TW200808452A - Power supply for atomisation device - Google Patents

Power supply for atomisation device Download PDF

Info

Publication number
TW200808452A
TW200808452A TW96121838A TW96121838A TW200808452A TW 200808452 A TW200808452 A TW 200808452A TW 96121838 A TW96121838 A TW 96121838A TW 96121838 A TW96121838 A TW 96121838A TW 200808452 A TW200808452 A TW 200808452A
Authority
TW
Taiwan
Prior art keywords
voltage
atomizing device
circuit
power supply
applied voltage
Prior art date
Application number
TW96121838A
Other languages
Chinese (zh)
Inventor
Robin Greenwood
Alastair Pirrie
Original Assignee
Aerstream Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerstream Technology Ltd filed Critical Aerstream Technology Ltd
Publication of TW200808452A publication Critical patent/TW200808452A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0533Electrodes specially adapted therefor; Arrangements of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • B05B5/10Arrangements for supplying power, e.g. charging power

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

An atomisation device comprises a power supply for applying a voltage between first and second electrodes. The power supply comprises a control circuit adapted to control the applied voltage such that it has a desired value, and a monitoring circuit adapted to monitor the current flowing through the first and second electrodes and to vary the desired value depending on the monitored current in accordance with a predetermined characteristic.

Description

200808452 九、發明說明: 【發明所屬之技術領域】 本發明是關於一種霧化裝置,且特別是關於用於一霧 化裝置的電源供應益。該霧化裝置包含第一和第二電極, 5其中之一是一喷霧電極,而另一是一參考或放電電極。該 電源供應器在兩個電極之間施加一電壓,如下所描述的, 使得在喷霧電極内的液體被霧化。 【先前技術:j 發明背景 10 靜電喷霧裝置使用一電場以藉由在一喷霧電極(液體 被饋入該電極且被最大量暴露給電場)和在附近某處的一 參考電極之間施加一電位差而分解夜體。此類型的喷霧是 眾所周知的,已被Sir Geoffrey Taylor在1964年的200808452 IX. Description of the Invention: [Technical Field] The present invention relates to an atomizing device, and more particularly to a power supply benefit for an atomizing device. The atomizing device comprises first and second electrodes, one of which is a spray electrode and the other is a reference or discharge electrode. The power supply applies a voltage between the two electrodes, as described below, such that the liquid within the spray electrode is atomized. [Prior Art: j Background of the Invention 10 An electrostatic spray device uses an electric field to be applied between a spray electrode (a liquid is fed into the electrode and exposed to a maximum amount to an electric field) and a reference electrode somewhere in the vicinity A potential difference decomposes the night body. This type of spray is well known and has been used by Sir Geoffrey Taylor in 1964.

Proceedings of the Royal Society的第 383-397頁中描述。 15 此技術通常被稱作為電噴霧技術。被喷霧或被霧化的 物質通常是被分散作為實質上單分散粒子的一喷霧劑的液 體。電喷霧在歐洲專利號1,3995265中被例示,其在此處以 參照方式被併入本文。液體的霧化經由電子裝置在一液體 上產生高表面電荷被實現。-旦一電位差被施加到一喷霧 20電極(液體自其被分散)和一放電或參考電極之間(每一電極 被放置在-電介質中)’在-液體、組成物内攜帶的有效成分 (active ingredient)的分散被實現。一有效率的喷霧可被產 生,由空氣攜帶的適當大小的微滴(dr〇plet)組成,且在重力 的影響下不會快速滲入地。對於一給定的組成物而言,該 200808452 等微滴的直徑可(至少某種程度上)藉由實驗地改變被施加 的電壓和液體流動速率而被控制。依據局部電場,微滴最 初被可離該噴霧電極。在接近電介質處放電電極的隨後放 電防止將微滴吸回該裝置。如果電極上的電壓被平衡,則 5液體組成物的噴射立即停止。 出於大量生產電喷霧裝置的目的,想要保持被施加的 電壓為一知疋值且重新配製(ref〇rmulate)個別的液體組成 物,以使得其等擁有某些物理特性,例如特定施加的電壓 和想要的流動速率的適當的傳導性和黏滯性。 10 當一液體組成物被如此配製但輸出電壓遭受鬆弛的製 造容限時,噴霧情形可能不是最佳的,增加了微滴沉積在 放電電極、電介質和(若存在的話)任何外殼上的機會。在液 體組成期間,在喷頭(sprayhead)上的喷霧液滴沉積也作為 鬆弛的配製各限之結果而發生,從而其物理特性不適用於 15預先選擇出的橫跨該喷頭的輸出電壓,或可能由於液體組 成物的退化(degradation)(例如由於慢性氧化)而發生,或可 能作為喷霧電極的退化結果或噴頭之不嚴密的組合的結果 而發生。這些變化的結果是被喷霧之微滴被攜帶在其上的 電場和/或離子微風(ionic breeze)實際上並不將其等運送遠 20 離該喷頭。 在高濕度下尤其是在冷凝濕度(例如在一家庭浴室中) 下的喷頭操作可能導致在電極間由喷頭上的液體形成一電 連接’使得噴頭的表面電阻被減少。這可能導致在噴霧部 位上的電壓減少至空氣不再被離子化且依據局部電場使微 6 200808452 滴不再被運送遠離該喷霧電極的點上。如果需被霧化之液 體組成物所需的被施加的電壓低於離子化空氣所需的電 壓,則來自電喷霧部位的物質持續被霧化,而沒有被放電 且在離子微風上被吹走。 5 用於限制或防止噴頭上負載變化之效果的裝置在本領 域中是已知的。美國專利號6,880,554 B1揭露了一種空氣過 濾器(inhaler),其中由該喷霧裝置產生的喷霧路徑部分地由 一使用者呼吸所吸入的空氣流所定義,這使得通過橫跨電 喷霧部位且遠離放電電極。類似地,美國專利號6,656,253 10 B2教示一種設備,其中一被充電的噴霧被引入機械地得到 的氣流中,該氣流迫使喷霧遠離配發電極(issuing eleetiOde) 到一收集貯液器(collection reservoir)。在美國專利號 6,397,838中揭露的電噴霧設備中的電極上或附近的微滴沉 積被認為由喷嘴的放置和幾何形狀所控制,但該裝置展示 15由於在噴霧部位上局部電場的變化引起的性能改變。在美 國專利號6,729,552 B1中揭露的液體被冷凝進該裝置之反 向電極的效果由直接到該反向電極的可取捨的熱量施加及 /或吸附材料所控制。該電極本身可被加熱,以促進已到達 該電極上或在該電極上被冷凝的物質的蒸發。另外,一高 2〇表面區域吸附材料可被置於與該電極接觸的地方或外殼内 的其他地方,以防止從該裝置向外茂放無效率噴霧的^體 組成物。 上述技術都無法令人滿意,因為其等需要由該電喷霧 裝置發射的噴霧劑額外的電的、機械的或使用者幫助的刺 7 200808452 激。此種機械的、使用者或幾何的幫助包括引入額外的電 子或外殼元件及其等相關的製造和電源成本、使用者加入 或粗粒的或不適合的外觀。另外,吸附材料可作為該液體 組成物的一貯液器,可能將使用者暴露給液體組成物之未 * 5知數量的有效成分,一些成分可能對人體健康是有害的或 - 危險的。 US 6,274,202揭露了一種用於控制粉末喷霧塗層設備 之操作的方法,包含出於克服喷霧過充電和粉末塗層中的 _ 撥皮效應Peel e的目的,當該喷霧設備接近一 10工件時,自動減少靜電充電裝置的放電電流和放電電壓。 在US 6,274,202中揭露的裝置包含一用於驅動一變壓器的 振盪器’其副線圈被連接到一 EHT乘法器。對來自該eht 乘法器的輸出功率的一間接測量藉由測量流過該振盡器的 - 電流被獲得,且該振盪器的輸出電壓利用一正回饋技術從 - 15而被調整,以當該喷霧設備接近該工件時,設定一適當的 _ 放電電流和放電電壓。然而,採用一間接測量該輸出功率 的方法,使得該裝置無法在想要的負載中的功率消耗(即實 際的輸出功率)和在變壓器和EHT乘法器中損耗的功率消耗 之間進行區別。此外,該裝置沒有監控該實際輸出電壓和 20電極電流的方法,且從而無法使用這些的回饋控制以克服 在使用期間或由於製造容限發生的任何改變。 如可見的,需要一電喷霧裝置,其可自動回應由以下 各項引起的無效率的噴霧情形:鬆弛的製造容限、極端的 環境情形、在喷頭上的蒸汽(例如水蒸汽)冷凝、被喷霧之微 8 200808452 滴或,、他液n在喷頭上或喷霧電極或放電電極上的沉 【發明内容】 依據本發明-層面,提供一種霧化裝置,包含一用於 在弟-和第二電極之間施加—電壓的電源供應器,該電源 供應器包含-㈣電路,適祕㈣該被施加的電壓使盆 具有—期望值,以及—監控電路,適用於監控流過該第1 和第二電極之電流且依據-狀特性,根據該被監控的電 流改變期望值。Proceedings of the Royal Society is described on pages 383-397. 15 This technology is often referred to as electrospray technology. The substance to be sprayed or atomized is usually a liquid which is dispersed as a spray of substantially monodisperse particles. Electrospray is exemplified in European Patent No. 1,399, 265, which is incorporated herein by reference. The atomization of the liquid is achieved by the electronic device generating a high surface charge on a liquid. - a potential difference is applied to a spray 20 electrode (the liquid is dispersed therefrom) and a discharge or reference electrode (each electrode is placed in a - dielectric) 'active ingredients carried in the liquid, the composition The dispersion of (active ingredient) is achieved. An efficient spray can be produced, consisting of appropriately sized droplets (dr〇plet) carried by the air, and does not penetrate quickly into the ground under the influence of gravity. For a given composition, the diameter of the droplets such as 200808452 can be controlled (at least to some extent) by experimentally varying the applied voltage and liquid flow rate. Depending on the local electric field, the droplets are initially separated from the spray electrode. Subsequent discharge of the discharge electrode near the dielectric prevents the droplets from being drawn back into the device. If the voltage on the electrodes is balanced, the injection of the 5 liquid composition is immediately stopped. For the purpose of mass production of electrospray devices, it is desirable to keep the applied voltage at a known value and to re-form individual liquid compositions such that they possess certain physical properties, such as specific application. The proper conductivity and viscosity of the voltage and the desired flow rate. 10 When a liquid composition is so formulated but the output voltage is subject to slack manufacturing tolerances, the spray condition may not be optimal, increasing the chance that droplets will deposit on the discharge electrode, the dielectric, and, if present, any of the outer casings. During liquid composition, spray droplet deposition on the sprayhead also occurs as a result of the relaxed formulation limits, so that its physical properties do not apply to 15 preselected output voltages across the showerhead. , or may occur due to degradation of the liquid composition (eg, due to chronic oxidation), or may occur as a result of degradation of the spray electrode or a less stringent combination of spray heads. The result of these changes is that the electric field and/or ionic breeze carried by the sprayed droplets does not actually transport them away from the nozzle. The operation of the head under high humidity, especially in condensed humidity (e.g., in a home bathroom) may result in an electrical connection between the electrodes formed by the liquid on the showerhead such that the surface resistance of the showerhead is reduced. This may result in a reduction in the voltage at the spray site until the air is no longer ionized and depending on the local electric field, the dots are no longer transported away from the spray electrode. If the applied voltage required for the atomized liquid composition is lower than the voltage required for the ionized air, the substance from the electrospray site is continuously atomized without being discharged and blown on the ion breeze. go. 5 Apparatus for limiting or preventing the effects of load changes on the spray head is known in the art. U.S. Patent No. 6,880,554 B1 discloses an air filter wherein the spray path created by the spray device is defined in part by a flow of air drawn by a user's breath, which allows passage across the electrospray site. And away from the discharge electrode. No. 6,656,253 10 B2 teaches an apparatus in which a charged spray is introduced into a mechanically obtained gas stream which forces the spray away from the dispensing electrode to a collection reservoir (collection reservoir) ). Droplet deposition on or near the electrodes in the electrospray device disclosed in U.S. Patent No. 6,397,838 is believed to be controlled by the placement and geometry of the nozzle, but the device exhibits performance due to local electric field variations at the spray site. change. The effect of the liquid disclosed in U.S. Patent No. 6,729,552 B1 being condensed into the counter electrode of the apparatus is controlled by the optional heat application and/or adsorbent material directly to the counter electrode. The electrode itself can be heated to promote evaporation of material that has reached or is condensed on the electrode. Alternatively, a high surface area adsorbent material can be placed in contact with the electrode or elsewhere in the outer casing to prevent the inefficient spraying of the body composition from the device. None of the above techniques are satisfactory because they require additional electrical, mechanical or user-assisted thorns by the sprays emitted by the electrospray device. Such mechanical, user or geometrical assistance includes the introduction of additional electronics or housing components and their associated manufacturing and power costs, user added or coarse or unsuitable appearance. Alternatively, the adsorbent material can act as a reservoir for the liquid composition, potentially exposing the user to a non-known amount of the active ingredient of the liquid composition, some of which may be detrimental or dangerous to human health. US 6,274,202 discloses a method for controlling the operation of a powder spray coating apparatus comprising the purpose of overcoming spray overcharge and Peel e in a powder coating when the spray apparatus approaches a 10 When the workpiece is used, the discharge current and discharge voltage of the electrostatic charging device are automatically reduced. The device disclosed in US 6,274,202 comprises an oscillator for driving a transformer whose secondary winding is connected to an EHT multiplier. An indirect measurement of the output power from the eht multiplier is obtained by measuring the current flowing through the vibrator, and the output voltage of the oscillator is adjusted from -15 using a positive feedback technique to When the spray device approaches the workpiece, an appropriate _ discharge current and discharge voltage are set. However, a method of indirectly measuring the output power is such that the device cannot distinguish between the power consumption in the desired load (i.e., the actual output power) and the power consumption lost in the transformer and the EHT multiplier. Moreover, the device does not have a way to monitor the actual output voltage and 20 electrode current, and thus these feedback controls cannot be used to overcome any changes that occur during use or due to manufacturing tolerances. As can be seen, there is a need for an electrospray device that automatically responds to inefficient spray conditions caused by slack manufacturing tolerances, extreme environmental conditions, condensation of steam (eg, water vapor) on the spray head, Sprayed micro 8 200808452 drops or, he liquid n on the spray head or spray electrode or discharge electrode sink [invention] According to the invention - level, an atomization device is provided, including one for the younger brother - And a voltage supply between the second electrode and the second electrode, the power supply comprising - (four) circuit, the secret (4) the applied voltage causes the basin to have - the desired value, and - the monitoring circuit is adapted to monitor the flow through the first And the current of the second electrode and according to the -like characteristic, the expected value is changed according to the monitored current.

10 1510 15

20 精由監控流過該電極的電流且依據—預定特性將該 改變為在電極之間被設定的電壓,該電源供絲可以補 由組合中的不财齡鬆_製造容㈣及在該等電極 間=抗的任何變化引起的問題,該等電極之間阻抗的變/ 可此由在噴頭±冷凝纽積被噴霧之微滴引起。因此, 發明提供—種具有電源供應器的霧化裝置,可調節在% 製造時的變化4補償由該I置被使㈣環境和喷頭上( 液=^丨起的問題。敎寬了與此錄置-起被使用《 相對和第二電極的電流而言,詞語“監控” 被用於感測藉由直接測量流過 和弟一電極之電流而 電壓或 被“’而不是利用取自電路中別處的另一 電流的測量進行推論或計算。 典型地,該霧化裝置利用-需被霧 液體)的靜電推進技術。 0貝Ui地 極,而該第 在一實施例中,該第_電極是—喷霧電 9 200808452 電極是一蒼考電極。 在另一實施例中,該第一電極是一參考電極,而該第 二電極是一喷霧電極。20 finely monitors the current flowing through the electrode and changes the voltage to a voltage set between the electrodes according to a predetermined characteristic, and the power supply wire can supplement the non-crowd _ manufacturing capacity (4) in the combination and The problem caused by any change in the electrode = resistance, the change in impedance between the electrodes / can be caused by the droplets sprayed on the nozzle ± condensation product. Therefore, the invention provides an atomizing device having a power supply, which can adjust the variation at the time of manufacturing 4 compensation by the I-set (4) environment and the problem on the nozzle (liquid = ^ 丨 敎 与 与 与Recording-from the use of the current relative to the second electrode, the word "monitoring" is used to sense the voltage by directly measuring the current flowing through the electrode and the "or" rather than using the circuit. The measurement of another current in the middle of the field is inferred or calculated. Typically, the atomizing device utilizes an electrostatic propulsion technique - which is required to be a mist liquid. 0 Bayi Ui pole, and in the first embodiment, the first The electrode is - spray electric 9 200808452 The electrode is a Cang electrode. In another embodiment, the first electrode is a reference electrode and the second electrode is a spray electrode.

