子發㈣件的側視結構 :3係先前技術中表面傳導電子發射器件的俯視結構 不思圖。 圖4係本技術方案實施例的電子發射器件的側視結構 示意圖。 一圖5係本技術方案實施例的電子發射器件的俯視結構 示意圖。 圖6係本技術方案實施例的奈米碳管長線的電子發射 端的掃描電鏡照片。 圖7係本技術方案實施例的奈米碳管長線的電子發射 ◎端的透射電鏡照片。 圖8係本技術方案實施例的電子發射器件的製備方法 的流程圖。 圖9係本技術方案實施例的奈米碳管長線的電子發射 端的拉曼光譜圖。 【主要元件符號說明】 絕緣基底 10, 30, 40 電子發射器件 100 第一電極 12 20 200937485 延伸部 121,421 .第二電極 14 _ 網格 16 電子發射體 18, 48 電子發射體的兩端 181 電子發射體的間隙 182 電子發射體的尖端 183 介質絕緣層 ❹ 電子發射單元 20, 33, 43 22, 36, 46 固定元件 24 場發射電子器件 300 桃極電極 32, 42 陰極電極 34, 44 陰極發射體 38 表面傳導電子發射器件 400 ο 21Electron-emitter Display (SED), T. Oguchi et al., SIDO5 ❹ Digest' V36, P1929-1931 (2005)). The electron-emitting region is a film composed of extremely small particles. By applying a voltage across the electron-emitting region, and the electron-emitting region usually requires some surface treatment to activate it, the electrons can form a surface conduction current and emit electrons under the action of the anode electric field. The surface conduction electron-emitting device 400 has a simple structure. However, since the particle pitch in the electron-emitting region film is extremely small, the anode electric field is hard to penetrate into the inside of the electron-emitting region, resulting in low electron emission efficiency of the surface conduction electron-emitting device 400. It is necessary to provide a large-area electron-emitting device with a simple structure and high electron emission efficiency. • [Description of the Invention] - An electron-emitting device comprising: an insulating substrate; a plurality of flat and equally spaced first electrodes and a plurality of parallel and equally spaced second electrodes disposed on the insulating substrate, each two An adjacent first electrode forms a grid with each two adjacent second electrodes; a plurality of electron-emitting units are respectively disposed in each of the grids, and each electron-emitting unit is provided with one electron to be reduced The emitter, the two ends of the electron emitter are electrically connected to the first electrode and the second electrode, respectively, the electron emitter has a gap, and two tips are formed at the gap. Compared with the prior art, the first electrode, the second electrode and the electron emitter in the electron-emitting device are disposed coplanarly and have a simple structure; the electron emitter has a gap at the first electrode and the second electrode When a voltage is applied between the electrodes, a large electric % can be formed between the first electrode and the second electrode, and electrons are easily emitted from the tip end of the electron emitter, thereby improving the electrons of the electron-emitting device. Emission efficiency, the integrity of the emitted electrons is good. [Embodiment] Hereinafter, an electron-emitting device of the present technical solution will be further described in detail with reference to the accompanying drawings. Referring to FIG. 4 and FIG. 5 , an embodiment of the present technical solution provides an electron-emitting device, including an insulating substrate 1G, a plurality of electron-emitting units 22 disposed on the insulating substrate, and a plurality of first electrodes 12 Second electrodes 14. The plurality of first electrodes 12 are placed on the insulating substrate 10 with a plurality of second electrodes of the second 200937485. Each of the two adjacent two adjacent electrodes 14 intersects each other perpendicularly to form a grid 16, and a corresponding unit 22 is disposed in each of the grids 16. At the intersection of the first electrode 12 and the second electrode μ, the dielectric insulating layer 2 electrically isolates the first electrode 12 from the first electrode 14 to prevent short circuit. The base plate and the second base substrate 10 are a ceramic substrate, a glass substrate, and a resin base. The size and thickness of the insulating substrate 1G are not limited, and the art is technically preferred to be selected according to actual needs. In the embodiment, the insulating substrate is preferably a glass substrate. The plurality of first electrodes 12 and the plurality of first electrodes are a conductive material, such as a metal layer. The plurality of first electrodes 12 and the plurality of second electrical = line spacing and column spacing are both 3 〇〇 micrometers to 5 〇〇 micrometers. The first electric: the width of the first electrode 14 is 3 〇 micron ~ 1 〇〇 micron thickness 〇 Γ flat not ~ 50 - micron. Each of the first electrodes 12 further includes a plurality of entangled and spaced-apart extensions 121. The plurality of extensions 121 are: the same side of the electrode 12 and are at least partially opposite the respective mesh electrodes 14. Each of the extensions 121 corresponds to an electron-emitting unit 22 disposed therein. The spacing of the extensions 121 is from 300 micrometers to 500 micrometers. The shape of the extending portion 121 is not limited to the embodiment. The plurality of first electrodes 12 and the plurality of second electrodes are preferably planar conductive bodies printed with a conductive paste, and the first electrodes are stretched. Both are cubic structures with a length of 60 microns, a width of 2 microns, and a thickness of 20 microns. 200937485 Each electron-emitting unit 22 is provided with at least one electron emitter » 18, and two ends 181 of the electron emitter 18 are electrically connected to the first electrode Μ < and the second electrode 14, respectively. The electron emitter 18 is disposed at an interval from the insulating substrate 1 or directly on the insulating substrate 10. The electron emission 8 / has a gap 182 having a pitch of 1 μm to 20 μm, and two tips 183 are formed at the gap 182. The tip 183 is a cone-like shape and can serve as an electron-emitting end. Since the electron emitter 18 has a gap ❹ 2, a voltage is applied between the first electrode 12 and the second electrode 14 to form a larger gap between the first electrode 12 and the second electrode 14. The electric %' electrons are easily emitted from the tip end of the electron emitter 18, improving the electron emission efficiency of the electron-emitting device 100. The electron emitter 18 is a wire, carbon fiber or nano carbon line. It can be understood that the two ends of the electron emitter 18 can be electrically connected to the first electrode 12 and the second electrode 14 respectively through a conductive adhesive, or can be electrically connected by intermolecular force or other means. Each electron-emitting unit 22 in the electron-emitting device 100 may further include a plurality of electron emitters 18 having the same in each electron-emitting unit in order to make the overall uniformity of electrons emitted from the electron-emitting device 1〇〇 A plurality of electron emitters 18 arranged in equal numbers and at equal intervals. Each of the electron emitters 18 is arranged in a direction extending from the second electrode 14 toward the extending portion 121 of the first electrode 12. The electron emitter 18 of the embodiment of the present technical solution is preferably a carbon nanotube wire. The nanocarbon pipeline is a bundle structure composed of a plurality of carbon nanotube bundles arranged end to end and arranged in a preferred orientation. The adjacent carbon nanotube bundles are connected by Van der Waals force at 200937485. The carbon nanotube bundle includes a plurality of aligned carbon nanotubes. The carbon nanotubes in the nanocarbon pipeline are single-walled, double-walled or multi-walled carbon nanotubes. The nanocarbon line has a diameter of 2 micrometers to 1 micrometer and a length of 50 micrometers to 400 micrometers. The carbon nanotubes in the nanocarbon line are arranged along the second electrode 14 in a direction in which the extending portion 121 of the first electrode 12 extends. Referring to Figures 6 and 7, the tips of the carbon nanotubes each include a plurality of substantially parallel carbon nanotubes, and the plurality of carbon nanotubes are tightly coupled by van der Waals force. A tip of the tip protrudes from a carbon nanotube. Each of the electron-emitting units 22 of the electron-emitting device 100 further includes a plurality of fixing members 24 disposed on the first electrode 12 and/or the second electrode 14, respectively. The material of the fixing member 24 is not limited, and the electron emitter 18 is better fixed to the first electrode 12 and/or the second electrode. It can be understood that the plurality of fixing elements can be respectively disposed on the first electrode 12 and/or the second electrode 通过 through a conductive adhesive, or can be disposed by intermolecular force or other means. The electron-emitting device 1 库 can be stored in the H 〇 1 to be applied to the %-emitting display, and the first electrode 12 and the second electrode 14 are pressed, and the second electrode 14 is in the forward direction. The sub-electrode, under the action of the anode voltage, uses the lower emission of the electro-powder layer to realize the first electrode 12 and the first-throat month of the field emission display. Although a certain amount of the first electrode 12 is applied between the non-turning poles U, the negative voltage of 笸_^ , can be used. The power is transmitted under the action of the second electrode 14. 200937485 Please refer to FIG. 8. The embodiment of the present invention provides a method for fabricating the above-described electro-radiation device 100, which specifically includes the following steps: x Step 1: providing an insulating substrate 10. In the present embodiment, the insulating substrate 10 is preferably a glass insulating substrate. Step 1 - a plurality of parallel and spaced-apart first electrode 12 and second electrode 14 are respectively formed on the insulating substrate 10, and the plurality of first electrodes and the second electrode 14 are disposed at intersection, and each two adjacent first- The electrode 12 〇 and each two adjacent second electrodes 14 intersect each other to form a grid 16 . The preparation of the plurality of first electrodes 12 and the plurality of second electrodes 14 can be carried out by a screen printing method, a sputtering method or an evaporation method. In the preparation process, it can be controlled by the above preparation method, and the first electrode 12 and the plurality of second electrodes 14 are disposed again. At the same time, it is necessary to ensure that the first electrode 12 and the second electrode 14 are electrically insulated from each other to form a gate which is time-determined to facilitate the application of the second site voltage between the different first electrode 12 and the second electrode 14. In this embodiment, a plurality of © electrodes 12 and a plurality of second electrodes 14 are prepared by screen printing, which specifically includes the following steps: First, using a screen printing method to insulate the substrate! A plurality of first electrodes 12 arranged at equal intervals are printed on Q. In this embodiment, the first electrode 12 is prepared by printing a conductive paste on the bottom 10 by a screen printing method. The composition of the conductive paste includes a metal powder and a binder. Wherein, the metal powder is preferably silver powder, ^;,,,,. The agent is preferably terpineol or ethyl cellulose. In the conductive material, the weight ratio of gold '柘 is 5〇~9〇%, the low melting point glass powder is 2~1〇%, and the weight ratio of the dead agent is 10~40%. 12 200937485 Next, a plurality of dielectric insulating layers 2 are printed at the intersection of the first electrode 12 and the first electrode 14 to be formed by screen printing. Finally, a plurality of parallel and equally spaced second electrodes 14 are printed on the insulating substrate 1 by screen printing, and the plurality of first electrodes I] and the plurality of second electrodes 14 cross each other to form a network Each two adjacent first electrodes 12 and each two adjacent second electrodes 14 intersect each other to form a grid 16. 〇 It can be understood that, in this embodiment, a plurality of second electrodes 14 arranged in parallel and equally spaced may be printed first, and then a plurality of dielectric insulating layers 20 are printed, and finally printed in a plurality of parallel and equally spaced arrangements. The first electrode 12 and the plurality of first electrodes 12 and the plurality of second electrodes intersect each other to form a plurality of grids 16. Step 3: forming a plurality of electron emitters 18 on the above-mentioned insulating substrate provided with electrodes. The electron emitters 18 are arranged in a direction extending from the second electrode 14 to the first electrode 12.电子 The electron emitter 18 is a wire, carbon fiber or nano carbon line. At least one electron emitter 18 in each of the grids 16 is located between the first electrode 12 and the second electrode 14. It can be understood that in order to fix the electron emitter 18 more firmly on the first electrode 12 and the second electrode 14 and to electrically connect the first electrode 12 and the second electrode 14 more effectively, before forming the electron emitter 18 It is also possible to apply a layer of conductive paste to the first electrode 12 and the second electrode 14 in advance. Further, a plurality of fixed electrodes 14 may be prepared by screen printing on the first electrode 12 and the second electrode 14, and the electron emitter 18 is better fixed to the first electrode u 13 200937485 and/or On the second electrode 14. When the right electron emitter 18 is a wire or a carbon fiber, the gold, the filament or the carbon fiber may be directly laid on the insulating substrate 1 provided with the electrode in a direction extending from the second electrode 14 toward the first electrode 12. An electron emitter 18 is formed. The right bun emitter 18 is a nano carbon line, and the method for forming the electron emitter Μ on the insulating substrate 1 provided with the electrode includes the following steps: (1) preparing at least one Carbon tube structure. First, a carbon nanotube array is provided, preferably the array is a super-smooth nanotube array. In the present embodiment, the method for preparing a carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or may be formed to be oxidized. The layer of tantalum substrate 'this embodiment is preferably a 4-inch tantalum substrate; (b) uniformly forming a catalyst layer on the surface of the substrate surface, the catalyst layer material may be selected from iron (Fe), recorded (Co), nickel (Ni Or one of the alloys of any combination thereof; (c) annealing the substrate on which the catalyst layer is formed in 7 Torr (Tc to 900 ° C in air for about 30 minutes to 90 minutes; (d) placing the treated substrate In the reaction furnace, heated to 5 〇〇〇 c ~ 74 (rc, and then passed into the carbon source gas reaction for about 5 minutes ~ 3 〇 minutes to grow to obtain a carbon nanotube array, the height is greater than 100 microns The carbon nanotube array is an array of pure carbon nanotubes formed by a plurality of carbon nanotubes parallel to each other and perpendicular to the substrate. The area of the nanocarbon array is substantially the same as the area of the substrate. 14 200937485 Long condition, the super-shun The carbon nanotube array contains substantially no impurities, such as stone ink or residual catalyst metal particles, etc. - the above carbon source gas may be selected from acetylene, ethylene, methane and other chemically active hydrocarbons, and carbon preferred in this embodiment. The source gas is acetylene; the gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is chlorine gas. It is understood that the carbon nanotube array provided in this embodiment is not limited to the above preparation method, and may also be a graphite electrode constant current. Arc discharge deposition method, radium deposition method, etc. ❹ Next, a carbon nanotube structure is obtained by pulling a carbon nanotube array from a stretching tool. The preparation of the carbon nanotube structure specifically includes the following steps. : (a) selecting a plurality of carbon nanotube segments from the array of carbon nanotubes described above. The velocity is stretched substantially perpendicular to the growth direction of the carbon nanotube array to form a nanocarbon. The tube structure, the carbon nanotube structure is a continuous nano carbon line or a carbon nanotube film. The 〇I embodiment preferably uses a tape having a certain width to contact the carbon nanotube array to select a a plurality of carbon nanotube bundles having a width, wherein during the stretching process, the plurality of nano tube bundles are gradually separated from the substrate in the stretching direction under the action of the tensile force, and the selected plurality of nai are selected due to the effect of the van der Waals force The carbon nanotube bundles are continuously drawn out of the end of the other carbon nanotube bundles to form a carbon nanotube structure. The carbon nanotube structure comprises a plurality of carbon nanotube bundles arranged end to end and arranged in a preferred orientation. Adjacent carbon nanotube bundles are connected by van der Waals force. The carbon nanotube bundle comprises a plurality of carbon nanotubes of equal length and arranged parallel to each other, and adjacent nanocarboniferous tubes 15 pass through Van der Waal The force connection 'and the arrangement direction of the carbon nanotubes are substantially parallel to the stretching direction of the carbon nanotube structure. It can be understood that, in this embodiment, the wide-yield disk of the gas nanotube structure is grown by the array of carbon nanotubes. The size of the substrate is related to each other. The length of the two carbon nanotubes is not limited and can be obtained according to actual needs. In this embodiment, a 4-inch substrate growth super-sequential carbon nanotube array is used, and the prepared rice carbon has a width of 〇.〇1 cm~1〇cm and a thickness of 1〇N~ι〇 〇=. Ο It can be understood that a wider carbon nanotube structure can be obtained when a super-sequential nanotube array is grown with a larger substrate. The carbon nanotubes in the super-sequential carbon nanotube array prepared in this example are very pure, and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube structure itself has strong viscosity. (2) laying at least one carbon nanotube structure on the insulating substrate 1 provided with the electrode in a direction extending from the second electrode 14 to the extension portion 121 of the second electrode 12 to form at least one electron emitter 18. The Θ 将 将 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟On the insulating substrate 10 of the pole, the carbon nanotube structure itself is directly electrically connected to the surface of the first electrode 12 and the second electrode 14 by its own nature, so that it is electrically connected to the first electrode 12 and the = electrode 14. The laying direction of the carbon nanotube structure is to ensure that the order of the carbon nanotubes is the same, and in each electron-emitting unit, 22, "the arrangement direction of the carbon tubes from the second electrode u to the first electrode can be understood, In the case of gas-filled large-area electron-emitting device 100, when the carbon nanotube structure of the 16200937485 is a nanocarbon pipeline, the nanocarbon pipeline is laid in parallel and spaced over the entire insulating substrate provided with the electrode. When the nano-stone anti-official structure is a carbon nanotube film, the carbon nanotube film is placed in parallel and without gaps on the entire insulating substrate 1 provided with electrodes. At least two carbon nanotube films are directly overlapped and laid on the insulating substrate 10 having the entire electrode. If the carbon nanotube structure is a carbon nanotube film, the above-mentioned electric ΤΙ ❹ , 18 is covered with the above electrode provided The step of insulating the substrate w is carried out as follows: a step of treating the carbon nanotube film with an organic solvent to form a plurality of y, y wires as electron emitters 18. ^ Method for treating the above carbon nanotube film with an organic solvent Can pass the test = fall on The surface of the carbon nanotube film is infiltrated throughout the nanometer phase: the organic solvent is a volatile organic solvent such as ethanol, methanol, ethyl chloride or gas-like. In the present embodiment, ethanol is preferably used. The naphthene (four) is