TW200816669A - Determination of cell RF parameters based on measurements by user equipments - Google Patents

Determination of cell RF parameters based on measurements by user equipments Download PDF

Info

Publication number
TW200816669A
TW200816669A TW96128122A TW96128122A TW200816669A TW 200816669 A TW200816669 A TW 200816669A TW 96128122 A TW96128122 A TW 96128122A TW 96128122 A TW96128122 A TW 96128122A TW 200816669 A TW200816669 A TW 200816669A
Authority
TW
Taiwan
Prior art keywords
mrm
hive
determining
location
ues
Prior art date
Application number
TW96128122A
Other languages
Chinese (zh)
Inventor
Christopher Brunner
Bautista Jose Edson Vargas
Jay F Dills
Ray Skirsky
Zoltan Biacs
Wyatt Thomas Riley
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200816669A publication Critical patent/TW200816669A/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

Techniques for using measurements made by UEs to improve network performance are described. In on aspect, RF parameters of cells may be determined by taking into account mobility of the UEs. Mobility information for the UEs may be determined based on measurement report messages (MRMs) sent by these UEs for handover. RF parameters such as antenna down-tilt, antenna orientation, antenna pattern, and/or pilot power of the cells may be determined based on the mobility information for the UEs. In another aspect, the RF parameters of cells may be dynamically adjusted based on loading conditions of cells. In yet another aspect, the location of a UE may be determined based on an MRM sent by the UE for handover. The MRM may include timing measurements for multiple cells. The location of the UE may be determined based on the timing measurements.

Description

200816669 九、發明說明: 【發明所屬之技術領域】 本揭示案大體而言係關於通信,且更具體言之,係關於 用於在一無線通信網路中利用由使用者設備(UE)進行之測 量之技術。 【先前技術】 無線通信網路經廣泛部署以提供諸如語音、視訊、封包 資料、訊息傳遞、廣播等等之各種通信伺服。此等無線網 路可為能夠藉由共用可用網路資源而支援多個使用者之多 重存取網路。該等多重存取網路之實例包括分碼多重存取 (CDMA)網路、分時多重存取(TDMA)網路、分頻多重存取 (FDMA)網路、正交FDMA(OFDMA)網路,及單載波fdMA (SC-FDMA)網路。 一無線網路可包括可支援用於許多使用者之通信之許多 蜂巢。每一蜂巢可與諸如天線下傾、天線方位、天線場 型、導頻功率、雜訊底部等等之射頻(RF)參數相關聯。每 一蜂巢之該等RF參數可經設定以達成用於彼蜂巢之所要覆 蓋範圍及容量。在一蜂巢計畫階段期間,可將交通圖及尺卩 傳播模型應用於一可確定蜂巢之RF#數之蜂巢計畫工具以 獲得所要效能。在許多實例中,尺1?參數可由於蜂巢計晝工 具之不準確及/或不足的輸入而經次最佳言史定。此可導致 次最佳網路效能,例如,較多斷話、較多呼叫建立失敗、 較低通量等等。 【發明内容】 123353.doc 200816669 本文中描述用於使用由UE進行之測量改良網路效能之 技術。在一態樣中,可藉由考慮UE之行動性而確定蜂巢 之RF參數。可以由此等UE發送之用於交遞之測量報告訊 息(MRM)為基礎確定針對UE之行動性資訊。可以針對UE 之行動性資訊為基礎確定蜂巢之諸如天線下傾、天線方 位、天線場型、導頻功率及/或雜訊底部之RF參數。亦可 進一步以來自UE、交通圖、RF傳播模型等等之RF測量為 基礎確定該等RF參數。 在另一態樣中,可以載入條件為基礎動態地調整蜂巢之 RF參數。可以來自UE之MRM為基礎及/或經由其他構件確 定蜂巢之載入條件。可以該等載入條件為基礎調整蜂巢之 RF參數以改良網路效能。 在又一態樣中,可以由一 UE發送之用於交遞之一 MRM 為基礎確定該UE之位置。該MRM可包含針對多個蜂巢之 時序測量。當產生該MRM時,可以可包含觀測時間差 (OTD)測量之該等時序測量為基礎確定UE之位置。在一設 計中,可以該等OTD測量為基礎確定針對蜂巢之觀測延遲 差。亦可(例如)以包括於MRM中之RF測量或一蜂巢之一已 知位置為基礎確定針對蜂巢之相對時間差(RTD)。可接著 以觀測延遲差、蜂巢之已知位置及該等RTD為基礎確定UE 之位置。 下文進一步詳細描述本揭示案之各種態樣及特徵。 【實施方式】 本文中所描述之技術可用於諸如CDMA、TDMA、 123353.doc 200816669 FDMA、OFDMA及SC-FDMA網路之各種無線通信網路。 術語π網路’’與’’系統”常常可經交換地使用。一 CDMA網路 可實施一諸如通用地面無線電存取(UTRA)、cdma2000等 等之無線電技術。UTRA包括寬頻帶CDMA(W-CDMA)、低 碼片速率(LCR)、高碼片速率(HCR)等等。cdma2000覆蓋 IS-2000、IS-95及IS-856標準。一TDMA網路可實施一諸如 全球行動通信系統(GSM)之無線電技術。一 OFDMA網路可 實施一諸如演進式UTRA(E-UTRA)、超行動寬頻帶 (UMB)、IEEE 802.1 l(Wi-Fi)、IEEE 802.16(WiMAX)、 IEEE 802.20、快閃OFDM®等之無線電技術。此等各種無 線電技術及標準係此項技術中所已知的。UTRA、E-UTRA 及GSM描述於來自一被命名為”第三代合作夥伴計畫” (3GPP)之組織之文件中。cdma2000描述於來自一被命名為 "第三代合作夥伴計畫2”(3GPP2)之組織之文件中。3GPP 及3 GPP2文件可公開地得到。出於清楚起見,下文針對 3GPP網路描述該等技術之某些態樣。 圖1展示一無線通信網路100,其可為一實施W-CDMA之 全球行動電信系統(UMTS)網路。在圖1中所展示之實例 中,無線網路100包括三個節點B 110a、ll〇b及110c。一 節點B為一與UE通信之固定台且亦可被稱作一基地台、一 演進式節點B(e節點B)、一存取點等。每一節點B 110為一 特定地理區域提供通信覆蓋範圍。節點B之覆蓋區域可分 割成更小區域,例如,三個更小區域。術語π蜂巢”可依使 用該術語之上下文而指一節點Β之覆蓋範圍之最小單元或 123353.doc 200816669 一伺服此覆蓋區域之節點B子系統。在圖i中,節點B 110a、110b及1 l〇c分別伺服蜂巢i、2及3。 即點B 110可耦接至一節點B聚集點13〇,該節點B聚集點 130可聚集針對此等節點B之資料及信號傳輸。聚集點 可進一步耦接至一無線電網路控制器(RNC)14(),該無線電200816669 IX. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION The present disclosure relates generally to communications and, more particularly, to utilizing by a User Equipment (UE) in a wireless communication network. The technology of measurement. [Prior Art] Wireless communication networks are widely deployed to provide various communication servos such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks can be multiple access networks that can support multiple users by sharing available network resources. Examples of such multiple access networks include code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, and orthogonal FDMA (OFDMA) networks. Road, and single carrier fdMA (SC-FDMA) network. A wireless network may include a number of hives that support communication for many users. Each hive can be associated with radio frequency (RF) parameters such as antenna downtilt, antenna orientation, antenna pattern, pilot power, noise floor, and the like. The RF parameters of each hive can be set to achieve the desired coverage and capacity for the hive. During a hive planning phase, the traffic map and the ruler propagation model can be applied to a honeycomb project that can determine the RF# number of the hive to achieve the desired performance. In many instances, the Rule 1 parameter can be determined by suboptimal history due to inaccurate and/or insufficient input of the Honeycomb Tool. This can result in sub-optimal network performance, such as more disconnects, more call setup failures, lower throughput, and the like. SUMMARY OF THE INVENTION 123353.doc 200816669 Techniques for improving network performance using measurements made by a UE are described herein. In one aspect, the RF parameters of the hive can be determined by considering the mobility of the UE. The mobility information for the UE can be determined based on the measurement report information (MRM) for handover delivered by the UE. The RF parameters of the hive such as antenna downtilt, antenna position, antenna pattern, pilot power, and/or noise floor can be determined based on the UE's mobility information. These RF parameters may also be further determined based on RF measurements from UEs, traffic maps, RF propagation models, and the like. In another aspect, the RF parameters of the hive can be dynamically adjusted based on the loading conditions. The loading conditions of the hive can be determined based on the MRM of the UE and/or via other components. The RF parameters of the hive can be adjusted based on these loading conditions to improve network performance. In another aspect, the location of the UE can be determined based on a MRM sent by a UE for handover. The MRM can include timing measurements for multiple cells. When the MRM is generated, the location of the UE may be determined based on such timing measurements that may include observation time difference (OTD) measurements. In a design, the observed delay difference for the hive can be determined based on the OTD measurements. The relative time difference (RTD) for the hive can also be determined, for example, based on RF measurements included in the MRM or a known location of a hive. The location of the UE can then be determined based on the observed delay difference, the known location of the hive, and the RTDs. Various aspects and features of the present disclosure are described in further detail below. [Embodiment] The techniques described herein are applicable to various wireless communication networks such as CDMA, TDMA, 123353.doc 200816669 FDMA, OFDMA, and SC-FDMA networks. The terms π-network and 'system' are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA), cdma2000, etc. UTRA includes wideband CDMA (W- CDMA), low chip rate (LCR), high chip rate (HCR), etc. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network can implement a global mobile communication system (GSM). Radio technology. An OFDMA network can implement such as Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.1 l (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, flash Radio technologies such as OFDM®, etc. These various radio technologies and standards are known in the art. UTRA, E-UTRA and GSM are described in a program named "3rd Generation Partnership Project" (3GPP) In the document of the organization, cdma2000 is described in a document from an organization named "3rd Generation Partnership Project 2" (3GPP2). 3GPP and 3 GPP 2 documents are publicly available. For clarity, certain aspects of the techniques are described below for a 3GPP network. 1 shows a wireless communication network 100 that can be a Global Mobile Telecommunications System (UMTS) network implementing W-CDMA. In the example shown in Figure 1, wireless network 100 includes three Node Bs 110a, 110b, and 110c. A Node B is a fixed station that communicates with the UE and may also be referred to as a base station, an evolved Node B (eNode B), an access point, and the like. Each Node B 110 provides communication coverage for a particular geographic area. The coverage area of Node B can be divided into smaller areas, for example, three smaller areas. The term π honeycomb can refer to the smallest unit of coverage of a node or the 123353.doc 200816669 as a node B subsystem of this coverage area, depending on the context in which the term is used. In Figure i, Node B 110a, 110b and 1 L〇c respectively servos the cells i, 2, and 3. That is, the point B 110 can be coupled to a node B aggregation point 13〇, and the node B aggregation point 130 can aggregate data and signal transmission for the node B. Further coupled to a Radio Network Controller (RNC) 14(), the radio

、、罔路控制窃(RNC)140可經由聚集點對耦接至RNC之節點B 提供協調及控制。舉例而言,RNC 14〇可執行無線電資源 ^ &理某些行動性官理功能,及用於支援用於UE之通信 之其他功能。 UE 120可分散於整個無線網路中。一UE可為靜止或行 動的且亦可被稱作一行動台、一行動設備、一終端機、一 存取終端機、一用戶單元、一台等等。一 UE可為一蜂巢 式電話、一個人數位助理(PDA)、一無線通信器件、一掌 上型器件、一無線數據機等等。一UE可經由下行鏈路及 /亍鏈路上之傳輸與一或多個節點B通信。下行鏈路(或前 ; 向鏈路)係指自節點B至UE之通信鏈路,且上行鏈路(或反 向鏈路)係指自UE至節點B之通信鏈路。術語,,UE,,與”使用 者’’在本文中可經交換地使用。 母一蜂巢具有一特定覆蓋區域,該特定覆蓋區域可以彼 蜂f之RF參數為基礎來確定。天線下傾、天線方位、及天 線%型影響播特點且因此影響蜂巢之覆蓋範圍。導頻 X ^〜姜UE對來自蜂巢之導頻信號的接收。改變導頻功 °、文欠蜂巢尺寸但可導致下行鏈路與上行鏈路之間的鏈 路不平衡。若導頻功率經調整(例如,減少),則可對應於 123353.doc 200816669 上行鏈路人工地調整(例如,增加以減弱上行鏈路)蜂巢之 雜訊底部以便避免鏈路不平衡性。 在一蜂巢計晝階段期間,可獲得用於網路部署區域之交 通圖及RF傳播模型。交通圖可指示使用者可更集中且可以 各種方式(例如,藉由確定使用者之位置,藉由觀測區域 中之父通等等)獲得之區域。術語”位置(1〇cati〇n)"與,,位置 (position)”同義且在本文中可經互換地使用。尺?傳播模型 可用於預測RF信號之路徑損失且可以〇kumura -Hata模型或 某一其他模型為基礎。蜂巢位置可(例如)由於umts蜂巢 在現存GSM蜂巢位點處之部署而為已知的。在此狀況下, 可將交通圖、RF傳播模型及蜂巢位置提供給—諸如此項技 術中已知之Atol卜Planet、Assett、〇dyssey等等之蜂巢計 晝工具。該蜂巢計晝工具可確定該等蜂巢之RF參數以便可 達成根據覆蓋範圍及容量之優良網路效能。或者,可將交 通圖及RF傳播模型提供給一諸如此項技術中亦已知之The RNC 140 can provide coordination and control to the Node B coupled to the RNC via the aggregation point. For example, the RNC 14 can perform radio resources and some other operational functions, and other functions for supporting communications for the UE. UE 120 can be dispersed throughout the wireless network. A UE can be stationary or mobile and can also be referred to as a mobile station, a mobile device, a terminal, an access terminal, a subscriber unit, a station, and the like. A UE can be a cellular telephone, a PDA, a wireless communication device, a handheld device, a wireless data modem, and the like. A UE can communicate with one or more Node Bs via transmissions on the downlink and/or downlink. The downlink (or front link) refers to the communication link from the Node B to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the Node B. The terms, UE, and "user" can be used interchangeably herein. The parent-honey has a specific coverage area that can be determined based on the RF parameters of the bee f. The antenna is tilted down, The antenna orientation and the antenna % type affect the broadcast characteristics and thus affect the coverage of the hive. The pilot X ^ ~ ginger UE receives the pilot signal from the hive. Changing the pilot power, the owing to the hive size can cause the downlink The link between the path and the uplink is unbalanced. If the pilot power is adjusted (eg, reduced), it can correspond to 123353.doc 200816669. The uplink is manually adjusted (eg, increased to weaken the uplink). The bottom of the noise to avoid link imbalance. During a cellular phase, a traffic map and RF propagation model for the network deployment area can be obtained. The traffic map can indicate that the user can be more concentrated and can be in various ways ( For example, the area obtained by determining the position of the user, by the parent in the observation area, etc.) The term "position (1〇cati〇n)" is synonymous with, position" It can be used interchangeably herein. The scale propagation model can be used to predict the path loss of RF signals and can be based on the kumura-Hata model or some other model. The hive location can be (for example) due to the umts hive in the existing GSM hive. The deployment of the points is known. In this case, the traffic map, the RF propagation model, and the hive location can be provided to a honeycomb device such as Atol, Planet, Assett, 〇dyssey, etc. known in the art. The Honeycomb Tool can determine the RF parameters of the cells to achieve good network performance based on coverage and capacity. Alternatively, the traffic map and RF propagation model can be provided to a device such as is also known in the art.

Radi〇plan、Schema、AHes〇等之自動蜂巢計晝(Acp)工 具。該ACP工具可提議蜂巢位點且確定心參數以便可達成 優良網路效能。 查在一態樣中,可藉由考慮使用者之行動性而執行蜂巢計 旦可在現存無線網路(例如,一 GSM網路)上部署無線 、罔路10G可以關於現存網路中之使用者及其位置之資訊 為基礎獲得相對準確之交通圖。可以用於支援E_9n有關 要求之現存網路之定位能力為基礎確定使用者位置。亦可 以其他方式獲得交通圖,例如,藉由觀測地理區域中之使 123353.doc 10 200816669 用者且記錄下使用者之大致位置。可以針對現存網路中之 使用者及發生交遞之位置之資訊為基礎獲得相對準確之行 動性圖。亦可以其他方式獲得行動性圖,例如,藉由觀= 地理區域中之使用者及使用者之改變的位置。 乂通圖及RF傳播模型可經提供給一蜂巢外查 叫旦丄具且用於 確定針對待部署之新蜂巢之位點位置及1117參數設定。現存 蜂巢位點可重新用於新蜂巢,且可自現存蜂巢位點中^ 新蜂巢位點位置。蜂巢計畫工具可以覆蓋範圍與容量之間 的一折衷為基礎選擇蜂巢位點位置及RF#數設定。行動^ 圖可以各種方式用於蜂巢計畫。 在-設計中’效能度量可定義為覆蓋範圍、容量及行動 性之函數且可用於選擇蜂巢位點位置及/或灯參數設定。 效能度量可為蜂巢邊界處之交遞之數目的一函數,蜂巢邊 界處之交遞之數目可以行動性圖為基礎來估計。舉例而 I ’行動性圖可指示仙發送測量報告訊息(MRM)以請求 交遞至新蜂巢之位置。可以請發送之mrm之數目為基 礎而^十交遞之數目。可能需要選擇蜂巢位點位置及參 <疋乂便可減父遞之數目。處於閒置模式(被稱作蜂 巢重新、擇)中之UE之頻繁交遞彳消耗電池且使呼叫建 立效能降級。處於古j 、有效杈式中之UE之頻繁交遞可不利地 諸如語音及視訊串流之即時服務且進一步減少針對盈 線網路之服務覆蓋範圍。 , 曰可選擇蜂巢位點位置及RF參數設定以減少交遞之數目且 提供”乾淨的”蜂巢邊界。若當自蜂巢A移動至蜂巢B時,來 123353.doc 200816669 自蜂巢A之導頻信號變得單調減弱且來自蜂巢首 號變得單調強壯,且存在一個針對來自該兩個蜂巢:二言 的父越點’則可認為兩個蜂巢A與B之間的邊界為、 的。若此等蜂巢同等強壯地接收及/或在蜂巢邊界處二 ㈣I中輪流強壯,則可認為多個蜂巢之間的邊界為,,不乾 淨的"。此現象通常亦被稱作,,導頻污染,,且可導致蜂巢^ 間的頻繁及可能快速的交遞。可藉由選擇蜂巢位點位置及/ 或RF參數設^以使得—或少數導頻為顯著的而獲得乾淨的 蜂巢邊界及因此無導頻污染/低導頻污染。此在具有較高 密集度之使用者及/或較多行動使用者之區域中可能2 需要。 八 在圖1中所展示之實例中,三個蜂巢丨、2及3在_區域 "2中可具有重疊覆蓋區域。區域112可具有可藉由交通圖 及行動性圖指示之相對高密集度之行動使用者。此可導致 區域112中之使用者在三個蜂巢丨、2及3中的頻繁交遞。 圖2展示使用交通圖及行動性圖調整蜂巢覆蓋範圍之一 實例。在此實例中,可藉由選擇用於蜂巢丨、2及3之適當 R F參數來調整此等蜂巢之覆蓋範圍以使得存在較少且可能 較乾淨之蜂巢邊界。.此可導致區域丨12中之使用者之較少 交遞。 一般而言,交通圖及行動性圖可用於選擇優良蜂巢位點 位置、減少蜂巢邊界之^:目、f放蜂巢邊界以使得可發生 更〉、乂遞等。可藉由在一具有密集使用者群體之區域中置 放一蜂巢或藉由使一蜂巢指向該區域而為該區域獲得乾淨 123353.doc -12- 200816669 ==。乾淨的蜂巢邊界對於高行動性使用者 此係因為更少的時間可用於交遞。減少交遞 數目可提供某些優點,諸如:更 輪、P卩¥ π 丄 文夕之乂遞相關信號傳 拉式中之更少蜂巢重新選擇(此可延長UE電池壽 :)、有效模式中之改良的效能(例如,更少斷話)等等。可 =定叫數使得優良職能可猫準較高使用者密度區域 或較高使用區域而可將較差灯效能移動至較少頻繁之 區域。亦可設定RF參數以減少導頻污染、快速改變飼服蜂 巢、覆蓋漏洞等等。 來自蜂巢計晝卫具之結果通常僅與提供至此等工具之輸 入(例如,交通圖、RF傳播模型,及行動性圖)一般/良好。 該等輸入在許多情況下可能相對粗糙。舉例而言,交通資 料可能粗經且僅以蜂巢級可用。此外,可不考慮不同類型 之服務之服務區域。RF傳播模型亦可能由於各種原因而不 準確。可執行駕駛測試以測量不同位置處之RF條件,且可 將此等RF測量用於微調RF傳播模型。可接著將經修正之 RF傳播模型應用於蜂巢計畫工具以更新蜂巢之rf參數, 此可改良網路效能。然而,駕駛測試可能耗時且通常僅覆 盖街道而不覆蓋室内。 在另一恶樣中,在部署之後,可以由無線網路中之UE 進行之測ΐ為基礎調整蜂巢之RF參數。一 UE可對一有效 集合、一相鄰集合及/或一所偵測集合中之蜂巢進行測 量。該有效集合可包括當前伺服該UE之蜂巢。該相鄰/候 選集合可包括UE可被交遞之蜂巢。該所偵測集合可包括 123353.doc -13 - 200816669 UE所偵測之具有足夠導頻強度或品質之蜂巢。ue可產生 及發送一 MRM,該MRM可含有以下·· •針對蜂巢之RF測量_可用於觸發UE之交遞,及 •針對蜂巢之時序測量-可用於UE之交遞期間的下行 鍵路同步。 該等RF測量可關於導頻㈣、導頻品質等等。導頻強度 可指示UE處接收之導頻功率且亦可被稱作接收之信號^ 功率(RSCP)。導頻品質可指示1^處接收之導頻之品質, 此考慮接收之導頻功率以及干擾。導頻品質亦可被稱作每 一碼片之能量與總雜訊之比(Ec/N〇)。1;£亦可含有其他類 型之測ΐ ’豸如接收之信號強度指示(RSSI)、信號干擾比 (SIR)等冑。出於簡單起見,以下描述假定使用Rscp及 Ec/No。如不文所描述,可以各種格式給出時序測量。 UE可獲得針對任何數目之蜂巢(例如,有效、相鄰及/或 所债測集合中之蜂巢)之Rscp測量及測量。耶亦 可獲仟針對此等蜂巢之時序/同步資訊。ue可將該等測量 及一 MRM中之相關聯之時序資訊發送至(例如)祠服蜂巢或 RNC。該等RSCp測量可用於計算路徑損失且用於建立準 確的卿。該等軸0測量可指示下行鏈路上之載入/干擾 且可用於建立準確的载入圖。UE可週期地或當觸發時產 生及發达MRM。因為MRM含有針對蜂巢之時序資訊及仙 之〜哉別付(UE ID),所以可如下所述以該等測量為基礎 斷定UE之位置。此外,Mrm可用於確定仙之行動性且可 用於建構行動性圖。 123353.doc -14- 200816669 圖3展示一用於藉由考慮UE之行動性而確定蜂巢之^^來 數的過程300的一設計。可(例如)以由此等ue發送之用於 交遞之MRM為基礎確定針對UE之行動性資訊(步驟312)。 舉例而言,可如下所述以MRM為基礎確定UE之位置,且 可以UE位置為基礎確定行動性資訊。行動性資訊可指示 ^ 在交遞期間UE之位置。 • 可以針對UE之行動性資訊為基礎確定至少一蜂巢之至 ( 少一RF參數(例如,天線下傾、天線方位、天線場型、導 頻功率、雜訊底部等等)(步驟314)。亦可進一步以針對ue 之RF資訊、交通資訊、RF傳播資訊等等為基礎確定該 (等)RF參數。可以可包括導頻強度測量、導頻品質測量等 等之MRM為基礎確sRF資訊。可調整該(等)1^參數以在 某些區域中具有更強壯之覆蓋範圍、移動覆蓋範圍邊界、 j ^ V頻污染、增加覆蓋範圍、增加容量、減少或移動覆 蓋漏洞等等。可調整該(等)RF參數以根據覆蓋範圍、容量 ί / 與仃動性之間的折衷達成優良網路效能,例如,減少有# 才莫j Φ ^ >人 、 之父遞之數目及閒置模式中之蜂巢重新選擇之數 目〇 又汁中’可處理收集自UE之MRM以估計UE位置且 ' 識別諸如暮4S、、- 4 _ κ、/5* 乐、犬增蜂巢(oversh〇〇ting cell)、過声 + 後现範圍與容量限制之RF問題。此等RF問題可導致 斷話、啤叫奢Automatic Honeycomb (Acp) tools for Radi〇plan, Schema, AHEs〇, etc. The ACP tool can propose a honeycomb site and determine cardiac parameters so that good network performance can be achieved. In one aspect, the implementation of the hive can be performed on the existing wireless network (for example, a GSM network) by considering the user's mobility, and can be used in the existing network. A relatively accurate traffic map based on the information of the person and its location. The user location can be determined based on the positioning capabilities of the existing network that supports E_9n requirements. Traffic maps may also be obtained in other ways, for example, by observing the user in the geographic area and recording the approximate location of the user. A relatively accurate behavioral map can be obtained based on information from users on the existing network and where the delivery takes place. The mobility map can also be obtained in other ways, for example, by viewing the location of the user and the user in the geographic area. The map and the RF propagation model can be provided to a hive for external inspection and used to determine the location of the location and the 1117 parameter settings for the new hive to be deployed. The existing hive site can be reused for the new hive and can be located from the existing hive site in the new hive site. The hive plan tool can select the hive site location and the RF# number setting based on a compromise between coverage and capacity. The action ^ map can be used in various ways for the hive plan. In-design's performance metrics can be defined as a function of coverage, capacity, and mobility and can be used to select hive location and/or lamp parameter settings. The performance metric can be a function of the number of handovers at the honeycomb boundary, and the number of handovers at the honeycomb boundary can be estimated based on the action graph. For example, the I' mobility map may indicate that the measurement report message (MRM) is sent to request delivery to the location of the new hive. The number of mrms that can be sent is based on the number of copies. It may be necessary to select the position of the honeycomb site and the number of the parental deductions. Frequent handoffs of UEs in idle mode (referred to as homing, selection) consume battery and degrade call setup performance. Frequent handoffs of UEs in an efficient manner can disadvantageously provide instant services such as voice and video streaming and further reduce service coverage for the pay-over network. , 蜂 Select the location of the honeycomb site and the RF parameter settings to reduce the number of deliveries and provide a “clean” hive boundary. If moving from hive A to hive B, come to 123353.doc 200816669 The pilot signal from hive A becomes monotonously weakened and the number from the hive becomes monotonous and strong, and there is one for the two hive from the two: The parent points more than 'the boundary between the two honeycombs A and B is . If the hive receives equally strong and/or is strong in the second (four) I at the hive boundary, then the boundary between the multiple hive can be considered as, and the uncleaned ". This phenomenon is also commonly referred to as, pilot pollution, and can result in frequent and potentially fast delivery between the cells. A clean honeycomb boundary and thus no pilot contamination/low pilot pollution can be obtained by selecting the honeycomb site location and/or RF parameter settings such that a small number of pilots are significant. This may be required in areas with higher density of users and/or more mobile users. Eight In the example shown in Figure 1, three honeycombs 2, 2 and 3 may have overlapping coverage areas in _region "2. Region 112 may have a relatively high concentration of mobile users that may be indicated by traffic maps and mobility maps. This can result in frequent handovers by users in area 112 in three cells 2, 2, and 3. Figure 2 shows an example of using a traffic map and a mobility map to adjust the coverage of a hive. In this example, the coverage of such hives can be adjusted by selecting appropriate RF parameters for the hive, 2 and 3 such that there are fewer and possibly cleaner hive boundaries. This can result in less handoffs for users in the area 丨12. In general, the traffic map and the mobility map can be used to select the location of the excellent honeycomb site, reduce the boundary of the honeycomb, and place the hive boundary so that more and more can be generated. The area can be cleaned by placing a hive in an area with a dense user population or by pointing a hive to the area 123353.doc -12- 200816669 ==. Clean hive borders for highly mobile users This is because less time is available for delivery. Reducing the number of handovers may provide certain advantages, such as: more rounds, P卩¥ π 丄 夕 乂 乂 更少 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂 蜂Improved performance (eg, less breaks) and so on. Yes = the number of calls allows a good function to be used in a higher user density area or a higher usage area to move poor lamp performance to less frequent areas. RF parameters can also be set to reduce pilot contamination, rapid changes in feeding nests, coverage holes, and more. Results from the Honeycomb Weapons are generally only good/good with inputs provided to such tools (eg, traffic maps, RF propagation models, and mobility maps). These inputs may be relatively coarse in many cases. For example, traffic data may be coarse and available only at the cellular level. In addition, service areas for different types of services may be disregarded. RF propagation models may also be inaccurate for a variety of reasons. A driving test can be performed to measure RF conditions at different locations, and these RF measurements can be used to fine tune the RF propagation model. The modified RF propagation model can then be applied to the hive plan tool to update the rf parameters of the hive, which can improve network performance. However, driving tests can be time consuming and often only cover the street without covering the room. In another misconduct, after deployment, the RF parameters of the hive can be adjusted based on measurements performed by UEs in the wireless network. A UE may measure a live set, an adjacent set, and/or a beehive in a detected set. The active set may include a hive that currently serves the UE. The neighbor/query set may include a hive that the UE can hand over. The detected set may include a hive having sufficient pilot strength or quality detected by the UE 123353.doc -13 - 200816669 UE. Ue can generate and send an MRM, which can contain the following: • RF measurement for the hive _ can be used to trigger the handover of the UE, and • Timing measurement for the hive - can be used for downlink key synchronization during handover of the UE . These RF measurements can be related to pilot (4), pilot quality, and the like. The pilot strength may indicate the pilot power received at the UE and may also be referred to as the received signal power (RSCP). The pilot quality can indicate the quality of the received pilot at 1^, which takes into account the received pilot power and interference. Pilot quality can also be referred to as the ratio of energy to total noise per chip (Ec/N〇). 1; £ may also contain other types of measurements, such as received signal strength indication (RSSI), signal-to-interference ratio (SIR), etc. For the sake of simplicity, the following description assumes the use of Rscp and Ec/No. Timing measurements can be given in a variety of formats as described. The UE may obtain Rscp measurements and measurements for any number of cells (e.g., active, adjacent, and/or beehives in the set of debts). Yeah also has access to timing/synchronization information for these hives. The ue can send the measurements and associated timing information in an MRM to, for example, a service hive or RNC. These RSCp measurements can be used to calculate path loss and to establish accurate ambiguity. The isometric 0 measurement can indicate load/interference on the downlink and can be used to establish an accurate load map. The UE may generate and develop MRM periodically or when triggered. Since the MRM contains timing information for the hive and the UE ID, the location of the UE can be determined based on the measurements as described below. In addition, Mrm can be used to determine the mobility of the fairy and can be used to construct an action map. 123353.doc -14- 200816669 Figure 3 shows a design of a process 300 for determining the number of hives of a hive by considering the mobility of the UE. The mobility information for the UE may be determined, for example, based on the MRM for handover delivered by such ue (step 312). For example, the location of the UE may be determined on an MRM basis as described below, and the mobility information may be determined based on the location of the UE. The mobile information can indicate ^ the location of the UE during handover. • At least one hive may be determined based on the UE's mobility information (less than one RF parameter (eg, antenna downtilt, antenna orientation, antenna pattern, pilot power, noise floor, etc.) (step 314). The RF parameters may be further determined based on the RF information, traffic information, RF communication information, etc. of the ue. The MRF may be based on the MRM based on the pilot strength measurement, the pilot quality measurement, and the like. The (etc.) 1^ parameter can be adjusted to have stronger coverage, mobile coverage boundaries, j^V frequency pollution, increased coverage, increased capacity, reduced or mobile coverage holes, etc. in certain areas. The (equal) RF parameter achieves excellent network performance based on a compromise between coverage, capacity ί / and turbulence, for example, reducing the number of people, the number of fathers, and the idle mode. The number of hive re-selected in the 〇 汁 汁 'process can collect the MRM collected from the UE to estimate the UE location and 'identify such as 暮 4S,, - 4 _ κ, /5* music, dog growth hive (oversh〇〇ting cell ), over the sound + after the present RF issues with range and capacity limitations. These RF issues can lead to disconnection, beer luxury

^ H 遷立失敗、低通量等等。可接著以所識別之RF 為基石楚日本^ — < 疋且亏慮UE位置及ϋ£位置中之估計誤差,來設^ H Immigration failure, low throughput, etc. It can then be based on the identified RF as the basis for the estimation of the UE position and the position of the , £.

疋蜂巢之Rp灸垂ί X 多數。可(例如)使用一蜂巢計畫工具使關於rf 123353.doc -15- 200816669 門題之天線下傾、天線方位及/或導頻功率之改變的效應 杈型化。UE位置可足夠準確以預測由天線下傾或方位之 改又V致之蜂巢天線增益中的德耳塔(deita)。可以估計UE 位置、疋位機制之平均不準確度、蜂巢位點組態等等為基 礎,计异得自天線下傾或方位之一改變的蜂巢天線增益中 之德耳塔的機率密度函數(PDF)。可接著調整該等犯參 數,以便以估計UE位置之蜂巢天線增益pDF中的德耳塔為 基礎,最小化一適當成本函數。可藉由選擇適當信心水準 來防止進步減弱較弱RF之區域的rf改變(以覆蓋範圍及 該區域上之最大載入為基礎)。 在一設計中,可使用一簡單直線對傳(line_〇f_site)(L〇s) 杈型作為一RF傳播模型,計算由RF參數之一改變導致之 蜂巢天線增益的改變。在一巨集蜂巢式環境中,大多數散 射可極接近於UE發生。因此,一 L〇s模型可能足夠。可藉 由使用來自UE之RF測量而考慮由散射及多路徑導致之緩 慢及快速衰退。在一設計中,若估計舊的汉?參數設定,則 可儲存及重新使用先前設定之量。 在又-態樣中’可以無線網路中之蜂巢之載人條件為基 礎’動態地調整蜂巢之RF參數。可以來自UE2Mrm、排 程資訊等等為基礎’斷定該等載入條件。可動態地調整該 等RF參數,以在達成優良網路效能之同時,保持相同或類 似的覆蓋範圍。 圖4展不一用於以載入條件為基礎,調整參數之過程 4〇〇之,又计。可(例如)以來自UE之訊息為基礎,確定無 123353.doc -16- 200816669 線網絡中之至少—蜂巢之載人及/或其他條件(步驟412)。 舉例而言’ UE可發送訊息以報告行動性資訊(例如,位 置)、好條件(例如,RSCP及以㈣、效能(例如,通量及 BLER)等等。此等訊息可為MRM及/或其他類型之訊息。 UE可出於諸如父遞、位置報告、網路效能監視及調譜等 等之各種目的而發送此等訊息。可使用來自UE之訊息以 萑疋該至乂蜂巢之載入條件及/或其他條件。可以該等Rp moxibustion ί X majority. The effect of the antenna downtilt, antenna orientation and/or pilot power change on rf 123353.doc -15-200816669 can be used, for example, using a hive plan tool. The UE position may be accurate enough to predict the deita in the honeycomb antenna gain due to the antenna downtilt or orientation. Based on the UE location, the average inaccuracy of the clamping mechanism, the configuration of the hive site, etc., the probability density function of the delta in the gain of the honeycomb antenna from which the antenna is tilted down or the orientation is changed ( PDF). These parameters can then be adjusted to minimize an appropriate cost function based on the delta in the cellular antenna gain pDF of the estimated UE position. It is possible to prevent the progress from weakening the rf change in the weaker RF region (based on the coverage and the maximum loading on the region) by selecting the appropriate level of confidence. In one design, a simple straight line pair (line_〇f_site) (L〇s) type can be used as an RF propagation model to calculate the change in the gain of the honeycomb antenna caused by one of the RF parameters. In a macro-honey environment, most of the scatter can occur very close to the UE. Therefore, an L〇s model may be sufficient. Slow and rapid degradation caused by scattering and multipath can be considered by using RF measurements from the UE. In a design, if you estimate the old Han? With the parameter settings, the previously set amount can be stored and reused. In the re-state, the RF parameters of the hive can be dynamically adjusted based on the manned conditions of the hive in the wireless network. These loading conditions can be determined based on UE2Mrm, scheduling information, and the like. These RF parameters can be dynamically adjusted to achieve the same or similar coverage while achieving good network performance. Figure 4 shows the process of adjusting parameters based on the loading conditions. Based on the message from the UE, it is determined that at least - the hazard of the hazard and/or other conditions in the 123353.doc -16-200816669 line network (step 412). For example, the UE may send a message to report action information (eg, location), good conditions (eg, RSCP and (4), performance (eg, flux and BLER), etc. Such messages may be MRM and/or Other types of messages. The UE may send such messages for various purposes such as parent delivery, location reporting, network performance monitoring, and tone modulation, etc. The message from the UE may be used to load the homing to the hive. Conditions and / or other conditions. Can be such

載入及/或其他條件為基礎,調整該至少一蜂巢之至少 RF參數(步驟414)。 UE在正常操作期間可發送MRM以支援交遞。此等mrm 中之時序測量可用於確定UEi位置,UEi位置可用於調 整蜂巢之叩參數。可如下所述產生針對UMTS之時序測 量。 圖5展示無線網路100中之一 UE及兩個蜂巢之時序的一 實例。在UMTS中,每一蜂巢之傳輸時刻表經分割成訊 框,其中每一訊框具有一大約1〇毫秒(ms)之持續時間且覆 蓋38,400個碼片。每一訊框係由一 12位元系統訊框數 (SFN)來識別。該SFN針對每·一訊框遞增一,範圍在〇至 4095之間’且在到達4095之後繞回〇。SFN每20 ms在一主 要共同控制實體通道(P_CCPCH)上發送一次。在UMTS 中’該等蜂巢可不同步地操作。在此狀況下,如圖5中所 展示’不同蜂巢之訊框可不時間對準且亦可具有不同的訊 框編號。 UE之傳輸時刻表亦經分割成訊框,其中每一訊框係由 123353.doc -17- 200816669 一 8位元連接訊框數(CFN)來識別。當為UE建立一專用實 體通道(DPCH)時,以一伺服蜂巢之SFN為基礎初始化 CFN。CFN係由UE及RNC保持且不在空中發送。 UE可確定針對一給定蜂巢m之SFN-CFN觀測時間差 (OTD),如下: OTDW=OFFW.38,400 + TW, 等式(1) 其中OTDm為針對蜂巢m之OTD, OFFw為針對蜂巢m之OTD之一訊框級部分,及 為針對蜂巢m之OTD之一碼片級部分。 OTDw為蜂巢m之時序與UE之時序之間的差(如由UE觀測 且以碼片為單位給出)。OTD之碼片級部分可給出如下:Based on the loading and/or other conditions, the at least one RF parameter of the at least one hive is adjusted (step 414). The UE may send an MRM during normal operation to support handover. Timing measurements in these mrms can be used to determine the UEi position, and the UEi position can be used to adjust the parameters of the hive. Timing measurements for UMTS can be generated as described below. Figure 5 shows an example of the timing of one of the UEs and two cells in the wireless network 100. In UMTS, the transmission schedule for each hive is divided into frames, each frame having a duration of approximately 1 millisecond (ms) and covering 38,400 chips. Each frame is identified by a 12-bit system frame number (SFN). The SFN is incremented by one for each frame, ranging from 〇 to 4095' and wraps around after reaching 4095. The SFN is sent once every 20 ms on a primary common control entity channel (P_CCPCH). In UMTS, the hives can operate asynchronously. In this case, the frames of the different honeycombs as shown in Fig. 5 may not be time aligned and may have different frame numbers. The transmission schedule of the UE is also divided into frames, each of which is identified by a number of frames (CFN) of 123353.doc -17-200816669. When a dedicated physical channel (DPCH) is established for the UE, the CFN is initialized based on the SFN of a servo cell. The CFN is maintained by the UE and the RNC and is not transmitted over the air. The UE may determine an SFN-CFN observation time difference (OTD) for a given hive m, as follows: OTDW = OFFW. 38, 400 + TW, Equation (1) where OTDm is the OTD for the hive, and OFFw is the OTD for the hive m One of the frame-level parts, and one of the chip-level parts of the OTD for the hive m. OTDw is the difference between the timing of the cellular m and the timing of the UE (as observed by the UE and given in units of chips). The chip-level portion of the OTD can be given as follows:

Tw = (Tuetx — T。) — ’ 專式(2 ) 其中Tuetx 為一針對UE之上行鏈路DPCH訊框之開始, T〇為一定義為等於1024個碼片之常數,及 T RxSFNm 為如在UE處觀測之在時間常數Tuetx_T〇之前之 針對蜂巢m之P-CCPCH訊框的開始。 時間常數Tuetx-To為一針對伺服蜂巢之下行鏈路DPCH訊 框之開始。如在UE處測量,針對UE之上行鏈路DPCH訊框 之開始經設定為在下行鏈路DPCH訊框之開始之後的T〇個 碼片。時間常數TUETx用作一測量針對待報告之每一蜂巢之 的時間參考。 OTD之訊框級部分可給定為: OFFm 二(SFNw - CFNTx) mod 256, 等式(3 ) 其中CFNtx為於時間Tuetx處開始之上行鍵路DPCH訊框之 123353.doc -18 - 200816669 CFN,及 SFN』開始於時間TRxSFNw處之針對蜂巢m之P-CCPCH 訊框的SFN。 如圖5中所展示,UE在一 %之延遲之後接收針對蜂巢m 之P-CCPCH訊框,該u延遲為自蜂巢m至UE之傳播延遲。 P-CCPCH訊框由蜂巢m在時刻TTxSFNw傳輸且由UE在時刻 TRxSFNm接收’其中 % = TTxSFNaw - TRxSFNm。 UE可對任何數目之蜂巢進行RF及OTD測量。UE可將此 等測量在一 MRM中發送至伺服蜂巢。當產生MRM(亦被稱 作’’定位MRM”)時,可使用OTD測量且可能使用RF測量確 定UE之位置。因為對於不同MRM而言UE可在不同位置, 所以可對每一 MRM執行定位。 圖6展示一針對一 UE及三個蜂巢1、2及3之系統模型。 UE可如上所述獲得針對該三個蜂巢之SFN-CFN OTD測 量。此等OTD測量可表達為: OTD^l-(Τα+η), 等式(4) OTD^Tue-CTq+z^),及 OTD3 =1^-(TC3+r3) 5 其中Tue&UE處之時間參考,其可對應於TUETx - To, TC1、TC2&TC3分別為針對蜂巢1、2及3之時間參考, 〜、τ2及1:3分別為針對蜂巢1、2及3之傳播延遲,及 OTDi、OTD2及OTD3分別為針對蜂巢1、2及3之 OTD 〇 如等式組(4)中所展示,OTD為如在UE處觀測之蜂巢之 123353.doc •19- 200816669 時序之測量且包括針對此等蜂巢之傳播延遲。該等蜂巢之 間的相對時間差(RTD)可定義為: RTD21 = TC2 ^TC1 = OTD1 -OTD2 -(r2 -r,) = OTD, -OTD2 -^21 » 等式(5) RTD31 = TC3 - TC1 == OTD】- OTD3 - (r3 )==OTDi - OTD3 - 531, 其中及心丨分別為針對蜂巢2及3之相對於蜂巢1之觀測到 達時間差(OTDOA),及 RTD21&RTD31*別為針對蜂巢2及3之相對於蜂巢1之 RTD。 在等式組(5)中,OTD可自MRM中已知,且RTD及 OTDOA可如下所述來確定。RTD亦可被稱作時序關係。 OTDOA亦可被稱作觀測延遲差。 MRM中之測量可用於確定針對彼MRM之UE之位置,或 簡單而言,MRM位置。MRM可提供MRM位置與若干蜂巢 之間(通常為兩至八個蜂巢之間)的OTD及針對此等蜂巢之 RF測量。蜂巢之位置可為已知。可使用此等不同類型之資 訊定位MRM。 在一設計中,可如下估計MRM位置: A1 ·(例如)以一啟動技術為基礎確定該等蜂巢之間的時序 關係或RTD,及 A2.(例如)使用一迭代演算法以RTD及OTD為基礎估計 MRM位置。 可如下所述執行步驟A1及A2。 在步驟A1之一設計中,可如下確定MRM中所報告之蜂 巢之間的時序關係: 123353.doc -20- 200816669 Β1·以一針對蜂巢之量及一 rF傳播/路徑損失模型為 基礎估計MRM位置與每一蜂巢之間的距離, B2.以距蜂巢之估計距離為基礎估計mrm位置, B3.以MRM及蜂巢位置為基礎估計每一蜂巢之傳播延遲,及 B4·以該等傳播延遲為基礎確定該等蜂巢之間的RTD。 對於步驟B1,可首先如下確定MRM中所報告之每一蜂 巢之路徑損失:Tw = (Tuetx - T.) — 'Special Formula (2) where Tuetx is the start of an uplink DPCH frame for the UE, T〇 is a constant defined as equal to 1024 chips, and T RxSFNm is The beginning of the P-CCPCH frame for the hive m before the time constant Tuetx_T〇 observed at the UE. The time constant Tuetx-To is the beginning of a DPCH frame for the downlink of the servo cell. As measured at the UE, the start of the uplink DPCH frame for the UE is set to T〇 chips after the start of the downlink DPCH frame. The time constant TUETx is used as a time reference for measuring each hive to be reported. The frame level part of the OTD can be given as: OFFm 2 (SFNw - CFNTx) mod 256, Equation (3) where CFNtx is the uplink key DPCH frame starting at time Tuetx 123353.doc -18 - 200816669 CFN , and SFN" begins at time TRxSFNw for the SFN of the P-CCPCH frame of the hive m. As shown in Figure 5, the UE receives a P-CCPCH frame for the hive m after a delay of %, which is the propagation delay from the hive m to the UE. The P-CCPCH frame is transmitted by the cell m at time TTxSFNw and received by the UE at time TRxSFNm where % = TTxSFNaw - TRxSFNm. The UE can perform RF and OTD measurements on any number of cells. The UE may send such measurements to the servo cell in an MRM. When generating MRM (also referred to as ''location MRM'), OTD measurements can be used and RF measurements can be used to determine the location of the UE. Since the UEs can be in different locations for different MRMs, positioning can be performed for each MRM Figure 6 shows a system model for a UE and three cells 1, 2 and 3. The UE can obtain SFN-CFN OTD measurements for the three cells as described above. These OTD measurements can be expressed as: OTD^l -(Τα+η), Equation (4) OTD^Tue-CTq+z^), and OTD3 =1^-(TC3+r3) 5 where the time reference at Tue&UE corresponds to TUETx - To TC1, TC2 & TC3 are time references for hive 1, 2 and 3, respectively, ~, τ2 and 1:3 are propagation delays for hive 1, 2 and 3, respectively, and OTDi, OTD2 and OTD3 are for hive 1 respectively. OTDs of 2, 3, and 3, as shown in the equation group (4), the OTD is a measurement of the timing of 123353.doc •19-200816669 of the hive as observed at the UE and includes propagation delays for such hives. The relative time difference (RTD) between the honeycombs can be defined as: RTD21 = TC2 ^TC1 = OTD1 -OTD2 -(r2 -r,) = OTD, -OTD2 -^21 » Equation (5) RTD31 = TC3 - TC1 == OTD]- OTD3 - (r3)==OTDi - OTD3 - 531, where 丨 为 is the observed time difference of arrival (OTDOA) for hive 2 and 3 relative to hive 1, and RTD21 & RTD31 *Not for RTDs relative to Honeycomb 1 for Honeycombs 2 and 3. In Equation (5), OTDs are known from MRM, and RTDs and OTDOAs can be determined as follows. RTDs can also be called The timing relationship. OTDOA can also be referred to as the observation delay difference. The measurement in the MRM can be used to determine the location of the UE for the MRM, or simply the MRM location. The MRM can provide the MRM location between several hives (usually two OTDs to between eight hives and RF measurements for such hives. The location of the hive can be known. These different types of information can be used to locate the MRM. In one design, the MRM position can be estimated as follows: A1 · (For example) determining the timing relationship or RTD between the hives based on a start-up technique, and A2. (for example, using an iterative algorithm to estimate the MRM position based on the RTD and the OTD. Step A1 can be performed as follows) A2. In one of the designs of step A1, the reported in the MRM can be determined as follows The temporal relationship between the hive: 123353.doc -20- 200816669 Β1· Estimate the distance between the MRM position and each hive based on the amount of hive and an rF propagation/path loss model, B2. The estimated distance is based on the estimated mrm position, B3. The propagation delay of each hive is estimated based on the MRM and the hive position, and B4. The RTD between the hive is determined based on the propagation delays. For step B1, the path loss for each of the nests reported in the MRM can be determined as follows:

Lw=pw+Aw(x,y)-RSCPw, 等式(6) 其中Pm為蜂巢m之導頻功率,Lw=pw+Aw(x,y)-RSCPw, Equation (6) where Pm is the pilot power of the hive,

Aw(x、y)為蜂巢所之一作為MRM位置(χ、力之一函數 的天線增益,Aw(x, y) is the antenna gain of one of the honeycombs as a function of the MRM position (χ, force,

Rscpm為來自蜂巢m之導頻之RSCP,及 為蜂巢m之路徑損失,以分貝(dB)為單位。 可以一基地台星曆及直線對傳(LOS)假定為基礎計算天 線增益Aw(x、y)。 可接著以蜂巢之路徑損失及RF傳播模型為基礎估計 MRM位置與每一蜂巢之間的距離,如下: Μ f,=l〇ll0wJ, 等式(7) 其中π為一路桎損失指數,其可經設定為π = 3.84, r為一路徑損失常數,其可經設定為Γ = 138·5 dB,及 〜為以RSCP測量為基礎之距蜂巢所之估計距離。 對於步驟B2,可以自步驟B1所獲得之距蜂巢之估計距 離為基礎估計MRM位置。若估計距離沒有誤差,則其將 123353.doc -21 - 200816669 在一單個點處相交,其被提供為MRM位置。然而,估計 距離將可能具有誤差,且可確定MRM位置以最小化該等 誤差。 圖7展示用於以距蜂巢之估計距離為基礎估計mrm位置 之三邊測量的一實例。出於簡單起見,以下描述假定具有 I度與緯度之2維(2D)座標(例如,(χ、y)用於MRM位置而 (Xm、用於蜂巢m之位置)。一般而言,可在如上所述之 2D中或在具有經度、緯度及高度之3維(3D)(例如,用於 MRM位置之(X、y、z))中給出座標。在圖7中所展示之實 例中,蜂巢1、2及3分別位於座標(Χι、Υι)、(χ2、d及 (X3、Yd中,該等座標為已知的。MRM位置係在座標&、 y)處,座標(X、y)係待估計的。蜂巢所與“^^位置&、幻 之間的計算距離可表達為: 2yYw,等式(8) 其中1^為MRM位置與蜂巢w之間的計算距離。 可確定M R Μ位置以使得距蜂巢之估計距離與計算距離 之間的差最小化。此可藉由最小化以下誤差度量來達成· E(x,y) =lx2 乂2丨 /w = 1 = ΣΐΧ:+Χ2-2xXw+Yw2”2 一 2yYw-f2| 等式(9) 其中E(x、y)為一誤差度量及Μ為MRM中之蜂巢之數目。 若MRM含有針對三個或三個以上蜂巢之測量,則可使 用等式(9)。若MRM中包括針對三個以下蜂巢之测量,則 MRM位置上存在混淆。此外,因為天線增益Κχ、^係 123353.doc -22- 200816669 MRM位置之一函數,所以可使等式(6)至(9)迭代多次以使 誤差度量E(x、y)最小化。在完成所有迭代之後可獲得 MRM位置。 對於步驟B3,可如等式(8)中所示計算自步驟B2所獲得 之MRM位置與每一蜂巢之間的距離。可接著將距每一蜂 巢之距離轉換成傳播延遲,如下: , 等式(10) 其中C為信號傳播速度,其為cdxlO8,及 L為自蜂巢m至MRM位置之傳播延遲,如圖6中所 示。 對於步驟B4,可如下計算該等蜂巢之間的時序關係: RTD,OTD, — OTDw — , 等式(1 1) 其中RTD-為針對蜂巢m之相對於參考蜂巢ζ·之RTD。MRM 中之一蜂巢可用作參考蜂巢/,且可計算MRM中之每一剩 餘蜂巢之RTD。參考蜂巢/可為伺服蜂巢、最強壯蜂巢、最 早蜂巢等等。在等式(11)中,OTD可來自MRM,且傳播延 遲可自步驟B3獲得。 可自UE接收多個(K)MRM。可為每一 MRM中所報告之蜂 巢計算RTD。接著可在該K個MRM上取該等RTD之平均值 以改良RTD估計之準確度,如下: RTDm/,avg=|; W,.RTDwa , 等式(12) k = \ 其中RTDwu為針對第HH1MRM之針對蜂巢m及z•之RTD, 為一針對第Η固MRM之權重,及 123353.doc -23 - 200816669 RTDwz,avg為針對該κ個]V1RM之針對蜂巢所及· 、/ RTD。 z 平均 等式02)展示-在多個MRM上取平均值之機制。亦可以 其他方式執行該取平均值。在另一機制中,可選擇中間值 RTD心而不選擇平均值且提供中間值為 RTDm!.,avg。在又-機制中,映射函數可衰減遠離中間值之 測量。在任何狀況下,多個MRM上之取平均值可藉由使 遮蔽及快速衰退之效應平滑而改良準確度。權重I可經選 擇以對更可靠之RTD給出更多權重。舉例而言,可自一且 有更多蜂巢之MRM獲得MRM位置之一更準確的估計,^ 可對自此MRM所獲得之RTD給出更多權重。可限制該取平 均值之持續時間以使得可忽略蜂巢處之時脈漂移。 在步驟AR另-設計中,可以MRM位置之—粗縫估計 為基礎確定蜂巢之間的時序關係。舉例而t,伺服蜂巢、 最強壯蜂巢、最早蜂巢或某一其他蜂巢之位置可用作 MRM位置之粗链估計。作為另—實例,伺服蜂巢、最強 壯蜂巢、最早蜂巢或某一其他蜂巢之覆蓋範圍中心可用作 MRM位置之粗链估計。作為又—實例,—隨機開始位置 可用作MRM位置之粗链估計。在任何狀況下,可使用 MRM位置之粗缝估計確定距每一蜂巢之粗链距離,如等 式(8)中所展示。可接著將粗糙距離轉換成一粗糙傳播延 遲,如等式(ίο)中所展示。可接著如等式⑴)及(12)中所展 示導出針對成對之蜂巢之RTD。 屬於同一節點B之蜂巢通常具有固定且大多數可能已知 123353.doc -24- 200816669 之時間偏移。可以若干方式利用此資訊。首先,可減少未 知數之數目且更多測量可用於估計此等未知數,此可改良 準確度。其_人,可僅考慮第_多路徑,且可廢棄延遲到達 同一節點B之不同蜂巢的信號分量。 對於步驟A2,可以-迭代演算法為基礎估計一難以之 位置,如下: C1.以MRM中之OTD測量為基礎計算MRM位置,Rscpm is the RSCP from the pilot of the hive, and the path loss for the hm, in decibels (dB). The antenna gain Aw(x, y) can be calculated based on a base station ephemeris and a straight line pass (LOS) assumption. The distance between the MRM position and each hive can then be estimated based on the path loss of the honeycomb and the RF propagation model, as follows: Μ f, = l〇ll0wJ, Equation (7) where π is the one-way loss index, which can Set to π = 3.84, r is a path loss constant, which can be set to Γ = 138·5 dB, and ~ is the estimated distance from the hive based on the RSCP measurement. For step B2, the MRM position can be estimated based on the estimated distance from the hive obtained in step B1. If there is no error in the estimated distance, it will intersect 123353.doc -21 - 200816669 at a single point, which is provided as the MRM position. However, the estimated distance will likely have errors and the MRM position can be determined to minimize these errors. Figure 7 shows an example of a three-sided measurement for estimating the mrm position based on the estimated distance from the hive. For the sake of simplicity, the following description assumes a 2-dimensional (2D) coordinate with a degree of I and latitude (eg, (χ, y) for the MRM position and (Xm, for the position of the hive m). In general, The coordinates are given in 2D as described above or in 3D (3D) with longitude, latitude and altitude (for example, (X, y, z) for the MRM position). The example shown in Figure 7. The honeycombs 1, 2, and 3 are located at coordinates (Χι, Υι), (χ2, d, and (X3, Yd, the coordinates are known. The MRM positions are at coordinates & y), coordinates ( X, y) is to be estimated. The calculated distance between the hive and the "^^ position & illusion can be expressed as: 2yYw, equation (8) where 1^ is the calculated distance between the MRM position and the hive w The MR Μ position can be determined such that the difference between the estimated distance from the hive and the calculated distance is minimized. This can be achieved by minimizing the following error metrics: E(x,y) =lx2 乂2丨/w = 1 = ΣΐΧ: +Χ2-2xXw+Yw2”2 a 2yYw-f2| Equation (9) where E(x, y) is an error metric and Μ is the number of hives in the MRM. If the MRM contains three or three More than one hive For the measurement, equation (9) can be used. If the MRM includes measurements for three or fewer honeycombs, there is confusion at the MRM position. In addition, because the antenna gain is Κχ, ^123353.doc -22- 200816669 MRM position A function, so equations (6) through (9) can be iterated multiple times to minimize the error metric E(x, y). The MRM position can be obtained after all iterations have been completed. For step B3, it can be like the equation ( The distance between the MRM position obtained from step B2 and each hive is calculated as shown in 8). The distance from each hive can then be converted into a propagation delay as follows: , Equation (10) where C is the signal propagation The speed, which is cdxlO8, and L is the propagation delay from the hm to the MRM position, as shown in Figure 6. For step B4, the timing relationship between the hives can be calculated as follows: RTD, OTD, - OTDw - , Equation (1 1) where RTD- is the RTD for the hive relative to the reference hive. One of the MRMs can be used as a reference hive/, and the RTD of each remaining hive in the MRM can be calculated. / can be servo honeycomb, the strongest honeycomb, the earliest honeycomb, etc. In equation (11), the OTD may be from the MRM, and the propagation delay may be obtained from step B3. A plurality of (K) MRMs may be received from the UE. The RTD may be calculated for the reported hive in each MRM. The average of the RTDs is taken from the K MRMs to improve the accuracy of the RTD estimation, as follows: RTDm/, avg=|; W, .RTDwa, equation (12) k = \ where RTDwu is for the HH1MRM for the hive The RTD of m and z• is a weight for the third solid MRM, and 123353.doc -23 - 200816669 RTDwz, avg is for the hive] V1RM for the hive and ·, / RTD. z Average Equation 02) Shows the mechanism of averaging over multiple MRMs. This averaging can also be performed in other ways. In another mechanism, the intermediate value RTD heart can be selected without selecting the average and providing an intermediate value of RTDm!., avg. In the re-mechanism, the mapping function can attenuate measurements away from the intermediate value. In any case, averaging over multiple MRMs can improve accuracy by smoothing the effects of shadowing and rapid decay. The weight I can be chosen to give more weight to a more reliable RTD. For example, a more accurate estimate of one of the MRM locations can be obtained from an MRM with more cells, and more weight can be given to the RTD obtained from this MRM. The duration of the averaging may be limited such that the clock drift at the hive is negligible. In the step AR-design, the timing relationship between the honeycombs can be determined based on the rough estimate of the MRM position. For example, the position of the servo cell, the strongest hive, the earliest hive or some other hive can be used as a rough estimate of the MRM location. As a further example, the coverage center of the servo cell, the strongest hive, the earliest hive or some other hive can be used as a thick chain estimate for the MRM location. As a further example, the random starting position can be used as a thick chain estimate for the MRM location. In any case, the rough estimate of the MRM position can be used to determine the thick chain distance from each hive, as shown in equation (8). The rough distance can then be converted to a coarse propagation delay as shown in the equation (ίο). The RTD for the paired honeycombs can then be derived as shown in equations (1)) and (12). Hives belonging to the same Node B usually have a fixed and most likely time offset of 123353.doc -24- 200816669. This information can be utilized in several ways. First, the number of unknowns can be reduced and more measurements can be used to estimate these unknowns, which can improve accuracy. The _man, only the first _ multipath can be considered, and the signal components of different homings arriving at the same node B can be discarded. For step A2, a difficult position can be estimated based on the iterative algorithm, as follows: C1. Calculate the MRM position based on the OTD measurement in the MRM,

U C2.估計MRM位置與蜂巢位置之間的距離且將該等距離轉 換成傳播延遲, C3.以該等傳播延遲為基礎確定該等蜂巢之間的時序關 係,及 C4.若MRM位置收斂,則退出,或否則返回至步驟^。 對於步驟ci ’可首先估計針對每—非參考蜂巢w之觀測 延遲差如下: hri=OTDr〇m, 等式(13) 其中對於第-迭代可將灯^設定為自步驟則所獲得之 RTDmz,avg,及 心為蜂巢所與參考蜂巢z•之間的觀測延遲差。 可接著為每一非參考蜂巢計算相對偽範圍,如下: ^mi = smi. c = rw -U C2. Estimating the distance between the MRM position and the hive position and converting the distance into a propagation delay, C3. determining the timing relationship between the hives based on the propagation delays, and C4. If the MRM position converges, Then exit, or otherwise return to step ^. For step ci ', the observed delay difference for each-non-reference honeycomb w can be estimated as follows: hri=OTDr〇m, equation (13) where for the first iteration, the lamp ^ can be set to the RTDmz obtained from the step, Avg, and the difference in observation delay between the hive and the reference hive. The relative pseudorange can then be calculated for each non-referenced hive as follows: ^mi = smi. c = rw -

2 A 等式(14) 其中“蜂巢_參考蜂κ間的相對偽範圍 在等式⑽中,τ為每一非參考蜂巢計算乂,。…為 未^數且依MRM位置(x、y)ffi?S,如等式⑻中所展示。可 確定至少兩個相對偽範圍(例如,&及A31)且使用該至少兩 123353.doc •25- 200816669 個相對偽範圍估計MRM位置。若兩個相對偽範圍可用, 則可以(例如)由Υ·Τ· Chan及K.C. Ho在一標題為’’A Simple And Efficient Estimator for Hyperbolic Location,’’(IEEE Trans. Signal Proc·,第 42卷,第 8號,1994年 8 月)之論文 中所描述之一閉合形式解為基礎計算MRM位置。若兩個 以上相對偽範圍可用,則可以一諸如最小均方(LMS)、線 性最小均方誤差(LMMSE)、遞歸最小平方(RLS)等等之迭 代技術為基礎計算MRM位置。LMS及RLS技術係由Simon Haykin 在一標題為"Adaptive Filter Theory”(第 3 版, Prentice Hall,1 996)之書中描述。在任何狀況下,可使用 針對相對偽範圍之兩個或兩個以上等式計算針對MRM位 置之兩個未知數X及y。 對於步驟C2,可如等式(8)中所展示計算自步驟C1所獲 得之MRM位置與每一蜂巢之間的距離rw。可接著將距每一 蜂巢之距離〜轉換成傳播延遲^,如等式(10)中所展示。 對於步驟C3,可以自步驟C2所獲得之傳播延遲及來自 MRM之OTD為基礎計算該等蜂巢之間的時序關係RTDw, 如等式(11)中所展示。自步驟C3中之OTD測量所獲得之 RTD可比自步驟B4中之RF測量所獲得之初始RTD更準確。 可(例如)如等式(12)中所展示在多個MRM上取針對蜂巢之 RTD的平均值。 對於步驟C4,可確定當前迭代與最後迭代之間的MRM 位置中之改變。若該改變低於一臨限值,則可宣告收斂, 且可提供來自當前迭代之MRM位置作為MRM位置之最終 123353.doc -26- 200816669 估計。若該改變超過該臨限值,則可自步驟C 1處開始執行 另一迭代。2 A Equation (14) where "the relative pseudorange between the hive_reference bee κ is in equation (10), τ is the 乂 for each non-reference hive, ... is the number and depends on the MRM position (x, y) Ffi?S, as shown in equation (8), may determine at least two relative pseudoranges (eg, & and A31) and use the at least two 123353.doc • 25-200816669 relative pseudoranges to estimate the MRM location. A relative pseudo-range is available, for example, by Υ·Τ· Chan and KC Ho in a title entitled ''A Simple And Efficient Estimator for Hyperbolic Location,'' (IEEE Trans. Signal Proc., Vol. 42, No. One of the closed form solutions described in the paper No. 8, March 1994) calculates the MRM position based on the closed form solution. If more than two relative pseudoranges are available, one can be such as the least mean square (LMS), linear minimum mean square error ( The MRM position is calculated based on the iterative technique of LMMSE), Recursive Least Squares (RLS), etc. The LMS and RLS techniques are by Simon Haykin in the title "Adaptive Filter Theory" (3rd edition, Prentice Hall, 1996). Described in the book. In any case, two unknowns X and y for the MRM location can be calculated using two or more equations for the relative pseudorange. For step C2, the distance rw between the MRM position obtained from step C1 and each of the honeycombs can be calculated as shown in equation (8). The distance from each of the hives can then be converted to a propagation delay ^ as shown in equation (10). For step C3, the timing relationship RTDw between the hives can be calculated based on the propagation delay obtained in step C2 and the OTD from the MRM, as shown in equation (11). The RTD obtained from the OTD measurement in step C3 can be more accurate than the initial RTD obtained from the RF measurement in step B4. The average of the RTDs for the hive can be taken, for example, on multiple MRMs as shown in equation (12). For step C4, a change in the MRM position between the current iteration and the last iteration can be determined. If the change is below a threshold, convergence can be declared and the MRM position from the current iteration can be provided as the final estimate of the MRM position 123353.doc -26-200816669. If the change exceeds the threshold, another iteration can be performed starting at step C1.

出於清楚起見,上述已描述一用於以SFN_SFN OTD測量 為基礎估計MRM位置之特殊設計。亦可以其他時序測量 為基礎及/或使用其他定位技術估計MRM位置。上述設計 估計MRM位置之2D座標(X、y)。雖然具有一針對高程z之 額外未知數,但亦可以類似方式估計MRM位置之3D座標 (X、y、z)。亦可經由谷歌地球圖(Google Earth map)或某 些其他技術獲得估計MRM位置處之南度。 在另一設計中,UE可報告針對蜂巢之類型1 SFN-SFN OTD測量。在此設計中,類型1 SFN-SFN 0TD之訊框級部 分可給定為: 0FFw=SFN, -SFNW, 等式(15) 其中SFN/及 SFN/分別為參考蜂巢ί及非參考蜂巢m之SFN。 類型1 SFN-SFN OTD之碼片級部分可給定為: - TRxSFN/ » 專式(1 6 ) 其中TRxSFNw為一針對非參考蜂巢所之P-CCPCH訊框之開 始,及 TRxSFNi·為一針對參考蜂巢/之P-CCPCH訊框之開始。 在又一設計中,UE可報告針對蜂巢之類型2 SFN-SFN OTD測量。在此設計中,類型2 SFN-SFN 0TD之碼片級部 分可給定為: Tw = TCPICHRxw - TCPICHRx/ 其中 TcPICHRxm 為一 等式(17) 自蜂巢m所接收之P-CPICH訊框之開 123353.doc -27- 200816669 始,及 TCPICHRX/為一自蜂巢/所接收之P-CPICH訊框之開始。 對於圖6中所展示之系統模型,類型2 SFN-SFN OTD測 量可定義為: 0丁0821=(丁。2何2卜(1^+幻,及 等式(18) OTDS31 = (TC3 + r3) - (TC1 + &) ’ 其中OTDSw/為由UE感知之在如藉由SFN俘獲之蜂巢m與蜂 巢ζ·之間的一時間差。當報告類型2 SFN-SFN時,OTDS21& OTDS31可為在MRM中發送之OTD測量。 觀測延遲差可給定為: 41=W〇TDS21-RTD21,及 等式(19) δ31 =τ3 — τι = OTDS31 - RTD31 ο 可使用來自等式(19)之觀測延遲差估計MRM位置,例 如,如上所述。 UE亦可報告針對UE Rx-Tx時間差之測量、針對用於UE 定位之蜂巢訊框之UE GPS時序的測量、針對往返時間 (RTT)之測量、針對用於UE定位之蜂巢訊框之UTRAN GPS 時序的測量等等。該等SFN-CFN測量、類型1 SFN-SFN測 量、類型2 SFN-SFN測量及其他測量描述於可公開得到之 標題為’’Physical layer - Measurements (FDD),’’(2007年 5 月 5 日)的 3GPP TS 25.215 中。 圖8展示一用於估計MRM位置之過程800之一設計。可 獲得一包含針對多個蜂巢之時序測量之MRM,其中該 MRM係當用於交遞或當被觸發時由一 UE發送(步驟812)。 123353.doc • 28 - 200816669 舉例而言,UE可經組態以週期性地發送MRM,該等MRM 可由無線網路使用以評估一般覆蓋範圍及/或用於其他目 的。時序測量可包含SFN-CFN OTD測量、針對類型1或2之 SFN-SFN OTD測量等等。當產生MRM時,可以MRM中之 時序測量為基礎確定UE之位置(步驟814)。對於步驟814, 可以時序測量為基礎確定MRM中之針對蜂巢之觀測延遲 差t。亦可(例如)以包括於MRM中之RF測量、一蜂巢之一 已知位置等等為基礎確定針對蜂巢之RTD。可接著如上所 述以觀測延遲差、該等蜂巢之已知位置及該等RTD為基礎 確定UE之位置。 可自無線網路中之UE收集MRM。可如上所述確定含有 針對足夠數目之蜂巢之測量的每一 MRM之位置。可以該 等MRM之位置為基礎產生載入/交通圖及行動性圖。亦可 以MRM中之RF測量為基礎產生RF圖。可將此等各種圖應 用於蜂巢計晝工具且使用此等各種圖調整蜂巢之RF參數以 便改良網路效能。詳言之,如上所述,可以一可為覆蓋範 圍、容量及行動性之一函數之效能度量為基礎調整蜂巢之 RF參數。 MRM之用於RF參數調整之使用由於許多原因可為有利 的。首先,對於正常UE操作發送MRM且因此可不招致獲 得此等MRM之額外耗用。其次,MRM提供覆蓋”付款消費 者去的π區域,且包括駕駛測試車不可近接之區域(例如, 室内)及具有低使用者密度之區域的測量。經由MRM俘獲 室内使用者之能力,可提供針對室内之更準確之RF模型 123353.doc -29- 200816669 化,此可為有益的,此係因為室内鏈路傾向於比室外鏈路 更弱。第三,可觸發UE以便以下行鏈路及上行鏈路通道 度量為基礎發送MRM,以便支援頻率内、頻率間及系統 間交遞。因此,具有位置之測量可用於RF最佳化可更有益 之較弱區域中。亦可通過使用MRM用於RF參數調整而獲 得各種其他益處。 可為一 UE保持一有效集合,且該有效集合可包括針對 UE之一或多個伺服蜂巢。在UMTS中,若以下條件發生達 一預定時間週期,則可將一新蜂巢添加至有效集合中: Pilot_Ec/No > Best—Pilot—Ec/No - Reporting_Range + Hysteresis_EventlA, 等式(20) 其中,Pilot_Ec/No係針對新蜂巢,Best_Pilot_Ec/No係針 對有效集合中之最佳蜂巢,Reporting_Range為一針對交遞 之臨限值,而Hysteresis_EventlA為一蜂巢添加滯後。 若以下條件發生達一預定時間週期,則可自有效集合中 移除一現存蜂巢:For the sake of clarity, a special design for estimating the position of the MRM based on the SFN_SFN OTD measurement has been described above. The MRM position can also be estimated based on other timing measurements and/or using other positioning techniques. The above design estimates the 2D coordinates (X, y) of the MRM position. Although there is an additional unknown for elevation z, the 3D coordinates (X, y, z) of the MRM location can be estimated in a similar manner. The estimated south of the MRM location can also be obtained via the Google Earth map or some other technique. In another design, the UE may report Type 1 SFN-SFN OTD measurements for the hive. In this design, the frame-level portion of Type 1 SFN-SFN 0TD can be given as: 0FFw=SFN, -SFNW, Equation (15) where SFN/ and SFN/ are reference hive ί and non-reference hive m respectively SFN. The chip-level portion of Type 1 SFN-SFN OTD can be given as: - TRxSFN/ » Specialized (1 6 ) where TRxSFNw is the beginning of a P-CCPCH frame for non-reference cells, and TRxSFNi is a target Refer to the beginning of the hive/p-CCPCH frame. In yet another design, the UE may report Type 2 SFN-SFN OTD measurements for the hive. In this design, the chip-level portion of Type 2 SFN-SFN 0TD can be given as: Tw = TCPICHRxw - TCPICHRx/ where TcPICHRxm is an equation (17) The P-CPICH frame received from the hm is opened 123353 .doc -27- 200816669 and TCPICHRX/ is the beginning of a self-homed/received P-CPICH frame. For the system model shown in Figure 6, the Type 2 SFN-SFN OTD measurement can be defined as: 0 D.0821 = (D. 2 He 2 Bu (1^+ Magic, and Equation (18) OTDS31 = (TC3 + r3) - TCDS + & The OTD measurement sent in the MRM. The observed delay difference can be given as: 41=W〇TDS21-RTD21, and equation (19) δ31 =τ3 — τι = OTDS31 - RTD31 ο The observation from equation (19) can be used The delay difference estimates the MRM location, for example, as described above. The UE may also report measurement of UE Rx-Tx time difference, measurement of UE GPS timing for cellular frames for UE positioning, measurement for round trip time (RTT), Measurements of UTRAN GPS timing for cellular frames for UE positioning, etc. These SFN-CFN measurements, Type 1 SFN-SFN measurements, Type 2 SFN-SFN measurements, and other measurements are described in the publicly available title. 'Physical layer - Measurements (FDD), '' (May 5, 2007) in 3GPP TS 25.215. Figure 8 A design for a process 800 for estimating an MRM location is shown. An MRM is provided that includes timing measurements for a plurality of cells, wherein the MRM is transmitted by a UE when used for handover or when triggered (step 812) 123353.doc • 28 - 200816669 For example, a UE may be configured to periodically transmit MRMs that may be used by a wireless network to assess general coverage and/or for other purposes. Timing measurements may include SFN - CFN OTD measurement, SFN-SFN OTD measurement for Type 1 or 2, etc. When MRM is generated, the location of the UE may be determined based on the timing measurements in the MRM (step 814). For step 814, timing measurements may be based. Determining the observed delay difference t for the hive in the MRM. The RTD for the hive can also be determined, for example, based on RF measurements included in the MRM, a known location of a hive, etc. can then be observed as described above The location of the UE is determined based on the delay difference, the known location of the cells, and the RTDs. The MRM can be collected from UEs in the wireless network. Each MRM containing measurements for a sufficient number of cells can be determined as described above. Bit . The position and the like can be generated based on the MRM load / traffic pattern and operations of FIG. MRM measurement in the RF also generated based on the RF FIG. These various maps can be applied to the Honeycomb Tool and use these various maps to adjust the RF parameters of the hive to improve network performance. In particular, as described above, the RF parameters of the hive can be adjusted based on a performance metric that is a function of one of coverage, capacity, and mobility. The use of MRM for RF parameter adjustment can be advantageous for a number of reasons. First, the MRM is sent for normal UE operation and thus may not incur the additional expense of obtaining such MRMs. Secondly, MRM provides coverage of the π area that the payment consumer goes to, and includes areas where the driving test vehicle is inaccessible (eg, indoor) and areas with low user density. Capabilities of capturing indoor users via MRM are available This may be beneficial for a more accurate RF model in the room 123353.doc -29- 200816669 because the indoor link tends to be weaker than the outdoor link. Third, the UE can be triggered for the following downlink and The uplink channel metrics are based on the transmission of MRM to support intra-frequency, inter-frequency and inter-system handover. Therefore, location measurement can be used in weaker areas where RF optimization can be more beneficial. It can also be used by using MRM. Various other benefits are obtained for RF parameter adjustment. An active set can be maintained for a UE, and the active set can include one or more servo cells for the UE. In UMTS, if the following conditions occur for a predetermined period of time, then A new hive can be added to the active set: Pilot_Ec/No > Best—Pilot—Ec/No - Reporting_Range + Hysteresis_EventlA, Equation (20) where Pilot_Ec/ No is for the new hive, Best_Pilot_Ec/No is for the best hive in the active set, Reporting_Range is the threshold for the delivery, and Hysteresis_EventlA is the hysteresis for the hive. If the following conditions occur for a predetermined period of time, Remove an existing hive from the active collection:

Pilot_Ec/No < Best_Pilot_Ec/No - Reporting—Range + Hysteresis_EventlB, 等式(21) 其中,Hysteresis—EventIB為一蜂巢移除滯後。 報告範圍及滯後可由無線網路來設定,且適用於待添加 至有效集合或自有效集合中移除之所有蜂巢。 在又一態樣中,可使用來自UE之MRM確定可為影響交 遞之參數之蜂巢個別偏移(CIO)。CIO可用於觸發UE發送 MRM以用於交遞。CIO亦可用於添加蜂巢至UE之有效集合 123353.doc -30· 200816669 中。 了在具有不良拓撲之區域⑼如,n 面主體之海濱城市、高摩天樓、丘陵等等)中部署一: 網路。在此種區域中,導頻污举 …、琛 用適當蜂巢計畫亦難以改良。一 丨便使 仃動UE可迅速觀測針 -小區域内之不同蜂巢之改變的RF條件。^在此種情 未足夠快速地將蜂巢添加至有效集合中,則斷話可能 見的。 中 ⑽可用於允許在-具有導頻污染之情Μα㈣# 蜂巢添加至—UE之有效集合中。⑽可用於調整用於在有 效集合中添加蜂巢之偏移,以使得可更早添加蜂巢。CI0 可經疋義為僅可適用於宜 女丄厶@人 、用於某有效集合組合物,或對於不同 有效集合組合物不同”。舉例而言,ci〇可經定義以使 得在-導頻污染普遍之特定區域中可較早添加某些蜂巢, 且可以某些蜂巢之存在為基礎斷定此特定區域。可使用各 種規則確定CI0。舉例而言,可首先接收一類型以㈣之 測量報告(以添加或交換_蜂巢),繼之接收—類型2〇或^ ,測量報告(以離⑽伽…。此情況可指示太遲添加或 父換蜂巢’ i可設定CI〇以便可儘早添加蜂巢。 、,CIO之使用可允許在整個無線網路上之交遞效能之裁 剪舉例而a,可減少一大區域上之交遞報告範圍以便減 夕有效集合中之蜂巢的平均數目且減少用於支援軟交遞之 、、、罔路資源CIO可用於具有導頻污染之區域中以確保蜂巢 在有效集合中之儘早包含以便可改良呼叫滯留效能。 123353.doc -31 - 200816669 在又一態樣中,可使用來自UE之MRM確定蜂巢級之系 統間交遞臨限值設定。可以網路環境(例如,覆蓋漏洞、 室外至室内情況、覆蓋範圍邊界等等)為基礎確定系統間 交遞臨限值設定。系統間交遞臨限值在覆蓋漏洞中可比在 室外至室内情況中低以便在覆蓋漏洞中較早觸發交遞且達 成恆定斷話速率。亦可設定系統間交遞臨限值以減少 UMTS覆蓋範圍中之系統間交遞。亦可設定針對閒置模式 期間之蜂巢重新選擇之系統間交遞臨限值以達成優良呼叫 建立效能、擴展UEMT覆蓋範圍,且改良電池壽命。舉例 而言,若UMTS中存在不可經由RF參數調整改良之導頻污 染,則可設定系統間蜂巢重新選擇及交遞臨限值以便早觸 發至GSM之交遞,且可設定GSM行動性臨限值以使得UE 停留在GSM中。相反地,若UMTS覆蓋範圍係乾淨的,則 可積極地設定系統間蜂巢重新選擇及交遞臨限值以促成至 UMTS之交遞。 圖9展示一用於使用MRM自動確定臨限值設定之過程 900之一設計。可獲得來自一無線網路中之UEiMRM(步 驟912)。可以該等MRM為基礎確定針對該無線網路中之至 少一蜂巢之至少一臨限值設定,其中該至少一臨限值設定 係用於UE之交遞(步驟914)。該至少一臨限值設定可包含 用於在UE之有效集合中添加該至少一蜂巢之至、一 ciq。 或者或此外,該至少-臨限值設定可包含用於選擇針對系 統間交遞之該至少-蜂巢之至少一系統間交遞臨限值設 定。可確定該至少一臨限值設定以減少針對uE2交遞之 123353.doc •32- 200816669 數目’減少斷話之數目’改良呼叫建立效能等等。 在又一悲樣中,可使用來自UE2 MRMS定蜂巢之導頻 功率位準。MRM可用於識別具有導頻污染之區域。可調 整該區域中之一或多個蜂巢之導頻功率以減少導頻污染。 可以各種方式俘獲或收集來自UEi MRM。在一設計 中,可在無線網路中使用網路探針俘獲MRM。一網路探 針為一出於效能監視及/或其他目的而在一無線網路中收 集資料之器件。 返回參看圖1,筇點B 110可接收來自UE2MRM且可經 由節點B聚集點130將此等MRM轉遞至RNC 14(^rnc 14〇 可使用該等MRM作出針對UE之交遞決策及/或用於其他目 的。節點B 110可經由IuB介面與RNC 14〇建立介面,該等 IuB介面可在進入RNC之前經聚集。可在節點b聚集點i3Q 中(或附著於節點B聚集點130)安裝一網路探針128且使用 網路探針128俘獲載入中之整個無線網路1〇〇之MRM。網 路探針128可將該等MRM提供給一伺服器132,該伺服器 132可處理該等MRM以導出載入/交通圖、圖、行動性 圖等等及/或調整蜂巢之RF參數。網路探針128可能已經用 於網路效能監視及/或其他功能且因此可能夠以小的遞增 成本俘獲該等MRM。網路探針128可為任何可購得之網路 探針’諸如來自Tektronix,Inc.之GeoProbe。亦可以其他 方式(例如,使用RNC上之Telnet)收集該等]VIRM。 在UMTS中,定義512個主要擾碼(PSC)且可使用該512個 主要擾碼區別不同蜂巢之下行鏈路傳輸。若僅將此$丨2個 123353.doc •33 - 200816669 PSC用於一無線網路中,則該等MRM可歸結於以PSC為基 礎之唯一蜂巢。若使用512個以上PSC,則該等MRM可能 不可歸結於僅以PSC為基礎之唯一蜂巢。在此狀況下,可 在一節點B之PSC之蜂巢ID與一節點B ID之間建立一關 係。當用一網路探針收集MRM時,可以節點B ID為基礎將 蜂巢ID指派給PSC。可激活MRM中之蜂巢ID之報告。可在 俘獲一蜂巢ID之後(例如,在針對UE之連接建立處)收集一 UE(可藉由其之臨時IMSI來識別)之MRM達一特定持續時 間。可藉由俘獲測量控制訊息而追蹤UE之鄰居清單,例 如,鄰居清單可以大機率唯一地識別節點B之集合。 圖10展示一用於收集MRM之過程1000之一設計。可(例 如)用一網路探針收集由UE發送至一無線網路申之多個節 點B且由該等節點B轉遞至一節點B聚集點之MRM(步驟 1012)。可將經收集之MRM提供給一伺服器以用於處理(步 驟1014)。該等MRM可由UE發送以用於交遞且可用於調整 由該等節點B伺服之蜂巢之RF參數。 在另一設計中,可藉由使UE將此等MRM發送至一指定 伺服器(例如,伺服器132)而俘獲MRM。一在UE上執行之 應用程式(例如,行動窗)可俘獲該等MRM且在空中將該等 MRM發送至伺服器。伺服器可接著處理該等MRM以獲得 載入/交通圖、RF圖、行動性圖等等及/或調整蜂巢之RF參 數。 圖11展示UE 120之一設計之方塊圖,UE 120可為圖1中 之UE之一者。在上行鏈路上,待由UE 120發送之資料及 123353.doc -34- 200816669 f 信號傳輸(例如,MRM)可由一編碼器1122處理(例如,格 弋化、、扁碼,及父錯)且由一調變器(MOD) 1124進一步處 理(例如,調變、通道化,及擾亂)以產生輸出碼片。一發 射盗(TMTR)l 132可調節(;例如,轉換成類比、濾波、放 大,及頻率向上轉換)該等輸出碼片且產生一可經由一天 線1134傳輸之上行鏈路信號。在下行鍵路上,天線⑴*可 接收來自節點B 11G及其他節點以下行鏈路信號。一接收 器(RCVR)U36可調節(例如,滤波、放大、頻率向下轉 換’及數位自A線1134所接收之信號且提供樣本。一 解調變器(DEM〇D)U26可處理(例如’解擾亂、通道化, 及解調變)該等樣本且提供符號估計。一解碼器"Μ可進 -步處理(例如’解交錯及解碼)該等符號估計且提供經解 碼之資料。編碼器1122、調變器1124、解調變器ιΐ26及解 碼器1128可由-數據機處理器112〇來實施。此等單元可根 據由無線網路利用之無線電技術(例如,w_cdma、 ί GSM、CDMA 1X等等)執行處理。—控制器/處理器1140可 指導UE 12〇處之操作。-記憶體1142可儲存用於耶㈣之 程式碼及資料。 圖11亦展示節點B 11〇、網路探針128及飼服器132之一 設計。節點B 110包括-執行用於與加通信之各種功能之 控制器/處理器⑽、一儲存用於節點Β ιι〇之程式碼及資 料之記憶體1152,及一支援與此之無線電通信之發㈣/ 接收器1154。網路探針128包括-執行用於俘獲來自证之 MRM之各種功能的控制器/處理以⑽及—儲存用於網路 123353.doc -35- 200816669 楝針128之程式碼及資料及該等經俘獲之MRM的記憶體 1162。控制器/處理器1160可執行圖中之過程1〇〇〇及/或 其他過程。伺服器132包括一控制器/處理器117〇及一記憶 體1 172。控制器/處理窃117〇可執行用於處理該等MRM以 獲得載入/交通圖、RF圖、行動性圖等等及/或確定蜂巢之 RF參數之各種功旎。记憶體丨丨72可儲存用於伺服器1之 程式碼及資料、各種圖、RF參數設定等等。控制器/處理 器1170可執行圖3中之過程3〇〇、圖4中之過程4〇〇、圖8中 之過程800、圖10中之過程1〇〇〇,及/或用於確定蜂巢之rf 參數之其他過程。此等過程亦可由其他網路實體來執行。 熟習此項技術者將瞭解,可使用多種不同技藝及技術之 4何者表示資及信號。舉例而言,可藉由電壓、電 流、電磁波、磁場或粒子、光場或粒子或其之任何組合來 表示可能貫穿上述描述參考之資料、指令、命令、資訊、 信號、位元、符號及碼片。Pilot_Ec/No < Best_Pilot_Ec/No - Reporting-Range + Hysteresis_EventlB, Equation (21) where Hysteresis_EventIB is a hive removal lag. The reporting scope and lag can be set by the wireless network and applies to all hives to be added to or removed from the active set. In yet another aspect, the MRM from the UE can be used to determine a Cellular Individual Offset (CIO) that can be a parameter affecting the handover. The CIO can be used to trigger the UE to send an MRM for handover. The CIO can also be used to add a hive to the effective set of UEs 123353.doc -30· 200816669. In the area with poor topology (9), for example, the n-face main body of the coastal city, high skyscrapers, hills, etc.) deploy one: network. In such areas, pilot fouling, and using appropriate hive plans are also difficult to improve. At one point, the UE can quickly observe the changing RF conditions of the different honeycombs in the needle-small area. ^ In this case, if the hive is not added quickly enough to the effective set, then the disconnection may be seen. Medium (10) can be used to allow in the effective set of - UEs with the presence of pilot pollution Μα(4)#. (10) can be used to adjust the offset used to add the hive in the active set so that the hive can be added earlier. CI0 can be derogated to be applicable only to 宜丄厶丄厶@人, for an effective collection composition, or for different effective collection compositions. For example, ci〇 can be defined such that it is in-pilot Certain hives may be added earlier in a particular area where contamination is common, and this particular area may be determined based on the presence of certain hive. Various rules may be used to determine CI0. For example, a type of measurement report (4) may be received first ( To add or exchange _ honeycombs, followed by receiving - type 2 〇 or ^, measurement report (to away from (10) gamma .... This situation can indicate too late to add or parent to change the nest 'i can set CI 〇 so that the hive can be added as soon as possible. The use of CIOs allows for the example of tailoring of handover performance over the entire wireless network. a, which reduces the range of handover reports over a large area so that the average number of hives in the effective collection of the eve is reduced and used to support soft The handover CTO can be used in areas with pilot pollution to ensure that the hive is included early in the active set to improve call retention performance. 123353.doc -31 - 200816669 In another aspect, the inter-system handover threshold setting of the cellular level can be determined using the MRM from the UE. The system can be determined based on the network environment (eg, coverage vulnerability, outdoor to indoor conditions, coverage boundaries, etc.) The inter-system handover threshold is set. The inter-system handover threshold can be lower in the coverage vulnerability than in the outdoor-to-indoor scenario to trigger handover earlier in the coverage vulnerability and achieve a constant call rate. Advance threshold to reduce inter-system handover in UMTS coverage. Inter-system handover threshold for hive reselection during idle mode can also be set to achieve good call setup performance, extend UEMT coverage, and improve battery For example, if there is pilot pollution in the UMTS that cannot be adjusted via RF parameters, the inter-system hive reselection and handover threshold can be set to trigger early handover to GSM, and GSM mobility can be set. The threshold is such that the UE stays in GSM. Conversely, if the UMTS coverage is clean, the inter-system hive reselection and handover threshold can be actively set. Facilitating the handover to UMTS. Figure 9 shows a design of a process 900 for automatically determining threshold settings using MRM. UEiMRMs from a wireless network are available (step 912). These MRMs can be determined based on these MRMs. At least one threshold setting for at least one of the cells in the wireless network, wherein the at least one threshold setting is for handover of the UE (step 914). The at least one threshold setting may be included for Adding at least one of the hive to a ciq of the active set of the UE. Alternatively or additionally, the at least-pre-limit setting may include selecting at least one intersystem handover for the at least-homing of inter-system handover Limit setting. The at least one threshold setting can be determined to reduce the number of 123353.doc •32-200816669 for uE2 handover, 'reducing the number of disconnections', improving call setup performance, and the like. In yet another sorrow, the pilot power level from the UE2 MRMS beacon can be used. MRM can be used to identify areas with pilot contamination. The pilot power of one or more of the cells in the area can be adjusted to reduce pilot pollution. The UEi MRM can be captured or collected in a variety of ways. In one design, a network probe can be used to capture MRM in a wireless network. A network probe is a device that collects data in a wireless network for performance monitoring and/or other purposes. Referring back to FIG. 1, a point B 110 can receive from the UE2 MRM and can forward the MRMs to the RNC 14 via the Node B aggregation point 130 (^rnc 14 can use the MRMs to make handover decisions for the UE and/or For other purposes, Node B 110 can establish an interface with the RNC 14 via the IuB interface, which can be aggregated before entering the RNC. Can be installed in the Node b aggregation point i3Q (or attached to the Node B aggregation point 130) A network probe 128 captures the MRM of the entire wireless network being loaded using the network probe 128. The network probe 128 can provide the MRM to a server 132, which can Processing the MRMs to derive load/traffic maps, maps, mobility maps, etc. and/or adjust the RF parameters of the hive. The network probe 128 may already be used for network performance monitoring and/or other functions and thus may be capable of The MRMs are captured at small incremental cost. The network probe 128 can be any commercially available network probe 'such as GeoProbe from Tektronix, Inc.. It can also be collected in other ways (eg, using Telnet on the RNC) These]VIRM. In UMTS, define 512 primary scrambling codes (PSC) and Use the 512 primary scrambling codes to distinguish between different cellular downlink transmissions. If only $123353.doc •33 - 200816669 PSC is used in a wireless network, then the MRM can be attributed to PSC. The only hive based on the base. If more than 512 PSCs are used, the MRMs may not be attributed to the only hive based on the PSC. In this case, the Hive ID of a PSC at a Node B and a Node B ID Establish a relationship. When collecting MRM with a network probe, the hive ID can be assigned to the PSC based on the node B ID. The report of the hive ID in the MRM can be activated. After capturing a hive ID (for example, at Collecting the MRM of a UE (identified by its temporary IMSI) for a specific duration for the connection establishment of the UE. The neighbor list of the UE can be tracked by capturing the measurement control message, for example, the neighbor list can have a high probability Uniquely identifying the set of Node B. Figure 10 shows a design of a process 1000 for collecting MRM. The network probe can be used to collect, for example, a plurality of Node Bs sent by the UE to a wireless network. The Node B is forwarded to a Node B The MRM of the aggregation point (step 1012). The collected MRM may be provided to a server for processing (step 1014). The MRMs may be sent by the UE for handover and may be used to adjust the servos by the Node Bs. RF parameters of the hive. In another design, the MRM may be captured by having the UE send the MRMs to a designated server (eg, server 132). An application executing on the UE (eg, action) The window can capture the MRMs and send the MRMs to the server in the air. The server can then process the MRMs to obtain load/traffic maps, RF maps, mobility maps, etc. and/or adjust the RF parameters of the hive. 11 shows a block diagram of one of the UEs 120, which may be one of the UEs in FIG. On the uplink, the data to be transmitted by the UE 120 and the 123353.doc -34-200816669 f signal transmission (eg, MRM) may be processed by an encoder 1122 (eg, trellis, flat code, and parent error) and Further processing (e.g., modulation, channelization, and scrambling) is performed by a modulator (MOD) 1124 to produce an output chip. A shooter (TMTR) 132 can adjust (e.g., convert to analog, filter, amplify, and frequency upconvert) the output chips and generate an uplink signal that can be transmitted over the daily line 1134. On the downlink key, the antenna (1)* can receive downlink signals from the Node B 11G and other nodes. A receiver (RCVR) U36 can adjust (eg, filter, amplify, frequency downconvert) and digitally receive signals from line A 1134 and provide samples. A demodulation transformer (DEM〇D) U26 can be processed (eg, The samples are 'de-scrambled, channelized, and demodulated' and provide symbol estimates. A decoder" can process (eg, 'deinterleave and decode) the symbol estimates and provide decoded data. Encoder 1122, modulator 1124, demodulation ι 26 and decoder 1128 may be implemented by a data processor 112. These units may be based on radio technologies utilized by wireless networks (eg, w_cdma, ί GSM, CDMA 1X, etc.) performs processing. The controller/processor 1140 can direct the operation of the UE 12. The memory 1142 can store the code and data for yeah (4). Figure 11 also shows the node B 11 〇, the network One of the way probe 128 and the feeder 132. The Node B 110 includes a controller/processor (10) that performs various functions for communication and communication, and a memory for storing code and data for the node Β ιι〇 Body 1152, and a radio that supports it The communication (4) / receiver 1154. The network probe 128 includes - executing a controller/process for capturing various functions of the MRM from the certificate (10) and - storing for the network 123353.doc -35 - 200816669 128 code and data and the memory 1162 of the captured MRM. The controller/processor 1160 can perform the process 1 and/or other processes in the figure. The server 132 includes a controller/processor 117 〇 and a memory 1 172. The controller/processing snippet 117 can be used to process the MRMs to obtain load/traffic maps, RF maps, mobility maps, etc. and/or to determine the RF parameters of the hive. The memory port 72 can store code and data for the server 1, various maps, RF parameter settings, etc. The controller/processor 1170 can perform the process of FIG. 3, FIG. Processes in the process 4, process 800 in Figure 8, process 1 in Figure 10, and/or other processes for determining the rf parameters of the hive. Such processes may also be performed by other network entities. Those skilled in the art will understand that they can use a variety of different techniques and technologies. Signals, such as data, instructions, commands, information, signals, bits, symbols, which may be referenced throughout the above description, by voltage, current, electromagnetic waves, magnetic fields or particles, light fields or particles, or any combination thereof. And chips.

之範疇。 123353.doc ’可以電子硬體、電腦軟 a本文中之揭示案所描述之各種說 電路及演算法步驟。為清楚說明硬 ’上述已通常根據其功能性描述各 模組、電路及步驟。以硬體抑或以 定應用及強加於整個系統上之設計 定應用,熟習此項技術者可以變化 欧,但該等實施例決策不應被解釋 -36 - 200816669 可用經設計以執行本文中所描述之功能之一通用處理 器、一數位信號處理器(DSP)、一特殊應用積體電路 (ASIC)、-場可程式閘陣列(FpGA)或其他可程式邏輯器 件、離散開或電晶體邏輯、離散硬體組件或其之任何組合 來實施或執行結合本文中之揭示案所描述之各種說明^ 輯區塊、模組及電路。-通用處理器可為一微處理器,但 f替代實施例中’該處理器可為任何習知之處理器、控制 為、微控制器或狀態機。亦可以計算器件之一組合來實施 -處理器’例如’一 Dsp與一微處理器之一組合:複:: 微處理器、一或多個結合一 Dsp核心之微處理器,或任何 其他该種組態。 結合本文中之揭示案所描述之m寅算法的步驟可 直接具體化於硬體中、一由一處理器執行之軟體模組中, ( 或β兩者 < 組合中。―軟體模組可駐留於記憶體、 快閃記憶體、R0M記憶體、EPR〇M記憶體、EEpR〇M記憶 體、暫存器、硬碟、可移除式磁碟、CD_刪或此項技術 中已知之任何其他形式之儲存媒體中。一例示性儲存媒體 經搞,至處理器以使得該處理器可自儲存媒體讀取資訊, 及將負寫入儲存媒轉:扶上隹^ 、 在9代實施例中,儲存媒體可與The scope. 123353.doc ' can be electronic hardware, computer soft a description of the various circuits and algorithm steps described in the disclosure. For clarity, the above description has generally described the various modules, circuits and steps in terms of their functionality. The application can be changed by hardware or by a fixed application or imposed on the entire system, but the decision of the embodiments should not be interpreted - 36 - 200816669 can be designed to perform the description in this article. A general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FpGA) or other programmable logic device, discrete open or transistor logic, The discrete hardware components, or any combination thereof, implement or perform the various blocks, modules, and circuits described in connection with the disclosure herein. The general purpose processor may be a microprocessor, but in the alternative embodiment the processor may be any conventional processor, control, microcontroller or state machine. A combination of computing devices can also be implemented to implement a processor, such as a combination of a Dsp and a microprocessor: a microprocessor: one or more microprocessors incorporating a Dsp core, or any other such Configuration. The steps of the m寅 algorithm described in conjunction with the disclosure herein may be directly embodied in a hardware module executed by a processor, (or both of β < combinations. Residing in memory, flash memory, ROM memory, EPR 〇M memory, EEpR 〇M memory, scratchpad, hard disk, removable disk, CD_deleted or known in the art In any other form of storage medium, an exemplary storage medium is implemented to the processor so that the processor can read information from the storage medium and write the negative write to the storage medium: In the example, the storage medium can be

处理器整合在—起°處理器及儲存媒體可駐留於ASIC中。 ASJC可駐留於使用者終端機中。在替代實施例中,處理写 及儲存媒體可作為離散組件駐留於使用者終端機中。D 在一或多個例示性實施例中,可以硬體、軟體,體或 八之任何組合來實施所描述之功能。若以軟體來實施,則 I23353.doc -37- 200816669 該等功能可作為一或客徊士匕人斗 媒,卜赤* 一 ^ 曰"或程式碼儲存於一電腦可讀 ,、-或在一電腦可讀媒體上加以傳輸。電腦可 括含促進-電腦程式之自_地方媒體包 μ _ ^ 地方至另一地方之轉移的任何 媒體之電腦儲存媒體與通信媒體。一儲存媒體可為可由_ 通用電腦或專用電腦存取之任何可用媒體。舉例而言(作 並非限幻,該電腦可讀媒體可包含讀、峨、 epr〇= cd_RqM或其他光碟儲存、磁碟儲存或其他磁 、 用於載運或儲存所要指令或資料結構形 式之程式碼構件且可由一通用或專用電腦或一通用或專用 處理器存取的任何其他媒體。而且,可將任何連接適當稱 為一電腦可讀媒體。舉例而言,若使用同轴電纔、光纖電 見又、父、線I位用戶線(DSL)或諸如紅外、無線電及微 波之無線技術自-網站、伺服器或其他遠端源傳輸軟體, 則同轴電魔、光纖電繞、雙絞線、DSL或諸如紅外、無線 電及微波之無線技術包括於媒體之定義中。如本文中所使 用之磁碟及光碟包括緊密光碟(CD)、雷射光碟、光碟、數 位多功能光碟(DVD)、軟性磁碟及藍光光碟,其中磁碟通 吊磁性上再現資料,而光礤用雷射光學上再現資料。上述 之組合亦應包括於電腦可讀媒體之範轉内。 提供本揭示案之先前描述以使任何熟習此項技術者能夠 完成或使用本揭示案。對於熟習此項技術者而言,對本揭 示案之各種修改將容易顯而易見,且在不脫離本揭示案之 範騖之情況下,本文中所界定之一般原理可適用於其他變 化。因此,本揭示案不意欲限於本文中所描述之實例及設 123353.doc -38- 200816669 计而應付合與本文中所揭示之原理及新穎特徵一致之最寬 範疇。 【圖式簡單說明】 圖1展示一無線通信網路。 圖2展示蜂巢覆蓋範圍之藉由調整蜂巢之RF#數的調 整。 圖3展示一用於藉由考慮行動性而調整rf參數之過程。 圖4展示一用於以載入條件為基礎調整RF參數之過程。 圖5展示一 UE及兩個蜂巢之時序。 圖6展示一針對UE及三個蜂巢之系統模型。 圖7展示用於估計UE之位置之三邊測量。 圖8展示一用於以一MRM為基礎估計UEi位置之過程。 圖9展示一用於使用MRM自動確定臨限值設定之過程。 圖1〇展示一用於使用一網路探針收集MRM之過程。 圖11展示UE及其他實體之方塊圖。 【主要元件符號說明】 100 無線通信網路/無線網路 110 節點B 110a 節點B 110b 節點B 110c 節點B 112 區域 120 UE/使用者設備 128 網路探針 123353.doc 200816669The processor is integrated in the processor and the storage medium can reside in the ASIC. The ASJC can reside in the user terminal. In an alternate embodiment, the processing write and storage media may reside as discrete components in the user terminal. D In one or more exemplary embodiments, the functions described may be implemented in any combination of hardware, software, body or eight. If implemented in software, I23353.doc -37- 200816669 These functions can be used as one or a guest gentleman, and the code can be stored in a computer readable, - or Transfer on a computer readable medium. The computer may include computer storage media and communication media containing any media that facilitates the transfer of the computer from the local media package μ _ ^ location to another location. A storage medium can be any available media that can be accessed by a general purpose computer or a dedicated computer. For example, the computer readable medium may include read, read, epr〇= cd_RqM or other optical disc storage, disk storage or other magnetic, code for carrying or storing the desired instruction or data structure. And any other medium that can be accessed by a general purpose or special purpose computer or a general purpose or special purpose processor. Any connection can be appropriately referred to as a computer readable medium. For example, if coaxial power is used, fiber optic power is used. See again, parent, line I subscriber line (DSL) or wireless technology such as infrared, radio and microwave from - website, server or other remote source transmission software, coaxial electric magic, fiber optic winding, twisted pair , DSL or wireless technologies such as infrared, radio and microwave are included in the definition of media. Disks and optical discs as used herein include compact discs (CDs), laser discs, compact discs, digital versatile discs (DVD), A flexible disk and a Blu-ray disk in which the disk reproduces data magnetically, and the pupil optically reproduces data. The above combination should also be included in the computer readable medium. The previous description of the present disclosure is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications of the present disclosure will be readily apparent to those skilled in the art and without departing from the disclosure. In the case of Fan Wei, the general principles defined herein may be applied to other variations. Therefore, the present disclosure is not intended to be limited to the examples described herein and is set forth in the text of 123353.doc -38-200816669 The broadest scope of the principles and novel features are revealed. [Simplified Schematic] Figure 1 shows a wireless communication network. Figure 2 shows the adjustment of the cellular coverage by adjusting the RF# number of the hive. The process of adjusting the rf parameters by considering mobility. Figure 4 shows a process for adjusting RF parameters based on loading conditions. Figure 5 shows the timing of a UE and two hives. Figure 6 shows a UE and A system model of three hives. Figure 7 shows a trilateration for estimating the location of a UE. Figure 8 shows a process for estimating the location of UEi on an MRM basis. The process of setting the threshold is automatically determined by MRM. Figure 1A shows a process for collecting MRM using a network probe. Figure 11 shows a block diagram of the UE and other entities. [Key Symbol Description] 100 Wireless Communication Network Road/wireless network 110 Node B 110a Node B 110b Node B 110c Node B 112 Area 120 UE/User Equipment 128 Network Probe 123353.doc 200816669

Ο 130 節點B聚集點/聚集點 132 伺服器 140 無線電網路控制器(RNC) 1120 數據機處理器 1122 編碼器 1124 調變器(MOD) 1126 解調變器(DEMOD) 1128 解碼器 1132 發射器(TMTR) 1134 天線 1136 接收器(RCVR) 1140 控制器/處理器 1142 記憶體 1150 控制器/處理器 1152 記憶體 1154 發射器/接收器 1160 控制器/處理器 1162 記憶體 1170 控制器/處理器 1172 記憶體 CFN 連接訊框數 SFN 系統訊框數 T 時間 Tci 時間參考 123353.doc -40- 200816669Ο 130 Node B Aggregation/Aggregation Point 132 Server 140 Radio Network Controller (RNC) 1120 Data Processor 1122 Encoder 1124 Modulator (MOD) 1126 Demodulation Transformer (DEMOD) 1128 Decoder 1132 Transmitter (TMTR) 1134 Antenna 1136 Receiver (RCVR) 1140 Controller/Processor 1142 Memory 1150 Controller/Processor 1152 Memory 1154 Transmitter/Receiver 1160 Controller/Processor 1162 Memory 1170 Controller/Processor 1172 Memory CFN Connection Frame Number SFN System Frame Number T Time Tci Time Reference 123353.doc -40- 200816669

Tc2 時間參考 Τ〇3 時間參考 TrxSFN/w 時刻 TlxSFNm 時刻 τι 傳播延遲 T2 傳播延遲 τ3 傳播延遲 飞m 傳播延遲 123353.doc -41 -Tc2 time reference Τ〇3 time reference TrxSFN/w time TlxSFNm time τι propagation delay T2 propagation delay τ3 propagation delay fly m propagation delay 123353.doc -41 -

Claims (1)

200816669 十、申請專利範圍: 1· 一種裝置,其包含.: 至少一處理器,其用以獲得一包含針對一無線通信網 路中之多個蜂巢之時序測量的測量報告訊息(MRM),該 RM係於父遞或經觸發時由一使用者設備(uE)來發送, 且该至少一處理器用以當產生該MRM時,以該MRM中 之°亥荨日寸序測量為基礎確定該UE之位置;及 圯憶體’其耦接至該至少一處理器。 、月求員1之I置,其中該至少一處理器以該等時序測 里為基礎,確定該多個蜂巢之觀測延遲差,且以該等觀 /貝J延遲差及該多個蜂巢之已知位置為基礎,確定該UE之 該位置。 3·如明求項2之裝置,其中該至少一處理器確定該多個蜂 巢之相對時間差(RTD),且進一步以該等RTD為基礎, 確定該UE之該位置。 4·如晴求項3之裝置,其中該mrm進一步包含該多個蜂巢 之射頻(RF)測量,且其中該至少一處理器以該等rf為基 礎’確定該等RTD之初始值。 5·如請求項3之裝置,其中該至少一處理器以該多個蜂巢 中之一者之已知位置為基礎,確定該等RTD之初始值。 6·如請求項1之裝置,其中該等時序測量包含系統訊框數_ 連接訊框數(SFN-CFN)觀測時間差測量。 7·如請求項1之裝置,其中該等時序測量包含系統訊框數_ 系統訊框數(SFN_SFN)觀測時間差測量。 123353.doc 200816669 8· 一種方法,其包含: 獲得一包含一無線通信網路中之多個蜂巢之時序測量 的測量報告訊息(MRM),該MRM係於交遞或經觸發時= 一使用者設備(UE)來發送;及 當產生該MRM時,以該MRM中之該等時序測量為美 礎’確定該UE之位置。 土 9·如請求項8之方法,該確定該UE之該位置進一步包含: 、 以该等時序測量為基礎,確定針對該多個蜂巢之觀测 ' 延遲差,及 ^ 以該等觀測延遲差及該多個蜂巢之已知位置為基礎, 確定該UE之該位置。 1〇·如請求項9之方法,該確定該UE之該位置進一步包含·· 確定針對該多個蜂巢之相對時間差(RTD),及 進一步以該等RTD為基礎,確定該UE之該位置。 11· 一種裝置,其包含: ; 用於獲得一包含一無線通信網路中之多個蜂巢之時序 測量的測量報告訊息(MRM)之構件,該MRM係於交遞或 經觸發時由一使用者設備(UE)來發送;及 用於當產生該MRM時,以該MRM中之該等時序測量 為基礎,確定該UE之位置的構件。 12.如請求項u之裝置,該用於確定該1;£之該位置之構件進 一步包含: 用於以該等時序測量為基礎,確定針對該 觀測延遲差之構件,及 123353.doc 200816669 用於以該等觀測延遲差及該多個蜂巢之已知位置為基 礎,確定該UE之該位置的構件。 13. 如請求項12之裝置,該用於確定該UE之該位置之構件進 一步包含: 用於確定針對該多個蜂巢之相對時間差(rtd)之構 件,及 用於進一步以該等RTD為基礎確定該UE之該位置之 件。 14. 一種電腦程式產品,其包含: 電腦可讀媒體,其包含: 用於使一電腦獲得一包含一無線通信網路中之多個 蜂巢之時序測量的測量報告訊息(MRM)之程式碼,該 MRM係於交遞或經觸發時由一使用者設備(ue)來發 送;及 X 用於使該電腦在產生該MRM時以該MRM中之該等 時序測量為基礎確定該UE之位置的程式碼。 15. 如請求項14之電腦可讀產品,該電腦可讀媒體進一步包 含: ^ 用於導致該電腦以該等時序測量為基礎確定針對該多 個蜂巢之觀測延遲差之程式碼,及 Λ 用於導致該電腦以該等觀測延遲差及該多個蜂巢之已 知位置為基礎確定該UE之該位置的程式碼。 1 6.如請求項1 5之電腦可讀產品,該電腦可讀媒體進一步包 含: 夕匕 123353.doc 200816669 確定針對該多個蜂巢之相對時間差 為基— 17· —種裝置,其包含: 至少S ί里H,其肖以獲得一無·線通信網路中之使用 者設備⑽)之行動„訊,且用以以該行動 礎,確㈣無線網路中之至少—蜂巢之至少—射頻= 參數;及 σ己丨思體’其輕接至該至少一處理器。 18. 如凊求項17之裝置,其中該行動性資訊指示該等在交 遞/月間之位置,且其中該至少一處理器確定該至少一 RF 參數以減少由該等UE交遞之數目。 19. 如印求項17之裝置,其中該至少_處理器獲得來自該等 UE之測量報告訊息(MRM),且以該等mrm為基礎確定 該行動性資訊。 2〇·如請求項19之裝置,其中該至少一處理器以該等mrm為 基礎確定該等UE之位置,且以該等UEi該等位置為基 礎確定該行動性資訊。 21 ·如明求項19之裝置,其中該至少一處理器以該等MRM為 基礎確定針對該等UE之RF資訊,且進一步以該等UE之 RF資訊為基礎確定該至少一RF參數。 22·如請求項21之裝置,其中該RF資訊包含導頻強度測量及 導頻品質測量中之至少一者。 123353.doc 200816669 23.=:員17之裝置’其中該至少一處理器進一步以交通 Rvr數播資訊中之至少一者為基礎,確定該至少- 24.如請求項17之裝置,其中該至少一灯參數包含天線下 傾、天線方位、天線場型及導頻功率中之至少一者。 25· —種方法,其包含: 獲得針對-無線通信網路中之使用者設備(ue)之行動 性資訊;及 Γ200816669 X. Patent Application Range: 1. A device comprising: at least one processor for obtaining a measurement report message (MRM) comprising timing measurements for a plurality of cells in a wireless communication network, The RM is sent by a user equipment (uE) when the parent is triggered or triggered, and the at least one processor is configured to determine the UE based on the measurement in the MRM when the MRM is generated. a location; and a memory device coupled to the at least one processor. The monthly requester 1 is set, wherein the at least one processor determines the observed delay difference of the plurality of honeycombs based on the timing measurements, and the difference between the plurality of honeycombs and the plurality of honeycombs Based on the known location, the location of the UE is determined. 3. The apparatus of claim 2, wherein the at least one processor determines a relative time difference (RTD) of the plurality of cells, and further determining the location of the UE based on the RTDs. 4. The apparatus of claim 3, wherein the mrm further comprises radio frequency (RF) measurements of the plurality of cells, and wherein the at least one processor determines an initial value of the RTDs based on the rfs. 5. The device of claim 3, wherein the at least one processor determines an initial value of the RTDs based on a known location of one of the plurality of cells. 6. The apparatus of claim 1, wherein the timing measurements comprise a number of system frames _ connected frame number (SFN-CFN) observation time difference measurement. 7. The device of claim 1, wherein the timing measurements comprise a system frame number _ system frame number (SFN_SFN) observation time difference measurement. 123353.doc 200816669 8 A method comprising: obtaining a measurement report message (MRM) comprising timing measurements of a plurality of cells in a wireless communication network, the MRM being handed over or triggered = one user The device (UE) transmits; and when the MRM is generated, the location of the UE is determined by the timing measurement in the MRM. The method of claim 8, wherein determining the location of the UE further comprises: determining, based on the timing measurements, an observation 'delay difference' for the plurality of cells, and the observation delay difference And determining the location of the UE based on the known locations of the plurality of cells. In the method of claim 9, the determining the location of the UE further comprises determining a relative time difference (RTD) for the plurality of cells, and further determining the location of the UE based on the RTDs. 11. An apparatus, comprising: means for obtaining a measurement report message (MRM) comprising timing measurements of a plurality of cells in a wireless communication network, the MRM being used by a handover or triggered a device (UE) to transmit; and means for determining the location of the UE based on the timing measurements in the MRM when the MRM is generated. 12. The apparatus of claim 9, wherein the means for determining the location of the location further comprises: means for determining a delay difference for the observation based on the timing measurements, and 123353.doc 200816669 A means for determining the location of the UE based on the observed delay differences and known locations of the plurality of cells. 13. The apparatus of claim 12, the means for determining the location of the UE further comprising: means for determining a relative time difference (rtd) for the plurality of cells, and for further based on the RTDs A piece of the location of the UE is determined. 14. A computer program product, comprising: a computer readable medium, comprising: a code for causing a computer to obtain a measurement report message (MRM) including timing measurements of a plurality of cells in a wireless communication network, The MRM is sent by a user equipment (ue) when handed over or triggered; and X is used to cause the computer to determine the location of the UE based on the timing measurements in the MRM when the MRM is generated. Code. 15. The computer readable product of claim 14, the computer readable medium further comprising: ^ a code for causing the computer to determine an observed delay difference for the plurality of hives based on the timing measurements, and The code that causes the computer to determine the location of the UE based on the observed delay difference and the known locations of the plurality of cells. 1 6. The computer readable product of claim 15, wherein the computer readable medium further comprises: 夕匕123353.doc 200816669 determining a relative time difference for the plurality of hives as a base device, comprising: at least S ί, H, to obtain the action of the user equipment (10) in a wireless communication network, and to use the action, and at least (four) at least - the honeycomb - at least </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; A processor determines the at least one RF parameter to reduce the number of handovers by the UEs. 19. The apparatus of claim 17, wherein the at least one processor obtains measurement report messages (MRMs) from the UEs, and The device of claim 19, wherein the at least one processor determines the locations of the UEs based on the mrms, and the locations of the UEis are The basis determines the action information. 21 · The device of claim 19, wherein the at least one processor determines RF information for the UEs based on the MRMs, and further determines the at least one RF parameter based on the RF information of the UEs. The apparatus of claim 21, wherein the RF information comprises at least one of a pilot strength measurement and a pilot quality measurement. 123353.doc 200816669 23.=: A device of member 17 wherein the at least one processor further uses traffic Rvr number The apparatus of claim 17, wherein the at least one lamp parameter comprises at least one of an antenna downtilt, an antenna orientation, an antenna pattern, and a pilot power, based on at least one of the broadcast information. 25 - A method comprising: obtaining action information for a user device (ue) in a wireless communication network; and 以該行動性資訊為基礎,確定該無線網路中之至少一 蜂巢之至少一射頻參數。 26.如請求項25之方法,該行動性資訊指示該等取在交遞期 間之位置,且該確定該至少一尺1?參數包含確定該至少一 RF參數,以減少由該等ue交遞之數目。 27·如請求項25之方法,該獲得針對該等仙之行動性資訊包 含: 獲得來自該等UE之測量報告訊息(mrm), 以該等MRM為基礎確,定該等ue之位置,及 以該等UE之該等位置為基礎,確定該行動性資訊。 28· —種裝置,其包含: 用於獲付針對一無線通信網路中之使用者設備(UE)之 行動性資訊的構件;及 用於以該行動性資訊為基礎確定該無線網路中之至少 一蜂巢之至少一射頻(RF)參數的構件。 29·如請求項28之裝置,該行動性資訊指示該等ue在交遞期 123353.doc 200816669 間之位置,且該用於確定該至少一RF參數之構件包含用 於確定該至少一 RF參數以減少由該等UE交遞之數目之 構件。 30.如請求項28之裝置,該用於獲得針對該等ue之行動性資 訊之構件包含: - 用於獲得來自該等UE之測量報告訊息(MRM)之構件, 用於以該等“以“為基礎確定該等UE之位置之構件,及 用於以該等UE之該等位置為基礎確定該行動性資訊 ( 構件。 w · —種裝置,其包含: 至;-處理器,其用以確定一無線通信網路中之至少 一蜂巢之载人條件,且用以以該等載人條件為基礎 整該至少—蜂巢之至少一射頻(RF)參數;及 D 一記憶體,其耦接至該至少一處理器。 3”請求項31之裝置,其中該至少一處理器以該等 L) 件為基礎,調整該至少一蜂 &quot; 天線揚开… 聲果之天線下傾、天線方位、 、 i及‘頻功率中之至少一者。 33.如請求項31之裝置,其中該至 者設備rUFh、日丨曰4 处里态獲侍來自使用 礎,確Li Γ告訊息(MRM)’且以該等Μ㈣基 確疋该至少一蜂巢之該等載入條件。 34· —種方法,其包含: 崔定一無線通信網路中之至少一 以該等恭Λ 7欠灿* 之载入條件;及 载入條件為基礎,調整該至少—蜂巢 射頻(RF)參數Λ 蜂巢之至少一 123353.doc 200816669 3 5.如請求項34之方法,該確定該至少一蜂巢之該等載入 件包含: $ 獲得來自使用者設備(UE)之測量報告訊息(MRM),及 以該等MRM為基礎,確定該至少一蜂巢之該等載入條 件。 ’、 36· —種裝置,其包含: 至少一處理器,其用以獲得來自一無線通信網路中之 使用者設備(UE)之測量報告訊息(MRM),及用以以該等 MRM為基礎,確定針對該無線網路中之至少一蜂巢之至 少一臨限值設定,該至少一臨限值設定係用於該等υΕ2 交遞;及 一記憶體,其耦接至該至少一處理器。 37. 38. 如凊求項36之裝置,其中該至少一臨限值設定係用於將 該至少一蜂巢添加至該等UE之有效集合。 如4求項36之裝置,其中該至少一臨限值設定包含用於 將该至少一蜂巢添加至該等UE之有效集合之至少一蜂巢 個別偏移(CIO)。 39.如請求項36之裝置’其中該至少一臨限值設定包含用於 坟擇。亥至 &gt;、蜂巢用於系統間交遞之至少一系統間交遞 臨限值設定。 40· —種方法,其包含·· 獲得來自一無線通信網路中之使用者設備(ue)之測量 報告訊息(MRM);及 以該等MRM為基礎,確定針對該無線網路中之至少一 123353.doc 200816669 蜂巢之至少一臨限值設定,該至少一臨限值設定係用於 該等UE之交遞。 41. 42. Γ 43. 44. ϋ 45. 如請求項40之方法,該確定該至少一臨限值設定包含確 定用於將該至少一蜂巢添加至該等UE之有效集合之至少 一蜂巢個別偏移(CIO)。 如請求項40之方法,該確定該至少一臨限值設定包含確 定用於選擇該至少一蜂巢用於系統間交遞之至少一系統 間交遞臨限值設定。 一種耦接至一節點B聚集點之裝置,其包含: 至少一處理器,其用以收集由使用者設備發送至 一無線通信網路中之多個節點B且由該等節點3轉遞至該 節點B聚集點之測量報告訊息(MRM),且用以將該等經 收集之MRM提供給一伺服器以用於處理;及 5己fe體’其耦接至該至少一處理器。 如請求項43之裝置,其中該等MRM係由該等UE發送, 以用於父遞及用於調整由該多個節點B伺服之至少一蜂 巢之至少一射頻(RF)參數。 一種方法,其包含: 收集由使用者設備(UE)發送至一無線通信網路中之多 個節點B且由該等節點B轉遞至該節點B聚集點之測量報 告訊息(MRM);及 將該等經收集之MRM提供給一伺服器以用於處理。 123353.docBased on the action information, determining at least one radio frequency parameter of at least one of the cells in the wireless network. 26. The method of claim 25, wherein the action information indicates that the location is taken during the handover period, and the determining the at least one foot 1 parameter comprises determining the at least one RF parameter to reduce handover by the ue The number. 27. The method of claim 25, wherein obtaining the action information for the semester comprises: obtaining a measurement report message (mrm) from the UEs, based on the MRMs, determining the location of the ues, and The mobility information is determined based on the locations of the UEs. 28. An apparatus, comprising: means for receiving mobility information for a user equipment (UE) in a wireless communication network; and for determining the wireless network based on the mobility information At least one component of the radio frequency (RF) parameter of at least one of the honeycombs. 29. The device of claim 28, the action information indicating the location of the ue between the delivery periods 123353.doc 200816669, and the means for determining the at least one RF parameter includes determining the at least one RF parameter To reduce the number of components delivered by the UEs. 30. The apparatus of claim 28, the means for obtaining actional information for the ues comprising: - means for obtaining measurement report messages (MRMs) from the UEs, for Determining, based on the locations of the locations of the UEs, the mobility information (components, devices, including: to; Determining a manned condition of at least one of the cells in the wireless communication network, and constituting at least one radio frequency (RF) parameter of the at least one of the hive based on the manned conditions; and D a memory coupled And the apparatus of claim 31, wherein the at least one processor adjusts the at least one bee on the basis of the L), and the antenna is tilted off... At least one of azimuth, i, and 'frequency power. 33. The device of claim 31, wherein the device rUFh and the day 4 are served by the user, and the Li message (MRM) And confirming the at least one hive based on the Μ (4) Loading condition 34. A method comprising: at least one of Cui Dingyi's wireless communication network loading conditions of such a compliment; and loading conditions to adjust the at least - the hive Radio Frequency (RF) Parameters 至少 At least one of the hives 123353.doc 200816669 3 5. The method of claim 34, wherein the loading of the at least one hive comprises: obtaining a measurement report from the user equipment (UE) a message (MRM), and determining, based on the MRMs, the loading conditions of the at least one hive. The device includes: at least one processor for obtaining from a wireless communication network a measurement report message (MRM) of a user equipment (UE) in the road, and for determining, based on the MRMs, at least one threshold setting for at least one of the cells in the wireless network, the at least one temporary The limit setting is for the υΕ2 handover; and a memory coupled to the at least one processor. 37. 38. The apparatus of claim 36, wherein the at least one threshold setting is used Adding at least one hive to the UEs The apparatus of claim 36, wherein the at least one threshold setting comprises at least one Honeycomb Individual Offset (CIO) for adding the at least one hive to an active set of the UEs. The apparatus of item 36 wherein the at least one threshold setting includes at least one intersystem handover threshold setting for the tomb selection. The approach to the system for inter-system handover. 40. Including: obtaining a measurement report message (MRM) from a user equipment (ue) in a wireless communication network; and determining, based on the MRM, at least one 123353.doc 200816669 hive in the wireless network At least one threshold setting, the at least one threshold setting is used for handover of the UEs. 41. 42. Γ 43. 44. ϋ 45. The method of claim 40, wherein determining the at least one threshold setting comprises determining at least one hive individual for adding the at least one hive to an active set of the UEs Offset (CIO). In the method of claim 40, the determining the at least one threshold setting includes determining at least one intersystem handover threshold setting for selecting the at least one cell for intersystem handover. An apparatus coupled to a Node B aggregation point, comprising: at least one processor configured to collect and be forwarded by the user equipment to a plurality of Node Bs in a wireless communication network to The Node B aggregates the measurement report message (MRM) of the point, and is used to provide the collected MRM to a server for processing; and 5 is coupled to the at least one processor. The apparatus of claim 43, wherein the MRMs are transmitted by the UEs for parenting and for adjusting at least one radio frequency (RF) parameter of at least one of the cells served by the plurality of Node Bs. A method, comprising: collecting measurement report messages (MRMs) transmitted by a user equipment (UE) to a plurality of Node Bs in a wireless communication network and forwarded by the Node Bs to the Node B aggregation points; and The collected MRMs are provided to a server for processing. 123353.doc
TW96128122A 2006-07-31 2007-07-31 Determination of cell RF parameters based on measurements by user equipments TW200816669A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83467506P 2006-07-31 2006-07-31

Publications (1)

Publication Number Publication Date
TW200816669A true TW200816669A (en) 2008-04-01

Family

ID=44769171

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96128122A TW200816669A (en) 2006-07-31 2007-07-31 Determination of cell RF parameters based on measurements by user equipments

Country Status (1)

Country Link
TW (1) TW200816669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902760A (en) * 2009-05-26 2010-12-01 索尼公司 Method, system, portable terminal and computer program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902760A (en) * 2009-05-26 2010-12-01 索尼公司 Method, system, portable terminal and computer program
CN101902760B (en) * 2009-05-26 2013-12-18 索尼公司 Method, system and mobile terminal

Similar Documents

Publication Publication Date Title
US8045996B2 (en) Determination of cell RF parameters based on measurements by user equipments
WO2008016944A2 (en) Determination of cell rf parameters and user equipment position based on measurements by user equipments
DK1639855T3 (en) METHOD AND DEVICE FOR WIRELESS NETWORK HYBRID POSITIONING
JP6063050B2 (en) Method and apparatus for RF performance metric estimation
US9451575B2 (en) Positioning devices and methods in cellular communication systems
US9560626B2 (en) Method and apparatus for using historic network information for determining approximate position
US8750808B2 (en) Configuration of reference signal transmission bandwidth
CN103609179B (en) For changing the method and apparatus of time of measuring and bandwidth during measuring
US9301180B2 (en) Methods and apparatus to perform measurements
US9220028B2 (en) Methods and apparatus to perform measurements
JP5575909B2 (en) Determining handover parameters for transmission by an access point
US20120258730A1 (en) Estimating access terminal location based on beacon signals from femto cells
US20120302261A1 (en) Control schemes for determining access terminal location
US20120302263A1 (en) Estimating access terminal location based on uplink signals
JP2016500214A (en) Method for requesting parallel measurements of uplink radio signals
US20120315890A1 (en) Methods and apparatus to perform measurements
US20100120447A1 (en) Femto-Cell Location by Direct Methods
TW201141262A (en) Determining link quality for networks having relays
JP2016538772A (en) Techniques and methods for controlling crowdsourcing from mobile devices
JPWO2011083802A1 (en) Wireless communication system, wireless terminal, wireless network, wireless communication method and program
JP2011508873A (en) CMDA signal arrival time detection in wireless position detection system
CN105208609B (en) Residence reselecting and device
CN107110950B (en) Positioning system and method for determining the position of a mobile communication device
RU2542328C2 (en) Power control using gnss signals
TW200816669A (en) Determination of cell RF parameters based on measurements by user equipments