典型地,該控制電路包含一用於產生一交流的振盪 為,且該電源供應器進一步包含一連接到該振盪器的換流 益電路,用於自該交流產生被施加的電壓。 該換流器電路可包含一電荷泵和整流器電路,該整流 器電路典型地是一柯克勞夫_沃耳呑(c〇ckcr〇ft_ Wah〇…產 生器。 10 該控制電路可藉由控制該振盪器之振盪的大小、頻率 或工作週期而控制被施加的電壓。在此情形下,該控制電 路可接收才曰不來自該監控電路之被監控之電流的輸出信 號,且調整該振盈器之振I的大小、頻率或工作週期以依 據預定的特性,根據該被監控的電流改變在該第一和第二 15 電極之間的電壓之期望值。 」而,在一較佳實施例中,該控制電路藉由使得該振 盈器在-預定頻率上產生交流叢發而控制被施加的電麼, 該等叢發的持續時間和/或工作職決定該被施加之電壓 的值。在此情形下,該控制電路可接收一指示來自該監控 2 〇電路之&控電流的輸出信號且調整該等叢發的持續時間及 /或二作週期’以依據預定的特性,根據該被監控的電流改 麦虡第一和第二電極之間的電壓之期望值。 —該瓜控弘路可使用任何習知的電流測量技術以測量流 入該第和第_電極的電流。例如,一變流器可被使用。 10 200808452 然而’在—較佳實施例中,藉由測量橫跨與該第-或第二 電極之任串%之一電阻$的電壓,該監控電路監控電流。 較佳地,該監控電路進一步適用於監控被施加的電壓 且適用於提供-指示該被監控電壓的輸出信號給該控制電 5路,從而其可控制該被施加的電壓具有期望值。這提供了 該被施加之電壓的-閉迴路控制。儘管可能使用—開迴路 控制技術,但需要明白的是這是較不想要的,因為較難以 穩定該被施加的電壓為期望值。 在-實施例中’藉由測量在形成連接在該第一和第二 H)電極之間的-分壓器的兩個電阻器接合處的電壓,該監控 電路監控該被施加的電壓。 在另-實施例中,藉由測量橫跨與第一和第二電極之 間的-偏壓電阻器串聯的—二極體的電壓,該監控電路監 控該被施加的電壓。視該二極體是正向或是反向偏麗而 15定’橫跨該二極體被測量的電壓可以是正向或反向電壓Typically, the control circuit includes an oscillation for generating an alternating current, and the power supply further includes a commutation circuit coupled to the oscillator for generating an applied voltage from the alternating current. The converter circuit can include a charge pump and rectifier circuit, the rectifier circuit typically being a Kröcker _Worcker (10). The control circuit can be controlled by Controlling the applied voltage by the magnitude, frequency or duty cycle of the oscillation of the oscillator. In this case, the control circuit can receive an output signal of the monitored current from the monitoring circuit and adjust the oscillator The magnitude, frequency or duty cycle of the oscillator I changes the desired value of the voltage between the first and second 15 electrodes in accordance with the monitored current in accordance with a predetermined characteristic. In a preferred embodiment, The control circuit controls the applied power by causing the oscillator to generate an AC burst at a predetermined frequency, the duration of the bursts and/or the job determining the value of the applied voltage. In the case, the control circuit can receive an output signal indicating the & control current from the monitoring circuit and adjust the duration of the bursts and/or the second period to be based on predetermined characteristics, according to the The monitored current changes the expected value of the voltage between the first and second electrodes of the wheat crucible. - The melon control can use any conventional current measurement technique to measure the current flowing into the first and third electrodes. For example, a change The flow device can be used. 10 200808452 However, in the preferred embodiment, the monitoring circuit monitors the current by measuring the voltage across one of the % of the first or second electrode. The monitoring circuit is further adapted to monitor the applied voltage and is adapted to provide an output signal indicative of the monitored voltage to the control circuit 5 such that it can control the applied voltage to have a desired value. This provides the The closed-loop control of the applied voltage. Although it is possible to use an open loop control technique, it is to be understood that this is less desirable because it is more difficult to stabilize the applied voltage to a desired value. In the embodiment A voltage is measured at the junction of the two resistors forming a voltage divider connected between the first and second H) electrodes, the monitoring circuit monitoring the applied voltage. In another embodiment, the monitoring circuit monitors the applied voltage by measuring the voltage across the diode in series with the bias resistor between the first and second electrodes. Depending on whether the diode is positive or negative, the voltage measured across the diode can be forward or reverse.

依次依賴於兩個電極之間的相對電位。 當該霧化裝置包含-換流器電路時,該換流器電路包 含-電荷I和整流f路,例如_柯克勞夫_沃耳吞產生器, 藉由測量在該電荷栗和整流器電路内之一節點上形成的電 2〇壓,該監控電路可監控該被施加的電壓。 也It in turn depends on the relative potential between the two electrodes. When the atomizing device comprises a converter circuit, the converter circuit comprises a charge I and a rectified f path, such as a _Kroklaw_Walton generator, by measuring the charge pump and the rectifier circuit The electric 2 is formed on one of the nodes, and the monitoring circuit can monitor the applied voltage. and also

仍在另一實施例中,該監控電路可包含一類比至數位 轉換器…處理器以及-數位至類轉換器,該類比至數 位轉換器適用於產生表示該被施加之電壓和該被監控之電 流的信號之數位表示,該纽ϋ用於接收料數位表示I 11 200808452 5 η 依據一預定演算法,產生一對應的數位信號,該數位至類 比轉換器適用於產生來自該數位信號的一類比輸出信號, 該類比輸出信號被提供給該控制電路。 該裝置可進一步包含一溫度感測器,用於監控周圍溫 度且產生一表示該被監控之周圍溫度的對應輸出信號,該 控制電路回應於來自該溫度感測器的輸出信號,以依據一 被監控之周圍溫度來調整預定特性。 該霧化裝置進一步包含一濕度感測器,用於監控周圍 濕度且產生一表示該被監控之周圍濕度的對應輸出信號, 10 該控制電路回應於來自該濕度感測器的輸出信號,以依據 該被監控之周圍濕度來調整預定特性。 該霧化裝置進一步包含一壓力感測器,用於監控周圍 壓力且產生一表示被監控之周圍壓力的對應輸出信號,該 控制電路回應於來自該壓力感測器的輸出信號,以依據該 - 15 被監控之周圍壓力來調整預定特性。 • 該霧化裝置可有利地進一步包含一詢問器電路,用於 自一與一貯液器有關的一識別元件讀取一識別符且產生表 示該識別符的一輸出信號,該貯液器包含在使用中需被喷 霧之液體,該控制電路回應於來自該詢問器電路的輸出信 20 號,以依據自該識別元件讀取的識別符調整預定特性。 依據本發明的一第二層面,提供一種霧化裝置,包含 一用於在第一和第二電極之間施加一電壓的電源供應器, 和一用於監控至少一周圍情形且產生表示至少一被監控之 周圍情形的至少一對應的輸出信號的感測器,該電源供應 12 200808452 态適用於接收該至少一輸出信號且依據一預定特性,根據 該至少一被監控之周圍情形來控制該被施加之電壓。 藉由監控該霧化裝置正在其等内運行的該等周圍情 形’藉由相應地調整被施加到兩個電極的電壓,可能補償 5 相關的性能變化。 该至少一周圍情形可包括周圍溫度、周圍濕度和周圍 壓力的一或多個。 在一較佳實施例中,該電源供應器包含一用於產生一 父流的振靈器’和一連接到該振盪器且用於自該交流產生 10被施加之電壓的換流器電路。 該換流器電路可包含一電荷泵和整流器電路,例如一 柯克勞夫_沃耳吞產生器。 在一實施例中,藉由控制該振盪器之振盪的大小、頻 率或工作週期,該電源供應器控制被施加的電壓。 15 在另一實施例中,藉由使得該振盪器在一預定頻率上 產生交流叢發,該電源供應器控制該被施加的電壓,該等 叢發的持續時間及/或工作週期決定該被施加之電壓的值。 典型地’該電源供應器進一步適用於監控該被施加之 電壓’從而其可依據該預定特性來控制該被施加之電壓。 20 藉由測量在形成連接在該第一和第二電極之間的一分 壓裔的兩個電阻器之接合處的電壓,該電源供應器可監控 該被施加之電壓。 另外,藉由測量橫跨一二極體的電壓,該電源供應器 可監控該被施加之電壓,該二極體可與該第一和第二電極 13 200808452 之間的—偏壓電阻器串聯。橫跨該二極體被測量的電塵可 =正=或反向μ,這視該二極妓正向偏㈣是反向 偏壓而疋,依次視兩個電極的相對電位而定。 在另一實施例中,藉由測量在該電荷聚 5 10 15 20 =一節點上形成的„,該電源供應器監控該被施加; 電壓。 哭在:實施例中,該電源供應器包含—類比至數位轉換 =一處理數位至類比轉換器,軸比至數位轉換 器適用於產生一表示該被施加之電壓的一 示,該處理器用於接收表示咳被施 之一位表 收表4被〜加之電壓的該信號之該 數位表不収該至少—被監控之周騎形的 且依據-預定演算法產生__對躺數位 = 比轉換n適詩自該數健誠生 數位至類 、匕輪出信號,該類 比輸出h唬被用於控制該被施加之電壓。 依據第二層面,該霧化裝置進_ 路,用於自一與一貯液辱有關的識匕3一詢問器電 丁欣态有關的識別兀件讀取一 產生表示該識別符的一輸出_號, ", 1 口现磙貝τ夜器包含在傕用中 自該第-或第二電極被喷霧的液體 ^ ^ $源供應器Θ雁於 來自該詢問器電路的輸出信號,以依據口f於 的識別符酿軸^特性。 件讀取 依據本發明的一第三層面,提 ^ 嗯務化裝置,句会 -用於在第-和第二電極之間施加u ^ , t 电雙的電源供鹿5|, 和-用於自〜、-貯液H有關_ … ^ 件續取一識別符且 產生表不4識別付的_輪出信號的詢 裔電路,該貯液器 14 200808452 包含^使用中被噴霧的液體,該電源供應器適用於接收該 輸出信號且控制該被施加之電屢,從而根據自該識別元件 讀取的該識別符使其具有一期望值。 藉由識別該貯液器及其中的液體,該電源供應器可相 5應調整兩個電極之間的電壓,以對於需被喷霧 最佳化該電壓。 該詢問器電路可適用於測量該識別元件的電阻,該識 別元件的電阻表示該識別符。在此情形下,該識別元件二 般是一電阻器。 1〇 /外,該詢問器電路可以是適用於接收被儲存在該識 別元件内之-朗㈣射頻制(RFID)讀取^。在此情形 下,該識別元件一般是_RF][D標籤。 在一較佳實施例中,該電源供應器包含一用於產生一 交流的振盪器,和一連接到該振盪器且用於自該交流產生 15 被施加之電壓的換流器電路。 典型地,該換流器電路包含一電荷泵和整流器電路, 例如一柯克勞夫-沃耳吞產生器。 在一實施例中,藉由控制該振盪器之振盪的大小、頻 率或工作週期,該電源供應器控制該被施加之電壓。 20 在另一實施例中,藉由使得該振盪器在一預定頻率上 產生父流叢發,该電源供應器控制該被施加之電壓,該等 叢發的持續時間及/或工作週期決定該被施加之電壓的值。 較佳地,該電源供應器進一步適用於監控該被施加之 電壓,從而其可控制該被施加之電壓具有期望值。 15 200808452 和第二電極之間的一分 ,以監控該被施加之電 藉由測量在形成連接在該第一 壓器的兩個電阻器之接合處的電壓 壓,該電源供應器可如此操作。 料,藉由測量橫跨一二極體的電Μ,該電源供應器 可監控該被施加之電壓,該二極體可與該第一和第二電極In still another embodiment, the monitoring circuit can include an analog to digital converter ... processor and a digital to class converter adapted to generate a voltage representative of the applied voltage and the monitored The digit of the signal of the current indicates that the button is used to receive the digit representation I 11 200808452 5 η to generate a corresponding digit signal according to a predetermined algorithm, the digit to analog converter being adapted to generate an analogy from the digit signal An output signal, the analog output signal is provided to the control circuit. The device can further include a temperature sensor for monitoring the ambient temperature and generating a corresponding output signal indicative of the monitored ambient temperature, the control circuit responsive to the output signal from the temperature sensor to Monitor the ambient temperature to adjust the predetermined characteristics. The atomizing device further includes a humidity sensor for monitoring ambient humidity and generating a corresponding output signal indicative of the monitored ambient humidity, 10 the control circuit is responsive to an output signal from the humidity sensor to The monitored ambient humidity adjusts the predetermined characteristics. The atomizing device further includes a pressure sensor for monitoring ambient pressure and generating a corresponding output signal indicative of the monitored ambient pressure, the control circuit responsive to the output signal from the pressure sensor to 15 The surrounding pressure is monitored to adjust the predetermined characteristics. • The atomizing device may advantageously further comprise an interrogator circuit for reading an identifier from an identification component associated with a reservoir and generating an output signal indicative of the identifier, the reservoir comprising The liquid to be sprayed in use, the control circuit responsive to the output signal No. 20 from the interrogator circuit to adjust the predetermined characteristic based on the identifier read from the identification element. According to a second aspect of the present invention, there is provided an atomizing device comprising a power supply for applying a voltage between the first and second electrodes, and a means for monitoring at least one surrounding condition and generating at least one a sensor of at least one corresponding output signal of the monitored surrounding condition, the power supply 12 200808452 state being adapted to receive the at least one output signal and to control the quilt according to the at least one monitored surrounding condition according to a predetermined characteristic The applied voltage. By monitoring the surrounding conditions in which the atomizing device is operating, etc., by correlating the voltages applied to the two electrodes accordingly, it is possible to compensate for the associated performance variations. The at least one surrounding condition may include one or more of ambient temperature, ambient humidity, and ambient pressure. In a preferred embodiment, the power supply includes a vibrator for generating a parent stream and an inverter circuit coupled to the oscillator for generating a voltage applied from the alternating current. The inverter circuit can include a charge pump and rectifier circuit, such as a Kirklaw_Walton generator. In one embodiment, the power supply controls the applied voltage by controlling the magnitude, frequency or duty cycle of the oscillation of the oscillator. In another embodiment, by causing the oscillator to generate an AC burst at a predetermined frequency, the power supply controls the applied voltage, and the duration and/or duty cycle of the bursts determines the The value of the applied voltage. Typically the power supply is further adapted to monitor the applied voltage so that it can control the applied voltage in accordance with the predetermined characteristic. The power supply monitors the applied voltage by measuring the voltage at the junction of two resistors forming a partial connection between the first and second electrodes. In addition, the power supply can monitor the applied voltage by measuring the voltage across a diode, and the diode can be connected in series with the bias resistor between the first and second electrodes 13 200808452. . The electric dust measured across the diode can be positive = or reverse μ, depending on the positive bias (4) of the two poles being reverse biased and 疋, depending on the relative potential of the two electrodes. In another embodiment, the power supply monitor monitors the applied voltage by measuring the charge formed on the node 5: a node. Crying: In an embodiment, the power supply includes - Analog to digital conversion = a processing digit to analog converter, the analog to digital converter is adapted to generate an indication of the applied voltage, the processor is configured to receive a representation of the cough ~ The voltage of the signal of the digital table does not receive the at least - the monitored week riding shape and according to the - predetermined algorithm to generate __ lie to the number of digits = than the conversion n appropriate poetry from the number of health earned digital to class, The rounding signal, the analog output h唬 is used to control the applied voltage. According to the second level, the atomizing device is used for the identification of a liquid and a liquid insult. The identification element associated with the electric dynamometer reads an output _ number indicating the identifier, ", 1 is now contained in the sputum from the first or second electrode The liquid ^ ^ $ source supply Θ 雁 in the output from the interrogator circuit The signal is based on the identifier of the port f. The reading is in accordance with a third level of the invention, and the device is used to apply u ^ between the first and second electrodes. , t electric double power supply for deer 5|, and - for the self-~, - liquid storage H _ ... ^ pieces continue to take an identifier and generate a table 4 to identify the payment of the _ turn-off signal of the circuit The reservoir 14 200808452 includes a liquid that is sprayed in use, the power supply being adapted to receive the output signal and to control the applied electrical frequency to have an expected value based on the identifier read from the identification component By identifying the reservoir and the liquid therein, the power supply can adjust the voltage between the two electrodes to optimize the voltage for the spray to be applied. The interrogator circuit can be adapted for measurement The resistance of the identification component, the resistance of the identification component representing the identifier. In this case, the identification component is generally a resistor. 1 / /, the interrogator circuit may be adapted to receive stored in the identification - Lang (four) radio frequency (RFID) reading ^ in the component. In this case, the identification component is typically _RF][D-tag. In a preferred embodiment, the power supply includes an oscillator for generating an alternating current, and a connection to the oscillator and for The alternating current produces an inverter circuit that is applied with a voltage of 15. Typically, the inverter circuit includes a charge pump and rectifier circuit, such as a Kirklaufer-Vorten generator. In one embodiment, The power supply controls the applied voltage by controlling the magnitude, frequency or duty cycle of the oscillation of the oscillator. 20 In another embodiment, by causing the oscillator to generate a parent flow at a predetermined frequency The power supply controls the applied voltage, and the duration and/or duty cycle of the bursts determines the value of the applied voltage. Preferably, the power supply is further adapted to monitor the applied voltage such that it can control the applied voltage to have a desired value. 15 200808452 and a point between the second electrode to monitor the applied power by measuring the voltage voltage at the junction forming the two resistors connected to the first press, the power supply can be operated as such . The power supply can monitor the applied voltage by measuring the power across the diode, and the diode can be coupled to the first and second electrodes.

