TW200849874A - Multi-network shared PHY layer - Google Patents

Multi-network shared PHY layer Download PDF

Info

Publication number
TW200849874A
TW200849874A TW097103085A TW97103085A TW200849874A TW 200849874 A TW200849874 A TW 200849874A TW 097103085 A TW097103085 A TW 097103085A TW 97103085 A TW97103085 A TW 97103085A TW 200849874 A TW200849874 A TW 200849874A
Authority
TW
Taiwan
Prior art keywords
physical layer
layer signal
signal processing
mode
processing module
Prior art date
Application number
TW097103085A
Other languages
Chinese (zh)
Other versions
TWI407716B (en
Inventor
Jeyhan Karaoguz
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broadcom Corp filed Critical Broadcom Corp
Publication of TW200849874A publication Critical patent/TW200849874A/en
Application granted granted Critical
Publication of TWI407716B publication Critical patent/TWI407716B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/18Multiprotocol handlers, e.g. single devices capable of handling multiple protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

A system and method for providing PHY layer signal processing in a PHY layer signal processing circuit, at least portions of which may be shared for communication with a plurality of different types of communication networks. Various aspects of the present invention may, for example and without limitation, provide a PHY layer signal processing module that operates to perform a PHY layer signal processing operation on an input PHY layer signal. The PHY layer signal processing module may, for example, operate in a first operating mode to process the input PHY layer signal in a first manner in accordance with a first communication protocol. The PHY layer signal processing module may also, for example, operate in a second operating mode to process the input PHY layer signal in a second manner in accordance with a second communication protocol.

Description

200849874 九、發明說明: 【發明所屬之技術領域】 . 本剌涉及通㈣_域,_涉及—_於通信系統的物 理層信號處理電路及其方法。 【先前技術】 在動恶網路如兄中,通信系統(例如,攜帶型通信系統)可 進入摊開與多個各自不同類型的不同通信網路有關的覆蓋區 厂 域。目則的通信系統(例如,攜帶型通信系統)不能有效地提供 在這樣的動態網路環境下使通信更加有效率的能力。 將上逸系統與本申請後續部分結合附圖所介紹的本發明進行 比,,現有的和傳統方法的局限性和缺陷對於本領域的普通技術 人員來說是顯而易見的。 【發明内容】 本發明要解決的技術_在於,提供―種触設備(例如, C 移騎信設備)_純和妓,財效提供在麵路環境下的 物理層通信,結合至少一幅附圖進行了充分的展現和描述,並在 權利要求中得到了更完整的闡述。 理個方面’本發明提供一翻於通信系統的物 里(服)層信號處理電路,所述物理層信號處理電路包括. 主要用來對輸人物理層信號操作執行物理層信號處理操作的物理 層包號處理模組;所述物理層信號處理模組的操作至少包括: 接收輸入物理層信號; · 5 200849874 果触的輪入物理層信號與第1信協糊,那麼以第 =作核式對接收的輸入物理層信號執行物理層信號處理操作, 執=第一操作模式和對與第―通信協定有闕的物理層信號 執仃物理聽m理操作_;並_經處軸物理層信號; 如果接㈣輸人物獨信號與不同於第—通信協定的第二通 :理作模式對接收的輸人物理層信號執行 ’射’所账軸糊於第一操作 <斤4—_試和對與第二通信協定有騎物 執行物理層信號處理操作錢;並輪出經處理的物理層信號。 優^ 綱_喻細贿號的控制 =入物理肝7控制信號指示出所述物理層信號處理模組處理 輸入物理層尨旒的操作模式。 優選地,所述物理層信號處理電路進—步包括:以第一方式 =:姆相莫組接收的信號主要執行第二物理層信號處 理2===層信號處理模組;和獨立於第二物理層信號處 έ且以 =層域纽她,所述第三_層信號處理模 第二方式對從物理層信號處理模紐接收的 。?虎主要執仃弟二物理層信號處理操作。 優選地’所述物理層信號處理電路進— 對輪入信號主要執行第二物理層信號處理操物^ ί給rr號處理模組的第二物理層信號處理模組;和獨二 弟二物理層信號處理模組的第三物理層信號處理模組,所: 200849874 物理層信號處理模組以不同於第一方式的第二方式對輸入信號主 要執行第二物理層信號處理操作並輸出經處理的信號給物理層信 號處理模組。 優選地,所述物理層信號處理電路還包括與物理層信號處理 模組通信連接的多輸入多輸出(“ΜΙΜΟ”)射頻(“RF”)收 發模組,所述多輸入多輸出射頻收發模組根據第一通信協定以第 一操作模式對接收的輸入物理層信號執行多輸入多輸出射頻處 理,並根據第二通信協定以第二操作模式對接收的輸入物理層信 號執行多輸入多輸出射頻處理。 優選地,所述物理層信號處理模組包括快速傅立葉變換 (“FFT”)引擎,所述快速傅立葉變換引擎根據第一通信協定以 第一方式在第一操作模式下對接收的輸入物理層信號執行快速傅 立葉變換處理,並根據第二通信協定以第二方式在第二操作模式 下對接收的輸入物理層信號執行快速傅立葉變換處理。 優選地,所述物理層信號處理模組包括ΜΙΜΟ處理器,所述 ΜΙΜΟ處理器根據第一通信協定以第一方式在第一操作模式下對 接收的輸入物理層信號執行ΜΙΜΟ解調和/或均衡處理,並根據第 二通信協定以第二方式在第二操作模式下對接收的輸入物理層信 號執行ΜΙΜΟ解調和/或均衡處理。 優選地,所述物理層信號處理模組包括維特比(Viterbi)解 調器,所述維特比解調器根據第一通信協定操作以第一方式在第 一操作模式下對接收的輸入物理層信號執行維特比解碼,並根據 7 200849874 物高贿 優%地,所述物理居# 處理额包括符舰射H,所述符 號映射减據弟-通信協定1^ 的輸入物理層信號執行符號映射方=Γ條式下對接收 式在Ζ倾式τ她的輪人物理層纖行符號映射4 _扁^=料物理層錄處戦組包括卷義,所述卷 =碼减卿㈣„細式下 的,场理層信錄行卷積編碼,雜二通信財以第二方 式在弟-#倾式下對接㈣輪人物理層錢執行卷積編碼。 優選地,所述物理層信號處理模組包括ΜΙΜΟ流處理哭,所 述咖流處理器根據第-通信財以第—方式在第—摔雜式 下對接收的輸入物理層信號執行咖〇解析、交織__,、並 根據弟二通信協定以第二方式在第二操作模式下對接收的輸入物 理層信號執行ΜΙΜΟ解析、交織和/或映射。 優選地,所述物理層信號處理模組包括快速傅立葉逆變換 (“IFFT”)引擎,所述快速傅立葉逆變換引擎根據第一通信協 定以第-方式在第-操作模式下對接收的輸入物理層信號執行快 速傅立葉i«換處理’並根據第二通健定料二方式在第二操 作模式下職收_人物理層錄執行快速傅立料賴處= 優選地,所述物理層信號處理模組包括I-Q調繁哭、上^樣 器、細波器和/或上變頻器中至少-者’其根二 200849874 以弟-方式在第一操作模式下對接收的輪 處理,並根據第二通信協定 —f信號 的輸入_層信號執行信號處理Γ式在弟二操作模式下對接收 二選;也:::述物理層信號處理模組包括模數位轉換器 斤述她轉換器根據第一通信協定 一操作模式谓接㈣輸人物顆錄 式在弟 據第二通健^第二方m m 、_贼理,並根200849874 IX. INSTRUCTIONS: [Technical field to which the invention pertains] This section relates to the (four)_domain, _ relates to the physical layer signal processing circuit of the communication system and the method thereof. [Prior Art] In a mobile network such as a brother, a communication system (e.g., a portable communication system) can enter a coverage area associated with a plurality of different communication networks of different types. A communication system (e.g., a portable communication system) cannot effectively provide the ability to make communication more efficient in such a dynamic network environment. The limitations and disadvantages of the prior and conventional methods will be apparent to those of ordinary skill in the art in view of the present invention as described in the accompanying drawings. SUMMARY OF THE INVENTION The technology to be solved by the present invention is to provide a "touch device" (for example, C mobile phone device) _ pure and 妓, the financial effect provides physical layer communication in the face environment, combined with at least one attached The drawings are fully illustrated and described, and are more fully described in the claims. The present invention provides a signal processing circuit that is turned over in a communication system. The physical layer signal processing circuit includes: a physics mainly used to perform physical layer signal processing operations on input physical layer signal operations. The layer packet processing module; the operation of the physical layer signal processing module at least includes: receiving an input physical layer signal; · 5 200849874 The round-in physical layer signal of the touch and the first letter of the paste, then the first = Performing a physical layer signal processing operation on the received input physical layer signal, performing the first operation mode and performing a physical listening operation on the physical layer signal 阙 with the first communication protocol; Signal; if the (four) loses the character alone signal and the second pass different from the first communication protocol: the management mode performs the 'shooting' on the received input physical layer signal in the first operation < kg 4 - _ Trial and perform physical layer signal processing operations on the object of the second communication protocol; and rotate the processed physical layer signal. Control of the _ _ _ _ _ _ = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = Preferably, the physical layer signal processing circuit further comprises: performing a second physical layer signal processing 2=== layer signal processing module in a first mode =: a signal received by the phase group; and being independent of the The second physical layer signal is at the same level as the = layer domain, and the third layer signal processing mode is received by the physical layer signal processing module. The tiger is mainly responsible for the second physical layer signal processing operations. Preferably, the physical layer signal processing circuit is configured to perform a second physical layer signal processing module for the rounding signal, and a second physical layer signal processing module for the rr processing module; The third physical layer signal processing module of the layer signal processing module, wherein: 200849874 the physical layer signal processing module performs the second physical layer signal processing operation on the input signal in a second manner different from the first mode, and outputs the processed The signal is sent to the physical layer signal processing module. Preferably, the physical layer signal processing circuit further comprises a multiple input multiple output ("ΜΙΜΟ") radio frequency ("RF") transceiver module communicatively coupled to the physical layer signal processing module, the multiple input multiple output RF transceiver module The group performs multiple input multiple output radio frequency processing on the received input physical layer signal in a first operational mode according to the first communication protocol, and performs multiple input multiple output radio frequency on the received input physical layer signal in a second operational mode according to the second communication protocol. deal with. Advantageously, said physical layer signal processing module comprises a fast Fourier transform ("FFT") engine, said fast Fourier transform engine receiving received physical layer signals in a first mode of operation in a first manner in accordance with a first communication protocol A fast Fourier transform process is performed, and a fast Fourier transform process is performed on the received input physical layer signal in the second mode of operation in a second manner in accordance with the second communication protocol. Preferably, the physical layer signal processing module includes a chirp processor that performs demodulation and/or equalization on the received input physical layer signal in the first mode of operation in a first manner according to the first communication protocol. Processing and performing a chirp demodulation and/or equalization process on the received input physical layer signal in the second mode of operation in a second manner in accordance with the second communication protocol. Advantageously, said physical layer signal processing module comprises a Viterbi demodulator, said Viterbi demodulator operating on a received input physical layer in a first mode of operation in a first manner in accordance with a first communication protocol The signal performs Viterbi decoding, and according to 7 200849874, the physical residence amount includes the ship launching H, and the symbol mapping subtracts the input physical layer signal of the communication protocol 1^ to perform symbol mapping. The square = Γ 式 对 对 接收 接收 τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ 她 她 她 她 她 物理 物理 物理 物理 物理 物理 物理 物理 物理 物理 物理 物理 物理 物理 物理 物理 物理 物理 物理 物理 物理 物理 物理Under the formula, the field layer is recorded by the convolutional coding, and the second communication is performed in the second mode. The fourth layer is connected to the (four) round of physical layer money to perform convolutional coding. Preferably, the physical layer signal processing The module includes a trickle processing, and the coffee stream processor performs cay analysis, interleaving, and interleaving on the received input physical layer signal according to the first-communication method according to the first-communication method. The second communication protocol is in the second mode in the second mode of operation. The received input physical layer signal performs ΜΙΜΟ parsing, interleaving, and/or mapping. Preferably, the physical layer signal processing module includes an inverse fast Fourier transform ("IFFT") engine, and the fast Fourier transform engine is based on the first communication The agreement performs the fast Fourier transform process on the received input physical layer signal in the first mode in the first mode and in the second mode of operation according to the second passbooking mode 2 Preferably, the physical layer signal processing module includes at least one of an IQ tuning cry, a sampler, a fine waver, and/or an up-converter's root 2 200849874 Processing the received wheel in the first mode of operation, and performing signal processing according to the input_layer signal of the second communication protocol-f signal, in the second mode of operation, receiving the second selection; also::: describing the physical layer signal The processing module includes an analog-to-digital converter, and the converter is connected according to the first communication protocol. (4) The character is recorded in the second pass, the second party, the second party, the _ thief, and the root.

C 層信號執行模數轉财理鱗模式下對接收的輪入物理 “優選地,所述物理層信號處理模組包括數模轉換器 (“DAC”)’所述數模轉換器根據第—通 : 層信號執行數模轉換處理。 里 優選地,所述第一通信協定是侧通信協定 協定是WiMAX通信協定。 乐—通h 優選地’所越理層錢處理漁侧基本 第-操作模式和第二操作模式。 優選地,所述物理層信號處理模組以順序的方式執行第—於 作模式和第二操作模式,而不是以並行的方式執行。 卞 優選地,所述物理層信號處理電路是基帶處理哭。 統的物理 根據本發明的一個方面,本發明提供一種在通彳古系 200849874 層信號處理電路中對物理層 述方法包括: 信號執行物理層信號處理的方法 ,所 在第物理層處理模組接收輪入物理層信號,所述物理層竹 號處理主要簡人物理層錢執行第—物理層錄處理^ /果接收的輸人物理層信號與第—通信協糊f,那麼在第 虎處理模組内至少部分地通過執行第—操倾式來以第一方 式對接收的輸入物理層信號進行處理; 上如果接收的輸入物理層信號與不同於第一通信協定的第二通 信協定有關,職在第—物理層錄處理模_至少部分地通過 細·不同於第-操作模式的第二操作模式來柯同於第—方式的 第二方式對接收的物理層信號進行處理;以及 攸第-物理層信號處理模組輸出經處理的物理層传號。 優選_方法進一步包括至少部分地通過:二輪 入勿理層域來確定接㈣輸人物理層信號是否與第—通信協定 有關。 口 優選地,所述方法進一步包括: 接收控制信號; 至少部分地通過分析接收的控制信號來確定接收的輸入物理 層信號是否與第一通信協定有關。 優選地,所述方法進一步包括·· 如果接收的輸入物理層信號與第一通信協定有關,那麼··在 10 200849874 第二物理層信號處理模組接收第二物理層信號, 信號包括從第一物理層信號處理模組輸出的物理層仲1中 =^理層錢處理模組主要♦方式執账物理層信 a ,亚在弟二物理層信號處理模组内至 第一方式對第二物理芦俨铗勃—楚^ 也、過以 第二層物理層信號; 弟二物理層信號結操作來處理 第^==場層錢除卿鲁那麽:在 -乂麵轉_科三_層錢 信號包括從第-物理層信號處理模組輪出的物層 所述第三物理層信號處理模組主 =其卜 勃杆H田昆一 Ng、弟方式的第二方式 丁弟一物縣域驗聽·,並 ::部分地通過以第二方式對第三物理層信號 號處理操作來處理第三層實體信號。 弟—物理壯 優選地,所述方法進一步包括: 如果接收的輪入物理層信號 第二物理層信號處理麵接收第2 =協疋有關’那麽:在 錢處理㈣^ 物理層信號,所述第二物理層 ^物卵第一方式執行第二物理層信號處理操作;在 理邮墙軸务蝴第二物 號;並輸2::^=理操作來處理第二層物理層信 如果接收㈣ 第—物理層信號處理模組; 第:物理外^场理輕號與第二驗齡麵,那麼:在 -物理層峨理㈣收第三層物理層信號,所逃第三物理 200849874 層信號處理模組主要叫同於第 層信號處理操作;在第:物理:的弟-方式執行第二物理 以不因滅—+、 錢理模朗至少部分地通過 ° 式的第二方式解三馳層魏執娜 信號處理操作來處理$ •弟一物理層 理層信⑽纖鱗理的第三物 協定=1^;通峨_繼侧二通信 _地’所述以第一操作模式操作第一物理層信號處理模組 和Μ弟二操作模式操作第一 相同的第—物理層信號處理模都包括使用基本 _4 所述第—物理層錢處理模、_順序的方式執行第 知作模式和第二操作模式,而不是以並行的方式執行。 優選地’所述物理層信號處理電路是基帶處理器。 、每本發明的各個伽、各财面和綱特徵,以及其中所示例 的實施例的細節,將在町的描述和_中進行詳細介紹。 【實施方式】 本發明的各財面涉及通信纽的物理(“卩取,,)層處理電 ,。儘管本發_各特徵在應_移動通⑽統時是有獨:的: 點’但是除翻確的聲明,本發明各方_範目不限於移動通信 錢的特徵。例如而不限於,所述移動通信系統可包括:移動電 话、袖珍賴、手提電腦、個人數位助、攜帶型郵件裝置、 具備通信能力_帶型音_放器或網路移動電戶周邊設備 12 200849874 在例如但不限於ΜΙΜΟ通信系統中。本發明的各方面的特徵 易與典型發射器電路1〇〇組合。 八。Γ說明ί目的,以下鬧述將涉及典型發射器電路100的各個部 刀曰而要庄忍的是’除非被明確聲明,典型發射器電路⑽的配置 不,對本發明的各方面的範圍的限制。作爲一個非限制的例子, 儘管典型的發射器電路綱可用在ΜΙΜ0通信系統中,但是本發明 各方面的範圍不局限於與ΜΙΜ0通信電路相關的特定特徵。Λ 發射器電路100包括主要執行各種相應的信號處理操作的多 個模組。例如,發射器電路100包括mac撕介面模組1〇5,運 行在MAC層電路和PHY層電路之間的介面處。雜撕介面模 組祕與Rx姻制模組110連接。說撕介面模組⑽可輸出 有效載雜H料信號#σΤχ控財。侧如 败撕介賴娜魏嫩麵,㈣觸電路管 理趣跑成。所·輸射紐姉前料分和纽載荷部 分0 鴨控制模組m可以控制提供师訊(例如,前導信號搁位資 ^ _練序舰位攔位等)的各個其他 。的操作如圖1所不’廷些各個模組可在發射器電路削的信 號處理路徑中的各伽提供他們各自的資訊。 例如I 可包括對有效載荷資料執行加擾信號處理操 13 200849874 作的加擾模組120。經過加擾的資料接著被串列到平行轉換模組 =執仃並行化。卷義碼器細3何__轉執行編石馬 ^處理,收縮編石馬(puncture)模姐35對該編石馬資料執行收縮 編:信號處理操作。並行到串列轉換模組14〇可接著對經收縮編碼 的貝料執仃串列化信號處理操作,接著交織模組⑷可對串列資料 執行交織信號處理操作,輪出交織並行資料流程。 隹付號映射器模組15〇可接著對該交織資料執行映射(例如,群 *映射)仏號處理操作,並且快速傅立葉逆變換(“耐,,)模組 可接著對並行映射續流程執行快速傅立葉逆變換信號處 理將遠貝料流轉換爲時域信號。發射器電路也可包括對時 _號執行·處理操作以加人迴圈字首(“cp”)的迴圈字首 =56。發射器電路觸也可包括其他信號處理模組,例如刚 製模組165、上採樣模組170、發射濾波器模組175和/或上變頻器 拉、、且180 ’ &些撫組主要對要被發射的信號執行各自信號處理操 作。發射器電路100的輸出可連接到數模轉換模組。 ά圖2所不疋接收益電路2〇〇的局部示意圖。接收器電路· 可用於ΜΙΜΟ翻I統中,但並不僅限於此。如圖丨所介紹的發射 器電路100-樣,本發明的各方面的特徵很容易結合到典型的接收 器電路200内。 以說明爲目的,下面的論述將涉及接收器電路2〇〇的各個部 分。需要注意的是’除非明確地聲明,所述典型接收器電路2〇〇 的配置不是對本發明的各個方面的範圍的限制嗜爲非限制的例 14 200849874 .子,儘管典型接收器電路200可用在ΜΙΜΟ通信系、統,本發明各個 . 方面的範圍不應該局限於與ΜΜΟ通信電路有關的特定特徵。 接收器電路200接收輸入到主要處理模組和自動增益控制電 路的輸入信號,該自動增益控制電路包括功率計算模組和增益 控制模組291。接收器電路通過各個信號處理模組處理所^收 的輸入波’其中每個信號處理模組主要執行特定信號處理操 作^大乡數的錄處賴組絲有效地復顧過發抑的信號處 理模組(例如,圖1所軸發射器電路100)執行的相應信號處理 操作。 例接收器電路200包括從模數轉換模組接收並行信號並對 接收的信號執行[Q解調信號處理的W解調器265。接收器電路 200也可包括對叫解調信號執行粗略和/或精確頻率修正侍 理操作的醉修賴組267。接㈣電侧也包峰_頻率 修正的㈣執行濾波和下採樣信號處理操作的缝和下採樣模組 270 〇 接收的信號可接著被迴圈字首移除模組256和時域修正模組 ”中每個她主要對各自所接收齡號執行信號處理操 。接收的信號從時域修正模組257傳送到快速傅立葉變換模組 ^、速傅立葉文換輪組255執行信號處理操作,將接收的信 遽轉換爲頻域信號。 解調/均衡模組25何接著執行信號處理操作,包括處理頻域 拉種通道狀態。公共相健差(⑺纖>n細ee歸, 15 200849874 縮寫爲CPE)修正和採樣解偏置(SFQ)修正池253可執行各 自的信號處理操作,包括公共相位誤差修正和採樣頻率偏置修 正。接收雜著提供給執行解_符號(例如,根據特定群 集)的信號處理操作的解調给健細和符號解映射模細。 接收的錢可接著傳_分職行解交織和練_號處理操作 的解交織模娜轉錄編碼(depunetoing)模助5。接㈣ 信號可接著被維特比解碼模組23〇處理,對所接收的資料執行解 碼。經解綱賴可騎被串舰,侧梓備呈躲酣 介面205。 如圖所示,接收器電路200也包括有對接收的信號執行通道估 計信號處理的猶估賴組292和_㈣信 時恢復信號處理操作的載波/定時恢復模組293。 如圖3所示是純的_驗層的典型錢處理模組则 的示意圖。信號處理模組300可與前面結合圖1β2說明和論述的關 於典型發射器電路100和典型接收器電路2〇〇的信號處理模組共用 特徵,但並不局限於此。在典型的物理層實現中,基帶處理器電 路(例如,積體電路)可包括有一個或多個信號處理模組3〇q。 k號處理模組300可包括用於接收一個或多個輸入物理層信 號305以進行處理的輸入璋31〇。輸入槔31〇可相對簡單或相對複 雜,這取決於輸入信號的類型和前面的處理電路。 信號處理模組300可包括輸出琿330,用以爲後續處理(例如 物理層處理)而輸出一個或多個輸出物理層信號395。輸出埠 16 200849874 號的類型和後續的處理 =對簡單或相對複雜,這取決於輪出信 暮物理声^ = 物理(贿)層信號處理模組 下h大= 可梅嫩錢處卿乍。以 p迷大錢雜及啦魏行攸 處理模組320,但是如此單 _的物理層^虎 聲明,Jt不日斜纽 W返疋爲了舉例說明,除非明確的 月亚不讀本㈣各方_朗的限制。 物理層信號處理模組32〇能 理模式中的任意一種來摔作 ^式(例如,用多種信號處 補f 朱作)執仃特定信號處理操作。例如,多 對應於其-部分。作爲非㈣w 種特疋的翁協定,或 闕的第一物理声…列子,當處理與第一通信協定有 :弟物理層域305時’物理層信號處理模組32〇可至少部分 ==第-信號處理模式以第—方式對第—物理層信號3〇5 號處理操作。料’當細條第—通信協定 =二通㈣定有_第二物理雜栽辦,_縣號處理模 可至少部分地執行第二信號處理模式以第二方式對第二物 執行它的主要信號處理操作。這樣_何接著被擴 展到與各種通信協定相關的多種不同信號處理模式。以下將介紹 包括這些操倾式的多個非限制示例,以酬本發_各個方面。 信號處理模組300也可包括用於接收控制信號扮的控制信號 埠350 ’該控制信細指示出信號處賴處理接收的物理層 錄305的特定操作模式(例如’與第—通信協定相關的第一操作 17 200849874 模式’與第二通信協定相_第二操作模式等)。例如但不限於, =嶋號355可爾指示咖崎理 對 的特定糊梅雛(例如 b虎處理拉組300也可包括用於處理接收的控制信號跑 信號處理模組細的特定操作模式的模式確定模組34〇。 :式確福組3辦·傳紐姆赌_號處理模組 處理輸入物理層信卿5她汹通過蚊簡作模式來 模式確定模組340也可分析輪入物理層信號3〇5以確定物靜 信號處理模組320的操作模式。例如但不限於,輸入物理層信號3〇曰5 2有输_定她軸输(修,類峨 數仅的、時域或頻域、資料、 "衣類型、編碼類型等)。在這樣 見方針,赋確賴㈣何錢岭些信雜徵中的一個 根據這雜徵來確定物理層信號處理模組處理輸入 理模作模式,並將確定的資訊傳送給物理層信號處 A rt,人物理層15號必執行了特定信號處理操作之後,物理 =處理模細可輸出從這些處理得到的_個綱 雨皐330,以傳达給隨後的物理層信號處理電路。 =處魏請,輸入和 ^側)。圖料提供了信號處理模組3⑻與其他信號處理模組 "面連接的非限制示例。 18 200849874 • 目4是根據本發明的通信系統的物理通信層的非限制部分(或 •電路)4〇0的典型示意圖。例如,物理層電路400可包括第—物理 ‘ 層信號處理模組41G和第二物理層信號處理模組42G。第_41 ' 二42G_層錢處理模組可與在®3制的域處理模組300共 用任何或全部特徵。第—物理層信號處理模組仙可接收輸入物理 層信娜,對該輪人信號執行第—信驗g操作,並輸出第一婉 Γ處理健給第二物理層錢處理额伽。第二_雜號處理模 組420可接㈣第—經處理錢,對第—經處理信號執行第二信號 處理操作,並輸出第二經處理信號必5。 ϋ 二在典型電路4G0中,第—物理層信號處理模組4ΐ()和第二物理 層信號處理模組420可對輸入_層信號執行各自信號處理操 作。在圖1-2中說明的典型發射電路觸和接收電路提供了這些 信號處理操作的各種例子。例如,第一物理層信號處理模組仙 C 料二物理層·處理· 均可朗多個方式執行各自特定 的k號處理操作,這取決於輸入物理層信號405的特性。例如,物 理層信號處理模組410、420根據輸入物理層信號4〇5所對應的通信 協定,能各自以多個信號處理模式操作。 圖5疋根據本剌的齡纽的物理通信層的非關部分(或 兒路)5〇0的典型不意圖。例如,物理層電路$⑻可包括第一物理 層信號處理模組M0。第一物理層信號處理模組別可與在阳說明 的信號處理模組300共用任何或全部特徵。例如,第一物理層信號 處理核組510可接收輸入物理層信號5〇5,對所述輸入信號執行第 19 200849874 -信號處理操作,並輸出第-經處理信號到第二物理層信號處理 模組520和/或第三物理層信號處理模組53〇。 物理層電賴也可包括對從第—物理層處理模組$轉收的 物理層錢5此魏行第二物理層錄處理縣㈣二物理層 信號處理模組520。第二物理層信號處理操作可按順序在第一物^ 層信號處理模組510執行㈣—物理層錢輕操作之後執行。第 二物理層信號處理模組52〇能僅以作模式(例如,對與第一 通信協定有_輸人物理層錄512執行第二物理層信號處财 作的相關模式)執行第二物理層信號處理操作。第二物理層^ 處理模組520可接著輸出第二經處理物理層信號奶到隨後的_ 社號處ί!敏,以便根據第―通信協定進行進—步處理。 物理層電路也可包括對從第一物理層信號處理模 收的物理層錢5Η衫執行第二物理層錄處的第 理層信號處理模組530 (即, ㈣一物 行_ ^物理層域處理模組520執 7虎處理#作)°第三物理層信號處理模电53〇 能僅以-個操作模式(例如 、 層信細執行第二物购1♦、弟一社協疋有關的輸入物理 理層信號處理操作。第處理操作的相關模式)執行第二物 弟一物理層信號處理模組53〇可 經處理物理層信號535到 輸出弟一 通信協定進㈣—步處理4的物顆W處理她,啸據第二 斑第在通案中,第—物理層信號處理模組別可接收 協疋相關的輪入物理層信號奶。第一物理層信號處理 20 200849874 模組510可接著至少部分地通過執行第二操作模式來對輸入物理 層信號505執行第―物理層錢處理操作,所述第二摔作模式盘對 輸入物理層信號505 (其與第二通信協定相關)執行第一物理層信 號處理操作相關。第—物理層信號_模組5iQ可接著輸出第一經 處理物理層信號514到第三物理層信號處理模組53〇,第三物理層 信號處理模組530對與第二通信協定相關的輪入物理 執行第二物理層信號處理操作。在此典财針,可不=第二 物理層信號處理额別,除非魏_於處_與第—通信協定 才關的輸入物理層#號’然而第一物理層信號處理模組5可用來 對與弟—和第二通信協定相_輸人物理層信號執行各自的物理 層信號處理操作。 +圖6是根據本發明的通信系統的物理通信層的非關部分(或 私路)600的典型示意圖。物理層電路_可包括主要對從前一物 理層信號$理模組接㈣物理層錢6()議行第—物理層信號處 理操作的第—物理層信號處理模組⑽。第—物理層信號處理模組 可僅以個操作桓式(例如,對與第一通信協定有關的輸入物 理層信號605執行第—物理層信號處理操作的侧模式)執行第一 ^理層信號處理操作。第—物理層錢處難組⑽可接著輸出第 一、、’-處理物理輕親5職後的物理層信號處賴組(例如,第 -物理層彳3錢賴祕Q),啸據第—通信協定進行進一步處 理。 又例如物理層電路_可包括主要對從前一物理層信號處理 21 200849874 模組接收的物理層信號645執行第 第一物理層户笋卢搜^, 物里層k唬處理操作(即通過 … 口 JU处里板、、且610執行的相同物 弟二物理層信號處理模組650。第=勿處理轉)的 以一個操作模式(例如,對—層域處理模靖可僅 號崎行第一物理層信號處理操;===輸入物理層信 信號處理摔作。第二—作的相職式)執行第一物理層 理物理芦n 曰域處理模組650可接著輸出第-經處 “遽55到隨後的物理層信號處理模組(例如,第三物理 層域細編Q),以根_二通信齡進行進—步處理。 _第彳物理層电輸0可包括第三物理層信號處理模組 請的信號處理模纖可共用在圖3說明的信號處理模 於均或者全部特徵。第三物理層信號處理模組_可接收 ^_里層信號(615和/或655),對這些輸入信號執行第二信號 处理操作,並輸㈣二經處理信號695顺後的物理層信號處理模 組以便進行繼續處理。 ”在一個非_的方針’第__層信號處理额⑽可接收 與第-通信财㈣錄人物理層錢齡 模組_可接著對輪入物理層信觸執行第一物峨= 作(例如’赠帛—通信協定有關賴作模式,所賴式可能是 第-物理層信號處理模組61〇操作的唯—模式)。例如,第一物理 層信號處理模組610可接著輸出帛-經處理輸入物理層信號615到 第三物理層信號處理模組690。 弟一物理層號處理模組690可接著接收輪入物理層信號 22 200849874 615 ’確定接收的物理層信號615是與第一通信協定有關,並對接 收的物理層信號615至少部分地以與第—通信協定有關的第一操 作核式執仃第二物理層信號處理操作。第三物理層信號處理模組 69〇可接著輸出第二經處理物理層信號的5到隨後的電路以根據第 通心協疋進行進一步的處理。 前面的描述-般性地涉及到錢職處理歡執行的各個信 遽處理㈣。下面的論述呈現這些錢處理模組和域操作的非限 制例子。 圖7疋根據本發明的多模式共用的物理層7〇〇的典型示魚圖。 圖7的示意圖解釋了在雙模式删8〇2•應ee8〇2i6收發器、(例 如802·11η和WlMAX)環境内的各個共用物理層信號處理模組。 物理層700可共用在圖w說明和前面論述的典型電路和域模組 的任何或全部特徵。 的w述在〃、纟°崎定通鋪式通信時,將侧涉及到根 特定物理層規範(或根據通信網路的特定類型)進行通信。例 ^但不限於,以第—通信模式通信可包_細e_讀理 =範與第—通麵路通信,_二通鋪_可包括根據 处1聰G2.10UwiMAX)物理層規範與第二通信網路通信。 =模式-般每次執行—種(例如,與第二通信模式比較在 以第—通信模式操作),但是也可科執行。在同時 部件可以=、各個°卩件包括完全的並行處理路徑。或者,各個 ρ刀㈣方式工作’這樣的分時方式能夠充分滿足同時執 23 200849874 行的多個通信模式的通信要求(例如,資料處理率)。 /寻、〜、的疋這些特定通信協定以及相關的電路,都是爲 了舉例酬而給出的,並不是對本發明各個方面的範_限制',,、 除非具體特徵在此被明確地要求。又例如,在圖7的說明中僅僅仏 ΓΓ種通信協定(例如,雙模式架構),_本發明各方_ 犯圍疋很谷易擴展到提供超過兩個通信協定模式的物理層的。 總之,圖7以方框圖形式呈現了各個信號處理模組。虛線所表 示的信號處理模組代表-般贿以與第-通定(例如, _n)相騎單—模式執行信號處理操作的物理層信號處理模 ^細實録示的錢處理模組代表—般聽贿第二通信協定 (=,.與 802.16e)相關㈣ 的物理層錄處理触。單__號處戦組可共用前面 論述的各錄财域處賴_任域全部(修,物理 層信號處理模組520、530、610和650)。 ^實線表示的信號處理模組代表—般用於根據被處__ 層域的類型(例如,取決於與輪入物理層信號相關的通信協定) 决沾心虎處理模組可共用前面論述的各個物理即號 4模組的任何或全部特徵(例如,物理層信號處理模_〇7 410、420、510和690)。 各種==Γ論述的各個物理層信一 ^ 方案中執行。因而,這種特糊的順序和/ 24 200849874 或論述的順序不應理解爲限制,除非這些順序被明確的要求。 物=層700包括可在多個通信模式之間(例如,這些通信模式 共用頻帶的各部分或使用相對接近的頻帶)共用的多侧 /或天線。作爲非限制的示例,侧可使用24到248胞頻段,而 W而則使用2.5到2.6GHz的頻段。在這樣例子中,具有在Μ 到2.6 GHz的頻率範圍内通信的特徵的天線可在卿{和娜似The C-layer signal performs the round-robin physics of the received analog-to-digital scale mode. Preferably, the physical layer signal processing module includes a digital-to-analog converter ("DAC"). Passing: The layer signal performs digital-to-analog conversion processing. Preferably, the first communication protocol is a side communication protocol agreement is a WiMAX communication protocol. Le-tong h is preferably 'the more layered money processing the fishery side basic first-operation mode And the second mode of operation. Preferably, the physical layer signal processing module performs the first mode and the second mode of operation in a sequential manner, rather than in a parallel manner. 卞 Preferably, the physical layer signal The processing circuit is baseband processing and crying. According to an aspect of the present invention, the present invention provides a method for performing physical layer signal processing in a signal processing circuit of the Tongyao system 200849874 layer, including: signal performing physical layer signal processing, where The physical layer processing module receives the rounded physical layer signal, and the physical layer handles the main simplified human physical layer money to perform the first physical layer recording processing. The layer signal and the first communication protocol f, then the received input physical layer signal is processed in the first manner at least partially by performing the first operation in the first processing module; if the received input physical The layer signal is related to the second communication protocol different from the first communication protocol, and the first physical layer recording processing mode is at least partially passed through the second operation mode different from the first operation mode to be the same as the first mode The second mode processes the received physical layer signal; and the first physical layer signal processing module outputs the processed physical layer number. Preferably, the method further comprises: determining, at least in part, by: a second round of the layer And (4) whether the input physical layer signal is related to the first communication protocol. Preferably, the method further comprises: receiving the control signal; determining, at least in part, by analyzing the received control signal to determine whether the received input physical layer signal is the first Preferably, the method further comprises: if the received input physical layer signal is related to the first communication protocol, then · In 10 200849874, the second physical layer signal processing module receives the second physical layer signal, and the signal includes the physical layer output from the first physical layer signal processing module, and the main processing mode is The physical layer of the account a, the second in the physical layer of the signal processing module to the first mode to the second physical reed - Chu ^ also, the second layer of the physical layer signal; the second physical layer signal junction operation To deal with the ^== field layer money in addition to Qing Lu: in the - 乂 转 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The group master = its Bu Bo H Tian Kunyi Ng, the second way of the younger brother Dingdi Yixian County Audition, and:: Partially through the second way to the third physical layer signal number processing operation Three-layer physical signal. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The second physical layer ^ the first method of performing the second physical layer signal processing operation; the second item number in the mailing wall axis; and the 2::^= operation to process the second layer physical layer letter if received (four) The first-physical layer signal processing module; the first: the physical external field and the second aging face, then: in the - physical layer processing (four) to receive the third physical layer signal, the third physical 200849874 layer signal The processing module is mainly called the same layer signal processing operation; in the first: physical: the younger-style execution of the second physics is not due to the elimination of -+, Qian Limolang at least partially through the second method of the ° type Layer Wei Sina signal processing operation to deal with the third physical agreement of the physical layer letter (10) grammar = 1 ^; the first physics is operated in the first mode of operation The layer signal processing module is the same as the first operation mode of the second brother. The first-physical layer signal processing module includes performing the first known mode and the second mode of operation using the first-physical layer processing mode and the _order as described in the basic _4, instead of performing in parallel. Preferably said physical layer signal processing circuit is a baseband processor. The details of each of the gamma, the financial aspects, and the features of the present invention, as well as the examples of the examples shown therein, will be described in detail in the description and _ of the town. [Embodiment] The financial aspects of the present invention relate to the physical ("snap,") layer processing power of the communication link. Although the features of the present invention are unique in the case of the mobile phone (10): point 'but In addition to the clarified statement, the parties of the present invention are not limited to the characteristics of mobile communication money. For example, without limitation, the mobile communication system may include: a mobile phone, a pocket computer, a laptop, a personal digital assistant, and a portable type. Mail device, communication capability _ band tone player or network mobile phone peripheral device 12 200849874 In, for example but not limited to, a ΜΙΜΟ communication system. Features of aspects of the invention are easily combined with a typical transmitter circuit 1 〇〇 8. The following announcing will refer to the various parts of a typical transmitter circuit 100 and it is to be said that 'unless explicitly stated, the configuration of a typical transmitter circuit (10) is not, for all aspects of the invention Limitation of Range. As a non-limiting example, although a typical transmitter circuit can be used in a 通信0 communication system, the scope of aspects of the present invention is not limited to being related to ΜΙΜ0 communication circuits. Particular features. The transmitter circuit 100 includes a plurality of modules that primarily perform various corresponding signal processing operations. For example, the transmitter circuit 100 includes a mac tear interface module 1〇5 that operates between the MAC layer circuit and the PHY layer circuit. The interface of the torn interface module is connected with the Rx marriage module 110. The torn interface module (10) can output the effective load H material signal #σΤχ控财. The side is like the defeat of the Lai Na Wei Nian noodle, (4) The circuit management is very interesting. The front and the load parts of the transporting button are 0. The duck control module m can control the information provided by the teacher (for example, the pre-signal shifting _ _ training position, etc.) Each of the other operations is shown in Figure 1. Each of the modules can provide their respective information in the gamma of the signal processing path of the transmitter circuit. For example, I can include performing scrambling signal processing on the payload data. 13 200849874 The scrambling module 120. The scrambled data is then serialized to the parallel conversion module = stubbed parallelization. Volume coder fine 3 __ turn to execute the stone horse ^ processing, shrinking stone Horse (puncture) model sister 35 on the stone horse information Shrinking: signal processing operation. The parallel to serial conversion module 14 can then perform a serialized signal processing operation on the contracted encoded bead, and then the interleaving module (4) can perform an interleaving signal processing operation on the serial data. The round-trip interleaved data flow is performed. The 隹payer mapper module 15 接着 can then perform mapping (eg, group * mapping) nickname processing operations on the interleaved data, and the fast Fourier transform ("resistance,") module can The fast Fourier transform signal processing is then performed on the parallel mapping process to convert the far shell stream into a time domain signal. The transmitter circuit may also include a time-of-day execution/processing operation to add a loop back word ("cp") to the loop head = 56. The transmitter circuit contacts may also include other signal processing modules, such as the rigid module 165, the upsampling module 170, the transmit filter module 175, and/or the upconverter, and the 180' & Perform respective signal processing operations on the signals to be transmitted. The output of the transmitter circuit 100 can be connected to a digital to analog conversion module. 