TW200928933A - Method for calibrating coordinates of touch screen - Google Patents

Method for calibrating coordinates of touch screen Download PDF

Info

Publication number
TW200928933A
TW200928933A TW97111811A TW97111811A TW200928933A TW 200928933 A TW200928933 A TW 200928933A TW 97111811 A TW97111811 A TW 97111811A TW 97111811 A TW97111811 A TW 97111811A TW 200928933 A TW200928933 A TW 200928933A
Authority
TW
Taiwan
Prior art keywords
coordinate
value
sensing electrode
sensing
digit
Prior art date
Application number
TW97111811A
Other languages
Chinese (zh)
Other versions
TWI401596B (en
Inventor
Chia-Yi Lee
Wen-Kai Lee
Original Assignee
Elan Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elan Microelectronics Corp filed Critical Elan Microelectronics Corp
Priority to US12/123,677 priority Critical patent/US7990368B2/en
Publication of TW200928933A publication Critical patent/TW200928933A/en
Application granted granted Critical
Publication of TWI401596B publication Critical patent/TWI401596B/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Abstract

The present invention relates to a method for calibrating coordinates of a touch screen. The method includes: providing a display panel which includes a plurality of display coordinates along a first axis, wherein the display coordinates includes a maximum display coordinate; providing a capacitive sensor which includes a plurality of sensing electrodes corresponding to a plurality of sensing coordinates along the first axis, wherein the capacitive sensor includes a maximum sensing coordinate; detecting a plurality of digital values corresponding to each of sensing electrodes when the capacitive sensor is touched; multiply the digital values and their corresponding sensing coordinates to obtain a weighting value; dividing the weighting value by the maximum sensing coordinate to obtain an interpolated value; and multiply the interpolated value and the maximum display coordinate to obtain a calibrated coordinate.

Description

200928933 九、發明說明: 【發明所屬之技術領域】 且特別是有關於 本發明是有關於一種指標定位技術 一種觸控螢幕的座標校準方法。 【先前技街】 ❹ ❹ ο近年來,由於科技的發展快速,手持式裝置,例如智 慧型手機、數位個人助理(P⑽nal Digital ―, = DA) % 星導航系統(G1〇ba】 p〇siti〇nS州等 :,也跟者越來越普及。由於上述裝置都是使用觸控螢 八因此觸控式傳感器與顯示裝置的座標校準之技術變的 。 要在以往,觸控式傳感器一般是使用電阻式傳感 〇〇 電阻式傳感器必須要靠壓力來感測指標在螢幕上 =標。由於目前此種手持式裝置通常是使用液晶榮幕, 而,阻式傳感器又必須與液晶螢幕重疊。因此當魔迫 ::傳,器時’相對的也就壓迫到了液晶螢幕。長久下 折许:阳螢幕可能會因此損毀。另外’電阻式傳感器之解 又父常常會有座標定位不準確的情況發生。 傳感==還有一種觸控式傳感器’就是電容式 裝置的觸d 在目前被廣泛的應用在到手持式 時,由於電!:然而,電容式傳感器應用在觸控鸯幕 配置不匹配1觸控板的座標的配置,與顯示器的座標的 ’因而存在著準確性的問題。 6 200928933 【發明内容】 有鑑於此,本發明夕 66 ώ* i» i- ^ 目的就是在提供一種觸控螢幕 的座標奴準方法,用以解 綦 MM - m ^ ^ 丹電合式觸控板的座標的配置,200928933 IX. INSTRUCTIONS: [Technical field to which the invention pertains] and particularly related to the present invention relates to an index positioning technique. A coordinate calibration method for a touch screen. [Former Technology Street] ❹ ❹ ο In recent years, due to the rapid development of technology, handheld devices, such as smart phones, digital personal assistants (P(10)nal Digital ―, = DA) % Star Navigation System (G1〇ba) p〇siti〇 nS state, etc.: It is also becoming more and more popular. Since the above devices are all using touch firefly eight, the technology of coordinate calibration of touch sensors and display devices has changed. In the past, touch sensors were generally used. Resistive sensing 〇〇 Resistive sensors must rely on pressure to sense the indicator on the screen = standard. Since the current handheld device usually uses the LCD glory, the resistive sensor must overlap the LCD screen. When the magic force:: pass, the device is also relatively oppressed to the LCD screen. Long time to fold: the sun screen may be damaged. In addition, the 'resistance sensor solution and the father often have inaccurate coordinate positioning Sensing == There is also a touch sensor that is the touch of a capacitive device. At present, it is widely used in handheld devices because of electricity!: However, capacitive sensing The application in the touch screen configuration does not match the configuration of the coordinates of the touchpad, and the coordinates of the display 'therefore there is a problem of accuracy. 6 200928933 [Inventive content] In view of this, the present invention 66 ώ* i» The purpose of i-^ is to provide a touch screen slave method for the touch screen to solve the coordinates of the MM - m ^ ^ Dan electric touch panel.

與顯不器的座標的配置不 I 且个匹配之問題。 本發明之另一目的妙β ^ m 砘疋在美供一種觸控螢幕的座標 ^ 得感器的座標轉換為顯示面板的 為達上述或其他目的,太The configuration of the coordinates with the display is not one and the matching problem. Another object of the present invention is that the coordinates of the ^ ^ m 砘疋 in the United States for a touch screen ^ coordinates of the sensor are converted to display panels for the above or other purposes, too

妁本發明知出一種觸控螢幕的座 標校準方法,包括下列歩藤 驟.提供一顯示面板,在第一軸 方向’此顯示面板包括多個顯干庙斤μ ^ 卿顯不座橾以及一第一軸顯示座 標數;提供一電容式值咸^ 。 电谷式得感器,在第一軸方向’此電容式傳 感器配置了多個感應電極,並 % W 亚刀别對應多個感應座標值, 其中此電谷式傳感n具有_最大感應座標值;當電容式傳 感器被碰觸時,偵測每—個感應電極所對應之多個數位 值;將上述數位值乘上每個感應電極所對應的感應座標值 得到一加成值;將上述加成值除以上述數位值之總合得到 -内插值;以及將此内插值乘以上述第一軸顯示座標數得 到一校準座標。 另外,本發明提出一種觸控螢幕的座標校準方法。此 方法包括下列步驟:提供一顯示面板,在第一軸方向,此 顯示面板包括多個顯示座標以及—第一軸顯示座標數;提 供-電容式傳感器,在第一軸方向,此電容式傳感器配置 了多個感應電極’並分別對應多個感應座標值,其中此電 容式傳感器具有一最大感應座標值,且距離此電容式傳感 器的一第一邊緣最近的一第—特定感應電極所對應之座 7 200928933 標值為一初始值,距離該電容式傳感器的一第二邊緣最近 的一第二特定感應電極所對應之座標值與該最大感應座 標值相同;當第一邊緣配置於顯示面板的最小顯示座標, 且第二邊緣配置於顯示面板的最大顯示座標時:將每一感 應電極所對應的感應座標值加上一預設座標值,取代原始 . 的感應座標值,以及將最大感應座標值加上兩倍的預設座 標值,取代該最大感應座標值,其中,該最大感應座標值 為該第二邊緣的座標值;當偵測到僅有離第一邊緣最近的 β 第—特定感應電極被碰觸時:判斷第一特定感應電極所對 應之數位值是否大於一參考數位值;當第一特定感應電極 所對應之數位值小於參考數位值時,根據第二特定感應電 極所對應之數位值與預設數位值之比例,決定一第一邊緣 感應座標值,其中,第一邊緣感應座標值落在該初始值與 第一特疋感應電極所對應之感應座標值之間;以及將第一 邊緣感應座標值除以最大感應座標值後,乘上第一軸顯示 座標數,得到校準座標;以及當偵測到僅有離第二邊緣最 〇 近的第二特定感應電極被碰觸時:判斷第二特定感應電極 - 所對應之數位值是否大於一參考數位值;當第二特定感應 . 電極所對應之數位值小於參考數位值時,根據第二特定感 應電極所對應之數位值與預設數位值之比例,決定一第二 邊緣感應座標值,其中,該第二邊緣感應座標值落在最大 感應座標值與第一特定感應電極所對應之感應座標值之 間,以及將第二邊緣感應座標值除以最大感應座標值後, 乘上第一轴顯示座標數,得到校準座標。 本發明提出一種觸控螢幕的座標校準方法,此觸控螢 8 200928933 幕包括一顯示面板及—電容式傳感器。此方法包括:在第 -軸方向上,根據一觸碰物對電容式傳感器造成的電容變 化量獲得-觸碰物座標;將觸碰物座標加上一校準值獲得 第-座標;根據電容式傳感器於第一軸方向的理論總座標 數以及顯示面板於第一軸方向的解析度決定一轉換比 -例;將第-座標乘上轉換比例,獲得觸碰物對應於顯示面 板的第二座標。 本發明提出一種觸控螢幕的座標校準方法,此觸控螢 © 幕包括一顯示面板及一電容式傳感器。此方法包括:在第 一軸方向,偵測一觸碰物對電容式傳感器造成的電容變化 量;根據一查找表獲得電容變化量所對應的第三座標;根 據電谷式傳感器於第一軸方向的理論總座標數以及顯示 面板於第一軸向的解析度決定一轉換比例;將第三座標乘 上轉換比例,獲得觸碰物對應於顯示面板的第四座標。 本發明之一方面是利用内插的方式,來校準電容式傳 感器與顯示面板之間的座標不匹配另一方面,由於電容式 Ο 傳感器具有多個感應電極,每一個感應電極皆有一預定寬 - 度,當僅有邊緣的感應電極被碰觸時,利用内插法便只能 - 算出邊緣感應電極所對應的座標,如此可能造成顯示面板 的邊緣無法被觸碰到,因此,本發明的另一方面,則是利 用邊緣的感應電極所感應到的等效電容所對應之數位 值,來判定邊緣的座標,因此也解決了用電容式觸控板的 座標的配置與顯示器的座標的配置不匹配之問題。 為讓本發明之上述和其他目的、特徵和優點能更明顯 易屢’下文特舉較佳實施例,並配合所附圖式,作詳細說 9 200928933 明如下。 【實施方式】 第1圖是根據本發明實施例所繪示的電容式觸控螢幕 之結構剖面圖。請參考第!圖,此電容式觸控螢幕包括顯 示模組40以及電容式傳感器4丨。第2圖是根據本發明實 施例所繪示的電容式傳感器41之結構上視圖。請參考第 .2圖,電容式傳感器41包括多個X軸感應電極χ〇1〜χΐ2 Ο 以及一控制電路C10。由於要定位指標,必須要有X軸座 標與Y軸座標,在此實施例僅提供定位χ軸座標的方法, Y軸座標定位方法可以與x軸座標定位方法相同。在此不 予贅述。 由於電谷式傳感器41具有兩種感測方式分別是非 差動感測與差動感測。也就是說,非差動感測方式是每一 個X軸感應線會得到一組與等效電容值相關的數位值,此 數位值與導體,-般來說指的是手指,碰觸χ轴感應線的 Q 面積或接近Χ軸感應電極的距離相關。在此實施例中,χ - 軸感應電極X01〜Χ12是以12個感應線為例。一般來說, - 每一個Χ軸感應線與鄰近的X軸感應線之間可以分割成 -64個座標位置,在此以64為例,然而,根據不同的應用 與不同的精密度,座標分割也會有所不同。另外,第一個 X軸感應線Χ01的座標為0。因此’電容式傳感器41的X 軸座標總共有64 X (12-1) + 1= 7〇5個座標。另外,差動 感測方式由於每兩個χ軸感應電極才能得到一組數位 值’因此電容式傳感器41的χ軸座標總共有64 χ (12_2) 10 200928933 +卜⑷個座標。以下變使用非差動感測 說明如何得到手指碰觸x ,以 器41上的X座標。#成應電極得到在電容式傳感 第3A圖與第3B圖分別是用以說明本發明實施例的 谷式傳感器4】的座標之定位方法的示意圖。請先 第3A圖,假設X轴感應線观〜以在沒被碰觸到時, 其對應的數位值是〇。當偵測到第6〜第8條又軸感應線 Ο 腿〜細的數位值分別為163、185以及7q,如此便可 以用内插法算出手指碰觸到電容式傳感器Μ上的X轴座 標: 64x[(6.1)xl63+(7-l)x185 + (8.i)x7〇]/(163 + 185 + 7〇) =369.76。 接下來,請參考第3B圖,當偵測到第WX轴感應 線X01的數位值為200時,用内插法算出手指碰觸到電容 式傳感器41上的X軸座標: 64χ(1-ΐ)Χ2〇〇/2〇〇=〇 0 〇 上述得到的座標值,需要透過轉換,才能得到顯示模 ' 組40的座標值。然而,由於近年來’電子敦置朝向輕、 • 薄短】、發展,因此手持式行動裝置的邊框越作越小, 導致電谷式傳感器4丨必須要與顯示模組的顯示區域的 大小相同。然而,電容式傳感器41的感應線X01〜X12 刀另】/、有疋的線寬。第4圖是電容式觸控板的座標的配 置,與顯不器的座標的配置不匹配的示意圖。請參考第4 圖,當手指碰觸到電容式傳感器“的第一條χ軸感應電 極x〇 1時,得到的座標值是〇,但是感應電極xo 1離螢幕 200928933 的邊緣還有一定的距離,此種情況,若手指指向顯示模組 40的邊緣部份701 ’將無法從電容式傳感器41的座標轉 換得到顯示模組40的座標。再者,若硬是把第一條χ轴 感應線Χ01的中心點配置在顯示模組40的邊緣,當使用 者碰觸到產品的邊框時,使用者會誤觸到電容式傳感器 41的第一條X軸感應電極χοι,將來將會導致電容式傳 感41的感應發生問題。 ' 為了解決上述問題,在本發明的實施例中,提出了一 〇 種顯示面板與電容式傳感器的座標之校準方法。此方法分 別作用在兩個區域,第一個區域是線性區域,也就是顯示 模組40的中央區域702,第二個區域則是非線性區域, 也就是顯示模組40的邊緣部份701。以下分別對此兩區 域的座標轉換作說明。在說明此實施例的方法之前,先假 設顯示模組40的解析度為240x320,也就是χ轴有24〇 個像素。 首先,先解釋線性區域的座標轉換方法。第5圖是本 Q 發明實施例的非差動感測式的電容式傳感器之線性區域 - 示意圖。請先參考第5圖,由於線性區域指的是電容式傳 感器41可以判定座標的區域。在此’先假設此電容式傳 感器41是非差動感測式的電容式傳感器,再假設χ軸有 1 2條感應線,γ軸有1 6條感應線’且每一個感應線與鄰 近的感應線之間可以分割成64個座標位置,則在此線性 區可以得到座標(1,1)〜(703,959) ’假設要將傳感器左上 角定位為座標完點時,此時線性區需經座標平移。第6圖 是本發明實施例的非差動感測式的電容式傳感器之座標 12 200928933 平移不思圖。請參考第6圖,線性區需經座標平移後,線 J·生區的座標起點為(33,33),座標終點為(735,991)。 由於上面假設每一個X軸感應電極與鄰近的X軸感 應電極之間分別可以分割成“個座標位置,因此,在第 一條X軸感應線X〇l的中央位置的電容式傳感器座標需 要平移為32,且在第十二條X軸感應電極X12的中央位 置的電容式傳感器座標需要平移7〇4 + 32 = 736。假設手指 如第6A圖按壓電容式傳感器41,得到在電容式傳感器41 ® 上的X座標為369.76。接下來,只要將此座標加上32之 後’除以電容式傳感器理論總座標數64* 12= 768,再乘上 X軸解析度240,便可以得到手指按壓在顯示模組4〇上的 X座標。以數學式表示如下: X 座標=(369.76 + 32)x240 + 768 =133.9875 % 134(先除 768 再乘 240) 從上述的實施例可以了解,本發明將線性區域所計算 出來的觸碰物座標加上一校準值而獲得一第一座標。上述 〇 的”平移”使得電容式傳感器的座標原點與顯示器的座標 ' 原點重疊。第一座標乘上一個比例,便轉換成觸碰物在顯 示面板上的第二座標。 接下來,解釋非線性區域的座標轉換方法。第7 Α〜 7C是導體按壓電容式傳感器41上的χ軸感應線時,得到 對應的數位值的對比關係示意圖。請先參考第7A圖以及 第7B圖,由第7A圖以及第7B圖可以看出,當導體,一 般來說是手指,按壓在感應線X〇I的接觸面積越大時,感 應線X01的等效電容會越大,相對的,得到數位值也會越 13 200928933The present invention relates to a coordinate calibration method for a touch screen, comprising the following 歩藤骤. Providing a display panel, in the direction of the first axis, the display panel includes a plurality of display blocks, and a plurality of display blocks The first axis shows the number of coordinates; a capacitive value is provided. Electric valley type sensor, in the first axis direction, the capacitive sensor is configured with a plurality of sensing electrodes, and the % W sub-knife corresponds to a plurality of sensing coordinate values, wherein the electric valley sensing n has a maximum sensing coordinate a value; when the capacitive sensor is touched, detecting a plurality of digit values corresponding to each of the sensing electrodes; multiplying the digits by the inductive coordinate value corresponding to each sensing electrode to obtain an additive value; The addition value is divided by the sum of the above-mentioned digit values to obtain an interpolated value; and the interpolated value is multiplied by the first axis display coordinate number to obtain a calibration coordinate. In addition, the present invention provides a coordinate calibration method for a touch screen. The method comprises the steps of: providing a display panel, wherein the display panel comprises a plurality of display coordinates and a first axis display coordinate number in the direction of the first axis; providing a capacitive sensor, the capacitive sensor in the first axis direction Configuring a plurality of sensing electrodes ′ and respectively corresponding to a plurality of sensing coordinate values, wherein the capacitive sensor has a maximum sensing coordinate value, and a first sensing electrode corresponding to a first edge of the capacitive sensor corresponds to The base 7 200928933 is an initial value, and the coordinate value corresponding to a second specific sensing electrode closest to a second edge of the capacitive sensor is the same as the maximum sensing coordinate value; when the first edge is disposed on the display panel The minimum display coordinates, and the second edge is disposed at the maximum display coordinate of the display panel: a predetermined coordinate value is added to the sensing coordinate value corresponding to each sensing electrode, instead of the original sensing coordinate value, and the maximum sensing coordinate is used. The value plus twice the preset coordinate value replaces the maximum inductive coordinate value, wherein the maximum inductive coordinate value a coordinate value of the second edge; when it is detected that only the β-specific sensing electrode closest to the first edge is touched: determining whether the digital value corresponding to the first specific sensing electrode is greater than a reference digit value; When the digital value corresponding to the first specific sensing electrode is smaller than the reference digital value, determining a first edge sensing coordinate value according to a ratio of the digital value corresponding to the second specific sensing electrode to the preset digital value, wherein the first edge sensing The coordinate value falls between the initial value and the inductive coordinate value corresponding to the first characteristic sensing electrode; and after dividing the first edge sensing coordinate value by the maximum sensing coordinate value, multiplying the first axis display coordinate number to obtain calibration a coordinate; and when detecting that only the second specific sensing electrode closest to the second edge is touched: determining whether the corresponding value of the second specific sensing electrode is greater than a reference digit value; when the second specific Inductive. When the digital value corresponding to the electrode is smaller than the reference digit value, the second side is determined according to the ratio of the digit value corresponding to the second specific sensing electrode to the preset digit value. The edge sensing coordinate value, wherein the second edge sensing coordinate value falls between the maximum sensing coordinate value and the sensing coordinate value corresponding to the first specific sensing electrode, and the second edge sensing coordinate value is divided by the maximum sensing coordinate value , multiply the number of coordinates displayed on the first axis to get the calibration coordinates. The invention provides a coordinate calibration method for a touch screen. The touch screen 8 200928933 includes a display panel and a capacitive sensor. The method includes: in the direction of the first axis, obtaining a touch object coordinate according to a capacitance change caused by a touch to the capacitive sensor; adding a calibration value to the touch object coordinate to obtain a first coordinate; according to the capacitive type The theoretical total coordinate number of the sensor in the first axis direction and the resolution of the display panel in the first axis direction determine a conversion ratio - an example; multiplying the first coordinate by the conversion ratio to obtain a touch object corresponding to the second coordinate of the display panel . The invention provides a coordinate calibration method for a touch screen, the touch screen includes a display panel and a capacitive sensor. The method includes: detecting, in a direction of the first axis, a capacitance change caused by a touch to the capacitive sensor; obtaining a third coordinate corresponding to the capacitance change according to a lookup table; and the first axis according to the electric valley sensor The theoretical total coordinate number of the direction and the resolution of the display panel in the first axial direction determine a conversion ratio; the third coordinate is multiplied by the conversion ratio to obtain a touch object corresponding to the fourth coordinate of the display panel. One aspect of the present invention utilizes interpolation to calibrate the coordinate mismatch between the capacitive sensor and the display panel. On the other hand, since the capacitive 传感器 sensor has a plurality of sensing electrodes, each of the sensing electrodes has a predetermined width - Degree, when only the edge of the sensing electrode is touched, the interpolation can only be used to calculate the coordinates corresponding to the edge sensing electrode, which may cause the edge of the display panel to be untouched, therefore, another aspect of the present invention On the one hand, the coordinates of the edge corresponding to the equivalent capacitance sensed by the edge of the sensing electrode are used to determine the coordinates of the edge, thus also solving the configuration of the coordinates of the capacitive touch panel and the coordinates of the display. Matching issues. The above and other objects, features, and advantages of the present invention will become more apparent in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; [Embodiment] FIG. 1 is a cross-sectional view showing the structure of a capacitive touch screen according to an embodiment of the invention. Please refer to the first! The capacitive touch screen includes a display module 40 and a capacitive sensor. Figure 2 is a top plan view of a capacitive sensor 41 in accordance with an embodiment of the present invention. Referring to Fig. 2, the capacitive sensor 41 includes a plurality of X-axis sensing electrodes χ〇1 to χΐ2 Ο and a control circuit C10. Since the index is to be positioned, there must be an X-axis coordinate and a Y-axis coordinate. In this embodiment, only the method of positioning the χ-axis coordinate is provided. The Y-axis coordinate positioning method can be the same as the x-axis coordinate positioning method. It will not be repeated here. Since the electric valley sensor 41 has two sensing modes, non-differential sensing and differential sensing, respectively. That is to say, the non-differential sensing method is that each X-axis sensing line will obtain a set of digital values related to the equivalent capacitance value, which is a conductor and, in general, a finger, touching the x-axis sensing. The Q area of the line is related to the distance from the x-axis sensing electrode. In this embodiment, the χ-axis sensing electrodes X01 Χ Χ 12 are exemplified by 12 sensing lines. In general, - each of the x-axis sensing lines and the adjacent X-axis sensing lines can be divided into -64 coordinate positions, here taking 64 as an example, however, according to different applications and different precision, coordinate segmentation It will be different. In addition, the coordinate of the first X-axis sensing line Χ01 is 0. Therefore, the X-axis coordinate of the capacitive sensor 41 has a total of 64 X (12-1) + 1 = 7 〇 5 coordinates. In addition, the differential sensing method can obtain a set of digit values for every two x-axis sensing electrodes. Therefore, the x-axis coordinates of the capacitive sensor 41 have a total of 64 χ (12_2) 10 200928933 + b (4) coordinates. The following changes use non-differential sensing to show how to get the finger touch x, the X coordinate on the camera 41. #成应电极得的 Capsive sensing Figs. 3A and 3B are schematic views for explaining the positioning method of the coordinates of the valley sensor 4] according to the embodiment of the present invention, respectively. Please refer to Figure 3A first, assuming that the X-axis sense line is ~ when it is not touched, its corresponding digit value is 〇. When it is detected that the 6th to 8th axis sensing lines 〜 leg ~ fine digit values are 163, 185 and 7q, respectively, the interpolation can be used to calculate the X-axis coordinate of the finger touching the capacitive sensor Μ : 64x[(6.1)xl63+(7-l)x185 + (8.i)x7〇]/(163 + 185 + 7〇) =369.76. Next, please refer to FIG. 3B. When the digital value of the WX axis sensing line X01 is detected to be 200, the X-axis coordinate of the finger touching the capacitive sensor 41 is calculated by interpolation: 64χ(1-ΐ ) Χ2〇〇/2〇〇=〇0 〇 The coordinate value obtained above needs to be converted to obtain the coordinate value of the display mode group 40. However, in recent years, the 'electronics are lighter, thinner and shorter, and the development, so the frame of the handheld mobile device is getting smaller and smaller, so that the electric valley sensor 4 must be the same size as the display area of the display module. . However, the sensing line X01 to X12 of the capacitive sensor 41 has a line width of 疋. Figure 4 is a schematic diagram of the configuration of the coordinates of the capacitive touch panel, which does not match the configuration of the coordinates of the display. Referring to Figure 4, when the finger touches the first χ-axis sensing electrode x〇1 of the capacitive sensor, the resulting coordinate value is 〇, but the sensing electrode xo 1 has a certain distance from the edge of the screen 200928933. In this case, if the finger is pointed to the edge portion 701' of the display module 40, the coordinate of the display module 40 cannot be converted from the coordinates of the capacitive sensor 41. Furthermore, if the first axis is inductively Χ01 The center point is disposed at the edge of the display module 40. When the user touches the frame of the product, the user may accidentally touch the first X-axis sensing electrode χοι of the capacitive sensor 41, which will lead to capacitive transmission in the future. In order to solve the above problem, in the embodiment of the present invention, a method for calibrating the coordinates of the display panel and the capacitive sensor is proposed. The method is applied to two regions, the first one. The area is a linear area, that is, the central area 702 of the display module 40, and the second area is a non-linear area, that is, the edge portion 701 of the display module 40. The following two areas are respectively The coordinate conversion is explained. Before explaining the method of this embodiment, it is assumed that the resolution of the display module 40 is 240x320, that is, the pupil axis has 24 pixels. First, the coordinate conversion method of the linear region is explained first. It is a linear region of a non-differential sensing capacitive sensor according to an embodiment of the present invention - a schematic diagram. Referring first to FIG. 5, since the linear region refers to the capacitive sensor 41, the region of the coordinate can be determined. The capacitive sensor 41 is a non-differential sensing capacitive sensor, and further assumes that the x-axis has 12 sensing lines, and the γ axis has 16 sensing lines' and each sensing line and the adjacent sensing line can be divided into For 64 coordinate positions, coordinates (1,1)~(703,959) can be obtained in this linear region. [Assuming that the upper left corner of the sensor is positioned as the coordinate completion point, the linear region needs to be translated by coordinates. Figure 6 is this The coordinate of the non-differential sensing capacitive sensor of the embodiment of the invention is 12200928933. The translation is not considered. Please refer to Fig. 6. After the linear region needs to be translated by coordinates, the starting point of the coordinate of the line J·region is (33, 33). ), the end point of the coordinates is (735, 991). Since the above assumes that each X-axis sensing electrode and the adjacent X-axis sensing electrode can be respectively divided into "coordinate positions, therefore, the first X-axis sensing line X〇l The capacitive sensor coordinate at the center position needs to be translated to 32, and the capacitive sensor coordinate at the center of the twelfth X-axis sensing electrode X12 needs to be translated by 7〇4 + 32 = 736. Assume that the finger presses the capacitive sensor 41 as shown in Fig. 6A, and the X coordinate on the capacitive sensor 41 ® is 369.76. Next, if you add 32 to this coordinate and divide by the theoretical total coordinate number of the capacitive sensor 64* 12= 768, and then multiply the X-axis resolution 240, you can get the X pressed by the finger on the display module 4〇. coordinate. It is expressed as follows: X coordinate = (369.76 + 32) x240 + 768 = 133.9875 % 134 (divided by 768 and then multiplied by 240) From the above embodiment, it can be understood that the touch coordinates of the linear region are calculated by the present invention. A first coordinate is obtained by adding a calibration value. The "translation" of the above 使得 causes the coordinate origin of the capacitive sensor to overlap the coordinate 'origin of the display'. The first scale is multiplied by the previous scale and converted into the second coordinate of the touch object on the display panel. Next, the coordinate conversion method of the nonlinear region is explained. The seventh to seventh 7C are schematic diagrams showing the relationship between the corresponding digital values when the conductor presses the x-axis sensing line on the capacitive sensor 41. Please refer to FIG. 7A and FIG. 7B first. It can be seen from FIG. 7A and FIG. 7B that when the conductor, generally a finger, is pressed, the contact area of the sensing line X〇I is larger, the sensing line X01 The equivalent capacitance will be larger, and the relative value will be higher. 13 200928933

大。因此’在此實施例中,主要B以笛 y* ΛΛ * ^ ^ iXL 工安·疋W弟一條X軸感應電極 X01所對應的數位值大小來判定x座標是坐落在〇〜31 的哪一點。 請參考第7C圖,當手指按壓在電容式傳感器41的第 一條X軸感應線X01時,此時只會得到感應線χ〇丨所對 應的數位值。在此,有一參考值會被預先設置。為了方便 說明,假設此參考值為1 6 0。也就是說,當只得到威應電 ’ 極X01所對應的數位值,且此數值大於或等於160時,則 ❹ 判定X座標坐落在32。當只得到感應電極χ〇 1所對應的 數位值,且此數值等於80時,則判定X座標坐落在1 5。 簡單的說,就是依照感應電極xo 1所對應的數位值與上述 參考值的大小比例關係,判定X座標。上述實施例的判定 方式可以表示成以下表格Big. Therefore, in this embodiment, the main B determines the x coordinate is located at 〇~31 with the digit value corresponding to an X-axis sensing electrode X01 of the yy y* ΛΛ * ^ ^ iXL . Referring to Fig. 7C, when the finger is pressed against the first X-axis sensing line X01 of the capacitive sensor 41, only the digital value corresponding to the sensing line 得到 is obtained. Here, a reference value is set in advance. For convenience of explanation, assume that this reference value is 1 60. That is to say, when only the digit value corresponding to the X 电 pole X01 is obtained, and the value is greater than or equal to 160, then ❹ determines that the X coordinate is at 32. When only the digit value corresponding to the sensing electrode χ〇 1 is obtained, and the value is equal to 80, it is determined that the X coordinate is located at 15. To be simple, the X coordinate is determined according to the proportional relationship between the digital value corresponding to the sensing electrode xo 1 and the above reference value. The determination manner of the above embodiment can be expressed as the following table.

感應電極X01 所對應的數位值 判定出的-— 0-5 0 ~~~-- 6-10 1 — '-- 11-15 2 --- 16-20 3 --- 21-25 4 ~~-- 26-30 5 ---—' 31-35 6 '-- 36-40 7 --~ 41-45 8 -- 46-50 9 --- 14 200928933The digit value corresponding to the sensing electrode X01 is determined by - 0-5 0 ~~~- 6-10 1 - '-- 11-15 2 --- 16-20 3 --- 21-25 4 ~~ -- 26-30 5 ---—' 31-35 6 '-- 36-40 7 --~ 41-45 8 -- 46-50 9 --- 14 200928933

51-55 10 56-60 11 61-65 12 66-70 13 71-75 1 14 76-80 15 81-85 16 86-90 17 91-95 18 96-100 19 101-105 20 106-110 21 111-115 22 116-120 23 121-125 24 126-130 25 131-135 ——— 26 136-140 ----- 27 141-145 28 146-150 29 151-155 30 156-159 •— 31 大於等於160 ----- 32 假設得到X座標為2 0,只要依照上述比例計算,便 可以得到在螢幕上的X座標: X 座標=20x240+ 768 =6.25 与 6(先除 768 再乘 240) 從上述實施例可以了解,在非線性區域的座標原點與 15 200928933 顯不區域的座標原點重疊,本發明利用查找表獲得觸碰物 在電容式傳感器上的第三座標,第三座標乘上一個比例, 便轉換成觸碰物對應在顯示面板上的第四座標。 雖然上述實施例僅對x軸座標作運算,但是本領域具 有通常知識者,參考上述實施例之後,應當知道,γ軸座 標亦可以利用上述方式計算出來。故在此不予贅述。 e ❹ 接下來’當電容式傳感器41為差動感測式的電容式 傳感器時,表示每兩條感應電極只能得到一組數位值。第 8圖是本發明實施例的差動感測式的電容式傳感器之線性 區域不意圖。假設X軸感應線總共有丨2條,γ轴感應線 有16條,又假設每一個感應線與鄰近的感應線之間可以 分割成64個座標位置。由於每兩條感應線只能得到一組 數位值,因此線性區的未平移標前的座標範圍便只有 (1,1)〜(639,895)。帛9圖是本發日月實施例的差動感測式 的電容式傳感器之座標平移示意圖。請參考第9圖,平移 後則為(65’65)〜(713,959)。而非線性區域經平移後的父 座標範圍則變成〇〜64,714~778。 f先,先解釋線性區域的座標轉換方法。同樣的假 |史控制電路C 1 0判斷出X庙n, 一 * 座^為369.76。當要轉換成顯 示模組40上的X座標,只需要作以下計算: Ρ69·76+64)Χ24(Κ768 = 135 55 与 136 (先除 768 再 240) ’工W巧 1 J 〇 〇 ::的道理’當手指在非線性區時例如手指碰觸電 谷式傳感器41的左邊緣’此時控制電路C10將只會得到 16 200928933 感應電極X01與X02所對應的數位值。此睡 $叫樣會有一 組事先設定好的預設值。假設此預設值是丨92。 &amp; 間單的說, 就是依照感應電極Χ01與Χ02所對應的數位值與上述參 考值的大小比例關係,判定X座標。當所得到的感應電極 Χ01與Χ02所對應的數位值在94〜96之間時,則判定χ 座標坐落在31。之後’只要將判定出的座標依照比例關 係,便可以轉換出在螢幕上的χ座標: • 螢幕上的 χ 座標=31 x240 + 768 = 9.6875 % 10。(先除 768 _ 再乘240) 由上述實施例,可以整理出以下兩種座標之校準方 法。第10圖以及第11圖是依照本發明實施例的觸控螢幕 的座標校準方法之流程圖。請先參考第10圖,第10圖是 假設線性區與顯示區域剛好重疊的情況,此方法包括下列 步驟: 步驟S1000 :開始。 步驟S1001 ··提供一顯示面板,在第一軸方向,該顯 〇 示面板包括多個顯示座標以及一第一軸顯示座標數。例如 • 上述的顯示模組40,其解析度為240X320軸有240個 - 像素,也就是240個座標。其最大顯示座標則為239。 步驟S1 002:提供一電容式傳感器,在第一軸方向, 電合式傳感器配置了多個感應電極,並分別對應多個感應 標值其中電谷式傳感器具有一最大感應座標值。例如 上述^電今式傳感器4〗,在此以非差動感測式的電容式 傳感=舉例,其配置了 η個感應電極Χ01〜Χ12, X01對 應座才不〇、X〇2對應座標64、...、X12對應座標704。其 17 200928933 最大顯示座標則為704。 步驟S1003:判斷電容式傳感器是否被碰觸。若否, 則回步驟S 1 003持續偵測。當判斷為是時,則進行步驟 S1004 。 步驟S 1 004 :偵測每一個感應電極所對應之多個數位 值。如第3A圖所示,當導體,例如手指碰觸到電容式傳 感器上的感應電極X6〜X8時,X6會有對應的數位值為 1 63 ; X7會有對應的數位值為丨85 ; χ8會有對應的數位值 為70。 步驟S 1 005 :將該些數位值乘上每個感應電極所對應 的感應座標值得到一加成值。接下來,便將上述數位值 163乘以5x64 ; 1 85乘以6x64 ; 70乘以7x64。因此,便 得到加成值為154560。 步驟S 1 006 :將該加成值除以上述數位值之總合得到 一内插值。接下來’將上述加成值1 5456〇除以 (163 + 1 85 + 70)便可以得到内插值為369·76,此内插值相當 於導體觸碰電容式傳感器的座標。 步驟S 1 007 :將該内插值除以最大感應座標值之後, 乘以第一軸顯示座標數得到一校準座標。 步驟S1008 :結束。 當然,此例僅可實施於顯示面板配置於電容式傳威器 之線性區時。當電容式傳感器的邊緣與顯示區域的邊緣緊 密配置時,本發明實施例的方法便會改為如下步驟· 步驟S1100 :開始。 步驟S1101 :提供如上述步驟S1001的顯示面板 200928933 步驟Sll 02:提供一電容式傳感器,在第一軸方向, 電容式傳感器配置了多個感應電極,並分別對應多個感應 座^值’其中電容式傳感器具有一最大感應座標值,且距 離電谷式傳感器的一第一邊緣最近的一第一特定感應電 極所對應之座標值為一初始值’距離電容式傳感器的一第 . 二邊緣最近的一第二特定感應電極所對應之座標值與最 大感應座標值相同。 • 步驟S 11 03 :將每一感應電極所對應的感應座標值加 〇 上一預設座標值,取代原始的感應座標值《由上述實施 例,可以知道,由於感應電極具有一定的寬度,另外,由 於兩相鄰的感應電極之間具有64個感應座標,因此,邊 緣到離邊緣最近的感應電極的中心應當要相差32個感應 座標。故在此實施例,每個感應電極所對應的感應座標值 加上預設座標值32以取代原始的感應座標值。 步驟S 11 04 :將最大感應座標值加上兩倍的預設座標 值,取代最大感應座標值。同樣道理,原始的最大座標值 ◎ 加上64來取代原始的最大感應座標值。 • 步驟S1105:判斷電容式傳感器是否被碰觸。當電容 式傳感器沒有被碰觸時,回到步驟S 1106持續判斷。當判 斷為是,則到步驟S1107。 步驟S 11 06 :判斷是否只有邊緣的感應電極被碰觸。 當判斷為否時’到步驟S11 〇 8。當判斷為是時,到步驟 S1109 。 步驟S11 07:執行上述步驟s 1004〜S1007以得到校 準座標。若以上述第3A圖的實施例來說’上述步驟相當 19 200928933 於把上述所算出來的内插值369.76加上32之後,在乘上 顯示面板的最大X座標24〇,之後再除以電容式傳感器的 修正後之最大座標768。如此便可以得到如上所述的χ軸 之校準座標134。 步驟S 11 08 :判斷第一邊緣被碰觸或第二邊緣被碰 . 觸。在此實施例,第一邊緣指的是離顯示面板χ軸座標〇 最近的邊緣;第二邊緣指的是離顯示面板χ軸座標239 最近的邊緣。當第一邊緣被碰觸時,執行步驟當 參 第二邊緣被碰觸時,執行步驟s 1114。 步驟S 11 09 :判斷第一特定感應電極所對應之數位值 是否大於一參考數位值。如上所述,由於按壓在感應線 x〇 1的接觸面積越大時’感應線X〇 1的等效電容會越大, 相對的’得到數位值也會越大。因此,上述實施例是預設 16〇作為一參考數位值。此值通常是以實驗或是工程師的 經驗設定。 步驟S 111 0 :當判斷為是時,則判定校準座標為第一 P 特定感應電極所對應之座標。如上述實施例,當數位值大 . 於160時,判定座標為32。 步驟S 1111 :當第一特定感應電極所對應之數位值小 於參考數位值時,根據第一特定感應電極所對應之數位值 與預設數位值之比例’決定一第一邊緣感應座標值。由上 述實施例可以知道,由於按壓在感應線X01的接觸面積越 大時’感應線X 01的專效電容會越大,相對的,得到數位 值也會越大。因此只要知道,第一特定感應電極所對應之 數位值,便可以依照此數位值與上述預設數位值(丨60)的 20 200928933 比例關係,例如上述的查找表,來得到第一邊緣感應座標 值。一般來說,此比例關係建立在查找表上,當然本領域 具有通常知識者可以利用内建運算數學式或是軟體的方 式實施。 步驟S1112:將第一邊緣感應座標值除以最大感應座 標值後’乘上第一軸顯示座標數,得到一校準座標。 步驟S 1113 :判斷第二特定感應電極所對應之數位值 . 是否大於一參考數位值。同樣道理當偵測到僅有離該第二 〇 邊緣最近的一第二特定感應電極被碰觸時,先判定其對應 之數位值是否大於參考數位值。 步驟SI 114 :當判斷為是時,則判定校準座標為第二 特定感應電極所對應之座標。如上述實施例,當數位值大 於160時,判定座標為736。 步驟S Π 1 5 :當第二特定感應電極所對應之數位值小 於參考數位值時’根據第二特定感應電極所對應之數位值 與預設數位值之比例,決定一第二邊緣感應座標值,其 ◎中,該第二邊緣感應座標值落在該最大感應座標值與該第 • 一特定感應電極所對應之感應座標值之間。 — 步驟S1116 :將第二邊緣感應座標值除以該最大感應 座標值後,乘上第一軸顯示座標數,得到校準座標。 本發明之一方面是利用内插的方式,來校準電容式傳 感器與顯示面板之間的座標不匹配另一方面,由於電容式 傳感器具有多個感應電極,每一個感應電極皆有一預定寬 度’當僅有邊緣的感應電極被碰觸時,利用内插法便只能 算出邊緣感應電極所對應的座標,如此可能造成顯示面板 21 200928933 的邊緣無法被觸碰到’因此,本發明的另一古π 乃万面,則是利 用邊緣的感應電極所感應到的等效電容所斜麻 丨野應之數位 值’來判定邊緣的座標,因此也解決了用電容式觸控板的 座標的配置與顯示器的座標的配置不匹配之問題。 在較佳實施例之詳細說明中所提出之具體實施例僅 用以方便說明本發明之技術内容,而非將本發明狹義地限 7於上述實施例’在不超出本發明之精神及以下申請專利 範圍之情況,所做之種種變化實施,皆屬於本發明之範 ❻ 圍。因此本發明夕&amp; @ &amp; κ呆4範圍當視後附之申請專利範圍所界 定者為准。51-55 10 56-60 11 61-65 12 66-70 13 71-75 1 14 76-80 15 81-85 16 86-90 17 91-95 18 96-100 19 101-105 20 106-110 21 111 -115 22 116-120 23 121-125 24 126-130 25 131-135 ——— 26 136-140 ----- 27 141-145 28 146-150 29 151-155 30 156-159 •— 31 Greater than Equivalent to 160 ----- 32 Suppose the X coordinate is 2 0. As long as the above ratio is calculated, the X coordinate on the screen can be obtained: X coordinate = 20x240 + 768 = 6.25 and 6 (first divide 768 and then multiply 240) In the above embodiment, it can be understood that the coordinate origin of the nonlinear region overlaps with the coordinate origin of the 15 200928933 display region, and the present invention uses the lookup table to obtain the third coordinate of the touch object on the capacitive sensor, and the third coordinate is multiplied. A ratio is converted into a fourth coordinate corresponding to the touch object on the display panel. Although the above embodiment operates only on the x-axis coordinate, those skilled in the art will have a general knowledge. After referring to the above embodiment, it should be understood that the γ-axis coordinate can also be calculated by the above method. Therefore, I will not repeat them here. e ❹ Next When the capacitive sensor 41 is a differential sensing capacitive sensor, it means that only one set of digital values can be obtained for each of the two sensing electrodes. Fig. 8 is a view showing the linear region of the differential sensing type capacitive sensor of the embodiment of the present invention. Assuming that there are a total of two X-axis sensing lines and six γ-axis sensing lines, it is assumed that each sensing line and the adjacent sensing line can be divided into 64 coordinate positions. Since only two sets of digit values can be obtained for each of the two sensing lines, the range of coordinates of the linear region before the unshifted standard is only (1,1)~(639,895). Figure 9 is a schematic diagram of the coordinate translation of the differential sensing capacitive sensor of the embodiment of the present invention. Please refer to Figure 9, and after translation, it is (65'65)~(713,959). The range of the parent of the nonlinear region after translation is 〇~64, 714~778. f First, first explain the coordinate conversion method of the linear region. The same false | history control circuit C 1 0 determines X temple n, a * seat ^ is 369.76. When converting to the X coordinate on the display module 40, only the following calculations are required: Ρ69·76+64)Χ24 (Κ768 = 135 55 and 136 (excluding 768 and then 240) 'Working W skill 1 J 〇〇:: The reason 'when the finger is in the non-linear region, for example, the finger touches the left edge of the electric valley sensor 41', the control circuit C10 will only get the digital value corresponding to the sensing electrodes X01 and X02 of the 2009 20093333. There is a set of preset values set in advance. It is assumed that the preset value is 丨92. &amp; The single-segment is based on the proportional relationship between the digital value corresponding to the sensing electrodes Χ01 and Χ02 and the above reference value, and the X coordinate is determined. When the obtained digital values of the sensing electrodes Χ01 and Χ02 are between 94 and 96, it is determined that the χ coordinates are located at 31. After that, the coordinates can be converted on the screen as long as the determined coordinates are proportional. The coordinates of the χ coordinates: • χ coordinates on the screen = 31 x240 + 768 = 9.6875 % 10. (Before dividing 768 _ and then multiplying by 240) From the above example, the following two coordinate calibration methods can be compiled. Figure 10 and 11 is a diagram in accordance with an embodiment of the present invention A flowchart of the coordinate calibration method of the control screen. Please refer to FIG. 10 first, and FIG. 10 is assuming that the linear area overlaps with the display area. The method includes the following steps: Step S1000: Start. Step S1001 · Provide a display a panel, in the direction of the first axis, the display panel includes a plurality of display coordinates and a first axis display coordinate number. For example, the display module 40 has a resolution of 240×320 and has 240 pixels, that is, 240 coordinates. The maximum display coordinate is 239. Step S1 002: Provide a capacitive sensor. In the first axis direction, the electro-mechanical sensor is configured with a plurality of sensing electrodes, and corresponding to a plurality of sensing values respectively. The sensor has a maximum inductive coordinate value. For example, the above-mentioned electro-optical sensor 4 is a non-differential sensing type capacitive sensing. For example, it is configured with n sensing electrodes Χ01~Χ12, and the X01 corresponding seat is not 〇, X〇2 corresponds to coordinates 64, ..., X12 corresponds to coordinate 704. Its 17 200928933 maximum display coordinate is 704. Step S1003: Determine whether the capacitive sensor is touched. If not, Step S1 003 continues to detect. When the determination is yes, step S1004 is performed. Step S1 004: detecting a plurality of digit values corresponding to each of the sensing electrodes. As shown in FIG. 3A, when the conductor is, for example, When the finger touches the sensing electrodes X6~X8 on the capacitive sensor, X6 will have a corresponding digit value of 1 63; X7 will have a corresponding digit value of 丨85; χ8 will have a corresponding digit value of 70. Step S1 005: Multiplying the digit values by the inductive coordinate value corresponding to each of the sensing electrodes to obtain an additive value. Next, multiply the above digit value 163 by 5x64; 1 85 by 6x64; 70 by 7x64. Therefore, the bonus value is 154,560. Step S 1 006: dividing the addition value by the sum of the above-mentioned digit values to obtain an interpolated value. Next, by dividing the above-mentioned addition value 1 5456 by (163 + 1 85 + 70), an interpolation value of 369·76 can be obtained, which is equivalent to the coordinates of the conductor touch capacitive sensor. Step S1 007: After dividing the interpolated value by the maximum inductive coordinate value, multiplying the first axis to display the coordinate number to obtain a calibration coordinate. Step S1008: End. Of course, this example can only be implemented when the display panel is disposed in the linear region of the capacitive transmitter. When the edge of the capacitive sensor is closely arranged with the edge of the display area, the method of the embodiment of the present invention is changed to the following step: Step S1100: Start. Step S1101: Providing the display panel 200928933 as in the above step S1001. Step S11: providing a capacitive sensor. In the first axis direction, the capacitive sensor is configured with a plurality of sensing electrodes, and corresponding to the plurality of sensing blocks respectively. The sensor has a maximum inductive coordinate value, and a coordinate value corresponding to a first specific sensing electrode closest to a first edge of the electric valley sensor is an initial value 'the closest to the second edge of the capacitive sensor. The coordinate value corresponding to a second specific sensing electrode is the same as the maximum sensing coordinate value. • Step S 11 03: The inductive coordinate value corresponding to each sensing electrode is added to the previous preset coordinate value instead of the original inductive coordinate value. “From the above embodiment, it can be known that since the sensing electrode has a certain width, Since there are 64 sensing coordinates between the two adjacent sensing electrodes, the center of the sensing electrodes closest to the edge should have a difference of 32 sensing coordinates. Therefore, in this embodiment, the inductive coordinate value corresponding to each sensing electrode is added with a preset coordinate value 32 to replace the original inductive coordinate value. Step S 11 04: The maximum inductive coordinate value is doubled to the preset coordinate value instead of the maximum inductive coordinate value. By the same token, the original maximum coordinate value ◎ plus 64 replaces the original maximum inductive coordinate value. • Step S1105: Determine if the capacitive sensor is touched. When the capacitive sensor is not touched, it returns to step S1106 to continue the judgment. When the determination is YES, it proceeds to step S1107. Step S11 06: It is judged whether only the sensing electrodes of the edges are touched. When it is judged as NO, it goes to step S11 〇 8. When it is judged as YES, it proceeds to step S1109. Step S11 07: The above steps s 1004 to S1007 are executed to obtain the calibration coordinates. In the embodiment of FIG. 3A above, the above steps are equivalent to 19 200928933, after adding 32 of the above-mentioned calculated interpolation value 369.76, multiplying the maximum X coordinate of the display panel by 24 〇, and then dividing by capacitive The corrected maximum coordinate 768 of the sensor. Thus, the calibration coordinates 134 of the x-axis as described above can be obtained. Step S11 08: It is judged that the first edge is touched or the second edge is touched. In this embodiment, the first edge refers to the edge that is closest to the axis of the display panel, and the second edge refers to the edge that is closest to the axis 239 of the display panel. When the first edge is touched, step s 1114 is performed when the second edge is touched. Step S11 09: Determine whether the digit value corresponding to the first specific sensing electrode is greater than a reference digit value. As described above, since the equivalent capacitance of the sensing line X 〇 1 is larger as the contact area of the sensing line x 〇 1 is larger, the relative 'received digit value is larger. Therefore, the above embodiment is preset 16 〇 as a reference digit value. This value is usually set by experiment or engineer experience. Step S 111 0 : When the determination is YES, it is determined that the calibration coordinate is a coordinate corresponding to the first P specific sensing electrode. As in the above embodiment, when the digital value is large, at 160, the decision coordinate is 32. Step S1111: When the digital value corresponding to the first specific sensing electrode is smaller than the reference digital value, a first edge sensing coordinate value is determined according to a ratio of the digital value corresponding to the first specific sensing electrode to the preset digital value. As can be understood from the above embodiment, since the contact area of the sensing line X01 is larger as the contact area of the sensing line X01 is larger, the corresponding capacitance of the sensing line X 01 is larger, and the digital value is larger. Therefore, as long as the digital value corresponding to the first specific sensing electrode is known, the first edge sensing coordinate can be obtained according to the ratio of the digital value to the 20 200928933 of the preset digital value (丨60), such as the above-mentioned lookup table. value. In general, this proportional relationship is based on a lookup table. Of course, those skilled in the art can implement the built-in mathematical or software. Step S1112: Dividing the first edge sensing coordinate value by the maximum sensing coordinate value and multiplying the first axis display coordinate number to obtain a calibration coordinate. Step S1113: determining whether the digit value corresponding to the second specific sensing electrode is greater than a reference digit value. Similarly, when it is detected that only a second specific sensing electrode closest to the edge of the second edge is touched, it is first determined whether the corresponding digit value is greater than the reference digit value. Step SI 114: When the determination is YES, it is determined that the calibration coordinate is a coordinate corresponding to the second specific sensing electrode. As in the above embodiment, when the digital value is larger than 160, the decision coordinate is 736. Step S Π 1 5: when the digital value corresponding to the second specific sensing electrode is less than the reference digit value, 'determining a second edge sensing coordinate value according to the ratio of the digit value corresponding to the second specific sensing electrode to the preset digit value In the ◎, the second edge sensing coordinate value falls between the maximum sensing coordinate value and the sensing coordinate value corresponding to the first specific sensing electrode. — Step S1116: After dividing the second edge sensing coordinate value by the maximum sensing coordinate value, multiplying the first axis to display the coordinate number to obtain the calibration coordinate. One aspect of the present invention is to use an interpolation method to calibrate the coordinate mismatch between the capacitive sensor and the display panel. On the other hand, since the capacitive sensor has a plurality of sensing electrodes, each of the sensing electrodes has a predetermined width 'When When only the edge sensing electrodes are touched, only the coordinates corresponding to the edge sensing electrodes can be calculated by interpolation, which may cause the edge of the display panel 21 200928933 to be untouched. Therefore, another ancient method of the present invention π is a million-sided surface, which is determined by the equivalent capacitance sensed by the edge of the sensing electrode, and the digital value of the oblique field is used to determine the coordinates of the edge, thus also solving the configuration of the coordinates of the capacitive touch panel. The configuration of the coordinates of the display does not match. The specific embodiments set forth in the detailed description of the preferred embodiments are intended to be illustrative only, and not to limit the scope of the present invention to the above-described embodiments, without departing from the spirit of the invention and the following application. The scope of the patent, the various changes made, are within the scope of the invention. Therefore, the scope of the present invention &amp;@&amp; κ 4 is subject to the scope of the patent application.

22 200928933 【圖式簡單說明】 第1圖是根據本發明實施例所繪示的電容式觸控螢幕 之結構剖面圖。 第2圖是根據本發明實施例所繪示的電容式傳感器 4 1之結構上視圖。 . 第3 A圖與第3B圖分別是用以說明本發明實施例的 電容式傳感器41的座標之定位方法的示意圖。 第4圖是電容式觸控板的座標的配置,與顯示器的座 0 標的配置不匹配的示意圖。 第5圖是本發明實施例的非差動感測式的電容式傳感 器之線性區域示意圖。 第6圖是本發明實施例的非差動感測式的電容式傳感 器之座標平移示意圖。 第7A〜7C是導體按壓電容式傳感器41上的X轴感 應線時’得到對應的數位值的對比關係示意圖。 第8圖是本發明實施例的差動感測式的電容式傳感器 g 之線性區域示意圖。 * 第9圖是本發明實施例的差動感測式的電容式傳感器 之座標平移示意圖。 第10圖是依照本發明實施例的觸控螢幕的座標校準 方法之流程圖。 第11圖是依照本發明實施例的觸控螢幕的座標校準 方法之流程圖。 23 200928933 【主要元件符號說明 40 :顯示模組 器 電極 41 :電容式傳感 X01〜X12 :感應 C 1 0 :控制電路22 200928933 [Simplified Schematic Description] Fig. 1 is a cross-sectional view showing the structure of a capacitive touch screen according to an embodiment of the invention. FIG. 2 is a structural top view of a capacitive sensor 41 according to an embodiment of the invention. 3A and 3B are respectively schematic views for explaining a method of positioning the coordinates of the capacitive sensor 41 of the embodiment of the present invention. Figure 4 is a schematic diagram of the configuration of the coordinates of the capacitive touch panel, which does not match the configuration of the display's coordinate 0. Fig. 5 is a view showing a linear region of a non-differential sensing type capacitive sensor according to an embodiment of the present invention. Fig. 6 is a schematic diagram showing the coordinate translation of the non-differential sensing type capacitive sensor of the embodiment of the present invention. 7A to 7C are diagrams showing a comparison relationship between the corresponding digital values when the conductor is pressed against the X-axis sensing line on the capacitance sensor 41. Fig. 8 is a view showing a linear region of a differential sensing type capacitive sensor g according to an embodiment of the present invention. * Fig. 9 is a schematic diagram showing the coordinate shift of the differential sensing type capacitive sensor according to the embodiment of the present invention. Figure 10 is a flow chart showing a method of coordinate calibration of a touch screen in accordance with an embodiment of the present invention. Figure 11 is a flow chart showing a method of coordinate calibration of a touch screen in accordance with an embodiment of the present invention. 23 200928933 [Main component symbol description 40 : Display module electrode 41 : Capacitive sensing X01 ~ X12 : Induction C 1 0 : Control circuit

24twenty four

Claims (1)

200928933 十、申請專利範圍: 1. 一種觸控螢幕的座標校準方法,包括: 提供一顯示面板,在第一軸方向,該顯示面板包括多個顯示座 標,其中該些顯示座標包括一第一軸顯示座標數; 提供一電容式傳感器,在第一軸方向,該電容式傳感器配置了 . 多個感應電極,並分別對應多個感應座標值,其中該電容 式傳感器具有一最大感應座標值; 當該電容式傳感器被碰觸時,偵測每一個感應電極所對應之多 〇 個數位值; 將該些數位值乘上每個感應電極所對應的感應座標值得到一 加成值; 將該加成值除以該些數位值之總合得到一内插值;以及 將該内插值乘以該第一軸顯示座標數得到一校準座標。 2. 如申請專利範圍第1項所記載之觸控螢幕的座標校準方法,其 中當該電容式傳感器被碰觸時,偵測每一個感應電極所對應之 多個數位值包括: p 當該電容式傳感器被碰觸時,偵測該些感應電極所對應之多個 、 等效電容;以及 將該些等效電容轉換為之多個數位值。 3. 如申請專利範圍第1項所記載之觸控螢幕的座標校準方法,其 中,每一個感應電極包括一固定寬度。 4. 如申請專利範圍第1項所記載之觸控螢幕的座標校準方法,其 中,距離該電容式傳感器的一第一邊緣最近的一第一特定感應 電極所對應之座標值為一初始值,距離該電容式傳感器的一第 二邊緣最近的一第二特定感應電極所對應之座標值與該最大 25 200928933 感應座標值相同。 5.如中請專利範圍第4項所記栽之觸控詩的座標校準方法,其 中,當該第,邊緣配置於該顯示面板的最小顯示座標,且該第 二邊緣配置於該顯示面板的最大顯示座標時: 將每-該些感應電極㈣應的該些感應座標值加上—預設座 標值,取代該些感應座標值;以及 將該最大感應座秫值加上兩倍的該預設座標值,取代該最大感 ' 應座標值。 〇 6·如申請專利範圍第5項所記栽之觸控螢幕的座標校準方法,其 中’當僅偵測到該第二特定感應電極所對應之數位值時; 判斷該第二特定感應電極所對應之數位值是否大於一參考數 位值, 當該第二特定感應電極所對應之數位值大於等於該參考數位 值時,則設疋該内插值為該第二特定感應電極所對應之座 標值;以及 當該第二特定感應電極所對應之數位值小於該預設數位值 時,根據該第二特定感應電極所對應之數位值與該預設數 : 位值之比例,決定該内插值,其中該内插值落在該最大感 應座標值與該第二特定感應電極所對應之座標值之間。 • 7.如申請專利範圍第5項所記載之觸控螢幕的座標校準方法,其 中,當僅偵測到該第二特定感應電極所對應之數位值時; 判斷該第二特定感應電極所對應之數位值是否大於一參考數 位值; 當該第二特定感應電極所對應之數位值大於等於該參考數位 值時,則設定該内插值為該第二特定感應電極所對應之座 26 200928933 標值;以及 當該第二特定感應電極所對應之數位值小於該預設數位值 時,根據一查找表,決定該内插值,其中該内插值落在該 最大感應座標值與該第二特定感應電極所對應之座標值 之間。 8. 如申請專利範圍第5項所記載之觸控螢幕的座標校準方法,其 中,當僅偵測到該第一特定感應電極所對應之數位值時; 判斷該第一特定感應電極所對應之數位值是否大於一參考數200928933 X. Patent application scope: 1. A coordinate calibration method for a touch screen, comprising: providing a display panel, wherein the display panel comprises a plurality of display coordinates in a first axis direction, wherein the display coordinates comprise a first axis Displaying a number of coordinates; providing a capacitive sensor, in the first axis direction, the capacitive sensor is configured with a plurality of sensing electrodes and corresponding to a plurality of sensing coordinate values, wherein the capacitive sensor has a maximum sensing coordinate value; When the capacitive sensor is touched, detecting a plurality of digit values corresponding to each sensing electrode; multiplying the digit values by an inductive coordinate value corresponding to each sensing electrode to obtain an additive value; The value divided by the sum of the digit values yields an interpolated value; and the interpolated value is multiplied by the first axis display coordinate number to obtain a calibrated coordinate. 2. The coordinate calibration method of the touch screen as described in claim 1, wherein when the capacitive sensor is touched, detecting a plurality of digit values corresponding to each of the sensing electrodes comprises: p when the capacitor When the sensor is touched, detecting a plurality of equivalent capacitances corresponding to the sensing electrodes; and converting the equivalent capacitances into a plurality of digital values. 3. The coordinate calibration method of the touch screen as recited in claim 1, wherein each of the sensing electrodes includes a fixed width. 4. The coordinate calibration method of the touch screen according to claim 1, wherein a coordinate value corresponding to a first specific sensing electrode closest to a first edge of the capacitive sensor is an initial value. A coordinate value corresponding to a second specific sensing electrode closest to a second edge of the capacitive sensor is the same as the maximum 25 200928933 sensing coordinate value. 5. The coordinate calibration method of the touch poem recorded in the fourth aspect of the patent application, wherein the first edge is disposed on the minimum display coordinate of the display panel, and the second edge is disposed on the display panel When the maximum display coordinates are displayed: the sensing coordinates of each of the sensing electrodes (4) are added with a preset coordinate value instead of the sensing coordinate values; and the maximum sensing base value is doubled. Set the coordinate value to replace the maximum sense's coordinate value. 〇6. The coordinate calibration method of the touch screen recorded in claim 5, wherein 'when only the digital value corresponding to the second specific sensing electrode is detected; determining the second specific sensing electrode Whether the corresponding digit value is greater than a reference digit value, and when the digit value corresponding to the second specific sensing electrode is greater than or equal to the reference digit value, the interpolated value is set to a coordinate value corresponding to the second specific sensing electrode; And when the digital value corresponding to the second specific sensing electrode is less than the preset digital value, determining the interpolation value according to a ratio of the digital value corresponding to the second specific sensing electrode to the preset number: the bit value, wherein The interpolated value falls between the maximum inductive coordinate value and a coordinate value corresponding to the second specific sensing electrode. 7. The coordinate calibration method of the touch screen as described in claim 5, wherein when only the digital value corresponding to the second specific sensing electrode is detected; determining that the second specific sensing electrode corresponds to Whether the digit value is greater than a reference digit value; when the digit value corresponding to the second specific sensing electrode is greater than or equal to the reference digit value, setting the interpolation value to the seat corresponding to the second specific sensing electrode 26 200928933 And determining, when the digital value corresponding to the second specific sensing electrode is less than the preset digit value, determining the interpolation value according to a lookup table, wherein the interpolation value falls between the maximum sensing coordinate value and the second specific sensing electrode Between the corresponding coordinate values. 8. The coordinate calibration method of the touch screen according to claim 5, wherein when only the digital value corresponding to the first specific sensing electrode is detected; determining that the first specific sensing electrode corresponds to Whether the digit value is greater than a reference number 位值; 當該第一特定感應電極所對應之數位值大於等於該參考數位 值時,則設定該内插值為該第一特定感應電極所對應之座 標值;以及 當該第一特定感應電極所對應之數位值小於該預設數位值 時,根據該第一特定感應電極所對應之數位值與該預設數 位值之比例,決定該内插值,其中該内插值落在最小感應 座標值與該第一特定感應電極所對應之座標值之間。 9. 如申請專利範圍第5項所記載之觸控螢幕的座標校準方法,其 中,當僅偵測到該第一特定感應電極所對應之數位值時; 判斷該第一特定感應電極所對應之數位值是否大於一參考數 位值; 當該第一特定感應電極所對應之數位值大於等於該參考數位 值時,則設定該内插值為該第一特定感應電極所對應之座 標值;以及 當該第一特定感應電極所對應之數位值小於該預設數位值 時,根據一查找表,決定該内插值,其中該内插值落在最 27 200928933 10. 小感應座標值與該第一特定感應電極所對應之座標值之 間。 一種觸控螢幕的座標校準方法,包括·· 提供一顯示面板,在第一轴方向,該顯示面板包括多個顯示座 標以及一第一軸顯示座標數; 提供一電容式傳感器,在第一軸方向,該電容式傳感器配置了 多個感應電極,並分別對應多個感應座標值,其中該電容 式傳感器具有一最大感應座標值,且距離該電容式傳感器 ❹ 的一第一邊緣最近的一第一特定感應電極所對應之座標 值為一初始值,距離該電容式傳感器的一第二邊緣最近的 一第二特定感應電極所對應之座標值與該最大感應座標 值相同; 當該第一邊緣配置於該顯示面板的最小顯示座標,且該第二邊 緣配置於該顯示面板的最大顯示座標時: 將每一該些感應電極所對應的該些感應座標值加上一預 設座標值,取代該些感應座標值;以及 ❹ 將該最大感應座標值加上兩倍的該預設座標值,取代該 最大感應座標值,其中,該最大感應座標值為該第 二邊緣的座標值; 當偵測到僅有離該第一邊緣最近的一第一特定感應電極被碰 觸時: 判斷該第一特定感應電極所對應之數位值是否大於一參 考數位值; 當該第一特定感應電極所對應之數位值小於該參考數位 值時,根據該第一特定感應電極所對應之數位值與 28 200928933 ❹ 該預設數位值之比例,決定一第一邊緣感應座標 值,其甲,該第一邊緣感應座標值落在該初始值與 該第一特定感應電極所對應之感應座標值之間;以 及 將該第一邊緣感應座標值除以該最大感應座標值後,乘 上該第一軸顯示座標數,得到一校準座標;以及 當偵測到僅有離該第二邊緣最近的一第二特定感應電極被碰 觸時: 判斷該第二特定感應電極所對應之數位值是否大於一參 考數位值; 當該第二特定感應電極所對應之數位值小於該參考數位 值時,根據該第二特定感應電極所對應之數位值與 該預設數位值之比例,決定一第二邊緣感應座標 值,其中,該第二邊緣感應座標值落在該最大感應 座標值與該第一特定感應電極所對應之感應座標值 之間;以及 ❹ 將該第二邊緣感應座標值除以該最大感應座標值後,乘 上該第一軸顯示座標數,得到該校準座標。 11. 如申請專利範圍第10項所記載之觸控螢幕的座標校準方法, 其中當該電容式傳感器被碰觸時,偵測每一個感應電極所對應 之多個數位值包括: 當該電容式傳感器被碰觸時,偵測該些感應電極所對應之多個 等效電容;以及 將該些等效電容轉換為之多個數位值。 12. 如申請專利範圍第10項所記載之觸控螢幕的座標校準方法, 29 200928933 ' 13. 其中當該些感應電極被碰觸,且被碰觸之感應電極不是該第一 特定感應電極以及該第二特定感應電極,包括下列步驟: 偵測每一個感應電極所對應之多個數位值; 將該些數位值乘上每個感應電極所對應的感應座標值得到一 加成值; 將該加成值除以該些數位值之總合得到一内插值;以及 將該内插值乘以該第一軸顯示座標數得到該校準座標。 如申請專利範圍第1〇項所記載之觸控螢幕的座標校準方法, 〇 其中決定一第一邊緣感應座標值之方法,包括: 提供一查找表;以及 輸入該第一特定感應電極所對應之數位值,以得到該第一邊緣 感應座標值。 14.如申請專利範圍第10項所記載之觸控螢幕的座標校準方法, ❹15. 其中決定一第二邊緣感應座標值之方法,包括: 提供一查找表;以及 輸入該第二特定感應電極所對應之數位值,以得到該第一邊緣 感應座標值。 一種觸控螢幕的座標校準方法,該觸控螢幕包括一顯示面板及 一電容式傳感器,該方法包括: 在第一軸方向上,根據一觸碰物對電容式傳感器造成的電容變 化量獲得一觸碰物座標; 將該觸碰物座標加上一校準值獲得第一座標; 根據該電容式傳感器於該第一軸方向的理論總座標數以及該 顯示面板於該第一軸方向的解析度決定一轉換比例; 將該第一座標乘上該轉換比例,獲得該觸碰物對應於該顯示面 30 200928933 板的第二座標。 16. 如申請專利範圍第15項所記載之觸控螢幕的座標校準方法, 其中該獲得觸碰物座標的步驟包括: 偵測該電容式傳感器在第一軸向上的每一個感應電極; 將該偵測步驟所獲得之多個數位值乘上每個感應電極所對應 的感應座標值得到一加成值;以及 將該加成值除以該些數位值之總合得到一内插值。 17. —種觸控螢幕的座標校準方法,該觸控螢幕包括一顯示面板及 一電容式傳感器,該方法包括: 在第一軸方向,偵測一觸碰物對該電容式傳感器造成的電容變 化量; 根據一查找表獲得該電容變化量所對應的第三座標; 根據該電容式傳感器於該第一軸方向的理論總座標數以及該 顯示面板於該第一軸向的解析度決定一轉換比例; 將該第三座標乘上該轉換比例,獲得該觸碰物對應於該顯示面 板的第四座標。 31a bit value; when the digital value corresponding to the first specific sensing electrode is greater than or equal to the reference digital value, setting the interpolation value to a coordinate value corresponding to the first specific sensing electrode; and when the first specific sensing electrode is When the corresponding digit value is less than the preset digit value, determining the interpolated value according to a ratio of the digit value corresponding to the first specific sensing electrode to the preset digit value, wherein the interpolated value falls on the minimum inductive coordinate value and the Between the coordinate values corresponding to the first specific sensing electrode. 9. The coordinate calibration method of the touch screen as described in claim 5, wherein when only the digital value corresponding to the first specific sensing electrode is detected; determining that the first specific sensing electrode corresponds to Whether the digit value is greater than a reference digit value; when the digit value corresponding to the first specific sensing electrode is greater than or equal to the reference digit value, setting the interpolation value as a coordinate value corresponding to the first specific sensing electrode; When the digital value corresponding to the first specific sensing electrode is less than the preset digital value, the interpolation value is determined according to a lookup table, wherein the interpolation value falls at the most 27 200928933 10. The small sensing coordinate value and the first specific sensing electrode Between the corresponding coordinate values. A coordinate calibration method for a touch screen, comprising: providing a display panel, wherein the display panel includes a plurality of display coordinates and a first axis display coordinate number in a first axis direction; providing a capacitive sensor on the first axis In the direction, the capacitive sensor is configured with a plurality of sensing electrodes respectively corresponding to a plurality of sensing coordinate values, wherein the capacitive sensor has a maximum sensing coordinate value and a closest to a first edge of the capacitive sensor ❹ The coordinate value corresponding to a specific sensing electrode is an initial value, and a coordinate value corresponding to a second specific sensing electrode closest to a second edge of the capacitive sensor is the same as the maximum sensing coordinate value; when the first edge The minimum display coordinate of the display panel is configured, and the second edge is disposed on the maximum display coordinate of the display panel: a preset coordinate value corresponding to each of the sensing electrodes is added, and a preset coordinate value is added. The inductive coordinate values; and 加上 double the maximum inductive coordinate value to the preset coordinate value instead of the maximum sense a coordinate value, wherein the maximum sensing coordinate value is a coordinate value of the second edge; when it is detected that only a first specific sensing electrode closest to the first edge is touched: determining the first specific sensing electrode Whether the corresponding digit value is greater than a reference digit value; when the digit value corresponding to the first specific sensing electrode is less than the reference digit value, according to the digit value corresponding to the first specific sensing electrode and 28 200928933 ❹ the preset The ratio of the digital value determines a first edge sensing coordinate value, wherein the first edge sensing coordinate value falls between the initial value and the sensing coordinate value corresponding to the first specific sensing electrode; and the first After the edge sensing coordinate value is divided by the maximum sensing coordinate value, multiplying the first axis display coordinate number to obtain a calibration coordinate; and detecting that only a second specific sensing electrode closest to the second edge is touched Touching: determining whether the digital value corresponding to the second specific sensing electrode is greater than a reference digit value; when the second specific sensing electrode corresponds to a digit value smaller than the reference And determining, according to the ratio of the digital value corresponding to the second specific sensing electrode to the preset digit value, a second edge sensing coordinate value, wherein the second edge sensing coordinate value falls on the maximum sensing coordinate value Between the inductive coordinate value corresponding to the first specific sensing electrode; and 除 dividing the second edge sensing coordinate value by the maximum inductive coordinate value, multiplying the first axis display coordinate number to obtain the calibration coordinate. 11. The coordinate calibration method of the touch screen as described in claim 10, wherein when the capacitive sensor is touched, detecting a plurality of digit values corresponding to each of the sensing electrodes comprises: when the capacitive type When the sensor is touched, detecting a plurality of equivalent capacitances corresponding to the sensing electrodes; and converting the equivalent capacitances into a plurality of digital values. 12. The coordinate calibration method of the touch screen as described in claim 10, 29 200928933 ' 13. wherein when the sensing electrodes are touched, the touched sensing electrodes are not the first specific sensing electrodes and The second specific sensing electrode includes the following steps: detecting a plurality of digit values corresponding to each sensing electrode; multiplying the digit values by an inductive coordinate value corresponding to each sensing electrode to obtain an additive value; The addition value is divided by the sum of the digit values to obtain an interpolated value; and the interpolated value is multiplied by the first axis display coordinate number to obtain the calibration coordinate. The method for calibrating a touch screen according to the first aspect of the patent application, wherein the method for determining a first edge sensing coordinate value comprises: providing a lookup table; and inputting the first specific sensing electrode A digital value to obtain the first edge-induced coordinate value. 14. The coordinate calibration method of the touch screen as recited in claim 10, wherein the method of determining a second edge sensing coordinate value comprises: providing a lookup table; and inputting the second specific sensing electrode Corresponding digit values are obtained to obtain the first edge-sensing coordinate value. A coordinate calibration method for a touch screen, the touch screen includes a display panel and a capacitive sensor, the method comprising: obtaining, in a direction of the first axis, a capacitance change caused by the capacitive sensor according to a touch object a touch object coordinate; adding a calibration value to the touch object coordinate to obtain a first coordinate; according to the theoretical total coordinate number of the capacitive sensor in the first axis direction and the resolution of the display panel in the first axis direction Determining a conversion ratio; multiplying the first coordinate by the conversion ratio to obtain a second coordinate of the touch panel corresponding to the display surface 30 200928933. The coordinate calibration method of the touch screen as described in claim 15 , wherein the step of obtaining the touch object coordinates comprises: detecting each of the sensing electrodes of the capacitive sensor in the first axial direction; The plurality of digit values obtained by the detecting step are multiplied by the inductive coordinate values corresponding to each of the sensing electrodes to obtain an additive value; and the addition value is divided by the sum of the digit values to obtain an interpolated value. 17. A coordinate calibration method for a touch screen, the touch screen comprising a display panel and a capacitive sensor, the method comprising: detecting, in a first axis direction, a capacitance caused by a touch to the capacitive sensor a third coordinate corresponding to the change in capacitance according to a lookup table; determining a theoretical total coordinate number of the capacitive sensor in the first axis direction and a resolution of the display panel in the first axial direction Converting the ratio; multiplying the third coordinate by the conversion ratio, and obtaining the touch object corresponding to the fourth coordinate of the display panel. 31
TW97111811A 2007-12-26 2008-04-01 Method for calibrating coordinates of touch screen TWI401596B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/123,677 US7990368B2 (en) 2007-12-26 2008-05-20 Method for calibrating coordinates of touch screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US1675407P 2007-12-26 2007-12-26

Publications (2)

Publication Number Publication Date
TW200928933A true TW200928933A (en) 2009-07-01
TWI401596B TWI401596B (en) 2013-07-11

Family

ID=40828068

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97111811A TWI401596B (en) 2007-12-26 2008-04-01 Method for calibrating coordinates of touch screen

Country Status (2)

Country Link
CN (2) CN101470561B (en)
TW (1) TWI401596B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103164065A (en) * 2011-12-16 2013-06-19 迅杰科技股份有限公司 Point reporting device and point reporting method
TWI463381B (en) * 2009-08-28 2014-12-01 Elan Microelectronics Corp A Method to Improve the Edge Location of Capacitive Touchpad
TWI480787B (en) * 2012-10-25 2015-04-11 Orise Technology Co Ltd Method for improving linearity of touch system coordinates
US9069409B2 (en) 2010-10-26 2015-06-30 Novatek Microelectronics Corp. Coordinate algorithm of touch panel

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023767B (en) * 2009-09-14 2015-01-14 义隆电子股份有限公司 Improvement method for capacitive touch pad edge positioning
CN102109937B (en) * 2009-12-24 2013-06-26 联阳半导体股份有限公司 Locating device and locating method for touch device
CN101882041B (en) * 2010-03-12 2013-09-11 敦泰科技有限公司 Capacitive touch screen for improving edge touch sensitive accuracy and data processing method thereof
CN102467279A (en) * 2010-11-08 2012-05-23 联咏科技股份有限公司 Coordinate calculation for touch panel
KR101239880B1 (en) * 2011-10-05 2013-03-06 (주)멜파스 Touch sensing apparatus and method
FR2990020B1 (en) * 2012-04-25 2014-05-16 Fogale Nanotech CAPACITIVE DETECTION DEVICE WITH ARRANGEMENT OF CONNECTION TRACKS, AND METHOD USING SUCH A DEVICE.
CN103034383B (en) * 2012-11-30 2016-04-27 深圳市汇顶科技股份有限公司 The method of touch-screen fringe region response user touch operation, system and terminal
CN103870070B (en) * 2012-12-12 2016-10-05 联想(北京)有限公司 A kind of electric field method of calibration, device and electronic equipment
TWI502424B (en) * 2013-04-12 2015-10-01 Elan Microelectronics Corp Touch device and edge nonlinear compensation method for the touch device
CN104516561A (en) * 2013-09-29 2015-04-15 宸鸿光电科技股份有限公司 Touch panel and touch display
CN105159484B (en) * 2014-06-16 2018-02-13 晨星半导体股份有限公司 The method and contactor control device of the coordinate value of calibrating touch detection face plate edge
CN105511676A (en) * 2015-12-11 2016-04-20 Tcl移动通信科技(宁波)有限公司 Touch screen coordinate transformation method and mobile terminal
CN105653915A (en) * 2015-12-24 2016-06-08 深圳市万普拉斯科技有限公司 Unlocking method and system for terminal with touch display screen
CN109445636B (en) * 2018-10-31 2020-08-14 上海海栎创微电子有限公司 Edge touch coordinate compensation method for self-capacitance touch screen
CN111816073B (en) * 2020-07-06 2023-04-25 京东方科技集团股份有限公司 Display module, display device and calibration method of display module

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710758A (en) * 1985-04-26 1987-12-01 Westinghouse Electric Corp. Automatic touch screen calibration method
US5751276A (en) * 1996-05-23 1998-05-12 Microsoft Corporation Method for calibrating touch panel displays
US6016140A (en) * 1997-10-29 2000-01-18 Nortel Networks Corporation Automatic touch screen calibration
JP3199312B2 (en) * 1997-11-06 2001-08-20 キヤノン株式会社 Liquid crystal display
JP2003066417A (en) * 2001-08-22 2003-03-05 Sharp Corp Touch sensor integrated type display device
TWI245252B (en) * 2002-07-18 2005-12-11 Gigno Technology Co Ltd LCD and the touch-control method thereof
TWI293423B (en) * 2003-04-14 2008-02-11 Henry K Obermeyer Multi-axis joystick and transducer means therefore
TWI226012B (en) * 2003-12-17 2005-01-01 Wintek Corp Neural network correcting method for touch panel
JP2007164470A (en) * 2005-12-14 2007-06-28 Alps Electric Co Ltd Input device and electronic appliance using the input device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463381B (en) * 2009-08-28 2014-12-01 Elan Microelectronics Corp A Method to Improve the Edge Location of Capacitive Touchpad
US9069409B2 (en) 2010-10-26 2015-06-30 Novatek Microelectronics Corp. Coordinate algorithm of touch panel
CN103164065A (en) * 2011-12-16 2013-06-19 迅杰科技股份有限公司 Point reporting device and point reporting method
TWI480787B (en) * 2012-10-25 2015-04-11 Orise Technology Co Ltd Method for improving linearity of touch system coordinates

Also Published As

Publication number Publication date
CN101470561B (en) 2011-11-23
CN102331893A (en) 2012-01-25
CN101470561A (en) 2009-07-01
TWI401596B (en) 2013-07-11
CN102331893B (en) 2013-08-07

Similar Documents

Publication Publication Date Title
TW200928933A (en) Method for calibrating coordinates of touch screen
US8482536B1 (en) Compensation of signal values for a touch sensor
TWI516998B (en) Noise compensating touch panel and touch device thereof
EP2749996B1 (en) Electronic device and method for improving accuracy of location determination of a user input on a touch panel
TWI402737B (en) Multi - touch device and its method
KR20110138095A (en) Method and apparatus for coordinate correction in touch system
US20120007825A1 (en) Operating module of hybrid touch panel and method of operating the same
TW200529052A (en) Anisotropic touch screen element
KR20100036850A (en) Touch panel apparatus using tactile sensor
CN109144303A (en) Pressure sensing touch device
US20120182322A1 (en) Computing Device For Peforming Functions Of Multi-Touch Finger Gesture And Method Of The Same
US20130342491A1 (en) Control Method, Control Device, Display Device And Electronic Device
US9465456B2 (en) Reduce stylus tip wobble when coupled to capacitive sensor
CN104750299A (en) Multi-touch screen device and method for detecting and judging adjacent joints of multi-touch screens
US20120105325A1 (en) Capacitive finger navigation input device
US20100283761A1 (en) Panel module and detecting method
US8698779B2 (en) Touch panel with unbalanced conductive patterns, and touch-controlled apparatus and method for determining multi-touch thereof
CN103902129A (en) Multi-touch pressure testing method for capacitive screen
US20110316794A1 (en) Touch sensing method and touch sensing system
TW201508619A (en) Methods for interacting with an electronic device by using a stylus comprising body having conductive portion and systems utilizing the same
US20150029138A1 (en) Method of recognizing touch
US20100141607A1 (en) Apparatus and method for recognizing multi touch point
US20140347314A1 (en) Method of detecting touch force and detector
US8605056B2 (en) Touch-controlled device, identifying method and computer program product thereof
US8947378B2 (en) Portable electronic apparatus and touch sensing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees