TW200847914A - Micro-tube/multi-port counter flow radiator design for electronic cooling applications - Google Patents

Micro-tube/multi-port counter flow radiator design for electronic cooling applications Download PDF

Info

Publication number
TW200847914A
TW200847914A TW097116344A TW97116344A TW200847914A TW 200847914 A TW200847914 A TW 200847914A TW 097116344 A TW097116344 A TW 097116344A TW 97116344 A TW97116344 A TW 97116344A TW 200847914 A TW200847914 A TW 200847914A
Authority
TW
Taiwan
Prior art keywords
fluid
cooling
core
air heat
heat exchanger
Prior art date
Application number
TW097116344A
Other languages
Chinese (zh)
Inventor
James Hom
Girish Upadhya
Peng Zhou
Paul Tsao
Frederic Landry
Original Assignee
Cooligy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cooligy Inc filed Critical Cooligy Inc
Publication of TW200847914A publication Critical patent/TW200847914A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other

Abstract

A counter flow radiator includes multiple layered cooling cores configured in series along a first direction that is the same as the direction of airflow used to cool fluid flowing through the counter flow radiator. Heated fluid inputs the counter flow radiator at a first end and flows through each cooling core in a serpentine-like path to the second end of the counter flow radiator, effectively progressing in a direction opposite that of the airflow.

Description

200847914 九、發明說明: 【相關申請案】 月主張以35 u.s.c.119(e)為基礎之於_年‘ U 請之關臨時專利申請案序號瞻7 424為 子冷卻翻之微管7料逆_器殺200847914 IX. Invention description: [Related application] The monthly claim is based on 35 usc119(e) in _year' U Please close the temporary patent application serial number 7 424 for the sub-cooling turn the micro tube 7 material inverse _ Kill

器設計,,在此細权做參考咖之_埠逆流輕射 【發明所屬之技術領域】 置,且特別有關用 本發明大致有關熱產生裝置冷卻裝 於流體冷卻應用的流體-空氣熱交換器。 【先前技術】 =散齡卻高效能频電路在電子冷卻領域中係為 ,員者4戰傳統以熱官及裝設風扇散熱片冷卻,係不足以 應付漸增瓦數需求的冷卻晶片。 冷卻電子裝肋之積體電路的特㈣題,係相同尺寸 或較小底_崎更乡及更有力龍電路。#發展各具有 熱產生電晶體漸增密度的更有力積體電_, 產=熱持續增加。再者,㈣圖處理料,微處理器, ^夕曰曰片、、且的怨來愈多積體電路,係被添加至如電子伺服 為及個人電腦的電子裝置。再者,更有力及更多積體電路, 係被,^至相同或較小尺寸底盤,藉此增加這些裝置所產 生”每單7^熱量。該配置巾,傳統紐提供其内有限大小 以提供充分冷卻解。傳統上,係使用散熱片及將空氣吹在 5 200847914 忒散熱片上之一大型風扇,或僅藉由將空氣直接吹在包含 該積體電路的電路板上來冷卻積體電路。然而,考慮裴置 底盤内的有限自由空間,可用來冷卻積體電路的空氣量, 及如散熱片及風扇的傳統冷卻設備可用空間係受到限制。 封閉迴路流體冷卻係為傳統冷卻解的替代方法。封閉 迴路流體冷卻解較空氣冷卻解更有效放熱。封閉冷卻迴^ • '系統包含用來接收來自一熱源的—冷板,以風扇冷卻放熱 的一輻射器,及驅動流體通過該封閉迴路的一泵。各組^ 設計通常很複雜,且需詳細分析及特定應用最適化。° ''' 第1圖說明配置-方向流體流動的一第一傳統輕射器 2。輻射器2配置-流體輸人標頭1G,—流體輸出標頭^ 受熱流體流過的一組平行流體通道14,及一組熱耦合至該 組流體通道14的冷卻散熱片16。受熱流體進人流體輸入 標頭10,並流入流體通道14。流體通道14及冷卻散熱片 _ 16係由鋪導物質製成,明強舰流财體通道14的 流體轉移至冷卻散熱片W。冷卻散熱片暴露在氣流中 以便冷卻。該氣流係於與流騎體通道14之讀流動方向 垂直的一方向中提供。此配置中,各流體通道14均暴露在 相同溫度氣流中。當各流體通道14中的流體溫度相同時, 與各流體輕Η交錯的空氣溫度係姻,該流體溫度及該 空氣溫度之_溫麵對各紐通道Μ均相同。被冷卻流 體從流體通道14流至流體輪轉頭12及離開輻射器2。 第2圖說明配置兩方向流體流的—第二傳統轄射器 4。輻射器4配置-第一㈣標頭2〇 ’一第二流體標頭22, 6 200847914 2=且1行流體通道24,—第二組平行流體通道25,及 Α卻;Ϊ :至第24及第二組流體通道25的 =放熱>i 26。第-組趙通道24觸二組流體通道% 2。讀流舰人第-流體铜2G並“第—組流體通 ^流體標頭2G包含—分配器28,配置防止輸入 二^的流體’經由第—流體標㈣進入第The design of the device, in this context, is particularly relevant to the use of the present invention in relation to the heat generating device for cooling fluid-air heat exchangers for fluid cooling applications. . [Prior Art] = High-efficiency energy-frequency circuits in the field of electronic cooling are used in the field of electronic cooling. The four-war tradition is cooled by hot officials and fan cooling fins. It is not enough to cope with the increasing wattage requirements of cooling wafers. The special (4) questions for cooling the integrated circuit of the electronic ribs are the same size or smaller base _ Saki and other powerful dragon circuits. # Develop a more powerful integrated body with a growing density of heat-generating transistors _, production = heat continues to increase. Furthermore, (4) the processing materials, the microprocessor, the 曰曰 曰曰 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Furthermore, more powerful and more integrated circuits are tied to the same or smaller size chassis, thereby increasing the amount of heat generated by these devices. The configuration towel, the traditional button provides a limited size within it. A sufficient cooling solution is provided. Traditionally, a heat sink and a large fan that blows air onto the 5 200847914 heat sink are used, or the integrated circuit is cooled only by blowing air directly onto the circuit board containing the integrated circuit. However, considering the limited free space in the chassis, the amount of air available to cool the integrated circuit, and the space available for conventional cooling equipment such as heat sinks and fans are limited. Closed loop fluid cooling is an alternative to traditional cooling solutions. The closed loop fluid cooling solution is more efficient than the air cooling solution. The closed cooling back ^ • 'the system includes a cold plate for receiving a heat source, a radiator for cooling the heat by the fan, and driving the fluid through the closed loop. One pump. Each group ^ design is usually very complex and requires detailed analysis and optimization of the specific application. ° ''' Figure 1 illustrates the configuration - direction of fluid flow The first conventional light ejector 2. The radiator 2 is configured - a fluid input header 1G, a fluid output header ^ a set of parallel fluid passages 14 through which the heated fluid flows, and a set of thermal couplings to the set of fluid passages 14 The heat sink 16 is cooled. The heated fluid enters the fluid input head 10 and flows into the fluid passage 14. The fluid passage 14 and the cooling fins 16 are made of a paving material, and the fluid of the Mingqiang ship flow channel 14 is transferred to Cooling fins W. The cooling fins are exposed to the airflow for cooling. The airflow is provided in a direction perpendicular to the read flow direction of the flow body channel 14. In this configuration, each fluid channel 14 is exposed to the same temperature airflow. When the fluid temperatures in the fluid passages 14 are the same, the temperature of the air that is lightly interlaced with each fluid is married, and the temperature of the fluid and the temperature of the air are the same for each neon channel. The fluid to be cooled is from the fluid. The passage 14 flows to the fluid head 12 and leaves the radiator 2. Figure 2 illustrates a second conventional modulator 4 that configures the flow of the two directions. The radiator 4 is configured - the first (four) header 2 〇 'one second Fluid Header 22, 6 200847914 2 = and 1 row of fluid passages 24, - a second set of parallel fluid passages 25, and Α;; Ϊ: to the 24th and 2nd sets of fluid passages 25 = heat release > i 26. The first group of Zhao channels 24 touch two Group fluid channel % 2. Read the shipman's first-fluid copper 2G and "the first group of fluids through the fluid header 2G contains - the distributor 28, configured to prevent the input of the fluid" through the first fluid (four) into the first

工=Γ25。流體通道24及冷卻散熱U係由熱傳 =f成,以增強來自流過流體通道24的熱轉移至冷卻 政熱片26。冷卻散熱片26暴露在氣流中以便冷卻。受冷 部流體係從越通道24 _至第二流體铜22,且被導 ^體通道25。流體通道25係由熱傳導物質製成,以增 強來自流過_触25_轉敍冷卻賴片%。再者, 雙冷卻,體係從流體通道25流動至第—流體標頭2〇並離 開輪射器4。分配器28可防止離開流體通道2 循環進入流體通道24。 於第一傳統輻射器2中,係以與流體流過流體通道 24,25之流動方向垂直的一方向提供氣流至第二傳統輻射 器4。此配置中,各流體通道24,25係暴露在相同溫度氣 流中。然而,流過流體通道25的流體係較流過流體通道 24的流體為冷。因為與各流體通道24,25交錯的氣流空 氣溫度相同,所以該氣流及流過第一組流體通道24的流體 之間及該氣流及流過第二組流體通道25的流體之間存在 較大溫差。因此,輻射器4冷卻效率係非均勻。 該輻射器效能係視該冷卻散熱片上的氣流速率,流過 7 200847914 該流體通道的流體流速,該冷卻散熱片上的表面積,及空 氣及流體之間溫差而定。 所需為冷卻電子裝置内之積體電路的更有效冷卻方 法。亦需增加一給定空間限制内冷卻效能的一冷卻方法。 【發明内容】 逆流輻射器係為氣冷,且可應用於電子系統中的流體 Φ 冷卻。如受熱流體或兩相位流體的受熱流體,係進入該逆 流輻射器,並經由包含如微管,微通道或微埠之多微導管 的一流體路徑運行,同時從該流體放熱進入耦合至該微導 f的散熱ϋ組件。氣流被引導於錄刻組件表面上,將 =散熱片組件上的熱移除至空氣中。該逆流輻射器配置多 冷邠核心。各冷卻核心包含至少一微導管層,及可替代疊 ^彼此頂的至少一層冷卻散熱片組件。該冷卻核心係沿 ,第一方向串聯一起。氣流亦被導引沿著該第一方向。該 _ 政、、、片係被校準該氣流方向。受熱流體經由一第一標頭中 的一個或更多入口點進入該逆流輻射器。該一個或更多入 、"、石係放置於該逆流輕射器的排氣側。該受熱流體遵循著 通過该多冷卻核心,跨越氣流路徑多次,並經由第二標頭 /一的個或更多入口點離開該逆流輻射器的一層層卷繞路 徑。該一個或更多入口點係放置於該逆流輻射器的吸氣 側。一個或兩個標頭係視冷卻核心數量而定,包含可選擇 ,,該多冷卻核心及促進該層層卷繞流體路徑的一分配器 =多分配器。該逆流輻射器配置可藉由氣流對向方向流動 <體來改善該輻射H熱鱗,藉此暴露最熱溫度流體至最 8 200847914 1 熱溫度线,及暴露最冷溫賴體至最冷溫度纽。逆流 輻射器若干實施射,跨顧刻寬度之紐方向中係存 在一固定溫度差。 特欲中,一流體-空氣熱交換器包含複數流體-空氣冷 了f心,—第—趙標頭及—第二流體標頭。各冷卻核心 包含至少-層-個或更多熱傳導流體導管,及麵合至 —流體導管層的至少-層_導冷卻散細,討久 :ΓΓ=著從該冷卻核心第一端至該冷卻核二 的=者方數㈣核心係沿著與該 的流體導管被並聯:;方 核心第一端,1中,第一=二體“破輕合至各冷卻 的-入口^第:上頭包“皮配置接收-輸入流體 -,其中4二一合至各冷卻核心第二 ,第一標頭心埠之第—配體從最接 至各連續疊置冷卻核心。 。者该弟二方向串 冷』數疊,卻核心内的第一 置接收沿著該第被销二冷卻核心係被配 出氣==心係被配置從該流體-空氣 々部核心數量為偶數,則兮笛“、、又換為排 輪出接收自卿二;:r: τ成弟一標頭句合矸將兮认 的流體。此 至少-分配器。若冷卻核心數量ς:與^ 、j邊卑二流體標 200847914 頭包含-輪出埠,被配置輸出献 體。此配置中,該第一標頭及該第二;;頭;二:核心的流 分配器,被配置引導流體從該輪人埠含至少一 動至該輪料。該越以層 魏冷卻核心流 中十= 該第二標頭之間。若干實施例 中,溫度係大於從輪出埠輸出之流體溫度:此例 溫度梯度係沿著從第—冷卻核心至第二冷 乂。、忒第二方向形成。若干實施例中, 、田 係較排域流溫度為冷。此财,度 π菩㈣^ jT熱至冷空氣溫度梯度係 者卩核处第二冷卻核心_第二方向形成。 $貫施例中,輸人流體溫度係較從輸出埠輸出的流 & ’而吸人氣度係較排出氣流溫度為高。此 例中,冷至歸度梯度係沿著從第—冷卻核心至第二 的該第二方向形成,冷至熱空氣溫度梯度係沿著 二核心至第二冷卻核心的該第二方向形成。各冷 部核心係暴露至不同溫錢流巾。若干實施例巾,該入口 琿係放置於接近該第—流體獅第―端處,*該第一冷卻 核=係放置於接近該第—流體標頭第—端及該第二流體標 頭第一端處。該第二冷卻核心係放置於接近該第一流體標 碩第二端及該第二流體標頭第二端處。各流體導管層可包 έ複數個別熱傳導微管’其中各微管係被配置使流過此之 流體與其他微管彼此隔離。可替代是,各流體導管層可包 含複數個別熱傳導微管,其中各微管包含一個或更多具有 一鄰接微管的共用開口,使流過此的流體得於鄰接微管之 200847914 間混合。各冷卻散熱片係沿著該第二方向配置。若干實施 例中,各冷卻核心包含複數核心層,各層包含至少一層冷 卻散熱片及至少一層流體導管,再者’其中一給定冷卻核 心内的各核心層,係沿著與該第一方向及該第二方向垂直 的一第三方向疊置。 另一特徵中,一流體為基礎冷卻系統内係包含該流體_ 空氣熱交換器。該流體為基礎冷卻系統包含該流體-空氣熱 交換器,配置提供吸入氣流至該流體-空氣熱交換器的一個 或更多空氣轉換機,及被耦合至該流體-空氣熱交換器的一 流體為基礎冷卻迴路,其中該冷卻迴路係被配置提供受熱 流體至該第一流體標頭的入口埠。 在另一特徵中’該流體-空氣熱父換益具有一同時流動 配置,其中該流體入口係位於與氣流吸入侧相同的該熱交 換器側上。 審視以下說明的實施例詳細說明之後,將可了解本發 明的其他特徵及優點。 【實施方式】 本發明實施例係有關一種流體為基礎冷卻系統内包含 的逆流流體-空氣熱交換器,其中該冷卻系統可移除一電子 裝置或系統内之一個或更多熱產生裝置所產生的熱。該熱 產生裝置包含但不限於裝設於母板,子板及/或個人電腦擴 充卡上的一個或更多中央處理單元(cpu),用來管理一個或 更多中央處理單元輸入/輸出的一晶片組,一個或更多繪圖 ’及/或—個或更多物理處理單元(ppUs)。 200847914Work = Γ 25. The fluid passage 24 and the cooling heat sink U are formed by heat transfer to enhance the transfer of heat from the fluid passage 24 to the cooling fins 26. Cooling fins 26 are exposed to the gas stream for cooling. The cold flow system is from the passage 24 _ to the second fluid copper 22 and is guided by the body passage 25. The fluid passage 25 is made of a thermally conductive substance to enhance the % of the cooling sheet from the flow through. Further, with double cooling, the system flows from the fluid passage 25 to the first fluid header 2〇 and away from the injector 4. The dispenser 28 prevents circulation from the fluid passage 2 into the fluid passage 24. In the first conventional radiator 2, air is supplied to the second conventional radiator 4 in a direction perpendicular to the flow direction of the fluid flowing through the fluid passages 24, 25. In this configuration, each fluid channel 24, 25 is exposed to the same temperature gas stream. However, the flow system flowing through the fluid passage 25 is colder than the fluid flowing through the fluid passage 24. Because the air temperature of the airflow interleaved with each of the fluid passages 24, 25 is the same, there is a large difference between the airflow and the fluid flowing through the first set of fluid passages 24 and between the airflow and the fluid flowing through the second set of fluid passages 25. Temperature difference. Therefore, the cooling efficiency of the radiator 4 is not uniform. The effectiveness of the radiator depends on the rate of airflow over the cooling fins, the flow rate of the fluid passage through the 747979414, the surface area on the cooling fins, and the temperature difference between the air and the fluid. A more efficient cooling method is required to cool the integrated circuitry within the electronic device. There is also a need to add a cooling method that limits the cooling efficiency of a given space. SUMMARY OF THE INVENTION A countercurrent radiator is air cooled and can be applied to fluid Φ cooling in an electronic system. A heated fluid, such as a heated fluid or a two-phase fluid, enters the countercurrent radiator and operates via a fluid path comprising a plurality of microcatheters such as microtubules, microchannels or microchannels, while radiating heat from the fluid into the microcapsule The heat sink assembly of the guide f. The airflow is directed onto the surface of the recording assembly to remove heat from the heat sink assembly into the air. The countercurrent radiator is configured with a multi-cold core. Each of the cooling cores includes at least one microcatheter layer, and at least one layer of cooling fin assemblies that can be stacked on top of each other. The cooling cores are joined together in a first direction. The air flow is also directed along the first direction. The _ politics, , and film are calibrated for the direction of the airflow. The heated fluid enters the counterflow radiator via one or more entry points in a first header. The one or more in, ", stone systems are placed on the exhaust side of the countercurrent light transmitter. The heated fluid follows a multi-cooling core, spanning the airflow path multiple times, and exiting the layered winding path of the counterflow radiator via one or more entry points of the second header/one. The one or more entry points are placed on the suction side of the countercurrent radiator. One or two headers depending on the number of cooling cores, including optional, the multiple cooling cores and a distributor that facilitates the layer winding fluid path = multiple dispensers. The countercurrent radiator configuration can improve the radiation H heat scale by flowing in the opposite direction of the airflow, thereby exposing the hottest temperature fluid to the highest temperature line of 200847914, and exposing the coldest temperature to the coldest Temperature button. A number of counter-current radiators are launched, and there is a fixed temperature difference in the direction of the cross-sectional width. In particular, a fluid-to-air heat exchanger comprises a plurality of fluids - air cooled by the heart, - a - Zhao header and a second fluid header. Each cooling core comprises at least one layer - one or more heat transfer fluid conduits, and at least - layer - conduction cooling of the fluid conduit layer, for a long time: ΓΓ = from the first end of the cooling core to the cooling The number of squares of the core 2 (4) is connected in parallel with the fluid conduit: the first end of the square core, 1 , the first = the second body "breaks lightly to each cooling - the entrance ^: the upper The package "skin configuration receives - input fluid - where 4 221 is combined to each of the cooling cores second, the first header 埠 埠 - the ligand is connected to each successive stacked cooling core. . The second direction of the brother is a series of cold, but the first set of receiving in the core is distributed along the first pinned cooling core system. == The heart is configured from the fluid-air crotch core to an even number. Then the whistle ", and then changed to the row of wheels to receive from the second;; r: τ into the younger brother a header sentence will recognize the fluid. This at least - the distributor. If the number of cooling core ς: and ^, j 卑 二 二 fluid standard 200847914 head contains - round out 被, configured to output the offering. In this configuration, the first header and the second;; head; two: core flow distributor, configured to direct fluid from The wheel mantle contains at least one movement to the wheel. The more the layer is cooled in the core stream by ten = the second header. In several embodiments, the temperature system is greater than the fluid temperature output from the wheel exit: this example The temperature gradient is formed along the second direction from the first cooling core to the second cooling crucible. In some embodiments, the temperature of the field system is colder than that of the drainage field. The wealth is π (4) ^ jT heat to The cold air temperature gradient is formed by the second cooling core at the nucleus _ second direction. In the case of the application, the input fluid temperature The flow rate is higher than the exhaust gas flow rate from the output & ' output from the output port. In this example, the cold to home gradient is formed along the second direction from the first cooling core to the second, The cold to hot air temperature gradient is formed along the second direction of the second core to the second cooling core. Each cold core is exposed to a different warm money towel. In several embodiments, the inlet is placed close to the first - at the end of the fluid lion, * the first cooling core = is placed near the first end of the first fluid head and the first end of the second fluid head. The second cooling core is placed close to the The first fluid is labeled at the second end and the second fluid header is at the second end. Each of the fluid conduit layers may comprise a plurality of individual heat transfer microtubes, wherein each of the microtubes is configured to flow fluid and other microtubes therethrough Alternatively, each fluid conduit layer can comprise a plurality of individual heat transfer microtubes, wherein each microtube comprises one or more common openings having an adjacent microtube such that fluid flowing therethrough is adjacent to the microtube 200847914 Mixing between each cooling Disposed along the second direction. In some embodiments, each cooling core comprises a plurality of core layers, each layer comprising at least one cooling fin and at least one fluid conduit, and wherein each of the core layers within a given cooling core, A layer is stacked in a third direction perpendicular to the first direction and the second direction. In another feature, a fluid-based cooling system includes the fluid-air heat exchanger. The fluid is a basic cooling system Including the fluid-to-air heat exchanger, configured to provide one or more air converters for inhaling gas flow to the fluid-to-air heat exchanger, and a fluid-based cooling circuit coupled to the fluid-to-air heat exchanger, wherein The cooling circuit is configured to provide a heated fluid to the inlet port of the first fluid head. In another feature, the fluid-air heat father has a simultaneous flow configuration, wherein the fluid inlet is located on the suction side of the gas stream The same on the side of the heat exchanger. Other features and advantages of the present invention will become apparent from the Detailed Description of the Detailed Description. [Embodiment] Embodiments of the present invention relate to a counterflow fluid-to-air heat exchanger included in a fluid-based cooling system, wherein the cooling system can be removed by one or more heat generating devices in an electronic device or system. hot. The heat generating device includes, but is not limited to, one or more central processing units (CPUs) mounted on the motherboard, daughter board and/or PC expansion card for managing one or more central processing unit inputs/outputs A chipset, one or more drawing 'and/or one or more physical processing units (ppUs). 200847914