organic. After the solvent treatment, under the action of the volatile organic solvent: the parallel carbon nanotubes in the carbon nanotube film "Si integrated nano carbon nanotube bundle, thereby forming a plurality of nano carbon The surface carbon volume of the rice carbon pipeline is small, the impurity is reduced, and there is a good mechanical strength and secret, which is convenient for application. ^Step 4: Disconnect the electron emitter 18 so that each electron emitter is from /彳a gap 182, and two tips 183 are formed at the gap 182, and then ejected to an electron-emitting device 1 〇〇. In a large example, the method of disconnecting the electron-emitting body 18 can be, the brother or the other In an oxygen-containing environment, the electron emitter 18 is broken by a laser ablation method, 17 200937485 electron beam scanning method or vacuum melting method. 'When the laser ablation method or electron beam scanning method is used to disconnect the electron emitter 18 When the electron is emitted, the object can be realized. The electron emitter is fixed at a fixed point, that is, the position of the gap 182 of each of the electron emitters 18 can be controlled at any position of the electron emitter 18. In the present embodiment, the vacuum fuse method is preferably used to disconnect the An electron emitter 18. In a vacuum environment, a voltage is applied to one of the first electrode and the second electrode 12 adjacent to the first electrode 14 and heated by an electric current to make each electron-emitting unit 22 The electron emitters 8 located between the first electrode 12 and the second electrode 14 are dissolved. It is also possible to dissolve in an inert gas atmosphere such as helium or argon, etc. Those skilled in the art will appreciate the electron emission. The voltage applied across the body 18 is related to the diameter and length of the selected electron emitter 18. The electron emitter 18 is disposed in a vacuum chamber of m below lxl (rPa) or a reaction chamber filled with an inert gas, and heats the electron emitter 18 by Joule heat under direct current conditions. The heating crucible temperature is preferably 2000 Κ to 2800 Κ, and is heated. The time is less than the working hour. At the instant of the dissolution, each electron emitter 18 forms a gap, and two tips 182 are formed at the gap. The size of the gap 182 is 20 micrometers in the king micron and is near the position of the breaking point. Due to the low emission of the electron emitter μ, the factors cause the gas to be ionized near the melting point at the instant of the dissolution. The ionized ion hires the end of the electron emitter 18 which is smashed, and The end portion forms a tip end 182. The vacuum melting method used in this embodiment is to cut the nano carbon line, the tip of the obtained nano carbon line has a high surface cleanliness, and the heating 18 200937485 process makes the nano carbon line Defects will be greatly reduced, so that they will have a good performance to achieve excellent field emission performance.: .9, is the Raman spectrum of the tip of the nano carbon pipeline. The defect peak of the tip of the nano-breaking pipeline has two: low, and the defect peak of the tip is lower. It is too much "the quality of the stone is greatly improved during the process of the refining. This is the nanometer." After the heat treatment of the carbon tube, the defect is reduced, and on the other hand, the graphite layer which is defective in defects is easily collapsed at a high temperature, and a high graphite layer is left. A Berry right connection ϊ Γ ' 'The invention is in accordance with the requirements of the invention patent,专利 t t 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利The changes shall be within the scope of the following patent application. ❹ 19 200937485 [Simple description of the diagram] The diagram is a schematic view of the side view structure of the field emission electronic device of the IJ technology in the first month = the surface transmission of the prior art (4) (4) Side view structure of the device: 3 is a top view structure of the surface conduction electron-emitting device in the prior art. Fig. 4 is a side view showing the structure of the electron-emitting device of the embodiment of the present technical solution. FIG. 6 is a scanning electron micrograph of the electron-emitting end of the long carbon nanotube line of the embodiment of the present technical solution. FIG. 7 is a long-term carbon nanotube tube of the embodiment of the present technical solution. Fig. 8 is a flow chart of a method for preparing an electron-emitting device according to an embodiment of the present technical solution. Fig. 9 is a Raman spectrum of an electron-emitting end of a long carbon nanotube of the embodiment of the present technical solution. [Main component symbol description] Insulating substrate 10, 30, 40 Electron emitting device 100 First electrode 12 20 200937485 Extension 121, 421. Second electrode 14 _ Grid 16 Electron emitter 18, 48 Both ends of electron emitter 181 Electron emitter gap 182 Electron emitter tip 183 Dielectric insulating layer ❹ Electron emission unit 20, 33, 43 22, 36, 46 Fixing element 24 Field emission electronics 300 Peach electrode 32, 42 Cathode electrode 34, 44 Cathode Emitter 38 surface conduction electron-emitting device 400 ο 21

Claims (1)

200937485 十、申5肖專利範圍 1. 一種電子發射器件,其包括: 一絕緣基底; ❹ 且等f;::且等間隔排列的第—電極與複數個平行 個;=_二電極設置於絕緣基底上,該複數 置,且笛—玉與稷數個第二電極相互垂直地交叉設 的第一:電極與第二電極之間電絕緣,每兩個相鄰 =-電極與每兩個相鄰的第二電極形成一個網格; '固電子發射單元分別對應設置於每個網格内,每 2子發射單元中設有至少—個電子發射體,該電子 體的兩端分別與所述第—電極和第二電極電連 接, 其改良在於’所述電子發射體具有一間隙。 2.如申請專利範圍第1項所述的電子發射器件,其中, 斤述電子發射器件中每個電子發射體於所述間隙 〇 形成有兩個尖端。 Μ 3·如申請專利範圍第1項所述的電子發射器件,其中, 所述間隙的大小為1微米〜20微米。 .如申明專利範圍第1項所述的電子發射器件,其中, 所述母個電子發射單元設置有複數個平行且間隔排 列的電子發射體。 5.如申明專利範圍第1項所述的電子發射器件,其中, 所述電子發射器件中的每個第一電極進一步包括複 數個間隔排列的延伸部,該複數個延伸部分別對應 22 200937485 〇又置於母個電子發射單元内。 6· 如申請專利範圍第5項所述的電子發射器件,其中, 所述複數個延伸部均設置於所述第一電極的同〜 側’並至少部分與相應網格内的第二電極正對。 7.200937485 X. Shen 5 Xiao Patent Range 1. An electron-emitting device comprising: an insulating substrate; ❹ and f;:: and an equal interval of the first electrode and a plurality of parallel; = _ two electrodes are provided in the insulation On the substrate, the plurality is disposed, and the first: the electrode and the second electrode perpendicularly intersecting each other are electrically insulated from each other, and each two adjacent=-electrodes and each two phases The adjacent second electrodes form a grid; the solid-electron emission units are respectively disposed in each of the grids, and at least one electron emitter is disposed in each of the two sub-emission units, and the two ends of the electron body are respectively associated with the The first electrode and the second electrode are electrically connected, the improvement being that the electron emitter has a gap. 2. The electron-emitting device according to claim 1, wherein each of the electron emitters in the electron-emitting device has two tips formed in the gap 〇. The electron-emitting device according to claim 1, wherein the gap has a size of 1 μm to 20 μm. The electron-emitting device according to claim 1, wherein the parent electron-emitting unit is provided with a plurality of parallel and spaced-arranged electron emitters. 5. The electron-emitting device of claim 1, wherein each of the first electrodes of the electron-emitting device further comprises a plurality of spaced-apart extensions, the plurality of extensions respectively corresponding to 22 200937485 〇 Also placed in the parent electron-emitting unit. 6. The electron-emitting device of claim 5, wherein the plurality of extensions are disposed on the same side of the first electrode and at least partially adjacent to the second electrode in the corresponding grid. Correct. 7. 如申請專利範圍第5項所述的電子發射器件,其中, 所述電子發射器件中的每個電子發射體沿從所述第 二電極向第一電極的延伸部延伸的方向排列,並與 所述第二電極和第一電極的延伸部電連接。 如申請專利範圍第2項所述的電子發射器件,其中, 所述電子發射體為金屬絲、碳纖維或者奈米碳管線。 如申請專利範圍第8項所述的電子發射器件,其中, 所述奈米碳管線的尖端的頂端突出有一根奈米碳 管。 χΟ.如申請專利範圍第8項所述的電子發射器件,其中, 所述奈米碳管線的尖端為類圓錐形,其直徑小於該奈 米碳管線的直徑。 0 如申請專利範圍第8項所述的電子發射器件,其中, 所述奈米碳管線係由複數個首尾相連的奈米碳管束 組成的束狀結構。 12. 如申請專利範圍第11項所述的電子發射器件,其 中,所述奈米碳管束之間通過凡德瓦爾力緊密結合, 該奈米碳管束中包括複數個定向排列的奈米碳管。 13. 如申請專利範圍第8項所述的電子發射器件,其中, 所述奈米碳管線的尖_端包括複數個平行的奈米碳 23 200937485 管’該複數個奈米碳管之間通過凡德瓦爾力緊密結 合。 .14·如申請專利範圍第8項所述的電子發射器件,其中, 所述奈米碳管線的直徑為2微米〜10微米。 15. 如申請專利範圍第1項所述的電子發射器件,其中, 該電子發射器件進一步包括複數個固定電極,該複數 個固定元件分別設置於所述第一電極和/或第二電極 上。The electron-emitting device of claim 5, wherein each of the electron-emitting devices is arranged in a direction extending from the second electrode toward an extension of the first electrode, and The second electrode and the extension of the first electrode are electrically connected. The electron-emitting device according to claim 2, wherein the electron emitter is a wire, a carbon fiber or a carbon nanotube. The electron-emitting device according to claim 8, wherein a tip of the tip of the carbon nanotube line protrudes from a tip of a carbon nanotube. The electron-emitting device according to claim 8, wherein the tip of the carbon nanotube is conical-shaped and has a diameter smaller than a diameter of the carbon nanotube. The electron-emitting device according to claim 8, wherein the nanocarbon line is a bundle structure composed of a plurality of end-to-end carbon nanotube bundles. 12. The electron-emitting device according to claim 11, wherein the carbon nanotube bundles are tightly coupled by a van der Waals force, and the carbon nanotube bundle includes a plurality of aligned carbon nanotubes . 13. The electron-emitting device of claim 8, wherein the tip end of the nanocarbon line comprises a plurality of parallel nanocarbons 23 200937485 tubes passing between the plurality of carbon nanotubes Van der Valli is closely integrated. The electron-emitting device according to claim 8, wherein the nanocarbon line has a diameter of 2 μm to 10 μm. The electron-emitting device according to claim 1, wherein the electron-emitting device further comprises a plurality of fixed electrodes, the plurality of fixing members being respectively disposed on the first electrode and/or the second electrode. 24twenty four
TW097107089A 2008-02-29 2008-02-29 Electron emission device TWI366212B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097107089A TWI366212B (en) 2008-02-29 2008-02-29 Electron emission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097107089A TWI366212B (en) 2008-02-29 2008-02-29 Electron emission device

Publications (2)

Publication Number Publication Date
TW200937485A true TW200937485A (en) 2009-09-01
TWI366212B TWI366212B (en) 2012-06-11

Family

ID=44867075

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097107089A TWI366212B (en) 2008-02-29 2008-02-29 Electron emission device

Country Status (1)

Country Link
TW (1) TWI366212B (en)

Also Published As

Publication number Publication date
TWI366212B (en) 2012-06-11

Similar Documents

Publication Publication Date Title
CN101499389B (en) Electronic emitter
CN101499390B (en) Electronic emitter and method for producing the same
CN101471211B (en) Thermal emission electronic component
JP4976367B2 (en) Thermionic emission device
JP5209659B2 (en) Incandescent light source display device
JP2009164118A (en) Method for manufacturing thermion emission element
CN101425438A (en) Producing method for field emission type electron source
US20090160306A1 (en) Thermal electron emission source having carbon nanotubes and method for making the same
JP2009164120A (en) Thermion emission element
CN101604603B (en) Filed emission body and preparation method thereof
TW200937485A (en) Electron emission device
TWI330858B (en) Thermionic emission device
TW201001484A (en) Field emitter and method for making the same
TWI352369B (en) Thermionic emission device and method for making t
TWI352371B (en) Method for making field emission electron device
TWI360830B (en) Method for making thermionic electron source
JP2012129182A (en) Field emission device
TWI360831B (en) Field emission electron device
TW200937484A (en) Electron emission device and method for making the same
Li et al. Light emission from vertically aligned carbon nanotube field emitters during Joule heating enhanced field emission
TWI417924B (en) Field emission electronic device
TW201230139A (en) Method for making carbon nantoube wire tip and method for making field emission structure
TW200932665A (en) Thermionic emission device
TW200933686A (en) Thermionic source