TW200818317A - Plasma reactor having plasma chamber coupled with magnetic flux channel - Google Patents

Plasma reactor having plasma chamber coupled with magnetic flux channel Download PDF

Info

Publication number
TW200818317A
TW200818317A TW96114722A TW96114722A TW200818317A TW 200818317 A TW200818317 A TW 200818317A TW 96114722 A TW96114722 A TW 96114722A TW 96114722 A TW96114722 A TW 96114722A TW 200818317 A TW200818317 A TW 200818317A
Authority
TW
Taiwan
Prior art keywords
magnetic flux
plasma
plasma reactor
gas
substrate
Prior art date
Application number
TW96114722A
Other languages
Chinese (zh)
Other versions
TWI398926B (en
Inventor
Dae-Kyu Choi
Joung-Ho Lee
Original Assignee
New Power Plasma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020060036969A external-priority patent/KR100743842B1/en
Priority claimed from KR1020060098377A external-priority patent/KR100883561B1/en
Application filed by New Power Plasma Co Ltd filed Critical New Power Plasma Co Ltd
Publication of TW200818317A publication Critical patent/TW200818317A/en
Application granted granted Critical
Publication of TWI398926B publication Critical patent/TWI398926B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)

Abstract

There is provided a plasma reactor having a plasma chamber coupled with a magnetic flux channel. The plasma reactor includes, a magnetic core having magnetic flux entrances to face each other and to form a magnetic flux channel, a magnetic flux induction coil wound around the magnetic core to form the magnetic flux channel between magnetic, flux entrances, and a plasma chamber having a hollow region, coupled with a magnetic flux channel, in which plasma discharge is generated. The surfaces of the magnetic flux entrance of the magnetic core are positioned over the hollow region of the plasma chamber so that the plasma generated in the hollow regions is uniform and the loss of magnetic flux is small. Therefore, transmission efficiency of inductively coupled energy is high. Moreover, in the structure additionally serving as the capacitive coupling method, ion energy of plasma can be easily adjusted, and excellent expansibility exhibits.

Description

200818317 九、發明說明 【發明所屬之技術領域】 本發明係有關於藉由電漿放電而產生包括離子、自由 基、原子及分子的活性氣體之電漿源,以實施固體、粉末 和氣體之電漿處理,且更特別而言,係有關於具有與磁通 通道相耦合之電漿室的電漿反應器。 # 【先前技術】 電漿放電係使用於氣體激發,以產生諸如離子、自由 基、原子及分子的活性氣體。活性氣體係使用於各種領域 的應用中,且典型上係使用於諸如鈾刻、沈積及清洗的半 導體製程中。 近來,用以製造半導體裝置之晶_或液晶顯示器 (LCD )玻璃基板的尺寸正在加大。因此,需要能高度控 制電漿離子能量及處理大面積的可擴張電漿源。 ® 用以產生電漿的電漿源有許多種。例如,典型上會利 用使用射頻的電容式耦合電漿源及電感式耦合電漿源。電 感式耦合電漿源可依據射頻電源的增加而輕易地增加離子 密度,使得適用來得到高密度電漿。 然而,因爲與電漿耦合的能量低於所供應的能量,所 以電感式耦合電漿法使用高電壓驅動線圈。因此,離子能 量很高,於是電漿反應器的內部表面可能因離子轟擊而受 損。因離子轟擊所導致之電漿反應器的內部表面之損害會 當作電漿處理污染源,以及使電漿反應器的壽命縮短。在 -5- 200818317 降低離子能量的情況中,與電漿相耦合的能量係如此的 低,而使得頻繁地關閉電漿放電。因此,難以穩定地保持 電樂。 另一方面,在電漿係使用於半導體製程中之處理’中, 遠距電漿的使用係非常有用的。例如,遠距電漿對於用來 清洗處理室或用來剝除光阻的灰化處理係有用的。然而, 因爲處理室的體積會隨著即將被處理的目標基板之尺寸增 加而增加,所以需要可遠端地供應高密度活性氣體之電漿 源。對於同時處理複數個基板的多重處理室而言,更需要 可遠端地供應高密度活性氣體之電漿源。 【發明內容】 因此,本發明係有關提供一種具有與可擴張的磁通通 道相耦合之電漿室的電漿反應器,其中電感式耦合能量的 傳輸效率增加,以穩定地保持電漿,且確定地得到高密度 電漿。 本發明也提供一種具有與可擴張的磁通通道相耦合之 基板處理室的電漿反應器,其中電感式耦合能量的傳輸效 率增加,以穩定地保持電漿,且確定地得到均勻的高密度 漿。 依據本發明的一技術樣態,提供有一種電漿反應器, 包含磁芯,用以形成介於以一距離而彼此面對的磁通入口 之間的磁通通道;磁通感應線圏,係纏繞於磁芯周圍;電 漿室,具有產生電漿及形成磁通通道的中空區域、氣體入 -6 - 200818317 口,電漿氣體係經由氣體入口而注入至中空區域中、及氣 體出口,中空區域中所產生的電漿氣體係經由氣體出口而 排放;以及電源,係連接至磁通感應線圏,用以供應交流 電力,使得磁通感應線圈的電流係由於電源而流動,且用 以產生電漿室的中空區域中之電漿的交流(AC )電位係由 於藉由磁通感應線圈,於磁通通道中所感應出的磁通量之 變化而被感應出。 依據本發明的一實施例之電漿反應器,電漿室的中空 區域可包含介於氣體入口與氣體出口之間的單一中空區 域。 依據本發明的一實施例之電漿反應器,電漿室的中空 區域可包含介於氣體入口與氣體出口之間的兩個或更多個 分離的氣流通道。 依據本發明的一實施例之電漿反應器,磁通通道可形 成於單一磁芯的磁通入口之間。 依據本發明的一實施例之電漿反應器,磁通通道可形 成於分離之磁芯的磁通入口之間。 依據本發明的一實施例之電漿反應器,電漿室可包含 金屬。 ί衣據本發明的一實施例之電漿反應器,電漿室可包括 S -電氣絕緣區,使得電力不連續性係提供於此金屬 中’以便使渦電流最小。 依據本發明的一實施例之電漿反應器,電漿室可包含 介電材料。 200818317 依據本發明的一實施例之電漿反應器,電漿室的介電 材料可包含形成於電漿室的一部分中,即將與磁通道相耦 合之介電窗。 依據本發明的一實施例之電漿反應器,電漿室可包含 冷卻水供應通道。 依據本發明的一實施例之電漿反應器,可另包含點火 感應線圈,係纏繞於磁芯周圍;以及點火電極,係電氣連 接至點火感應線圈,且設置於電漿室中。 依據本發明的一實施例之電漿反應器,可另包含設置 於電源與初級繞組之間的阻抗匹配電路,以實施阻抗匹 配。 依據本發明的一實施例之電漿反應器,電源可在沒有 可調整匹配電路之下操作。 依據本發明的一實施例之電漿反應器,可另包含處理 室’以接收及容納在電漿室中所產生的電漿氣體。 依據本發明的一實施例之電漿反應器,可另包含即將 被裝載於處理室上的結構,其中電源係與電漿反應器實際 分離’且係藉由射頻纜線而遠端地連接至電漿反應器。 依據本發明的一實施例之電漿反應器,其中被導引入 電漿室中的氣體可選自惰性氣體、反應氣體、及惰性氣體 與反應氣體的混合物之群組中。 依據本發明的一實施例之電漿反應器,磁芯的磁通入 口可包含分成兩個或更多個部分的表面,且磁通感應線圈 係沿著分開的磁通入口之分隔凹部來予以纏繞 -8- 200818317 依據本發明的一實施例之電漿反應器,磁通感應線圈 包含:第一感應線圈,係纏繞於磁通入口中的其中之一磁 通入口;第二感應線圈,係纏繞於磁通入口中的另一磁通 入口;以及分隔電源供應器,用以從電源中接收交流電 力,且藉由相位差而使交流電力分開,以將分開的交流電 力供應至第一感應線圈及第二感應線圈。 依據本發明的另一技術樣態,提供有一種電漿反應 器,包含磁芯,具有以一距離而彼此面對的磁通入口’且 .用以形成磁通通道;磁通感應線圈,係纏繞於磁芯周圍’ 且被驅動而接收來自電源的交流電力,以形成介於磁通入 口之間的磁通通道;以及基板處理室,係連接至磁通通 道,且具有產生電漿放電的中空區域,此基板處理室包 含: 基板入□,係形成於基板處理室的一側;基板支撐 架,用以支撐即將被處理於中空區域中的目標基板;氣體 入口;及氣體出口。 依據本發明的另一實施例之電漿反應器,基板支撐架 以垂直配置狀態及水平配置狀態的其中之一配置狀態來支 撐目標基板。 依據本發明的另一實施例之電漿反應器,可另包含至 少一氣體分佈板,係安裝於中空區域中,以面對基板支撐 架’且使經由氣體入口所導引入之即將被注入的處理氣體 均勻地分佈朝向基板支撐架。 依據本發明的另一實施例之電漿反應器,磁芯可包 -9- 200818317 含:第一磁芯,具有第一磁通入口,以形成第一 道;以及第二磁芯,具有第二磁通入口,以形成第 通道;基板處理室可包含:第一基板處理室,係與 通通道相耦合;以及第二基板處理室,係與第二磁 相親合。 依據本發明的另一實施例之電漿反應器,磁通 圈可包含第一感應線圈及第二感應線圈,它們係獨 繞於第一磁芯及第二磁芯周圍,以形成第一磁通通 二磁通通道。 依據本發明的另一實施例之電漿反應器,磁通 圈可包含共同感應線圈,係共同地地纏繞於第一磁 二磁芯周圍,以形成第一磁通通道及第二磁通通道 依據本發明的另一實施例之電漿反應器,第一 第二磁芯可具有整體結構及單獨結構的其中之一結^ 依據本發明的另一實施例之電漿反應器,第一 理室及第二基板處理室可具有單獨的基板入口,或 連通的基板入口。 依據本發明的另一實施例之電漿反應器,第一 理室及第二基板處理室可具有彼此相連通的基板入 第一基板處理室中所處理的目標基板係饋送至第二 理室。 依據本發明的另一實施例之電漿反應器,磁芯 入口可包含分成至少兩部分的表面,且磁通感應線 著分開的磁通入口之分隔凹部來予以纏繞。 磁通通 二磁通 第一磁 通追 感應線 立地纏 道及第 感應線 芯及第 〇 磁芯及 轉。 基板處 彼此相 基板處 口,且 基板處 的磁通 圈係沿 -10- 200818317 依據本發明的另一實施例之電漿反應器, 圈包含:第一感應線圈,係纏繞於磁通入口中 磁通入口;第二感應線圈,係纏繞於磁通入口 通入口;以及分隔電源供應器’用以從電源中 力,且藉由相位差而使交流電力分開,以將分 力供應至第一感應線圈及第二感應線圈。 依據本發明的又另一技術樣態,提供有一 器,包含:磁芯,具有以一距離而彼此面對的 且用以形成磁通通道;磁通感應線圈,係纏 圍,且被驅動而接收來自電源的交流電力,以 通入口之間的磁通通道;以及基板處理室,係 通道,且具有產生電漿放電之第一與第二分 域,此基板處理室包含第一基板入口,待處理 基板經由第一基板入口而進入及離開第一中空 基板入口,待處理的第二目標基板經由第二基 入及離開第二中空區域;第一基板支撐架,用 中空區域中的第一目標基板;以及第二基板支 支撐第二中空區域中的第二目標基板。 依據本發明的又另一實施例之電漿反應器 共同的氣體供應單元,用以將處理氣體供應至 域及第二中空區域;氣體入口,係連接至共同 單元;第一氣體出口與第二氣體出口,係分別 區域及第二中空區域相連通;以及氣體分佈板 裝成面對第一中空區域中的第一基板支撐架及 磁通感應線 的其中之一 中的另一磁 接收交流電 開的交流電 種電漿反應 磁通入口, 繞於磁芯周 形成介於磁 連接至磁通 開的中空區 的第一目標 區域;第二 板入口而進 以支撐第一 撐架,用以 ,可另包含 第一中空區 的氣體供應 與第一中空 ,係分別安 第二中空區 -11 - 200818317 域中的第二基板支撐架,且使經由氣體入口所導引入之即 將被注入的處理氣體均勻地分佈朝向第一基板支撐架及第 二基板支撐架。 依據本發明的又另一實施例之電漿反應器,可另包含 第一氣體入口與出口,係與第一中空區域相連通;第一氣 體入口與出口,係與第二中空區域相連通;以及氣體分佈 板,係分別安裝成面對第一中空區域中的第一基板支撐架 及第二中空區域中的第二基板支撐架,且使經由第一氣體 入口及第二氣體入口所導引入之即將被注入的處理氣體均 勻地分佈朝向第一基板支撐架及第二基板支撐架。 依據本發明的又另一實施例之電漿反應器,磁芯的磁 通入口可包含分成多個部分的表面,且磁通感應線圈係沿 著分開的磁通入口之分隔凹部來予以纒繞。 依據本發明的又另一實施例之電漿反應器,磁通感應 線圈可包含第一感應線圈,係纏繞於磁通入口中的其中之 一磁通入口;第二感應線圈,係纏繞於磁通入口中的另一 磁通入口;以及分隔電源供應器,用以從電源中接收交流 電力,且藉由相位差而使交流電力分開,以將分開的交流 電力供應至第一感應線圈及第二感應線圏。 【實施方式】 爲j充分了解藉由下面實施例所達成之本發明的優點 及目的,以下的說明必須參照附圖及圖式中所含有的說 明。對於熟習此項技術者而§ ’所揭露的實施例之不同變 -12- 200818317 型將顯然可知,但不意謂詳盡的,或限制本發明於所揭露 的確切形式。因此,爲了清楚說明起見,圖式中之元件的 形狀會放大。應該要注意的是,類似參考標號會指配給相 同或類似的元件。此外,在本發明的下面說明中,若已知 結構的詳細說明及操作會混淆本發明的標的物,則將省略 其詳細說明。 (實施例) 在下文中,本發明的實施例將參照附圖來予以說明, 以詳細說明依據本發明的實施例之具有與磁通通道相耦合 之電漿室的電漿反應器。 圖1爲依據本發明的一實施例之電漿反應器的立體 圖;圖2A及2B爲圖1的電漿反應器之平視剖面圖及側視 剖面圖。 參照圖式’依據本發明的一實施例之電漿反應器10 包含具有本體21的電漿室20,以形成產生電漿的中空區 域24。包含磁芯3 1及纏繞於磁芯3 1周圍的磁通感應線圈 32之變壓器30係安裝於電漿室2〇中。磁通感應線圈32 相當於變壓器3 0的初級繞組。 磁芯3 1形成介於以一距離而彼此面對的磁通入口 3 4 之間的磁通通道。電漿室20係與磁通道相耦合,使得磁 通量自產生電漿的中空區域24進入及離開。電漿室20包 括氣體入口 22’氣體係經由氣體入口 22而注入至中空區 域24中;及氣體出口 23,中空區域24中所產生的電漿氣 -13 - 200818317 體係經由氣體出口 23而排放。磁通感應線圈32係電連接 至電源3 3,以供應交流(AC )電力。 當由於電源3 3而使磁通感應線圈3 2的電流流動時, 用以產生電漿室20的中空區域24中之電漿的交流電位係 由於藉由磁通感應線圈3 2,於磁通通道3 4中所感應出的 磁通量之變化而被感應出。所感應出的交流電力實際上完 成變壓器3 0的次級電路。 Φ 電源3 3係藉由可在無阻抗匹配單元之下,控制輸出 電壓的射頻(RF )電源來予以實施。另一種是,電源3 3 係藉由具有阻抗匹配單元的射頻電源來予以實施。 被導引入電漿室20中的氣體可選自惰性氣體、反應 氣體、及惰性氣體與反應氣體的混合物之群組中。可選擇 適用於電漿處理的其他氣體。 圖2C例舉電漿反應器的點火電路之結構。 參照圖2 C,點火電極4 0係設置於電漿室2 0的中空 • 區域24中。點火電極40係電連接至纒繞於磁芯3 1周圍 的點火感應線圏41。 當高電壓脈衝在電漿放電的初始階段自電源3 3被施 加於初級繞組3 2時,高電壓被感應至點火感應線圈41, 使得排放係在點火電極40之間實施,且實施電漿點火。 在點火處理之後,點火電極40及點火感應線圈4 1彼此會 電氣中斷,使得點火電極40並未用來當作電極使用。另 外,在點火處理之後,點火電極40及點火感應線圈4 1彼 此不會電氣中斷,使得點火電極40用來當作電極使用。 -14 - 200818317 電黎室20係由如鋁、不鏽鋼、銅及類似物的金屬、 如電鑛錫及錬電鍍鋁的塗佈金屬、或耐火金屬所組成。特 別是’電發室20包括介電窗區域(未顯示出),其中與 磁通通道34相耦合的部分係由介電材料所組成。介電窗 區域可以薄狹縫的形式來予以形成,使得交錯配置介電窗 區域及金屬。 另一種選擇是,電漿室20可完全由如石英、陶瓷、 及類似物的介電材料所組成,或可由適用於實施希望的電 漿處理之另一材料所組成。當電漿室20包括金屬時,爲 了使渦電流最小,電漿室20會包括至少一電氣絕緣區 (未顯示出),使得電力不連續性係提供於此金屬中。 雖然未顯示於此圖式中,但是電漿室20包括適當位 置中的冷卻水供應通道。例如,冷卻水供應通道可安裝於 電漿室20與磁芯31之間。 圖3例舉電漿反應器係安裝於處理室上的一例。 參照圖3,電漿反應器1 〇係安裝於處理室40中,以 將電漿遠端地供應至處理室40。例如,電漿反應器1 〇可 安裝於處理室40的頂部之外側。電漿反應器1 0自射頻產 生器42中接收射頻,當作電源,且藉由氣體供應系統 (未顯示出)來接收氣體,以產生活性氣體。 處理室40容納藉由電漿反應器1 〇所產生的活性氣 體,以實施預定的電漿處理。處理室40可例如爲用以實 施沈積製程的沈積室、用以實施飩刻製程的蝕刻室、或用 以剝除光阻的灰化室。處理室4 0可爲用以實施不同的半 -15- 200818317 導體製程之電漿處理室。 特別是,電漿反應器1 〇及供應射頻之當作電源的射 頻產生器42係彼此分離。亦即,電漿反應器1 〇爲安裝於 處理室40上的固定型式,而射頻產生器42爲與電漿反應 器10分離的分離型式。射頻產生器42的輸出端與電漿反 應器1 0的射頻輸入端係藉由射頻纜線44而彼此遠端地連 接。因此,與射頻產生器及電漿反應器係彼此整合成同一 單元之習知結構不同的是,電漿反應器10係輕易地安裝 於處理室4 0中,且可改善系統的維護及管理。 依據上述的實施例,電漿室20的本體21包括介於氣 體入口 22與氣體出口 23之間的單一中空區域24。當保持 以上所提及的特徵時,可進行下面不同的變型。在下面的 變型中,與上述實施例的元件相同之元件係藉由相同參考 標號來予以指配,且將省略其說明。 圖4爲例舉修改的電漿反應器之一例的立體圖,而圖 5 A及5B爲圖4的電漿反應器之平視剖面圖及側視剖面 圖。 參照圖式,在作爲變型的電漿反應器1 〇a中,磁芯3 1 及磁通感應線圈3 2係與電漿室2 0相親合,而成爲一對。 對於熟習此項技術者而言,將了解到的是,此類變型 可擴張來產生大量的電漿。可擴張的變型係例舉於圖6至 1 3中。 如圖7中所例舉,磁芯3 1及磁通感應線圈3 2可與電 漿室20的兩側相耦合。圖8及9例舉磁芯3 1係藉由E型 -16- 200818317 芯來予以實施的一例,及磁通感應線圈3 2係纏繞於不同 位置周圍之一例。在圖1 〇中,磁芯3 1係藉由PM型芯來 予以實施。 圖1 1例舉電漿室20爲特別情況的圓柱形之一例。圖 12A及12B爲具有圓柱形電漿室20的電漿反應器10g之 平視剖面圖及側視剖面圖。磁芯31可藉由具有適用於圓 柱形電漿室20的複數個輪輻(sp〇kes)之環形芯來予以 實施。輪輻可交錯地予以配置,或彼此對準,如圖1 3 A及 1 3 B中所例舉的。 圖1 4爲例舉依據本發明的另一實施例之電漿反應器 的立體圖。圖15A及15 B爲圖14的電漿反應器之平視剖 面圖及側視剖面圖。參照圖式,依據本發明的另一實施例 之電漿反應器100具有與依據上述實施例之電漿反應器10 的結構實質上相同的結構。然而,電漿室120包括環形本 體12 1。因此,兩個分隔的氣體流道係形成於氣體入口 122與氣體出口 123之間,且磁芯131於各自的氣體流道 處係與環形本體1 2 1相連接,使得磁通入口 1 3 4彼此面 對。磁通感應線圏1 3 2係纒繞於磁芯1 3 1周圍 圖1 6爲例舉修改的電槳反應器之一例的透視圖,圖 1 7A及1 7B爲圖1 6的電漿反應器之分解立體圖及側視剖 面圖。參照圖式,在此變型中,磁芯13 1係藉由PM芯來 予以實施。 與上述實施例及其不同的修改類似的是,磁通通道可 形成於單一磁芯的磁通入口之間,或不同且分開之磁芯的 -17- 200818317 磁通入口之間。除了以上的變型之外,可有其他的變型, 且熟習此項技術者從本發明的精神中了解到此類變型。 圖1 8爲例舉依據本發明的又另一實施例之電漿反應 器的立體圖,圖1 9爲圖1 8的電漿反應器之分解立體圖, 而圖20爲圖18的電漿反應器之剖面圖。 參照圖1 8至2·0,依據本發明的又另一實施例之電漿 反應器包括基板處理室210,以處理待處理之目標基板 220的電漿。基板處理室210包括產生電漿放電的中空區 域2 1 1。用於目標基板220的入口及出口之基板入口 2 1 4 係設置於基板處理室2 1 0的一側,而用以支撐中空區域 211中的目標基板220之基板支撐架213係設置於目標基 板220的下側中。例如,目標基板220爲用以製造半導體 裝置的矽晶圓基板,或用以製造液晶顯示器(LCD)及電 漿顯示器的玻璃基板。基板處理室210係由諸如鋁、不鏽 鋼、銅等等的金屬、諸如電鍍鋁、鎳電鍍鋁等等的塗佈金 屬、或耐火金屬所組成。另一種選擇是,基板處理室210 可完全由諸如石英及陶瓷的介電材料所組成,或可由適用 於實施所想要的電漿處理之另一材料所組成。當基板處理 室2 1 0包括金屬時,爲了使渦電流最小,基板處理室2 1 〇 會包括至少一電氣絕緣區(未顯示出),使得電力不連續 性係提供於此金屬中。基板處理室2 1 0係安裝於磁感應芯 240的兩磁通入口 232與234之間,以與藉由磁感應芯 240所形成的磁通通道236相親合。磁芯230具有C型結 構’其中兩磁通入口 2 3 2與2 3 4係彼此相隔部分距離,以 -18- 200818317 彼此面對,且用以形成磁通通道23 6。ί 繞於磁芯2 3 0周圍,且係電性連接至賃 244來予以驅動,以供應交流(AC )電 與234的磁通入口表面231與23 3較佳 基板處理室210的頂部表面與底部表面 置於基板支撐架213上的目標基板220 通道236中。此外,磁感應芯240被驅 2 1 1中所感應出的時變磁場及電場係均 域21 1上。因此,在中空區域21 1上得 漿。 電源244將射頻經由阻抗匹配單元 應芯240。然而,電源244可藉由能在 下,控制輸出電壓的射頻電源來予以] 213係連接至電源246,以經由阻抗匹| 壓電力,而電氣偏壓。電源246可藉由 元之下,控制輸出電壓的射頻電源來予 例中’基板支撐架2 1 3具有單一偏壓結 撐架213可修改成藉由雙重頻率所偏壓 收不同的射頻而偏壓。 基板處理室210包括氣體入口 216 例如,氣體入口 2 1 6及氣體出口 2 1 8係 理室2 1 0的上端及下端,使得氣體從中 流至下側。爲了使氣體能更均勻地流動 體分佈板2 5 0可安裝於中空區域2〗i的 兹感應芯240係纒 I源244且由電源 力。磁通入口 232 爲具有等於或大於 之面積。因此,設 係完全容納於磁通 動而使得中空區域 勻地分佈於中空區 到均勻的高密度電 242而供應至磁感 無阻抗匹配單元之 t施。基板支撐架 ΪΒ單元248供應偏 能在無阻抗匹配單 以實施。在此實施 構。然而,基板支 的結構,其中會接 及氣體出口 218。 分別設置於基板處 空區域2 1 1的上側 ,一個或更多個氣 上側中,以面對基 -19- 200818317 板支撐架2 1 3。經由氣體入口 2 1 6進入的處理氣體係藉由 一個或更多個氣體分佈板2 5 0而均勻地分佈,以朝向基板 支撐架213注入。包括氣體入口 216、氣體出口 218、及 一個或更多個氣體分佈板25〇的氣體供應與排放結構可修 改成使氣體能在中空區域2 1 1中流動,以產生均勻電漿。 供應至基板處理室2 1 0的處理氣體係選自惰性氣體、反應 氣體、及惰性氣體與反應氣體的混合物之群組中。可選擇 處理目標基板220之電漿所需的其他氣體。 雖然未顯示於圖式中,但是電漿反應器包括用以防止 基板處理室210、磁芯230、及磁感應芯240過熱之冷卻 系統。 當處理氣體自氣體源(未顯示出)經由氣體入口 216 而注入至中空區域21 1,且自電源244供應射頻,使得驅 動磁感應芯240時,用以產生基板處理室210的中空區域 211中之電漿的交流電位係由於於磁通通道23 6中所感應 出的磁通量之變化而被感應出,以實施電漿放電。因爲磁 通入口 232與234的磁通入口表面231與233具有等於或 大於基板處理室210的頂部表面與底部表面之面積’所以 基板處理室210的中空區域211中所感應出的時變磁場及 電場係均勻地產生於中空區域2 1 1上。因此’在中空區域 211上,完全產生均勻的高密度電漿,使得目標基板220 爲均勻地電漿處理。 圖21爲例舉電漿反應器的透視圖,其中修改基板入 口的配置,而圖22爲電漿反應器的立體圖’其中垂直地 -20- 200818317 修改基板處理室。 參照圖2 1 ’依據本發明的此實施例之電漿反應器可組 構爲具有與在有關基板入口 214的上述例子中(見圖 19),基板處理室210與磁芯230彼此相耦合的方向不同 之方向的耦合結構。如圖22中所例舉的,依據本發明的 此實施例之電漿反應器可被組構成使得目標基板220係在 以垂直配置狀態的基板處理室2 1 0中來予以處理,而基板 處理室210與磁芯23 0可垂直地予以配置,使得以垂直配 置狀態的目標基板220可進入及離開基板處理室210。 圖23至26例舉具有兩個基板處理室之電漿反應器的 不同變型。 如圖23及24中所例舉,依據本發明的此實施例之電 漿反應器可被組構成使得並列配置或累積兩個基板處理室 210a與210b,及兩個磁芯230a與230b,以處理即將並列 處理的兩個目標基板220a與220b。另外,如圖25中所例 舉的,電漿反應器可包括具有兩對對稱的磁通入口 236、 237、238、與 239,及安裝於磁通入口 236、237、238、 與239中的兩個基板處理室210a與210b之磁芯230c,使 得兩個目標基板220a與220b係並列地做處理。 因而,本發明之電漿反應器的不同變型係藉由使用一 個或更多個磁芯,以形成兩個或更多個磁通通道及各自的 基板處理室係與各自的磁通通道相耦合,使得兩個或更多 個目標基板係並列地做處理而達成。在此情況中,纏繞於 一個或更多個磁芯周圍的感應線圈係單獨用於各自的磁 -21 - 200818317 芯,以對應於各自的通通通道(見圖23及24) ’或單一 感應線圈係共同纏繞於兩個或更多個磁芯周圍。另外,在 具有兩個或更多個磁通通道的磁芯之情況中(見圖25), 單一感應線圈可纏繞於磁芯周圍,以由兩個或更多個磁通 通道所共有。 如圖26中所例舉者,本發明的電漿反應器可被組構 成使得兩個或更多個基板處理室210a與210b係串聯連接 至磁芯230a與230b,以依序地實施兩個處理。兩個基板 處理室210a與210b包括彼此相連通的基板入口 25 5。前 基板處理室210a包括基板入口 214a,目標基板220經由 基板入口 214a而自外部載入,後基板處理室210b包括基 板入口(未顯示出),目標基板220經由此基板入口而卸 載。因此,第一處理係在前基板處理室2 1 0a中實施,而 第二處理係在後基板處理室2 1 Ob中實施。第一與第二處 理爲彼此不同的基板處理。如所述,兩個或更多個基板處 理室210a與210b可串聯地予以配置,以依序處理基板處 理。不需說的是,基板饋入裝置必須設置於依序的基板處 理室210a與210b之間,以饋入目標基板220。 圖27及28爲例舉依據本發明的又另一實施例之電漿 反應器的立體圖及剖面圖,而圖29爲例舉經修改的電漿 反應器之剖面圖,其中基板支撐架彼此面對。 參照圖27及28,依據本發明的又另一實施例之電漿 構的 結件 的元 器同 應相 反關 漿有 電略 之省 例將 施, 實此 的因 述。 敘態 先組 首與 據構 依結 與的 有同 具相 器上 應質 反實 -22- 200818317 說明。然而,爲了同時處理兩個目標基板220a與220b, 此實施例中的電漿反應器包括基板處理室260,其具有兩 個單獨的第一中空區域261a與第二中空區域261b,及分 別形成於第一中空區域261a與第二中空區域261b中的第 一基板入口 264a與第二基板入口 264b。 基板處理室260係藉由氣體供應單元262而分隔成第 一中空區域261a與第二中空區域261b。氣體供應單元 262將經由氣體入口 266所注入的處理氣體供應至第一中 空區域261a與第二中空區域261b。基板處理室260包括 分別與第一中空區域261a與第二中空區域261b相連通的 第一氣體出口 268a與第二氣體出口 268b。第一氣體出口 268a與第二氣體出口 268b分別具有基板支撐架263a與 263b。在第一中空區域261a與第二中空區域261b中,一 個或更多個氣體分佈板250a與250b係安裝爲面對基板支 撐架263a與263b。經由的氣體入口 266進入的處理氣體 係藉由一個或更多個氣體分佈板25 0a與250b而均勻地分 佈,以朝向基板支撐架263 a與263b注入。 第一基板支撐架263a與第二基板支撐架263b係分別 安裝於與第一中空區域261a與第二中空區域261b中之磁 芯230的磁通入口 232與234對應的側壁。另一種是,如 圖29中所例舉,分割區267係設置於基板處理室2 60的 中央區域,且第一基板支撐架263a與第二基板支撐架 263b接觸分割區267爲可行的。在此情況中,第一中空區 域261a與第二中空區域261b係形成爲具有各自的氣體入 -23- 200818317 口 266a與266b,而氣體分佈板250a與250b係分別安裝 於第一中空區域261a與第二中空區域26ib中,以面對第 一基板支撐架263a與第二基板支撐架263b。第一基板支 撐架263a與第二基板支撐架263b經由各自的組抗匹配單 兀2 42a與242b,而自電源244a與244b中接收偏壓電 力’而電氣偏壓。 圖30及31爲例舉具有多重分隔磁通入口的磁通入口 表面之結構的磁芯之立體圖。 參照圖30及31,本發明的電漿反應器中所使用的磁 芯2 3 0係組構成使得磁通入口 2 3 2與2 3 4的磁通入口表面 213與23 3係分隔成兩個或更多個部分,且感應線圈240 係沿著所分隔的磁通入口 2 3 2與2 3 4的分隔凹部2 8 0來予 以纏繞。例如,磁通入口 232與234的分隔結構具有如圖 3 〇中所例舉的四個分隔部分,或如圖3 1中所例舉的十六 個分隔部分。 圖3 2爲磁通入口的部分立體圖,其例舉將感應線圈 纒繞於磁通入口周圍之方法的一例。 如圖32中所例舉者,感應線圈240可以交叉形狀, 沿著所分隔的磁通入口 232與234的分隔凹部280來予以 纏繞。在此情況中,帶型繞組可用來當作感應線圈240。 此外,感應線圈240可包括纒繞於一磁通入口 232的周圍 之第一感應線圈240a,及纏繞於另一磁通入口 234的周圍 之第二感應線圈240b,且分隔電源供應器247將藉由相位 差所分開的電力供應至第一感應線圈240a與第二感應線 -24 - 200818317 圈240b。例如,分隔電源供應器247藉由180度的相位差 來分隔電力,以供應分隔電力。 當分隔電力藉由相位差而供應至第一感應線圈240a 與第二感應線圈240b時,第一感應線圈240a與第二感應 線圈240b用來當作電容式耦合電極。因此,在基板處理 室的中空區域中,電漿係由於電感式耦合與電容式耦合來 予以產生。因此可得到均勻且高密度的電漿。在此情況 中,因爲電容式耦合能量係由控制相位差來予以控制,所 以可調整基板處理室的中空區域中所產生之電漿的離子能 量。此情況可應用於本發明之又另一實施例及變型。 如以上所述,依據本發明之具有與磁通通道相耦合的 電漿室之電漿反應器,磁芯的磁通入口之表面係設置於電 漿室的中空區域中,使得中空區域中所產生的電漿非常均 勻且磁通量的損失很小。因此,電感式耦合能量的傳輸速 率很高。因此,確定地得到均勻且高密度的電漿。此外, 在額外用來當作電容式耦合方法之結構中,可輕易地調整 電漿的離子能量。再者,電漿反應器的整體結構具有產生 大尺寸電漿的結構,且具有良好的可擴張性。 本發明已使用較佳範例的實施例來予以說明。然而, 要了解到的是,本發明的範圍不受限於揭露的實施例。反 之,意謂本發明的範圍包含熟習此項技術者能使用目前已 知或未來的技術及等效內之不同修飾及其他配置。因此, 應該給予申請專利範圍的範圍最廣的解譯,以包含所有此 種修飾及類似配置。 -25- 200818317 【圖式簡單說明】 對於一般熟習此項技術者而言,本發明之以上及其他 的特性及優點將藉由詳細說明參照附圖的較佳實施例而變 成更顯然可知,其中: 圖1係依據本發明的一實施例之電漿反應器的立體 圖; # 圖2A及2B係圖1的電漿反應器之平視剖面圖及側視 剖面圖; 圖2C例舉電漿反應器的點火電路之結構; 圖3例舉電漿反應器係安裝於處理室上的一例; 圖4係例舉經修改的電漿反應器之一例的立體圖; 圖5 A及5 B係圖4的電漿反應器之平視剖面圖及側 視剖面圖; 圖6至1 0例舉磁芯與初級繞組之間之不同變型的耦 • 合; 圖11係例舉具有圓柱形產生器本體之電漿反應器的 立體圖; 圖1 2A及1 2B係圖1 1的電漿反應器之平視剖面圖及 側視剖面圖; 圖13A及13B例舉具有輪輻的環形芯之安裝的變型; 圖1 4係例舉依據本發明的另一實施例之電漿反應器 的立體圖; 圖15A及15B係圖14的電漿反應器之平視剖面圖及 -26- 200818317 側視剖面圖; 圖1 6係例舉經修改的電漿反應器之一例的立體圖; 圖17A及17B係圖16的電漿反應器之分解立體圖及 側視剖面圖; 圖1 8係例舉依據本發明的又另一實施例之電漿反應 器的立體圖; 圖19係圖18的電漿反應器之分解立體圖; 圖2 0係圖1 8的電漿反應器之剖面圖; 圖2 1係例舉電漿反應器的立體圖,其中修改基板入 口的配虞; 圖22係電漿反應器的立體圖,其中垂直地修改基板 處理室; 圖23至26例舉具有兩個基板處理室的電漿反應器之 不同的變型; 圖27及28係例舉依據本發明的又另一實施例之電漿 反應器的立體圖及剖面圖; 圖29係例舉經修改的電漿反應器之剖面圖,其中基 板支撐架彼此面對; 圖30及31係例舉具有多重分隔磁通入口的表面之結 構的磁芯之立體圖;以及 圖3 2係磁通入口的部分立體圖,其例舉將感應線圈 纒繞於磁通入口周圍之方法的一例。 【主要元件符號說明】 - 27- 200818317 電漿反應器 :電漿反應器 =電漿反應器 =電漿反應器 :電漿反應器 :電漿反應器 :電漿反應器 電漿室 本體 氣體入口 氣體出口 中空區域 變壓器 磁芯 磁通感應線圈 電源 磁通入口 點火電極 點火感應線圏 射頻產生器 射頻纜線 ’·電漿反應器 a :電漿反應器 :電漿室 200818317 環形本體 氣體入口 氣體出口 磁芯 磁通感應線圈 磁通入口 基板處理室 :基板處理室 _•基板處理室 中空區域 基板支撐架 基板入口 :基板入口 氣體入口 氣體出口 目標基板 :目標基板 =目標基板 磁芯 :磁芯 :磁芯 :磁芯 磁通入口表面 磁通入口 -29- 200818317 232a :磁通入口 232b :磁通入口 23 3 :磁通入口表面 234 :磁通入口 2 3 4 a :磁通入口 234b :磁通入口 23 6 :磁通通道 Φ 237 ··磁通入口 23 8 :磁通入口 23 9 :磁通入口 240 :磁感應芯 240a :第一感應線圈 240b :第二感應線圏 242 :阻抗匹配單元 ' 242a :阻抗匹配單元 _ 242b :阻抗匹配單元 244 :電源 2 4 4 a :電源 244b :電源 246 :電源 247 :分隔電源供應器 248 :阻抗匹配單元 250a:氣體分佈板 25 0b :氣體分佈板 200818317200818317 IX. INSTRUCTIONS OF THE INVENTION [Technical Fields of the Invention] The present invention relates to a plasma source for generating an active gas including ions, radicals, atoms and molecules by plasma discharge to carry out electricity of solids, powders and gases. Slurry treatment, and more particularly, is directed to a plasma reactor having a plasma chamber coupled to a flux passage. # [Prior Art] Plasma discharge systems are used for gas excitation to generate reactive gases such as ions, free radicals, atoms and molecules. Reactive gas systems are used in a variety of applications and are typically used in semiconductor processes such as uranium engraving, deposition, and cleaning. Recently, the size of crystal or liquid crystal display (LCD) glass substrates used to fabricate semiconductor devices is increasing. Therefore, there is a need for an expandable plasma source that is highly controllable for plasma ion energy and for processing large areas. ® There are many types of plasma sources used to generate plasma. For example, a capacitively coupled plasma source using RF and an inductively coupled plasma source are typically utilized. The inductively coupled plasma source can easily increase the ion density depending on the increase in the RF power source, making it suitable for obtaining high density plasma. However, because the energy coupled to the plasma is lower than the energy supplied, the inductively coupled plasma method uses a high voltage drive coil. Therefore, the ion energy is so high that the internal surface of the plasma reactor may be damaged by ion bombardment. Damage to the internal surface of the plasma reactor due to ion bombardment can be used as a source of plasma treatment contamination and a shortened life of the plasma reactor. In the case of -5 - 200818317 reducing the ion energy, the energy coupled to the plasma is so low that the plasma discharge is frequently turned off. Therefore, it is difficult to stably maintain electric music. On the other hand, in the process of using plasma in a semiconductor process, the use of remote plasma is very useful. For example, remote plasma is useful for ashing processes used to clean the process chamber or to strip photoresist. However, since the volume of the processing chamber increases as the size of the target substrate to be processed increases, there is a need for a plasma source that can supply a high density of reactive gas at a remote end. For multiple processing chambers that process multiple substrates simultaneously, there is a greater need for a plasma source that can supply high density reactive gases remotely. SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a plasma reactor having a plasma chamber coupled to an expandable flux passage, wherein transmission efficiency of inductive coupling energy is increased to stably maintain plasma, and A high density plasma is obtained with certainty. The present invention also provides a plasma reactor having a substrate processing chamber coupled to an expandable flux passage, wherein the transmission efficiency of the inductive coupling energy is increased to stably maintain the plasma, and a uniform high density is surely obtained. Pulp. According to a state of the present invention, there is provided a plasma reactor comprising a magnetic core for forming a magnetic flux path between magnetic flux inlets facing each other at a distance; a magnetic flux sensing coil, It is wound around the magnetic core; the plasma chamber has a hollow region for generating plasma and forming a magnetic flux passage, and the gas is introduced into the mouth of -6 - 200818317, and the plasma gas system is injected into the hollow region through the gas inlet, and the gas outlet. The plasma gas system generated in the hollow region is discharged through the gas outlet; and the power source is connected to the magnetic flux induction coil for supplying alternating current power, so that the current of the magnetic flux induction coil flows due to the power source, and is used for The alternating current (AC) potential of the plasma in the hollow region where the plasma chamber is generated is induced by the change in the magnetic flux induced in the flux passage by the magnetic flux induction coil. In accordance with an embodiment of the plasma reactor of the present invention, the hollow region of the plasma chamber may comprise a single hollow region between the gas inlet and the gas outlet. In accordance with an embodiment of the plasma reactor of the present invention, the hollow region of the plasma chamber may comprise two or more separate gas flow passages between the gas inlet and the gas outlet. According to the plasma reactor of an embodiment of the present invention, the magnetic flux passage can be formed between the magnetic flux inlets of the single magnetic core. According to a plasma reactor of an embodiment of the present invention, a magnetic flux passage can be formed between the magnetic flux inlets of the separated magnetic cores. According to a plasma reactor of an embodiment of the invention, the plasma chamber may comprise a metal. In accordance with an embodiment of the plasma reactor of the present invention, the plasma chamber may include an S-electrical insulation region such that a power discontinuity is provided in the metal to minimize eddy currents. According to a plasma reactor of an embodiment of the invention, the plasma chamber may comprise a dielectric material. 200818317 In accordance with an embodiment of the plasma reactor of the present invention, the dielectric material of the plasma chamber may comprise a dielectric window formed in a portion of the plasma chamber, i.e., coupled to the magnetic channel. According to a plasma reactor of an embodiment of the present invention, the plasma chamber may include a cooling water supply passage. A plasma reactor according to an embodiment of the present invention may further comprise an ignition induction coil wound around the magnetic core; and an ignition electrode electrically connected to the ignition induction coil and disposed in the plasma chamber. A plasma reactor according to an embodiment of the present invention may further comprise an impedance matching circuit disposed between the power source and the primary winding to perform impedance matching. In accordance with a plasma reactor in accordance with an embodiment of the present invention, the power supply can operate without an adjustable matching circuit. A plasma reactor in accordance with an embodiment of the present invention may additionally include a processing chamber ' to receive and contain the plasma gas produced in the plasma chamber. A plasma reactor according to an embodiment of the present invention may further comprise a structure to be loaded on the processing chamber, wherein the power source is physically separated from the plasma reactor and is remotely connected to the RF cable Plasma reactor. According to a plasma reactor of an embodiment of the present invention, the gas introduced into the plasma chamber may be selected from the group consisting of an inert gas, a reaction gas, and a mixture of an inert gas and a reaction gas. According to the plasma reactor of an embodiment of the present invention, the magnetic flux inlet of the magnetic core may include a surface divided into two or more portions, and the magnetic flux induction coil is provided along the partitioning recess of the separate magnetic flux inlet. Winding-8-200818317 According to an embodiment of the present invention, a magnetic flux induction coil includes: a first induction coil wound around one of magnetic flux inlets in a magnetic flux inlet; and a second induction coil Another magnetic flux inlet wound in the magnetic flux inlet; and a separate power supply for receiving alternating current power from the power source, and separating the alternating current power by the phase difference to supply the separated alternating current power to the first induction a coil and a second induction coil. According to another aspect of the present invention, there is provided a plasma reactor comprising a magnetic core having magnetic flux inlets ' facing each other at a distance. Forming a magnetic flux path; a magnetic flux induction coil wound around the magnetic core' and driven to receive AC power from a power source to form a magnetic flux path between the magnetic flux inlets; and a substrate processing chamber Connected to the magnetic flux channel and having a hollow region for generating a plasma discharge, the substrate processing chamber comprising: a substrate into the □, formed on one side of the substrate processing chamber; and a substrate support frame for supporting the processing to be processed in the hollow region Target substrate; gas inlet; and gas outlet. According to another embodiment of the present invention, in the plasma reactor, the substrate support frame supports the target substrate in one of a vertically disposed state and a horizontally disposed state. A plasma reactor according to another embodiment of the present invention may further comprise at least one gas distribution plate installed in the hollow region to face the substrate support frame 'and to be introduced via the gas inlet to be injected The process gas is evenly distributed toward the substrate support. According to another embodiment of the present invention, a magnetic reactor can include a first magnetic core having a first magnetic flux inlet to form a first track, and a second magnetic core having a first a magnetic flux inlet to form a first channel; the substrate processing chamber may include: a first substrate processing chamber coupled to the through channel; and a second substrate processing chamber in contact with the second magnetic phase. In a plasma reactor according to another embodiment of the present invention, the flux ring may include a first induction coil and a second induction coil, which are wound around the first core and the second core to form the first magnetic The two flux channels are available. In a plasma reactor according to another embodiment of the present invention, the flux ring may include a common induction coil that is commonly wound around the first magnetic two core to form a first magnetic flux passage and a second magnetic flux passage. According to another embodiment of the present invention, in a plasma reactor, the first second magnetic core may have one of a unitary structure and a separate structure. The plasma reactor according to another embodiment of the present invention, the first principle The chamber and the second substrate processing chamber can have separate substrate inlets, or connected substrate inlets. According to another embodiment of the present invention, in the plasma reactor, the first chamber and the second substrate processing chamber may have the substrate in communication with each other into the first substrate processing chamber to process the target substrate to be fed to the second chamber. . In accordance with another embodiment of the plasma reactor of the present invention, the core inlet may include a surface divided into at least two portions, and the magnetic flux senses a separate recess of the magnetic flux inlet to be wound. Magnetic flux two magnetic flux first magnetic flux tracking induction line standing winding and the first sensing core and the first magnetic core and rotating. a substrate at the substrate at the substrate, and the magnetic flux ring at the substrate is along -10- 200818317. According to another embodiment of the present invention, the plasma reactor comprises a first induction coil wound in the magnetic flux inlet. a magnetic flux inlet; a second induction coil wound around the magnetic flux inlet opening; and a separation power supply 'for transmitting power from the power source, and separating the alternating current power by the phase difference to supply the component to the first Induction coil and second induction coil. According to still another aspect of the present invention, there is provided a device comprising: a magnetic core having a distance facing each other and forming a magnetic flux path; the magnetic flux induction coil being wound and driven Receiving AC power from a power source to pass a magnetic flux path between the inlets; and a substrate processing chamber, a channel, and having first and second domains that generate a plasma discharge, the substrate processing chamber including a first substrate inlet, The substrate to be processed enters and exits the first hollow substrate inlet through the first substrate inlet, and the second target substrate to be processed enters and leaves the second hollow region via the second substrate; the first substrate support frame uses the first in the hollow region a target substrate; and a second substrate support supporting the second target substrate in the second hollow region. A gas supply unit common to a plasma reactor according to still another embodiment of the present invention, for supplying a processing gas to a domain and a second hollow region; a gas inlet connected to a common unit; a first gas outlet and a second a gas outlet, wherein the respective regions are in communication with the second hollow region; and the gas distribution plate is mounted to face another magnetic receiving alternating current in one of the first substrate support frame and the magnetic flux sensing line in the first hollow region An alternating current plasma reactive magnetic flux inlet, forming a first target region around the magnetic core around the hollow region magnetically connected to the magnetic flux opening; and the second plate inlet to support the first supporting frame for Further, the gas supply of the first hollow zone and the first hollow are respectively connected to the second substrate support frame in the second hollow zone -11 - 200818317 domain, and the process gas to be injected introduced through the gas inlet is introduced Uniformly distributed toward the first substrate support frame and the second substrate support frame. A plasma reactor according to still another embodiment of the present invention may further include a first gas inlet and an outlet connected to the first hollow region; and a first gas inlet and an outlet connected to the second hollow region; And a gas distribution plate installed to face the first substrate support frame in the first hollow region and the second substrate support frame in the second hollow region, respectively, and guided through the first gas inlet and the second gas inlet The process gas to be injected is evenly distributed toward the first substrate support frame and the second substrate support frame. According to a plasma reactor according to still another embodiment of the present invention, the magnetic flux inlet of the magnetic core may include a surface divided into a plurality of portions, and the magnetic flux induction coil is wound along the separation concave portion of the separate magnetic flux inlet. . In a plasma reactor according to still another embodiment of the present invention, the magnetic flux induction coil may include a first induction coil wound around one of the magnetic flux inlets in the magnetic flux inlet; and the second induction coil is wound around the magnetic a magnetic flux inlet in the inlet; and a separate power supply for receiving AC power from the power source, and separating the AC power by a phase difference to supply the separated AC power to the first induction coil and The second induction line is 圏. [Embodiment] The advantages and objects of the present invention achieved by the following examples are fully understood, and the following description must be made with reference to the accompanying drawings and drawings. It will be apparent to those skilled in the art that the present invention is not limited to the specific form of the invention disclosed herein. Therefore, the shape of the elements in the drawings will be exaggerated for clarity of explanation. It should be noted that like reference numerals will be assigned to the same or similar elements. Further, in the following description of the present invention, if the detailed description and operation of the structure will be confused with the subject matter of the present invention, the detailed description will be omitted. (Embodiment) Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings to explain in detail a plasma reactor having a plasma chamber coupled to a magnetic flux passage according to an embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a perspective view of a plasma reactor in accordance with an embodiment of the present invention; Figures 2A and 2B are a plan cross-sectional view and a side cross-sectional view of the plasma reactor of Figure 1. Referring to the drawings, a plasma reactor 10 in accordance with an embodiment of the present invention includes a plasma chamber 20 having a body 21 to form a hollow region 24 that produces a plasma. A transformer 30 including a magnetic core 31 and a magnetic flux induction coil 32 wound around the magnetic core 31 is mounted in the plasma chamber 2A. The magnetic flux induction coil 32 corresponds to the primary winding of the transformer 30. The magnetic core 31 forms a magnetic flux path between the magnetic flux inlets 3 4 facing each other at a distance. The plasma chamber 20 is coupled to the magnetic channel such that the magnetic flux enters and exits from the hollow region 24 where the plasma is generated. The plasma chamber 20 includes a gas inlet 22' gas system which is injected into the hollow region 24 via the gas inlet 22; and a gas outlet 23, the plasma gas - 1318318317 system generated in the hollow region 24 is discharged via the gas outlet 23. The magnetic flux induction coil 32 is electrically connected to the power source 33 to supply alternating current (AC) power. When the current of the magnetic flux induction coil 32 flows due to the power source 3 3, the alternating current potential of the plasma used to generate the hollow region 24 of the plasma chamber 20 is due to the magnetic flux induction coil 32 The change in the magnetic flux induced in the channel 34 is induced. The induced AC power actually completes the secondary circuit of transformer 30. The Φ power supply 3 3 is implemented by a radio frequency (RF) power supply that controls the output voltage under the impedance-free matching unit. Alternatively, the power source 3 3 is implemented by a radio frequency power source having an impedance matching unit. The gas introduced into the plasma chamber 20 may be selected from the group consisting of an inert gas, a reactive gas, and a mixture of an inert gas and a reactive gas. Other gases suitable for plasma treatment can be selected. Figure 2C illustrates the structure of an ignition circuit of a plasma reactor. Referring to Figure 2C, the ignition electrode 40 is disposed in the hollow region 24 of the plasma chamber 20. The ignition electrode 40 is electrically connected to an ignition sensing wire 41 around the core 31. When a high voltage pulse is applied to the primary winding 32 from the power source 3 3 at the initial stage of the plasma discharge, a high voltage is induced to the ignition induction coil 41, so that the discharge system is implemented between the ignition electrodes 40, and plasma ignition is performed. . After the ignition process, the ignition electrode 40 and the ignition induction coil 4 1 are electrically interrupted each other, so that the ignition electrode 40 is not used as an electrode. Further, after the ignition process, the ignition electrode 40 and the ignition induction coil 4 1 are not electrically interrupted each other, so that the ignition electrode 40 is used as an electrode. -14 - 200818317 The electric room 20 is composed of a metal such as aluminum, stainless steel, copper and the like, a coated metal such as electroplating tin and antimony electroplated aluminum, or a refractory metal. In particular, the 'emitter compartment 20' includes a dielectric window region (not shown) in which the portion coupled to the flux channel 34 is comprised of a dielectric material. The dielectric window regions can be formed in the form of thin slits such that the dielectric window regions and the metal are staggered. Alternatively, the plasma chamber 20 may be composed entirely of a dielectric material such as quartz, ceramic, and the like, or may be comprised of another material suitable for performing the desired plasma treatment. To minimize eddy currents when the plasma chamber 20 includes metal, the plasma chamber 20 will include at least one electrically insulating region (not shown) such that electrical discontinuities are provided in the metal. Although not shown in this figure, the plasma chamber 20 includes a cooling water supply passage in a suitable position. For example, a cooling water supply passage may be installed between the plasma chamber 20 and the magnetic core 31. Fig. 3 exemplifies an example in which a plasma reactor is attached to a processing chamber. Referring to Figure 3, a plasma reactor 1 is tethered in a processing chamber 40 to supply plasma to the processing chamber 40 distally. For example, the plasma reactor 1 can be mounted on the outer side of the top of the processing chamber 40. The plasma reactor 10 receives radio frequency from the RF generator 42 as a power source and receives the gas by a gas supply system (not shown) to generate an active gas. The processing chamber 40 contains the active gas generated by the plasma reactor 1 to perform a predetermined plasma treatment. The processing chamber 40 can be, for example, a deposition chamber for performing a deposition process, an etching chamber for performing an engraving process, or an ashing chamber for stripping photoresist. The processing chamber 40 can be a plasma processing chamber for implementing different semi--15-200818317 process configurations. In particular, the plasma reactor 1 and the RF generators 42 serving as the power source for the radio frequency are separated from each other. That is, the plasma reactor 1 is a fixed type mounted on the processing chamber 40, and the RF generator 42 is a separate type from the plasma reactor 10. The output of the RF generator 42 and the RF input of the plasma reactor 10 are remotely coupled to each other by a RF cable 44. Therefore, unlike the conventional structure in which the RF generator and the plasma reactor are integrated into the same unit, the plasma reactor 10 is easily installed in the processing chamber 40, and the maintenance and management of the system can be improved. According to the embodiment described above, the body 21 of the plasma chamber 20 includes a single hollow region 24 between the gas inlet 22 and the gas outlet 23. While maintaining the features mentioned above, the following different variations are possible. In the following modifications, the same elements as those of the above-described embodiment are assigned by the same reference numerals, and the description thereof will be omitted. Fig. 4 is a perspective view showing an example of a modified plasma reactor, and Figs. 5A and 5B are a plan sectional view and a side sectional view of the plasma reactor of Fig. 4. Referring to the drawings, in the plasma reactor 1 〇a as a modification, the magnetic core 3 1 and the magnetic flux induction coil 32 are in contact with the plasma chamber 20 to form a pair. It will be appreciated by those skilled in the art that such variations can be expanded to produce large amounts of plasma. The expandable variants are exemplified in Figures 6 to 13. As exemplified in Fig. 7, the magnetic core 31 and the magnetic flux induction coil 32 can be coupled to both sides of the plasma chamber 20. Figs. 8 and 9 show an example in which the magnetic core 31 is implemented by an E-type -16-200818317 core, and an example in which the magnetic flux induction coil 32 is wound around different positions. In Fig. 1, the core 31 is implemented by a PM core. Fig. 11 illustrates an example of a cylindrical shape in which the plasma chamber 20 is a special case. 12A and 12B are a plan sectional view and a side cross-sectional view of a plasma reactor 10g having a cylindrical plasma chamber 20. The magnetic core 31 can be implemented by a toroidal core having a plurality of spokes suitable for the cylindrical plasma chamber 20. The spokes may be staggered or aligned with each other, as exemplified in Figures 13A and 13B. Figure 14 is a perspective view of a plasma reactor in accordance with another embodiment of the present invention. 15A and 15B are a plan cross-sectional view and a side cross-sectional view of the plasma reactor of Fig. 14. Referring to the drawings, a plasma reactor 100 according to another embodiment of the present invention has substantially the same structure as that of the plasma reactor 10 according to the above embodiment. However, the plasma chamber 120 includes an annular body 12 1 . Therefore, two separate gas flow paths are formed between the gas inlet 122 and the gas outlet 123, and the magnetic core 131 is connected to the annular body 1 2 1 at the respective gas flow paths such that the magnetic flux inlet 1 3 4 Face each other. The flux sensing line 圏1 3 2 is wound around the magnetic core 1 3 1 . FIG. 16 is a perspective view of an example of a modified electric paddle reactor, and FIGS. 1 7A and 17B are the plasma reaction of FIG. Decomposed perspective view and side cross-sectional view of the device. Referring to the drawings, in this modification, the magnetic core 13 1 is implemented by a PM core. Similar to the above-described embodiments and their different modifications, the flux passages may be formed between the flux inlets of a single core, or between the different and separate cores -17-200818317 flux inlets. In addition to the above variations, other variations are possible, and such variations are apparent to those skilled in the art from the spirit of the invention. Figure 18 is a perspective view of a plasma reactor according to still another embodiment of the present invention, Figure 19 is an exploded perspective view of the plasma reactor of Figure 18, and Figure 20 is a plasma reactor of Figure 18. Sectional view. Referring to Figures 18 to 2.0, a plasma reactor according to still another embodiment of the present invention includes a substrate processing chamber 210 for processing the plasma of the target substrate 220 to be processed. The substrate processing chamber 210 includes a hollow region 2 1 1 that generates a plasma discharge. The substrate inlets 2 1 4 for the inlet and the outlet of the target substrate 220 are disposed on one side of the substrate processing chamber 210, and the substrate support frame 213 for supporting the target substrate 220 in the hollow region 211 is disposed on the target substrate. In the lower side of 220. For example, the target substrate 220 is a germanium wafer substrate for fabricating a semiconductor device, or a glass substrate for manufacturing a liquid crystal display (LCD) and a plasma display. The substrate processing chamber 210 is composed of a metal such as aluminum, stainless steel, copper, or the like, a coated metal such as electroplated aluminum, nickel plated aluminum, or the like, or a refractory metal. Alternatively, substrate processing chamber 210 may be composed entirely of a dielectric material such as quartz and ceramic, or may be comprised of another material suitable for performing the desired plasma treatment. When the substrate processing chamber 210 includes metal, in order to minimize eddy currents, the substrate processing chamber 2 1 〇 may include at least one electrically insulating region (not shown) such that power discontinuities are provided in the metal. The substrate processing chamber 210 is mounted between the two magnetic flux inlets 232 and 234 of the magnetic induction core 240 to conform to the magnetic flux path 236 formed by the magnetic induction core 240. The magnetic core 230 has a C-type structure in which the two magnetic flux inlets 2 3 2 and 2 3 4 are spaced apart from each other by a distance of -18 to 200818317 and are used to form a magnetic flux passage 23 6 . ί around the core 203 and electrically connected to the 244 for driving to supply alternating current (AC) power and 234 magnetic flux inlet surfaces 231 and 23 to better the top surface of the substrate processing chamber 210 The bottom surface is placed in the target substrate 220 channel 236 on the substrate support frame 213. Further, the magnetic induction core 240 is driven by the time-varying magnetic field and the electric field in the local phase 21 1 . Therefore, a slurry is obtained on the hollow region 21 1 . The power source 244 passes the radio frequency via the impedance matching unit core 240. However, the power supply 244 can be connected to the power supply 246 by means of a radio frequency power supply capable of controlling the output voltage to electrically bias the power via the impedance. The power supply 246 can be controlled by a radio frequency power supply that controls the output voltage. The substrate support frame 2 1 3 has a single bias junction bracket 213 which can be modified to bias different RF frequencies by double frequency. Pressure. The substrate processing chamber 210 includes a gas inlet 216, for example, a gas inlet 2 16 and a gas outlet 2 1 8 , an upper end and a lower end of the chamber 2 10 such that gas flows from the middle to the lower side. In order to allow the gas to flow more evenly, the body distribution plate 250 can be mounted in the hollow region 2i. The inductive core 240 is the source 244 and is powered by the power source. The flux inlet 232 has an area equal to or greater than. Therefore, the arrangement is completely accommodated in the magnetic flux so that the hollow region is evenly distributed in the hollow region to the uniform high-density electricity 242 and supplied to the magnetic induction non-impedance matching unit. The substrate support ΪΒ unit 248 supply bias can be implemented without impedance matching. Implemented here. However, the structure of the substrate support in which the gas outlet 218 is connected. They are respectively disposed on the upper side of the empty area 2 1 1 at the substrate, and in one or more upper sides of the gas to face the base -19-200818317 board support frame 2 1 3 . The process gas system entering via the gas inlet 2 16 is evenly distributed by one or more gas distribution plates 250 to be injected toward the substrate support frame 213. The gas supply and discharge structure including the gas inlet 216, the gas outlet 218, and the one or more gas distribution plates 25A can be modified to allow gas to flow in the hollow region 21 to produce a uniform plasma. The process gas system supplied to the substrate processing chamber 210 is selected from the group consisting of an inert gas, a reactive gas, and a mixture of an inert gas and a reactive gas. Other gases required to process the plasma of the target substrate 220 can be selected. Although not shown in the drawings, the plasma reactor includes a cooling system for preventing overheating of the substrate processing chamber 210, the magnetic core 230, and the magnetic induction core 240. When the process gas is injected from the gas source (not shown) into the hollow region 21 1 via the gas inlet 216 and the radio frequency is supplied from the power source 244 such that the magnetic induction core 240 is driven, the hollow region 211 for generating the substrate processing chamber 210 is used. The alternating potential of the plasma is induced by the change in the magnetic flux induced in the magnetic flux path 23 6 to perform the plasma discharge. Since the magnetic flux inlet surfaces 231 and 233 of the magnetic flux inlets 232 and 234 have an area equal to or larger than the top surface and the bottom surface of the substrate processing chamber 210, the time-varying magnetic field induced in the hollow region 211 of the substrate processing chamber 210 and The electric field is uniformly generated on the hollow region 2 1 1 . Therefore, on the hollow region 211, a uniform high-density plasma is completely generated, so that the target substrate 220 is uniformly plasma-treated. Figure 21 is a perspective view illustrating a plasma reactor in which the configuration of the substrate inlet is modified, and Figure 22 is a perspective view of the plasma reactor in which the substrate processing chamber is modified vertically -20-200818317. Referring to FIG. 2 1 'The plasma reactor according to this embodiment of the present invention may be configured to have the substrate processing chamber 210 and the magnetic core 230 coupled to each other in the above-described example of the substrate inlet 214 (see FIG. 19). Coupling structure in different directions. As exemplified in Fig. 22, the plasma reactor according to this embodiment of the present invention can be grouped such that the target substrate 220 is processed in the substrate processing chamber 210 in a vertically arranged state, and the substrate processing is performed. The chamber 210 and the magnetic core 230 may be vertically disposed such that the target substrate 220 in a vertically disposed state can enter and exit the substrate processing chamber 210. Figures 23 through 26 illustrate different variations of a plasma reactor having two substrate processing chambers. As exemplified in Figures 23 and 24, the plasma reactor according to this embodiment of the present invention may be grouped such that two substrate processing chambers 210a and 210b and two magnetic cores 230a and 230b are arranged side by side or in parallel, The two target substrates 220a and 220b to be processed side by side are processed. Additionally, as exemplified in FIG. 25, the plasma reactor may include two pairs of symmetric flux inlets 236, 237, 238, and 239, and are mounted in flux inlets 236, 237, 238, and 239. The magnetic cores 230c of the two substrate processing chambers 210a and 210b are such that the two target substrates 220a and 220b are processed in parallel. Thus, different variations of the plasma reactor of the present invention are achieved by using one or more magnetic cores to form two or more magnetic flux channels and respective substrate processing chambers coupled to respective flux channels. This is achieved by processing two or more target substrates in parallel. In this case, the induction coils wound around one or more of the cores are used individually for the respective magnetic-21 - 200818317 cores to correspond to the respective through passages (see Figures 23 and 24) 'or a single induction coil The wires are wound together around two or more cores. Further, in the case of a magnetic core having two or more magnetic flux passages (see Fig. 25), a single induction coil may be wound around the magnetic core to be shared by two or more magnetic flux passages. As exemplified in Fig. 26, the plasma reactor of the present invention may be grouped such that two or more substrate processing chambers 210a and 210b are connected in series to the magnetic cores 230a and 230b to sequentially implement two deal with. The two substrate processing chambers 210a and 210b include substrate inlets 25 5 that are in communication with each other. The front substrate processing chamber 210a includes a substrate inlet 214a, the target substrate 220 is externally loaded via the substrate inlet 214a, and the rear substrate processing chamber 210b includes a substrate inlet (not shown) through which the target substrate 220 is unloaded. Therefore, the first processing is performed in the front substrate processing chamber 210a, and the second processing is performed in the rear substrate processing chamber 21b. The first and second processes are substrate processes different from each other. As described, two or more of the substrate processing chambers 210a and 210b may be arranged in series to sequentially process the substrate processing. Needless to say, the substrate feeding device must be disposed between the sequential substrate processing chambers 210a and 210b to feed the target substrate 220. 27 and 28 are perspective and cross-sectional views illustrating a plasma reactor according to still another embodiment of the present invention, and FIG. 29 is a cross-sectional view showing a modified plasma reactor in which substrate support frames are facing each other. Correct. Referring to Figures 27 and 28, in accordance with still another embodiment of the present invention, the components of the plasma assembly may be reversed from the slurry, and the present invention will be described. The first state of the group is the same as the structure and the phase of the phase is opposite. -22- 200818317 Description. However, in order to simultaneously process the two target substrates 220a and 220b, the plasma reactor in this embodiment includes a substrate processing chamber 260 having two separate first hollow regions 261a and second hollow regions 261b, and respectively formed on The first substrate inlet 264a and the second substrate inlet 264b in the first hollow region 261a and the second hollow region 261b. The substrate processing chamber 260 is partitioned into a first hollow region 261a and a second hollow region 261b by a gas supply unit 262. The gas supply unit 262 supplies the process gas injected through the gas inlet 266 to the first hollow region 261a and the second hollow region 261b. The substrate processing chamber 260 includes a first gas outlet 268a and a second gas outlet 268b that communicate with the first hollow region 261a and the second hollow region 261b, respectively. The first gas outlet 268a and the second gas outlet 268b have substrate support frames 263a and 263b, respectively. In the first hollow region 261a and the second hollow region 261b, one or more gas distribution plates 250a and 250b are mounted to face the substrate holders 263a and 263b. The process gas entering through the gas inlet 266 is evenly distributed by the one or more gas distribution plates 25a and 250b to be injected toward the substrate holders 263a and 263b. The first substrate support frame 263a and the second substrate support frame 263b are respectively mounted on the side walls corresponding to the magnetic flux inlets 232 and 234 of the magnetic core 230 in the first hollow region 261a and the second hollow region 261b. Alternatively, as exemplified in Fig. 29, the divisional region 267 is disposed in the central region of the substrate processing chamber 260, and the first substrate support frame 263a and the second substrate support frame 263b are in contact with the divisional region 267. In this case, the first hollow region 261a and the second hollow region 261b are formed to have respective gas inlets -23-200818317 ports 266a and 266b, and the gas distribution plates 250a and 250b are respectively mounted to the first hollow region 261a and The second hollow region 26ib faces the first substrate support frame 263a and the second substrate support frame 263b. The first substrate support 263a and the second substrate support 263b are electrically biased by receiving bias voltages from the power sources 244a and 244b via respective sets of anti-matching units 422 42a and 242b. 30 and 31 are perspective views of a magnetic core exemplified by a structure having a plurality of magnetic flux inlet surfaces separating magnetic flux inlets. Referring to Figures 30 and 31, the magnetic cores of the plasma reactor of the present invention are constructed such that the magnetic flux inlet surfaces 213 and 23 of the magnetic flux inlets 2 3 2 and 2 3 4 are separated into two. Or more than one portion, and the induction coil 240 is wound along the divided recesses 280 of the separated magnetic flux inlets 2 3 2 and 2 3 4 . For example, the separation structure of the flux inlets 232 and 234 has four partitions as exemplified in Fig. 3, or sixteen partitions as exemplified in Fig. 31. Fig. 3 is a partial perspective view of the magnetic flux inlet, exemplifying an example of a method of winding the induction coil around the magnetic flux inlet. As exemplified in Fig. 32, the induction coils 240 may be cross-shaped and wound along the separation recesses 280 of the separated magnetic flux inlets 232 and 234. In this case, the ribbon winding can be used as the induction coil 240. In addition, the induction coil 240 may include a first induction coil 240a wound around a magnetic flux inlet 232, and a second induction coil 240b wound around the other magnetic flux inlet 234, and the separation power supply 247 will borrow The power separated by the phase difference is supplied to the first induction coil 240a and the second induction line-24 - 200818317 circle 240b. For example, the divided power supply 247 separates power by a phase difference of 180 degrees to supply divided power. When the divided electric power is supplied to the first induction coil 240a and the second induction coil 240b by the phase difference, the first induction coil 240a and the second induction coil 240b are used as the capacitive coupling electrode. Therefore, in the hollow region of the substrate processing chamber, the plasma is generated by inductive coupling and capacitive coupling. Thus, a uniform and high density plasma can be obtained. In this case, since the capacitive coupling energy is controlled by controlling the phase difference, the ion energy of the plasma generated in the hollow region of the substrate processing chamber can be adjusted. This case can be applied to still another embodiment and modification of the present invention. As described above, according to the plasma reactor of the present invention having a plasma chamber coupled to the magnetic flux passage, the surface of the magnetic flux inlet of the magnetic core is disposed in the hollow region of the plasma chamber so that the hollow region The resulting plasma is very uniform and the loss of magnetic flux is small. Therefore, the transmission rate of inductive coupling energy is high. Therefore, a uniform and high-density plasma is surely obtained. In addition, the ion energy of the plasma can be easily adjusted in a structure additionally used as a capacitive coupling method. Further, the overall structure of the plasma reactor has a structure which produces a large-sized plasma and has good expandability. The invention has been described using the preferred embodiment. However, it is to be understood that the scope of the invention is not limited by the disclosed embodiments. Conversely, it is intended that the scope of the invention is to be construed as being <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Therefore, the broadest interpretation of the scope of the patent application should be granted to cover all such modifications and similar configurations. BRIEF DESCRIPTION OF THE DRAWINGS The above and other features and advantages of the present invention will become more apparent from the detailed description of the preferred embodiments thereof 1 is a perspective view of a plasma reactor in accordance with an embodiment of the present invention; FIG. 2A and FIG. 2B are a plan cross-sectional view and a side cross-sectional view of the plasma reactor of FIG. 1; FIG. 2C illustrates a plasma reaction. Figure 3 illustrates an example of a plasma reactor installed on a processing chamber; Figure 4 is a perspective view of an example of a modified plasma reactor; Figure 5 A and 5 B Figure 4 A plan view and a side cross-sectional view of a plasma reactor; Figures 6 to 10 illustrate couplings of different variations between a magnetic core and a primary winding; and Figure 11 illustrates a cylindrical generator body 1A and 1 2B are a plan cross-sectional view and a side cross-sectional view of the plasma reactor of FIG. 11; FIGS. 13A and 13B illustrate a modification of the installation of a toroidal core having spokes; 1 4 exemplifies a plasma reactor according to another embodiment of the present invention Figure 15A and Figure 15B are a plan view of a plasma reactor of Figure 14 and a side cross-sectional view of -26-200818317; Figure 16 is a perspective view of an example of a modified plasma reactor; Figure 17A And 17B are an exploded perspective view and a side cross-sectional view of the plasma reactor of FIG. 16; FIG. 18 is a perspective view of a plasma reactor according to still another embodiment of the present invention; FIG. 19 is a plasma of FIG. Fig. 2 is a cross-sectional view of the plasma reactor of Fig. 18. Fig. 2 is a perspective view of a plasma reactor in which the configuration of the substrate inlet is modified; Fig. 22 is a plasma reactor. A perspective view in which the substrate processing chamber is vertically modified; FIGS. 23 to 26 illustrate different variations of the plasma reactor having two substrate processing chambers; FIGS. 27 and 28 illustrate still another embodiment in accordance with the present invention. Fig. 29 is a cross-sectional view showing a modified plasma reactor in which substrate support frames face each other; Figs. 30 and 31 illustrate surfaces having multiple divided magnetic flux inlets. a perspective view of the magnetic core of the structure; and Figure 3 2 is a magnetic flux inlet A partial perspective view of an example of a method of winding an induction coil around a magnetic flux inlet. [Main component symbol description] - 27- 200818317 Plasma reactor: plasma reactor = plasma reactor = plasma reactor: plasma reactor: plasma reactor: plasma reactor plasma chamber body gas inlet Gas outlet hollow area transformer core flux induction coil power flux inlet ignition electrode ignition induction line 圏 RF generator RF cable '·plasma reactor a : plasma reactor: plasma chamber 200818317 ring body gas inlet gas outlet Magnetic core magnetic flux induction coil magnetic flux inlet substrate processing chamber: substrate processing chamber _• substrate processing chamber hollow region substrate support frame substrate inlet: substrate inlet gas inlet gas outlet target substrate: target substrate = target substrate core: magnetic core: magnetic Core: Core flux inlet surface flux inlet -29- 200818317 232a: flux inlet 232b: flux inlet 23 3 : flux inlet surface 234: flux inlet 2 3 4 a : flux inlet 234b: flux inlet 23 6 : Flux passage Φ 237 · Magnetic flux inlet 23 8 : Magnetic flux inlet 23 9 : Magnetic flux inlet 240 : Magnetic induction core 240a : First induction coil 240b : Second induction line圏242: impedance matching unit '242a: impedance matching unit_242b: impedance matching unit 244: power supply 2 4 4 a : power supply 244b: power supply 246: power supply 247: separation power supply 248: impedance matching unit 250a: gas distribution plate 25 0b: gas distribution plate 200818317

板入口 板處理室 第一中空區域 第二中空區域 I體供應單元 基板支撐架 基板支撐架 基板入口 基板入口 I體入口 氣體入口 氣體入口 h割區 第一氣體出口 第二氣體出口Plate inlet plate processing chamber first hollow region second hollow region I body supply unit substrate support frame substrate support frame substrate inlet substrate inlet I body inlet gas inlet gas inlet h cutting region first gas outlet second gas outlet

25 5 :: 260 :: 261a : 261b : 2 62 :: 2 63 a : 26 3b : 2 64a : 2 6 4b : 266 : 266a : 266b : 267 : 268a : 268b : 280 :分隔凹部25 5 :: 260 :: 261a : 261b : 2 62 :: 2 63 a : 26 3b : 2 64a : 2 6 4b : 266 : 266a : 266b : 267 : 268a : 268b : 280 : Separating recesses

Claims (1)

200818317 十、申請專利範圍 1. 一種電漿反應器,包含: 磁芯,用以形成介於以一距離而彼此面對的磁通入口 之間的磁通通道; 磁通感應線圈,係纏繞於該磁芯周圍; 電漿室,具有產生電漿及形成該磁通通道的中空區 域、氣體入口,電漿氣體係經由該氣體入口而注入至該中 空區域中、及氣體出口,該中空區域中所產生的該電漿氣 體係經由該氣體出口而排放;以及 電源,係連接至該磁通感應線圏,用以供應交流電 力,使得該磁通感應線圈的電流係由於該電源而流動,且 用以產生該電漿室的該中空區域中之該電漿的交流(AC ) 電位係由於藉由該磁通感應線圈,於該磁通通道中所感應 出的磁通量之變化而被感應出。 2. 如申請專利範圍第1項之電漿反應器,其中該電發 室的該中空區域包含介於該氣體入口與該氣體出口之間的 單一中空區域。 3 ·如申請專利範圍第1項之電漿反應器,其中該電漿 室的該中空區域包含介於該氣體入口與該氣體出口之間的 兩個或更多個分離的氣流通道。 4.如申請專利範圍第2或3項之電漿反應器,其中該 磁通通道係形成於單一磁芯的磁通入口之間。 5 .如申請專利範圍第2或3項之電漿反應器,其中該 磁通通道係形成於分離之磁芯的磁通入口之間。 -32- 200818317 6. 如申請專利範圍第1項之電漿反應器,其中該電漿 室包含金屬。 7. 如申請專利範圍第6項之電漿反應器,其中該電漿 室包括至少一電氣絕緣區,使得電力不連續性係提供於該 金屬中,以便使渦電流最小。 8·如申請專利範圍第4項之電漿反應器,其中該電漿 室包含介電材料。 φ 9.如申請專利範圍第8項之電漿反應器,其中該電槳 室的該介電材料包含形成於電漿室的一部分中,即將與該 磁通道相耦合之介電窗。 10.如申請專利範圍第1項之電漿反應器,其中該電 漿室包含冷卻水供應通道。 1 1 ·如申請專利範圍第1項之電漿反應器,更包含: 點火感應線圈,係纒繞於該磁芯周圍;以及 點火電極,係電氣連接至該點火感應線圈,且設置於 • 該電漿室中。 12.如申請專利範圍第1項之電漿反應器,更包含設 置於電源與初級繞組之間的阻抗匹配電路,以實施阻抗匹 配。 1 3 ·如申請專利範圍第1項之電漿反應器,其中該電 源係在沒有可調整匹配電路之下操作。 14. 如申請專利範圍第1項之電漿反應器,更包含處 理室,以接收及容納在該電漿室中所產生的電漿氣體。 15. 如申請專利範圍第14項之電漿反應器,更包含即 -33- 200818317 將被裝載於該處理室上的結構,其中 該電源係與該電漿反應器實際分離,且係藉由射頻纜 線而遠端地連接至該電漿反應器。 1 6 .如申請專利範圍第1項之電槳反應器,其中被導 引入該電漿室中的該氣體係選自惰性氣體、反應氣體、及 該惰性氣體與該反應氣體的混合物之群組中。 1 7 .如申請專利範圍第1項之電漿反應器,其中該磁 芯的該等磁通入口包含分成兩個或更多個部分的表面,且 該磁通感應線圈係沿著該等分開的磁通入口之分隔凹部來 予以纏繞 1 8 .如申請專利範圍第1項之電漿反應器,其中該磁 通感應線圈包含: 第一感應線圈,係纏繞於該等磁通入口中的其中之一 磁通入口; 第二感應線圈,係纏繞於該等磁通入口中的另一磁通 入口;以及 分隔電源供應器,用以從該電源中接收該交流電力, 且藉由相位差而使該交流電力分開,以將該分開的交流電 力供應至該第一感應線圈及該第二感應線圈。 19. 一種電漿反應器,包含: 磁芯,具有以一距離而彼此面對的磁通入口,且用以 形成磁通通道; 磁通感應線圈,係纏繞於該磁芯周圍_,且被驅動而接 收來自該電源的交流電力,以形成介於磁通入口之間的磁 -34- 200818317 通通道;以及 基板處理室,係連接至該磁通通道,且具有產生電漿 放電的中空區域,該基板處理室包含: 基板入口,係形成於該基板處理室的一側; 基板支撐架,用以支撐即將被處理於該中空區域 中的目標基板; 氣體入口;及 _ 氣體出口。 20·如申請專利範圍第19項之電漿反應器,其中該基 板支撐架以垂直配置狀態及水平配置狀態的其中之一配置 狀態來支撐該目標基板。 2 1 .如申請專利範圍第1 9項之電漿反應器,更包含至 少一氣體分佈板,係安裝於該中空區域中,以面對該基板 支撐架,且使經由該氣體入口所導引入之即將被注入的處 理氣體均勻地分佈朝向該基板支撐架。 • 22·如申請專利範圍第19項之電漿反應器,其中該磁 芯包含: 第一磁芯,具有第一磁通入口,以形成第一磁通通 道;以及 第二磁芯,具有第二磁通入口,以形成第二磁通通 道; 該基板處理室包含: 第一基板處理室,係與該第一磁通通道相耦合;以及 第二基板處理室,係與該第二磁通通道相耦合。 -35- 200818317 23 .如申請專利範圍第22項之電漿反應器,其中該磁 通感應線圈包含第一感應線圈及第二感應線圈,它們係獨 立地纏繞於該第一磁芯及該第二磁芯周圍,以形成該第一 磁通通道及該第二磁通通道。 24. 如申請專利範圍第22項之電漿反應器,其中該磁 通感應線圈包含一共同感應線圈,係共同地纏繞於該第一 磁芯及該第二磁芯周圍,以形成該第一磁通通道及該第二 磁通通道。 25. 如申請專利範圍第22項之電漿反應器,其中該第 一磁芯及該第二磁芯具有整體結構及單獨結構的其中之一 結構。 26. 如申請專利範圍第22項之電漿反應器,其中該第 一基板處理室及該第二基板處理室具有單獨的基板入口, 或彼此相連通的基板入口。 27. 如申請專利範圍第22項之電漿反應器,其中該第 一基板處理室及該第二基板處理室具有彼此相連通的基板 入口,且該第一基板處理室中所處理的該目標基板係饋送 至該第二基板處理室。 28. 如申請專利範圍第19項之電漿反應器,其中該磁 芯的該等磁通入口包含分成至少兩部分的表面,且該磁通 感應線圏係沿著該等分開的磁通入口之分隔凹部來予以纏 繞。 29. 如申請專利範圍第19項之電漿反應器,其中該磁 通感應線圈包含: -36- 200818317 第一感應線圈,係纏繞於該等磁通入口中的其中之一 磁通入口; 第二感應線圈,係纏繞於該等磁通入口中的另一個磁 通入口;以及 分隔電源供應器,用以從該電源中接收該交流電力, 且藉由相位差而使該交流電力分開,以將該分開的交流電 力供應至該第一感應線圈及該第二感應線圈。 • 30.—種電漿反應器,包含: 磁芯,具有以一距離而彼此面對的磁通入口,且用以 形成磁通通道; 磁通感應線圈,係纏繞於該磁芯周圍,且被驅動而接 收來自該電源的交流電力,以形成介於磁通入口之間的磁 通通道;以及 基板處理室,係連接至該磁通通道,且具有產生電漿 放電之第一與第二分開的中空區域,該基板處理室包含 • 第一基板入口,待處理的第一目標基板經由該第 一基板入口而進入及離開該第一中空區域; 第二基板入口,待處理的第二目標基板經由該第 二基板入口而進入及離開該第二中空區域; 第一基板支撐架,用以支撐該第一中空區域中的 該第一目標基板;以及 第二基板支撐架,用以支撐該第二中空區域中的 該第二目標基板。 3 1.如申請專利範圍第30項之電漿反應器,更包含 -37- 200818317 共同的氣體供應單元,用以將處理氣體供應至該第一 中空區域及該第二中空區域; 氣體入口,係連接至該共同的氣體供應單元; 第一氣體出口與第二氣體出口,係分別與該第一中空 區域及該第二中空區域相連通;以及 氣體分佈板,係分別安裝成面對該第一中空區域中的 該第一基板支撐架及該第二中空區域中的該第二基板支撐 架,且使經由該氣體入口所導引入之即將被注入的處理氣 體均勻地分佈朝向該第一基板支撐架及該第二基板支撐 架。 3 2.如申請專利範圍第30項之電漿反應器,更包含 第一氣體入口與出口,係與該第一中空區域相連通; 第二氣體入口與出口,係與該第二中空區域相連通; 以及 氣體分佈板,係分別安裝成面對該第一中空區域中的 該第一基板支撐架及該第二中空區域中的該第二基板支撐 架,且使經由該第一氣體入口及該第二氣體入口所導引入 之即將被注入的處理氣體均勻地分佈朝向該第一基板支撐 架及該第二基板支撐架。 3 3 .如申請專利範圍第3 0項之電漿反應器,其中該磁 芯的該等磁通入口包含分成多個部分的表面,且該磁通感 應線圈係沿著該等分開的磁通入口之分隔凹部來予以纏 繞。 34.如申請專利範圍第30項之電漿反應器,其中該磁 -38- 200818317 通感應線圈包含: 第一感應線圈,係纒繞於該等磁通入口中的其中之一 磁通入口; 第二感應線圈,係纒繞於該等磁通入口中的另一個磁 通入口;以及 分隔電源供應器,用以從該電源中接收該交流電力, 且藉由相位差而使該交流電力分開,以將該分開的交流電 力供應至該第一感應線圈及該第二感應線圈。200818317 X. Patent Application Range 1. A plasma reactor comprising: a magnetic core for forming a magnetic flux path between magnetic flux inlets facing each other at a distance; a magnetic flux induction coil wound around Surrounding the magnetic core; a plasma chamber having a hollow region for generating plasma and forming the magnetic flux passage, and a gas inlet through which the plasma gas system is injected into the hollow region and the gas outlet, in the hollow region The generated plasma gas system is discharged through the gas outlet; and a power source is connected to the magnetic flux sensing coil for supplying alternating current power such that a current of the magnetic flux induction coil flows due to the power source, and An alternating current (AC) potential of the plasma in the hollow region for generating the plasma chamber is induced by a change in magnetic flux induced in the magnetic flux passage by the magnetic flux induction coil. 2. The plasma reactor of claim 1, wherein the hollow region of the electrical chamber comprises a single hollow region between the gas inlet and the gas outlet. 3. The plasma reactor of claim 1, wherein the hollow region of the plasma chamber comprises two or more separate gas flow passages between the gas inlet and the gas outlet. 4. The plasma reactor of claim 2, wherein the flux passage is formed between the flux inlets of the single core. 5. The plasma reactor of claim 2, wherein the flux path is formed between the magnetic flux inlets of the separated magnetic cores. -32-200818317 6. The plasma reactor of claim 1, wherein the plasma chamber comprises a metal. 7. The plasma reactor of claim 6, wherein the plasma chamber includes at least one electrically insulating region such that a power discontinuity is provided in the metal to minimize eddy currents. 8. The plasma reactor of claim 4, wherein the plasma chamber comprises a dielectric material. </ RTI> 9. The plasma reactor of claim 8 wherein the dielectric material of the electric chamber comprises a dielectric window formed in a portion of the plasma chamber to be coupled to the magnetic passage. 10. The plasma reactor of claim 1, wherein the plasma chamber comprises a cooling water supply passage. 1 1 The plasma reactor of claim 1, further comprising: an ignition induction coil wound around the core; and an ignition electrode electrically connected to the ignition induction coil and disposed on the In the plasma chamber. 12. The plasma reactor of claim 1 further comprising an impedance matching circuit disposed between the power source and the primary winding to perform impedance matching. 1 3 A plasma reactor as claimed in claim 1, wherein the power source operates without an adjustable matching circuit. 14. The plasma reactor of claim 1, further comprising a processing chamber for receiving and containing the plasma gas produced in the plasma chamber. 15. The plasma reactor of claim 14, further comprising a structure to be loaded on the processing chamber, wherein the power source is physically separated from the plasma reactor by The RF cable is remotely connected to the plasma reactor. The electric paddle reactor of claim 1, wherein the gas system introduced into the plasma chamber is selected from the group consisting of an inert gas, a reaction gas, and a mixture of the inert gas and the reaction gas. In the group. The plasma reactor of claim 1, wherein the magnetic flux inlets of the magnetic core comprise surfaces divided into two or more portions, and the magnetic flux induction coils are separated along the same The magnetic flux inlet of the magnetic flux inlet is wound by a plasma reactor according to claim 1, wherein the magnetic flux induction coil comprises: a first induction coil wound in the magnetic flux inlet a magnetic flux inlet; a second induction coil wound around another magnetic flux inlet in the magnetic flux inlet; and a separate power supply for receiving the alternating current power from the power source, and by phase difference The alternating current power is split to supply the separate alternating current power to the first inductive coil and the second inductive coil. 19. A plasma reactor comprising: a magnetic core having magnetic flux inlets facing each other at a distance and for forming a magnetic flux passage; a magnetic flux induction coil wound around the magnetic core _ Driving to receive AC power from the power source to form a magnetic-34-200818317 pass channel between the flux inlets; and a substrate processing chamber connected to the flux channel and having a hollow region that generates a plasma discharge The substrate processing chamber includes: a substrate inlet formed on one side of the substrate processing chamber; a substrate support frame for supporting a target substrate to be processed in the hollow region; a gas inlet; and a gas outlet. 20. The plasma reactor of claim 19, wherein the substrate support frame supports the target substrate in one of a vertical configuration state and a horizontal configuration state. 2 1. The plasma reactor of claim 19, further comprising at least one gas distribution plate installed in the hollow region to face the substrate support frame and guided through the gas inlet The process gas to be injected is evenly distributed toward the substrate support. The plasma reactor of claim 19, wherein the magnetic core comprises: a first magnetic core having a first magnetic flux inlet to form a first magnetic flux passage; and a second magnetic core having a first a magnetic flux inlet to form a second magnetic flux channel; the substrate processing chamber includes: a first substrate processing chamber coupled to the first magnetic flux channel; and a second substrate processing chamber coupled to the second magnetic flux The channels are coupled. A plasma reactor according to claim 22, wherein the magnetic flux induction coil comprises a first induction coil and a second induction coil, which are independently wound around the first core and the first Two magnetic cores are formed to form the first magnetic flux channel and the second magnetic flux channel. 24. The plasma reactor of claim 22, wherein the magnetic flux induction coil comprises a common induction coil wound together around the first magnetic core and the second magnetic core to form the first a magnetic flux path and the second magnetic flux path. 25. The plasma reactor of claim 22, wherein the first core and the second core have one of a unitary structure and a separate structure. 26. The plasma reactor of claim 22, wherein the first substrate processing chamber and the second substrate processing chamber have separate substrate inlets or substrate inlets in communication with one another. 27. The plasma reactor of claim 22, wherein the first substrate processing chamber and the second substrate processing chamber have substrate inlets in communication with each other, and the target processed in the first substrate processing chamber A substrate system is fed to the second substrate processing chamber. 28. The plasma reactor of claim 19, wherein the magnetic flux inlets of the magnetic core comprise surfaces that are divided into at least two portions, and the magnetic flux sensing wires are along the separate magnetic flux inlets The recesses are separated to wrap. 29. The plasma reactor of claim 19, wherein the magnetic flux induction coil comprises: -36- 200818317 a first induction coil, one of which is wound in one of the magnetic flux inlets; a second induction coil, which is another magnetic flux inlet wound in the magnetic flux inlets; and a separation power supply for receiving the alternating current power from the power source, and separating the alternating current power by a phase difference, The separate alternating current power is supplied to the first induction coil and the second induction coil. • 30. A plasma reactor comprising: a magnetic core having magnetic flux inlets facing each other at a distance and configured to form a magnetic flux passage; a magnetic flux induction coil wound around the magnetic core, and Driven to receive AC power from the power source to form a flux path between the flux inlets; and a substrate processing chamber coupled to the flux channel and having first and second generations of plasma discharges a separate hollow region, the substrate processing chamber includes: a first substrate inlet through which the first target substrate to be processed enters and exits the first hollow region; a second substrate inlet, a second target to be processed The substrate enters and exits the second hollow region via the second substrate inlet; the first substrate support frame supports the first target substrate in the first hollow region; and the second substrate support frame supports the The second target substrate in the second hollow region. 3 1. The plasma reactor of claim 30, further comprising a common gas supply unit of -37-200818317 for supplying a processing gas to the first hollow region and the second hollow region; a gas inlet, Is connected to the common gas supply unit; the first gas outlet and the second gas outlet are respectively connected to the first hollow region and the second hollow region; and the gas distribution plate is respectively installed to face the first The first substrate support frame in a hollow region and the second substrate support frame in the second hollow region, and uniformly distributing the processing gas to be injected introduced through the gas inlet toward the first a substrate support frame and the second substrate support frame. 3. The plasma reactor of claim 30, further comprising a first gas inlet and outlet connected to the first hollow region; a second gas inlet and outlet connected to the second hollow region And a gas distribution plate respectively mounted to face the first substrate support frame in the first hollow region and the second substrate support frame in the second hollow region, and to pass through the first gas inlet and The processing gas introduced by the second gas inlet is to be uniformly distributed toward the first substrate support frame and the second substrate support frame. 3. The plasma reactor of claim 30, wherein the magnetic flux inlets of the magnetic core comprise surfaces that are divided into a plurality of portions, and the magnetic flux induction coils are along the separate magnetic fluxes The entrance is separated by a recess to be entangled. 34. The plasma reactor of claim 30, wherein the magnetic-38-200818317 pass induction coil comprises: a first induction coil wound around one of the magnetic flux inlets; a second induction coil is wound around another magnetic flux inlet of the magnetic flux inlets; and a power supply is provided for receiving the alternating current power from the power source, and the alternating current power is separated by a phase difference And supplying the separated alternating current power to the first induction coil and the second induction coil. -39 --39 -
TW096114722A 2006-04-25 2007-04-25 Plasma reactor having plasma chamber coupled with magnetic flux channel TWI398926B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020060036969A KR100743842B1 (en) 2006-04-25 2006-04-25 Plasma reactor having plasma chamber coupled with magnetic flux channel
KR1020060098377A KR100883561B1 (en) 2006-10-10 2006-10-10 Plasma reactor having vacuum process chamber coupled with magnetic flux channel

Publications (2)

Publication Number Publication Date
TW200818317A true TW200818317A (en) 2008-04-16
TWI398926B TWI398926B (en) 2013-06-11

Family

ID=38625230

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096114722A TWI398926B (en) 2006-04-25 2007-04-25 Plasma reactor having plasma chamber coupled with magnetic flux channel

Country Status (2)

Country Link
TW (1) TWI398926B (en)
WO (1) WO2007123378A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9449793B2 (en) 2010-08-06 2016-09-20 Lam Research Corporation Systems, methods and apparatus for choked flow element extraction
TWI555442B (en) * 2010-08-06 2016-10-21 蘭姆研究公司 Distributed multi-zone plasma source systems, methods and apparatus
TWI577247B (en) * 2014-07-08 2017-04-01 Psk有限公司 Apparatus for generating plasma using dual plasma source and apparatus for treating substrate including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002649B (en) * 2011-09-13 2016-09-14 中微半导体设备(上海)有限公司 The plasma processing apparatus of a kind of inductive coupling and processing method for substrate thereof
KR101314667B1 (en) * 2012-01-04 2013-10-04 최대규 Magnetic field channel coupled plasma reactor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054013A (en) * 1996-02-02 2000-04-25 Applied Materials, Inc. Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density
CA2207154A1 (en) * 1996-06-10 1997-12-10 Lam Research Corporation Inductively coupled source for deriving substantially uniform plasma flux
KR100488348B1 (en) * 2002-11-14 2005-05-10 최대규 Plasma process chamber and system
KR100576093B1 (en) * 2004-03-15 2006-05-03 주식회사 뉴파워 프라즈마 Plasma reaction chamber having multi arrayed vacuum chamber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9449793B2 (en) 2010-08-06 2016-09-20 Lam Research Corporation Systems, methods and apparatus for choked flow element extraction
TWI555442B (en) * 2010-08-06 2016-10-21 蘭姆研究公司 Distributed multi-zone plasma source systems, methods and apparatus
TWI641291B (en) * 2010-08-06 2018-11-11 蘭姆研究公司 Systems, methods and apparatus for plasma production
TWI577247B (en) * 2014-07-08 2017-04-01 Psk有限公司 Apparatus for generating plasma using dual plasma source and apparatus for treating substrate including the same

Also Published As

Publication number Publication date
WO2007123378A1 (en) 2007-11-01
TWI398926B (en) 2013-06-11

Similar Documents

Publication Publication Date Title
TWI390578B (en) Plasma source with discharge inducing bridge and plasma processing system using the same
TWI418261B (en) Inductively coupled plasma reactor with multiple magnetic cores
JP3555966B2 (en) Multi-zone plasma processing method
KR101920842B1 (en) Plasma source design
KR100486712B1 (en) Inductively coupled plasma generating apparatus with double layer coil antenna
JP4904202B2 (en) Plasma reactor
TWI762609B (en) Pedestal assembly for plasma processing apparatus
CN101113514B (en) Substrate processing apparatus
JPH0684812A (en) Multielectrode plasma treatment device
KR101496841B1 (en) Compound plasma reactor
KR20160012118A (en) Plasma treatment device and filter unit
TW201203307A (en) Plasma processing apparatus and plasma processing method
JP2003502824A (en) Plasma reactor with multiple small internal induction antennas
TWI279169B (en) Plasma processing apparatus capable of performing uniform plasma treatment by preventing drift in plasma discharge current
TW200818317A (en) Plasma reactor having plasma chamber coupled with magnetic flux channel
KR20070104695A (en) Inductive coupled plasma source with multi magnetic core
KR101296717B1 (en) Multi-path inductively coupled plasma reactor
TW201944452A (en) Magnetic induction plasma source for semiconductor processes and equipment
JP3197739B2 (en) Plasma processing equipment
KR100575370B1 (en) Inductive plasma chamber having multi discharge tube bridge
KR100793457B1 (en) Plasma reactor having multi discharging chamber
TWI406336B (en) High-density plasma generator
KR101336796B1 (en) Plasma reactor having multi discharging tube
KR100798351B1 (en) Plasma processing chamber having multi remote plasma generator
KR100760026B1 (en) Ferrite core assembly for plasma generator and plasma process system having the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees