TW200908626A - Trellis coded modulation with unequal error protection - Google Patents

Trellis coded modulation with unequal error protection Download PDF

Info

Publication number
TW200908626A
TW200908626A TW97113067A TW97113067A TW200908626A TW 200908626 A TW200908626 A TW 200908626A TW 97113067 A TW97113067 A TW 97113067A TW 97113067 A TW97113067 A TW 97113067A TW 200908626 A TW200908626 A TW 200908626A
Authority
TW
Taiwan
Prior art keywords
bits
constellation
bit
symbol
mapped
Prior art date
Application number
TW97113067A
Other languages
Chinese (zh)
Inventor
Seyed-Alireza Seyedi-Esfahani
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200908626A publication Critical patent/TW200908626A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/25Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]
    • H03M13/256Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM] with trellis coding, e.g. with convolutional codes and TCM
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/25Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]
    • H03M13/258Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM] with turbo codes, e.g. Turbo Trellis Coded Modulation [TTCM]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/35Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
    • H03M13/356Unequal error protection [UEP]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6362Error control coding in combination with rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • H04L1/006Trellis-coded modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Error Detection And Correction (AREA)

Abstract

A method and system (500) of transmitting data separates data bits into a first bit set and a second bit set; and maps the first and second bit sets to a symbol constellation (600), where an Euclidian distance in the symbol constellation (600) between values for the bits in the first bit set is less than an Euclidian distance in the symbol constellation (600) between values for the bits in the second bit set, and wherein within each of the first and second bit sets, the bits are mapped to the symbol constellation (600) using trellis-coded modulation (520, 525).

Description

200908626 九、發明說明: 【發明所屬之技術領域】 本發明係關於資料通信的領域 只砀特別疋一種編碼及調變 資料用於傳輸的系統及方法。 本專利申請案根據35 U,S C S 11Q/、,s H § 119(e)規定主張2〇〇7年4 月13 虎申清之美國臨時專利申士主安& λ ^1 J甲δ月案60/911,521之優先權, 其全文以引用的方式併入本文中以充分闡述。 【先前技術】200908626 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to the field of data communication, and is particularly directed to a system and method for encoding and modulating data for transmission. This patent application is based on 35 U, SCS 11Q/,, s H § 119(e). It is claimed that the US provisional patent application for the application of Hu Shenqing and the λ ^1 J Jia δ month case 60 The priority of / 911, 521, which is incorporated herein in its entirety by reference in its entirety herein. [Prior Art]

隨著新的通信系統的發展’仍时更靈活及高效的資料 通信技術的需要。例如’一般是理想的傳輸資料,以致用 每位元能量(Eb)及光譜雜訊密度(Ν。)較低的比例(即,With the development of new communication systems, there is still a need for more flexible and efficient data communication technologies. For example, 'generally ideal transmission data, so that the ratio of each bit energy (Eb) and spectral noise density (Ν.) is lower (ie,

Eb/N。)能達到理想的誤碼率(Β叫或反過來1達到較低 的BER給定-Eb/N。。取*於該㈣,這可允許更大的傳輸 距離’更高的資料傳輸速率,較低的傳輸功率位準,或者 這些好處的某種組合。為此,新的糾錯及資料調變技術繼 續被發展。 在-些應用中,該資料的不同部分對於該應用的成功運 作比其他部分更重要。例如,考慮視訊f㈣情況,其中 每個像素由N(例如,24)個包括三個M_位元字(例如,㈣ 的資料位元表示以代表紅、綠及藍等級。在這種情況下, 這些三個字的每個的MSB比LSB更重要以達到該視訊信號 的準確表示。換言之,MSB中的錯誤比LSB中的錯誤對於 該視訊應用的成功運作更不利。 因此,希望提供一種通信資料的方法,其為較重要的資 1304I7.doc 200908626 ==比其ί供給較不重要的㈣更大的錯誤保護。也希 址-種旎為給定的Eb/N。提供低的BER之方法。希望提 種通L貝料的系統,其為較重要的資料提供比 = 交不重要的資料更大的錯誤保護。也希望提供能為給定 的Eb/N〇提供低的BER之系統。 【發明内容】 在本發明的—個方面中,—種傳輸資料的方法包括.將 資:位元分離成第一位元集合及第二位元集合;並且將該 第位集合及第二位元集合映射到—符號星座,其中在 該符號星座中用於該第—位元集合中的該等位元的值之間 的歐幾里德距離小於在該符號星座中用於該第二位元集人 中的及等位元的值之間的歐幾里德距離;其中在該第一位 二集合及第二位元集合的每個中,使用網格編碼調變將該 等位元映射到該符號星座。 在本發明的另一個方面中,一種用於傳輸被分離成第一 位元集合及第二位元集合的資料位元的系統包括_被調適 以將該第一位元集纟及第二位元集纟映射到一符號星座内 的星座映射器。在該符號星座中用於該第一位元集合中的 該等位元的值之間的歐幾里德距離大於在該符號星座中用 於該第二位元集合中的該等位元的值之間的歐幾里德距 離。在每個位元集合中,使用網格編碼調變該星座映射器 將位元映射到該符號星座。 【實施方式】 圖1是一運用網格編碼調變(T c M)的示例性傳輸系統丨〇 〇 130417.doc 200908626 的功能方塊圖。系統100包含網格(例如,捲積)編碼器ιι〇 及16-QAM TCM星座映射器120。 運作中,系統100接收一群組資料位元a〗_a3並從該三個 資料位元產生一傳輸符號Sxy。16_QAM tcm星座映射器 120將四位元映射到每個傳輸符號&。在該系統 100中,網格編碼器110是一/,率的捲積編碼器,其接收資 K元a3並由此產生位元b3及b4用於16_qam TCM星座映 射器120。同時’資料位^。及〜被直接應用於i6_qam TCM星座映射器120作為位元、及、。 ^際上’在該系、統1GG中’該等資料位S的編碼及映射 不是被獨立執行。而是,16_QAM TCM星座映射器12〇基 於在該編碼過程中每個位元已經接收的保護等級將該等位 元一_4映射到每個傳輸符號心。特別是,由於位元^ 及\受捲積編碼器110的”保m立元^及^未受捲積編 碼器no的”保護,,,所以16_QAM TCM星座映射器12〇將位 70 1^及b2映射到星座點上以致使用於每個位元的〇與1值相 互之間有相對較大的歐幾里德距離,並且將位认及^映 射到星座點上以致使用於每個位元的〇與丨值相互之間有相 對較小的歐幾里德距離。結果’每個位域收的總保護被 增加。 圖2疋一符號星座2〇〇,由圖!的該傳輸系統1〇〇產生。每 個星座點係連同經映射至該點的對應位元匕匕匕、予以一 起繪示。在圖2中可以看出,分別用於位认及以其不受 捲積編碼器110的保護)的〇與1值之間的歐幾里德距離扑】及 1304J7.doc 200908626 dbz兩者都大於分別用於位元b3&b4(其受捲積編碼 器110的 保護)的0與1值之間的歐幾里德距離db3&db4。 圖3是一運用非均等錯誤保護(UEp)的傳輸系統3〇〇的功 能方塊圖。系統300包含第一及第二捲積編碼器31〇及315 以及第一及第二1 6-QAM UEP星座映射器32〇及325。 運作中,系統300接收一群組六資料位元^並從該六 資料位元產生兩個傳輸符號8>(1^及1¥。 Ο 在該系統3()0中’資料位^⑼被分離成包括㈣的第 一位元集合及包括一的第二位元集合。實際上該第一 位元集合^3包括比該第二位元集合^中的資料需要更 低等級保護的資料。例如’考慮視訊資料的情況,其中每 個像素由—個6-位元予ai_a6表示以代表紅、綠及藍等級。 在k種情況下,该二個字之每者的三個msb〜_a6比三個 LSB ai-a3更關鍵以達成該視訊信號的準確表示。換言之, 聰W中的錯誤比LSB ai_a3中的錯誤對於該視訊應用 的成功運作更不利。所以位元aiU稱為需要較低等級的 防錯誤保護的,,低保護”資料位元,以及位元心可稱為需 要較南等級的防錯誤保護的,,高保護"資料位元。 每個16-QAMUEP星座映射器32〇/325將四位元以从 映射到-對應的傳輸符號Sxy。第—捲積編碼器川及第二 捲積編竭器⑴是轉的捲積編喝器,其分別接收資料位元 a!-a3及a4-a6並由此產生位亓h h k l 王诅儿b〗b2b3b4以用於16_qAM UEp星 座映射器似及325的每者。特別是,第一捲積編碼器310 接收該低保護資料位亓a a *丄 凡a】_a3並由此產生該等位元b,b2以用 I304I7.doc 200908626 於兩個16-QAM UEP星座映射器320及325的每者。同時, 第二捲積編碼器3 1 5接收該高保護資料位元34_^並由此產 生該等位元hb4以用於兩個16_qam UEP星座映射器320及 325的每者。 實際上,在該系統3〇〇中,每個16_qAM UEp星座映射器 320/325基於該等位元的保護等級將四位元卜卜匕匕映射到 一對應的傳輸符號Sxy。特別是,每個16_QAM UEp星座映 射器320/325將產生於包括該低保護資料位元…七的該第 一位元集合的位元…及h映射到星座點以致使用於每個位 元的〇與1值相互之間有相對較小的歐幾里德距離,並且將 產生於包括該高保護資料位元a4_ae的該第二位元集合的位 兀及h映射到星座點以致使用於每個位元的〇與丨值相互 之間有相對較大的歐幾里德距離。 圖4是一由圖3的該傳輸系統3〇〇產生的符號星座4〇()。每 個星座點被與對應的映射到那點的位元匕匕匕、一起顯 不。可以看iB該等位元b4映射到該符號星座的"同相" 分量,由圖4中的橫軸描繪。同樣,可c 及h映射到該符號星座的"正交"分量, 繪。在符號星座400中,假設相鄰星座點 2d〗大於相鄰星座點之間的垂直距離2d2。 ,可以看出該等位元blEb/N. ) can achieve the ideal bit error rate (squeak or vice versa to achieve a lower BER given -Eb / N. Take * (4), which allows a larger transmission distance 'higher data transfer rate, Lower transmission power levels, or some combination of these benefits. For this reason, new error correction and data modulation techniques continue to be developed. In some applications, different parts of the data are more successful for the application. Other parts are more important. For example, consider the video f (four) case where each pixel is represented by N (eg, 24) data bits including three M_bit words (eg, (d) to represent the red, green, and blue levels. In this case, the MSB of each of these three words is more important than the LSB to achieve an accurate representation of the video signal. In other words, the error in the MSB is more disadvantageous than the error in the LSB for the successful operation of the video application. I hope to provide a method of communication data, which is the more important resource 1304I7.doc 200908626 == provides less error protection than the other (4). It is also a given Eb/N. Provide a low BER method. The system of L-beading provides greater error protection for more important data than the data that is not important. It is also desirable to provide a system that can provide a low BER for a given Eb/N〇. In one aspect of the invention, a method for transmitting data includes: separating a resource: a bit into a first bit set and a second bit set; and mapping the bit set and the second bit set to - a symbol constellation, wherein a Euclidean distance between values of the bits in the set of bits in the symbol constellation is less than in the symbol constellation for the second set of bits And a Euclidean distance between the values of the equal bits; wherein in each of the first set of second and second sets of bits, mapping the bits to the symbol constellation using trellis coded modulation In another aspect of the invention, a system for transmitting data bits separated into a first set of bits and a second set of bits includes _ adapted to set the first set of bits and second The set of bit maps is mapped to a constellation mapper within a symbol constellation. a Euclidean distance between values in the socket for the bits in the first set of bits is greater than a value in the symbol constellation for the bits in the second set of bits Euclidean distance. In each bit set, the constellation mapper is mapped to the symbol constellation using trellis code modulation. [Embodiment] FIG. 1 is a modulation using a trellis code (T c M) Functional block diagram of an exemplary transmission system 丨〇〇 130417.doc 200908626. System 100 includes a grid (eg, convolution) encoder ιι〇 and a 16-QAM TCM constellation mapper 120. In operation, system 100 A group of data bits a__3 is received and a transmission symbol Sxy is generated from the three data bits. The 16_QAM tcm constellation mapper 120 maps the four bits to each of the transmitted symbols & In the system 100, trellis encoder 110 is a / rate convolutional encoder that receives a sub-element a3 and thereby generates bits b3 and b4 for the 16_qam TCM constellation mapper 120. At the same time 'data bit ^. And ~ is directly applied to the i6_qam TCM constellation mapper 120 as a bit, and . The encoding and mapping of these data bits S are not independently performed in the system. Rather, the 16_QAM TCM constellation mapper 12 maps the bits _4 to each transmitted symbol center based on the level of protection that each bit has received during the encoding process. In particular, since the bit ^ and \ are protected by the convolutional encoder 110 and are not protected by the convolutional encoder no, the 16_QAM TCM constellation mapper 12 turns the bit 70 1^ And b2 are mapped to the constellation points such that the 〇 and 1 values used for each bit have a relatively large Euclidean distance with each other, and the bit recognition and ^ are mapped to the constellation points so as to be used for each bit The 〇 and 丨 values of the Yuan have a relatively small Euclidean distance. As a result, the total protection received by each bit field was increased. Figure 2 疋 a symbol constellation 2 〇〇, by the map! The transmission system is generated. Each constellation point is drawn together with the corresponding bit mapped to that point. As can be seen in Figure 2, the Euclidean distance between 〇 and 1 values, respectively, for the identification and protection by the convolutional encoder 110) and 1304J7.doc 200908626 dbz It is greater than the Euclidean distance db3 & db4 between the 0 and 1 values for the bits b3 & b4, respectively protected by the convolutional encoder 110. Figure 3 is a functional block diagram of a transmission system 3 运用 using non-uniform error protection (UEp). System 300 includes first and second convolutional encoders 31 and 315 and first and second 16-QAM UEP constellation mappers 32A and 325. In operation, system 300 receives a group of six data bits ^ and generates two transmission symbols from the six data bits 8 > (1^ and 1 ¥. Ο in the system 3 () 0 'data bits ^ (9) are Separated into a first set of bits comprising (4) and a second set of bits comprising one. In fact, the first set of bits ^3 includes data that requires a lower level of protection than the data in the second set of bits. For example, 'considering the situation of video data, each pixel is represented by a 6-bit to ai_a6 to represent the red, green and blue levels. In the case of k, three msb~_a6 of each of the two words More critical than the three LSB ai-a3 to achieve an accurate representation of the video signal. In other words, the error in Cong W is more disadvantageous than the error in LSB ai_a3 for the successful operation of the video application. Therefore, the bit aiU is called lower. Levels of error-protected, low-protection" data bits, and bit hearts can be referred to as requiring more south-level anti-error protection, high protection & data bits. Each 16-QAMUEP constellation mapper 32 〇 / 325 will be a four-bit mapping from the corresponding to the corresponding transmission symbol Sxy. The encoder encoder and the second convolutional processor (1) are convolutional compensators that receive the data bits a!-a3 and a4-a6, respectively, and thereby generate the bits hhkl Wang Biao b〗 b2b3b4 for The 16_qAM UEp constellation mapper is similar to each of 325. In particular, the first convolutional encoder 310 receives the low protection data bit 亓aa*丄凡 a]_a3 and thereby generates the bit b, b2 to use I304I7 .doc 200908626 is for each of the two 16-QAM UEP constellation mappers 320 and 325. At the same time, the second convolutional encoder 3 15 receives the high protection data bit 34_^ and thereby generates the bit hb4 For each of the two 16_qam UEP constellation mappers 320 and 325. In fact, in the system 3, each 16_qAM UEp constellation mapper 320/325 will be four bits based on the protection level of the bits. The dice are mapped to a corresponding transmission symbol Sxy. In particular, each 16_QAM UEp constellation mapper 320/325 will be generated from the bits of the first set of bits including the low protection data bits...7 and h Mapping to constellation points such that the 〇 and 1 values used for each bit have a relatively small Euclidean distance from each other And mapping the bits h and h of the second bit set including the high protection data bit a4_ae to the constellation points such that the 〇 and 丨 values used for each bit have a relatively large mutual a few miles distance. Figure 4 is a symbol constellation 4〇() generated by the transmission system 3〇〇 of Figure 3. Each constellation point is displayed with the corresponding bit map mapped to that point. It can be seen that the iB element b4 is mapped to the "in-phase" component of the symbol constellation, which is depicted by the horizontal axis in FIG. Similarly, c and h can be mapped to the "orthogonal" component of the symbol constellation. In the symbol constellation 400, it is assumed that the adjacent constellation point 2d is larger than the vertical distance 2d2 between adjacent constellation points. Can see that the bl

1304I7.doc 200908626 料位TLa^a3更大程度上保護該高保護資料位元。 然而’系統400從誤碼率(BER)對Eb/N〇*面來說提供次 最優的傳輸。一種提供改進效能的系統被需要。 圖5是一運用網格編碼調變及非均等錯誤保護的傳輸系 統500的一個實施例的功能方塊圖。系統包含第一及第 一捲積編碼益5 10、515以及第一及第二i 6_qAM UEp&TCM 星座映射器520及525。 在運作中,系統500接收一群組六資料位元〜_36並從該 六資料位元產生兩個傳輸符號&…及。 在該系統500中’資料位元ai_a0被分離成包括的第 一位兀集合及包括的第二位元集合。實際上,該第一 位το集合ai-as包括比該第二位元集合以-心中的資料需要更 低等級保護的資料。例如’考慮視訊資料的情況,其中每 個像素由二個6-位元字a]_a6表示以代表紅、綠及藍等級。 在這種情況下,這些三個字的每個的該三個刪^比 該三個LSB a】-as更重要以達到該視訊信號的準確表示*換 言之’該MSB a4-a6中的錯誤比該LSB 一中的錯誤對於 該視訊應用的成功運作更不利。所以資料位元㈣可稱為 需要較低等級的防錯誤保護的低保護,,資料位元,以及位 凡可稱為需要較高等級的防錯誤保護的"高保護"資 位元。 ' 每個1 6-QAM UEP&TCM星座映射器52〇/525將四位元 b,b2b3b4映射到一對應的傳輸符號。 ^ 該第-及第二捲積編碼器別及川是%率的捲積一 130417.doc 200908626 器’其分別接收資料位元“及“並由此產生位元卜及匕分 別用於16-QAM UEP&TCM星座映射器520及525的兩者。 特別是,第一捲積編碼器5 1 〇接收該低保護資料位元a3並 由此產生該位元b2用於兩個16-QAM UEP&TCM星座映射 器5 20及525的兩者。同時’第二捲積編碼器515接收該高 保護資料位元並由此產生該位元b4用於兩個16-QAM UEP&TCM星座映射器520及525的兩者。 與此同時’ ”低保護”資料位元a〇及ai被應用於丨6_qam UEP&TCM星座映射器52〇及525,分別作為位元b!。相似 地,'而保護”資料位元&4及&5被應用於1 6-QAM UEP&TCM 星座映射器520及525,分別作為位元b3。 因此’該資料位元ai_a6首先被映射到一群組四位元 以用於每個符號,其中該第一(低保護)資料位元集 合丑,々3被映射到包括位元bib2的第一位元集合,以及該第 一(南保護)資料位元集合ark被映射到包括位元b3b4的第 二位元集合。 實際上,在該系統5〇〇中,每個WQAM UEP&TCM星座 映射益520/525基於該等位元的保護等級將該等位元 hhb3、映射到一對應的傳輸符號Sxy。因此,每個i6_QA]y[ uep&tcm星座映射器52〇/525將自包括該低保護資料位元 的該第一位元集合所產生的位元…及b2映射到星座 ”占以致使用於母個位元的0與1值相互之間有相對較小的 歐幾里德距離,並且將自包括該高保護資料位元a4_a6的該 第二位元集合所產生的位元h及b4映射到星座點,以致使 130417.doc 200908626 用於每個位元的0與1值相互之間有相對較大的歐幾里德距 離。 此外,在該系統100中,該等資料位元的編碼及映射不 是被獨立執行。而是,16_QAM UEP&TCM星座映射器 520/525基於在該編碼過程中每個位元已經接收的保護等 級將每個位元集合中的位元映射到每個傳輸符號。因 此,在第一位元集合中,由於位元h受捲積編碼器丨丨〇的" 保護"而位元1^未受捲積編碼器i 10的”保護”,所以16_qam UEP&TCM星座映射器520/525將位元匕及b2映射到星座點 以致使用於位元匕的〇與1值相互之間比用於位元匕的〇及j 值有相對更大的歐幾里德距離。結果,每個位元接收的總 保護被增加。 圖6是一由圖5的該傳輸系統5〇〇產生的符號星座6〇〇。每 個星座點係連同經映射至該點的對應位元bib2b3b4予以一 起繪不。可以看出,該等位元卜及、映射到該符號星座的 ”同相”分量,由圖6中的橫軸描繪。同樣,可以看出該 等位元…及!^映射到該符號星座的"正交"分量,由圖6中的 縱軸描繪。在符號星座6〇〇中,假設相鄰星座點之間的水 平距離2七大於相鄰星座點之間的垂直距離2心。在這種情 況下’很容易看出分別用於位元b丨及匕(其由該低保護資料 位元產生)的〇與!值之間的歐幾里德距離小於分別用 於位Teh及\(其由該高保護資料位元產生)的〇與工值 之間的歐幾里德距離。因此,傳輪系統5〇〇相較於該低保 濩資料位元ai-&3更大程度上保護該高保護資料位元。 130417.doc •12· 200908626 此外,在該星座映封& n„ 射的冋相及正交分量的每個中,該等 位元根據一 TCM圖表祜扯私 m , 口衣破映射。因此,位元匕及匕被映射成 在其等的0與1值之間分則μι_你—u Ώ, 別比位7G b2及b4具有更大的歐幾里 德距離。 圖7比較用於利UEP㈣輸方案與料利TCM及UEP 的傳輸方案的誤碼率⑽R)對Eb/N。的效能。圖7包含在第 一種情況中之繪圖 其中相鄰星座點之間的水平距離2d, 以及第二種情況中 等於相鄰星座點之間的垂直距離2d2,1304I7.doc 200908626 Level TLa^a3 protects this highly protected data bit to a greater extent. However, system 400 provides a suboptimal transmission from the bit error rate (BER) to the Eb/N〇* plane. A system that provides improved performance is needed. Figure 5 is a functional block diagram of one embodiment of a transmission system 500 that utilizes trellis coded modulation and non-uniform error protection. The system includes first and first convolutional coding benefits 5 10, 515 and first and second i 6_qAM UEp & TCM constellation mappers 520 and 525. In operation, system 500 receives a group of six data bits ~_36 and generates two transmission symbols &... and from the six data bits. In the system 500, the data bit ai_a0 is separated into a first set of bits included and a second set of bits included. In fact, the first set το set ai-as includes data that requires a lower level of protection than the data in the second set of bits. For example, 'consider video data, where each pixel is represented by two 6-bit words a]_a6 to represent red, green, and blue levels. In this case, the three deletions of each of these three words are more important than the three LSBs a]-as to achieve an accurate representation of the video signal* in other words, the error ratio in the MSB a4-a6 The error in the LSB 1 is more detrimental to the successful operation of the video application. Therefore, the data bit (4) can be called a low protection that requires a lower level of error protection, a data bit, and a "high protection" attribute that can be called a higher level of error protection. Each 16-QAM UEP&TCM constellation mapper 52〇/525 maps the four bits b, b2b3b4 to a corresponding transmission symbol. ^ The first and second convolutional encoders are different from the convolution of the rate of 130417.doc 200908626 'there are received data bits respectively' and "and the resulting bits and 匕 are used for 16-QAM respectively Both UEP & TCM constellation mappers 520 and 525. In particular, the first convolutional encoder 5 1 〇 receives the low guard data bit a3 and thereby generates the bit b2 for both 16-QAM UEP & TCM constellation mappers 5 20 and 525. At the same time, the second convolutional encoder 515 receives the high protection data bit and thereby generates the bit b4 for both of the 16-QAM UEP & TCM constellation mappers 520 and 525. At the same time, the 'low-protection' data bits a and ai are applied to the 丨6_qam UEP&TCM constellation mappers 52A and 525, respectively, as bit b!. Similarly, the 'and protected' data bits & 4 & 5 are applied to the 16-QAM UEP & TCM constellation mappers 520 and 525, respectively, as bit b3. Therefore, the data bit ai_a6 is mapped first. To a group of four bits for each symbol, wherein the first (low protection) data bit set is ugly, 々3 is mapped to the first bit set including the bit bib2, and the first (South) The protected data bit set ark is mapped to a second bit set comprising bit b3b4. In fact, in the system 5, each WQAM UEP & TCM constellation mapping benefit 520/525 is based on the bit The protection level maps the equal bits hhb3 to a corresponding transmission symbol Sxy. Thus, each i6_QA]y[ uep&tcm constellation mapper 52〇/525 will self-include the first bit of the low protection data bit The bits generated by the set of elements... and b2 are mapped to the constellation" so that the 0 and 1 values used for the parent bit have a relatively small Euclidean distance from each other and will automatically include the high protected data bit. The bits h and b4 generated by the second set of bits of the element a4_a6 are mapped to the constellation points, so that A relatively large Euclidean distance between each other for each bit 130417.doc 200908626 0 and 1 values. Moreover, in the system 100, the encoding and mapping of the data bits are not performed independently. Instead, the 16_QAM UEP & TCM constellation mapper 520/525 maps the bits in each set of bits to each transmitted symbol based on the protection level that each bit has received during the encoding process. Therefore, in the first bit set, since the bit h is protected by the convolutional encoder "protect" and the bit 1^ is not "protected" by the convolutional encoder i 10, 16_qam UEP& The TCM constellation mapper 520/525 maps the bits 匕 and b2 to the constellation points such that the 〇 and 1 values used for the bit 匕 are relatively larger than the 〇 and j values for the bit 匕. De distance. As a result, the total protection received by each bit is increased. Figure 6 is a symbol constellation 6A produced by the transmission system 5 of Figure 5. Each constellation point is drawn together with the corresponding bit bib2b3b4 mapped to that point. It can be seen that the "in-phase" component, which is mapped to the symbol constellation, is depicted by the horizontal axis in Figure 6. Similarly, it can be seen that the equal bits... and !^ are mapped to the "orthogonal" component of the symbol constellation, which is depicted by the vertical axis in Fig. 6. In the symbol constellation 6〇〇, it is assumed that the horizontal distance between adjacent constellation points is two seven and the vertical distance between adjacent constellation points is two. In this case, it is easy to see the difference between the bits b丨 and 匕 (which are generated by the low-protection data bits)! The Euclidean distance between the values is less than the Euclidean distance between the 〇 and the value of the bits Teh and \ (which are generated by the high protection data bit). Therefore, the transmission system 5 protects the high protection data bit to a greater extent than the low security data element ai-&3. 130417.doc •12· 200908626 In addition, in each of the 冋 phase and the quadrature component of the constellation & n „ 射 , , , , , , , , , , , , , , , , , , The bits 匕 and 匕 are mapped to divide between their 0 and 1 values, μι_你—u Ώ, and have a greater Euclidean distance than bits 7G b2 and b4. Figure 7 is used for comparison. The efficiency of the error rate (10)R) of the UEP (four) transmission scheme and the TCM and UEP transmission schemes for Eb/N. Figure 7 contains the horizontal distance 2d between adjacent constellation points in the first case. And in the second case, equal to the vertical distance 2d2 between adjacent constellation points,

2。可以看出圖7中,運 種情況都產生優越的 ’運用TCM及UEP的該 兩者都產生優越的BER 相鄰星座點之間的水平距離2di = 4d 用TCM及UEP的該傳輪方案對於兩 BER效能。此外,在第二種情況下 傳輸方案對於高保護及低保護資料 效能。 雖然較佳實施例在這裡被揭露,但是屬財發明的概念 及範圍内的很多變化是可以的。例如,其他星座(例如, 64-QAM)、映射器及/或編碼率是可以的。此外,被運用的 捲積碼可以是穿孔的或非穿孔的。此外,纟元及/或符號 可以或不可以被交錯。對於—般熟習此項技術者此等變化 在檢閱這内的具體實施例、圖式及請求項之後可能變得清 楚。本發明因此除了所附請求項的精神及範圍夕卜不會受 到限制。 【圖式簡單說明】 圖1是一運用網格編碼調變(TCM)的傳輸系統的功能方 塊圖。 130417.doc •13· 200908626 圖2是由圖1的該傳輸系統產生的符號星座。 圖3是-運用非均等錯誤保護(UEp)的傳輸系統的功能方 塊圖。 圖4是由圖3的該傳輸系統產生的符號星座。 圖5是一運用TCM及IJEP的傳輸系統的一個實施例的功 能方塊圖。 圖6是由圖5的該傳輸系統產生的符號星座。 圖7比較用於運用UEP的傳輸方案與運用TCM及UEP兩者 1 的傳輸方案的誤碼率(BER)對Eb/No的效能。 【主要元件符號說明】 100 110 120 200 300 310 315 320 325 400 500 51〇 515 520 傳輸系統 網格編碼器 16-QAM TCM星座映射器 符號星座 傳輸系統 第一捲積編碼器 第二捲積編碼器 第一 16-QAM UEP星座映射器 第二1 6-QAM UEP星座映射器 符號星座 傳輸系統 第一捲積編碼器 第二捲積編碼器 第一 16-QAM UEP&TCM星座映射器 130417.doc • 14- 200908626 525 第二16-QAM UEP&TCM星座映射器 600 符號星座 130417.doc -15-2. It can be seen that in Figure 7, the situation is superior. Both of the TCM and UEP are used to generate superior BER. The horizontal distance between adjacent constellation points is 2di = 4d. The transmission scheme with TCM and UEP Two BER performance. In addition, in the second case, the transmission scheme is effective for high protection and low protection data. While the preferred embodiment has been disclosed herein, many variations of the concepts and scope of the invention are possible. For example, other constellations (eg, 64-QAM), mappers, and/or coding rates are possible. In addition, the convolutional code used can be perforated or non-perforated. In addition, the elements and/or symbols may or may not be interleaved. Such changes to those skilled in the art will become apparent after reviewing the specific embodiments, drawings, and claims. The invention is therefore not limited by the spirit and scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a functional block diagram of a transmission system using trellis code modulation (TCM). 130417.doc •13· 200908626 Figure 2 is a symbol constellation produced by the transmission system of Figure 1. Figure 3 is a functional block diagram of a transmission system using non-equal error protection (UEp). 4 is a symbol constellation generated by the transmission system of FIG. Figure 5 is a functional block diagram of one embodiment of a transmission system utilizing TCM and IJEP. Figure 6 is a symbol constellation produced by the transmission system of Figure 5. Figure 7 compares the bit error rate (BER) versus Eb/No for a transmission scheme using UEP and a transmission scheme using both TCM and UEP. [Main component symbol description] 100 110 120 200 300 310 315 320 325 400 500 51〇515 520 Transmission system trellis encoder 16-QAM TCM constellation mapper symbol constellation transmission system first convolutional encoder second convolutional encoder First 16-QAM UEP constellation mapper second 16-QAM UEP constellation mapper symbol constellation transmission system first convolutional encoder second convolutional encoder first 16-QAM UEP& TCM constellation mapper 130417.doc • 14- 200908626 525 Second 16-QAM UEP&TCM Constellation Mapper 600 Symbol Constellation 130417.doc -15-

Claims (1)

200908626 十、申請專利範圍: 1. 一種傳輸資料之方法,其包括: 將資料位元分離成一第 合,及 一位元集合及一第二位元集 將該第一位元集合及第二位元集合映射到一符號星座 (600) ’其中在該符號星座(6〇〇)中用於該第一位元集合 中之該等位元的值之間的一歐幾里德距離小於在該符號 星座(600)中用於該第二位元集合中之該等位元的值之間 的一歐幾里德距離, 其中在該第一位元集合及第二位元集合之每者中,使 用網格編碼調變(520,525)將該等位元映射到該符號星 座(600) 〇 2. 根據請求項丨之方法,其中該符號星座(6〇〇)是一 星座。 3. 根據請求項丨之方法,其中將該第一位元集合及第二位 元集合映射到一符號星座(600)包含:在該第一位元集合 及第二位元集合之每者中的至少一個資料位元上執行一 捲積編碼(510,515)。 4. 根據請求項1之方法,其中該第一位元集合被映射到該 符號星座(600)之一同相分量⑴及一正交分量(Q)之一 者,且其中該第二位元集合被映射到該符號星座(600)之 該同相分量⑴及該正交分量(Q)之另一者。 5 根據凊求項4之方法,其中該第一位元集合中之至少一 個位元被映射使得在該符號星座(6〇〇)中其值相互之間有 130417.doc 200908626 歐幾里德距離, 元的值之間的歐幾里德 其大於該第一位元集合中之一第二位 距離’且其中該第二位元集合中 ,、個位元被映射使得在該符號星座(600)中其值相 互之間有一歐幾里德距離,其大於該第二位元集合中之 —第二位元的值之間的一歐幾里德距離。 6.根據„月求項!之方法,其中該等資料位元首先被映射到 群組四位το 以用於每個符號,其中該第一位元200908626 X. Patent application scope: 1. A method for transmitting data, comprising: separating a data bit into a first combination, a bit set and a second bit set, the first bit set and the second bit The set of elements is mapped to a symbol constellation (600) 'where a Euclidean distance between the values of the bits in the first set of bits in the symbol constellation (6〇〇) is less than a Euclidean distance between the values of the bits in the second set of bits in the symbol constellation (600), wherein in each of the first set of bits and the second set of bits And mapping the bits to the symbol constellation (600) using a trellis code modulation (520, 525). According to the method of claim, wherein the symbol constellation (6〇〇) is a constellation. 3. The method of claim 1, wherein mapping the first set of bits and the second set of bits to a symbol constellation (600) comprises: in each of the first set of bits and the second set of bits A convolutional code (510, 515) is performed on at least one of the data bits. 4. The method of claim 1, wherein the first set of bits is mapped to one of an in-phase component (1) and a quadrature component (Q) of the symbol constellation (600), and wherein the second set of bits The other of the in-phase component (1) and the quadrature component (Q) of the symbol constellation (600) are mapped. 5 according to the method of claim 4, wherein at least one of the first set of bits is mapped such that its value is 130417.doc 200908626 Euclidean distance in the symbol constellation (6〇〇) , the Euclidean between the values of the elements is greater than the second bit distance in the first set of bits 'and wherein the second bit set is mapped to the symbol constellation (600) The values therein have a Euclidean distance from each other that is greater than a Euclidean distance between the values of the second bits in the second set of bits. 6. According to the method of "monthly!", wherein the data bits are first mapped to the group four bits το for each symbol, wherein the first bit 集合被映射到位元,且該第二位元集合被映射到位 元b3t>4,其中b3及b4隨後被映射到該符號星座(600)之一 同相:里(I)及一正交分量之一者,且卜及^被映射到 "亥符號生座(600)之該同相分量⑴及該正交分量⑴)之另 一者,其中相較於位元bl及匕之值分別在該符號星座 (600)中的一歐幾里德距離,匕之值及、之值分別在符號 星座(600)中在其等之間具有一更大的歐幾里德距離。 根據請求項6之方法,其中用於bi之值在該符號星座 (600)中在其等之間有一相較於用於h之值更大的歐幾里 k、距離,且用於h之值在該符號星座(6〇〇)中在其等之間 有一相較於用於t»4之值更大的歐幾里德距離。 8.根據請求項7之方法,其中匕及^被捲積編碼(51〇, 515)。 9· 一種用於傳輸被分離成一第一位元集合及一第二位元集 &之 > 料位元之糸統,s亥系統包括一星座映射器(5 〇 〇), 該星座映射器(5〇0)經調適以將該第一位元集合及第二位 元集合映射到一符號星座(6〇〇)内,其中在該符號星座 130417.doc 200908626 (600)中用於3亥第一位元集合中之該等位元的值之間的一 歐幾里德距離大於在該符號星座中用於該第二位元集合 中之該等位元的值之間的一歐幾里德距離,且其中在每 個位元集合中,該星座映射器()使用網格編碼調變 (520,525)將位元映射到該符號星座(600)。 1〇.根據請求項9之系統,其中該符號星座剛是- 16-QAM 星座。 祀據°月长項9之系統,其中該星座映射器(500)包含: 一第—捲積編碼器(510),其用於編碼該第一位元集合 中之至少一個資料位元,及 一第二捲積編碼器(515),其用於編碼該第二位元集合 中之至少—個資料位元。 12·根據明求項9之系統’其中該星座映射器(500)被調適以 將該第一位元集合映射到該符號星座(6〇〇)之一同相分量 正又刀里(Q)之一者,以及進一步被調適以將該 第位元集合映射到該符號星座之該同相分量⑴及該正 交分量(Q)之另一者。 3·根據明求項12之系統,其中該星座映射器(500)被調適以 將該第一位元集合中之至少一個位元映射成在該符號星 座(600)中具有一歐幾里德距離,其大於該第一位元集合 中之一第二位元的一歐幾里德距離,且進一步被調適以 將兮笛 — ^〜位元集合中之至少一個位元映射成在該符號星 座(60〇)中具有一歐幾里德距離,其大於該第二位元集合 中之第二位元的一歐幾里德距離。 130417.doc 200908626 14. 根據請求項9之系統,其中該星座映射器(5〇〇)被調適以 將該等育料位元首先映射到一群組四位元hhhb*以用於 每個捋唬,其中該第一位元集合被映射到位元卜匕,且 該第二位元集合被映射到位元133%,其中b3及b4隨後被映 射到遠符號星座之一同相分量⑴及一正交分量⑴)之一 者,以及^及匕被映射到該符號星座(6〇〇)之該同相分量 (1)及》亥正父分1 (Q)之另一者,其中匕及、在該符號星座 (600)中有—相較於^及匕更大的歐幾里德距離。 15. 根據明求項14之系統,其中該星座映射器(5⑻)被調適以 將^映射成在該符號星座_)中具有一相較於^更大的 歐幾里德距離,以及進一步被調適以將匕映射成在該符 5虎星座(600)中具有一相較於b4更大的歐幾里德距離。 16·根據凊求項15之系統,其中該星座映射器(5G0)包含: 第—捲積編碼器(5 10),其被調適以編碼該第一位元 集合中之至少一個資料位元;及 一第二捲積編碼器(515),其被調適以編碼該第二位元 集合中之至少一個資料位元,及 -、中b2及h係來自該等捲積編碼器(51 〇,$ 15)之輸 出。 130417.doc 200908626 七、指定代表圖: (一)本案指定代表 圖為:第(5 )圖。 (二)本代表圖之元件符號簡單說明: 500 傳輸系統 510 第一捲積編碼器 515 第二捲積編碼器 520 第一 16-QAM UEP&TCM星座映射器 525 第二16-QAM UEP&TCM星座映射器 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無) 130417.docThe set is mapped to a bit, and the second set of bits is mapped to a bit b3t > 4, wherein b3 and b4 are then mapped to one of the symbol constellations (600) in phase: one of the inner (I) and one orthogonal component And the other is mapped to the other of the in-phase component (1) and the orthogonal component (1) of the "Hai symbol constellation (600), wherein the values are respectively compared to the values of the bits bl and 匕The Euclidean distance in the constellation (600), the value of 匕, and the value respectively have a greater Euclidean distance between the symbols in the symbol constellation (600). The method of claim 6, wherein the value for bi has a greater Euclidean distance, distance, and h for the value of h in the symbol constellation (600) The value has a greater Euclidean distance between the symbols in the symbol constellation (6〇〇) than the value for t»4. 8. The method of claim 7, wherein 匕 and ^ are convolutionally encoded (51〇, 515). 9. A system for transmitting a bit bit separated into a first bit set and a second bit set &<>, and the constellation mapper (5 〇〇), the constellation map The device (5〇0) is adapted to map the first set of bits and the second set of bits into a symbol constellation (6〇〇), wherein the symbol constellation 130417.doc 200908626 (600) is used for 3 a one-Euclidean distance between the values of the bits in the first bit set of the first set of bits is greater than one ohm between the values of the bits in the second set of bits in the symbol constellation A few Reed distances, and wherein in each set of bits, the constellation mapper () maps the bits to the symbol constellation (600) using trellis coded modulation (520, 525). The system of claim 9, wherein the symbol constellation is just the -16-QAM constellation. The system according to the month length term 9, wherein the constellation mapper (500) comprises: a first-convolution encoder (510) for encoding at least one data bit in the first bit set, and A second convolutional encoder (515) for encoding at least one of the data bits in the second set of bits. 12. The system according to claim 9, wherein the constellation mapper (500) is adapted to map the first set of bits to one of the symbol constellations (6〇〇) and the in-phase component is positive (Q) And further adapted to map the set of bits to the other of the in-phase component (1) and the quadrature component (Q) of the symbol constellation. 3. The system of claim 12, wherein the constellation mapper (500) is adapted to map at least one of the first set of bits to have a Euclid in the symbol constellation (600) a distance greater than a Euclidean distance of a second bit of the first set of bits, and further adapted to map at least one of the set of flute-^~ bits to the symbol The constellation (60 〇) has a Euclid distance that is greater than the Euclidean distance of the second bit in the second set of bits. 130417.doc 200908626 14. The system of claim 9, wherein the constellation mapper (5〇〇) is adapted to map the breeding bins first to a group of four bits hhhb* for each唬, wherein the first set of bits is mapped to a bit dice, and the second set of bits is mapped to a bit element of 133%, wherein b3 and b4 are then mapped to one of the far symbol constellations (1) and an orthogonal One of the components (1)), and ^ and 匕 are mapped to the in-phase component (1) of the symbol constellation (6〇〇) and the other of the "Hui Zhengfu division 1 (Q), wherein The symbol constellation (600) has a larger Euclidean distance than ^ and 匕. 15. The system of claim 14, wherein the constellation mapper (5(8)) is adapted to map ^ to have a greater Euclidean distance in the symbol constellation _) than ^, and further The adaptation is to map the 匕 to have a greater Euclidean distance than the b4 in the character 5 constellation (600). 16. The system of claim 15, wherein the constellation mapper (5G0) comprises: a first-convolutional encoder (5 10) adapted to encode at least one of the first set of bits; And a second convolutional encoder (515) adapted to encode at least one of the data bits in the second set of bits, and -, wherein b2 and h are from the convolutional encoders (51, $15) output. 130417.doc 200908626 VII. Designated representative map: (1) The designated representative of the case The picture is: (5). (b) A brief description of the component symbols of the present diagram: 500 transmission system 510 first convolutional encoder 515 second convolutional encoder 520 first 16-QAM UEP & TCM constellation mapper 525 second 16-QAM UEP & TCM Constellation Mapper 8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: (none) 130417.doc
TW97113067A 2007-04-13 2008-04-10 Trellis coded modulation with unequal error protection TW200908626A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US91152107P 2007-04-13 2007-04-13
US98474107P 2007-11-02 2007-11-02

Publications (1)

Publication Number Publication Date
TW200908626A true TW200908626A (en) 2009-02-16

Family

ID=39639051

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97113067A TW200908626A (en) 2007-04-13 2008-04-10 Trellis coded modulation with unequal error protection

Country Status (2)

Country Link
TW (1) TW200908626A (en)
WO (1) WO2008126047A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111030961A (en) * 2019-12-18 2020-04-17 南京信息工程大学 Signal modulation and demodulation method based on constellation structure optimization and quasi-honeycomb region judgment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148797B (en) 2010-02-08 2014-02-12 上海贝尔股份有限公司 Combined multiple data stream transmission technology
CN116073945A (en) * 2021-10-31 2023-05-05 华为技术有限公司 Information processing method and communication device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7613985B2 (en) * 2003-10-24 2009-11-03 Ikanos Communications, Inc. Hierarchical trellis coded modulation
CN101040499A (en) * 2004-10-13 2007-09-19 科胜讯系统公司 Method and system for a turbo trellis coded modulation scheme for communication systems
DE602005016608D1 (en) * 2005-05-04 2009-10-22 Panasonic Corp SIGNAL ROOM EXPOSURE FOR A 16-QAM SCHEME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111030961A (en) * 2019-12-18 2020-04-17 南京信息工程大学 Signal modulation and demodulation method based on constellation structure optimization and quasi-honeycomb region judgment
CN111030961B (en) * 2019-12-18 2022-04-05 南京信息工程大学 Signal modulation and demodulation method based on constellation structure optimization and quasi-honeycomb region judgment

Also Published As

Publication number Publication date
WO2008126047A1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
EP2213063B1 (en) Low density parity check (ldpc) encoded higher order modulation
TW566029B (en) Transmission system and transmitter for transmitting a multilevel signal, receiver for receiving a multilevel signal, mapper for mapping an input signal, demapper for demapping a multilevel signal and a method of transmitting a multilevel signal
TWI506964B (en) Method and apparatus for channel encoding using low-density parity-check code
US9083492B2 (en) Apparatus and method for communicating data over a communication channel
JP2011514090A (en) Bit substitution pattern for LDPC code modulation and QAM constellation
EP2186200A2 (en) Apparatus and method for transmitting and receiving data in a communication system using low density parity check codes
KR102044793B1 (en) Coding and Modulation Apparatus Using Heterogeneous Constellations and Different PHY Modes
WO2009035418A1 (en) Method for encoding a bit sequence and encoding circuit
TW200908626A (en) Trellis coded modulation with unequal error protection
TWI535220B (en) Systems and methods for retransmission return channel error detection
US11283467B1 (en) Methods and network device for uncoded bit protection in 10GBASE-T ethernet
US9065623B1 (en) Mixed mapping for rate compatible trellis coded modulation
JP3836810B2 (en) Data transmission device
JP4494276B2 (en) Adaptive modulation apparatus and adaptive modulation method
CN100376114C (en) Signal coding method based on perforation form determined according to constellation
JP2006511993A (en) Data retransmission method using symbol rearrangement on Galois field
US7161991B2 (en) Multi-dimensional fractional number of bits modulation scheme
WO2010102523A1 (en) Data transmission device and method thereof, and data reception device and method thereof
WO2022089137A1 (en) Encoding method, decoding method, related device, and storage medium
JP4427094B2 (en) Data transmitting apparatus, data transmitting method, data receiving apparatus, data receiving method, and data communication system
JP2003204316A (en) Communicating system and method therefor
JP4500288B2 (en) Data transmission device
JP4427095B2 (en) Data transmitting apparatus, data receiving apparatus, and data communication system
KR101224313B1 (en) Image data transmitting/receiving system, and image data transmitting/receiving method
JP4429378B2 (en) Data transmitting apparatus, data receiving apparatus, and data communication system