該冷卻系統亦可被用來冷卻功率電子元件,如金屬氧化半 導體場效電晶體(m0Sfets),開關,及需冷卻的其他高功率 電子7L件。iff ’在此說明的該冷㈣統可躺於包含將 被冷卻之一熱產生裝置的任何電子子系統。 若干實施例中,逆流流體-空氣熱交換器係為幅射器。 如在此說明,係使用輻射器做參考。應了解,除非明確參 考該輕射ϋ特定特徵’以輻射!!做參考係代表任何類型逆 流流體_空氣熱交換系統。 熱父換器可接收熱產生裝置所產生的熱。若干實施例 中,该熱父換器配置冷卻迴路中的流體可通過的流體通 迢。當流體通過該熱交換器時,熱係被傳送至該流體,而 文熱流體係從該熱交換器輸出且翻導至該逆流幅射器。 =風扇的一個或更多空氣轉換機係被耦合至該逆流幅射 裔。文熱流體係被輸人至該逆流巾謝器。触氣轉換機所 提供的氣流,係被引導於該逆流幅射器上且通過它,藉此 冷卻通過此的流體。被冷卻流義從該逆流幅射器輸出。 第3 @說明包含_合至—越絲礎冷卻迴路之一逆 流輻射器的-冷卻系統·方塊圖例。該冷卻迴路包含各 經由流體、線94、96、98輕合的逆流幅射器3〇,一栗9〇及 一熱父換器92。此配置中,該冷卻迴路係經由流體線94 耗合至一幅射器入口 及經由流體線96孝禺合至一幅射器出 口。應了解,該冷卻迴路中。 例如’除了第3 _示之出口侧之外,泵9Q可放置於逆流 幅射& 30入口側上。如風扇的一個或更多空氣轉換機(無 12 200847914 圖示)係被麵合至逆流幅射器30,以提供氣流至逆流幅射器 30的一吸氣侧。 熱交換器92係被耦合至熱產生裝置1〇2。任何傳統耦 合裝置均可被用來將熱交換器92耦合至熱產生裝置1〇2。 一可移動耦合裝置係被用來移動及再使用該熱交換器。可 替代使用一不可移動耦合裝置。熱產生裝置1〇2所產生的 熱係被轉移至流過熱交換器92的流體。受熱流體係從熱交 換器92輸出,並輸入逆流幅射器3〇。雖然冷卻迴路包含 單熱父換器92,但該冷卻迴路可包含與熱交換器92串 聯或並聯的一個以上熱交換器。此方法中,該冷卻迴路可 被用來冷卻多熱產生裝置,其中該多熱產生裝置均被耦合 至一早電路板或分配於多電路板上。 忒逆流幅射器包含多層冷卻核心,其係沿著與用來冷 卻流過該逆流幅射器之流體的氣流反向的第一方向串聯配 置。受熱流體係於一第一端輸入該逆流幅射器,並於層層 卷繞狀路徑中流過各冷卻核心至該逆流幅射器第二端,於 j氣流對向中有效地前進。如在此說明,雖然該逆流幅射 器可包含兩層以上冷卻核心,但參考包含兩層冷卻核心的 逆流幅射器。 一第4圖說明逆流輻射器30配置例切開透視圖示。逆流 田射為%包含橫寬串聯的兩層冷卻核心50,52,一第一 ,體標頭32及-第二流體標頭34(第5圖)。如第4圖顯示, 八除第—流體標頭34以顯示冷卻核心5〇,52切開侧面圖 不。各冷卻核心50,52包含至少一流體導管38,及熱耦 13 2UU84/914 合至流體導管38的至少 圖顯示,各冷卻核心5〇,52 Η政熱片組件36。如第4The cooling system can also be used to cool power electronics such as metal oxide semiconductor field effect transistors (m0Sfets), switches, and other high power electronics 7L parts that require cooling. The cold (four) system described herein can lie on any electronic subsystem containing one of the heat generating devices to be cooled. In several embodiments, the countercurrent fluid-to-air heat exchanger is a radiator. As explained herein, a radiator is used as a reference. It should be understood that the reference system is representative of any type of countercurrent fluid _ air heat exchange system unless explicitly referenced to the specific characteristics of the radiant ’. The hot parent converter can receive the heat generated by the heat generating device. In several embodiments, the hot parent exchanger configures fluid passage through which fluid in the cooling circuit can pass. As the fluid passes through the heat exchanger, a heat system is delivered to the fluid, and a heat flow system is output from the heat exchanger and turned to the counterflow radiator. = One or more air converters of the fan are coupled to the counterflow radiator. The heat flow system was input to the counterflow towel. The gas flow provided by the gas-to-air converter is directed to and through the counter-current radiator thereby cooling the fluid passing therethrough. The cooled flow is output from the countercurrent radiator. The third @description contains the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The cooling circuit includes counterflow radiators 3A, a pump 9 and a hot parent 92, respectively, which are coupled via fluids, lines 94, 96, 98. In this configuration, the cooling circuit is coupled to a radiator inlet via fluid line 94 and to a radiator outlet via fluid line 96. It should be understood that this cooling circuit is in use. For example, the pump 9Q can be placed on the inlet side of the countercurrent radiation & 30, except for the outlet side of the third. One or more air converters, such as fans, are shown as being coupled to the counterflow radiator 30 to provide airflow to a suction side of the counterflow radiator 30. Heat exchanger 92 is coupled to heat generating device 1〇2. Any conventional coupling device can be used to couple the heat exchanger 92 to the heat generating device 1〇2. A movable coupling device is used to move and reuse the heat exchanger. An immovable coupling device can be used instead. The heat generated by the heat generating device 1〇2 is transferred to the fluid flowing through the heat exchanger 92. The heated flow system is output from the heat exchanger 92 and is input to the countercurrent radiator 3〇. Although the cooling circuit includes a single heat master 92, the cooling circuit can include more than one heat exchanger in series or in parallel with the heat exchanger 92. In this method, the cooling circuit can be used to cool a multi-heat generating device, wherein the multi-heat generating device is coupled to an early circuit board or distributed to a plurality of circuit boards. The counter-current radiator comprises a multi-layered cooling core arranged in series along a first direction opposite the flow of gas for cooling the fluid flowing through the counter-current radiator. The heated flow system inputs the countercurrent radiator at a first end and flows through the respective cooling cores to the second end of the countercurrent radiator in a layered winding path to effectively advance in the airflow direction. As explained herein, although the counter current radiator may comprise more than two layers of cooling cores, reference is made to a counterflow radiator comprising two layers of cooling cores. A fourth embodiment illustrates a cutaway perspective view of a configuration of the counterflow radiator 30. The countercurrent field is a two-layer cooling core 50, 52, a first, body header 32 and a second fluid header 34 (Fig. 5). As shown in Fig. 4, the eight-deletion-fluid head 34 is shown to show the cooling core 5, 52 and the side view is not cut. Each of the cooling cores 50, 52 includes at least one fluid conduit 38, and at least one of the thermocouples 13 2UU 84/914 coupled to the fluid conduit 38, each of the cooling cores 5, 52. As the 4th

層冷卻散熱片組件36。鹿了角匕3二層流體導管邓,及四 圖顯示數量為多或少的^|二各冷卻核心可包含較第4 導管38及冷卻散熱片組件^ =層及散熱片組件層。流體 從流過流體導管38的傳導物f製成,使熱 該熱進-步從該流體導管% ^至机體導管38物質,而 件36。流體導管38可由盘务貝被轉移至冷卻散熱片組 熱傳導物質製成。…部散熱片組件36相同或不同 各冷卻核心係沿著第4 > 準。散熱片組件36中的各料:之弟一方向串聯校 教Η总、由綠* 月…、片亦於弟一方向校準。夂散 熱片係連、_跨越所有冷卻核心5 羊口政 片包含沿著第一方"曰代疋,各散熱 4岡, 方他+的多片段。各流體導管38沿著第 導之弟二方向縱長延伸通過冷卻核心。各流體 成 ^夕微導管46。各微導管46係由熱傳導物質製 管38内之各微導管46第—端係被耦合至第-二體“碩32,而各㈣管46第二端係她合至第二 標頭34(第5圖)。 被校準冷卻核心50、52係形成一吸氣侧31及一排氣 侧33。一個或更多流體入口 4Q係放置接近第一流體標頭 32的排氣侧33。若逆流輻射器如第4圖逆流輻射器30例 包合偶數冷卻核心,則一個或更多流體出口 42(第5圖)係 放置接近第一流體標頭32的吸氣側31。若該逆流輻射器 包合可數冷卻核心,則一個或更多流體出口係放置接近該 14 200847914 弟二流體標頭的吸氣側31。 第一流體標頭32被配置引導流體從流體入口 、 冷卻核心%的微導管*第-端,及料越從冷卻= 52的微導管46第一端進入流體出口 42離開(第5圖 一流體標頭32亦被配置防止流體從流體入口 4〇緘0)、°第 核心50進人,及直接流至流體.幻(第5圖)。、^冷卻 明包含-分配器44的第-流體標頭32切開侧面圖說 岐44可防止流體從流體入口 4〇繞過冷卻核心%的= 官46進入,及直接流至流體出口似(第$圖卜 第二流體標頭34(第5圖)被配置引導、 二的微導管46第二端離開,進入冷卻核心^的ς,心 第二端’藉此形成從冷卻核心5〇至冷卻核心^的^官46 路徑。如此,第二流體標頭34不包含—…—流體 明包含第二峨頭34切開側面圖示。:第:固:7圖說 馨 標頭32做比較,第7圖第二流體標頭μ不包含—l—流體 藉此提供冷卻核心5G中的微導管 =配器’ 的微^管46第二端之間流體存取。 4核心52 若添加附加冷卻核心至逆 量分配器。例如,若第-、人, 、TO,添加對應數 將分配器添加i冷:二二t核心串聯购一 ^ 二流體標頭,叫场;^及附加冷卻核心之間的該第 端的流體繞過冷卻核中之微導管%第二 不添加另-分配1!^ ,得'46第二蠕。此例中, 冷卻核心52中之° #對地’可接收從 Μ導官46軸之流體的該第-__ 15 200847914 部件,係被擴充與該第三冷 合,藉此促使流齡冷卻導管46第1耦 至該第三冷卻核心巾之_管=彳料管46第—端流 流體標頭不配置流體出口 42 4弟端此例中’該第- 該第二流體標頭上。以類似^目,’該流體出D配置於 添加至該逆流輻射器的各附力==標::::The layer cools the fin assembly 36. Deer horned 匕 3 two-layer fluid conduit Deng, and four figures show that the number of more or less ^ | two cooling cores can include the fourth conduit 38 and cooling fin assembly ^ = layer and heat sink assembly layer. The fluid is made from a conductor f that flows through the fluid conduit 38, causing the heat to advance from the fluid conduit %^ to the body conduit 38 material, and the member 36. The fluid conduit 38 can be made from a heat transfer material that is transferred to the cooling fin group. The ... heat sink assembly 36 is the same or different. Each cooling core is along the 4th > Each material in the heat sink assembly 36: the younger one in the direction of the teaching, the total, the green * month ..., the film is also calibrated in the direction of the younger brother.夂 热 热 热 、 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Each of the fluid conduits 38 extends longitudinally through the cooling core along the second direction of the guide. Each fluid is a micro-duct 46. Each of the microcatheters 46 is coupled to the first and second bodies 32 by the first end of each of the microcatheters 46 in the heat transfer material tube 38, and the second end of each of the (four) tubes 46 is coupled to the second header 34 ( Figure 5) The calibrated cooling cores 50, 52 form an inspiratory side 31 and an exhaust side 33. One or more fluid inlets 4Q are placed adjacent to the exhaust side 33 of the first fluid header 32. The radiator, such as the counterflow radiator of Fig. 4, encompasses an even number of cooling cores, and one or more fluid outlets 42 (Fig. 5) are placed adjacent to the suction side 31 of the first fluid header 32. If the countercurrent radiator Including a countable number of cooling cores, one or more fluid outlets are placed close to the suction side 31 of the 14 200847914 second fluid head. The first fluid header 32 is configured to direct fluid from the fluid inlet, cooling the core to the micro The first end of the catheter *, and the more the material enters the fluid outlet 42 from the first end of the microcatheter 46 of cooling = 52 (the fluid header 32 of Figure 5 is also configured to prevent fluid from the fluid inlet 4 〇缄 0), ° Core 50 enters, and flows directly to the fluid. Magic (Figure 5). ^ Cooling contains - the first of the distributor 44 The body head 32 cuts the side view and says that the 岐44 prevents fluid from escaping from the fluid inlet 4 through the cooling core% of the official 46, and directly to the fluid outlet (the $thb second fluid header 34 (Fig. 5) The second end of the microcatheter 46 is configured to be guided away from the second end of the cooling core, and the second end of the core is formed to form a path from the cooling core 5 to the cooling core. Thus, the second fluid The header 34 does not contain -... - the fluid contains the second side 34 cut-away side view.: the first: solid: 7 said the comma header 32 for comparison, the seventh figure second fluid header μ does not contain -l-fluid Thereby providing fluid access between the second end of the microcatheter 46 of the microcatheter = adapter ' in the cooling core 5G. 4 core 52 if an additional cooling core is added to the inverse dispenser. For example, if -, person, TO, add the corresponding number to add the distributor to the i cold: two or two t cores in series to buy a ^ two fluid header, called the field; ^ and the additional cooling core between the first end of the fluid bypasses the microcatheter in the cooling core% Second, do not add another - allocate 1! ^, get '46 second creep. In this example, cool the core 52 ° ° to the ground The first - _ 15 200847914 component that can receive fluid from the axis of the guide 46 is expanded to be chilled with the third, thereby causing the flow cooling conduit 46 to be first coupled to the third cooling core towel = the first end fluid label of the dip tube 46 is not configured with a fluid outlet 42 4 in this example 'this first - the second fluid header. In a similar manner, 'the fluid out D is configured to be added to the countercurrent The attached force of the radiator == mark::::

