TW200919542A - Method for controlling ADI-AEI CD difference ratio of openings having different sizes - Google Patents

Method for controlling ADI-AEI CD difference ratio of openings having different sizes Download PDF

Info

Publication number
TW200919542A
TW200919542A TW96140045A TW96140045A TW200919542A TW 200919542 A TW200919542 A TW 200919542A TW 96140045 A TW96140045 A TW 96140045A TW 96140045 A TW96140045 A TW 96140045A TW 200919542 A TW200919542 A TW 200919542A
Authority
TW
Taiwan
Prior art keywords
layer
aperture
etching
opening
patterned
Prior art date
Application number
TW96140045A
Other languages
Chinese (zh)
Other versions
TWI350557B (en
Inventor
Chih-Wen Feng
Pei-Yu Chou
Chun-Ting Yeh
Jyh-Cherng Yau
Jiunn-Hsiung Liao
Feng-Yi Chang
Ying-Chih Lin
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW096140045A priority Critical patent/TWI350557B/en
Publication of TW200919542A publication Critical patent/TW200919542A/en
Application granted granted Critical
Publication of TWI350557B publication Critical patent/TWI350557B/en

Links

Abstract

A method for controlling ADI-AEI CD difference ratios of openings having different sizes is provided. First, a first etching step using a patterned photoresist layer as a mask is performed to form a patterned Si-containing material layer and a polymer layer on sidewalls thereof. Next, a second etching step is performed with the patterned photoresist layer, the patterned Si-containing material layer and the polymer layer as masks to at least remove an exposed portion of an etching resistive layer to form a patterned etching resistive layer. A portion of a target material layer is removed by using the patterned etching resistive layer as an etching mask to form a first and a second openings in the target material layer. The method is characterized by controlling etching parameters of the first and second etching steps to obtain predetermined ADI-AEI CD difference ratios.

Description

200919542 UMCD-2007-0198 24668twfdoc/n 九、發明說明: 【發明所屬之技術領域】 -種刻方面的技術’且特別是有關於 種控制孔k不冋開〇的相對孔徑偏差比的方法。 【先前技術】 Γ 尺電路的集成度要求愈來愈高,電路圖案的 寸也愈來愈=。在集成電路製程中,縮小圖案尺寸的 法大多利用高解析度的微影製程。但是,高 =程有鮮上的限制,故其技《為_、成本j ^貝。尤其是對開Π圖案的製程而言,其僅與微影 1關的顯影後檢查關鍵尺寸_⑶)特別難以控制。、因 ^ 般會以調整㈣配方的方式得到應製程所 檢查關鍵尺寸(AEI CD),此即實際形成在目桿材 枓層中的開口的孔徑。 不砰 然而,以此方式同時形成尺寸不同開口的孔徑時, 仍會有各別開口之顯影後-蝕刻後孔徑差難以適心杵 制的問題。在此所謂,,顯影後-蝕刻後孔徑差,,的 為·顯影後檢查關鍵尺寸與蝕刻後檢查關鍵尺寸兩 者之間的差值。例如,在同時形成與源/汲極接觸的 方形接觸窗(square contact)以及與閘極和源/汲極接 觸的共享接觸窗(share contact)的製程中,如縮小方 形接觸窗開口的孔徑,則孔徑較大的共享接 ,孔徑會被縮小更多。當共享接觸窗開 縮小過多時,稍後形成的共享接觸窗即會有過高= 200919542 UMCD-2007-0198 24668twf.doc/n 電阻,而使操作速度大為降低;甚至可能未與目標 的閘極或源/汲極區接觸,而造成斷路。相反地,如 方形、共享接觸窗開口的孔徑縮小幅度不足,則合 產生誤接其他元件等問題。因此’這兩種接觸窗^ 口的孔徑縮小幅度皆須作適當的控制。 —同樣地’在其他類型的開口製程中,㈣時形成孔 徑不同的多種開口時,各種開口的的顯影後_蝕 差的變異幅度亦須同時作適當的控制,以符人制 二 容許的範ϋ。 【發明内容】 有鑑於此,本發明的目的紋在提供—種 不同開口的相對孔徑偏差比的方法。 j扎仏 本發明提出—種控制孔#不關口的相對 比的方法。孔徑不同開π的製程是先於— 差 Ο 依序形成一蝕刻抵擋層、一含矽材料層與一爲S亡 層膜結構,並將光阻層圖案化。其中’ ^ 2丨增的三 有孔徑不同的第-開口圖案與第二開心化=層; 序進雜刻切材料層、_域層與目f j ’依 驟,以於對應第一、第-開口圖亲 π材枓層的步 矛一開口圖案的目標材料層 形成第-開口與第二開口。第一開口的刀 的關後檢錢鍵尺寸)與第—開口圖4 口 開口的顯影後檢查關鍵尺寸)的差異騎:(即弟一 二開口的孔徑(即第二開口的钱刻後檢查關鍵差,!第 第二開口圖案的孔徑(即第二開口的、)/、。亥 H衫後檢查關鍵尺寸' 200919542 UMCD-2007-0198 24668twf.d〇c/n 的差異為第二孔徑^,而第二孔經差與第—孔 的比值稱為相對孔徑偏差比。而且,上 之間 = 第二開°圖案的孔徑。本方法的: 徵在於.以圖案化光阻層為罩幕,進行—第—網符 將圖案化絲層之®案轉移至含讀料層上,形成 案化切材料層i並於酵化光阻層及圖雜切材: ^之側壁產生-南分子膜。然後,以圖案化光阻層、圖200919542 UMCD-2007-0198 24668twfdoc/n IX. Description of the invention: [Technical field to which the invention pertains] - Techniques for engraving] And in particular, a method for controlling the relative aperture deviation ratio of the aperture k. [Prior Art] The integration requirements of the circuit are getting higher and higher, and the size of the circuit pattern is getting more and more =. In the integrated circuit process, the method of reducing the pattern size mostly utilizes a high-resolution lithography process. However, there is a limit on the high = range, so the technique "is _, cost j ^ shell. Especially for the process of opening the pattern, it is particularly difficult to control the post-development inspection critical dimension _(3) which is only related to the lithography. As a result, the critical dimension (AEI CD) to be inspected by the process is obtained by adjusting (4), which is the aperture of the opening actually formed in the layer of the rod. However, when the apertures of different sizes are simultaneously formed in this manner, there is still a problem that the difference in aperture after development of each opening is difficult to be properly controlled. Here, the difference between the post-development and post-etching apertures is the difference between the critical dimension after development and the critical dimension after etching. For example, in a process of simultaneously forming a square contact in contact with a source/drain and a shared contact in contact with a gate and a source/drain, such as reducing the aperture of a square contact opening, If the aperture is larger, the aperture will be reduced more. When the shared contact window is opened and shrunk too much, the shared contact window formed later will be too high = 200919542 UMCD-2007-0198 24668twf.doc/n resistance, and the operation speed is greatly reduced; even the gate may not be with the target The pole or source/drainage area contacts and creates an open circuit. Conversely, if the aperture of the square or shared contact window opening is insufficiently reduced, problems such as misconnection of other components may occur. Therefore, the aperture reduction of both contact windows must be properly controlled. - Similarly, in other types of open processes, when four kinds of openings with different apertures are formed, the variation of the development _ eclips of various openings must be properly controlled at the same time to satisfy the allowable range. Hey. SUMMARY OF THE INVENTION In view of the above, the object of the present invention is to provide a method for the relative aperture deviation ratio of different openings. j. The present invention proposes a method of controlling the relative ratio of the hole #not to the mouth. The process of opening π with different apertures is to form an etch resist layer, a ruthenium-containing material layer and a S-dead layer structure in advance, and pattern the photoresist layer. Wherein ^ ^ 2 丨 3 has a first opening pattern with a different aperture and a second happy layer = layer; the sequential cutting material layer, the _ domain layer and the eye fj 'according to the first, the first The target material layer of the opening pattern of the opening pattern of the π material layer forms a first opening and a second opening. The difference between the size of the first open knives and the critical size of the opening of the opening of the opening of the figure is: (ie, the aperture of the opening of the second opening (ie, the second opening of the money after the inspection) The key difference, the aperture of the second opening pattern (ie, the second opening), /. After the Hai H shirt check the critical size '200919542 UMCD-2007-0198 24668twf.d〇c / n difference is the second aperture ^ And the ratio of the second hole difference to the first hole is called the relative aperture deviation ratio. Moreover, the upper side = the aperture of the second open pattern. The method is: the pattern is used to mask the photoresist layer , the -first-network symbol transfers the patterned silk layer to the reading layer, forming the layer of the cutting material i and producing the -molecular layer on the sidewall of the enzymatic photoresist layer and the pattern: Membrane. Then, to pattern the photoresist layer,

案化含帅料層及其側壁之高分子膜為罩幕,進行一第 二餘刻步驟,以至少移除曝露出的_減層,而形成 -圖案化酬減層。之後,以圖案化關抵擒層為餘 刻罩移除部分目標材料層,於目標材料層中形成第 一、第二開口,且藉由調整第一蝕刻步驟的蝕刻參數及/ 或第二侧步驟的侧參數,以得到預設的相對孔徑偏 差比。 依如、本發明的實施例所述之控制孔徑不同開口的相 對孔徑偏差比的方法,上述之第二蝕刻步驟為進行一過 度蝕刻步驟,以於圖案化蝕刻抵擋層中形成第二開口的 擴口開口圖案。上述之第二蝕刻步驟中通入一含氟之烴 通化δ物作為姓刻氣體,而此含i之烴類化合物為 CHxFy ’ 其中 χ= 1、2、3 ; y= 1、2、3。 依照本發明的實施例所述之控制孔徑不同開口的相 對孔役偏差比的方法,上述之第二餘刻步驟為進行一適 量#刻步驟,以於圖案化蝕刻抵擋層中形成實質上垂直 的開口圖案。在一實施例中,第二蝕刻步驟之蝕刻氣體 為 CO、〇2 和 CF4。 200919542 UMCD-2007-019S 24668twf.doc/n 依照本發明的實施例所述之控制孔徑不同開口的相 對孔徑偏差比的方法,上述之第二蝕刻步驟例如是先進 行一蝕刻不足步驟,移除曝露出的部分蝕刻抵擋層。其 中,第二蝕刻步驟之蝕刻氣體為CO、02和CF4。然後, 再進行弟一钱刻步驟,其為一過度钱刻步驟,移除殘 留的蝕刻抵擋層及其下方之部分目標材料層。上述,過 度餘刻步驟為—料向性似彳步驟,過度細丨步驟所使 用之蝕刻氣體為含氟氣體。 f 依照本發明的實施例所述之控制孔徑不同開口的相 對孔徑偏差比的方法,上述調整第一蝕刻步驟的蝕刻參 數例如是蝕刻氣體的流量。 依如、本發明的實施例所述之控制孔徑不同開口的相 對孔徑偏差比的方法,上述之調整第二蝕刻步驟的蝕刻 參數例如是姓刻時間。 依照本發明的實施例所述之控制孔徑不同開口的相 對孔徑偏差比的方法,上述之第一開口為共享接觸窗開 〇 口,且第二開口為方形接觸窗開口。 依照本發明的實施例所述之控制孔徑不同開口的相 對孔徑偏差比的方法,上述之蝕刻抵擋層例如是Wine光 阻。 依照本發明的實施例所述之控制孔徑不同開口的相 對孔徑偏差比的方法,上述之含矽材料層為硬罩幕底郄 抗反射層。 依照本發明的實施例所述之控制孔徑不同開口的相 對孔徑偏差比的方法,上述之圖案化光阻層為193条米 200919542 UMCD-2007-0198 24668twf.doc/n 光阻。 依照本發明的實施例所述之 對孔徑偏差比的方法,農中今二後不同開D的相 ~ r孩目標材料層包括 本發明之方法是_調整烟^。 娜刻抵擔層的步驟的钱刻參數,以控與 口之間的相對孔徑偏差比在製程所允許 1同開 與元件接觸面積過小或未與元件接觸等=大 提升製程的可靠度。另—方面,本發明之方 ^大 整钱刻製程之勤]參數的方式控制相對孔徑偏^= 不需修改光罩,因此可節省製程成本。 而 為讓本發明之上述和其他目的、特徵和優點能 顯易懂,下文特舉較佳實施例,並配合所附圖式, 細說明如下。 【實施方式】 以下,將以接觸窗開口製程為例進一步說明本發 明’但此例並非用以限定本發明的範圍。圖1A至圖1H 為依照本發明實施例所繪示的接觸窗開口製程的流程剖 面圖’此接觸窗開口製程内含本發明的相對孔徑偏差比 控制方法。 請參照圖1A,首先提供基底1〇〇,基底100上例如 已形成有多個金氧半(MOS)電晶體102,其藉由淺溝渠隔 離結構之類的隔離結構101與其他元件隔離。電晶體102 的閘極結構104位於基底100上,間隙壁1〇6位於閘極 200919542 UMCD-2007-0198 24668twf.doc/n 結構104側壁’且源/没極區i〇8位於閘極結構1〇4兩侧 的基底100中。在某些實施例中,更可於閘極結構104 與源/汲極區108上形成金屬矽化物(未繪示),如矽化鎳、 矽化鎢或矽化鈷等,以降低電阻。由於電晶體1〇2中各 構件的材質與形成方法為本領域之人員所熟知,故不再 贅述。 、 之後,请參照圖1B ’在基底1〇〇上形成介電層11〇, 以覆蓋電晶體102與隔離結構101。此介電層11〇例如是 摻雜矽玻璃、二氧化矽、低介電常數材料等,或者是由 無摻雜玻璃(USG)層與磷矽玻璃(PSG)層所組成。介電層 110的形成方法例如是化學氣相沈積法或旋轉塗佈法^ 介電層110即是作為預形成接觸窗開口的 在某些實施例中,更可在介電層110形成之前,於 ^底刚上形成接觸窗餘刻中止層(c〇ntacte— —,CESL)109,其材質可例如為氮化石夕g 方法則可勤為化學氣她。 1 料層即是指介電層11G與接觸窗_巾止層=9之目才示材 接著,在介電層110上形杰田 窗開口之步驟的蝕刻罩幕。目前?為後續蝕刻接觸 的先進製程中,需將丼咀的戸由、5nm或45nm以下 降低黃光製程之先學限制所薄化’以 但是’光阻的薄膜化卻會使4=生:佳的問 :會使用多層的膜層來代替習知的單層=為:: 200919542 UMCD-2007-0198 24668twf.doc/n 請繼續參照圖1C ’在介電層110上形成一敍刻抵擒 層112。#刻抵擔層112例如是novolac型紛酸·樹脂 (novolac resin)或者類似I-line光阻等材料,其厚度約為 1500埃至3000埃,較佳則為18〇0埃左右。若以蝕刻抵 擔層112疋I-line光阻為例,其形成方式是先利用一般光 阻塗佈程序’而塗佈在介電層110上,然後再加以烘烤 固化,即可形成之。 接著’在蝕刻抵擋層112上形成一層含矽材料層 ( 114。含碎材料層114例如是硬罩幕底部抗反射 (Silicon-containing Hard-mask Bottom anti-reflection coating ’ SHB)層,其成分為含矽之有機高分子聚合物 (organosilicon polymer)或聚矽物(p〇iysiiane),至少具有一 發色基團(chromophore group)以及一交聯基團 (crosslinkablegroup)。此外,含矽材料層114的成分中亦 可以含有交聯劑(crossiinking agent) ’以使得在照光後可 產生交聯反應。而且,含矽材料層114具有可藉由調整 〇 砍含量而獲得不同耐姓刻能力之特性。承上述,含發材 料層114具有的矽含量約介於5 ”%至3〇 wt%,較佳則 介於15 wt%至25 wt〇/〇之間,而其厚度則介於15〇埃至 1100埃之間,較佳為800埃左右。 然後,請參照圖1D,於含矽材料層上形成—層 圖案化光阻層116。圖案化光阻層116例如是ArF光阻或 者193奈米光阻。圖案化光阻層116的厚度僅需要6〇〇 埃至2200埃之間,較佳約為1500埃左右。其中,圖案 化光阻層116具有較大的共享接觸窗(share c〇ntact)開口 11 200919542 UMCD-2007-0198 24668twf.doc/n 圖案120以及較小的方形接觸窗(Square c〇ntact)開口圖案 122。共旱接觸窗開口圖案12〇位於同一金氧半電晶體 的部分閘極結構104和部分源/汲極區1〇8的上方,方形 接觸窗開口圖案122則位於另一金氧半電晶體搬的部 分源/汲極區108上方。此處共享/方形接觸窗開口圖案 120/122的孔徑即為共享/方形接觸窗開口的顯影後 關鍵尺寸(ADICD)。 — 隨後,請參照圖1E,利用圖案化光阻層116作為蝕 刻罩幕,進行一蝕刻步驟128,將共享/方形接觸窗開口 圖案120/122經由蝕刻而轉移至下方的含矽材料層114 中,以形成圖案化含矽材料層115。在上述之蝕刻步驟 128中,利用通入含氟之烴類化合物(CHxFy,其中χ=ι、 2 i’y—卜2、3。)作為蝕刻用氣體,例如三氟曱烷((:111^)、 —氟甲烧(CH3F)、二氟甲邮贴)或其混合氣體,可使 得兹刻切㈣層114時,亦同時會魅高分子膜的沈 積作用。如此一來,可以在圖案化含石夕材料層lb中钱 刻$分別對應共享/方形接觸窗開口圖案l20/122之具有 :縮傾斜(tapered)側壁的開口圖案124/126。而且,由於 ^接觸窗開口圖案12G的孔徑大於方形接觸窗開口圖 ^ 的孔徑,因此開口圖案124與共享接觸窗開口圖 木120之側壁堆積的高分子膜會較開口圖案I%與方形 接觸窗開π圖案122之側壁堆積的高分子膜多。亦即是, ^圖案124與共享接觸窗開口圖案120的孔徑差大於 Θ 口圖案126與方形接觸窗開口圖案122的孔徑差。 承上述,蝕刻步驟128所用的蝕刻配方可令開口圖 12 200919542 UMCD-2007-0198 24668twf.doc/n 案124/126的孔徑小於共享/方形接觸窗開口圖案i2〇/ 的孔徑。同時,藉由適度調整蝕刻步驟128的蝕刻夂 例如則贼體的流量,可㈣共享/方形躺窗開’ 案120/122的孔徑縮小幅度。 圃 接下來’可利用圖案化光阻層116、圖案化含石夕 L11二及其側壁之高分子膜為罩幕’進行-蝕刻餘刻抵 a a 12的步驟’以至少移除由開口圖案i24/i26所命 Γ C,< 出的餘刻抵擋層112,而形成—圖案化餘刻抵擋層。、路 因為’烟速率會受_ σ _的孔徑大小不同的 ^曰’孔徑相對較大的開口圖案會使得綱速率亦 如圖1F所示’當侧開口圖案124底部的钱刻抵 =12至曝露出介電層則時,開口圖案126底部 ^路出的姓刻抵播層112則尚未完全被移除。當鈥,此 ^圖案化光阻層116亦讀部分㈣耗(讀示於圖式 的心::圖1G所示,需藉由侧钱刻抵擔層112 牵^ 進订一過度颠刻(over-etching)步驟,使開口圖 底部的钱刻抵擋層出被則至曝露出介電層 而開口圖案124底部的蝕刻抵擋層112 产 ==別於圖案化讓撞層113中形成: 掉㈣;^的開口圖案132/134,且亦會同時移除 的另外,藉由適度調紐刻步驟no 孔徑列如蝕刻時間,可控制開口圖案132/134的 繼之,請參照圖1Η,於開口圖案132/134形成之後, 者M CF4/02 #氣體對钱刻抵擋層113進行作刻圖案 13 200919542 UMCD-2007-0198 24668twf.doc/n 化時,同時移除圖案化含矽材料層115。然後,以圖案 蝕刻抵擋層113為罩幕,進行蝕刻步驟,以於介電層^ 與接觸窗钱刻中止層109中形成暴露出一個金氧半曰 體102的部分閘極結構1〇4和部分源/汲極區1〇8的共: 接觸窗開π 136,以及暴露出另—金氧半電晶體⑽^ 分源/汲極區108的方形接觸窗開口 138。 *上述,開口圖案136/138的孔徑則為共享/方形接觸 固開口圖案120/122的蝕刻後檢查關鍵尺寸(AEI CD), 是約略等於後續預形成之接觸窗開口的孔徑。如此所 得之共享/方形接觸窗開口圖案⑽122的孔徑與開口圖 ^ 136/138的孔徑之差值’則形成第一/二孔徑差,其中 第二孔徑差與第-孔徑差的比值即前述的相對孔徑偏差 比。 、,在上述製程中,兩種接觸窗開口之間的相對孔徑偏 =匕是由侧切材制114的步驟128無難刻抵 擋層112的步驟13〇的蝕刻參數來控制。例如,在蝕刻 步驟128巾,可藉由調整含氟之賴化合物的氣體流量 才工制產生之同分子膜的厚度,而間接控制開口圖案 124/126的孔徑大小;在蝕刻步驟13〇中,可葬由調 刻時間’即調整則量’控制開口圖案132/134的孔徑大 小。因此,利用適當地選用钱刻步驟128與姓刻步驟13〇 的钱刻參數可控制㈣孔徑偏差比在—製程所允許的範 圍,以避免後續所形成的接觸窗不會發生誤接、與元件 接觸面積過小或未與元件接料問題,而可大大提升製 程的可靠度。 14 200919542 UMCD-2007-0198 24668twf.doc/n 而且,利用上述調整二蝕刻步驟之蝕刻參數,以沉 積與蝕刻的負載效應(loading effect)偏差互補,來控制不 同開口之相對孔徑偏差比的方法,可使得製程中所使用 之光罩不需因此而做修正,如此可節省製程成本。 此外’於形成共旱接觸㈣口 136與方形接觸窗開 口 138後,可繼續進行後續的製程,以形成共享接觸窗 與方形接觸窗(未繪示)。例如,接下來可移除圖案化蝕刻 抵擔層113 ’再於接觸窗開口 136、138令填入導體材料, C, 並移除多餘的導體材料,直至介電層110表面暴露出為 止。 ,在一實施例中,亦可調整蝕刻參數,使蝕刻蝕刻抵 擋層112的步驟130為一適量蝕刻(just_etching)步驟,以 同時蝕刻蝕刻抵擋層112至曝露出介電層11〇,而於圖 化蝕刻抵擋層113中形成實質上垂直的開口圖案'^給 ,)。上述,蝕刻步驟130的步驟所使用的蝕刻氣體例二 是CF4 ' CO、〇2。當然,在此情况下,亦可視製程带 Ο 來調整蝕刻含矽材料層114的步驟128的蝕刻灸赵而 相對孔徑偏差比在製程所允許的範圍内。 使 另外,在其他實施例中,還可調整蝕刻參數, 刻蝕刻抵擋層112的步驟130為,先實行—蝕刻不 (under-etching)步驟’僅移除開口圖案124/126底部足 路出的部分餘刻抵播層112 ’而於開口圖案丨24/126广^ 殘留-些的餘刻抵擔層112。其中,餘刻不足步驟的=部 所使用的蝕刻氣體例如是CF4、c〇、〇2。然後,再二騍 低選擇比的過度蝕刻步驟,以完全蝕刻開口 ^ = 15 200919542 UMCD-2007-0198 24668twf.doc/n 124/126底部所殘留的蝕刻抵擋層112,以及其下方之部 分介電層。上述之低選擇比的過度蝕刻步驟可使蝕刻過 ,為一非等向性蝕刻,其所使用之蝕刻氣體例如是含氟 氣體,例如是CF4。同樣地,在此情況下,還可視製程需 求來調整蝕刻含矽材料層114的步驟128的蝕刻參數, 使相對孔梭偏差比在製程所允許的範圍内。 綜上所述,本發明之方法可控制孔徑不同開口之間 的相對孔徑偏差比在製程所允許的範圍内,以使得後續 所形成的接觸窗不會發生誤接、與元件接觸面積過小或 未與元件接觸等問題,而可大大提升製程的可靠度。另 一方面,本發明之方法不需修改光罩,即可達到控制孔 徑不同開口之間的相對孔徑偏差比相對孔徑偏差比的目 的’因此可節省製程成本。 雖然本發明已以較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圍内,當可作些許之更動與潤飾’因此本發明 〇 之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1A至圖1H為依照本發明實施例所繪示的接觸窗 開口製程的流程剖面圖,此接觸窗開口製程内含本發明 的相對孔徑偏差比控制方法。 【主要元件符號說明】 100 :基底 16 200919542 UMCD-2007-0198 24668twf.doc/n 101 :隔離結構 102 :金氧半電晶體 104 :閘極結構 106 :間隙壁 108 ·源/>及極區 109 :接觸窗蝕刻中止層 110 :介電層 112:蝕刻抵擋層 1 113 :圖案化蝕刻抵擋層 114 :含矽材料層 115 :圖案化含矽材料層 116 :圖案化光阻層 120 :共享接觸窗開口圖案 122 :方形接觸窗開口圖案 124、126、132、134 :開 口圖案 128、130 :蝕刻步驟 . 136 :共享接觸窗開口 138 :方形接觸窗開口 17The polymer film containing the handsome layer and the sidewall thereof is a mask, and a second remaining step is performed to remove at least the exposed layer to form a patterned subtractive layer. Thereafter, a portion of the target material layer is removed by patterning the ruthenium layer as a residual mask, and first and second openings are formed in the target material layer, and the etching parameters of the first etching step and/or the second side are adjusted The side parameters of the step to obtain a preset relative aperture deviation ratio. For example, in the method for controlling the relative aperture deviation ratio of different apertures of the aperture according to the embodiment of the present invention, the second etching step is performed by performing an over-etching step to form a second opening in the patterned etching resist layer. Opening pattern. In the second etching step, a fluorine-containing hydrocarbon gasification δ is introduced as a gas for the surname, and the hydrocarbon compound containing i is CHxFy ' wherein χ = 1, 2, 3; y = 1, 2, 3. According to an embodiment of the present invention, a method for controlling a relative venting deviation ratio of different apertures of the apertures, the second remaining step is performing an appropriate amount of etching steps to form substantially vertical in the patterned etch resist layer Opening pattern. In one embodiment, the etching gases of the second etching step are CO, 〇2, and CF4. The method of controlling the relative aperture deviation ratio of different apertures of the aperture according to the embodiment of the present invention, the second etching step is, for example, performing an etch-out step to remove the exposure. The resulting portion is etched against the barrier layer. The etching gases of the second etching step are CO, 02 and CF4. Then, a further step is performed, which is an excessive etching step to remove the remaining etch-resistant layer and a portion of the target material layer below it. In the above, the excessive residual step is a gradation-like step, and the etching gas used in the excessively fine step is a fluorine-containing gas. f In accordance with a method of controlling a relative aperture deviation ratio of different apertures of an aperture according to an embodiment of the invention, the etching parameter for adjusting the first etching step is, for example, the flow rate of the etching gas. For example, in the method for controlling the relative aperture deviation ratio of different apertures of the aperture according to the embodiment of the present invention, the etching parameter for adjusting the second etching step is, for example, a time of a last name. A method of controlling a relative aperture deviation ratio of different apertures of an aperture according to an embodiment of the invention, wherein the first opening is a shared contact opening and the second opening is a square contact opening. In the method of controlling the relative aperture deviation ratio of different apertures of the aperture according to an embodiment of the invention, the etching resist layer is, for example, a Wine photoresist. According to the method of controlling the relative aperture deviation ratio of different apertures of the aperture according to the embodiment of the invention, the layer of the ruthenium-containing material is a hard mask 郄 anti-reflection layer. According to the method of controlling the relative aperture deviation ratio of different apertures of the aperture according to the embodiment of the invention, the patterned photoresist layer is 193 meters. 200919542 UMCD-2007-0198 24668twf.doc/n photoresist. According to the method of the aperture deviation ratio according to the embodiment of the present invention, the phase of the material layer which is different from D after the present invention is included in the method of the present invention. The engraving parameter of the step of the engraving layer is such that the relative aperture deviation between the control port and the port is the same as that allowed in the process. The contact area with the component is too small or not in contact with the component, etc. = the reliability of the process is greatly improved. On the other hand, the method of the present invention is to control the relative aperture bias ^= without modifying the mask, thereby saving process cost. The above and other objects, features, and advantages of the invention will be apparent from the description and appended claims [Embodiment] Hereinafter, the present invention will be further described by taking a contact opening process as an example. However, this example is not intended to limit the scope of the present invention. 1A-1H are cross-sectional views showing a process of opening a contact opening according to an embodiment of the present invention. The method for controlling the relative aperture deviation ratio of the present invention is included in the process of opening the contact window. Referring to Figure 1A, a substrate 1 is first provided. For example, a plurality of metal oxide half (MOS) transistors 102 have been formed on the substrate 100, which are isolated from other components by an isolation structure 101 such as a shallow trench isolation structure. The gate structure 104 of the transistor 102 is located on the substrate 100, and the spacer 1〇6 is located at the gate 200919542 UMCD-2007-0198 24668twf.doc/n structure 104 sidewall ' and the source/no-polar region i〇8 is located in the gate structure 1 〇 4 in the base 100 on both sides. In some embodiments, a metal telluride (not shown) such as nickel telluride, tungsten telluride or cobalt telluride may be formed on the gate structure 104 and the source/drain region 108 to reduce electrical resistance. Since the materials and formation methods of the members in the transistor 1〇2 are well known to those skilled in the art, they will not be described again. Thereafter, a dielectric layer 11A is formed on the substrate 1A to cover the transistor 102 and the isolation structure 101 with reference to FIG. 1B'. The dielectric layer 11 is, for example, doped with bismuth glass, cerium oxide, a low dielectric constant material, or the like, or is composed of an undoped glass (USG) layer and a phosphoric silicate glass (PSG) layer. The method of forming the dielectric layer 110 is, for example, a chemical vapor deposition method or a spin coating method. The dielectric layer 110 is formed as a pre-formed contact opening, and in some embodiments, before the dielectric layer 110 is formed. A contact window stop layer (c〇ntacte--, CESL) 109 is formed on the bottom of the substrate, and the material thereof can be, for example, a nitride gas g method. 1 The material layer refers to the dielectric layer 11G and the contact window _ towel layer = 9 mesh material. Next, an etching mask is formed on the dielectric layer 110 to form the opening of the window. Currently? In the advanced process for subsequent etch contact, it is necessary to thin the 戸 戸, 5 nm or below to reduce the yellowing process of the yellow light process, but the thin film of the photoresist will make 4 = raw: good Q: A multi-layered film layer is used instead of the conventional single layer =: 200919542 UMCD-2007-0198 24668twf.doc/n Please continue to refer to FIG. 1C' to form a patterned engraving layer 112 on the dielectric layer 110. . The engraved layer 112 is, for example, a novolac type novolac resin or a material such as an I-line photoresist having a thickness of about 1,500 angstroms to 3,000 angstroms, preferably about 18 angstroms. For example, the etching resist layer 112 疋I-line photoresist is formed by applying a general photoresist coating process to the dielectric layer 110, and then baking and solidifying. . Then, a layer of germanium-containing material (114 is formed on the etch resist layer 112. The layer containing the material 114 is, for example, a layer of a hard-mask Bottom anti-reflection coating (SHB), the composition of which is The organosilicon polymer or the polypyrene (p〇iysiiane) having at least one chromophore group and a crosslinkable group. Further, the germanium-containing material layer 114 The component may also contain a crossiinking agent 'to make a cross-linking reaction after illuminating. Moreover, the yttrium-containing material layer 114 has the property of obtaining different resistance to surname by adjusting the slashing content. In view of the above, the hair-containing material layer 114 has a cerium content of about 5"% to 3% by weight, preferably between 15% and 25% 〇/〇, and a thickness of between 15 Å and Å. Between 1100 angstroms, preferably about 800 angstroms. Then, referring to Fig. 1D, a patterned photoresist layer 116 is formed on the ytterbium-containing material layer. The patterned photoresist layer 116 is, for example, an ArF photoresist or a 193 nm light. Resisting. Patterning the photoresist layer 116 The degree only needs to be between 6 〇〇 and 2200 Å, preferably about 1500 Å, wherein the patterned photoresist layer 116 has a large shared contact opening 11 200919542 UMCD-2007-0198 24668 twf.doc / n pattern 120 and a smaller square contact window (Square c〇ntact) opening pattern 122. The co-dry contact window opening pattern 12 〇 is located in the same MOS semi-transistor part of the gate structure 104 and part of the source / 汲Above the pole region 1〇8, the square contact window opening pattern 122 is located above a portion of the source/drain region 108 where another MOS transistor is moved. Here, the aperture of the shared/square contact window opening pattern 120/122 is The post-development critical dimension (ADICD) of the shared/square contact window opening. - Subsequently, referring to FIG. 1E, an etch step 128 is performed using the patterned photoresist layer 116 as an etch mask, and the shared/square contact window opening pattern 120 is used. /122 is transferred by etching to the underlying germanium-containing material layer 114 to form a patterned germanium-containing material layer 115. In the etching step 128 described above, a fluorine-containing hydrocarbon compound (CHxFy, wherein χ=ι is used , 2 i'y - Bu 2, 3.) The etching gas, such as trifluorodecane ((: 111^), - fluoromethane (CH3F), difluoromethane mail) or a mixture thereof, can make the (four) layer 114 at the same time The deposition of molecular membranes. In this way, the pattern of the shared or square contact opening pattern l20/122 corresponding to the shared/square contact opening pattern l20/122 can be respectively engraved in the patterned lithographic material layer lb: the opening pattern 124/126 of the tapered side wall. Moreover, since the aperture of the contact window opening pattern 12G is larger than the aperture of the square contact window opening pattern, the polymer film deposited on the sidewalls of the opening pattern 124 and the shared contact window opening pattern 120 is larger than the opening pattern I% and the square contact window. There are many polymer films deposited on the sidewalls of the π-pattern 122. That is, the difference in aperture between the pattern 124 and the shared contact opening pattern 120 is greater than the difference in aperture between the opening pattern 126 and the square contact opening pattern 122. In view of the above, the etching recipe used in the etching step 128 allows the aperture of the opening pattern 12 200919542 UMCD-2007-0198 24668 twf.doc/n 124/126 to be smaller than the aperture of the shared/square contact opening pattern i2 〇 /. At the same time, by appropriately adjusting the etching etch of the etching step 128, for example, the flow rate of the thief, the aperture of the shared/square window opening 120/122 can be reduced.圃 Next, the patterned photoresist layer 116 can be used to pattern the polymer film containing the stone layer L11 and its sidewalls as a mask to perform the step of etching the etch to the aa 12 to remove at least the opening pattern i24. /i26 is ordered to C, < the remaining moment resists layer 112, forming a patterned residual resist layer. Because the 'smoke rate will be affected by the aperture size of _ σ _ 曰 曰 ' aperture aperture is relatively large opening pattern will make the rate as shown in Figure 1F 'When the bottom opening pattern 124 bottom of the money is offset = 12 to When the dielectric layer is exposed, the surnamed layer 112 at the bottom of the opening pattern 126 is not completely removed. When 鈥, the patterned photoresist layer 116 also reads part (4) of the consumption (read the heart shown in the figure: as shown in Fig. 1G, it is necessary to use the side money to engrave the layer 112 to advance the over-engraving ( The over-etching step is such that the money at the bottom of the opening pattern is resisted to the exposed layer to expose the dielectric layer and the etch resist layer 112 at the bottom of the opening pattern 124 is formed == not formed in the patterned collision layer 113: (4) The opening pattern 132/134 of the ^, and also removed at the same time, by the appropriate adjustment step no aperture column such as etching time, the opening pattern 132/134 can be controlled, please refer to FIG. After the pattern 132/134 is formed, the M CF4/02 # gas is etched into the engraved layer 113, and the patterned patterned germanium-containing material layer 115 is simultaneously removed. Then, the resist layer 113 is patterned as a mask, and an etching step is performed to form a portion of the gate structure 1〇4 exposing a gold oxide semiconductor body 102 in the dielectric layer and the contact window stop layer 109. Part of the source/drain region 1〇8: contact window opening π 136, and exposing another - gold oxide semi-transistor (10) ^ source / 汲The square contact opening 138 of the pole region 108. * The aperture of the opening pattern 136/138 is the post-etch check critical dimension (AEI CD) of the shared/square contact solid opening pattern 120/122, which is approximately equal to the subsequent pre-formation. The aperture of the contact window opening. The difference between the aperture of the shared/square contact opening pattern (10) 122 thus obtained and the aperture of the aperture pattern 136/138 forms a first/two aperture difference, wherein the second aperture difference and the first aperture The difference ratio is the aforementioned relative aperture deviation ratio. In the above process, the relative aperture deviation between the two contact window openings = 匕 is the step 128 of the side cut material 114, which is not difficult to resist the layer 112. Etching parameters are controlled. For example, in the etching step 128, the pore size of the opening pattern 124/126 can be indirectly controlled by adjusting the gas flow rate of the fluorine-containing compound to control the pore size of the opening pattern 124/126; In step 13〇, the aperture size of the opening pattern 132/134 can be controlled by the engraving time 'that is, the adjustment amount'. Therefore, the money engraving step 128 and the surname step 13 are appropriately selected. It can control (4) the aperture deviation ratio is within the range allowed by the process, to avoid the subsequent contact window formed without misconnection, the contact area with the component is too small or the problem of material contact with the component, and the reliability of the process can be greatly improved. 14 200919542 UMCD-2007-0198 24668twf.doc/n Moreover, by using the above-mentioned etching parameters of the two etching steps, the method of controlling the relative aperture deviation ratio of the different openings is complementary to the deviation of the deposition effect of the deposition, It can make the mask used in the process not need to be corrected, thus saving the process cost. Further, after forming the co-dry contact (four) port 136 and the square contact window opening 138, the subsequent process can be continued to form a shared contact window and a square contact window (not shown). For example, the patterned etch resist layer 113' can then be removed to fill the conductor material C, and the excess conductor material is removed until the surface of the dielectric layer 110 is exposed. In one embodiment, the etching parameters may also be adjusted such that the step 130 of etching the etch resist layer 112 is an just etching step to simultaneously etch the etch resist layer 112 to expose the dielectric layer 11 〇. A substantially vertical opening pattern is formed in the etch resist layer 113. The second example of the etching gas used in the step of the etching step 130 is CF4 'CO, 〇2. Of course, in this case, the process tape Ο can also be used to adjust the etching moxibustion of the step 128 of etching the germanium-containing material layer 114 with respect to the relative aperture deviation ratio within the range allowed by the process. In addition, in other embodiments, the etching parameters may also be adjusted. The step 130 of etching the resist layer 112 is to perform an under-etching step to remove only the bottom pattern of the opening pattern 124/126. A portion of the remaining engraving layer 112' is left in the opening pattern 丨24/126 to retain a portion of the remaining layer 112. The etching gas used in the portion where the remainder is insufficient is, for example, CF4, c〇, and 〇2. Then, the over-etching step of the lower selection ratio is further performed to completely etch the etch resist layer 112 remaining at the bottom of the opening, and the portion of the dielectric underneath the lower portion of the opening φCD. Floor. The above-described low selection ratio over-etching step may be etched into an anisotropic etch, and the etching gas used is, for example, a fluorine-containing gas such as CF4. Similarly, in this case, the etch parameters of step 128 of etching the ruthenium containing material layer 114 can also be adjusted to the processing requirements such that the relative aperture shuttle deviation is within the range allowed by the process. In summary, the method of the present invention can control the relative aperture deviation ratio between different apertures of the aperture to be within the range allowed by the process, so that the contact window formed subsequently does not mis-connect, the contact area with the component is too small or not Problems such as contact with components can greatly improve the reliability of the process. On the other hand, the method of the present invention achieves the objective of controlling the relative aperture deviation to the relative aperture deviation ratio between different apertures without modifying the reticle, thus saving process cost. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A to FIG. 1H are cross-sectional views showing a process of a contact opening process according to an embodiment of the present invention. The contact opening process includes a relative aperture deviation ratio control method of the present invention. [Description of main component symbols] 100: Substrate 16 200919542 UMCD-2007-0198 24668twf.doc/n 101: isolation structure 102: MOS semi-transistor 104: gate structure 106: spacer 108 · source / > and polar region 109: contact window etch stop layer 110: dielectric layer 112: etch resist layer 1 113: patterned etch resist layer 114: germanium-containing material layer 115: patterned germanium-containing material layer 116: patterned photoresist layer 120: shared contact Window opening pattern 122: square contact window opening pattern 124, 126, 132, 134: opening pattern 128, 130: etching step. 136: sharing contact window opening 138: square contact window opening 17

Claims (1)

200919542 UMCD-2007-0198 24668twf.doc/n 十、申請專利範圍: 法,===:,孔徑偏差比的方 含二序形成,刻抵擋層、- 有孔徑不_ 一第化光阻層具 以及 间口圖案與一弟二開口圖案; 》 該目;4含秒材料層、該㈣抵擒層與 ==層的步驟’以於對應該第一、該 票材料層中分別形成_第一開口與一 =’ /、中_-開σ的孔徑與該第—開口圖 3切的差異為第—孔徑差,該第二開口的孔徑 第該口圖案的孔獲的差異為第二孔徑差,而 與第—孔徑差之間的比值稱為相對孔徑 匕,/、中該第一開口圖案的孔徑大於該第-開 口圖案的孔徑, 統3弟-開 ο 該方法包括: 料化光阻層為罩幕’進行-第-餘刻步驟, -圖且層之圖案轉移至該含刪層上,形成 二㈣I石才料層,並於該圖案化光阻層及該圖案化 夕材枓層之側壁產生一高分子膜; 之兮案化光阻層、該圖案化含矽材料層及其側壁 膜為罩幕,進行—第二飿刻步驟,以至少移 1、路出的触難擋層,⑽成1案化㈣抵擔層; 以該圖案化_減層為_罩幕,移除部分該目 18 200919542 UMCD-2007-0198 24668twf.doc/n 標材料層,於該目標材料層中形成該第一、該第二開口; 以及 方法中藉由調整該第一蝕刻步驟的蝕刻參數及/或該 第二蝕刻步驟的蝕刻參數,以得到預設的相對孔徑偏差 比。 2. 如申請專利範圍第1項所述之控制孔徑不同開口 的相對孔徑偏差比的方法,其中該第二蝕刻步驟為進行200919542 UMCD-2007-0198 24668twf.doc/n X. Patent application scope: Law, ===:, the aperture deviation ratio is formed by the second order, the resist layer, the aperture is not _ a first photoresist layer And a pattern of the mouth and a second opening pattern; ” the item; 4 the second material layer, the (four) step of the layer and the layer of the == layer to form the first, the ticket material layer respectively formed _ first The difference between the aperture and the aperture of a = ' /, medium _ - opening σ and the first opening of FIG. 3 is the first aperture difference, and the aperture of the aperture of the second opening is the difference of the second aperture difference And the ratio between the first aperture difference is referred to as the relative aperture 匕, /, the aperture of the first opening pattern is larger than the aperture of the first opening pattern, and the method comprises: materializing the photoresist The layer is a mask-performing-first-remaining step, and the pattern of the layer is transferred to the layer containing the layer to form a two (four) stone layer, and the patterned photoresist layer and the patterned wafer are a polymer film is formed on the sidewall of the layer; the patterned photoresist layer, the patterned germanium-containing material layer and sidewalls thereof The film is a mask, and the second engraving step is performed to move at least one of the touch-resisting layers, and (10) to form a (four) resist layer; the patterned_substrate is _mask, removed The first layer and the second opening are formed in the target material layer; and the etching parameter of the first etching step is adjusted by the method and the method / or the etching parameters of the second etching step to obtain a preset relative aperture deviation ratio. 2. A method of controlling a relative aperture deviation ratio of different openings of a control aperture as described in claim 1 wherein the second etching step is performed 一過度蝕刻步驟,以於該圖案化蝕刻抵擋層中形成第二 開口的擴口開口圖案。 3. 如申請專利範圍第1項所述之控制孔徑不同開口 的相,孔徑偏差比的方法,其中該第二蝕刻步驟為進行 一適1蝕刻步驟,以於該圖案化蝕刻抵擋層中形成實質 上垂直的開口圖案。 4. 如申請專利範圍第1項所述之控制孔徑不同開口 的相對孔#偏差比的方法,其中該第二侧步驟為一姓 亥J不足步驟’移除曝露出的部分該蝕刻抵擋層;以及 進行一第二蝕刻步驟,其為一過度蝕刻步驟,移除 ,魏?抵擋層及其下方之部分該目標材料層。 .如申印專利範圍第4項所述之控制孔徑不同開口 楚孔從偏差比的方法,其中該第三㈣步驟為一非 等向性餘刻步驟。 心t如申請專利範圍第4項所述之控制孔徑不同開口 之斜幻!1徑偏差比的方法,其中該第三蝕刻步驟所使用 之餘刻氣體為含氟氣體。 .如申請專利範圍第2項所述之控制孔徑不同開口 19 200919542 UMCD-2007-0198 24668twf.doc/n 的相對孔徑偏差比的方法,其中該第二蝕刻步驟中通入 一含氟之烴類化合物作為蝕刻氣體,該含氟之烴類化合 物為 CHxFy,其中 x=l、2、3 ; y=l、2、3。 8. 如申請專利範圍第1項所述之控制孔徑不同開口 的相對孔徑偏差比的方法,其中調整該第一蝕刻步驟的 蝕刻參數包括蝕刻氣體的流量。 9. 如申請專利範圍第1項所述之控制孔徑不同開口 的相對孔徑偏差比的方法,其中調整該第二蝕刻步驟的 蝕刻參數包括蝕刻時間。 10. 如申請專利範圍第1項所述之控制孔徑不同開口 的相對孔徑偏差比的方法,其中該第一開口為共享接觸 窗開口,且該第二開口為方形接觸窗開口。 11 ·如申睛專利範圍第1項所述之控制孔徑不同開口 的相對孔徑偏差比的方法,其中該蝕刻抵擋層包括Uhe 光阻。 12. 如申请專利範圍第1項所述之控制孔徑不同開口 / 的相對孔徑偏差比的方法,其中該含矽材料層為硬罩幕 底部抗反射層。 13. 如申請專利範圍第1項所述之控制孔徑不同開口 的相對孔徑偏差比的方法,其中該圖案化光阻層為193 奈米光阻。 14. 如申請專利範圍第1項所述之控制孔徑不同開口 的相對孔徑偏差比的方法,其中該目標材料層包括介電 〇 15_如申請專利範圍第3項所述之控制孔徑不同開Q 20 200919542 UMCD-2007-0198 24668twf.doc/n 的相對孔徑偏差比的方法,其中該第二蝕刻步驟之蝕刻 氣體為CO、〇2和CF4。 16.如申請專利範圍第4項所述之控制孔徑不同開口 的相對孔徑偏差比的方法,其中該第二蝕刻步驟之蝕刻 氣體為CO、02和CF4。An over-etching step to form a flared opening pattern of the second opening in the patterned etch resist layer. 3. The method according to claim 1, wherein the second etching step is performed by performing an appropriate etching step to form a substantial substance in the patterned etching resist layer. Vertical vertical opening pattern. 4. The method of claim 1, wherein the second side step is a step of removing the exposed portion of the etch resist layer; And performing a second etching step, which is an over-etching step, removing the Wei-damping layer and a portion of the target material layer below it. The method of controlling the aperture of the opening aperture according to the fourth aspect of the patent application scope, wherein the third (four) step is an anisotropic residual step. The method of controlling the slanting! 1 diameter deviation ratio of the different apertures of the aperture according to the fourth aspect of the patent application, wherein the residual gas used in the third etching step is a fluorine-containing gas. A method for controlling a relative aperture deviation ratio of a different opening 19 of the method of claim 2, wherein the second etching step is carried out by introducing a fluorine-containing hydrocarbon. The compound is used as an etching gas, and the fluorine-containing hydrocarbon compound is CHxFy, wherein x = 1, 2, 3; y = 1, 2, 3. 8. The method of claim 1, wherein the etching parameter of the first etching step comprises adjusting a flow rate of the etching gas. 9. The method of claim 1, wherein the etching parameter of the second etching step is adjusted to include an etching time. 10. The method of claim 1, wherein the first opening is a shared contact opening and the second opening is a square contact opening. 11. The method of controlling the relative aperture deviation ratio of different apertures of the aperture according to claim 1, wherein the etch resist layer comprises a Uhe photoresist. 12. The method of claim 1, wherein the yttrium-containing material layer is a hard mask bottom anti-reflective layer. 13. A method of controlling a relative aperture deviation ratio of different openings of a aperture according to claim 1, wherein the patterned photoresist layer is a 193 nm photoresist. 14. The method of claim 1, wherein the target material layer comprises a dielectric 〇15_the control aperture is different according to the third aspect of the patent application. 20 200919542 UMCD-2007-0198 24668twf.doc/n A method of relative aperture deviation ratio, wherein the etching gases of the second etching step are CO, 〇2 and CF4. 16. The method of controlling the relative aperture deviation ratio of different openings of the aperture according to claim 4, wherein the etching gas of the second etching step is CO, 02 and CF4. 21twenty one
TW096140045A 2007-10-25 2007-10-25 Method for controlling adi-aei cd difference ratio of openings having different sizes TWI350557B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096140045A TWI350557B (en) 2007-10-25 2007-10-25 Method for controlling adi-aei cd difference ratio of openings having different sizes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096140045A TWI350557B (en) 2007-10-25 2007-10-25 Method for controlling adi-aei cd difference ratio of openings having different sizes

Publications (2)

Publication Number Publication Date
TW200919542A true TW200919542A (en) 2009-05-01
TWI350557B TWI350557B (en) 2011-10-11

Family

ID=44727160

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096140045A TWI350557B (en) 2007-10-25 2007-10-25 Method for controlling adi-aei cd difference ratio of openings having different sizes

Country Status (1)

Country Link
TW (1) TWI350557B (en)

Also Published As

Publication number Publication date
TWI350557B (en) 2011-10-11

Similar Documents

Publication Publication Date Title
TWI380350B (en) Double patterning strategy for contact hole and trench in photolithography
US7544623B2 (en) Method for fabricating a contact hole
US6814879B2 (en) Method for forming pattern
US7354847B2 (en) Method of trimming technology
US9373580B2 (en) Dual hard mask lithography process
US8222151B2 (en) Double patterning strategy for contact hole and trench in photolithography
US8178287B2 (en) Photoresist composition and method of forming a resist pattern
TWI384529B (en) Etch process for cd reduction of arc material
US8836082B2 (en) Reversal lithography approach by selective deposition of nanoparticles
KR20170069909A (en) A method for pattern formation on a substrate, associated semiconductor devices and uses of the method
TW201118925A (en) Self-aligned spacer multiple patterning methods
KR20080005716A (en) Method for pattern formation of semiconductor device
US8293639B2 (en) Method for controlling ADI-AEI CD difference ratio of openings having different sizes
TW200919093A (en) Non-covalently crosslinkable materials for photolithography processes
TW201101370A (en) Selective self-aligned double patterning of regions in an integrated circuit device
TW201635049A (en) Methods of forming relief images
US9640410B2 (en) Pattern formation method
KR20210018548A (en) Patterning method to improve EUV resist and hard mask selectivity
TW201030835A (en) Conformal etch material and process
US20090298291A1 (en) Method for forming a pattern of a semiconductor device
US7538026B1 (en) Multilayer low reflectivity hard mask and process therefor
US20050118531A1 (en) Method for controlling critical dimension by utilizing resist sidewall protection
US8101092B2 (en) Method for controlling ADI-AEI CD difference ratio of openings having different sizes
US20110020753A1 (en) Method for reversing tone of patterns on integrated circuit and patterning sub-lithography trenches
CN101431045B (en) Method for controlling relative aperture deviation ratio of openings with different aperture