之,的顯電阻器串聯。橫跨該二極體被測量的電壓可 乂=正向或反向電壓,這視該二極體是正向偏麼還是反向 偏c而疋,依次視兩個電極的相對電位而定。 Η施例包含藉由測量在該電荷泵和整流器電路内 10之一節點上形成的電壓,監控該被施加之電壓。 。在-實施例中,該電源供應器包含一類比至數位轉換 2、一處理器和-數位至類比轉換器,該類比至數位轉換 -適用於產生-表不該被施加之電壓的信號之一數位表 不,該處理器用於接收表示該被施加之電壓的該信號之該 數位表不以及自該識別元件讀取的該識別符之一數位表 不’且依據-預定演算法產生一對應的數位信號,該數位 至類比轉換器適用於自該數位信號產生一類比輸出信號, 該類比輸出信號被用於控制該被施加之電壓。 ^依據第三層面,該霧化裝置進一步包含一溫度感測 20為’用於監控周圍溫度且產生一表示該被監控之周圍溫度 的對應輸出信號,該電源供應器回應於來自該溫度感測器 的輸出仏號,以依據被監控之周圍溫度來調整該被施加之 電壓的期望值。 依據第三層面,該霧化裝置進-步包含-濕度感測 16 200808452 5 • 器,用於監控周圍濕度且產生一表示該被監控之周圍濕度 的對應輸出信號,該電源供應器回應於來自該濕度感測器 的輸出信號,以依據該被監控之周圍濕度來調整該被施加 之電壓的期望值。 依據第三層面,該霧化裝置進一步包含一壓力感測 器,用於監控周圍壓力且產生一表示被監控之周圍壓力的 對應輸出信號,該電源供應器回應於來自該壓力感測器的 輸出信號,以依據該被監控之周圍壓力來調整該被施加之 電壓的期望值。 10 圖式簡單說明 參考附圖,本發明之實施例現在被描述,其中: 第1圖顯示適用於分配組成物的一電喷霧裝置; 第2圖顯示可選擇的電喷霧電極和貯液器,以及内部元 件的剖視圖; . 15 • 第3圖顯示一分配器喷霧表面組態; 第4圖顯示適用於驅動一電喷霧裝置的先前技術的電 源供應器; 第5圖顯示對於具有相同參考情形的三個不同控制組 態的負載回應曲線; 20 第6a圖顯示適用於驅動一電喷霧裝置之一電源供應器 的第一實施例,第6b圖顯示對應的負載回應曲線範圍; 第7a圖顯示適用於驅動一電喷霧裝置之一電源供應器 的第二實施例,第7b圖顯示對應的負載回應曲線; 第8圖顯示適用於驅動一電喷霧裝置之一電源供應器 17 200808452 5 • 的第三實施例; 第9圖顯示適用於驅動一電喷霧裝置之一電源供應器 的第四實施例; 第10圖顯示對於相同喷頭内三種不同配製的負載曲 線,疊加在第7b圖的負載回應曲線上; 第11圖顯示喷霧相同配製的兩個不同喷頭的負載曲 線,疊加在第7b圖的負載回應曲線上; 第12圖顯示該電源供應器部分的電路圖。 【實施方式】 10 第1圖是適用於本發明的一電喷霧裝置的說明,如在歐 洲專利號1,399,265中所描述的。其包含一置於接近該裝置 之一出口表面5的喷霧電極1,以及接近的另一參考和放電 電極3,也置於接近該裝置出口表面5的地方。當以一開放 式幾何組配時,藉由遮蔽該出口表面5内部的分別凹部2、 . 15 • 4,兩個電極一般都被保護不受使用者干擾。該出口表面5 由一介電材料形成,該材料被選擇使得其以低速洩放電 荷,從而經由離子或帶電粒子被沉積的任何電荷不會立即 移動或洩放。這確保了在這些介電凹部2、4藏納電極時, 保留與該等電極相同極性的輕微電荷。這大大改變了局部 20 電場形狀且最有效地確保阻止進一步的沉積,而不需要額 外的電極。又一優點是該裝置是極性獨立的。換句話說, 該喷霧電極1可以以任何電壓(正或負)工作,而該放電電極3 可以以任何其他電壓工作-如果在第一情形下電位差僅足 以引起喷霧。可工作之電位差的範圍視以下各項而定:兩 18 200808452 個電極之間的距離、其等相對於該出口表面的相對位置、 該喷霧表面的形狀或輪廓以及凹部本身的大小。電位差的 fe圍可從i_2kV高達3〇kV或更多,且相對極性可以都是正或 • 負此範例中的該贺霧電極1包含^一 30量規(gauge)的金屬毛 ‘ 5細管,而該放電電極3包含一銳利的不銹鋼針,直徑是 〇.6mm 〇 該等圓柱凹部2和4的兩個縱向軸垂直於該噴霧出口表 • 面5,該出口表面5由一介電材料製成。在此範例中,該材 料疋尼旎且该噴務出口表面5是平坦的。然而,其他材料和 1〇彎曲的表面可被使用,假如足夠的電荷保留在該噴霧出口 表面5上,以偏轉噴霧和電荷載體遠離該裝置和電極。 經由被包裹的金屬管6和7形成電連接,這使得分別與 f極1和3以及與1源供應㈣進行電制,該電源供應 • 110由電池11供給電源。賴霧化的液體被保留在一貯液 15斋8内,且空氣經由〜小的空氣入口孔9被饋入該貯液器8内 書 X取代該被務化之夜體。便利地,-或多個射頻識別(RFID) 標籤可被放置在該貯液器8上或被連接到該貯液器8。 田此衣置由,亥電源供應器1〇供給能量時,例如藉由插 電池或、、二由電子計時器的動作,來自該貯液器⑽ 液體以-非常細微的形式自該噴霧電極峨發射出,從而依 據其蒸汽塵力和該教置附近的周圍情形使其快速蒸發。此 類型的靜電喷霧裝置可適用於以一種偶然方式或連續地分 配一配製。 第2圖顯不用於本發明的一可選擇的貯液器和毛細管 19 200808452 單元,其中可取捨地,該放電電極3不是該毛細管單元的一 元件。在此範例中,該貯液器8以一種彈性容器形式被提 供,具有兩個由封印(seal)21密封的彈性牆壁,一噴霧電極 1與貯液器8進行流動通訊。該喷霧電極丨位於該封印21上。 5在此範例中的導管25包含一個27量規毛細管(例如一不銹 鋼毛細管)’除非正如由包括如修改性塑膠的任何半導體材 料簡單地製成。在此範例中的彈性貯液器包含由一聚丙烯/ 鋁/PET層板之膜形成的牆壁,儘管存在很多其他可能的材 9 料,可被用於其等本身上或在很多組合中與其他相層積。 10該彈性財液器和導管系統被一外殼22物理地保護,在製造 期間該外殼22可以是一接受且放置該彈性貯液器和導管系 統的個別實體或可被整體包括。適當地,一或多個1^1〇標 籤可被嵌入或設置在該外殼22上。一RFID標籤(與該貯液器 8或保護結構22相通訊或嵌入該貯液器8或保護結構22内) 15可以是主動的,較佳的是半被動的或更佳的是被動的。該 • RFID標籤可包含一全球唯一識別符(Gum)或非揮發性電 可擦除可程式化唯讀記憶體(EEPR〇M)或其等的組合。 一封印構件23(例如一軟聚合物的化合物)可被重複移 除及取代,使得進一步防止液體流出該貯液器。在此範例 20中,一蓋子24提供一裝置,用以支援該封印構件23且當其 被應用到该噴霧電極1的末端時保持其封印位置。該外殼 可進一步提供連接到該導管25或貯液器8的位置和支持,例 如施加運動(如振動)或一高壓連接25,這使得與該噴霧電極 1電接觸。 20 200808452 當一高壓被施加橫跨該噴霧電極1和放電電極3日士户 該喷霧電極1的頂端暴露的液體組成物遇到-強電場了复對 抗該液體的表面張力,使其分解絲電微滴。類似地^ 電場也在該放電電極3上引起與該噴霧相反極性的離子二 經過在該噴霧出口表面5前面的該办 帶帝竇駚沾彡人 玉日1内每二兩個相反的 帶电實體的組合,空氣中該等微滴的黏㈣力變成其等上 的主要力量’ 在由初始帶電實體的最初快速運動產生的 柔和微風下,其等被推進遠離該裝置。第3圖中說明的喷霧 表面顯示了一種可能的喷霧表面。 、務 10 15 20 “電源11經由一驅動電路被耦接到該噴霧電極丨和表考 電極3,從_電源供應器1()產生的電壓足域生具有微滴 大小、剩餘微滴電荷及流動速率之期望特性的液體組成物. 噴霧。被施加在該喷霧電極和該放電電極之間的電位差視 该喷頭的幾何形狀(及尺寸)而定,且可能是從1至4〇]^乂的任 何範圍。對於第1圖提供的範例而言,其中在該等電極被暴 路的頂端之間的距離是8 mm,此電壓的大小是(例如)3_6kv 的範圍,較佳的是4.5-5_5kV,理想的是4.9kV,當該噴頭負 載等於6GQ時。在很多情形中,假如前述電位差被保持, 則每一電極上的極性不重要。此外,儘管通常便於將該等 電極之一或另一電接地,但這也不是本質性的。 第4圖顯示一先前技術的電源供應器,可以產生該等電 極之間所需的高壓。其包含四級:一低壓直流(DC)電源供 應态40(通常是一或多個伏打電池,可組合形成一電池);一 向頻振盪器41,引起交流(AC)叢發;一電磁或壓電變壓器 21 200808452 將低壓交錢成缝交流;以及—電荷奸整流⑽ 或柯克勞夫-沃耳吞產生器,逐漸升至縫交流,甚至進一 步將其整流回直流。在此线中,也可能有—_網路44, 紅控該輪出且在適當時㈣錄驗動叫持橫跨該負 5知5的電壓為期望值。也可能包括-橫跨該輪出的“纽 電阻器46,其允許電荷自該柯克勞夫·沃耳吞產生器 流出或“較,,,因為外部負載(該噴頭)無法自然地足夠快地 • 如此執行’因為該噴頭的電阻與該被施加之電壓不成比例。 妓-種根據_控制產生—高朗較習知的且商業 w上^應用的裝置。然而,高壓的其他來源(例如一凡得葛拉 夫(靜電)產生器(Van de Graff generator))可容易取代這三級 且保持本發明的一功能性實施例。 权前的大料情形巾,細上_巾先前技術的電 源供應器已被設計為產生-穩定電壓。這意味著該電源供 -U應器的輸出與負載獨立W f(R),其中v是被施加的電 • Μ ’ R是在任何給定時間點上的該喷頭電阻,而岐該電路 的一常數)。這是到目前為止最普遍的高壓電路類型。根據 -穩定電壓驅動電路’如果該噴頭的電阻減少(例如由於在 -潮濕環境τ水蒸汽冷㈣_),職麵㈣(dmw)的 2〇電流將快速增長。此電流的快速增長可能是_問題,如果 該裝置是電池操作的話,因為其大大減少了該裝置的服務 壽命。反之’如果該喷頭的電阻增加(例如由於微滴在該放 電電極上碰撞的原因),則該電流降低,減少了該噴頭的放 電效率,從而通常導致進一步的沉積。 22 200808452 一可選擇的方法是建立一穩定電流系統以代替,其中 一麥考電壓根據一典型的喷頭電阻被定義,且接著該電流 被保持在此位準上。在此情形下,該電壓是負载的一函數 或V=f(R>^R,其中/3是與該喷頭電阻成比例的常數,且實 5際上是電路設定的電流。在此行為稍微有所不同:如果該 喷頭電阻降低(例如由於冷凝濕度的原因),則該電壓減少, 如果其降低至該噴頭的操作電壓之下則是有利的。類似 地,如果該噴頭的電阻增加(例如由於微滴在該放電電極上 碰撞的原因),則該電壓增加,有助於擺脫(rid)被碰撞之材 10 料的放電電極。 然而,實際上,由於該喷頭電阻的非線性原因,一穩 疋電流電路通常引起問題。如果該電壓降低,則其通常在 切斷電噴霧之前切斷該放電電流。這導致一些微滴碰撞到 該放電電極上’且儘管這可能引起電壓增加,但實際上, 15其從不保持其初始位準,且從而此程序放大直到該貯液器 空為止。 我們已經由經驗發現,這些極端的一些組合是較佳 的。例如,由 Aerstream Technology Limited,Pipe House, Lupton R0ad,Wallingford,0X10 9BT製造的Solo電噴霧裝 20置使用一種“抽頭式回饋,,系統,以維持橫跨該喷頭的一電 壓幾乎穩定,但在低負載時稍微增加,而在高負載時稍微 降低。電壓和負載之間的關係v=f(R)是複雜的,且在第5圖 中連同接觸電流和接觸電壓關係一起被顯示。此回應自以 下事實得到:該回饋較早在電荷泵梯(ladder)内得到,(且從 23 200808452 而自該實際輸出稍微“移除,,),且該電荷泵梯的每一級不是 100%有效率的,在高壓末端具有過量損耗。儘管滿意電喷 霧,但此電路引起超過所需的電流,從而導致降低電池壽 命。 5 第6a圖顯示依據本發明用於一霧化裝置的電源供應器 之第一實施例。如所示的,在很多層面上類似於第4圖所示 的先前技術的電源供應器。然而,代替第4圖所示之簡單的 回饋安排,存在一種更複雜的回饋網路60。 如所示的,僅被動電阻器被用於該回饋網路60。在此 Π)電路中,電阻器的選擇可產生一電壓_負載回應函數 (V=f(R))’範圍從一穩定電壓回應到電流和電壓控制的任何 混合。 該洩放電阻器46不再直接橫跨連接該負載45,而代替 與連結電阻器62串聯橫跨該負載45(即,在該噴霧和放電 15電極之間)。從而在該洩放電阻器46和連結電阻器62之接合 處的電壓表示橫跨該負載45的電壓。 一抗流電阻器(choke resistor)61被提供與該負載45串 聯,從而通過該嘴霧和放電電極(且從而負載45)的所有電流 也通過該抗流電阻器61。較佳地,該抗流電阻器具有在範 20圍1的一值,且更佳地,在範圍500Ω至1〇〇Μβ 中。如所示的,該抗流電阻器61的一末端被連接到該電源 供應器的地參考點,且從而在該抗流電阻器和連結電阻器 6 2之接合處的電壓表示流過該等兩個電極和該負载4 5的電 流。從而橫跨回饋電阻器63的信號是一表示該噴霧和參考 24 200808452 表不流過這些電極之電流的信號 電極之間電壓的信號和 之總和。 振盪器41在一預定頻率 ^ ^ 、早和工作週期上產生交流叢發。 虽k跨該回饋電阻器63的該 /電壓降低至一臨界值(典型地 5疋1伏特)下日守,該振盈哭祐齡私 盈时破啟動’而當該電壓增加到高於 此值時,該振盤器被止動。f m攸而該振盪器41的輸出對應於 該回饋包阻為63上的電壓,使得如果該回饋電壓降低至臨 界值之下,則來自該振蘯器41之交流叢發更頻繁出現,反 之,如果該回饋電阻器63上的電壓增加,則來自該振盈器 10的交流叢發不常出現。 當流過該等電極的f流非常低時(即該負載阻抗非常 兩)’横跨抗流電阻器61降低的電壓非常小且可忽略。從而 橫跨回饋電阻器63的信號表示僅橫跨該負載的電壓,且在 適當時此電壓由該振盪器的啟動和止動所控制,以保持择 15跨回饋電阻器的信號為1伏特。然而,如果該電流增加(例 如由於在該喷頭上冷凝的原因),則橫跨抗流電阻器61降低 的電壓將增加。該振盪器41在適當時產生叢發,以保持# 跨回饋電阻器63的信號盡可能接近1伏特。因為此信號現在 包含一表示流過該等電極之電流及橫跨該等電極之電壓的 20 元件,這具有減少橫跨該負載45之電壓的效果且從而電流 流過以補償。換句話說,需要振盪的少量叢發以保持橫跨 回饋電阻器63的信號為1伏特,且橫跨該等電極的電壓減 少。以此方式,操作的效率可被改良,且藉由採取一較低 電流和電壓上的一新操作點,保護電池壽命。這對於使用 25 200808452 者而言產生較低的執行成本。 第6b圖顯示具有洩放電阻器46、連結電阻器62、抗流 電阻器61和回饋電阻器63之各種值的特性曲線(橫跨該等 電極的電壓對噴頭負載)。需要注意的是,在該連結電阻器 5 62具有0β值時顯示的曲線僅被提供作為一比較範例,對於 一般應用是不實際的,因為如果該連結電阻器62具有〇Ω的 值的話’則不可能測量所示的橫跨該負載45和該回饋網路 60的電壓。 當該洩放電阻器46具有4GQ的值、該連結電阻器62具 10有10ΜΩ的值、該抗流電阻器η具有ιμΩ的值以及該回饋電 阻器63具有5ΜΩ的值時,該輸出類似於前述§〇1〇裝置之抽 頭式回饋的輸出。 該抗流和連結電阻器61和62的特定值依據(在其他因 素之間)電路板佈局、元件品質和損耗度、電極幾何形狀和 15材料、需被喷霧的材料以及該外殼而被選擇。電阻值被選 擇以最小化製造容限的限制。典型地,該回饋電阻器63是 被調整以獲得足夠電路性能的一電位計。 第7a圖顯不用於本發明之電源供應器的一第二實施 例。此實施例在結構上非常類似第一實施例,僅有的差異 20是以一半導體一極體71取代該連結電阻器62,以產生一不 同的回饋網路70。 回饋電阻器63上的信號現在是橫跨抗流電阻器61之電 壓(視流過該喷霧和參考電極以及負載* $的電流而定)和二 極體71的正向電壓(被電阻純正向偏壓)之總和。從而橫跨 26 200808452 該回饋電”63的㈣以線財錢著橫跨該喷霧 和參考電極的電壓變化以及流過該等電極和負載的電流變 化而改變。我們已發現此種非線性特性尤其適用於電喷霧 霧化裝置。 ' 5 10 15 20 特別地,提供-種方式以選擇該穩定電壓和穩定電流 理想之電壓·域喊曲_最佳特性。在此情形下,當該 負載45的電阻低於—些標稱參考負载電阻時,橫跨^電 極的電壓被保持在-穩定值,料標稱參考貞载電阻的選 擇視該喷頭的幾何形狀以及期望的最佳電壓㈣,從而如 果(例如)該喷頭變得較具傳導性(例如在冷凝濕度下),㈣ 電壓不降低,㈣保持適當㈣霧放電。在幻圖的實施例 中,該參考負載電阻的適當值可能是$至2咖,即聰。 然而,如果該負载電阻45增加至高於此標稱參考負載值, 則該電壓隨著域電阻增加而上升。因此,例如,如果微 滴暫時沉積在該放電電極上,增加噴頭電阻,則藉由辦加 該電壓使電路回應,從而增加放電電極將靜電地去掉航 積在其上的材料的機會。 在極端的使用情形中,其中液體已被沉積在該參考電 極3上,或其中該參考電極已隨著時間過去而退化,導致負 載電流減少(即,流軸喷霧電極和參考電極1和3的電, 該喷頭的負載阻抗増加。在該抗流電阻器叫當然也有^ 考電極3)上的電壓也降低。此電壓降低導致該回饋電阻哭 63上的電壓降似回應。從_振盪器被促使產生更頻; 的交流叢發,從而増加橫跨該等電極的電壓以回應負載阻 27 200808452 橫跨1極之麵的增加麵於清除該放電電極 雷:料’且也保持放電離子的足约供應,使得該放 电㈣者時間過去變得遲純或被物質塗層。 第几財的實_顿出(㈣跨貞觸對喷頭 :?GQ表不)(由此回饋網路%所產生的)的特性曲線。 J疋丨顯tf來自-示範性電路的電壓_負載曲線,其中 該茂放電阻器46具有4GQ的值,該抗流電阻㈣且有The display resistors are connected in series. The voltage measured across the diode can be 正向 = forward or reverse voltage, depending on whether the diode is forward biased or reverse biased c and 疋, depending on the relative potential of the two electrodes. The embodiment includes monitoring the applied voltage by measuring the voltage developed across one of the nodes in the charge pump and rectifier circuit 10. . In an embodiment, the power supply includes an analog to digital conversion 2, a processor and a digital to analog converter, the analog to digital conversion - adapted to generate - one of signals indicative of the applied voltage The digital table does not, the processor is configured to receive the digital representation of the signal representing the applied voltage and the digital representation of the identifier read from the identification component does not generate a corresponding one according to a predetermined algorithm A digital signal, the digital to analog converter being adapted to generate an analog output signal from the digital signal, the analog output signal being used to control the applied voltage. According to the third aspect, the atomization device further includes a temperature sensing 20 for 'monitoring the ambient temperature and generating a corresponding output signal indicative of the monitored ambient temperature, the power supply responsive to the temperature sensing The output nickname of the device adjusts the desired value of the applied voltage based on the monitored ambient temperature. According to a third aspect, the atomization device further includes a humidity sensing 16 200808452 5 for monitoring ambient humidity and generating a corresponding output signal indicative of the monitored ambient humidity, the power supply being responsive to the The output signal of the humidity sensor adjusts the desired value of the applied voltage in accordance with the monitored ambient humidity. According to a third aspect, the atomizing device further includes a pressure sensor for monitoring ambient pressure and generating a corresponding output signal indicative of the monitored ambient pressure, the power supply responsive to the output from the pressure sensor A signal to adjust an expected value of the applied voltage in accordance with the monitored ambient pressure. BRIEF DESCRIPTION OF THE DRAWINGS With reference to the accompanying drawings, embodiments of the present invention are now described, wherein: Figure 1 shows an electrospray device suitable for dispensing a composition; Figure 2 shows an alternative electrospray electrode and reservoir And a cross-sectional view of the internal components; 15 • Figure 3 shows a dispenser spray surface configuration; Figure 4 shows a prior art power supply suitable for driving an electrospray device; Figure 5 shows Load response curves for three different control configurations of the same reference scenario; 20 Figure 6a shows a first embodiment of a power supply suitable for driving an electrospray device, and Figure 6b shows a corresponding load response curve range; Figure 7a shows a second embodiment of a power supply suitable for driving an electrospray device, Figure 7b shows a corresponding load response curve; Figure 8 shows a power supply suitable for driving an electrospray device 17 200808452 5 • Third embodiment; Figure 9 shows a fourth embodiment suitable for driving a power supply of an electrospray device; Figure 10 shows three not for the same nozzle The prepared load curve is superimposed on the load response curve of Figure 7b; Figure 11 shows the load curve of two different nozzles prepared by the same spray, superimposed on the load response curve of Figure 7b; Figure 12 shows the load curve Circuit diagram of the power supply section. [Embodiment] 10 Fig. 1 is an illustration of an electrospray device suitable for use in the present invention, as described in European Patent No. 1,399,265. It comprises a spray electrode 1 placed close to the exit surface 5 of the device, and another reference and discharge electrode 3 in proximity, also placed close to the exit surface 5 of the device. When assembled in an open geometry, the two electrodes are generally protected from interference by the user by masking the respective recesses 2, 15 • 4 inside the exit surface 5. The exit surface 5 is formed of a dielectric material that is selected such that it discharges at a low velocity so that any charge deposited via ions or charged particles does not immediately move or bleed. This ensures that when these dielectric recesses 2, 4 are trapped of the electrodes, a slight charge of the same polarity as the electrodes is retained. This greatly changes the local 20 electric field shape and most effectively ensures that further deposition is prevented, without the need for additional electrodes. Yet another advantage is that the device is polarity independent. In other words, the spray electrode 1 can operate at any voltage (positive or negative) and the discharge electrode 3 can operate at any other voltage - if in the first case the potential difference is only sufficient to cause a spray. The range of potential differences that can be operated depends on the following: the distance between two 18 200808452 electrodes, their relative position relative to the exit surface, the shape or contour of the spray surface, and the size of the recess itself. The potential difference can be up to 3〇kV or more from i_2kV, and the relative polarity can be positive or negative. The hemisphere electrode 1 in this example contains a 30 gauge metal hair '5 thin tube, and The discharge electrode 3 comprises a sharp stainless steel needle having a diameter of 〇.6 mm. The two longitudinal axes of the cylindrical recesses 2 and 4 are perpendicular to the spray outlet surface 5, which is made of a dielectric material. . In this example, the material is a crucible and the jet exit surface 5 is flat. However, other materials and a curved surface may be used if sufficient charge remains on the spray exit surface 5 to deflect the spray and charge carriers away from the device and electrode. Electrical connections are made via the wrapped metal tubes 6 and 7, which are electrically made with the f poles 1 and 3 and the 1 source supply (4), respectively, which are supplied with power from the battery 11. The atomized liquid is retained in a stock solution 8 and air is fed into the reservoir 8 via a small air inlet opening 9 to replace the chemicalized night body. Conveniently, one or more radio frequency identification (RFID) tags can be placed on or connected to the reservoir 8. In the case where the power supply is supplied by the power supply, for example, by inserting a battery or by an electronic timer, the liquid from the reservoir (10) is in a very fine form from the spray electrode. It is emitted to cause rapid evaporation according to its steam dust force and the surrounding conditions in the vicinity of the teaching. This type of electrostatic spray device can be adapted to dispense a formulation in an accidental or continuous manner. Fig. 2 is not shown for an alternative reservoir and capillary 19 200808452 unit of the present invention, wherein the discharge electrode 3 is not an element of the capillary unit. In this example, the reservoir 8 is provided in the form of a flexible container having two resilient walls sealed by a seal 21, a spray electrode 1 being in flow communication with the reservoir 8. The spray electrode crucible is located on the seal 21. 5 The conduit 25 in this example comprises a 27 gauge capillary (e.g., a stainless steel capillary)' unless simply fabricated from any semiconductor material including, for example, a modified plastic. The elastic reservoir in this example comprises a wall formed from a film of a polypropylene/aluminum/PET laminate, although there are many other possible materials that can be used for themselves or in many combinations with Other phase stacking. 10 The resilient liquid and conduit system is physically protected by a housing 22 which may be an individual entity that accepts and places the flexible reservoir and conduit system during manufacture or may be integrally included. Suitably, one or more 1^1 tags may be embedded or disposed on the housing 22. An RFID tag (communicating with or embedded in the reservoir 8 or protective structure 22) 15 can be active, preferably semi-passive or, more preferably, passive. The RFID tag can include a globally unique identifier (Gum) or a non-volatile electrically erasable programmable read only memory (EEPR〇M) or a combination thereof. A printing member 23 (e.g., a soft polymer compound) can be repeatedly removed and replaced to further prevent liquid from flowing out of the reservoir. In this example 20, a cover 24 provides a means for supporting the seal member 23 and maintaining its seal position when applied to the end of the spray electrode 1. The outer casing may further provide a position and support for connection to the conduit 25 or reservoir 8, such as applying a motion (e.g., vibration) or a high pressure connection 25, which causes electrical contact with the spray electrode 1. 20 200808452 When a high pressure is applied across the spray electrode 1 and the discharge electrode 3, the liquid composition exposed at the top of the spray electrode 1 encounters a strong electric field against the surface tension of the liquid, causing it to decompose the wire Electric droplets. Similarly, the electric field also causes ions of opposite polarity to the spray on the discharge electrode 3 to pass through each of the two opposite charges in the front of the spray outlet surface 5. The combination of solids, the viscous force of the droplets in the air becomes the main force on it, etc.' Under the gentle breeze created by the initial rapid motion of the initial charged entity, it is pushed away from the device. The spray surface illustrated in Figure 3 shows a possible spray surface. 10 15 20 "The power source 11 is coupled to the spray electrode and the test electrode 3 via a drive circuit, and the voltage generated from the power supply 1 () has a droplet size, a residual droplet charge, and A liquid composition of a desired characteristic of flow rate. A spray. The potential difference applied between the spray electrode and the discharge electrode depends on the geometry (and size) of the showerhead and may range from 1 to 4] Any range of 乂. For the example provided in Figure 1, where the distance between the tips of the electrodes is 8 mm, the magnitude of this voltage is, for example, a range of 3_6 kv, preferably 4.5-5_5kV, ideally 4.9kV, when the head load is equal to 6GQ. In many cases, if the aforementioned potential difference is maintained, the polarity on each electrode is not important. In addition, although it is usually convenient to one of the electrodes Or another electrical ground, but this is not essential. Figure 4 shows a prior art power supply that produces the high voltage required between the electrodes. It consists of four stages: a low voltage direct current (DC) power supply. Supply state 40 (usually one or more Voltatable batteries, which can be combined to form a battery); a unidirectional oscillator 41, causing alternating current (AC) bursts; an electromagnetic or piezoelectric transformer 21 200808452 to deliver low pressure into a seam; and - a charge of rectification (10) or Kirk The Lauf-Walton generator gradually rises to the seam exchange and even rectifies it back to DC. In this line, there may also be -_ network 44, red control the round and when appropriate (four) recorded The voltage across the negative 5 is expected to be the desired value. It may also include - a "new resistor 46" that spans the turn, allowing charge to flow from the Kroklaw Voltton generator or "by comparison, Because the external load (the nozzle) cannot be naturally fast enough • Do so because the resistance of the nozzle is not proportional to the applied voltage. 妓- species is generated according to _ control - Gaolang is more conventional and commercial w The device is applied. However, other sources of high voltage (e.g., a Van de Graff generator) can easily replace the three stages and maintain a functional embodiment of the present invention. The situation of the big material, the fine The source supply has been designed to generate a stable voltage. This means that the output of the power supply is independent of the load W f(R), where v is the applied electricity • Μ 'R is at any given time Point on the nozzle resistor, and 岐 a constant of the circuit.) This is by far the most common type of high voltage circuit. According to the - stable voltage drive circuit 'if the nozzle's resistance is reduced (eg due to the - humid environment τ Water vapor is cold (iv)_), and the current (4) (dmw) of the current will increase rapidly. The rapid increase of this current may be a problem if the device is operated by the battery because it greatly reduces the service life of the device. 'If the resistance of the showerhead increases (for example due to a collision of droplets on the discharge electrode), the current is reduced, reducing the discharge efficiency of the showerhead, which typically results in further deposition. 22 200808452 An alternative approach is to create a steady current system instead, where a mai test voltage is defined according to a typical nozzle resistance and then the current is held at this level. In this case, the voltage is a function of the load or V = f (R > ^R, where /3 is a constant proportional to the resistance of the nozzle, and the current is the current set by the circuit. Slightly different: if the nozzle resistance is reduced (for example due to condensation humidity), the voltage is reduced, if it is lowered below the operating voltage of the nozzle. Similarly, if the nozzle's resistance is increased (For example, due to the collision of droplets on the discharge electrode), the voltage is increased to help rid the discharge electrode of the material to be collided. However, in reality, due to the nonlinearity of the nozzle resistance The reason is that a steady current circuit usually causes a problem. If the voltage is lowered, it usually cuts off the discharge current before cutting off the electrospray. This causes some droplets to collide on the discharge electrode' and although this may cause an increase in voltage , but in fact, 15 never maintains its initial level, and thus the program is amplified until the reservoir is empty. We have empirically found that some combinations of these extremes are preferred. For example, the Solo electrospray assembly 20 manufactured by Aerstream Technology Limited, Pipe House, Lupton R0ad, Wallingford, 0X10 9BT uses a "tap-type feedback, system to maintain a voltage across the nozzle that is nearly stable, but at A slight increase at low load and a slight decrease at high load. The relationship between voltage and load v = f(R) is complex and is shown together with the contact current and contact voltage relationship in Figure 5. This response It is obtained from the fact that this feedback is obtained earlier in the charge pump ladder (and is slightly "removed" from the actual output from 23 200808452, and each stage of the charge pump ladder is not 100% efficient Excessive loss at the high voltage end. Although satisfactory for electrospray, this circuit causes more than the required current, resulting in reduced battery life. 5 Figure 6a shows a power supply for an atomizing device in accordance with the present invention. The first embodiment, as shown, is similar in many respects to the prior art power supply shown in Fig. 4. However, instead of the simple feedback arrangement shown in Fig. 4, There is a more complex feedback network 60. As shown, only passive resistors are used in the feedback network 60. In this circuit, the selection of resistors can produce a voltage_load response function (V= The f(R))' range ranges from a stable voltage response to any mix of current and voltage control. The bleeder resistor 46 no longer straddles the load 45 directly, instead of straddle the load 45 in series with the bond resistor 62 (i.e., between the spray and discharge 15 electrodes). Thus, the voltage at the junction of the bleeder resistor 46 and the junction resistor 62 represents the voltage across the load 45. A choke resistor 61 is provided in series with the load 45 such that all current through the nozzle mist and discharge electrodes (and thus the load 45) also passes through the choke resistor 61. Preferably, the current-resistance resistor has a value of 1 in the range of 20, and more preferably, in the range of 500 Ω to 1 〇〇Μ β. As shown, one end of the choke resistor 61 is connected to a ground reference point of the power supply, and thus the voltage at the junction of the choke resistor and the junction resistor 62 indicates that the flow occurs. Two electrodes and the current of the load 45. Thus, the signal across the feedback resistor 63 is a sum of the signals representing the voltage between the spray and the signal electrodes of the reference 24 200808452 indicating the current flowing through the electrodes. Oscillator 41 produces alternating bursts at a predetermined frequency ^^, early, and duty cycle. Although k the voltage across the feedback resistor 63 is reduced to a critical value (typically 5 疋 1 volt) under the defensive, the vibration is crying when the private profit breaks the start' and when the voltage increases above this When the value is reached, the disc is stopped. Fm攸 and the output of the oscillator 41 corresponds to the voltage at the feedback packet resistance of 63, such that if the feedback voltage falls below a critical value, the AC burst from the vibrator 41 appears more frequently, and conversely, If the voltage on the feedback resistor 63 increases, the AC burst from the oscillator 10 does not occur frequently. When the f-flow through the electrodes is very low (i.e., the load impedance is very high), the voltage across the anti-flow resistor 61 is very small and negligible. Thus the signal across the feedback resistor 63 represents the voltage across only the load, and this voltage is controlled by the start and stop of the oscillator when appropriate to maintain the signal across the feedback resistor at 1 volt. However, if the current increases (e.g., due to condensation on the showerhead), the voltage that is reduced across the choke resistor 61 will increase. The oscillator 41 generates bursts as appropriate to maintain the signal across the feedback resistor 63 as close as possible to 1 volt. Since this signal now contains a 20 element representing the current flowing through the electrodes and the voltage across the electrodes, this has the effect of reducing the voltage across the load 45 and thus the current flows to compensate. In other words, a small burst of oscillations is required to maintain the signal across the feedback resistor 63 at 1 volt and the voltage across the electrodes is reduced. In this way, the efficiency of the operation can be improved and battery life can be protected by taking a new operating point on a lower current and voltage. This results in lower execution costs for those who use 25 200808452. Fig. 6b shows a characteristic curve having various values of the bleeder resistor 46, the junction resistor 62, the choke resistor 61, and the feedback resistor 63 (the voltage across the electrodes is applied to the nozzle). It should be noted that the curve displayed when the connection resistor 5 62 has a value of 0β is only provided as a comparative example, which is not practical for general applications, because if the connection resistor 62 has a value of 〇Ω, then It is not possible to measure the voltage across the load 45 and the feedback network 60 as shown. When the bleeder resistor 46 has a value of 4 GQ, the splicing resistor 62 has a value of 10 Ω, the damper resistor η has a value of ι μΩ, and the feedback resistor 63 has a value of 5 ΜΩ, the output is similar to The output of the tapped feedback of the aforementioned §1〇 device. The specific values of the anti-flow and connection resistors 61 and 62 are selected based on (between other factors) board layout, component quality and loss, electrode geometry and 15 materials, materials to be sprayed, and the housing. . The resistance value is chosen to minimize the manufacturing tolerance. Typically, the feedback resistor 63 is a potentiometer that is adjusted to achieve adequate circuit performance. Figure 7a shows a second embodiment of the power supply of the present invention. This embodiment is very similar in structure to the first embodiment, with the only difference 20 being that a junction resistor 62 is replaced by a semiconductor body 71 to create a different feedback network 70. The signal on the feedback resistor 63 is now the voltage across the anti-flow resistor 61 (depending on the current flowing through the spray and reference electrodes and the load * $) and the forward voltage of the diode 71 (corrected by the resistor) The sum of the bias voltages). Thus, across 26 200808452, the (4) of the feedback "63" changes with the voltage variation across the spray and reference electrodes and the current flow through the electrodes and loads. We have found such nonlinear characteristics. Especially suitable for electrospray atomization devices. ' 5 10 15 20 In particular, a way is provided to select the stable voltage and the steady current ideal voltage · domain shouting _ optimal characteristics. In this case, when the load When the resistance of 45 is lower than some nominal reference load resistance, the voltage across the electrode is maintained at a stable value, and the choice of the nominal reference load resistance depends on the geometry of the nozzle and the desired optimal voltage (4). Thus, if, for example, the showerhead becomes more conductive (eg, under condensing humidity), (iv) the voltage does not decrease, and (iv) maintains a proper (iv) fog discharge. In the illustrated embodiment, the appropriate value of the reference load resistor It may be $2 to 2, ie, Cong. However, if the load resistor 45 is increased above this nominal reference load value, the voltage rises as the domain resistance increases. Thus, for example, if a droplet is temporarily deposited in the discharge On the electrode, increasing the resistance of the nozzle, the circuit responds by adding the voltage, thereby increasing the chance that the discharge electrode will electrostatically remove the material deposited thereon. In an extreme use case, where the liquid has been deposited On the reference electrode 3, or wherein the reference electrode has degraded over time, resulting in a decrease in load current (i.e., the flow of the flow-axis spray electrode and the reference electrodes 1 and 3, the load impedance of the showerhead is increased. The flow resistor is also called ^the voltage on the test electrode 3) is also reduced. This voltage drop causes the voltage drop on the feedback resistor to cry 63. The response from the _ oscillator is motivated to generate more frequent; The voltage across the electrodes responds to the load resistance 27 200808452 across the surface of the pole to increase the surface of the discharge electrode and clear the supply of the discharge ions, so that the discharge (four) time has passed Late pure or coated with material. The actual value of the first few money ((4) across the 喷头 对 : ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 特性 t t t t t t t t t t Electricity from - demonstration circuits a voltage-load curve, wherein the capping resistor 46 has a value of 4 GQ, and the current-resistance resistor (four) has

10 15 4侧,料結二極體71是—BAWS,収該_電阻器 63具有5觸的值。該參考電壓在參考貞載6G時是4.8kV。 回饋特徵對該參考電極的比例由該抗流電阻器⑽徑的值 决疋。可清楚的是儘管較高值可以使得電壓較快地上升, 4 士果具有I德值,則此電路保持較穩定的電壓。 出於比較目的,虛線顯示相對於Solo裝置已被提到的 該抽頭式回饋的等效特性。如可見的,這些特性在大約負 載阻抗為6GQ時非常類似。On the 10 15 4 side, the junction diode 71 is -BAWS, and the resistor 63 has a value of 5 touches. This reference voltage is 4.8 kV at the reference load of 6G. The ratio of the feedback characteristic to the reference electrode is determined by the value of the diameter of the choke resistor (10). It is clear that although the higher value allows the voltage to rise faster and the IV has a value of I, the circuit maintains a relatively stable voltage. For comparison purposes, the dashed line shows the equivalent characteristics of the tapped feedback that has been mentioned with respect to the Solo device. As can be seen, these characteristics are very similar at approximately 6GQ of load impedance.

第8圖顯不一第三實施例。再一次,此實施例非常類似 於第和第二實施例。然而,在此情形下,用於控制振盪 器41的該回饋信號在數位域中被產生。 特別是,一類比至數位轉換器81被用於經由洩放電阻 2〇器46監控來自電荷泵和整流器43的輸出電壓和流過該喷霧 及參考電極和負載45的負載電流。這些之每一被轉換為饋 入一數位電腦82的數位信號。該數位電腦82接著依據一預 疋>貝异法處理這些信號,以產生被提供給數位至類比轉換 器83的一數位回饋信號。這自該數位回饋信號產生一類比 200808452 仏说且將該類比信號提供給振盪器41,以控制其啟動和 止動,從而以一種期望的方式控制該輸出電壓。 該數位電腦82可被用於產生任何期望的回饋回應,假 设該電腦82的頻率回應足夠快,例如高於1kHz,通常是該 5炀形。另外,一或多個數位晶片可被用於替代該數位電腦。 數個方案(例如此方案)具有以下優點:不同的喷頭可被回饋 系統所偵測,且該回饋回應可據此被調整,從而提供一種 更具彈性的裝置。 一數位電腦82的使用使其非常簡單,甚至進一步增強 10本發明。首先,該貯液器8可具有被設置在其上或嵌入其内 的一射頻識別(RFID)標籤。該rfid標籤傳輸一識別被包含 在該貯液器8内之液體組成物的信號。 此信號可被一RFH)詢問器(圖未示)所偵測,且來自該 詢問器的一輸出信號可被提供給該數位電腦82,該數位電 15腦82接著可設置何種液體需被該霧化裝置噴霧。該數位電 腦82然後可據此調整該數位回饋信號,從而對於需被喷霧 的液體和流過该專電極的電流而言,使得橫跨該等電極的 電壓被設定為最佳值。 一第二改良包括回應該霧化裝置正在其中操作的該等 20周圍情形。為了如此實現,感測器可被連接到該數位電腦 82 ’其等偵測包括周圍溫度、壓力和濕度的一或多個周圍 情形。該數位電腦可回應於來自連接到其之感測器的輪出 信號,以依據該周圍壓力、溫度和濕度調整該數位回饋^ 號(視被連接之感測器的類型而定),從而對於該等周圍丨主妒 29 200808452 和流過該等電極的電流而言,使得橫跨該等電極的電壓被 設定為最佳值。 當然,該數位電腦可接收來自周圍情形感測器和一 RFID詢問H的輪人,且依據_預定的資料矩陣或依據一適 5當的演算法以調整該數位回饋信號,從而對於該等周圍情 形和被喷霧的特定紐而言,使得適當的電壓被施加橫跨 該等電極。 根據該等周圍情形及/或由該RF_問器識別的液體 組成物,該數位電腦也可控制該液體組成物之電噴霧分散 10 的工作週期。 第9圖顯示一第四實施例。其類似於第一和第二實施 例。然而,-回饋網路91經由一滴流電阻器(tHekle reSiSt〇r)92監控該電荷泵和整流器43内的一節點上的電 壓。該滴流電阻器92在該電荷泵和整流器43内被連接到該 15電荷栗之-級’從而其監控的電壓是該喷霧和參考電極之 間的電壓之-小部分。因此其提供一可選擇的位置,從該 位置可監控橫跨該等電極的電壓,儘管是以間接測量的 式。 該回饋網路91 該滴流電阻器92以及該洩放電阻器如 20 可被提供,監控直減跨鱗電細及在該電荷泵内的電 壓。儘管增加㈣流電阻H92增加了元件且f要較複雜的 回饋網路9卜但在由該負載455丨起㈣流超過電荷泉之办 量的情形下是有用的。在此情形下,在該電荷I内之任= 級上的電壓與橫跨該等電極的電壓之間*具有—簡單的^ 30 200808452 量關係。因此,藉由測量自期望的純量關係的偏差,有用 的資訊可被獲得。 該滴"儿电阻益92可代替該茂玫電阻器私被提供,如果 流電阻器之值是如此,财該電路被斷開時可充分快 5速地對該電荷泉放電。在此情形下,具有較低電壓額定的 . 電阻II可被使用,其等通常比較便宜且可具有較精確的製 造容限。 纟需要精確_輪出電_情形下,㈣放電阻器46 獨自被使用。在期望使用高容限、低成本的元件情形下, 10 該滴流電阻器92被使用。 在該第四實施例的一變化中,提供大量滴流電阻器, 每一被連接到該電觀的不同級。t使用低值電阻 器及可 以内插或外推該電荷栗中的損耗時,此安排可被使用,且 從而推斷出輪出電壓的-精確值是期望的。此安排也可與 15該洩放電阻器46—起被使用。 • 本發明可以適應放寬範圍的配製,建立不同位準的空 間電荷且從而提供不同的負载特性。藉由制負載電流(可 能與輸㈣壓獨立)的上升,該_電壓上升且該輸出電壓 被降低以補償。 2〇 一第1〇圖顯示一圖式,具有疊加在經由相同喷頭喷霧之 種不同/夜體配製的負載曲線上的第7b圖之負載回應。可 見的疋這二種液體以不同的方式表現,在該喷頭之驅動電 路上施加不同的負載。 配製1(沿著圖式上的較高線)表示僅在較高電壓上喷霧 31 200808452 5 • 的液體。從圖中可見“抽頭式回饋”負載回應曲線沒有與配 製1的負載曲線相交叉,而僅與配製2的曲線正切地相遇。 此實際的結果是配製1的組合,且此喷頭(由一“抽頭式回饋” 電路所驅動,在6GO時設定為4.8kV)不形成一穩定輸出。為 了獲得此喷霧配製,該電路需要以較高的電壓被驅動,例 如在6GQ時的5.2kV。 對於不同的配製需要不同地設置電路是非常不方便 的。在一商業單元中,使一電路適合一配製的需求一般不 是一種節約的實踐,從而此等電路的使用實際上限制了產 10 品可用的配製範圍。 然而,類似於第7a圖中(其負載回應曲線被疊加在第10 圖中)說明的一電源供應器使得較寬範圍的需被喷霧之配 製可用,且不必調整該驅動電路。此原因在第10圖中由以 下事實說明:被標記為“洩放電阻=4ΌΩ,抗流電阻=44ΜΩ, _ 15 • 連結二極體=BAV23S,回饋電阻=5MQ(4.8kV@6GQ)“的曲 線與所有三條配製負載曲線相交。 第11圖顯示一“抽頭式回饋”電路和第7 a圖中說明之電 路(在該回饋網路中有一二極體)二者的相同負載回應曲 線。然而,對於經由不同喷頭喷霧的相同配製而言,存在 20 被疊加的兩個負載曲線。儘管這兩個喷頭名義上是同樣 的,換句話說他們都符合相同的製造規格,但其等產生輕 微不同的負載曲線。這是因為在電極位置和其等表面加工 上的較小差異引起的。具有高標準製造容限的負載曲線内 的此種變化是典型的。根據較寬鬆的容限,負載曲線内的 32 200808452 差異更極端。 再人本發明中描述的和第7a圖中說明的電路提供 經過喷頭負_線的良好交叉H面,該“抽頭式回饋” 電路必須被簡,這是不方便的。 。第00和第U圖的圖式清楚地示範了控制想要與一電 喷務祕起使肖n原供鮮lG之貞載回應曲線的優 點。第7a圖的電路可以對於較寬範圍的配製和喷霧產生穩 # 定时《壓,且從㈣有㈣誠#應用。 此外由於可以處理較極端的配製和喷頭,因此其也 了 X在喷頭被暴露在極端情形時較好地回應。這進一步 加見了使用此電路的一產品的應用領域,具有明顯的商業 利益。 第12圖顯示與先前描述之實施例一起使用的一適當電 路的部分。特別是,第12圖顯示該變壓器42和該振盪器41 - 15的適當電路以及用作該電荷泵和整流器電路43的一柯克勞 ^ 夫-沃耳呑產生器(僅顯示一級)。 在此情形下,該電路由一個被連接在和電學地之間 的6V直流源(例如一個6¥的電池組)供電。 該振盪器是一已調諧的主要推挽式Royer電晶體類 20 型’包含一對匹配的電晶體Q1和Q2。適當的電晶體Q1和 Q2 是由 Zetex PLC,Zetex Technology Park,Chadderton, Oldham,0L9 9LL,UK製造的ZDT1048A。該振盪器的操作 由 Maxim Integrated Products Inc·,120 San Gabriel Drive, Sunnyvale,CA 94086 USA製造的MAX761所控制,其在所 33 200808452 不的回饋接腳上接收來自該回饋網路的輸出。該ΜΑΧ761 疋一直流-直流換流器控制裝置,儘管一般而言,任何脈寬 調變器或叢發頻率調變器可被使用。 變壓器“TFR”具有三個主線圈和一個具有比該等主線 5圈之圈數高的多的副線圈。一適當的變壓器是由Cooper Bussmann, Cooper Electronic Technologies, 1225 BrokenFig. 8 shows a third embodiment. Again, this embodiment is very similar to the second and second embodiments. However, in this case, the feedback signal for controlling the oscillator 41 is generated in the digital domain. In particular, a analog to digital converter 81 is used to monitor the output voltage from the charge pump and rectifier 43 and the load current flowing through the spray and reference electrodes and load 45 via bleeder resistor 46. Each of these is converted to a digital signal that is fed to a digital computer 82. The digital computer 82 then processes the signals in accordance with a pre- > beneficiary method to produce a digital feedback signal that is provided to the digital to analog converter 83. This produces an analogy from the digital feedback signal to 200808452 and provides the analog signal to oscillator 41 to control its start and stop to control the output voltage in a desired manner. The computer 82 can be used to generate any desired feedback response, assuming that the frequency response of the computer 82 is fast enough, e.g., above 1 kHz, typically the 炀 shape. Additionally, one or more digital wafers can be used in place of the digital computer. Several solutions, such as this solution, have the advantage that different nozzles can be detected by the feedback system and the feedback response can be adjusted accordingly to provide a more flexible device. The use of a digital computer 82 makes it very simple and even further enhances the invention. First, the reservoir 8 can have a radio frequency identification (RFID) tag disposed thereon or embedded therein. The RFID tag transmits a signal identifying the liquid composition contained in the reservoir 8. The signal can be detected by an RFH) interrogator (not shown), and an output signal from the interrogator can be provided to the digital computer 82, which can then set which liquid needs to be The atomizing device is sprayed. The digital computer 82 can then adjust the digital feedback signal accordingly such that the voltage across the electrodes is set to an optimum value for the liquid to be sprayed and the current flowing through the dedicated electrode. A second improvement involves returning to the surroundings of the 20 in which the atomizing device is operating. To do so, the sensor can be connected to the digital computer 82' to detect one or more surrounding conditions including ambient temperature, pressure and humidity. The digital computer can respond to the wheeling signal from the sensor connected thereto to adjust the digital feedback signal (depending on the type of sensor being connected) according to the ambient pressure, temperature and humidity, thereby The ambient voltages 29 200808452 and the current flowing through the electrodes cause the voltage across the electrodes to be set to an optimum value. Of course, the digital computer can receive the wheel man from the surrounding situation sensor and an RFID query H, and adjust the digital feedback signal according to the predetermined data matrix or according to a suitable algorithm, so as to The situation and the particular nucleus being sprayed, such that a suitable voltage is applied across the electrodes. The digital computer can also control the duty cycle of the electrospray dispersion 10 of the liquid composition based on such ambient conditions and/or the liquid composition identified by the RF detector. Fig. 9 shows a fourth embodiment. It is similar to the first and second embodiments. However, the feedback network 91 monitors the voltage across the charge pump and a node within the rectifier 43 via a trickle resistor (tHekle reSiStr) 92. The trickle resistor 92 is connected within the charge pump and rectifier 43 to the level 15 of the charge pump so that the voltage it monitors is a small fraction of the voltage between the spray and the reference electrode. It therefore provides a selectable position from which the voltage across the electrodes can be monitored, albeit in an indirect measurement. The feedback network 91, the trickle resistor 92, and the bleeder resistor 20, can be provided to monitor the voltage across the scale and the voltage within the charge pump. Although the addition of (four) current resistance H92 increases the component and f is a more complex feedback network, it is useful in situations where the load 455 picks up (d) the flow exceeds the charge spring. In this case, there is a simple relationship between the voltage at any of the levels in the charge I and the voltage across the electrodes. Therefore, useful information can be obtained by measuring the deviation from the desired scalar relationship. The drop "child resistance benefit 92 can be provided instead of the Maomei resistor. If the value of the flow resistor is such that the circuit can be discharged, the charge spring can be discharged at a rapid rate 5 times. In this case, the resistor II with a lower voltage rating can be used, which is generally cheaper and can have a more precise manufacturing tolerance.纟In case of precise _round power _, the (four) discharge resistor 46 is used alone. In the case where it is desired to use a high tolerance, low cost component, 10 the trickle resistor 92 is used. In a variation of this fourth embodiment, a plurality of trickle resistors are provided, each connected to a different stage of the electrical view. This arrangement can be used when low value resistors are used and the losses in the charge pump can be interpolated or extrapolated, and it is thus inferred that the exact value of the turn-off voltage is desired. This arrangement can also be used with the bleeder resistor 46. • The present invention can accommodate a wide range of formulation, establish different levels of space charge and thereby provide different load characteristics. By making a rise in the load current (which may be independent of the input (four) voltage), the _ voltage rises and the output voltage is reduced to compensate. 2〇 A 1st diagram shows a pattern with a load response of Figure 7b superimposed on a different/night body loaded load curve sprayed through the same nozzle. The two liquids that can be seen are represented in different ways, with different loads being applied to the drive circuit of the spray head. Formulation 1 (higher line along the drawing) indicates that the liquid is only sprayed at a higher voltage. It can be seen from the figure that the "tap-type feedback" load response curve does not intersect the load curve of configuration 1, but only tangentially meets the curve of formulation 2. The actual result is a combination of Formulation 1, and the nozzle (driven by a "tap-type feedback" circuit, set to 4.8 kV at 6GO) does not form a stable output. In order to obtain this spray formulation, the circuit needs to be driven at a higher voltage, such as 5.2 kV at 6 GQ. It is very inconvenient to set up the circuit differently for different configurations. In a commercial unit, the need to adapt a circuit to a formulation is generally not an economical practice, and the use of such circuitry actually limits the range of formulations available for the product. However, a power supply similar to that illustrated in Figure 7a (whose load response curve is superimposed in Figure 10) allows for a wider range of spray-to-spray configurations to be used without having to adjust the drive circuit. This reason is illustrated in Figure 10 by the following facts: marked as "bleeder resistance = 4 Ό Ω, dc resistance = 44 Μ Ω, _ 15 • connected diode = BAV23S, feedback resistance = 5MQ (4.8kV @ 6GQ)" The curve intersects all three formulated load curves. Figure 11 shows the same load response curve for both a "tap-type feedback" circuit and the circuit illustrated in Figure 7a (with a diode in the feedback network). However, for the same formulation sprayed through different nozzles, there are two load curves that are superimposed. Although the two nozzles are nominally the same, in other words they all conform to the same manufacturing specifications, they produce slightly different load profiles. This is due to small differences in electrode position and its surface processing. Such variations in the load curve with high standard manufacturing tolerances are typical. According to the looser tolerance, the difference between 32 200808452 in the load curve is more extreme. The circuit described in the present invention and illustrated in Figure 7a provides a good cross-H plane through the negative _ line of the head. This "tap-type feedback" circuit must be simplified, which is inconvenient. . The patterns of Figures 00 and U clearly demonstrate the advantages of controlling the load response curve that is desired to be used with an electrospray. The circuit of Figure 7a can produce a stable time for a wide range of formulations and sprays, and from (four) have (four) Cheng # application. In addition, because it can handle more extreme formulations and nozzles, it also responds better when the nozzle is exposed to extreme conditions. This further adds to the application area of a product using this circuit, which has obvious commercial benefits. Figure 12 shows a portion of an appropriate circuit for use with the previously described embodiments. In particular, Fig. 12 shows the appropriate circuit of the transformer 42 and the oscillators 41-15 and a Kirktor-Wortz generator (shown only one stage) used as the charge pump and rectifier circuit 43. In this case, the circuit is powered by a 6V DC source (e.g., a 6¥ battery pack) connected between the electrical ground and the ground. The oscillator is a tuned main push-pull Royer transistor type 20' comprising a pair of matched transistors Q1 and Q2. Suitable transistors Q1 and Q2 are ZDT1048A manufactured by Zetex PLC, Zetex Technology Park, Chadderton, Oldham, 0L9 9LL, UK. The operation of this oscillator is controlled by the MAX761 manufactured by Maxim Integrated Products Inc., 120 San Gabriel Drive, Sunnyvale, CA 94086 USA, which receives the output from the feedback network on the feedback pins of 33 200808452. The ΜΑΧ761 疋 is always a DC-DC converter control, although in general, any pulse width modulator or burst frequency modulator can be used. The transformer "TFR" has three main coils and one sub-coil having a number of turns higher than five turns of the main lines. A suitable transformer is by Cooper Bussmann, Cooper Electronic Technologies, 1225 Broken

Soirnd Pkwy NW,Suite F,Boca Raton,FL 33487, USA所製 造的 CTX01-15604X3。 該柯克勞夫-沃耳吞產生器(在此僅說明一級,如虛線框 10 1〇0所標出的)必要時可藉由串聯更多的同樣級而被擴充, 直到輸出電壓的所需範圍在該輸出上被達到,在第12圖中 標記為“輸出(HV),,。 在電源供應器初始啟動時,在該回饋接腳上的電壓是 零,且從而該振盪器由該ΜΑΧ761控制晶片接通。在該變壓 15裔和電荷泵之被整流的輸出處,電壓快速上升至數千伏特 大】且此電壓比例被饋送回該回饋接腳。當該回饋接腳 上的電壓達到一預設電壓時,該ΜΑΧ761斷開該振盪器。當 該輸出電壓充分降低以減少該回饋接腳上的電壓時,該 MAX761接通該振盪器且週期被重複,該ΜΑχ76ι允許簡短 20的振盪叢發以保持期望的輸出電壓。 龟贺務裝置通常引起非常小的電流,例如在4处\^時 低於5μΑ,在此等情形下,該振盪器僅需要對於短脈衝長度 (當脈衝延遲近似15ms時典型地小於lms,較佳地小於 5〇〇^,更佳地是250㈣被接通,導致該電源供應器1〇需要 34 200808452 來自該電源11的非常低的平均電流。當在電噴霧部位上近 似產生4.9kv的輸出電_,依據本發明的—電源供應器可 引起來自一個6V電源的盡可能小到2 5mA的平均電流。 對於以近似5g配製/每天的流動速率連續噴霧的〗天連 5續時期*言,當與由歐洲專利號U99,265中揭露之分散裝 置所示例的一靜電噴霧襞置一起使用時,在此範例中描述 的該電源供應器1〇根據主動元件的有效率分散產生一穩定 _ 喷霧,而沒有可觀察到的沉積。 此電源供應器10可與一電喷霧相組合使用,(例如)以提 1〇供以下各項:香味分散或除臭劑的投放、滅蟲代理、殺菌 AJ (fungicide)、空氣消毒劑、殺菌劑加伽也此)、抗病毒代 理、w療代理、藥劑、治療代理、藥物、興奮劑、弛緩劑、 止痛劑、麻醉劑、抗抑鬱藥、生物體,例如維生素、激素、 化學傳訊物質、神經傳導質、血液部分、氨基酸、肽、多 15肽、蛋白質、DNA、RNA或其他形式的核酸。 • 在很多其他可能的應用中,該電源供應器1〇也可被用 於以下產品中:清除空氣中的煙霧、細菌、病毒、真菌抱 子、花粉、灰塵、家居塵蟎糞便、跳躍微粒過敏原和其他 空氣傳播體。 20 此電源供應器10對於被用於極端環境的產品是理想 的,該等產品的範例包括但不限於··在公共場所、洗手間、 通風系統内、在運輸工具以及可攜式個人裝置(例如香水喷 務)、空氣過itn及類似裝置上的空氣清潔器、空氣消毒 劑、空氣清新#1及/或化學品分Id且該t路可被用於 35 200808452 早擊、多擊、定時間隔、叢發或連續系統中,這視應用的 需求而定。 精由耗接該電源11到該電源供應器1〇,該霧化裝置的 啟動被實現。該耦接可以由實體裝置(例如-使用者啟動的 .5開關)形成。另外,該耗接可以僅僅藉由將該電源賭入該 =源供應器1G而被形成。在啟動該裝置之後,由橫跨該喷 霧和參考電極的尚電壓提供的霧化開始可便利地受制於某 • ㈣—步的啟動或止動開關’該等開關可取捨地被程式化 到-積體電路(例如-可程式化的邏輯裝置(pLD》中。 10…車交佳地,該PLD控制該裝置的所有功能,可包括控制 電原供應為、疋義啟動及/或清除之工作週期的定時器、狀 〜、扣不為(例如發光二極體(LED))或擴音器的啟動以及來 自其他啟動裝置的輸人,該等其他啟動裝置包括但不限於 光感測器、溫度感測器、濕度感測器、遠端控制裝置(例如 15紅外線偵測二極體或射頻接收器或收發器的偵測)。 • ^可取捨地,依據由一 RFID詢問器(是以一收發器及解碼 器被封裝的一天線)接收的一信號,該PLD可被程式化以控 制該噴頭上的電壓輸出、工作週期、對其他進一步啟動裝 置的回應或其等組合。 2 0 在本發明中包含的一電源供應器的另一層面是以下優 點:允許一電噴霧霧化裝置容忍在一電喷霧裝置之噴霧部 位上被霧化之液體組成物的物理特性之變化,以及該喷頭 之物理及幾何特性的變化,其中此變化是由於在該噴霧電 極1和放電電極3之組合和相關配置中的不一致而引起的。 36 200808452 I:圖式簡單說明3 第1圖顯示適用於分配組成物的一電喷霧裝置; 第2圖顯示可選擇的電喷霧電極和貯液器,以及.内部元 件的剖視圖; ' 5 第3圖顯示一分配器喷霧表面組態; • 第4圖顯示適用於驅動一電噴霧裝置的先前技術的電 源供應器; 第5圖顯示對於具有相同參考情形的三個不同控制組 ® 態的負載回應曲線; 10 第6a圖顯示適用於驅動一電喷霧裝置之一電源供應器 的第一實施例,第6b圖顯示對應的負載回應曲線範圍; 第7a圖顯示適用於驅動一電噴霧裝置之一電源供應器 的第二實施例,第7b圖顯示對應的負載回應曲線; - 第8圖顯示適用於驅動一電喷霧裝置之一電源供應器 15 的第三實施例; 第9圖顯示適用於驅動一電喷霧裝置之一電源供應器 ^ 的第四實施例; 第10圖顯示對於相同喷頭内三種不同配製的負載曲 線,疊加在第7b圖的負載回應曲線上; 20 第11圖顯示喷霧相同配製的兩個不同喷頭的負載曲 線,疊加在第7b圖的負載回應曲線上; 第12圖顯示該電源供應器部分的電路圖。 【主要元件符號說明】 1···喷霧電極 2…凹部 37 200808452 3.. .參考和放電電極 4…凹部 5.. .出口表面 6…金屬管 7…金屬管 8.. .貯液器 9.. .空氣入口孔 10…電源供應|§ 11.. .電池 21…封印 22…外殼/保護結構 23…封印構件 24.. .蓋子 25…導管 40…電源供應器 41.. .振盪器 42.. .變壓器 43.. .電荷泵和整流器 45…負載 46.. .泡放電阻器 60.. .回饋網路 61.. .抗流電阻器 62.. .連結電阻器 63…回饋電阻器 70…回饋網路 Ή…二極體 81…類比至數位轉換器 82…數位電腦 83…數位至類比轉換器 91.. .回饋網路 92.. .滴流電阻器 100.. .柯克勞夫_沃耳吞產生器 38Sociend Pkwy NW, Suite F, Boca Raton, FL 33487, USA CTX01-15604X3. The Kroklaw-Walton generator (herein only one stage, as indicated by the dashed box 10 1〇0) can be expanded by connecting more of the same level if necessary, until the output voltage is The required range is reached on this output, labeled "Output (HV), in Figure 12. At the initial startup of the power supply, the voltage on the feedback pin is zero, and thus the oscillator is ΜΑΧ 761 controls the wafer to be turned on. At the rectified output of the voltage transformer and the charge pump, the voltage rapidly rises to several thousand volts] and the voltage ratio is fed back to the feedback pin. When the feedback pin is on When the voltage reaches a predetermined voltage, the ΜΑΧ761 turns off the oscillator. When the output voltage is sufficiently lowered to reduce the voltage on the feedback pin, the MAX761 turns on the oscillator and the cycle is repeated, and the ΜΑχ76ι allows a brief 20 Oscillation bursts to maintain the desired output voltage. Turtle's device typically causes very small currents, such as less than 5μΑ at 4°, in which case the oscillator only needs to be short pulse length (when Pulse delay approx. 1 Typically 5 ms is less than 1 ms, preferably less than 5 〇〇 ^, and more preferably 250 (4) is turned on, resulting in the power supply 1 〇 requiring 34 200808452 very low average current from the power supply 11. When in electrospray Approximately 4.9 kV of output power is generated on the site. According to the present invention, the power supply can cause an average current as small as 25 mA from a 6V power supply. For continuous spraying at a flow rate of approximately 5 g/day. In the case of an electrostatic spray device as exemplified by the dispersing device disclosed in European Patent No. U99,265, the power supply 1 described in this example is based on an active element. Efficient dispersion produces a stable _ spray without observable deposition. The power supply 10 can be used in combination with an electrospray, for example, to provide the following: fragrance dispersion or deodorization Agent, sterilizing agent, sterilizing AJ (fungicide), air disinfectant, bactericide plus gamma), antiviral agent, w agent, pharmacy, therapeutic agent, drug, stimulant, relaxant, analgesic Anesthetics, antidepressants, organisms such as vitamins, hormones, chemical signaling substances, neurotransmitters, blood fractions, amino acids, peptides, polypeptides, proteins, DNA, RNA or other forms of nucleic acids. • Many other possibilities In application, the power supply 1〇 can also be used in the following products: removing smoke, bacteria, viruses, fungus, pollen, dust, household dust mites, jumping particulate allergens and other airborne bodies in the air. 20 This power supply 10 is ideal for products that are used in extreme environments, examples of which include, but are not limited to, in public places, restrooms, ventilation systems, in transportation vehicles, and portable personal devices ( For example, perfume spray), air cleaner on the itn and similar devices, air disinfectant, air freshener #1 and / or chemical points Id and the t road can be used for 35 200808452 early strike, multi-shot, timing In a space, burst or continuous system, this depends on the needs of the application. The activation of the atomizing device is achieved by consuming the power source 11 to the power supply unit 1 . The coupling can be formed by a physical device (eg, a user-initiated .5 switch). Alternatively, the consuming can be formed merely by betting the power source into the =source provider 1G. After the device is activated, the atomization provided by the voltage across the spray and reference electrodes can be conveniently controlled by a (four)-step start or stop switch. The switches are optionally programmed to - Integral circuits (for example - programmable logic devices (pLD). 10... Cars that control all functions of the device, which can include controlling the supply of the power supply, starting and/or clearing The timer of the duty cycle, the shape of the button, the buckle is not (for example, a light-emitting diode (LED)) or the activation of a loudspeaker, and the input from other starting devices, including but not limited to a light sensor , temperature sensor, humidity sensor, remote control device (such as 15 infrared detection diode or RF receiver or transceiver detection). ^ ^ can be grounded, according to an RFID interrogator ( A signal received by a transceiver and an antenna to which the decoder is packaged, the PLD can be programmed to control the voltage output on the showerhead, the duty cycle, the response to other further activation devices, or the like. Included in the present invention Another aspect of a power supply is the advantage of allowing an electrospray atomization device to tolerate changes in the physical properties of the liquid composition that is atomized at the spray site of the electrospray device, as well as the physical and physical properties of the showerhead. A change in geometrical characteristics, which is caused by an inconsistency in the combination of the spray electrode 1 and the discharge electrode 3 and the associated configuration. 36 200808452 I: Schematic description of the figure 3 Figure 1 shows the application of the composition An electrospray device; Figure 2 shows an alternative electrospray electrode and reservoir, and a cross-sectional view of the internal components; '5 Figure 3 shows a dispenser spray surface configuration; • Figure 4 shows the applicable A prior art power supply for driving an electrospray device; Figure 5 shows a load response curve for three different control groups of the same reference case; 10 Figure 6a shows a suitable for driving an electrospray device A first embodiment of a power supply, Figure 6b shows a corresponding range of load response curves; Figure 7a shows a second suitable for driving a power supply of an electrospray device Example, Figure 7b shows the corresponding load response curve; - Figure 8 shows a third embodiment suitable for driving a power supply 15 of an electrospray device; Figure 9 shows a suitable for driving an electrospray device A fourth embodiment of a power supply ^; Figure 10 shows a load curve for three different configurations in the same nozzle, superimposed on the load response curve of Figure 7b; 20 Figure 11 shows two sprays of the same formulation The load curves of different nozzles are superimposed on the load response curve of Figure 7b; Figure 12 shows the circuit diagram of the power supply part. [Main component symbol description] 1··· Spray electrode 2... recess 37 200808452 3 .. .Reference and discharge electrode 4...recess 5:.outlet surface 6...metal tube 7...metal tube 8..reservoir 9...air inlet hole 10...power supply|§ 11.. ... Seal 22... Enclosure/Protection Structure 23... Sealing Member 24... Cover 25... Conduit 40... Power Supply 41.. Oscillator 42.. Transformer 43.. Charge Pump and Rectifier 45... Load 46.. . Puffing resistor 60.. . Feedback network 61.. . Anti-flow resistor 6 2.. Connection resistor 63... feedback resistor 70... feedback network Ή... diode 81... analog to digital converter 82... digital computer 83... digital to analog converter 91.. feedback network 92.. Drip resistor 100.. Kröclaw_Werton generator 38

Claims (1)

200808452 十、申請專利範圍: 1. 一種霧化裝置,包含一用於在第一和第二電極之間施加 “電壓的電源供應器,該電源供應器包括一控制電路, 適用於控制該被施加的電壓使其具有一期望值,以及一 5 監控電路,適用於監控流過該第一和第二電極的電流, 且依據一預定特性,根據該被監控的電流改變該期望 值。 2. 如申請專利範圍第1項所述之霧化裝置,其中該第一電 極是一喷霧電極,而該第二電極是一參考電極。 10 3.如申請專利範圍第1項所述之霧化裝置,其中該第一電 極是一參考電極,而該第二電極是一喷霧電極。 4. 如上述申請專利範圍任一項所述之霧化裝置,其中該控 制電路包含一用於產生一交流的振盪器,且該電源供應 器進一步包含一連接到該振蘯器用於自該交流產生該 15 被施加之電壓的換流器電路。 5. 如申請專利範圍第4項所述之霧化裝置,其中該換流器 電路包含一電荷泵和整流器電路。 6. 如申請專利範圍第5項所述之霧化裝置,其中,該電荷 泵和整流器電路是一柯克勞夫-沃耳吞產生器。 20 7·如申請專利範圍第4項至第6項中之任一項所述之霧化 裝置,其中藉由控制該振盪器之振盪的大小、頻率或工 作週期,該控制電路控制該被施加之電壓。 8·如申請專利範圍第7項所述之霧化裝置,其中該控制電 路接收一指示來自該監控電路之被監控之電流的輸出 39 200808452 信號,且調整該振盪器之振盪的大小、頻率或工作週 期,以依據該預定特性且根據該被監控之電流來改變在 該第一和第二電極之間的該電壓之期望值。 9·如申請專利範圍第4項至第6項中之任一項所述之霧化 5 裝置,其中藉由使得該振盪器在一預定頻率上產生交流 叢發,該控制電路控制該被施加之電壓,該等叢發的持 續時間及/或工作週期決定該被施加之電壓的值。 10·如申請專利範圍第9項所述之霧化裝置,其中該控制電 路接收一指示來自該監控電路之被監控之電流的輪出 ί〇 k號,且调整該等叢發的持續時間及/或工作週期,以 依據該預定特性且根據該被監控之電流來改變在該第 一和第二電極之間的該電壓之期望值。 11·如上述申請專利範圍任一項所述之霧化裝置,其中藉由 測量橫跨一與該第一或第二電極之任一電極串聯的電 15 阻器的電壓,該監控電路監控該電流。 12·如上述申請專利範圍任一項所述之霧化裝置,其中該龄 控電路進一步適用於監控該被施加之電壓且提供一十 示戎被監控之電壓的輸出信號給該控制電路,從而兮押 制電路可控制該被施加之電壓具有該期望值。 20 13·如申請專利範圍第12項所述之霧化裝置,其中藉由測量 形成被連接在該第一和第二電極之間的一分壓器之兩 個電阻器接合處的該電壓,該監控電路監控該被施加之 電壓。 14.如申請專利範圍第12項所述之霧化裝置,其中藉由測量 40 200808452 橫跨-與該第一和第二電極之間的一偏壓電阻器串聯 之二極體的電壓,該監控電路監控職施加之電壓。P 15·如在依附申請專㈣圍第5項或第6項時的申請專利範 - 目第12項中所述之霧化裝置,其中藉由測量在該電荷^ -5 和整流器電路内之-節點上形成的電壓,該監控電路監 控該被施加之電壓。 16.如上述申請專利範圍任—項所述之霧化裝置,其中該監 • 控電路包含—類比至數轉換ϋ、-處理H和-數位至 類比轉換H,賴比至數轉換器朝於產生表示該被 1〇 施加之電壓和該被監控之電流的信號的數位表示,該處 理器用於接收該等數位表示且依據一預定演算法產生 -對應的數位_,魏餘舰轉鮮適用於自該數 位《產生-類比輸Φ信號,鶴比輪出信號被提供給 該控制電路。 15 Π.如上述帽專利範圍任_項所述之霧化裝置,進一步包 _ 含-溫度感測n ’用於監控㈣溫度且產生—表示該被 監控之周圍溫度的對應輸出信號,該控制電路回應於來 自該溫度Μ㈣該輸出信號,歧據該被監控之周圍 溫度調整該預定特性。 18.如上述申請專利範圍任一項所述之霧化裝置,進一步包 含-濕度,科監㈣隨度且產生__表示該被 監控之周圍濕度的對應輸出錢,該㈣電路回應於來 自該濕度的錢出信號,以依據該被監控之周圍 濕度調整該預定特性。 41 200808452 19·如上述申請專利範圍任一項所述之霧化裝置,進一步包 含一壓力感測器,用於監控周圍壓力且產生一表示該被 監控之周圍壓力的對應輸出信號,該控制電路回應於來 自該壓力感測器的該輸出信號,以依據該被監控之周圍 5 壓力調整該預定特性。 20. 如上述申請專利範圍任一項所述之霧化裝置,進一步包 含一詢問器電路,用於自一與一貯液器有關的識別元件 讀取一識別符且產生一表示該識別符的輸出信號,該貯 液器包含在使用時需被喷霧的液體,該控制電路回應於 10 來自該詢問器電路的該輸出信號,以依據自該識別元件 讀取的該識別符調整該預定特性。 21. —種霧化裝置,包含一用於在第一和第二電極之間施加 一電壓的電源供應器,及一感測器,用於監控至少一周 圍情形且產生表示該至少一被監控之周圍情形的至少 15 一對應輸出信號,該電源供應器適用於接收該至少一輸 出信號且依據一預定特性及根據該至少一被監控之周 圍情形控制該被施加之電壓。 22. 如申請專利範圍第21項所述之霧化裝置,其中該至少一 周圍情形包括周圍溫度。 20 23·如申請專利範圍第21項或第22項所述之霧化裝置,其中 該至少一周圍情形包括周圍濕度。 24.如申請專利範圍第21至23項中之任一項所述之霧化裝 置,其中該至少一周圍情形包括周圍壓力。 25·如申請專利範圍第21至24項中之任一項所述之霧化裝 42 200808452 置’其中該電源供應器包含一用於產生一交流的振盈 盗’以及一連接到該振盪器用於自該交流產生該被施加 之電壓的換流器電路。 26·如申請專利範圍第25項所述之霧化裝置,其中該換流器 5 電路包含一電荷泵和整流器電路。 27·如申請專利範圍第26項所述之霧化裝置,其中該電荷泵 和整流器電路是一柯克勞夫-沃耳吞產生器。 28·如申請專利範圍第25至27項中之任一項所述之霧化裝 置,其中藉由控制該振盪器之振盪的大小、頻率或工作 10 週期,該電源供應器控制該被施加之電壓。 29·如申請專利範圍第25至27項中之任一項所述之霧化裝 置,其中藉由使得該振盪器在一預定頻率上產生交流叢 、 發,該電源供應器控制該被施加之電壓,該等叢發的持 續時間及/或工作週期決定該被施加之電壓的值。 15 3〇·如申請專利範圍第21至29項中之任一項所述之霧化裝 置,其中該電源供應器進一步適用於監控該被施加之電 壓,從而其可依據該預定特性控制該被施加之電壓。 31·如申請專利範圍第3〇項所述之霧化裝置,其中藉由測量 在形成連接在該第一和第二電極之間的一分壓器的兩 20 個電阻器之接合處的電壓,該電職應H監控該被施加 之電壓。 32·如申請專利範圍第3G項所述之霧化裳置,其中藉由測量 橫跨-與在該第-和第二電極之間的一偏麼電阻器串 聯之二極體的電壓,該電源供應器監控該被施加之電 43 200808452 33.如在依附申請專利範圍第26項或第27項時的申請專利 範圍第30項所述之霧化裝置,其中藉由測量在該電荷泵 •和整流器電路内之一節點上形成的電壓,該電源供應器 5 監控該被施加之電壓。 34·如申請專利範圍第21至33項中之任一項所述之霧化裝 置,其中該電源供應器包含一類比至數位轉換器、一處 馨理器以及一數位至類比轉換器,該類比至數位轉換器適 用於產生一表示該被施加之電壓的信號的一數位表 1〇 不,該處理器用於接收表示該被施加之電壓的該信號的 該數位表示以及該至少—被監控之周圍情形的一數位 表不,且依據一預定演算法產生一對應的數位信號,該 t位至類比轉換器適用於自該數位信號產生-類比輸 出信號,該類比輪出信號被用於控制該被施加之電壓。 15 35·如申請專利範圍第21至34項中之任一項所述之霧化裝 # 置,進一步包含一詢問器電路,用於自一與一貯液器有 關的識別元件讀取一識別符且產生表示該識別符的一 輸出仏號,該貯液器包含在使用時自該第一或第二電極 被噴務的液體’該電源供應器回應於來自該詢問器電路 2〇 的該輸出信號,以依據自該識別元件讀取的該識別符調 整該預定特性。 36·—種霧化裝置,包含一電源供應器,用於在第一和第二 電極之間施加一電壓,以及一詢問器電路,用於自一與 一貝τ液裔有關的識別元件讀取一識別符且產生一表示 44 200808452 該識別符的輸出信號,該貯液器包含在使用中被喷霧的 液體’該電源供應器適用於接收該輸出信號且控制該被 施加之電壓,從而依據自該識別元件讀取的該識別符使 胃 其具有一期望值。 一 5 37·如申請專利範圍第36項所述之霧化裝置,其中該詢問器 電路適用於測量該識別元件的電阻,該識別元件的該電 阻表示該識別符。 φ 38·如申請專利範圍第37項所述之霧化裝置,其中該識別元 件是一電阻器。 1〇 39·如申請專利範圍第36項所述之霧化裝置,其中該詢問器 電路是一射頻識別(RFID)讀取器,適用於接收被儲存在 该識別元件内的一識別符。 40·如申請專利範圍第39項所述之霧化裝置,其中該識別元 件是一RFID標籤。 15 41·如申請專利範圍第36至40項中之任一項所述之霧化裝 φ 置’其中該電源供應器包含一用於產生一交流的振盪 器,以及一連接到該振盈器用於自該交流產生該被施加 之電壓的換流器電路。 42·如申請專利範圍第41項所述之霧化裝置,其中該換流器 20 電路包含一電荷泵和整流器電路。 43·如申請專利範圍第42項所述之霧化裝置,其中該電荷泵 和整流器電路是一柯克勞夫-沃耳吞產生器。 44.如申請專利範圍第41至43項中之任一項所述之霧化裝 置其中猎由控制該振盈為之振靈的大小、頻率或工作 45 200808452 週期,該電源供應器控制該被施加之電壓。 45·如申請專利範圍第41至43項中之任一項所述之霧化裝 置,其中藉由使得該振盪器在一預定頻率上產生交流叢 發,該電源供應器控制該被施加電壓,該等叢發的持續 5 時間及/或工作週期決定該被施加之電壓的值。 46·如申請專利範圍第36至45項中之任一項所述之霧化裝 置,其中該電源供應器進一步適用於監控該被施加之電 堡’攸而其可控制該被施加之電壓具有該期望值。 47.如申請專利範圍第46項所述之霧化裝置,其中藉由測量 在形成連接在該弟一和弟二電極之間的一分壓器之兩 個電阻器的接合處的電壓,該電源供應器監控該被施加 之電壓。 48·如申請專利範圍第46項所述之霧化裝置,其中藉由測量 橫跨一與該第一和第二電極之間的一偏壓電阻器串聯 15 的二極體的電壓,該電源供應器監控該被施加之電壓。 49·如在依附申請專利範圍第42項或第43項時的申請專利 範圍第46項所述之霧化裝置,其中藉由測量在該電荷泵 和整流器電路内之一節點上形成的電壓,該電源供應器 監控該被施加之電壓。 20 50·如申請專利範圍第36至49項中之任一項所述之霧化裝 置,其中該電源供應器包含一類比至數位轉換器、一處 理器以及一數位至類比轉換器,該類比至數位轉換器適 用於產生一表示該被施加之電壓的信號之一數位表 示,該處理器用於接收表示該被施加之電壓的該信號之 46 200808452 該數位表示以及自該識別元件讀取的該識別符的一數 位表示,且依據一預定演算法產生一對應的數位信號, 該數位至類比轉換器適用於自該數位信號產生一類比 輸出信號,該類比輸出信號被用於控制該被施加之電 壓。 如申請專利範圍第36至50項中之任 置,進一缶6人 _ > i w 口口 _ 一項所述之霧化裝 該被監控之周圍濕度調整該被施加之電壓的該期望值。 53·如申請專利範圍第36至52項中之杯—ts _200808452 X. Patent Application Range: 1. An atomizing device comprising a power supply for applying a voltage between a first electrode and a second electrode, the power supply comprising a control circuit adapted to control the applied The voltage has a desired value, and a 5 monitoring circuit is adapted to monitor the current flowing through the first and second electrodes and change the desired value according to the monitored current according to a predetermined characteristic. The atomizing device of the above-mentioned item, wherein the first electrode is a spray electrode and the second electrode is a reference electrode. The first electrode is a reference electrode, and the second electrode is a spray electrode. 4. The atomization device according to any one of the preceding claims, wherein the control circuit comprises an oscillation for generating an alternating current. And the power supply further includes an inverter circuit connected to the vibrator for generating the applied voltage from the alternating current. 5. As described in claim 4 An atomizing device, wherein the inverter circuit comprises a charge pump and a rectifier circuit. 6. The atomizing device of claim 5, wherein the charge pump and rectifier circuit is a Kirklaw-Wo The atomizing device according to any one of claims 4 to 6, wherein the control is controlled by controlling the magnitude, frequency or duty cycle of the oscillation of the oscillator. The circuit controls the applied voltage. The atomizing device of claim 7, wherein the control circuit receives an output 39 200808452 signal indicative of the monitored current from the monitoring circuit, and adjusts the oscillation The magnitude, frequency or duty cycle of the oscillation of the device to vary the desired value of the voltage between the first and second electrodes in accordance with the predetermined characteristic and in accordance with the monitored current. 9. As claimed in item 4 The atomization 5 device of any one of clause 6, wherein the control circuit controls the applied voltage by causing the oscillator to generate an AC burst at a predetermined frequency, The duration of the application and/or the duty cycle determines the value of the applied voltage. The atomization device of claim 9, wherein the control circuit receives a monitored current from the monitoring circuit Rotating the number k, and adjusting the duration and/or duty cycle of the bursts to vary the voltage between the first and second electrodes in accordance with the predetermined characteristic and based on the monitored current The atomizing device according to any one of the preceding claims, wherein the monitoring is performed by measuring a voltage across an electric 15 resistor connected in series with any one of the first or second electrodes The circuit monitors the current. The atomizing device of any one of the preceding claims, wherein the age control circuit is further adapted to monitor the applied voltage and provide an output signal of a monitored voltage The control circuit, such that the clamp circuit can control the applied voltage to have the desired value. The atomizing device of claim 12, wherein the voltage at the junction of the two resistors forming a voltage divider connected between the first and second electrodes is measured, The monitoring circuit monitors the applied voltage. 14. The atomizing device of claim 12, wherein the voltage of the diode in series with a bias resistor between the first and second electrodes is measured by measuring 40 200808452, The monitoring circuit monitors the voltage applied by the job. P 15 · The atomization device as described in claim 12, in the application of the patent application No. 5 or Item 6, wherein the measurement is in the charge ^ -5 and the rectifier circuit a voltage developed across the node, the monitoring circuit monitoring the applied voltage. 16. The atomizing device of any of the preceding claims, wherein the monitoring circuit comprises - analog to digital conversion, - processing H and - digit to analog conversion H, and the ratio to digital converter Generating a digital representation of the signal indicative of the applied voltage and the monitored current, the processor for receiving the digital representation and generating a corresponding digital _ according to a predetermined algorithm, From the digital "generating- analog output Φ signal, the Hebi round signal is provided to the control circuit. 15 Π 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The circuit responds to the output signal from the temperature 四 (4), and adjusts the predetermined characteristic according to the monitored ambient temperature. 18. The atomizing device according to any one of the preceding claims, further comprising - humidity, a scientific supervision (four) degree and generating a corresponding output money indicating the monitored ambient humidity, the (four) circuit responding from the The humidity signal is signaled to adjust the predetermined characteristic based on the monitored ambient humidity. 41. The atomizing device of any one of the preceding claims, further comprising a pressure sensor for monitoring ambient pressure and generating a corresponding output signal indicative of the monitored ambient pressure, the control circuit The output signal is responsive to the pressure sensor to adjust the predetermined characteristic based on the monitored ambient 5 pressure. 20. The atomizing device of any of the preceding claims, further comprising an interrogator circuit for reading an identifier from an identification element associated with a reservoir and generating a representation of the identifier Outputting a signal comprising a liquid to be sprayed during use, the control circuit responsive to 10 the output signal from the interrogator circuit to adjust the predetermined characteristic based on the identifier read from the identification element . 21. An atomizing device comprising a power supply for applying a voltage between first and second electrodes, and a sensor for monitoring at least one surrounding condition and generating said at least one monitored At least 15 corresponding output signals of the surrounding conditions, the power supply is adapted to receive the at least one output signal and control the applied voltage according to a predetermined characteristic and according to the at least one monitored surrounding condition. 22. The atomizing device of claim 21, wherein the at least one surrounding condition comprises an ambient temperature. The atomizing device of claim 21, wherein the at least one surrounding condition comprises ambient humidity. The atomizing device of any one of claims 21 to 23, wherein the at least one surrounding condition comprises ambient pressure. The atomizing device 42 according to any one of claims 21 to 24, wherein the power supply unit includes a vibration pirate for generating an alternating current and a connection to the oscillator An inverter circuit that produces the applied voltage from the alternating current. The atomizing device of claim 25, wherein the inverter 5 circuit comprises a charge pump and a rectifier circuit. The atomizing device of claim 26, wherein the charge pump and rectifier circuit is a Kraft-Walton generator. The atomizing device according to any one of claims 25 to 27, wherein the power supply controls the applied by controlling the magnitude, frequency or operation of the oscillation of the oscillator for 10 cycles. Voltage. The atomizing device according to any one of claims 25 to 27, wherein the power supply controls the applied by causing the oscillator to generate a communication bundle at a predetermined frequency. The voltage, the duration of the bursts and/or the duty cycle determines the value of the applied voltage. The atomizing device of any one of claims 21 to 29, wherein the power supply is further adapted to monitor the applied voltage so that it can control the being according to the predetermined characteristic The applied voltage. 31. The atomizing device of claim 3, wherein the voltage at the junction of the two 20 resistors forming a voltage divider connected between the first and second electrodes is measured The electric service should monitor the applied voltage. 32. The atomizing skirt of claim 3, wherein the voltage across the diode in series with a bias resistor between the first and second electrodes is measured, The power supply device monitors the applied power 43 200808452 33. The atomization device of claim 30, wherein the charge pump is measured by the application of the scope of claim 26, or And a voltage developed across one of the nodes in the rectifier circuit, the power supply 5 monitoring the applied voltage. The atomizing device according to any one of claims 21 to 33, wherein the power supply comprises an analog to digital converter, a card processor, and a digit to analog converter. An analog to digital converter adapted to generate a digital representation of a signal representative of the applied voltage, the processor for receiving the digital representation of the signal indicative of the applied voltage and the at least-monitored A digit of the surrounding situation is not, and a corresponding digital signal is generated according to a predetermined algorithm, the t-bit to analog converter is adapted to generate an analog output signal from the digital signal, the analogous round-off signal is used to control the The voltage applied. The atomizing device of any one of claims 21 to 34, further comprising an interrogator circuit for reading an identifier from an identification component associated with a reservoir And generating an output nickname indicating the identifier, the reservoir containing liquid ejected from the first or second electrode in use. The power supply is responsive to the output from the interrogator circuit 2 a signal to adjust the predetermined characteristic based on the identifier read from the identification component. 36. An atomizing device comprising a power supply for applying a voltage between the first and second electrodes, and an interrogator circuit for reading from an identification component associated with a scorpion Taking an identifier and generating an output signal indicative of the identifier 2008 200808452, the reservoir containing a liquid that is sprayed in use, the power supply being adapted to receive the output signal and to control the applied voltage, thereby The identifier is read from the identification element to give the stomach an expected value. The atomizing device of claim 36, wherein the interrogator circuit is adapted to measure a resistance of the identification component, the resistance of the identification component representing the identifier. The atomizing device of claim 37, wherein the identifying component is a resistor. The atomizing device of claim 36, wherein the interrogator circuit is a radio frequency identification (RFID) reader adapted to receive an identifier stored in the identification component. 40. The atomizing device of claim 39, wherein the identification component is an RFID tag. The atomization device of any one of claims 36 to 40, wherein the power supply includes an oscillator for generating an alternating current, and a connection to the vibrator is used for The converter circuit that produces the applied voltage from the alternating current. 42. The atomizing device of claim 41, wherein the inverter 20 circuit comprises a charge pump and a rectifier circuit. 43. The atomizing device of claim 42, wherein the charge pump and rectifier circuit is a Kraft-Walton generator. 44. The atomizing device according to any one of claims 41 to 43 wherein the power supply controls the size of the vibration, the frequency, or the operation 45 200808452 period. The applied voltage. The atomizing device of any one of claims 41 to 43 wherein the power supply controls the applied voltage by causing the oscillator to generate a crosstalk at a predetermined frequency. The duration of the bursts and/or the duty cycle determines the value of the applied voltage. The atomizing device of any one of claims 36 to 45, wherein the power supply is further adapted to monitor the applied electric castle and to control the applied voltage The expected value. 47. The atomizing device of claim 46, wherein the voltage at the junction of the two resistors forming a voltage divider connected between the first and second electrodes is measured. The power supply monitors the applied voltage. 48. The atomizing device of claim 46, wherein the power source is connected by a voltage of a diode 15 connected in series with a bias resistor between the first and second electrodes. The supplier monitors the applied voltage. 49. The atomizing device of claim 46, wherein the voltage formed on one of the nodes of the charge pump and the rectifier circuit is measured by the atomizing device of claim 46, The power supply monitors the applied voltage. The atomizing device of any one of claims 36 to 49, wherein the power supply comprises an analog to digital converter, a processor, and a digital to analog converter, the analogy To a digital converter adapted to generate a digital representation of a signal representative of the applied voltage, the processor for receiving the signal indicative of the applied voltage 46 200808452 the digital representation and the read from the identification component a digit representation of the identifier and generating a corresponding digit signal in accordance with a predetermined algorithm, the digit to analog converter being adapted to generate an analog output signal from the digit signal, the analog output signal being used to control the applied Voltage. For example, in the scope of claims 36 to 50, a further 6 people _ > i w mouth _ one of the atomized devices described The monitored ambient humidity adjusts the desired value of the applied voltage. 53. If the cup in the 36th to 52nd patent range -ts _ "询®信號,以依據 該被監控之周圍壓力調整該被施加之電壓 的該期望值。 、v包含一溫度感測斋,用於監控周圍溫度且產 生一表示該被監控之周圍溫度的對應輸出信號,該電源 供應器回應於來自該溫度感·的該輸出信號,以依據 該被監控之周圍溫度調整該被施加之電壓的該期望值。 52·如申請專利範圍第36至51項中之任一項所述之霧化裝 置進步包含一濕度感測為,用於監控周圍濕度且產 生一表示該被監控之周圍濕度的對應輸出信號,該電源 供應器回應於來自該濕度感測器的該輸出信號,以依據 47"Query® signal to adjust the expected value of the applied voltage based on the monitored ambient pressure. And v includes a temperature sensing fasting for monitoring the ambient temperature and generating a corresponding output signal indicative of the monitored ambient temperature, the power supply responsive to the output signal from the temperature sense to be monitored according to the The ambient temperature adjusts the desired value of the applied voltage. 52. The atomization device advancement of any one of claims 36 to 51, comprising a humidity sensing for monitoring ambient humidity and generating a corresponding output signal indicative of the monitored ambient humidity, The power supply is responsive to the output signal from the humidity sensor to base 47
TW96121838A 2006-06-16 2007-06-15 Power supply for atomisation device TW200808452A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0612019A GB0612019D0 (en) 2006-06-16 2006-06-16 Load response circuit

Publications (1)

Publication Number Publication Date
TW200808452A true TW200808452A (en) 2008-02-16

Family

ID=36775821

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96121838A TW200808452A (en) 2006-06-16 2007-06-15 Power supply for atomisation device

Country Status (3)

Country Link
GB (1) GB0612019D0 (en)
TW (1) TW200808452A (en)
WO (1) WO2007144649A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073271A (en) * 2013-03-01 2015-11-18 住友化学株式会社 Electrostatic spraying apparatus, and current control method for electrostatic spraying apparatus
CN109996609A (en) * 2016-08-31 2019-07-09 阿维塔斯有限公司 Adaptive electrospray device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472545A4 (en) * 2009-08-26 2013-01-02 Panasonic Corp Discharge device and electrostatic atomization device comprising same
JP5762872B2 (en) 2011-07-29 2015-08-12 住友化学株式会社 Electrostatic spraying equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE834263C (en) * 1951-06-29 1952-03-17 Gen Motors Corp Electrical discharge system and its application to spray painting
WO1994021029A1 (en) * 1993-03-05 1994-09-15 Fleck, Carl, Maria Converter circuit
DE19511255A1 (en) * 1995-03-27 1996-10-02 Gema Volstatic Ag Electrostatic spray coating device
CN1096302C (en) 1996-09-13 2002-12-18 友罗泰克表面涂层系统有限公司 Control system for electrostatic power spraying apparatus
US6144570A (en) * 1997-10-16 2000-11-07 Illinois Tool Works Inc. Control system for a HVDC power supply
US6397838B1 (en) 1998-12-23 2002-06-04 Battelle Pulmonary Therapeutics, Inc. Pulmonary aerosol delivery device and method
US6656253B2 (en) 2000-05-18 2003-12-02 The Procter & Gamble Company Dynamic electrostatic filter apparatus for purifying air using electrically charged liquid droplets
US6729552B1 (en) 2003-04-22 2004-05-04 E. I. Du Pont De Nemours And Company Liquid dispersion device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073271A (en) * 2013-03-01 2015-11-18 住友化学株式会社 Electrostatic spraying apparatus, and current control method for electrostatic spraying apparatus
US9937507B2 (en) 2013-03-01 2018-04-10 Sumitomo Chemical Company, Limited Electrostatic spraying apparatus, and current control method for electrostatic spraying apparatus
CN109996609A (en) * 2016-08-31 2019-07-09 阿维塔斯有限公司 Adaptive electrospray device
CN109996609B (en) * 2016-08-31 2022-02-11 阿维塔斯有限公司 Self-adaptive electric spraying device

Also Published As

Publication number Publication date
WO2007144649A2 (en) 2007-12-21
WO2007144649A3 (en) 2008-03-27
GB0612019D0 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
US7337993B2 (en) Electrostatic atomisation device
CN103717312B (en) Electrostatic atomiser, and the method by using it to carry out electrostatic atomization
US20200261613A1 (en) Fragrance Dispenser Having a Disposable Piezoelectric Cartridge with a Snap-In Bottle Containing Aromatic Liquid
US20070017505A1 (en) Dispensing device and method
CA2662468C (en) High volume atomizer for common consumer spray products
CA2514555C (en) Point of purchase fragrance sampling
TW510827B (en) Piezoelectric vibrator and its controlling method
US20080164339A1 (en) Device For Atomising A Product, Particularly A Perfume
JP4326336B2 (en) Plug-in type liquid sprayer
US20100326431A1 (en) Aerosolization Device
JP2006528025A (en) Nebulizer for producing aerosolized drugs
JP2003528644A (en) An aerosol delivery device for lung disease, a method of orally administering an aerosolized liquid therapeutic agent, and a device for aerosolizing a liquid.
WO2007142022A1 (en) Electrostatic atomizing apparatus
EP2040855A2 (en) Diffusion device
EP4013247B1 (en) An aerosol-generating device and a method of generating a mixed aerosol
TW200808452A (en) Power supply for atomisation device
WO2008008461A2 (en) Chemical formulation for an insecticide
CN114845760A (en) Aerosol generator comprising a plurality of supply elements
JP2003192064A (en) Spray
CN114867372A (en) Aerosol generator comprising a surface acoustic wave atomizer
KR100324980B1 (en) Photoelectric switch
EP1177834B1 (en) Device for the atomization of cleaning and disinfecting liquids
JP2023523665A (en) AEROSOL GENERATOR INCLUDING VIBRATOR AND OPERATION METHOD THEREOF