供一種可防止流體流動的丄t 刀配态提 :標頭組件,其中兩鄰接標頭組件之間一介:二 體分配器。 取 第5圖說明包含空氣及流體流動方向的逆流輻射哭30 切開,上下圖不。受熱流體係於_人口 4()處被輪入逆汽 te射器30。流體入口 40被放置麵排氣側%。該 體首先流人縣魏侧33 _冷_^,其於此例中= 冷卻核心5G。該流體沿著此例中為負y方向的該第二方向 流過冷卻核心5〇巾騎餅管38。#紐_冷卻核心 5〇中的流體導管38時’該流體被引導沿著此例中為正χ 方向的該第一方向,經由第二流體標頭34至冷卻核心& 中的流體導管38。該流體於此例中為正負y方向的該第二 方向反向流過冷卻核心52中的流體導管38。當流體離開 冷卻核心52中的流體導管38時,該流體被引導經由第二 机體標頭32離開流體出口 42。此法中,當沿著該地一方 向如進時,該流體流動於層層卷繞狀方向,沿著該第二方 向來回。當受熱流體流過該流體導管時,熱係從該流體轉 16 200847914 移至冷卻散熱片崎36。 其開始料,而當它流“冷^心50時, 流過冷卻核心時,其_冷卻,使 最冷的流體係為從逆流二=二:了的流體為熱。 體係為_流體,而最熱的流For a 丄t knife configuration that prevents fluid flow: a header assembly in which two adjacent header assemblies are: a two-part dispenser. Figure 5 shows the countercurrent radiation containing the direction of air and fluid flow crying 30 cut, the top and bottom diagrams are not. The heated flow system is wheeled into the reverse radiant radiator 30 at _ population 4 (). The fluid inlet 40 is placed on the exhaust side of the face. The body first flows to the Wei side of the county, 33 _ cold _ ^, which in this case = cooling core 5G. The fluid flows through the cooling core 5 wiper tube 38 along the second direction in the negative y direction in this example. #纽_ When cooling the fluid conduit 38 in the core 5', the fluid is directed along the first direction in the positive direction of this example, via the second fluid header 34 to the fluid conduit 38 in the cooling core & . The fluid in this example reverses flow through the fluid conduit 38 in the cooling core 52 in the second direction of the positive and negative y directions. As the fluid exits the fluid conduit 38 in the cooling core 52, the fluid is directed away from the fluid outlet 42 via the second body header 32. In this method, when proceeding along the direction of the ground, the fluid flows in the direction in which the layers are wound, and travels back and forth along the second direction. As the heated fluid flows through the fluid conduit, the thermal system moves from the fluid to 16200847914 to the cooling fins. It starts to feed, and when it flows "cold heart 50, when it flows through the cooling core, it _ cools, so that the coldest flow system is from the countercurrent two = two: the fluid is heat. The system is _ fluid, and Hottest stream

入,器30處的氣流係於吸氣側31處被輸 第一方二减33處被輸出。此法中,氣流係被引導於該 弟二方向反向,也就是負χ方向通過冷卻核心5G,52。當 空= 過冷卻散熱⑽件%謂,祕從冷卻健片組^ 矛夕至工氣。因此,空氣穿越逆流輕射器3〇愈深,該 f氣愈,最冷空氣係逆流輕射器30之吸氣側31處的空 氣而隶熱空氣係該逆流輻射器之排氣侧33處的空氣輸 出。因為當該排氣側處的空氣從該吸氣側傳送至該排氣側 日寸已從其通過之流體受熱,所以該吸氣側處的流體係暴露 於較該排氣侧處的流體為冷的空氣。 各流體導管38包含複數微導管46。若干實施例中, 各微導管46係彼此隔離,而流過各微導管46的流體並不 與各其他微導管46内流動的流體混合。第8圖說明配置使 各微導管46彼此隔離的第一流體導管切開,上下圖示例。 此例中,當流體離開微導管46時,該流體係於如流體標頭 34的各流體標頭處混合。微導管46係由促使熱以流過微 導管46之該流體轉移的熱傳導物質製成。 當具有從該逆流輻射器吸氣側至排氣側的流體及空氣 溫度梯度時,各冷卻核心之流體導管38内亦具有流體及空 200847914 氣溫度梯度。位於較接近該逆流輻射器排氣侧之微導管中 流動的流體,係與較位於較接近該逆流輻射器吸氣侧之微 導管中流動之流體為熱的空氣互動。若流體導管38如第8 圖所示配置獨立微導管46,則給定流體導管内於吸氣侧及 排氣侧之間係存在流體溫度梯度。若干實施例中,流體導 營38被配置為無微導管的一單通道。此配置中,並不隔離 流體至相對吸氣侧及排氣侧的一位置,且當該流體流過流 體導管38時,混合從吸氣侧至排氣侧的流體。雖然充分混 合可或不可完全消除吸氣側及排氣侧之間的流體溫度梯 度’但單通道配置中的流體溫度梯度,係小於獨立微導管 配置中的流體溫度梯度。 該單通道配置的缺點,係縮減流體及流體微管相對微 導管配置之間的熱轉移速率。因為全部微導管46之較大熱 轉移表面積,所以與該單通道配置比較,微導管46的表面 積可強化該熱轉移速率。 替代配置中,各微導管係配置可匹配鄰接微導管之側 開口的侧開口,藉此於流體流過該流體導管時促成微導管 ,間的混合。帛9圖說明配置各微導管46促使流體混合的 第二流體導管切開,上下圖示例。各微導管導管 開口牝。鄰接微導管你,係配置匹配微導管開口你,使流 過鄰,微導管46,的流體可經由微導管開口 48混合。應^ 解’第9圖說明之微導管開口 48位置僅為例證。該微^管 開口數量及位置可賴或雜顧配置為任何模式, 成預期流體混合效應。 200847914 相對於獨立微導管配置,具.之微導管配置可降低 流體導管_韻溫度梯度。細,若_立微導管配置 及具開口之微導管配置中的微導管數量相同,則相對於獨 立微導管配置,具開口之微導管配置中的微導管表面積係 縮減。該表面積縮減係降低該流體及該微導管之間的熱轉 移速率。為了增加該表面積,該流體導管可配置較大數量 微導管。包含具開口之微導管的流體導管,係配置與具獨 立u‘管的對應流體導管相同表面積,以增加具開口的微 ¥笞數1。通常,無論該微導管配置獨立微導管或具開口 的微導管,均可以此方式調整用於熱轉移的該表面積。 通常,排氣侧處的輸入流體溫度及吸氣側處的輸入空 氣μ度之間的系統溫差,係限制該逆流輻射器的熱效率。 各添加冷卻核心的折回縮減。當添加愈多冷卻核心,該系 統中各冷卻核心的冷卻核心溫差(輸入該冷卻核心的流體 /JEL度及空氣溫度之間差異)縮小。所以即使增加該逆流輻射 的…效率(至该糸統溫差限制的最大值),各添加冷卻核心 仍減低各冷卻核心的效率。 可藉由通過逆流輻射器的流體流速來調整該逆流輻射 裔的熱效率。因為該流體暴露於該逆流輻射器内發生之熱 轉移較長一段時間,所以該流速提供輸入流體溫度及輸出 、'體度之間較大流體溫差愈慢。然而,亦必須決定該流 體流速,及對最佳化發生於熱交換器内之熱轉移所需的流 速條件平衡該流體流速,其中熱係從熱產生裝置轉移至該 流體。通常,可最佳化該流體流速達成預期系統熱效能, 19 200847914 及/或各冷卻核心的預期冷卻核心溫差。 以上係以冷卻受熱流體方式說明該逆流輻射器。明確 地說,該逆流輻射器可接收受熱流體當作輸入,冷卻該輻 射器内的該受熱流體,及輸出冷卻流體。該受熱流體係使 用流體對空氣冷卻方法來冷卻,其中輸入氣流通過該輻射 器,而來自該輻射器内流動之流體的熱,從該流體傳遞至 _ 該輻射器物質及傳遞於該輻射器物質上的空氣。如此,從 5玄幸萄射裔出來的氣流係較輪入該輻射器的氣流為熱。替代 實施例中’該逆流輻射器係被配置冷卻受熱空氣。此替代 實施例中’如冷卻劑的一冷流體係被輸入該逆流輻射器, 而該輸入空氣通過該輻射器。熱係從該輸入空氣轉移至流 過該輻射器的該冷流體。如此,離開該輻射器的氣流係較 輸入該輻射器的氣流為冷。從該輻射器輸出的流體係較輸 入該輻射器的流體為熱。 _ 第10圖說明再配置冷卻一輸入氣流的第5圖逆流輻射 器。冷流體係於流體入口 40處被輸入該逆流輻射器。該冷 流體流過冷卻核心50,52,而以類似第5圖說明方式經由 流體出口 42輸出。受熱氣流係於吸氣側31處被引導進入 該逆流輪射裔。當該氣流通過冷卻核心52及5〇時,熱係 從該氣流轉移至通過冷卻核心52及50的該冷流體。冷卻 空氣係於排氣侧33處從該逆流輻射器輸出。受熱流體係於 流體出口 42處從該逆流輻射器輸出。 以上係以該輪射器吸氣侧與流體入口相對的“逆流,,配 置方式說_逆雜射器。替代實關巾,魏射器係被 200847914 配置為並行流,或“共流”’其中通過該輪射器之流體流動 方向’或通過該輻射器之氣流方向係與該逆流輕射器反 向。明確地說,此替代實施例中’流體入口及氣流吸氣侧 係位於該輻射器相同侧上,而流體出口及氣流排氣側係位 於該輻射器相同侧上。The air flow at the inlet 30 is outputted at the suction side 31 by the first side minus 33. In this method, the airflow is directed in the opposite direction of the second direction, that is, the negative enthalpy direction passes through the cooling cores 5G, 52. When the air = over-cooling heat (10)%, the secret from the cooling of the health group ^ spears to the gas. Therefore, the deeper the air passes through the countercurrent light radiator 3, the more air is cooled, the coldest air is the air at the suction side 31 of the countercurrent light radiator 30, and the hot air is at the exhaust side 33 of the countercurrent radiator. Air output. Because when the air at the exhaust side is transferred from the suction side to the fluid from which the exhaust side has passed, the flow system at the suction side is exposed to fluid at the exhaust side. Cold air. Each fluid conduit 38 includes a plurality of microcatheters 46. In some embodiments, each of the microcatheters 46 are isolated from one another, and the fluid flowing through each of the microcatheters 46 is not mixed with the fluid flowing within each of the other microcatheters 46. Figure 8 illustrates a first fluid conduit configured to isolate each microcatheter 46 from each other, an example of the top and bottom. In this example, as the fluid exits the microcatheter 46, the flow system mixes at the fluid heads such as the fluid header 34. The microcatheter 46 is made of a thermally conductive material that promotes heat transfer through the fluid flowing through the microcatheter 46. When there is a fluid and air temperature gradient from the suction side to the exhaust side of the countercurrent radiator, the fluid conduit 38 of each cooling core also has a fluid and air temperature gradient of 200847914. The fluid flowing in the microcatheter closer to the exhaust side of the countercurrent radiator interacts with the hotter air than the fluid flowing in the microcatheter closer to the inspiratory side of the countercurrent radiator. If the fluid conduit 38 is configured with a separate microcatheter 46 as shown in Figure 8, a fluid temperature gradient exists between the inspiratory side and the exhaust side within a given fluid conduit. In several embodiments, the fluidic conduit 38 is configured as a single channel without a microcatheter. In this configuration, the fluid is not isolated to a position on the inspiratory side and the exhaust side, and when the fluid flows through the fluid conduit 38, the fluid from the inspiratory side to the exhaust side is mixed. Although sufficient mixing may or may not completely eliminate the fluid temperature gradient between the inspiratory side and the exhaust side, the fluid temperature gradient in a single channel configuration is less than the fluid temperature gradient in a separate microcatheter configuration. A disadvantage of this single channel configuration is the reduction of the rate of heat transfer between the fluid and the fluid microtubes relative to the microcatheter configuration. Because of the large thermal transfer surface area of all of the microcatheters 46, the surface area of the microcatheters 46 can enhance the rate of thermal transfer as compared to the single channel configuration. In an alternative configuration, each microcatheter is configured to match a side opening adjacent the side opening of the microcatheter, thereby facilitating mixing of the microcatheter as fluid flows through the fluid conduit. Figure 9 illustrates a second fluid conduit configured to allow each of the microcatheters 46 to promote fluid mixing, as shown in the upper and lower figures. Each microcatheter catheter is open. Adjacent to the microcatheter, you are configured to match the microcatheter opening so that fluid flowing through the adjacent, microcatheter 46 can be mixed through the microcatheter opening 48. The position of the microcatheter opening 48 as illustrated in Figure 9 is merely illustrative. The number and location of the micro-tube openings can be configured in any mode to achieve the desired fluid mixing effect. 200847914 The microcatheter configuration reduces the fluid conduit _ rhyme temperature gradient relative to the independent microcatheter configuration. Fine, if the number of microcatheters in the microcatheter configuration and the open microcatheter configuration is the same, the microcatheter surface area in the open microcatheter configuration is reduced relative to the independent microcatheter configuration. This reduction in surface area reduces the rate of thermal transfer between the fluid and the microcatheter. To increase this surface area, the fluid conduit can be configured with a larger number of microcatheters. A fluid conduit comprising an open microcatheter is configured to have the same surface area as a corresponding fluid conduit with a separate u' tube to increase the micro-turn number 1 with an opening. Typically, this surface area for thermal transfer can be adjusted in this manner regardless of whether the microcatheter is configured with a separate microcatheter or an open microcatheter. Typically, the temperature difference between the input fluid temperature at the exhaust side and the input air μ at the inspiratory side limits the thermal efficiency of the countercurrent radiator. The foldback of each added cooling core is reduced. As more cooling cores are added, the cooling core temperature difference (the difference between the fluid/JEL degree and the air temperature input to the cooling core) of each cooling core in the system is reduced. Therefore, even if the efficiency of the countercurrent radiation is increased (to the maximum value of the temperature difference of the system), each addition of the cooling core reduces the efficiency of each cooling core. The thermal efficiency of the countercurrent radiant can be adjusted by the flow rate of the fluid through the countercurrent radiator. Because the fluid is exposed to heat transfer occurring within the countercurrent radiator for a longer period of time, the flow rate provides the input fluid temperature and output, and the slower the temperature difference between the larger fluids. However, it is also necessary to determine the fluid flow rate and to balance the fluid flow rate required to optimize the heat transfer occurring in the heat exchanger, wherein the heat system is transferred from the heat generating device to the fluid. Typically, the fluid flow rate can be optimized to achieve the desired system thermal performance, 19 200847914 and/or the expected cooling core temperature differential for each cooling core. The countercurrent radiator is described above by cooling the heated fluid. Specifically, the countercurrent radiator can receive the heated fluid as an input, cool the heated fluid within the radiator, and output a cooling fluid. The heated flow system is cooled using a fluid-to-air cooling method in which an input gas stream passes through the radiator, and heat from a fluid flowing within the radiator is transferred from the fluid to the radiator material and to the radiator material. The air on it. Thus, the airflow from the 5 Xuan Xingzuo is hotter than the airflow that is turned into the radiator. In an alternative embodiment, the countercurrent radiator is configured to cool heated air. In this alternative embodiment, a cold flow system such as a coolant is introduced into the countercurrent radiator, and the input air passes through the radiator. The heat is transferred from the input air to the cold fluid flowing through the radiator. As such, the airflow exiting the radiator is cooler than the airflow entering the radiator. The flow system output from the radiator is hotter than the fluid input to the radiator. _ Figure 10 illustrates a reflow radiator of Figure 5 reconfigured to cool an input air stream. A cold flow system is input to the counterflow radiator at the fluid inlet 40. The cold fluid flows through the cooling cores 50, 52 and is output via the fluid outlet 42 in a manner similar to that illustrated in FIG. The heated air stream is directed to the countercurrent striker at the suction side 31. As the gas stream passes through the cooling cores 52 and 5, the heat is transferred from the gas stream to the cold fluid passing through the cooling cores 52 and 50. Cooling air is output from the counterflow radiator at the exhaust side 33. The heated flow system is output from the countercurrent radiator at the fluid outlet 42. The above is based on the "backflow" of the suction side of the injector and the fluid inlet. The configuration method is _ counter-mirror. Instead of the actual closing towel, the transmitter is configured as parallel flow, or "co-flow" by 200847914. Wherein the direction of fluid flow through the injector or the direction of gas flow through the radiator is opposite to the countercurrent illuminator. In particular, in this alternative embodiment, the 'fluid inlet and the gas venting side are located at the radiation. On the same side of the radiator, the fluid outlet and the gas flow side are located on the same side of the radiator.

第11圖說明再配置同時流動的第5圖輕射器。受熱流 體於流體入口 40處被輸入該並行流輻射器。該受熱流體流 過冷郤核心50、52,而以類似第5圖說明方式經由流體出 口 42輪出。氣流係於侧33處被引入該輻射器。當氣流通 過冷卻核心50、52時,熱係從該受熱流體轉移至通過冷卻 核心52及50的該氣流。受熱空氣係於側31處從該輻射器 輸出。冷卻流體係於流體出口 42處從該輻射器輸出。 類似第10圖的該逆流輻射器,第11圖的並行流輻射 器可被配置冷卻受熱空氣。此替代實施例中,一冷流體係 被輸入該並行流輻射器,而輸入受熱空氣通過該輻射器, 其中該空氣吸氣側係位於該輻射器與該流體入口相同侧 上。熱從該受熱空氣轉移至流過該幅射器的冷流體。如此, 離開該輻射器的氣流係較輸人該輻射器的氣流為冷。自該 輪射器輸出的流體係較輸人該輻射器的氣流為熱。 —已以包含促賴解本發g鍵―及操作原理之細節的特 定實施例方式_本發明。不預^在此對特定實施例及盆 用說明之實 解’只要*背離本發明精神及翻,均可對選 施例做修改。 ' 21 200847914 【圖式簡單說明】 第1圖說明配置一方向流體流動的一第一傳統輻射器。 第2圖說明配置兩方向流體流的一第二傳統輻射器。 第3圖說明包含耦合至一流體為基礎冷卻迴路之一逆流輻 射器的一冷卻系統方塊圖例。 第4圖說明該逆流輻射器配置例切開透視圖示。Figure 11 illustrates a fifth-figure lighter that is reconfigured to flow simultaneously. The heated fluid is introduced into the parallel flow radiator at the fluid inlet 40. The heated fluid flows through the cooling cores 50, 52 and exits via the fluid outlet 42 in a manner similar to that illustrated in FIG. The airflow is introduced into the radiator at side 33. As the gas stream passes through the cooling cores 50, 52, the heat is transferred from the heated fluid to the gas stream passing through the cooling cores 52 and 50. The heated air is output from the radiator at side 31. A cooling flow system is output from the radiator at a fluid outlet 42. Like the counter current radiator of Fig. 10, the parallel flow radiator of Fig. 11 can be configured to cool the heated air. In this alternative embodiment, a cold flow system is input to the parallel flow radiator and input heated air is passed through the radiator, wherein the air suction side is located on the same side of the radiator as the fluid inlet. Heat is transferred from the heated air to the cold fluid flowing through the radiator. As such, the airflow exiting the radiator is cooler than the airflow entering the radiator. The flow system output from the injector is hotter than the air flow to the radiator. - The present invention has been embodied in a specific embodiment that incorporates the details of the operation of the g-keys and the principles of operation. The details of the specific embodiments and the description of the basins are not intended to be modified as long as they deviate from the spirit and scope of the present invention. ' 21 200847914 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a first conventional radiator that configures fluid flow in one direction. Figure 2 illustrates a second conventional radiator that configures fluid flow in both directions. Figure 3 illustrates a block diagram of a cooling system including a counterflow radiator coupled to a fluid-based cooling circuit. Fig. 4 is a perspective view showing the arrangement of the countercurrent radiator.

第5圖說明包含空氣及流體流動方向的該逆流輻射器切 開,上下圖示。 弟6圖說明包含一分配裔的第一流體標頭切開侧面圖不。 第7圖說明包含第二流體標頭切開侧面圖示。 第8圖說明配置使各微導管彼此隔離的第〆流體導管切 開,上下圖示例。 第9圖說明配置各微導管促使流體混合的第二流體導管切 開,上下圖示例。 第10圖說明再配置冷卻一輸入氣流的第5圖逆流輻射器。 第11圖說明再配置同時流動的第5圖輻射器。 針對若干_ 本發明。僅於—個揭示及顯示 相同元件處,使用相同參考數字表補相同元件。 【主要元件符號說明】 2、4 傳統輻射器 10 流體輸入標頭 12 流體輸出標頭 14 流體通道 16 冷卻散熱片 22 200847914Figure 5 illustrates the backflow radiator with air and fluid flow directions, as shown above and below. Figure 6 shows a side view of the first fluid header containing an assigned person. Figure 7 illustrates a side view of the cut containing the second fluid header. Figure 8 illustrates the configuration of a second fluid conduit that is configured to isolate each microcatheter from each other, an example of the top and bottom. Figure 9 illustrates a second fluid conduit configured to allow each microcatheter to promote fluid mixing, as shown in the upper and lower figures. Figure 10 illustrates a reflow radiator of Figure 5 reconfigured to cool an input gas stream. Figure 11 illustrates a fifth diagram radiator that is reconfigured to flow simultaneously. For a number of _ the present invention. The same reference numerals are used to supplement the same components only when the same components are revealed and displayed. [Main component symbol description] 2, 4 Conventional radiator 10 Fluid input header 12 Fluid output header 14 Fluid channel 16 Cooling fin 22 200847914

20、22 流體標頭 24、25 流體通道 26 冷卻散熱片 28 分配器 30 逆流幅射器 31 吸氣側 32、34 流體標頭 33 排氣側 36 冷卻散熱片組件 38 流體導管 40 流體入口 42 流體出口 44 分配器 46、46, 微導管 50、52 冷卻核 90 泵 92 熱交換器 94、96、98 流體線 100 冷卻系統 102 熱產生裝置 2320, 22 Fluid Header 24, 25 Fluid Channel 26 Cooling Heatsink 28 Distributor 30 Counterflow Radiator 31 Suction Side 32, 34 Fluid Header 33 Exhaust Side 36 Cooling Heatsink Assembly 38 Fluid Conduit 40 Fluid Inlet 42 Fluid Outlet 44 distributors 46, 46, microcatheters 50, 52 cooling core 90 pump 92 heat exchangers 94, 96, 98 fluid line 100 cooling system 102 heat generating means 23

Claims (1)

200847914 • 十、申請專利範圍: 1. 一種流體-空氣熱交換器,包含: a. 複數流體-空氣冷卻核心,各冷卻核心包含至 少一層一個或更多熱傳導流體導管及與至少 一流體導管層耦合的至少一層熱傳導冷卻散 熱片,其中沿著從該冷卻核心的一第一端至該 冷卻核心的一第二端的一第一方向配置各流 • 體導管,且其中該複數冷卻核心係沿著與該第 一方向垂直的一第二方向並列疊置,使該複數 冷卻核心的流體導管被並聯配置; b. 一第一流體標頭,與各冷卻核心的該第一端耦 合,其中該第一標頭包含經配置用於接收一輸 入流體的一入口埠;及 c. 一第二流體標頭,與各冷卻核心的該第二端耦 合,其中該第一標頭及該第二標頭被配置用於 ® 引導流體從最接近該第一標頭入口埠的一第 一冷卻核心而沿著該第二方向串流至各連續 疊置的冷卻核心, 其中,一第二冷卻核心設置在距該複數疊置冷卻核心 内的該第一冷卻核心最遠處,且被配置用於接收沿著 該第二方向進入該流體-空氣熱交換器的一吸入氣 流,而該第一冷卻核心係被配置從該流體-空氣熱交換 器排出該氣流。 2. 如申請專利範圍第1項所述的流體-空氣熱交換器,其 24 :二::卻核心的—數量為偶數,則該第一流體標頭 =一輪出埠,該輪出埠被配置用於輪出從該第二冷 p核心接收的流體。 t申請專利範2項所述的讀,氣熱交換器,立 中該第-標頭包含將該人口埠與讀出D埠分隔的°至少 一分配器。 如申請專利_第i項所述的流體4氡 :二若冷卻核心的—數量為奇數,則該第二流赌頭 G含一輪出埠,該輪出埠經配置用於輪出從該第二冷 部核心接收的流體。 ^ 如申1專利範圍第i項所述的流體-空氣熱交換器,其 中該第一標頭及該第二標頭累積地包含至少一分配 器,該分配器經配置用於引導流體從該輸入埠經 複數冷卻核心流動至該輸出埠。 人 如申凊專利範圍第5項所述的流體_空氣熱交換界,其 中該流體以層層卷繞狀方式,從冷卻核心至冷卻核/、、 流動於該第一標頭及該第二標頭之間。 Λ U 如申請專利範圍第i項所述的流體_空氣熱交換器,其 中該輸入流體的一溫度大於從該輸出埠輸出的該流體 的 '一溫度。 如申請專利範圍第7項所述的流體·空氣熱交換哭,其 中一熱至冷流體溫度梯度係沿著從該第一冷却核心^ 該第二冷卻核心的該第二方向形成。 如申請專利範圍第7項所述的流體•空氣熱交換器,其 200847914 中該吸入氣流的/溫度係較該排出氣流的—溫产 冷。 ”、 10·如申請專利範圍第7項所述的流體-空氣熱交換哭,其 中一熱至冷空氣溫度梯度係沿著從該第一冷啣核 該第二冷卻核心的該第二方向形成。 Λ 11·如申請專利範圍第1項所述的流體-空氣熱交換哭,其200847914 • X. Patent application scope: 1. A fluid-to-air heat exchanger comprising: a. a plurality of fluid-air cooled cores, each cooling core comprising at least one layer of one or more heat transfer fluid conduits coupled to at least one fluid conduit layer At least one layer of thermally conductive cooling fins, wherein each of the flow conduits is disposed along a first direction from a first end of the cooling core to a second end of the cooling core, and wherein the plurality of cooling cores are along The first direction is perpendicular to a second direction juxtaposed, such that the fluid conduits of the plurality of cooling cores are arranged in parallel; b. a first fluid header coupled to the first end of each cooling core, wherein the first The header includes an inlet port configured to receive an input fluid; and c. a second fluid header coupled to the second end of each cooling core, wherein the first header and the second header are Configuring to direct the fluid from a first cooling core closest to the first header inlet 而 to the successively stacked cooling cores along the second direction, wherein A second cooling core is disposed furthest from the first cooling core within the plurality of stacked cooling cores and configured to receive a suction flow entering the fluid-to-air heat exchanger along the second direction, The first cooling core is configured to discharge the gas stream from the fluid-air heat exchanger. 2. The fluid-air heat exchanger according to claim 1, wherein the number of 24:2:: core is even, the first fluid header = one round of exit, the round is discharged Configured to rotate fluid received from the second cold p core. The read-by-gas heat exchanger of claim 2, wherein the first-header comprises at least one distributor separating the population 埠 from the readout D埠. If the amount of fluid 4 氡: 2 if the number of cooling cores is an odd number, the second stream header G has a round out 埠, and the round 埠 is configured to rotate from the first The fluid received by the core of the second cold section. The fluid-to-air heat exchanger of claim 1, wherein the first header and the second header cumulatively comprise at least one dispenser configured to direct fluid from the The input passes through the complex cooling core to the output port. The fluid-air heat exchange boundary according to claim 5, wherein the fluid flows in a layered manner from the cooling core to the cooling core, and flows to the first header and the second Between headers. U. The fluid-air heat exchanger of claim i, wherein a temperature of the input fluid is greater than a temperature of the fluid output from the output port. The fluid/air heat exchange crying as recited in claim 7 wherein a heat to cold fluid temperature gradient is formed along the second direction from the first cooling core to the second cooling core. In the fluid/air heat exchanger according to claim 7, the heat/gas temperature of the suction airflow in 200847914 is lower than that of the exhaust gas stream. 10. The fluid-air heat exchange crying as described in claim 7 wherein a heat to cold air temperature gradient is formed along the second direction from the first cold core to the second cooling core. Λ 11· The fluid-air heat exchange as described in claim 1 of the patent scope cries, 中該輸入流體的,溫度係較從該輸出埠輪出的,节i 的一溫度為低。 爪一 12.如申請專利範圍第11項所述的流體_空氣熱交換哭, 其中一冷至熱流體溫度梯度係沿著從該第—太 /♦部核心 至該第二冷卻核心的該第二方向形成。 13·如申請專利範圍第η項所述的流體_空氣熱交換器 其中該吸入氣流的一溫度係較該排出氣流的—、、w' ^為 高。 ”、 14·如申請專利範圍第u項所述的流體_空氡熱交換哭 其中一冷至熱空氣溫度梯度係沿著從該第一冷卻i、、 至該第二冷卻核心的該第二方向形成。 乂 ^ 15·如申請專利範圍第1項所述的流體_空氣熱交換哭,其 中各冷卻核心係暴露在一不同溫度氣流中。 ’、 16·如申請專利範圍第i項所述的流體_空氣熱交換哭,其 中該入口埠係位於接近該第一流體標頭的〜第一^ 處’而該第-冷卻核心位於接近該第—流體標頭= 一端及該第二流體標頭的第一端處。 、 17·如申請專利範圍帛16項所述的流體.空氣熱交換哭, 26 200847914 其:該第二冷卻核心係位於接近該第一流體標頭的一 第二端及該第二流體標頭的一第二端處。 R如申請專利範圍第1項所述的流體-空氣熱交換器,其 :各層流體導管包含複數侧熱料鮮,其中各微 管經配置為使流過各微管的流體與其倾管彼二隔 離。 19. 如巾請專利範圍第!項所述的流體-空氣熱交換器,其 :各層流體導管包含複數個職傳導微管,其中各微 管包含-或更多具有一鄰接微管的共用開口,使^過 此的流體於鄰接的微管之間混合。 20. 如申請專利範圍第i項所述的流體_空氣熱交換器,其 中各冷卻散熱片係沿著該第二方向配置。、σ° ’、 21. 如申請專利範圍第!項所述的流體_空氣熱交換器,其 中各冷卻如包含概如層,各層包含結一層ς 卻散熱片及—層至少-流體導管,且其中-給定^ 卻核心内的各核心層沿著與該第一方向及該第二方: 垂直的一第三方向疊置。 22· —種流體-空氣熱交換器,包含: a·複數流體-空氣冷卻核心,各冷卻核心包含至少 一層的一或更多熱傳導流體導管以及與至少一 流體導管層輕合的至少一層熱傳導冷卻散熱 片’其中沿著從該冷卻核心、的—第—端至該冷卻 f心的一第二端的-第-方向配置各流體導 官’且其中該複數冷卻核心係沿著與該第一方向 27 ^14The temperature of the input fluid is lower than the temperature of the section i from the output. Claw-12. The fluid_air heat exchange crying as recited in claim 11 wherein a cold to hot fluid temperature gradient is along the first to the second cooling core from the first to the core The second direction is formed. 13. The fluid_air heat exchanger of claim n, wherein a temperature of the suction gas stream is higher than -, w' ^ of the exhaust gas stream. 14. The fluid_open heat exchange as described in the scope of claim 5, wherein a cold to hot air temperature gradient is along the second from the first cooling i, to the second cooling core The direction is formed. 乂^15· The fluid_air heat exchange crying as described in claim 1 wherein each cooling core is exposed to a different temperature flow. ', 16 · as described in claim i Fluid _ air heat exchange crying, wherein the inlet raft is located near the first fluid head of the first fluid head and the first cooling core is located near the first fluid head = one end and the second fluid label At the first end of the head, 17. The fluid as described in claim 16 of the patent. Air heat exchange crying, 26 200847914 It is: the second cooling core is located near a second end of the first fluid head And a fluid-air heat exchanger according to claim 1, wherein each layer of the fluid conduit comprises a plurality of side hot materials, wherein each of the micro tubes is configured In order to make the fluid flowing through the microtubes 19. A fluid-to-air heat exchanger according to the scope of the invention, wherein: each layer of fluid conduit comprises a plurality of conductance microtubes, wherein each microtube comprises - or more having an adjacent microtube The fluid-air heat exchanger according to claim i, wherein each cooling fin is disposed along the second direction, wherein the fluid is mixed between the adjacent microtubes. , σ° ', 21. The fluid-air heat exchanger as set forth in the scope of the application, wherein each cooling comprises, for example, a layer, each layer comprising a layer of heat sink and a layer of at least a fluid conduit, And wherein the core layers in the core are stacked along a third direction perpendicular to the first direction and the second side: 22· a fluid-air heat exchanger comprising: a· a plurality of fluid-air cooled cores, each cooling core comprising at least one layer of one or more heat transfer fluid conduits and at least one layer of thermally conductive cooling fins that are lightly coupled to at least one fluid conduit layer, wherein along the cooling core, End to Cooling a second heart f end - of - the direction of arrangement of each fluid lead officer 'and wherein the plurality of core cooling system along the first direction 27 ^ 14 的流體導管被並聯配置;㈣複數冷部知 •—第-流體標頭,與各冷部核 — 合,其中該第—標頭包含叙 、^ —端· 流體的一入口埠;及己置用於接收—輪力The fluid conduits are arranged in parallel; (4) the plurality of cold sections know that the first-fluid head is combined with the cold section cores, wherein the first header contains an inlet port of the fluid, and the inlet For receiving - wheel force \第二流體標頭,與各冷卻核心的該第 i —標職該第:標馳配置用於引 /體“接近該第—標頭人口埠的n ===辆第二方㈣駐各連續疊置^\The second fluid header, with the i-th target of each cooling core, the first: the standard configuration is used for the reference / body "near the first - header population 埠 n === second party (four) station Continuously stacked ^ 23 ’該第—冷卻核心經配置用於接收沿著該第二方 =领體_域熱交換器的—吸人氣流,距該複數 第二1部核心内的該第一冷卻核心最遠處所設置的一 旖。〜郃核心用於從該流體-空氣熱交換器排出該氣 其t明專利範圍第22項所述的流體-空氣熱交換器, i勺丄若冷卻核心的—數量為偶數,則該第一流體標 人匕3—輪出埠,該輸出埠被配置用於輸出從該第二 ’亥心接收的流體。 24.=請^利範圍第23項所述的流體-空氣熱交換器, /、中《亥第一標頭包含將該入口埠與該出口埠分隔的至 少一分配器。 25·如申請專利範圍第22項所述的流體_空氣熱交換器, 其中,若冷卻核心的一數量為奇數,則該第二流體標 28 ^47914 26. _ 27· 28. 29. 30. 31, 輪峨_於輪出從該第二 如申請專利範圍第η賴賴流體執 二甲泫弟一標頭及该第二標頭累積地包含至少—八 [該分配器配置用於引導流體從該輪入蜂經由^配 數冷卻核心流動至該輸出埠。 °^複 如申請專利範圍第26項所述的流體·空氣熱交換器, 其中該流體以層層卷繞狀方式,從冷卻核心至泠浴女 心流動於該第一標頭及該第二標頭之間。 7尸核 如申請專利範圍第22項所述的流體-空氣熱交換哭, 其中該輸入流體的一溫度大於從該輪出埠輪出的 體的一溫度。 、Κ 如申請專利範圍第28項所述的流體-空氣熱交換界, 其中一熱至冷流體溫度梯度係沿著從該第一冷卻^心 至該第二冷卻核心的該第二方向形成。 乂 如申請專利範圍第28項所述的流體、空氣熱交換器, 其中該吸入氣流的一溫度係較該排出氣流的一溫声為 冷。 ” 如申請專利範圍第28項所述的流體-空氣熱交換器, 其中一冷至熱空氣溫度梯度係沿著從該第一冷卻核心 至該第二冷卻核心的該第二方向形成。 如申清專利範圍第22項所述的流體-空氣熱交換器, 其中該輸入流體的一溫度係較從該輪出埠輸出的該流 體的一溫度為低。 29 32· 200847914 33·如申請專利範圍第32項所述的流體-空氣熱交換器, 其中一冷至熱流體溫度梯度係沿著從該第一冷卻核心 至该第二冷卻核心的該第二方向形成。 34·如申請專利範圍第32項所述的流體-空氣熱交換器, 其中該吸入氣流的一溫度係較該排出氣流的—溫度為 雨0 35.23' the first cooling core is configured to receive an inhaling airflow along the second party = collar body heat exchanger, the furthest away from the first cooling core in the second plurality of cores A set of settings. The 郃 core is used to discharge the gas from the fluid-air heat exchanger, and the fluid-air heat exchanger according to item 22 of the patent scope, if the number of the cooling core is an even number, the first The fluid is labeled 3 - the wheel exit, which is configured to output fluid received from the second 'Heel. 24. The fluid-air heat exchanger of item 23, wherein the first header comprises at least one distributor separating the inlet port from the outlet port. The fluid-air heat exchanger according to claim 22, wherein if the number of cooling cores is an odd number, the second fluid mark 28^47914 26. _ 27· 28. 29. 30. 31, the rim _ in turn out from the second as claimed in the patent scope η 赖 赖 执 执 及 及 and the second header cumulatively contains at least -8 [the dispenser is configured to guide the fluid From the turn-in bee, the cooling core flows to the output port. The fluid/air heat exchanger according to claim 26, wherein the fluid flows in a layered manner from the cooling core to the bathing female heart to the first header and the second standard Between the heads. 7 corpuscle The fluid-air heat exchange cry as described in claim 22, wherein a temperature of the input fluid is greater than a temperature of the body exiting the wheel. The fluid-air heat exchange boundary of claim 28, wherein a heat to cold fluid temperature gradient is formed along the second direction from the first cooling core to the second cooling core. The fluid or air heat exchanger according to claim 28, wherein a temperature of the suction gas stream is colder than a temperature of the exhaust gas stream. The fluid-to-air heat exchanger of claim 28, wherein a cold to hot air temperature gradient is formed along the second direction from the first cooling core to the second cooling core. The fluid-to-air heat exchanger of claim 22, wherein a temperature of the input fluid is lower than a temperature of the fluid output from the wheel exit. 29 32· 200847914 33·If the patent application scope The fluid-to-air heat exchanger of item 32, wherein a cold to hot fluid temperature gradient is formed along the second direction from the first cooling core to the second cooling core. The fluid-to-air heat exchanger according to Item 32, wherein a temperature of the suction airflow is lower than a temperature of the exhaust airflow by 0. 36. 37.36. 37. 38· 39. 如申請專利範圍第32項所述的流體-空氣熱交換器, 其中一熱至冷空氣溫度梯度係沿著從該第一冷卻核心 至該第二冷卻核心的該第二方向形成。 如申請專利範圍第22項所述的流體-空氣熱交換器, 其中各冷卻核心係暴露至不同溫度氣流中。 如申請專利範圍第22項所述的流體-空氣熱交換器, 其中該入口埠位於接近該第一流體標頭的一第一端 處,而该第一冷卻核心位於接近該第一流體標頭第一 端及該第二流體翻的—第―端處。 、 直申1月^利範圍第37項所述的流體空氣熱交換器, 二中亥第—冷卻核心係放置於接近該第一流體標頭第 二端及該第二流體標頭第二端處。 、 ^專彻_第22獅所述流體·空氣熱交換器, ^各層流體導管包含複數個別熱傳導微管,其中各 ζ官經配置為使流過各微管的流體與其他微管彼此隔 it圍第22項所述的流體·空氣熱交換器, …口 體導管包含複數個職傳導微管,其中各 30 40. 200847914 微吕匕3或更多具有一鄰接微管的共用開口,使产 過此的流體於鄰接的微管之間混合。 瓜 41. ΐΐί專利範圍第22項所述的流體空氣熱交換器, 42. /、 Q卻散熱片係沿著該第二方向配置。 專利範圍第22項所述的流體空氣熱交換器, 二、:冷城心包含複數核d各層包含至少—声 二部放熱片及-層至少—流體導管,且A中一认^ 43. :=ΓΓ核心層沿著與該第—方向及該;= 土复的一弟三方向疊置。 種流體-空氣熱交換器,包含·· a. 她綠驾冷卻如,各冷卻核吨含至 一層-個或更多熱傳導流體導管及 L導管_合及難朋_錢辆紗T :乳冷部核心的至少—層熱料 Γ;::!?心的-第-端至該‘: 、弟方向配置各流體導管, =複m心係料與轉—方向垂直的 管===列叠置’使該複冷卻核心的流體導 b. :,第:二體第標二,各冷卻核,第, 流趙的二3包含經配置用於接收—輪入 C. 一第二流體標 合,> ^核心的該第二端耦 亥弟—標頭及該第二標頭被配置用於引 31 200847914 導流體從-第-冷卻核著 至各連續叠置的冷卻核心。< 方向串流 44. 如申請專利範圍第43項所述的流體錢 其中,若冷部核心的-數量為偶數,㈣ … § =包含:輸出埠,該輸出缚經配置用於:出 中之一敢後冷卻核心的流體。 ' 咚如申請專利範圍第44項所述的流體 其中該第一標頭包含將該入口埠與該出口 === 少一分配器。 平刀P田的J 46· 43項所述的流體,熱交換器, 頭t:::!數量為奇數,則該第二流體賴 4 =::核:=置用,從_ 47. 睛專利範圍第43項所述的流體-空氣熱交換哭, 第—標頭及該第二標頭累積地包含至少;酿 n二Γ* °…配置用於引導流體從該輸人璋經由f| 稷數h郃核心流動至該輸出琿。 48· 利乾圍第47項所述的流體-空氣熱交換器, 其=fIL體以層層卷繞狀方式,從冷卻核心至冷卻核 心々:於該第一標頭及該第二標頭之間。 49.妒:請專利範圍第43項所述的流體-空氣熱交換器, ί與各層流體導f包含複數個職傳導微管,其中各 微官經配置為使流過各微管的流體與其他微管彼此隔 離0 32 200847914 , 50.如申請專利範圍第43項所述的流體-空氣熱交換器, 其中各層流體導管包含複數個別熱傳導微管,其中各 微管包含一或更多具有一鄰接微管的共用開口,使流 過此的流體於鄰接的微管之間混合。 51. 如申請專利範圍第43項所述的流體-空氣熱交換器, 其中各冷卻散熱片係沿著該第二方向配置。 52. 如申請專利範圍第43項所述的流體-空氣熱交換器, _ 其中各冷卻核心包含複數核心層,各層包含至少一層 冷卻散熱片及一層至少一流體導管,且其中一給定的 冷卻核心内的各核心層沿著與該第一方向及該第二方 向垂直的一第三方向疊置。 3338. The fluid-to-air heat exchanger of claim 32, wherein a hot to cold air temperature gradient is formed along the second direction from the first cooling core to the second cooling core . The fluid-to-air heat exchanger of claim 22, wherein each of the cooling cores is exposed to a different temperature stream. The fluid-to-air heat exchanger of claim 22, wherein the inlet port is located near a first end of the first fluid head, and the first cooling core is located proximate to the first fluid head The first end and the second fluid are turned over at the first end. The fluid air heat exchanger according to item 37 of the January 1st, the second Zhonghai-cooling core is placed near the second end of the first fluid head and the second end of the second fluid head At the office. , _ _ 22 22 lion fluid / air heat exchanger, ^ each layer of fluid conduit contains a plurality of individual heat transfer microtubes, each of which is configured to separate the fluid flowing through the microtubes from other microtubes The fluid/air heat exchanger according to Item 22, wherein the mouthpiece conduit comprises a plurality of occupational conduction microtubes, wherein each of the 30 40. 200847914 microlule 3 or more has a common opening adjacent to the microtube, so that The fluid passing therethrough is mixed between adjacent microtubes.瓜 41. The fluid-air heat exchanger of claim 22, wherein the heat sink is disposed along the second direction. The fluid-air heat exchanger according to Item 22 of the patent scope, wherein: the cold city core comprises a plurality of layers of a plurality of cores d comprising at least a sound emitting part and a layer of at least a fluid conduit, and wherein A is in the middle of the core. = ΓΓ The core layer is superimposed along the first direction and the third direction of the first direction. Fluid-air heat exchanger, including ·· a. Her green drive cooling, such as cooling the nuclear tons to one layer - one or more heat transfer fluid conduits and L-cavity _ Hehe _ _ money yarn T: milk cold At least the layer of hot material in the core;::!? The center of the heart - the end to the ':, the direction of the body is arranged with each fluid conduit, = the complex m core material and the tube perpendicular to the direction of rotation - = = column stack The fluid guiding b. of the re-cooling core is: b, the second body, the second cooling unit, the second cooling unit, the second unit 3, the second unit 3, which is configured to receive the wheel C. a second fluid standard , the second end of the core coupled with the head and the second header are configured to lead 31 200847914 from the - first cooling core to the successively stacked cooling cores. < Directional stream 44. The fluid money as described in claim 43 of the patent, wherein if the number of the core of the cold part is even, (4) ... § = contains: output 埠, the output is configured for: One dared to cool the core fluid. A fluid as described in claim 44, wherein the first header comprises a dispenser having the inlet port and the outlet === less than one. The fluid described in J 46·43 of the flat knife P field, heat exchanger, the number of heads t:::! is odd, then the second fluid is 4 =::nucleus:=set, from _ 47. The fluid-air heat exchange crying according to item 43 of the patent scope, the first header and the second header cumulatively comprise at least; the brewing n Γ*°... configured to direct fluid from the input 璋 via f| The number of turns h郃 core flows to the output 珲. 48. The fluid-air heat exchanger according to item 47 of the Lekanwei, wherein the =fIL body is wound in a layered manner from the cooling core to the cooling core: the first header and the second header between. 49. 妒: The fluid-air heat exchanger described in claim 43 of the patent scope, and the fluid guides f of each layer comprise a plurality of conductance microtubes, wherein each micro-organ is configured to flow fluids flowing through the micro-tubes The fluid-air heat exchanger of claim 43, wherein each of the fluid conduits comprises a plurality of individual heat transfer microtubes, wherein each microtube comprises one or more having one Adjacent to the common opening of the microtube, the fluid flowing therethrough is mixed between adjacent microtubes. 51. The fluid-to-air heat exchanger of claim 43, wherein each cooling fin is disposed along the second direction. 52. The fluid-to-air heat exchanger of claim 43, wherein each cooling core comprises a plurality of core layers, each layer comprising at least one cooling fin and a layer of at least one fluid conduit, and wherein a given cooling Each core layer in the core is stacked in a third direction perpendicular to the first direction and the second direction. 33
TW097116344A 2007-05-02 2008-05-02 Micro-tube/multi-port counter flow radiator design for electronic cooling applications TW200847914A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US92742407P 2007-05-02 2007-05-02

Publications (1)

Publication Number Publication Date
TW200847914A true TW200847914A (en) 2008-12-01

Family

ID=39943855

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097116344A TW200847914A (en) 2007-05-02 2008-05-02 Micro-tube/multi-port counter flow radiator design for electronic cooling applications

Country Status (4)

Country Link
US (1) US20090000771A1 (en)
CN (1) CN101715536A (en)
TW (1) TW200847914A (en)
WO (1) WO2008137143A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110024083A1 (en) * 2009-07-31 2011-02-03 Steimel John C Heat exchanger
WO2012019059A2 (en) * 2010-08-04 2012-02-09 Global Solar Water And Power Systems, Inc. Purification system
US9042100B2 (en) * 2013-03-14 2015-05-26 Aavid Thermalloy, Llc System and method for cooling heat generating components
US11765864B2 (en) 2019-08-26 2023-09-19 Ovh Cooling arrangement for a rack hosting electronic equipment and at least one fan

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US596062A (en) * 1897-12-28 Device for preventing bursting of freezing pipes
US2087521A (en) * 1934-10-29 1937-07-20 Mazzola Antonino Hair curling device
US2737341A (en) * 1950-02-25 1956-03-06 Trico Products Corp Rotary pump
US2956642A (en) * 1958-12-23 1960-10-18 Gen Motors Corp Camshaft and bearing lubricating means
US3220254A (en) * 1963-08-30 1965-11-30 Marquardt Corp Two-phase fluid flowmeter
NL6514626A (en) * 1965-11-11 1967-05-12
US3361195A (en) * 1966-09-23 1968-01-02 Westinghouse Electric Corp Heat sink member for a semiconductor device
US3514967A (en) * 1968-06-20 1970-06-02 Whirlpool Co Air conditioner control
US3800510A (en) * 1972-05-09 1974-04-02 Celanese Corp Separating assembly
US3917375A (en) * 1974-06-17 1975-11-04 Teradyne Inc Electrical connection apparatus
US4021867A (en) * 1975-09-08 1977-05-10 Maxwell Jr Oscar Benton Convertible cradle
US3993123A (en) * 1975-10-28 1976-11-23 International Business Machines Corporation Gas encapsulated cooling module
US4037889A (en) * 1976-06-14 1977-07-26 Piatt James A Journal bearing
JPS5310469U (en) * 1976-07-09 1978-01-28
DE2658720C3 (en) * 1976-12-24 1982-01-28 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn Latent heat storage for holding a heat-storing medium
US4262975A (en) * 1979-10-01 1981-04-21 Mechanical Technology Incorporated Compliant journal bearing with angular stiffness gradient
US4332291A (en) * 1979-12-21 1982-06-01 D. Mulock-Bentley And Associates (Proprietary) Limited Heat exchanger with slotted fin strips
JPS5948168B2 (en) * 1980-04-10 1984-11-24 株式会社ボッシュオートモーティブ システム Control method for vehicle air conditioner
DE3123990C2 (en) * 1981-06-19 1986-04-10 M.A.N.- Roland Druckmaschinen AG, 6050 Offenbach Adjustment device for inking and dampening rollers on printing machines
JPS582276A (en) * 1981-06-24 1983-01-07 株式会社日立製作所 Metal-ceramic joint body and manufacture
JPS58137285A (en) * 1982-02-10 1983-08-15 株式会社日立製作所 Ceramic board with metal plate and method of producing same
US4693307A (en) * 1985-09-16 1987-09-15 General Motors Corporation Tube and fin heat exchanger with hybrid heat transfer fin arrangement
US4687167A (en) * 1985-10-23 1987-08-18 Skalka Gerald P Multi-position computer support
ES2024412B3 (en) * 1985-12-13 1992-03-01 Hasler Ag Ascom PROCEDURE AND DEVICE FOR THE EVACUATION OF LOST HEAT FROM AT LEAST ONE GROUP OF CONSTRUCTION OF ELECTRICAL ELEMENTS
US4825941B1 (en) * 1986-07-29 1997-07-01 Showa Aluminum Corp Condenser for use in a car cooling system
JP2513246B2 (en) * 1987-08-27 1996-07-03 日本電装株式会社 Automotive air conditioner
US4791983A (en) * 1987-10-13 1988-12-20 Unisys Corporation Self-aligning liquid-cooling assembly
JP2704009B2 (en) * 1989-10-19 1998-01-26 マツダ株式会社 Automotive air conditioning controller
US5016707A (en) * 1989-12-28 1991-05-21 Sundstrand Corporation Multi-pass crossflow jet impingement heat exchanger
US5016090A (en) * 1990-03-21 1991-05-14 International Business Machines Corporation Cross-hatch flow distribution and applications thereof
WO1991016805A1 (en) * 1990-04-16 1991-10-31 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic circuit board
JPH07114250B2 (en) * 1990-04-27 1995-12-06 インターナショナル・ビジネス・マシーンズ・コーポレイション Heat transfer system
US5036676A (en) * 1990-09-21 1991-08-06 Carrier Corporation Method of compressor current control for variable speed heat pumps
JPH06342990A (en) * 1991-02-04 1994-12-13 Internatl Business Mach Corp <Ibm> Integrated cooling system
US5105430A (en) * 1991-04-09 1992-04-14 The United States Of America As Represented By The United States Department Of Energy Thin planar package for cooling an array of edge-emitting laser diodes
US5199487A (en) * 1991-05-31 1993-04-06 Hughes Aircraft Company Electroformed high efficiency heat exchanger and method for making
FR2679729B1 (en) * 1991-07-23 1994-04-29 Alcatel Telspace HEATSINK.
US5520244A (en) * 1992-12-16 1996-05-28 Sdl, Inc. Micropost waste heat removal system
US5269372A (en) * 1992-12-21 1993-12-14 International Business Machines Corporation Intersecting flow network for a cold plate cooling system
US5299635A (en) * 1993-03-05 1994-04-05 Wynn's Climate Systems, Inc. Parallel flow condenser baffle
US5534328A (en) * 1993-12-02 1996-07-09 E. I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof
US5796580A (en) * 1993-04-13 1998-08-18 Hitachi, Ltd. Air-cooled information processing apparatus having cooling air fan, sub-fan, and plural separated cooling air flow channels
US5289874A (en) * 1993-06-28 1994-03-01 General Motors Corporation Heat exchanger with laterally displaced louvered fin sections
US5488835A (en) * 1993-07-28 1996-02-06 Howenstine; Mervin W. Methods and devices for energy conservation in refrigerated chambers
EP0667640A3 (en) * 1994-01-14 1997-05-14 Brush Wellman Multilayer laminate product and process.
US5424918A (en) * 1994-03-31 1995-06-13 Hewlett-Packard Company Universal hybrid mounting system
US5647429A (en) * 1994-06-16 1997-07-15 Oktay; Sevgin Coupled, flux transformer heat pipes
US5811062A (en) * 1994-07-29 1998-09-22 Battelle Memorial Institute Microcomponent chemical process sheet architecture
US5676198A (en) * 1994-11-15 1997-10-14 Sundstrand Corporation Cooling apparatus for an electronic component
JP3113793B2 (en) * 1995-05-02 2000-12-04 株式会社エヌ・ティ・ティ ファシリティーズ Air conditioning system
DE29507286U1 (en) * 1995-05-04 1995-07-20 Alusuisse Lonza Services Ag Heat sink for semiconductor components or the like. equipment
US5622221A (en) * 1995-05-17 1997-04-22 Taco, Inc. Integrated zoning circulator with priority controller
US5757070A (en) * 1995-10-24 1998-05-26 Altera Corporation Integrated circuit package
US5701751A (en) * 1996-05-10 1997-12-30 Schlumberger Technology Corporation Apparatus and method for actively cooling instrumentation in a high temperature environment
US5830806A (en) * 1996-10-18 1998-11-03 Micron Technology, Inc. Wafer backing member for mechanical and chemical-mechanical planarization of substrates
US5898572A (en) * 1996-12-24 1999-04-27 Decibel Instruments, Inc. Method and apparatus for the mitigation of noise generated by personal computers
US5896869A (en) * 1997-01-13 1999-04-27 International Business Machines Corporation Semiconductor package having etched-back silver-copper braze
EP0866216B1 (en) * 1997-03-21 2003-05-07 Stefan Battlogg Camshaft
US5847452A (en) * 1997-06-30 1998-12-08 Sun Microsystems, Inc. Post mounted heat sink method and apparatus
DE19819247A1 (en) * 1998-04-29 1999-11-11 Valeo Klimatech Gmbh & Co Kg Vehicle heat exchanger and especially water/air heat exchanger or evaporator
US6119729A (en) * 1998-09-14 2000-09-19 Arise Technologies Corporation Freeze protection apparatus for fluid transport passages
US6086330A (en) * 1998-12-21 2000-07-11 Motorola, Inc. Low-noise, high-performance fan
US6166907A (en) * 1999-11-26 2000-12-26 Chien; Chuan-Fu CPU cooling system
US6324075B1 (en) * 1999-12-20 2001-11-27 Intel Corporation Partially covered motherboard with EMI partition gateway
US6570764B2 (en) * 1999-12-29 2003-05-27 Intel Corporation Low thermal resistance interface for attachment of thermal materials to a processor die
US6337794B1 (en) * 2000-02-11 2002-01-08 International Business Machines Corporation Isothermal heat sink with tiered cooling channels
DE10018478A1 (en) * 2000-04-14 2001-10-18 Behr Gmbh & Co Condenser for an air conditioning system, in particular for an air conditioning system of a motor vehicle
US6407916B1 (en) * 2000-06-12 2002-06-18 Intel Corporation Computer assembly for cooling high powered microprocessors
US6366462B1 (en) * 2000-07-18 2002-04-02 International Business Machines Corporation Electronic module with integral refrigerant evaporator assembly and control system therefore
US6469893B1 (en) * 2000-09-29 2002-10-22 Intel Corporation Direct heatpipe attachment to die using center point loading
US6698924B2 (en) * 2000-12-21 2004-03-02 Tank, Inc. Cooling system comprising a circular venturi
WO2002102124A2 (en) * 2001-06-12 2002-12-19 Liebert Corporation Single or dual buss thermal transfer system
JP3636118B2 (en) * 2001-09-04 2005-04-06 株式会社日立製作所 Water cooling device for electronic equipment
US6643132B2 (en) * 2002-01-04 2003-11-04 Intel Corporation Chassis-level thermal interface component for transfer of heat from an electronic component of a computer system
US6700785B2 (en) * 2002-01-04 2004-03-02 Intel Corporation Computer system which locks a server unit subassembly in a selected position in a support frame
TWI234063B (en) * 2002-05-15 2005-06-11 Matsushita Electric Ind Co Ltd Cooling apparatus for electronic equipment
US20040008483A1 (en) * 2002-07-13 2004-01-15 Kioan Cheon Water cooling type cooling system for electronic device
TW578992U (en) * 2002-09-09 2004-03-01 Hon Hai Prec Ind Co Ltd Heat sink assembly
US7000684B2 (en) * 2002-11-01 2006-02-21 Cooligy, Inc. Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device
KR20040065626A (en) * 2003-01-15 2004-07-23 엘지전자 주식회사 Heat exchanger
JP4199018B2 (en) * 2003-02-14 2008-12-17 株式会社日立製作所 Rack mount server system
US7337832B2 (en) * 2003-04-30 2008-03-04 Valeo, Inc. Heat exchanger
US6763880B1 (en) * 2003-06-26 2004-07-20 Evserv Tech Corporation Liquid cooled radiation module for servers
US7483261B2 (en) * 2003-06-27 2009-01-27 Nec Corporation Cooling device for an electronic equipment
JP2005106328A (en) * 2003-09-29 2005-04-21 Sanden Corp Heat exchanging device
US7273088B2 (en) * 2003-12-17 2007-09-25 Hewlett-Packard Development Company, L.P. One or more heat exchanger components in major part operably locatable outside computer chassis
US6955212B1 (en) * 2004-04-20 2005-10-18 Adda Corporation Water-cooler radiator module
US7011143B2 (en) * 2004-05-04 2006-03-14 International Business Machines Corporation Method and apparatus for cooling electronic components
US7248472B2 (en) * 2004-05-21 2007-07-24 Hewlett-Packard Development Company, L.P. Air distribution system
US7301773B2 (en) * 2004-06-04 2007-11-27 Cooligy Inc. Semi-compliant joining mechanism for semiconductor cooling applications
JP4056504B2 (en) * 2004-08-18 2008-03-05 Necディスプレイソリューションズ株式会社 COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
US7239516B2 (en) * 2004-09-10 2007-07-03 International Business Machines Corporation Flexure plate for maintaining contact between a cooling plate/heat sink and a microchip
US20060067052A1 (en) * 2004-09-30 2006-03-30 Llapitan David J Liquid cooling system
US7243704B2 (en) * 2004-11-18 2007-07-17 Delta Design, Inc. Mechanical assembly for regulating the temperature of an electronic device, having a spring with one slideable end
US7303003B2 (en) * 2004-12-24 2007-12-04 Showa Denko K.K. Heat exchanger
US7280363B2 (en) * 2005-01-21 2007-10-09 Delphi Technologies, Inc. Apparatus for controlling thermal interface between cold plate and integrated circuit chip
US20060187639A1 (en) * 2005-02-23 2006-08-24 Lytron, Inc. Electronic component cooling and interface system
KR100599338B1 (en) * 2005-07-05 2006-07-19 모딘코리아 유한회사 Manufacturing process of header tank, head tank thereof and heat exchanger including the same
JP2007178053A (en) * 2005-12-27 2007-07-12 Calsonic Kansei Corp Heat exchanger
US20080013283A1 (en) * 2006-07-17 2008-01-17 Gilbert Gary L Mechanism for cooling electronic components

Also Published As

Publication number Publication date
US20090000771A1 (en) 2009-01-01
WO2008137143A1 (en) 2008-11-13
CN101715536A (en) 2010-05-26

Similar Documents

Publication Publication Date Title
CN101438637B (en) Liquid cooling loops for server applications
US11948860B2 (en) Heat sink
US9844165B2 (en) Advanced heat exchanger with integrated coolant fluid flow deflector
US20070217147A1 (en) Integrated circuit coolant microchannel assembly with targeted channel configuration
TW201113988A (en) Liquid-cooled jacket
TW200419127A (en) Interwoven manifolds for pressure drop reduction in microchannel heat exchangers
JPH06508911A (en) Heat exchanger for solid state electronic equipment
TWM267437U (en) Modular heat dissipation device
TW200936029A (en) Two phase micro-channel heat sink
TWI287964B (en) Water cooling head and manufacturing method thereof
US20060113066A1 (en) Heat exchanger configuration for pumped liquid cooling computer systems
JP2011134979A5 (en)
TW200413687A (en) Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device
TW200847914A (en) Micro-tube/multi-port counter flow radiator design for electronic cooling applications
TW200532157A (en) Compact radiator for an electronic device
KR20040050910A (en) High heat flux single-phase heat exchanger
CN108172557A (en) A kind of spider net type fluid channel radiator
TW201009280A (en) Modular air-cooled condenser apparatus and method
CN106352606A (en) Cooling system and method having micro-channel coil with countercurrent circuit
TWI572273B (en) Liquid cooling heat sink
TWI259052B (en) Improved structure of liquid-cooling heat dissipation device
JP2002303499A (en) Plate type heat exchanger
JP2013235967A (en) Stacked heat exchanger
WO2008005404A2 (en) Multi-stage staggered radiator for liquid cooling
JP2002310593A (en) Plate fin type heat exchanger