2 is a partial schematic diagram of the receiving benefit circuit 2〇〇. Receiver circuit · Can be used to overridden, but not limited to this. The features of aspects of the present invention are readily incorporated into a typical receiver circuit 200, as is the case with the transmitter circuit 100 described. For purposes of illustration, the following discussion will refer to various portions of the receiver circuit 2A. It is to be noted that 'unless explicitly stated, the configuration of the exemplary receiver circuit 2 is not a limitation of the scope of the various aspects of the invention, and is not limiting. Example 14, 200849874. Although a typical receiver circuit 200 is available The scope of the various aspects of the present invention should not be limited to the specific features associated with the ΜΜΟ communication circuit. The receiver circuit 200 receives input signals input to a primary processing module and an automatic gain control circuit, the automatic gain control circuit including a power calculation module and a gain control module 291. The receiver circuit processes the received input wave through each signal processing module, wherein each of the signal processing modules mainly performs a specific signal processing operation, and the recording of the number of the townships is effectively reconsidered for signal processing. A corresponding signal processing operation performed by the module (e.g., the axis transmitter circuit 100 of Figure 1). The example receiver circuit 200 includes a W demodulator 265 that receives parallel signals from an analog to digital conversion module and performs [Q demodulation signal processing on the received signals. Receiver circuit 200 may also include a drunken group 267 that performs coarse and/or precise frequency correction service operations on the demodulated signals. The (4) electrical side is also peaked _ frequency corrected (4) the slit and down sampling module 270 that performs filtering and downsampling signal processing operations, and the received signal can be followed by the loop head removal module 256 and the time domain correction module. Each of them mainly performs signal processing operations on the respective received age numbers. The received signals are transmitted from the time domain correction module 257 to the fast Fourier transform module ^, and the fast Fourier switch wheel group 255 performs signal processing operations, and will receive The signal is converted into a frequency domain signal. The demodulation/equalization module 25 then performs signal processing operations, including processing the frequency domain pull channel state. The common phase difference ((7) fiber > n fine ee return, 15 200849874 abbreviated as The CPE) Correction and Sample De-Binding (SFQ) correction pool 253 can perform respective signal processing operations, including common phase error correction and sampling frequency offset correction. The receive alias is provided to the execution solution_symbol (eg, according to a particular cluster) The demodulation of the signal processing operation is applied to the fine-grained and symbol de-mapping module. The received money can then be transmitted to the de-interlaced mode-decoded (depunetoing) mode. The signal is then processed by the Viterbi decoding module 23 to perform decoding on the received data. The receiver circuit 200 also includes a carrier/timing recovery module 293 having a channel estimation signal processing 292 and a _(four) signal recovery signal processing operation for performing channel estimation signal processing on the received signal. As shown in FIG. A schematic diagram of a typical money processing module of the layer. The signal processing module 300 can share features with the signal processing modules of the typical transmitter circuit 100 and the typical receiver circuit 2〇〇 described and discussed above in connection with FIG. 1β2, but Not limited to this. In a typical physical layer implementation, the baseband processor circuit (eg, integrated circuit) may include one or more signal processing modules 3〇q. The k-th processing module 300 may include for receiving One or more inputs 301 are input to the physical layer signal 305. The input 槔 31 〇 may be relatively simple or relatively complex, depending on the type of input signal and the previous processing circuitry. The signal processing module 300 may include Output 珲330 for outputting one or more output physical layer signals 395 for subsequent processing (eg, physical layer processing). Output 埠16 Type 200849874 and subsequent processing = simple or relatively complex, depending on the round-trip letter暮Physical sound ^ = Physical (bribery) layer signal processing module under h = = Meinen money at the Qing dynasty. With the p big money miscellaneous and La Wei Xing processing module 320, but so single _ physical layer ^ tiger It is stated that Jt does not return to the 纽 纽 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋For example, using a variety of signals to compensate for a specific signal processing operation. For example, it corresponds to its - part. As a non-fourth w characteristic, the first physical sound...column, when processing and the first communication agreement: the physical layer 305, the physical layer signal processing module 32 can be at least partially == - The signal processing mode operates on the first physical layer signal 3〇5 in the first mode. When the thin strip first-communication agreement=two-way (four) has _ second physical processing, the _ county processing module can at least partially perform the second signal processing mode to perform its main signal on the second object in the second manner. Processing operations. This is then extended to a variety of different signal processing modes associated with various communication protocols. The following sections describe a number of non-limiting examples of these practices, which are used to pay for each aspect. The signal processing module 300 can also include a control signal 埠 350 for receiving a control signal. The control signal indicates a specific operation mode of the physical layer record 305 received by the signal processing (eg, 'related to the first communication protocol). First operation 17 200849874 Mode 'with the second communication protocol phase _ second operation mode, etc.). For example, but not limited to, = 355 355 可 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔 尔The mode determination module 34〇: The formula is determined by the group 3, the transmission of the gambling _ number processing module, the processing input layer, the physical layer, the letter 5, and the pattern determination module 340 can also analyze the wheeled physics. The layer signal 3 〇 5 determines the operation mode of the static signal processing module 320. For example, but not limited to, the input physical layer signal 3 〇曰 5 2 has a loss _ fixed her axis transmission (repair, class only, time domain Or frequency domain, data, "clothing type, coding type, etc.. In this way, the policy is determined. (4) One of He Qianling's some miscellaneous signs is based on this miscellaneous sign to determine the physical layer signal processing module processing input The mode is simulated, and the determined information is transmitted to the physical layer signal A rt, after the human physical layer 15 must perform a specific signal processing operation, the physical = processing module can output the _ a class of raindrops 330 obtained from these processes, To communicate to subsequent physical layer signal processing = At Wei Please input side and ^). The figure provides a non-limiting example of the connection of signal processing module 3 (8) to other signal processing modules. 18 200849874 • Head 4 is a typical schematic diagram of a non-limiting portion (or circuit) 4〇0 of the physical communication layer of the communication system in accordance with the present invention. For example, the physical layer circuit 400 can include a first-physical layer signal processing module 41G and a second physical layer signal processing module 42G. The _41' two 42G_ layer processing module can share any or all of the features with the domain processing module 300 of the ®3 system. The first-physical layer signal processing module can receive the input physical layer Xin Na, perform the first-letter g operation on the round human signal, and output the first Γ Γ processing health to the second physical layer money processing amount gamma. The second_cell processing module 420 can connect (4) the first processed money, perform a second signal processing operation on the first processed signal, and output a second processed signal. In the exemplary circuit 4G0, the first physical layer signal processing module 4A and the second physical layer signal processing module 420 can perform respective signal processing operations on the input_layer signals. Typical transmit circuit touch and receive circuits illustrated in Figures 1-2 provide various examples of these signal processing operations. For example, the first physical layer signal processing module can perform a specific k-th processing operation in a plurality of manners depending on the characteristics of the input physical layer signal 405. For example, the physical layer signal processing modules 410, 420 can each operate in a plurality of signal processing modes in accordance with the communication protocol corresponding to the input physical layer signals 4〇5. Fig. 5 is a typical notation of a non-closed portion (or a child's path) 5〇0 of the physical communication layer according to the age of the present invention. For example, the physical layer circuit $(8) may include a first physical layer signal processing module M0. The first physical layer signal processing module may share any or all of the features with the signal processing module 300 described in the prior art. For example, the first physical layer signal processing core group 510 can receive the input physical layer signal 5〇5, perform the 19th 200849874-signal processing operation on the input signal, and output the first processed signal to the second physical layer signal processing mode. Group 520 and/or third physical layer signal processing module 53A. The physical layer can also include the physical layer money transferred from the first physical layer processing module $. The second physical layer recording processing county (four) two physical layer signal processing module 520. The second physical layer signal processing operation may be performed in sequence after the first layer signal processing module 510 performs (d)-physical layer light operation. The second physical layer signal processing module 52 can perform the second physical layer only in a mode (eg, a related mode of performing a second physical layer signal with the first communication protocol having the physical layer record 512) Signal processing operations. The second physical layer ^ processing module 520 can then output the second processed physical layer signal milk to the subsequent _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The physical layer circuit may also include a layer signal processing module 530 that performs a second physical layer recording on the physical layer of the first physical layer signal processing (ie, (4) an object row _ ^ physical layer domain The processing module 520 performs 7 tiger processing #作)° The third physical layer signal processing module 53 can only perform the input related to the operation mode (for example, the layer information is performed by the second material purchase 1♦, the brother-one social agreement) The physical layer signal processing operation. The related mode of the processing operation) executes the second physical layer, the physical layer signal processing module 53 can process the physical layer signal 535 to the output of the communication protocol (4) - step processing 4 W handles her, according to the second spot in the general case, the first-physical layer signal processing module can receive the associated physical wheel signal milk. First physical layer signal processing 20 200849874 Module 510 can then perform a first physical layer processing operation on input physical layer signal 505, at least in part by performing a second operational mode, the second falling mode disk pair input physical layer Signal 505 (which is associated with the second communication protocol) performs a first physical layer signal processing operation correlation. The first physical layer signal_module 5iQ may then output the first processed physical layer signal 514 to the third physical layer signal processing module 53A, and the third physical layer signal processing module 530 may be associated with the second communication protocol. Into the physical execution of the second physical layer signal processing operation. In this case, the second physical layer signal processing amount can be used instead of the second physical layer signal processing amount, unless the first physical layer signal processing module 5 can be used to The brother-and-second communication protocol phase-input physical layer signals perform respective physical layer signal processing operations. + Figure 6 is a typical schematic diagram of a non-closed portion (or private path) 600 of the physical communication layer of the communication system in accordance with the present invention. The physical layer circuit _ may include a first-physical layer signal processing module (10) mainly for processing the physical layer signal processing from the previous physical layer signal (4) physical layer money 6 (). The first physical layer signal processing module may execute the first layer signal only in an operation mode (for example, a side mode of performing a first physical layer signal processing operation on the input physical layer signal 605 related to the first communication protocol) Processing operations. The first-physical layer money hard group (10) can then output the first,, and - the physical layer signal after the physical position of the 5th position (for example, the first - physical layer 彳 3 money Lai secret Q) - The communication agreement is further processed. For example, the physical layer circuit _ may include performing a first physical layer signal processing on the physical layer signal 645 received from the previous physical layer signal processing 21 200849874 module, and processing the inner layer k唬 processing operation (ie, through the mouth The JU is in the same board, and the 610 performs the same physical two-layer physical layer signal processing module 650. The first = no processing turn) is in an operation mode (for example, the pair-layer processing module can only be the first Physical layer signal processing operation; === input physical layer signal processing to fall. Second - for the implementation of the first physical layering physical processing system 650 can then output the first -遽55 to the subsequent physical layer signal processing module (for example, the third physical layer domain is fine-coded Q), and the root processing is performed in the root_two communication age. The third physical layer electrical input 0 may include the third physical layer. The signal processing module of the signal processing module may share all or all of the characteristics of the signal processing module illustrated in Figure 3. The third physical layer signal processing module _ may receive the inner layer signal (615 and/or 655). Perform a second signal processing operation on these input signals and input (4) The second processing signal 695 is followed by the physical layer signal processing module for further processing. "In a non-_ policy", the __ layer signal processing amount (10) can be received and the first communication money (four) recorded physical layer money age model The group _ can then perform the first object 作 = for the wheeled physical layer signal (for example, 'give 帛 - communication protocol related mode, which may be the only physical layer signal processing module 61 〇 operation only —— mode). For example, the first physical layer signal processing module 610 can then output the processed input physical layer signal 615 to the third physical layer signal processing module 690. The physical layer processing module 690 can then receive the round-in physical layer signal 22 200849874 615 'determine that the received physical layer signal 615 is associated with the first communication protocol and the received physical layer signal 615 is at least partially - The first operational core associated with the communication protocol performs the second physical layer signal processing operation. The third physical layer signal processing module 69 can then output 5 of the second processed physical layer signal to subsequent circuitry for further processing in accordance with the first core protocol. The foregoing description is generally related to the various letter processing (4) of the money management process. The following discussion presents non-limiting examples of these money processing modules and domain operations. Figure 7 is a typical fish diagram of a physical layer 7〇〇 shared by a multi-mode according to the present invention. The schematic of Figure 7 illustrates the various physical layer signal processing modules in a dual mode 〇8〇2• ee8〇2i6 transceiver, (e.g., 802·11 η and WlMAX) environments. Physical layer 700 may share any or all of the features of the exemplary circuit and domain modules illustrated in Figure w and discussed above. The w is described in the 〃, 纟 崎 定 通 通 通 通 通 通 通 通 崎 崎 崎 根 根 根 根 根 根 根 根 根 根 根 根 根 根 根 根 根 根 根Example ^ but not limited to, communication in the first communication mode can be packaged _ fine e_reading = fan and the first - face-to-face communication, _ two-way shop _ can include according to the 1 Cong G2.10UwiMAX) physical layer specification and second Communication network communication. = mode - every execution - (for example, operating in the first communication mode compared to the second communication mode), but can also be performed. At the same time, the components can be =, each component includes a complete parallel processing path. Alternatively, the time sharing method such as the operation of each of the knives (four) mode can sufficiently satisfy the communication requirements (e.g., data processing rate) of the plurality of communication modes of the 2008 2008 874 line. The specific communication protocols, and the associated circuits, are given for purposes of example and are not intended to be limiting of the various aspects of the invention, unless the specific features are specifically claimed herein. For another example, in the description of Fig. 7, only a communication protocol (e.g., dual mode architecture), the parties of the present invention have been extended to provide physical layers of more than two communication protocol modes. In summary, Figure 7 presents various signal processing modules in block diagram form. The signal processing module represented by the dotted line represents a representative of the money processing module of the physical layer signal processing module that performs the signal processing operation with the first-pass (for example, _n) riding-single-mode- The second layer of the agreement (=,. with 802.16e) is related to the physical layer recording process. The single __ number group can share all of the financial fields discussed above (repair, physical layer signal processing modules 520, 530, 610, and 650). ^The signal processing module represented by the solid line is generally used to be based on the type of the __ layer domain (for example, depending on the communication protocol related to the signal of the physical layer). The Dingxinhu processing module can share the previous discussion. Any or all of the features of each physical number 4 module (eg, physical layer signal processing modules _ 7 410, 420, 510, and 690). Various physical layers of the ==Γ discussion are implemented in the scheme. Thus, the order of such special pastes and the order in which they are discussed or should not be construed as limiting unless such order is expressly required. The material=layer 700 includes a multi-sided/or antenna that can be shared between multiple communication modes (e.g., portions of the shared mode shared frequency bands or relatively close frequency bands). As a non-limiting example, the side can use the 24 to 248 cell band, while the W uses the 2.5 to 2.6 GHz band. In such an example, an antenna having characteristics that communicate in the frequency range of 2.6 GHz can be seen in

C (和其他通健式)之間共用。其讎部件,例如处交換工作臺 部件’,可同樣共用在各通信模式之間。 物理層700也可包括各種不同舰帶通濾波器( “BPF,,)、 低深放大( “LNA”)和功較( “pA”),例如,這些 部件在不_通鋪式之間可不同,聰證各自的最優化設計^ 例如’夕個單獨的BPF可合併成一組可選擇的卿構成的陣列。然 而如杲k執行、製造和/或成本方面去實踐,那麽這些朋阿進 打適應性修改(例如,包括可編程的濾波頻率範圍和/或下降 (roll-off)特徵)’以操作在多個不同通信模式。同樣例如,在 圖示示例巾’低%放大器針對每個通信模式而不同。例如,各個 LNA的相應錄度要求可有很大不目,以概各飢砸的最優化 設計。所述架構可包括有一址可選擇的最優腿構成的陣列。然 而,如果從執行、製造和/或成本來考慮,該LNA可進行適應性修 改(例如’包括可編程放大和/或靈敏度)以操作在多個不同通信 模式 物理層700包括有癒鳩射頻收發單元73〇。2χ2 MIM〇處理可 25 200849874 用於根據8〇2.lln和WiMAX進行的通信中,並可在不同通信 之間共用。 、 在接收器的鮮中,刪_職單测(或其接收器部 分)可包括-對接收器。雖然至少一部分通信頻帶不被各個通信 核式所共用,醜0射頻收發單元(或模組)73〇可被共用(例如, 在通信模式之間)。 聰〇射敝發單元730也可包括_於執行下變換的各種 電路或模組。所述單元73〇的輸出可是Ι/ρ或基帶信號。 物里層7〇0也可包括基帶處理器乃〇。基帶處理器乃〇可共用在 圖1-6說明和前面論述的典型電路和/或模組的任何或全部特徵。 基π處理副可包括在圖說明的各個信號處理模組配置種的 任何一個或全部。 —基:處理器750包括ADC信號處理模组况,當接收的物理層 域與第通k協定有關時,mc信號處理模組乃2以第一方式 通過第-#作模式對接收的物理層信號操純行adc處理。例 如’當輸入的物理層信號與第二通信協定有關時,ADC信號處理 模組752也能以不同於第—方式的第二方式通過第二操作模式對 接收的物理層域操作執行ADC處理。 共用的ADC信號處理模組752能以多種方式實現。例如,根 據與特定触協定相_錢處理需求,觀錄處賴組乃2 Ύ是口疋的’或可編程以達到不同解析度和/或精確度和/或收斂 特徵。如果有必要,ADC信號處理模組752也可執行頻率轉換(例 26 200849874 如,Ι/F到基帶)。 基V處理器750可包括FFT信號處理模組(或引擎)754,當 所接收的物理層信號與第—通信協定有關時,附信號處理模組 (或引擎)754以第一方式通過第—操作模式對接收的輸人物理層 ㈣标作執行FFT處理。當這些接收的物理層信號與第二通信協 定有關日寸’ FF丁信號處理模組754也能以不同於第一方式的第二方 式通過第—彳祕模朗接收的物理層信號執行附處理。 FFTb虎處理模組75何執行多點(例如,職附)附信號 處理“作。典型FFT信號處理模組7S何執行64、128、512、1〇24 和2048點FFT,這取決於與使用的特定通信協定相關的信號處理 而长例如64點和128點FFT可用於WiFi通信,128點和128+點 FFT可用於WiMAX通信。 在各個典型的方案中,不同通信模式(或協定)也可擁有各 自不同的w在-個方案中,例如8Q21ln,可有Μ點附和128 點FFT在312KHz上執行。因而,該方案的帶寬是2〇應或 40廳。在其他方案中,例如移動谓碰乂中,可有⑶點(或犯 或腿或綱點)FFT,當運行在1〇·9概時,導致頻率範圍是 從大約L4麵謂大約22耻。因而,附引擎7Μ能以各種操作 模式操作,這樣雜,根顯特定通信齡侧聽親理需求, FFT引擎754能以相對較少的採樣執行相的操作,或以相對 較多的採樣執行相對慢的操作。 附引擎754的脑性㈣齡式建立,包括但不限於流水 27 200849874 .泉操作。A水線操作包舰- 比較低逮率咖單元FFT F;; ^個早70 ’重復多次以類 #用, 細靈潍導致-樣靈崎阳丨擎754可在 吏用夕種相觸信模歧合的多__通 處理器)令使用。 ⑽暴τ =親转,$細麟_,靖轉,可以並行 紐64,聊τ引擎,並且必要的話,可降低時鐘速率以滿 Μ需求。或者’對綱,謝進行二次採樣以得刺點附。 基帶處理器750可包括聰〇處理器模組756,當接收的物理 “與弟一通信協定有關時,娜ί〇處理器模組756以第一方式 通過第-操作模式對接收的物理層信號執行職〇解調和/或均 衡信號處理。當接㈣_層錢鄕二触财有請捕μ〇 處理器模組756也能以不同於第一方式的第二方式通過第二摔作 模式對接《物理層信餘彳彻廳解調和域均衡信號處理。 蘭0處理器她756可以多種方式執行。例如,聰〇處理 器模組756可包括用於處理從多個天線到達的資料矩陣(該示例中 爲2個天線)的整體並行塊處理器。ΜΜ〇處理器模組乃6可接著 執仃各種MIMO#作,例如,均衡操作、關聯操作等。爲在多個 通信模式之間提供共用,MIMQ處理賴組756可包括錄特徵。 例如和不限於,ΜΙΜ〇處理器模組756可以不同速率操作和/ 28 200849874 或使用各自不同大小的矩陣。麵〇處理器模組756能以流水線的 方式以相對高的速度執行較小矩陣操作,從而類比以相對低的速 度執行的相對較大矩陣操作。或者,ΜΙΜΟ處理器模組756能以相 對高的速度處理大矩陣操作的一部分,以提供較小矩陣操作(例 如’在稀疏矩陣實現方案中)。例如,僅有較大矩陣中的特定單 元、行或列被處理(例如’稀疏矩陣處理),僅有較大矩陣中的 特定單元、行或列載入有相關的資訊(例如,稀疏矩陣載入), 或僅有矩陣中的特定單元可在處理後被使用(例如稀疏矩陣卸 載)。需要注意的是,稀疏矩陣處理方法也可用於實現節能。 作爲非限制例子,2G48X2_的矩陣可包括 ⑵紀56)的塊或8個取⑸况⑺的塊,可從每個子矩陣 中選出特定__馳點。這些選出的點可與其他點單獨使用 或-起使用。例如,可將特定子矩陣中的所有點相加、求平均或 進行過濾、。流水線或稀疏實現方討制智慧雜分路和複用技 術以執行姆小_操作的流树_大_操作辭採樣(或 稀疏處理)。 基帶處理器75〇包括有不爲與多個通信協定相關的信號處理 所共用的多個信號處理模組。需脸意的是,圖補單獨的信號 處理模組健是示例,麟齡了畔财錢用的錢處理模 組。上述的信號處理模組也可靴置成以共用方式運行。 ^些獨立模組可共用在圖5_6說明和前面論述的典型模組 520、530、610和650的任何或全部特徵。這些獨立模組可包括執 29 200849874 定時恢復、通道估計、映射、距離修正、脈鱗 、戈域處糊_域處賴組。關顯示,根據多個通作模 S的特_揪,馳功紐_可麵立或軟 體权組中被處理。正域面觸取NA触騎述,根 通信模式的崎’這·組可在通信模式之間共㈣可單獨使用^ 例如和非限制的,騎示的系統使用卷積解碼器信號處理模 組用於柄不·Ζ11。這樣的解調器—般可爲特定通伟式 (例如,觀.⑹處理額外的解碼層,對於不使用額外的解碼^ 的通信模式(例如,_η),可跳過這個額外的解碼層。曰 又例如,8〇2.16信號處麟徑將經過用於執行連續同步和距 離校正的模組,而謝1信號處理路徑將經過用於同步的完全獨 〇的模組。在特定的㈣_2.11#模式純中,ψίΜΑχ可使用 混和ARQ (例如’基於接收包的多個示例的卿),而獅不使 用。在錄的-個方案中,通過物理層(例如,基帶處理器75〇) 的各個信號處理路徑可不同於針對用於WiMAX和娜说A叫處 理的路徑。需要注意的是,在—個可#翻方針,混和網和 ARQ處理池(例如’硬體和/或軟體)可共用各㈣件或子模組 而不是完全社的。例如,執行混和ARQ的錄處理模組也 可用於執行標準的ARQ (例如’沒有使用與混和ARQ處理相關的 附加記憶體)。 基=f處理器750可包括轉比解碼器信號處理模組758,當接 收的物理層仏5虎與第一通信協定有關時,轉比解碼器信號處理 30 200849874 辦比㈣。當接收的物理層信號與第二通 3碼器錄處_組758也如硕於第—方柄第;^式7 ㈣模式對接收的物理層錄操作執行轉比解碼。 維特比解職號處理模組758能以多個方式被執行。丘用的 切2副可以是可變速率解碼器。在執行與不同的通信模 =有關的解碼操作中,共_維特比解碼㈣也能配朗使、 同的度量⑽如,誤錢量)。#相_定 二的維特™可配軸^ =者’細轉比解碼㈣可總是使_通信模 =路徑長錄行其處理。邮,在—些實麵中,會針對對庫 例如和不祕,雜wiMAX和侧柯使用_的普奶 型的卷積碼’但是具有不同的特定參數。共關維槪解碼哭可 以在與移動職AX或響_的不同操作模式下執行維特轉 碼0 前面的例子集中說明了圖7所示的典型基帶處理器75〇的接收 器端(例如,右端)。-般,類似對等部件可在發射電路令共用, 以下將給出非限制的示例。 正如前面論述的關於各個接收器端的信號處理模組,基帶處 理器750的魏端也可吨括乡個錢纽池,所述乡個信號^ 200849874 理模組可不顧於辣通信協定相_信號處理所。需要注 意的是’圖示的單獨的信號處理模組僅僅是示例,並非排除了以 共用方式使_信號處理模組。上述的信號處理模組也可以配置 成以共用方式運行。 例如,系統700 (例如,基帶處理器乃0)可包括獨立的mac 處理器、獨立的RX-TX控制模、組、獨立的黯^服介面模組、 及獨立的幀控制模組等。 基帶處理器75〇可包括共用的符號映射信號處理模組獨,當 接收的物理層信號與第-通信協定有關時,符號映射信號處理模 組760以第-方式通過第i作模式對接收的物理層信號(例如, 通過符號映射器76〇接收的)執行符號映射。當接收的物理層信號 絲二通健定有_’符號映抑也能以不同於第—方式的 第-方式通過第一操作模式對接收的物理層信號操作執行符號映 射。作爲非限制的例子,共用的符號映射器76〇可使用qam和 OFDM符號。舰映射n能針料通鋪式_似的方式映射 QAM符號到FFT。 基·理裔/π可包括共用的可變速率收縮卷積編碼器信號 處理核組762 ’當接收的物理層信號與第一通信協定有關時,可變 速雜縮卷積編碼器信號處理模組泊以第一方式(例如,在收縮 的第、、及)通過操作第_操作模式對接收的物理層信號(例如, k過、、為碼裔762接收的)執行收縮處理。當接收的物理層信號與第 -通仏協疋有關時’收縮卷積編碼器Μ2也能以不同於第一方式的 32 200849874 第二方式(例如,在收縮的第二級)通過操作第二操作模式對接 收的物理層信號操作執行收縮處理。作爲非限制的例子,對於根 據不同2通域式執行健處理,可贿用不_分接的 基帶處理器75〇可包括共用的MIM〇流處理模㈣*,當接收 的物理層信號(例如在臟〇流出來漁764處接幻與第二通传 協^有關時,共用的MM〇流處賴組脱以第一方式通過操㈣ -#作模式執行ΜΙΜΟ流解析、交織、符號映射等。#接收的物 理層^號與第二通信協定有關時,聰〇流處理模娜4也能以不 =於第-方式的第二方式通過操作第二操作模式對接收的物理層 信號操作執行收縮處理。共用_μ〇流處理模組%何使用前面 結^ΜΙΜΟ處理器模組756描述的任意矩陣處理方法(例如,速率 調節、流水線架構、稀疏矩陣载入/處理/卸载等)。 基帶處理器750可包括正打信號處理模組(或引擎)揚,當 接收的物理層信號與第—通健定有_,贿信號處理模組^ V ) 乂第:^式通過知作第一操作模式對接收的物理層信號 G列如,通過IFFT信號處理模組766接收)執行正叮信號處理。 田接收的物理層域與第二通信協定有關時,肺丁信號處理模組 766也能以不同於第—方式的第二方式通過第二操作模式對接收 勺物理層U虎執行IFFT處理。例如和不限於,IFFT引擎遍能以 夕個操作模式來執行,所述多個操作模式與前面描述的與引 擎有關的操作模式相關(例如,與之相反)。 基贡處理為750可包括各種信號處理模組,當接收的物理 33 200849874 層信號與第-通㈣定有_,各錄處理模崩似第—方式通 _作第域喊執彳Tl_Q崎、上採樣、傳輸濾波、升頻變換 等處理。當接收的物理層信號與第二通信協定有關時 ,所述各種 信號處理模組768也能以不同於第—方式的第二方式通過操作第 二操作模式對魏的物理層錢操作執行上述錢處理。例如和 不限於,根據特定通信模式或協定的要求,可對各健號處理模 組观進行編程或選擇(例如’從部件工具箱中選擇)。 基帶處理器750可包括數模轉絲(“dac”)信號處理模 組770 ’當接收的物理層信號與第-通信協定有關時,DAC信號 ^理拉組770通過操作第一操作模式以第一方式對接收的物理層 (例如’通過DAC信號處理模組7鳩收)執行祖處理。 當魏的物理層信號與第二通信協定有關時,DAC信號處理模組 770也月b以不同於第一方式的第二方式通過第二操作模式對接收 的物理層信號操作執行DAC處理。例如和不限於,說77〇能以 ^购倾式操佩行’所财條作類赠秘勒%信號 處理拉組752時的操作模式有關(例如,與之相反)。 本么明的各個方面提供了 __於在通信系財執行物理層 信號處理的方法。崎供了軸典型細流糊。根據本發 明的各個方面,圖8是在通信系統中用於執行物理層處理的方法 800的典型流程圖。例如 W和不限於,所賴各麵财共用前 面骑述的細·的關於各個信號處理模組功能的任何或全 部特徵。 34 200849874 翻方獅何秘任够鑛瑪錢處理餘(例如,硬 -_和/或軟職組)執行。典型方細可通過频電路(例如, 基帶處理器“或射的—部分)來執行。 _ 翻方法獅在步_5_。典财法_獨純行以回應 任何夕個條件。典型方法_可開始執行以喃命令開始、回應到 達輸入埠的信號、周期性的回應時鐘中斷等。 &quot; Γ 在步驟δ1〇 ’典型方式800可包括在第一物理層信號處理模組 接收輸入物理層信號,所述第一物理層錢處理模 物理層信號操作執行第一物理層信號處理操作。步驟_可共用在 圖3說明的典型信號處理模組·的輪入物的功能特徵。步驟 810可包括以任何多種方式接收輪入物理層信號。作爲非限制的方 案’步驟810可包括從另—共用的物理層信號處理模組(例如,以 類似圖4所示方式)或從任何多個獨立物理層信號處理模組(例 如’以類似圖6所示方式)接收輸人物理層信號。 典型方式_可在步驟815包括執行流控制操作。步驟斷判 斷接收的輸入物理層信號是否與第—通信協定有關。步驟奶可共 用在圖3和前面論述說明的典型模式確定模組34〇的功能特徵。 步驟815可包括以多種方式作出靖。步驟奶可包括分析接 收的輸入物理層信號以癌定接收的輸入物理層信號是否與第一通 信協定錢。作射的,步職河包括接收控制信號和至少 部分地通過分析接收的控制信號以確定接收的輸入物理層信號是 否與第一通信協定有關。 35 200849874 根據模式較絲’步坷接紐制典财法動的執行 流程。如果步_5树定所触的輸场理層_鮮—通信協 糊㈣麽步娜將典型細胸隱X執行與 第紅作极式相關的信號處理。或者,如果步驟奶中確定接收的 輸入物理層域與第—通㈣定不侧,職步獅5將典型方法 _的流程轉到步驟825以執行後續的協定確定。 彳 斤八土方法_可在步驟820包括在第一物理層信號處理模組以 第-方式至少部分通過第—操健式操作第—物理層信號處理模 組對接收的輪场麟_進行處理。肖於各錄珊信號處理 模組的操作模式的不限制例子在前面已經介紹。步驟82〇可共用前 面在圖1-7論述的任何物理層信號處理模組的任何或全部功能特 典型方法_可在步驟825包括流程控制操作。步驟825可判斷 接收的輸入物理層信號是否與第二通信協定有關。步驟奶可共用 在圖3說前面論咖典麵料絲崩⑽功能特徵。 步驟825可包括以多種方式作出判斷。步驟a5可包括分析接 收的輸入物理層信號的特徵以確定接收的輸入物理層信號是否與 第二通信協定有關。或者’步驟825可包括接收控制信號和至少部 么地通過分析控制信號以確定接㈣輪人物理層信號是否與第二 通信協定有關。 根據模式較辟’倾825可接雜做财法_的執行 流程。如果步·25中確定接收的輪人物理層舰與第二通信協定 36 200849874 ㈣’麵825謂拥方法__程_麵謂以根據第 • ^倾歧行錄處理。或者,如果娜25树定接收的輪入 紅號鄕_雜財不綱,聰步觀河將典型方法 ‘ __轉顺後的步驟崎行隨後_定核定。 、在=830,典型方法_可包括在第一物理層信號處理模組 ^於第方柄第二方式至少部分通過以不同於第一操作模 Γ.均職轉—_綱細辦嫩的輸入物 理層㈣物驗。用於各錄理層信號處__操作模式的 不限制例子她6_。細g侧树㈣論述的 任何物理層錢處理模組的任何或全部功能特徵。 典型方法m可在步物包括從第一物理層信號處理模組輸 出經處理的物理層信號(例如,輪出到隨後的電路以用於额外的 _層域處理)。步獅可共_3_典型信號處理模 础X)輪料33⑽功能特徵。根據所處理的物理層信號的特定通 H (例如,喃似娜所示的方式),步獅可輪出經處 里的物理層信號到另-共用的物理層信號處賴組(例如以類似 圖4顯不的方式)或到任意不共用的物理層信號處理模組。 典型方法800可包括執行繼續處理的5。所述繼續處理桃可包 =使用隨後的物理層信號處理模組執行額外的物理層信號處理操 、前面論述的框圖包括各個功能塊,其以元件的形式介紹以說 明π楚L力能塊可在硬體、軟_它們敝合巾執行。值得 37 200849874 的子模Γ,硬體和/或軟體^件或模組可共用各個硬體或軟體 的子拉組。在超過一個模組的各個功 嫂从體 的數位信m喷職行。各解元件和==觀明 間(例如’各個信號處理子元件或副程式,如付:塊之 餘式、矩陣操作程式等)共用。除非特卿相 在元件或模組之間的任意範圍。體从體執仃的特徵或通過 另外,本發明的各個方面可在任何多個元件或系統中執行。 #_各_㈣線—姆跑t (娜,基帶處理 1本《賴各個方面可合併在—個電路模組巾,所述電路模 組疋可建立或可插人在另—纽(例如,攜帶型電腦、移動電話 和/或視頻電話、個人數位助理器、攜帶型音樂設備、攜帶型郵件 設備、桌上型電腦等)。本發明的各個方面的範圍不應通過特別 執行或使用而限制。 總之,本發明的各個方面提供一種用於提供物理層信號處理 的系統和方法。所述系統包括物理層信號處理模組,所述物理層 t唬處理模組可被共用以用於使用多個不同通信協定與多個不同 類型的通信網路通信。 【圖式簡單說明】 圖1是本發明ΜΙΜΟ發射器電路的局部框圖; 圖2是本發明ΜΙΜΟ接收器電路的局部框圖; 圖3是本發明通信系統的物理通信層的信號處理模組的示意 38 200849874 圖; 圖4是本發明通信系統的物理通信層的局部示意圖; 圖5是本發明通信系統的物理通信層的局部示意圖; 圖6是本_通㈣統的物理通信層的局部示意圖; 圖7是本發明多模式共用的物理層的示意圖; 圖8是本發明用於在通信系統中執行物理層處理的方法的流 程圖。 【主要元件符號說明】 發射器電路 100 MAC-PHY介面模組 105 Rx_Tx控制模組 110 幀控制模組 115 加擾模組 120 平行轉換模組 125 卷積編碼器模組 130 收縮編碼(puncture) 模組135 串列轉換模組 140 交織模組 145 付號映射器模組 150 快速傅立葉逆變換(“IFFT,, ’)模組 155 迴圈首碼模組 156 1_卩調製模組 165 上採樣模組 170 發射濾波器模組 175 上變頻器模組 180 接收器電路 200 MAC-PHY 介面 205 維特比解碼模組 230 解收縮編碼(depuncturing)模組 235 解交織模組 245 符號解映射模組 250 解調/合併模組 252 解調/均衡模組 254 39 200849874 快速傅立葉變換模組255 時域修正模組 257 頻率修正模組 267 功率計算模組 290 通道估計模組 292 信號處理模組 300 輸入埠 310 輸出琿 330 控制信號埠 350 輸出物理層信號 395 輸入物理層信號 4〇5 第二物理層信號處理模組 第二經處理信號 495 輸入物理層信號 505 物理層信號 512 第二物理層信號處理模組 第一經處理物理層信號 第三物理層信號處理模組 弟一經·處理物理層信號 物理層電路 600 第一物理層信號處理模組 第一經處理物理層信號 迴圈首碼移除模組 256 ΐ-Q解調器 265 下採樣模組 270 增益控制模組 291 載波/定時恢復模組 293 輸入物理層信號 305 物理(PHY)層信號處理模組320 模式確定模組 340 控制信號 355 物理層電路 400 第一物理層信號處理模組 410 420 物理層電路 500 第一物理層信號處理模組 510 物理層信號 514 520 525 530 535 物理層信號 605 610 40 615 650Shared between C (and other generics). The other components, such as the exchange table components, can be shared between the various communication modes. The physical layer 700 may also include various different bandpass filters ("BPF,"), low deep magnification ("LNA"), and power comparison ("pA"), for example, these components may differ between different types. Cong Cong's respective optimal design ^ For example, a single BPF can be combined into a set of selectable arrays of qing. However, if 杲k is implemented, manufactured and/or cost-oriented, then these Sexual modifications (eg, including programmable filter frequency ranges and/or roll-off features) to operate in a plurality of different communication modes. Also for example, in the illustrated example towel 'low % amplifier for each communication mode The difference is that, for example, the corresponding recording requirements of the individual LNAs can be very large, in order to optimize the design of the hunger. The architecture can include an array of optimal leg configurations with an address selectable. In view of implementation, manufacturing, and/or cost considerations, the LNA can be adaptively modified (eg, including programmable amplification and/or sensitivity) to operate in a plurality of different communication modes. The physical layer 700 includes a higher frequency transceiver unit 73. 2χ2 MIM〇Processing 25 200849874 is used for communication according to 8〇2.lln and WiMAX, and can be shared between different communications. In the receiver's fresh, delete _ job single test (or its receiver Partially) may include a pair of receivers. Although at least a portion of the communication band is not shared by the various communication cores, the ugly RF transceiver unit (or module) 73A may be shared (e.g., between communication modes). The bursting unit 730 may also include various circuits or modules that perform down-conversion. The output of the unit 73A may be a Ι/ρ or baseband signal. The inner layer 7〇0 may also include a baseband processor. The baseband processor may share any or all of the features of the exemplary circuits and/or modules discussed in connection with Figures 1-6 and discussed above. The base π processing sub-pair may include any of the various signal processing module configurations illustrated in the figures. Or all: Base: The processor 750 includes an ADC signal processing module. When the received physical layer domain is related to the first pass protocol, the mc signal processing module 2 receives the mode by the ## mode in the first mode. Physical layer signal operation pure line adc For example, when the input physical layer signal is related to the second communication protocol, the ADC signal processing module 752 can also perform ADC processing on the received physical layer domain operation through the second operation mode in a second manner different from the first mode. The shared ADC signal processing module 752 can be implemented in a variety of ways. For example, depending on the specific touch protocol, the viewing group is either ' or 'programmable to achieve different resolutions and / or accuracy and / or convergence characteristics. If necessary, the ADC signal processing module 752 can also perform frequency conversion (example 26 200849874 eg Ι / F to baseband). The base V processor 750 can include an FFT signal processing module (or engine) 754, when the received physical layer signal is related to the first communication protocol, the signal processing module (or engine) 754 marks the received input physical layer (4) through the first operation mode in the first manner. Perform FFT processing. When the received physical layer signals are related to the second communication protocol, the FF signal processing module 754 can also perform the attachment processing through the physical layer signals received by the first mode in a second manner different from the first mode. . FFTb Tiger Processing Module 75 performs multiple points (for example, attached) with signal processing. Typical FFT signal processing module 7S performs 64, 128, 512, 1〇24, and 2048 point FFTs, depending on and Specific communication protocol-related signal processing, such as 64-point and 128-point FFTs for WiFi communication, 128-point and 128+-point FFTs for WiMAX communication. In each typical scenario, different communication modes (or protocols) are also available. Having different W-in-one schemes, such as 8Q21ln, can be performed with a 128-point FFT at 312 kHz. Therefore, the bandwidth of the scheme is 2 〇 or 40 halls. In other schemes, such as mobile In the middle, there may be (3) points (or guilty or leg or outline) FFT. When running at 1〇·9, the frequency range is about 22 shame from about L4. Therefore, the engine 7 can be operated in various operations. Mode operation, such that the specific communication age side listens to the affinity requirement, the FFT engine 754 can perform phase operations with relatively few samples, or perform relatively slow operations with relatively more samples. Sex (4) age-based establishment, including but not limited to流水27 200849874 . Spring operation. A waterline operation package ship - comparative low rate rate coffee unit FFT F;; ^ early 70 'repeated multiple times with class # use, fine spirits lead - sample spirit Qiyang Yang 丨 754 In the use of 夕 种 相 相 信 信 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( The clock rate can be reduced to meet the demand. Or 'sampling, thank you for subsampling to get the point. The baseband processor 750 can include the smart processor module 756, when the received physical "related to the brother-one communication protocol At that time, the processor module 756 performs the trick demodulation and/or equalization signal processing on the received physical layer signals in the first mode through the first mode of operation. When the (4) _ layer money 鄕 触 触 请 请 请 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 Balanced signal processing. The Lan 0 processor she 756 can be executed in a variety of ways. For example, the smart processor module 756 can include an integral parallel block processor for processing a data matrix (2 antennas in this example) arriving from multiple antennas. The processor module 6 can then perform various MIMO# operations, such as equalization operations, associated operations, and the like. To provide sharing between multiple communication modes, the MIMQ processing group 756 can include recording features. For example and without limitation, the processor module 756 can operate at different rates and / 28 200849874 or use matrices of different sizes. The facet processor module 756 can perform smaller matrix operations at a relatively high speed in a pipelined manner, analogous to relatively large matrix operations performed at relatively low speeds. Alternatively, the processor module 756 can process a portion of the large matrix operation at a relatively high speed to provide for smaller matrix operations (e. g., in a sparse matrix implementation). For example, only certain cells, rows, or columns in a larger matrix are processed (eg, 'sparse matrix processing'), and only certain cells, rows, or columns in a larger matrix are loaded with relevant information (eg, sparse matrix loading) In, or only certain cells in the matrix can be used after processing (eg sparse matrix unloading). It should be noted that the sparse matrix processing method can also be used to achieve energy saving. As a non-limiting example, the matrix of 2G48X2_ may include blocks of (2) 56) or 8 blocks of (5) (7), from which a particular __single may be selected. These selected points can be used alone or in conjunction with other points. For example, all points in a particular submatrix can be added, averaged, or filtered. Pipeline or sparse implementations rely on smart shunting and multiplexing techniques to perform stream tree_large_operational word sampling (or sparse processing). The baseband processor 75A includes a plurality of signal processing modules that are not shared by signal processing associated with a plurality of communication protocols. What needs to be noticed is that the image compensation module is a simple example, and the money processing model is used by Lin Ling. The signal processing module described above can also be placed in a common mode. Some of the individual modules may share any or all of the features of the exemplary modules 520, 530, 610, and 650 illustrated in Figures 5-6 and discussed above. These independent modules may include the implementation of timing recovery, channel estimation, mapping, distance correction, pulse scale, and ambiguity group. The off display is processed according to the special 揪 揪 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The positive domain touches the NA touch ride, the root communication mode of the Saki 'this group can be used between the communication modes (4) can be used separately ^ For example and non-restricted, the riding system uses the convolution decoder signal processing module For handles not Ζ11. Such a demodulator can generally be a specific communication layer (e.g., (6) processing an additional decoding layer, which can be skipped for a communication mode (e.g., _n) that does not use additional decoding. For example, the 8〇2.16 signal will pass through the module for performing continuous synchronization and distance correction, and the X1 signal processing path will pass through the completely independent module for synchronization. In the specific (4)_2.11 #模式纯中, ψίΜΑχ can use mixed ARQ (for example, 'based on multiple examples of receiving packets), and the lion does not use. In the recorded scheme, through the physical layer (for example, baseband processor 75〇) The individual signal processing paths may be different from the paths for WiMAX and Na's call processing. It should be noted that in the case of a policy, the hybrid network and the ARQ processing pool (eg 'hardware and/or software') may Sharing each (four) piece or sub-module instead of being fully social. For example, a recording processing module that performs hybrid ARQ can also be used to perform standard ARQ (eg, 'no additional memory associated with mixed ARQ processing is used). The processor 750 can include a turn Compared with the decoder signal processing module 758, when the received physical layer 虎5 is related to the first communication protocol, the ratio decoder signal processing 30 200849874 is compared with (4). When the received physical layer signal and the second pass coder are The record _ group 758 is also as described in the first - square handle; ^ 7 (four) mode performs the conversion ratio decoding on the received physical layer recording operation. The Viterbi release number processing module 758 can be executed in multiple ways. The cut pair 2 may be a variable rate decoder. In performing decoding operations related to different communication modes =, the total _ Viterbi decoding (4) can also be matched with the same metric (10), such as the amount of money. #相_定二的维特TM can be equipped with an axis ^ = 者 'fine turn ratio decoding (four) can always make _ communication mode = path long record line its processing. In the real face, it will be used for the library, for example, and for the secret, the wiMAX and the side use the condensed code of the milk type, but have different specific parameters. The common phase of the decoding can be performed in different operating modes with the mobile AX or ring_0. The previous example shows the receiver end of the typical baseband processor 75A shown in Fig. 7 (for example, the right end) ). In general, similar peer components can be shared in the transmit circuit, and a non-limiting example will be given below. As described above with respect to the signal processing modules of the respective receivers, the Wei end of the baseband processor 750 can also include a township money pool, and the township signal ^200849874 management module can ignore the hot communication protocol phase_signal Processing office. It should be noted that the illustrated separate signal processing module is merely an example and does not preclude the use of a _ signal processing module in a shared manner. The signal processing modules described above can also be configured to operate in a shared manner. For example, system 700 (eg, baseband processor is 0) can include a standalone mac processor, a separate RX-TX control module, a group, a separate interface module, and a separate frame control module. The baseband processor 75A may include a common symbol mapping signal processing module. When the received physical layer signal is related to the first communication protocol, the symbol mapping signal processing module 760 receives the first mode through the ith mode pair. The physical layer signals (e.g., received by symbol mapper 76) perform symbol mapping. When the received physical layer signal has a _' symbol, the symbol mapping can also be performed on the received physical layer signal operation through the first mode of operation in a first mode different from the first mode. As a non-limiting example, the shared symbol mapper 76 can use qam and OFDM symbols. The ship map n can be used to map the QAM symbols to the FFT. The base variable π may include a shared variable rate punctured convolutional encoder signal processing core set 762 'when the received physical layer signal is associated with the first communication protocol, the variable speed convolutional convolutional encoder signal processing module The bouncing process is performed on the received physical layer signal (e.g., k over, received by the code 762) by operating the first mode of operation (e.g., at the contracted, and). The convolutional convolutional encoder Μ2 can also be operated in a second mode (for example, in the second stage of contraction) by a second operation when the received physical layer signal is related to the first-pass protocol. The operational mode performs a contraction process on the received physical layer signal operation. As a non-limiting example, for performing health processing according to different 2-way domains, the baseband processor 75 that can be used without bridging may include a shared MIM trickle processing module (4)* when receiving physical layer signals (eg, When the turbulent turbulent flow out of fishing 764 and the second pass is related to the second pass, the shared MM turbulence is separated from the first way by the operation (four) -# mode to perform turbulence analysis, interleaving, symbol mapping, etc. When the received physical layer number is related to the second communication protocol, the Conglu flow processing mode can also perform the operation of the received physical layer signal by operating the second operation mode in the second mode not in the first mode. Shrink processing. The shared_μ stream processing module % uses any of the matrix processing methods described by the previous processor module 756 (eg, rate adjustment, pipeline architecture, sparse matrix loading/processing/unloading, etc.). The processor 750 may include a signal processing module (or engine) that is being used, and when the received physical layer signal and the first-to-be-established _, the bribe signal processing module ^V) 乂: ^ Operating mode to the received physics The column signal G, signal processing performed bite positive signal processing module 766 receives the IFFT) through. When the physical layer received by the field is related to the second communication protocol, the lung signal processing module 766 can also perform IFFT processing on the receiving scoop physical layer U through the second mode of operation in a second mode different from the first mode. For example and without limitation, the IFFT engine traversal can be performed in an operational mode that is related (e.g., opposite) to the previously described engine related operational modes. The kigong processing for 750 can include various signal processing modules. When receiving the physical 33 200849874 layer signal and the first-pass (four) fixed _, each recording processing module collapses like the first-mode _ as the first domain shouting Tl_Q Saki, Upsampling, transmission filtering, upscaling, etc. When the received physical layer signal is related to the second communication protocol, the various signal processing modules 768 can also perform the above-mentioned money on the physical layer money operation of Wei by operating the second operation mode in a second manner different from the first mode. deal with. For example and without limitation, each of the health care processing modules can be programmed or selected (e.g., &apos; selected from the component toolbox) depending on the particular communication mode or protocol requirements. The baseband processor 750 can include a digital to analog ("dac") signal processing module 770'. When the received physical layer signal is associated with a first communication protocol, the DAC signal pull group 770 operates by operating the first mode of operation. One way performs the ancestor processing on the received physical layer (eg, 'received by the DAC signal processing module 7'). When the physical layer signal of Wei is related to the second communication protocol, the DAC signal processing module 770 also performs DAC processing on the received physical layer signal operation through the second operation mode in a second manner different from the first mode. For example and without limitation, it is said that 77〇 can be used to deal with the operation mode of the pull group 752 (for example, the opposite). Various aspects of the present invention provide a method for performing physical layer signal processing in the communication system. Saki provided a typical fine flow of the shaft. In accordance with various aspects of the present invention, FIG. 8 is an exemplary flow diagram of a method 800 for performing physical layer processing in a communication system. For example, W and are not limited to, any of the features of the respective signal processing module functions that are shared by the front face. 34 200849874 The lion's squad is allowed to perform (for example, hard-_ and/or soft-sector). A typical square can be performed by a frequency circuit (for example, a baseband processor "or a part of a shot". _ Turn the method lion in step _5_. The method of pure money is _ purely in response to any condition. Typical method _ Start execution with a command, respond to a signal arriving at the input port, periodically respond to a clock interrupt, etc. &quot; Γ At step δ1〇'typical mode 800 may include receiving an input physical layer signal at the first physical layer signal processing module, The first physical layer processing mode physical layer signal operation performs a first physical layer signal processing operation. Step _ may share the functional features of the wheeled object of the typical signal processing module illustrated in Figure 3. Step 810 may include Any of a number of ways to receive a round-robin layer signal. As a non-limiting scheme, step 810 may include a signal processing module from another shared physical layer (eg, in a manner similar to that shown in FIG. 4) or from any of a plurality of independent physical layers. The signal processing module (eg, 'in a manner similar to that shown in Figure 6) receives the input physical layer signal. Typical mode - may include performing a flow control operation at step 815. Whether the input physical layer signal is associated with the first communication protocol. The step milk may share the functional features of the exemplary mode determination module 34A illustrated in Figure 3 and discussed above. Step 815 may include making the method in a variety of ways. Analyzing the received input physical layer signal to determine whether the received input physical layer signal is associated with the first communication protocol. The stepping river includes receiving the control signal and at least partially receiving the received control signal to determine the received input. Whether the physical layer signal is related to the first communication agreement. 35 200849874 According to the mode, the execution process of the code is relatively simple. If the step _5 is set to touch the transmission layer _ fresh-communication (4) Mouth Na will perform the signal processing related to the red-type extreme pattern of the typical thin chest hidden X. Or, if the input physical layer and the first-fourth (four) are not determined to be side-by-step, the lion 5 will be typical. The flow of method_going to step 825 is performed to perform subsequent agreement determination. The method of occupant occupant _ may be included in step 820 at least in the first physical layer signal processing module in a first mode The received wheel field lining is processed by the first-physical layer-physical layer signal processing module. An example of the operation of the signal processing module of each recording signal is described above. Step 82 Sharing any or all of the functional specific methods of any of the physical layer signal processing modules discussed above with respect to Figures 1-7 may include flow control operations at step 825. Step 825 may determine whether the received input physical layer signals are in communication with the second communication protocol. The step milk may share the functional features of the prior art crepe fabric (10). The step 825 may include making the determination in a variety of ways. Step a5 may include analyzing the characteristics of the received input physical layer signal to determine the received input physics. Whether the layer signal is associated with the second communication protocol. Or 'step 825 can include receiving the control signal and at least partially analyzing the control signal to determine if the fourth (round) human physical layer signal is associated with the second communication protocol. According to the model, the execution process of the 225 can be used to make money. If it is determined in step 25, the physical carrier of the wheel and the second communication agreement are determined. The method of processing is based on the following. Or, if Na 25 is set to receive the red number 鄕 _ miscellaneous wealth, the Congbu Guanhe will be the typical method _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ At 830, the typical method _ may be included in the first physical layer signal processing module ^ in the second handle, the second mode at least partially passes the input different from the first operation mode. Physical layer (4) physical examination. For the non-limiting example of the __ operating mode at each recording layer signal, she is 6_. Any or all of the functional features of any physical layer processing module discussed in the fine g side tree (4). A typical method m can include outputting a processed physical layer signal from a first physical layer signal processing module (e.g., round to subsequent circuitry for additional _ layer domain processing). The lion can have a total of _3_ typical signal processing module X) the characteristics of the wheel 33 (10). Depending on the specific pass H of the processed physical layer signal (for example, in the manner shown by 喃娜娜), the lion can turn the physical layer signal in the middle to the other shared physical layer signal (for example, similar) Figure 4 shows the way) or to any physical layer signal processing module that is not shared. The exemplary method 800 can include performing 5 to continue processing. The continuation processing of the peach package = use of the subsequent physical layer signal processing module to perform additional physical layer signal processing operations, the block diagram discussed above includes various functional blocks, which are presented in the form of components to illustrate the π 楚 L force block Can be performed in hardware, soft _ they are combined. It is worthy of the sub-models of the 2008 2008874, hardware and / or software components or modules can share the sub-pull group of each hardware or software. In each of the more than one module, the digital signal m is sprayed from the body. Each solution element and == view (e.g., 'each signal processing sub-element or sub-program, such as a sub-block, a matrix operation program, etc.) are shared. Unless the Secretary is in any range between components or modules. </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; #_个_(四)线—M Run t (Na, baseband processing 1) “All aspects can be combined in a circuit module towel, the circuit module can be built or can be inserted in another – (for example, Portable computers, mobile and/or video phones, personal digital assistants, portable music devices, portable mail devices, desktop computers, etc. The scope of the various aspects of the invention should not be limited by special execution or use. In summary, various aspects of the present invention provide a system and method for providing physical layer signal processing. The system includes a physical layer signal processing module, and the physical layer t唬 processing module can be shared for use. A different communication protocol communicates with a plurality of different types of communication networks. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial block diagram of a ΜΙΜΟ transmitter circuit of the present invention; FIG. 2 is a partial block diagram of a ΜΙΜΟ receiver circuit of the present invention; 3 is a schematic diagram of a signal processing module of the physical communication layer of the communication system of the present invention; 200849874; FIG. 4 is a partial schematic diagram of a physical communication layer of the communication system of the present invention; FIG. FIG. 6 is a partial schematic diagram of a physical communication layer of the present invention; FIG. 7 is a schematic diagram of a physical layer shared by the multi-mode of the present invention; FIG. 8 is a schematic diagram of the present invention for use in a communication system Flowchart of the method for performing physical layer processing. [Main component symbol description] Transmitter circuit 100 MAC-PHY interface module 105 Rx_Tx control module 110 Frame control module 115 Scrambling module 120 Parallel conversion module 125 Convolution Encoder module 130 puncture module 135 serial conversion module 140 interleave module 145 pay mapper module 150 fast Fourier transform ("IFFT,, ') module 155 loop first code module 156 1_卩Modulation Module 165 Upsampling Module 170 Transmitter Filter Module 175 Upconverter Module 180 Receiver Circuit 200 MAC-PHY Interface 205 Viterbi Decoding Module 230 Depuncturing Module 235 Solution Interleaving Module 245 Symbol Demapping Module 250 Demodulation/Combination Module 252 Demodulation/Equalization Module 254 39 200849874 Fast Fourier Transform Module 255 Time Domain Correction Module 257 Frequency Correction Module 267 Power Calculation Module 290 Channel Estimation Module 292 Signal Processing Module 300 Input 埠 310 Output 珲 330 Control Signal 埠 350 Output Physical Layer Signal 395 Input Physical Layer Signal 4 〇 5 Second Physical Layer Signal Processing Module Group second processed signal 495 input physical layer signal 505 physical layer signal 512 second physical layer signal processing module first processed physical layer signal third physical layer signal processing module first processed magnetic layer signal physical layer circuit 600 The first physical layer signal processing module first processed physical layer signal loop first code removal module 256 ΐ-Q demodulator 265 down sampling module 270 gain control module 291 carrier / timing recovery module 293 input physics Layer signal 305 physical (PHY) layer signal processing module 320 mode determination module 340 control signal 355 physical layer circuit 400 first physical layer signal processing module 410 420 physical layer circuit 500 first physical layer signal processing module 510 physical layer Signal 514 520 525 530 535 physical layer signal 605 610 40 615 650

200849874 物理層信號 645 第二物理層信號處理模組 第一經處理物理層信號 655 第三物理層信號處理模組 690 第二經處理信號 695 物理層 射頻(RF)交換工作臺部件 710 多輸入多輪出(ΜΙΜΟ)射頻收發單元 73〇 基帶處理器 750 模數位轉換器(ADC)信號處理模組 /52 快速傅立葉變換(FFT)信號處理模組(或引擎)乃4 多輸入多輸出(ΜΙΜΟ)處理器模組 756 維特比解碼器信號處理模組 758 符號映射信號處理模組 760 可變速率收縮卷積編碼器信號處理模組 762 共用的ΜΙΜΟ流處理模組 764 快速傅立葉逆變換(IFFT)信號處理模組(或弓丨擎 各信號處理模組 768 766 數模轉換器(DAC)信號處理模組 77〇 41200849874 physical layer signal 645 second physical layer signal processing module first processed physical layer signal 655 third physical layer signal processing module 690 second processed signal 695 physical layer radio frequency (RF) exchange workbench component 710 multiple input multiple Round-out (ΜΙΜΟ) RF Transceiver Unit 73 〇 Baseband Processor 750 Analog-to-Digital Converter (ADC) Signal Processing Module / 52 Fast Fourier Transform (FFT) Signal Processing Module (or Engine) is 4 Multiple Input Multiple Output (ΜΙΜΟ) Processor Module 756 Viterbi Decoder Signal Processing Module 758 Symbol Mapping Signal Processing Module 760 Variable Rate Shrink Convolution Encoder Signal Processing Module 762 Common Turbulence Processing Module 764 Fast Fourier Transform (IFFT) Signal Processing module (or 丨 各 signal processing module 768 766 digital-to-analog converter (DAC) signal processing module 77〇41

Claims (1)

200849874 十、申請專利範圍·· 物層::電路,其特徵在於’所述 紅嫩減:崎物理層信 接收輸入物理層信號; ,果接收的輸人物理層錢與第—通信協定有關,那麽以 :―,式對接收的輪入物理層信號執行物理層信細^ 声作第—縣模式和對與第—通信龄有關的物理 ^錄仃物理聽號處理操作有闕;並輸出經處理的物靜 如果接收的輸入物理層信號與不同於第一通信協定的第二 通信協財關,麵料二操_式對魏_人_層信號 t物理層錢處雜作,其巾,所述第二操侧式不同於第 域拉式’所述第二操作模式和對與第二通信協定有關的物 理層信號執行物理層信號處_作有關;並輸出經處理的物理 層信號。 2、 如申請專利範圍第丨項所述的物理層信號處理電路,其中,所述 物理層信號處理模組包括接收控制信號的控制輸入,其中,所 速控制信號指示出所述物理層信號處理模組處理輸人物理層信 號的操作模式。 3、 如申請專利範圍第1項所述的物理層信號處理電路,其中,所述 42 200849874 =輕號處理電路進-步包括:以第—方式對從物 =嫩峨规账物糊爾理操作篆 ^層信號處理池;和社於第二物理層錄處理模組的第 =層罐獅,㈣^_賴雜組以不同 =方式的弟一方式對從物理層信號處理模組接收的信號主 要執行第二物理層信號處理操作。 Γ 執」一战%路進步包括:以第一方式對輸入信號主要 :弟4理層錢處_健輪出、__信號給物理層信 拉組的弟二物理層信號處理模組;和獨立於第二物理層 f處理模組的第三物理層錄處理模組,所述第三物理坪 號處理模触网料—方柄第二方 第二物理層信F虚理柄你、,认, L號主要執订 7&quot;乍亚輸出經處理的信號給物理層信號處 埋核組。 5、如申鞠mmi項所述的物理層信號處理電路,其中 ^層信號處理電路還包括與物理層信號處理模組通信連接的 夕=多輸出射頻收發模組,所述多輸入多輸出射頻收發模組 二二4協疋以第一無作模式對接收的輸入物理層信號執 订夕輪入多輸出軸處理,並根據第二通信協定以第二操作模 式、皆接收的輪人物理層信號執行多輸人多輸出射頻處理。 .如申請專利範圍m項所述的物理層信號處理電路,其中, 物理層信號處理模組包括快賴立葉_擎,所述快速傅立 43 200849874 葉變換引擎根獅-通信龄以第—方式在第—操作模式下對 接,的輪入物理層信號執行快速傅立葉變換處理,並根據第二 通域定以第二方式在第二操作模式下對接收的輪入物理層信 號執行快速傅立葉變換處理。 7、如申請專利範圍第!項所述的物理層信號處理電路,^,所、求 物理層信號處理模組包括多輸人多輸出處·,所述多輸入Z 輸出處理器根據第-通信協定以第一方式在第—操作模式下對 接收的輸入物理層信號執行多輸入多輪出解調和/或均衡广 理’並根據第二通信協定以第二方式在第二操作模式下^妾收 的輸入物理層信號執行多輪入多輸出解調和/或均衡處理。 8、-·通信系統的物理層信號處理電路中對物理層信號執行物 理層^號處理的方法,其特徵在於,所述方法包括: 在第一物理層處理模組接收輪入物理層信號,所述物理層 信號處賴組主要對輸入物理層信號執行第一物理層信號處理 操作; 如果接收的輸入物理層信號與第一通信協定有關,那麼在 第-信號處理模組内至少部分地通過執行第—操作模式來以第 一方式對接收的輸入物理層信號進行處理; 如果接收的輸入物理層信號與不同於第一通信協定的第二 通信協定有關,那麼在第一物理層信號處理模組内至少部分地 通過傭不同於第-操倾式的第二操作模絲叫同於第一 方式的第二方式對接收的物理層信號進行處理;以及 44 200849874 鄕-物理層魏處理__經處伸。 9、如申請專利範圍第8項所述的方法,复 、、層H 至少部分地通過分析接收的輪入物理層^進步包括 物理層信號是否與第一通信協定有闕。3 疋接收的輸入 ㈣=:r崎如亀找-步- _=;::=_確〜 45200849874 X. Patent application scope · · Object layer:: Circuit, which is characterized by 'the red and tender reduction: the physical layer of the Suzuki receives the input physical layer signal; and the input physical layer money received by the fruit is related to the first communication protocol. Then, by using: -, the implementation of the physical layer signal of the received physical layer signal is used as the first-county mode and the physical listening operation related to the first communication age is 阙; The processed object is static if the received input physical layer signal is different from the second communication protocol of the first communication protocol, and the second mode of the fabric is _ _ _ _ _ layer signal t physical layer money miscellaneous, its towel, The second operating side is different from the second pull mode of the second operating mode and performs a physical layer signal on the physical layer signal associated with the second communication protocol; and outputs the processed physical layer signal. 2. The physical layer signal processing circuit of claim 2, wherein the physical layer signal processing module comprises a control input for receiving a control signal, wherein the speed control signal indicates the physical layer signal processing The module processes the mode of operation of the input physical layer signal. 3. The physical layer signal processing circuit according to claim 1, wherein the 42 200849874=light number processing circuit further comprises: in the first way, the slave object Operation layer 信号 layer signal processing pool; and the second layer of the physics layer recording processing module of the second layer of tank lion, (four) ^ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The signal primarily performs a second physical layer signal processing operation. Γ 」 一 一 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % The third physical layer recording processing module is independent of the second physical layer f processing module, and the third physical ping number processing mode touches the net material - the second physical layer of the square handle and the second physical layer letter F handles you, It is recognized that the L number mainly orders 7&quot; 乍 输出 output processed signal to the physical layer signal at the buried core group. 5. The physical layer signal processing circuit according to the application of the 鞠mmi item, wherein the layer signal processing circuit further comprises an eve=multiple output radio frequency transceiver module communicably connected with the physical layer signal processing module, the multi-input multi-output radio frequency The transceiver module 22 cooperates with the received input physical layer signal in the first no-mode to perform the multi-output axis processing, and receives the physical layer of the wheel in the second operation mode according to the second communication protocol. The signal performs multiple input and multiple output RF processing. The physical layer signal processing circuit according to the application scope of the patent item m, wherein the physical layer signal processing module comprises a fast reliance leaf _ qing, the fast fuli 43 200849874 leaf transformation engine root lion - communication age by the first mode Performing fast Fourier transform processing on the wheeled physical layer signal in the first operation mode, and performing fast Fourier transform processing on the received rounded physical layer signal in the second mode according to the second pass mode in the second mode. . 7, such as the scope of patent application! The physical layer signal processing circuit described in the item, the physical layer signal processing module includes a multi-input multi-output, and the multi-input Z-output processor is in the first manner according to the first communication protocol. Performing multiple input multiple rounds of demodulation and/or equalization in the operating mode on the received input physical layer signal and performing multiple input physical layer signals in the second mode in the second mode according to the second communication protocol Multi-output demodulation and/or equalization processing is carried out. 8. The method of performing physical layer processing on a physical layer signal in a physical layer signal processing circuit of a communication system, wherein the method comprises: receiving a physical layer signal in a first physical layer processing module, The physical layer signal processing group mainly performs a first physical layer signal processing operation on the input physical layer signal; if the received input physical layer signal is related to the first communication protocol, at least partially passes through the first signal processing module Performing a first mode of operation to process the received input physical layer signal in a first manner; if the received input physical layer signal is related to a second communication protocol different from the first communication protocol, then processing the signal at the first physical layer The received physical layer signal is processed at least partially by a second operation die different from the first-operating mode, and the second mode is the same as the first mode; and 44 200849874 鄕-physical layer processing __ Stretched through. 9. The method of claim 8, wherein the layer H is at least partially analyzed by the received wheeled physical layer to include whether the physical layer signal is ambiguous with the first communication protocol. 3 疋 Received input (4) =: r 崎 亀 find -step - _=;::=_ § ~ 45
TW097103085A 2007-01-30 2008-01-28 Multi-network shared phy layer TWI407716B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88722807P 2007-01-30 2007-01-30
US11/829,276 US8149867B2 (en) 2007-01-30 2007-07-27 Multi-network shared PHY layer

Publications (2)

Publication Number Publication Date
TW200849874A true TW200849874A (en) 2008-12-16
TWI407716B TWI407716B (en) 2013-09-01

Family

ID=39345156

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097103085A TWI407716B (en) 2007-01-30 2008-01-28 Multi-network shared phy layer

Country Status (6)

Country Link
US (2) US8149867B2 (en)
EP (1) EP1953929A2 (en)
KR (1) KR100922303B1 (en)
CN (1) CN101257507B (en)
HK (1) HK1124454A1 (en)
TW (1) TWI407716B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090154612A1 (en) * 2007-12-12 2009-06-18 Ahmadreza Rofougaran Method and system for dynamic filtering and data conversion resolution adjustments in a receiver
MY146401A (en) * 2008-09-09 2012-08-15 Mimos Berhad A base station for wireless mesh network
US8700764B2 (en) * 2009-09-28 2014-04-15 International Business Machines Corporation Routing incoming messages at a blade chassis
CN102045795B (en) 2009-10-15 2015-05-06 华为技术有限公司 Method and device for acquiring information from target base station
CN101860496A (en) * 2010-05-25 2010-10-13 无锡德思普科技有限公司 Baseband processor based on baseband reconstruction and processing share and communication method thereof
DE112010006039T5 (en) * 2010-12-01 2013-12-05 Zte (Usa) Inc. A system and method for improving receiver sensitivity of a DD-OFDM system without using a security frequency band
US20130100949A1 (en) * 2011-10-25 2013-04-25 Qualcomm Incorporated Dual physical layer transceivers for high speed synchronous interface (hsi) frame interleaving
GB2509151B (en) * 2012-12-21 2016-07-20 Canon Kk Communication devices in a communication network and methods for processing data in such devices
WO2015180132A1 (en) * 2014-05-30 2015-12-03 华为技术有限公司 Network protocol configuration method and device
US9720866B2 (en) * 2014-09-11 2017-08-01 Kabushiki Kaisha Toshiba Interface circuit executing protocol control in compliance with first and second interface standards
US10084483B2 (en) 2015-08-05 2018-09-25 Microsoft Technology Licensing, Llc Interleaving information for media data
BR112018072666A2 (en) * 2016-05-04 2019-02-19 Huawei Tech Co Ltd data processing method and apparatus
CN114846766B (en) * 2019-12-31 2023-09-22 华为技术有限公司 Baseband radio frequency interface, communication system and signal receiving method

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7015800B2 (en) * 1995-11-09 2006-03-21 Vehicle Enhancement Systems Inc. System, apparatus and methods for data communication between vehicle and remote data communication terminal, between portions of vehicle and other portions of vehicle, between two or more vehicles, and between vehicle and communications network
US7449993B2 (en) * 1995-11-09 2008-11-11 Vehicle Enhancement Systems, Inc. System, apparatus and methods for data communication between vehicle and remote data communication terminal, between portions of vehicle and other portions of vehicle, between two or more vehicles, and between vehicle and communications network
EP1107477B1 (en) * 1999-12-01 2009-09-30 Alcatel Canada Inc. Physical layer interface system and method for a wireless communication system
EP1316170A2 (en) * 2000-06-07 2003-06-04 Conexant Systems, Inc. Method and apparatus for medium access control in powerline communication network systems
US6895255B1 (en) 2000-10-20 2005-05-17 Symbol Technologies, Inc. Dual mode wireless data communications
US7035932B1 (en) * 2000-10-27 2006-04-25 Eric Morgan Dowling Federated multiprotocol communication
US20020184208A1 (en) * 2001-04-24 2002-12-05 Saul Kato System and method for dynamically generating content on a portable computing device
US7032045B2 (en) * 2001-09-18 2006-04-18 Invensys Systems, Inc. Multi-protocol bus device
US20030123417A1 (en) * 2001-12-31 2003-07-03 Bysted Tommy Kristensen Modulation-dependant transport channel configuration
US7133416B1 (en) * 2002-03-05 2006-11-07 Mcdata Corporation Converting data signals in a multiple communication protocol system area network
CN100576772C (en) * 2002-12-27 2009-12-30 Nxp股份有限公司 Portable terminal and method thereof with smart antenna
US7327700B2 (en) * 2003-05-30 2008-02-05 Redpine Signals, Inc. Flexible multi-channel multi-thread media access controller and physical layer interface for wireless networks
US8577379B2 (en) * 2003-09-25 2013-11-05 Qualcomm Incorporated Method of handling automatic call origination and system determination on multi-network mobile devices
US8149952B2 (en) * 2003-10-29 2012-04-03 Skyworks Solutions, Inc. Multi-mode receiver
EP1702448B1 (en) * 2003-12-05 2008-06-11 Telefonaktiebolaget LM Ericsson (publ) A method and apparatus for establishing a communication session between two terminals
JP4005974B2 (en) * 2004-01-09 2007-11-14 株式会社東芝 COMMUNICATION DEVICE, COMMUNICATION METHOD, AND COMMUNICATION SYSTEM
US20050157823A1 (en) * 2004-01-20 2005-07-21 Raghavan Sudhakar Technique for improving viterbi decoder performance
US7440764B2 (en) * 2004-02-12 2008-10-21 Motorola, Inc. Method and apparatus for improving throughput in a wireless local area network
US7190974B2 (en) * 2004-03-26 2007-03-13 Broadcom Corporation Shared antenna control
JPWO2005119969A1 (en) * 2004-06-02 2008-04-03 松下電器産業株式会社 Wireless transmission method
EP1610480A1 (en) * 2004-06-25 2005-12-28 Mitsubishi Electric Information Technology Center Europe B.V. Device and method of dynamically assigning subgroups of spreading sequences
US8290498B2 (en) * 2004-07-28 2012-10-16 Broadcom Corporation Mobile handoff through multi-network simulcasting
US7574594B2 (en) * 2005-02-23 2009-08-11 Dell Products Lp Network authentication based on inter-packet gap characteristics
US20090327546A1 (en) * 2005-03-03 2009-12-31 Gaby Guri System for and method of hand-off between different communication standards
DE602006009097D1 (en) * 2005-05-12 2009-10-22 Koninkl Philips Electronics Nv METHOD FOR MULTI-CHANNEL RESERVATION IN A WIRELESS MESH NETWORK
US20070071006A1 (en) * 2005-09-26 2007-03-29 Peter Bosch Delivery of communications services in developing regions
CN1753535A (en) * 2005-11-10 2006-03-29 国家数字交换系统工程技术研究中心技术产品产业化推广基地 Bimode bireadiness cell phone of PHS and GSM or PHS and CDMA and its combination method
US20070147486A1 (en) * 2005-12-28 2007-06-28 Wavesat Signal processing within a wireless modem
US20070147425A1 (en) * 2005-12-28 2007-06-28 Wavesat Wireless modem
US7636345B2 (en) * 2006-02-01 2009-12-22 Comsys Communication & Signal Processing Ltd. Apparatus for and method of time related communications between multiple devices having different time bases
US7567820B2 (en) * 2006-02-09 2009-07-28 Altair Semiconductor Ltd. Scanning for network connnections with variable scan rate
JP5104309B2 (en) * 2006-02-10 2012-12-19 パナソニック株式会社 Surveillance camera system
US7545753B2 (en) * 2006-04-28 2009-06-09 Nokia Corporation System, method and computer program product for providing quality of service during remote access to a plug-and-play network
WO2008067685A1 (en) * 2006-12-04 2008-06-12 Zte Corporation A wireless communication apparatus and the configuration method thereof

Also Published As

Publication number Publication date
US20080181249A1 (en) 2008-07-31
US8149867B2 (en) 2012-04-03
US8705564B2 (en) 2014-04-22
CN101257507A (en) 2008-09-03
EP1953929A2 (en) 2008-08-06
HK1124454A1 (en) 2009-07-10
KR20080071506A (en) 2008-08-04
CN101257507B (en) 2013-11-13
US20120182955A1 (en) 2012-07-19
KR100922303B1 (en) 2009-10-21
TWI407716B (en) 2013-09-01

Similar Documents

Publication Publication Date Title
TW200849874A (en) Multi-network shared PHY layer
TWI301710B (en) Asymmetrical mimo wireless communications
Hanzo et al. MIMO-OFDM for LTE, WiFi and WiMAX: Coherent versus non-coherent and cooperative turbo transceivers
EP2485409B1 (en) Antenna selection and training using a spatial spreading matrix for use in a wireless mimo communication system
TWI271064B (en) Method of transmitting high rate data within a MIMO WLAN and a transmitter using the method
TWI356609B (en) Apparatus and method of error vector measurement f
TWI338480B (en) A reconfigurable orthogonal frequency division multiplexing (ofdm) chip supporting single weight diversity
TWI262731B (en) Multiple input multiple output wireless local area network communications
TW200838232A (en) Frequency domain equalizer with one dominate interference cancellation for dual antenna radio
TW200537838A (en) Receiver and receiving method, and communication system and communication device
TW201038030A (en) Method and apparatus for implementing space time processing with unequal modulation and coding schemes
TW201012090A (en) Training sequences for very high throughput wireless communication
Zhang et al. Applying antenna selection in WLANs for achieving broadband multimedia communications
TW201108845A (en) Uplink SDMA pilot estimation
CN108430040A (en) Federated user is grouped with power distribution method and uses the base station of the method
CN103748848B (en) The devices, systems, and methods of processing single-carrier wireless communication signals
Chung et al. Prototype implementation of adaptive beamforming‐MIMO OFDMA system based on IEEE 802.16 e WMAN standard and its experimental results
Fettweis et al. WIGWAM: System concept development for 1 Gbit/s air interface
TW200849872A (en) Multi-mode receiver with adaptive mode selection
Luo et al. Preamble based joint CFO, frequency-selective I/Q-imbalance and channel estimation and compensation in MIMO OFDM systems
Chen et al. A real time 4× 4 MIMO-OFDM SDR for wireless networking research
TWI305451B (en) Mimo receiver,method for receiving signals,and computer readable program code
Sun et al. A multiple sub-carrier selection (MSCS) diversity architecture with reduced receiver complexity for wireless OFDM applications
Aghababaeetafreshi Software Defined Radio Solutions for Wireless Communications Systems
Fechtel OFDM: From the Idea to Implementation

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees