TW200541355A - Conveying sector load information to mobile stations - Google Patents

Conveying sector load information to mobile stations Download PDF

Info

Publication number
TW200541355A
TW200541355A TW93138438A TW93138438A TW200541355A TW 200541355 A TW200541355 A TW 200541355A TW 93138438 A TW93138438 A TW 93138438A TW 93138438 A TW93138438 A TW 93138438A TW 200541355 A TW200541355 A TW 200541355A
Authority
TW
Taiwan
Prior art keywords
sector
load
load information
field
value
Prior art date
Application number
TW93138438A
Other languages
Chinese (zh)
Inventor
Sai Yiu Duncan Ho
Peter Gaal
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200541355A publication Critical patent/TW200541355A/en

Links

Abstract

Improved serving sector selection mechanisms are provided which convey sector load information to a wireless communicator. The wireless communicator can use carrier-to-interference (C/I) ratio measurements and sector load information for each of its Active Set (AS) sectors (or all sectors in its Active Set (AS)) to determine the best serving sector.

Description

200541355 九、發明說明: 【發明所屬之技術領域】 本發明大體而言係關於通信,且更具體言之,本發明係 關於一種用於選擇一服務扇區之新穎並經改良之方法及裝 置。 【先前技術】 廣泛佈署無線通信系統以提供諸如音訊及資料之各種類 型的通信。此等系統可基於劃碼多向近接(CDMA)、劃時多 向近接(TDMA)或某些其它多向近接技術。一 CDMA系統提 供了優於其它類型之系統的某些優點,包括增加之系統容 量。200541355 IX. Description of the invention: [Technical field to which the invention belongs] The present invention generally relates to communication, and more specifically, the present invention relates to a novel and improved method and device for selecting a service sector. [Prior Art] Wireless communication systems are widely deployed to provide various types of communication such as audio and data. These systems may be based on coded multi-directional proximity (CDMA), time-division multi-directional proximity (TDMA), or some other multi-directional proximity technology. A CDMA system provides certain advantages over other types of systems, including increased system capacity.

可將一 CDMA系統設計成支援一或多個CDMA標準,諸如 (1)用於雙重模式寬頻展頻蜂巢式系統之tia/eia_95_b行 動台-基地台相容標準,,(IS-95標準)、(2)由一命名為,,第三代 合作工程"(3GPP)之協會提出並收錄於包括文獻號為3g TS 25.211、3GTS 25.212、3G TS 25.213 及 3G TS 25.214 之一 組文獻中的標準(W-CDMA標準)、(3)由一命名為,,第三代合 作工私2’(3GPP2)之協會提出並收錄於,,用Kcdma2〇〇〇展頻 系統之TR-45.5物理層標準”中的標準(IS_2〇〇〇標準)及(4)某 些其它標準。 在4等上文已命名之標準中,在諸多使用者之間同時共 用4可用頻譜,且運用諸如功率控制及軟式交遞之技術來 、准羞充刀口口貝,以支杈諸如音訊之延遲敏感服務。資料服 矛力亦可用更近-些’已提議了若干系、統,其藉由使用更 98232.doc 200541355 咼階數之調變、來自行動台之載波干擾比(c/i)的非常快速 反饋、非常快速之排程及用於具有更寬鬆延遲要求之服務 的排程來增強資料服務之容量。使用此等技術之此僅資料 通L糸統的一實例為符合丁1八/£1八/18-856標準(18-856標準) 之高資料速率(HDR)系統。 與其它上文已命名之標準對比,一IS_856系統一次使用 每一蜂巢中可用之整個頻譜以將資料傳輸至單個使用者, 其中基於鏈路品質及諸如資料等待等等之其它考慮因素來 選擇該使用者。在此情況下,當該通道良好時該系統花費 更大百分比之時間來以更高速率發送資料,且藉此避免了 限制資源支援低效速率之傳輸。該淨效果為更高資料容 量、更高峰值資料速率及更高平均生產量。 系統可併入對諸如IS-2000標準中所支援的音訊通道或 資料通道之延遲敏感資料的支援連同對封包資料服務(諸 如IS - 8 5 6標準中所描述之彼等服務)的支援。一種此類系統 被描述於Θ下提案中:2001年6月11日以文獻號 C50-20010611-009 提交給 3GPP2 的標題為”Updated Joint Physical Layer Proposal for lxEV-DV,’’之提案;2001 年 8 月 20 日以文獻號 C50-20010820-011 提交給 3GPP2的” Results of L3NQS Simulation Study,’’之提案;及 2001 年 8月 20 日以文獻 ϊ虎 C50-20010820_012k 父給 3GPP2 的”System SimulationA CDMA system can be designed to support one or more CDMA standards, such as (1) tia / eia_95_b mobile station-base station compatible standard for dual-mode wideband spread-spectrum cellular systems, (IS-95 standard), (2) A standard named by the association named "3rd Generation Partnership Project" (3GPP) and included in a group of documents including document numbers 3g TS 25.211, 3GTS 25.212, 3G TS 25.213, and 3G TS 25.214 (W-CDMA standard), (3) proposed and included by an association named, 3rd Generation Cooperative Private 2 '(3GPP2), using the TR-45.5 physical layer standard of the Kcdma2000 spread spectrum system "(IS_2OO00 standard) and (4) some other standards. Among the standards named above, such as 4, shared spectrum is available among many users at the same time, and uses such as power control and soft mode The technology of delivery can be used to fill the mouth and mouth, and to delay sensitive services such as audio. The data service can also be used more recently-some have already proposed a number of systems and systems, which use more 98232.doc 200541355 Modulation of 咼 order, carrier interference from mobile station (C / i) Very fast feedback, very fast scheduling, and scheduling for services with more relaxed latency requirements to enhance data service capacity. This is only an example of the data communication system using these technologies In order to meet the high data rate (HDR) system of D18 / 18 / 18-856 standard (18-856 standard). Compared with other standards named above, an IS_856 system uses the available data in each hive at a time. The entire spectrum is used to transmit data to a single user, where the user is selected based on link quality and other considerations such as data waiting. In this case, the system spends a greater percentage of time when the channel is good To send data at a higher rate, and thereby avoid limiting resources to support inefficient rate transmissions. The net effect is higher data capacity, higher peak data rate, and higher average throughput. The system can incorporate -2000 supports delay-sensitive data for audio channels or data channels as well as support for packet data services such as those described in the IS-8586 standard. Such a system is described in a proposal under Θ: a proposal entitled "Updated Joint Physical Layer Proposal for lxEV-DV," submitted to 3GPP2 on June 11, 2001 under document number C50-20010611-009; 2001 The proposal of "Results of L3NQS Simulation Study," which was submitted to 3GPP2 with document number C50-20010820-011 on August 20; and "System Simulation" which was given to 3GPP2 by the parent of document C50-20010820_012k on August 20, 2001

Results for the L3NQS Framework Proposal for cdma2000 lxEV-DV,”之提案。此等及隨後產生之相關文獻(諸如 IS-2000標準之Γ修訂本C,包括C.S0001.C至C.S0006.C及 98232.doc 200541355Results for the L3NQS Framework Proposal for cdma2000 lxEV-DV, ". These and subsequent related documents (such as Γ revision C of the IS-2000 standard, including C.S0001.C to C.S0006.C and 98232 .doc 200541355

C.S0001.D至 C.S0006.D)在下文中被稱為 lxEV-DV。 lxEV-DV 一系統(諸如在lxEV-DV標準中所描述之系統)通常包含 四類通道··添加信號(overhead)通道、動態變化之IS-95及 IS-2000通道、一前向封包資料通道(F-PDCH)及某些備用通 道。該等添加信號通道指派變化緩慢,其可持續數月不改 變。其一般在存在主要網路組態變化時才改變。該等動態 變化之IS-95及IS-2000通道以每一呼叫為基礎而加以指派 或其用於IS-95或IS-2000釋放0至B封包服務。通常,將在該 等添加信號通道及動態變化之通道已被指派之後所剩餘之 可用基地台功率配置給該F-PDCH以用於剩餘資料服務。該 F_PDCH可用於對延遲較不敏感之資料服務,而該等IS_2000 通道用於對延遲更為敏感之服務。 使用F-PDCH(類似於IS-856標準中之通信通道)從而以最 高可支援資料速率一次將資料發送至每一蜂巢中之一使用 者。在IS-856中,當將資料傳輸至一行動台時,該基地台 之整個功率及Walsh功能之整個空間皆可用。然而,在所提 議之lxEV-DV系統中,某些基地台功率及某些Walsh功能被 配置給添加信號通道及現有IS-95及cdma2000服務。可支援 之資料速率主要取決於用於添加信號通道、IS-95通道及 IS-2000通道之功率及Walsh碼被指派之後的可用功率及 Walsh碼。使用一或多個Walsh碼來擴展經由F-PDCH傳輸之 資料。 在lxEV-DV系統中,儘管在一蜂巢中諸多使用者可能正在 98232.doc 200541355 一 一、ί 服務’但该基地台—般經由該沉Η—次傳輸至 將11Ϊ 口。(猎由為兩個或兩個以上使用者排程傳輸及適當 兩y、及/或彻sh通道配置給每—使用者來傳輸至兩個或 -二使用者亦可行。)基於某種排程演算法來為前向鏈 結傳輸選擇行動台。 您 ,在此系統中打動台自—服務基地台接收前向鍵結資 料。2所描述,自一行動台至該服務台之反向鏈結反饋可 ;月〕向鏈結排程及傳輸。一行動台將不會自一個以上基 地台接收前向封包資料通mPDCHn —行動台經 由,向鏈結可與—或多個非服務基地台及/或扇區處於軟 式父遞以便提供反向鏈結切換分集。 在源自修訂本C之CDMA2000系統中,存在一前向鏈結 妾又服矛,之行動台的通道品質反饋。舉例而言,在 二中’仃動台估計前向鏈結之品質並計算所期望之對 \田月』條件而^可保持的傳輸速率。I自每-行動台之所 要㈣均被傳輸至該基地台。該排程演算法可(例如)為能支 交相對較兩之傳輸速率的傳輸選擇一行動台以便更充分 地利㈣共用通信通道。如另-實例,在-丨XEV-DV系統 :’母—行動台均經由反向通道品質指示通道或R.CQICH 傳輸1波干擾_料作為通道品f料。使賴排程 :异法來衫為傳輸所選擇之行動台,以及根據該通道品 貝之適當速率及傳輪格式。可建構多種排程演算法,諸如 美國專利第6,229,795號中所詳述之比例式公平演算法。 98232.doc 200541355 (FL)封包資料通道(F-PDCH)及一相關聯之封包資料控制通 道(F-PDCCH)。該行動台(MS)僅報告當前月艮務BS扇區之C/I 並基於每一基地台之前向鏈結通道品質(量測作為FL C/I) 來選擇能提供該F-PDCH及F-PDCCH之最佳前向鏈結基地 台(BS)扇區。該行動台(MS)根據在媒體存取控制(MAC)標 準中所描述之轉換程序而轉換至彼基地台。在2002年10月 18 日申請之標題為’’Method and Apparatus for Controlling Communications of Data from Multiple Base Stations to a Mobile Station ip a Communication System” 的美國專利申請 案序號10/274,343中描述了此等程序之一實例;該申請案讓 渡於其受讓人並因此該案之全文以引用的方式清楚地併入 本文中。 雖然有此等進展,但在此項技術中存在對改良之服務扇 區選擇機制的需要。 【發明内容】 本文所揭示之實施例藉由提供用於傳遞扇區負載資訊至 一無線通信裝置來處理對改良之服務扇區選擇機制的需 求。根據一態樣,該MS可使用其有效集(AS)扇區中之每一 者(或其有效集(AS)中之所有扇區)的連續載波干擾(C/Ι)比 量測及扇區負載資訊來自主地判定最佳服務扇區。 在一態樣中,本發明提供了一種系統,該系統包括:複 數個遠端台,其各自包含複數個扇區;及一由當前服務扇 區服務之無線通信裝置。每一扇區均可具有複數個鄰接扇 區。每一遠端台均包含一能判定扇區負載資訊之處理器及 98232.doc 200541355 一能傳輸該扇區負載資訊之傳輸器。該無線通信裝置包 含:-通道品質估計器,其量測該無線通信裝置之有效集 (AS)中之每-扇區的載波干擾(C/I)比;一記憶體,其儲存 該無線通信裝置之有效集(AS)中之扇區的載波干擾(㈤比 量測;及-處理ϋ,其基於該等AS4區中之每—者的載波 干擾(c/D比量測及扇區負載資訊而自主地判定—新服務扇 區。在-實施例中’當前服務扇區將全部鄰接扇區之扇區 負載資訊傳輸至該無線通信裝置。或者,每—扇區均可傳 輸一對應於其扇區負載資訊之負載值。 在另-態樣中,本發明提供了__遠端台,該遠端台包含 複數個扇1、一處理器及一傳輸器。每一扇區均可具有複 數個鄰接扇區。該處理器判定扇區負載資訊,且該傳輸器 傳輸扇區負載資訊。-當前服務輕可傳輸全部鄰接扇區 之扇區負載資訊。 在又-態樣中’本發明提供了 _由—當前服務扇區服務 2線通信裝置。該無線通信裝置包含—接收器、一通道 品質估計H、—記憶體及—處理器。該接收器接收該無線 通信裝置之有效集(AS)中之每一扇區的扇區負載資訊。該 通道品質估計H量測該無線通信裝置之有效集(As)中之每 一扇區的載波干擾(C/I)比。該記憶體儲存該無線通信裝置 之有效集(AS)中之扇區的載波干擾(C/I)比量測。該處理器 基於該等AS扇區中之每—者的載波干擾(C/I)比量測及扇 區負載資訊而自主地判定一新服務扇區。 亦提供了各種其它態樣。如下文中所進—步詳細描述, 98232.doc -10- 200541355 本發明k供了能建構本發明之久插能禅 ^ 心仰4之谷禋悲樣、實施例及特徵的 方法及系統元件。 【實施方式】 定義 ^ W不性意、謂”用作一實例、範例或 本文干所使用之詞 •, 只 n 竿匕Ί巧私 說明。"本文中所描述之作為,,例示性”的任_實施例不必要 解釋為比其它實施例較佳或有利。 本文中所使用之術語專用通道係指—專用於—特定使用 者之傳送通道。,專用通道將資訊載運至—特定用戶單元/ 使用者裝備或卜特定用戶單元/使用者裝備載運資訊。— 專用通道資源可由一確定頻率上之確定代碼來識別且通常 僅保留用於一單個使用者。一 寻用通道通常載運意欲用於 -來自物理層上之諸層的給定使用者的全部資訊,包括實 際服務之資料以及更高層控制資訊。 ^本文中所使用之術語共用通道係指—傳送通道,其將資 訊載運至多個用戶單元、 1 及/或自夕個用戶單元/UE載運 共用通道並非專用於—特定使用而是在全部 用戶早元/UE中共用的載體資訊。在一蜂巢中之全部 使用者之間書ij分一 ϋ用補、苦 ^ ^ ^C.S0001.D to C.S0006.D) are hereinafter referred to as lxEV-DV. lxEV-DV A system (such as the system described in the lxEV-DV standard) usually includes four types of channels: · Overhead channel, dynamically changing IS-95 and IS-2000 channels, and a forward packet data channel (F-PDCH) and some spare channels. These additional signal channel assignments change slowly and can remain unchanged for several months. It generally changes only when there are major network configuration changes. These dynamically changing IS-95 and IS-2000 channels are assigned on a per call basis or they are used by IS-95 or IS-2000 to release 0 to B packet services. Normally, the F-PDCH is allocated to the F-PDCH for the remaining data services after the available signal channels and dynamically changing channels have been assigned. The F_PDCH can be used for data services that are less sensitive to delay, and the IS_2000 channels are used for services that are more sensitive to delay. Use F-PDCH (similar to the communication channel in the IS-856 standard) to send data to one user in each hive at a time at the highest supported data rate. In IS-856, when transmitting data to a mobile station, the entire power of the base station and the entire space of the Walsh function are available. However, in the proposed lxEV-DV system, some base station power and some Walsh functions are configured to add signal channels and existing IS-95 and cdma2000 services. The supported data rate mainly depends on the power used to add the signal channel, IS-95 channel and IS-2000 channel, and the available power and Walsh code after the Walsh code is assigned. One or more Walsh codes are used to spread the data transmitted via F-PDCH. In the lxEV-DV system, although many users may be serving 98232.doc 200541355 in a honeycomb, the base station—usually through the sink—transmits to the 11 port. (The hunter can schedule transmission for two or more users and configure two y and / or sh channels appropriately for each user to transmit to two or two users.) Based on some kind of scheduling The program algorithm selects the mobile station for forward link transmission. You, in this system, impress the station self-service base station to receive the forward key connection data. As described in 2, the reverse link feedback from a mobile station to the service station can be scheduled and transmitted to the link. A mobile station will not receive forward packet data through mPDCHn from more than one base station — the mobile station passes through, and the link can be in a soft parent transfer with — or multiple non-serving base stations and / or sectors to provide a reverse link Knot switching diversity. In the CDMA2000 system derived from Rev. C, there is a forward link and a spearhead, and the channel quality feedback of the mobile station. For example, in the second middle school, the mobile station estimates the quality of the forward link and calculates the expected transmission rate to maintain the transmission rate. All requests from each mobile station are transmitted to that base station. The scheduling algorithm may, for example, select a mobile station for transmissions that can support relatively two transmission rates in order to more fully utilize the shared communication channel. As another example, in the XEV-DV system: the mother-mobile station transmits 1 wave of interference material as the channel product through the reverse channel quality indicator channel or R.CQICH. Reliance schedule: the mobile station selected for transmission by the different method, and the appropriate speed and transfer format according to the channel product. Various scheduling algorithms can be constructed, such as the proportional fairness algorithm detailed in US Patent No. 6,229,795. 98232.doc 200541355 (FL) Packet Data Channel (F-PDCH) and an associated Packet Data Control Channel (F-PDCCH). The mobile station (MS) only reports the C / I of the current BS sector and selects the F-PDCH and F based on the quality of the forward link channel of each base station (measured as FL C / I). -The best forward link base station (BS) sector of the PDCCH. The mobile station (MS) is switched to another base station according to the conversion procedure described in the media access control (MAC) standard. U.S. Patent Application Serial No. 10 / 274,343 entitled `` Method and Apparatus for Controlling Communications of Data from Multiple Base Stations to a Mobile Station ip a Communication System '' filed on October 18, 2002 describes these procedures An example; the application is assigned to its assignee and the full text of the case is hereby expressly incorporated herein by reference. Despite these advances, there are options for improved service sectors in this technology The need for mechanisms. [Summary of the Invention] The embodiments disclosed herein address the need for an improved serving sector selection mechanism by providing sector load information to a wireless communication device. According to one aspect, the MS may Continuous carrier-to-interference (C / I) ratio measurements and sector load information using each of its active set (AS) sectors (or all sectors in its active set (AS)) are determined from the primary location. In one aspect, the present invention provides a system including: a plurality of remote stations, each of which includes a plurality of sectors; and Wireless communication device for sector service. Each sector can have multiple adjacent sectors. Each remote station includes a processor that can determine the sector load information and 98232.doc 200541355 that can transmit the sector load. Information transmitter. The wireless communication device includes:-a channel quality estimator, which measures a carrier-to-interference (C / I) ratio of each sector in the active set (AS) of the wireless communication device; a memory, It stores the carrier interference of the sectors in the active set (AS) of the wireless communication device (ratio measurement; and-processing), which is based on the carrier interference (c / D ratio) of each of the AS4 areas Automatically determine the new service sector by measuring the sector load information. In the embodiment, the 'current serving sector transmits sector load information of all adjacent sectors to the wireless communication device. Or, each sector is A load value corresponding to the sector load information can be transmitted. In another aspect, the present invention provides a remote station, the remote station includes a plurality of fans 1, a processor, and a transmitter. Each A sector can have multiple contiguous sectors. The processor Fixed sector load information, and the transmitter transmits sector load information.-The current service can transmit the sector load information of all adjacent sectors. In another aspect, the present invention provides _ 由-the current serving sector Serves a 2-wire communication device. The wireless communication device includes a receiver, a channel quality estimate H, a memory, and a processor. The receiver receives each sector in the active set (AS) of the wireless communication device. Sector load information. The channel quality estimate H measures the carrier-to-interference (C / I) ratio of each sector in the active set (As) of the wireless communication device. The memory stores a carrier-to-interference (C / I) ratio measurement of a sector in an active set (AS) of the wireless communication device. The processor autonomously determines a new serving sector based on a carrier-to-interference (C / I) ratio measurement and sector load information for each of the AS sectors. Various other looks are also provided. As described in further detail below, 98232.doc -10- 200541355 The present invention provides a method and system elements that can construct the long-time plug-in Zen of the present invention. [Embodiment] Definition ^ W 不 性 意, means "used as an example, example, or word used in this article, only n poles and clever private explanations." The acts described in this article are illustrative. " Any of the embodiments need not be interpreted as being better or more advantageous than other embodiments. The term "dedicated channel" as used herein refers to-a channel dedicated to a specific user. Dedicated channels carry information to—specific user units / user equipment or specific user units / user equipment. – Dedicated channel resources can be identified by a certain code on a certain frequency and usually reserved for a single user only. A access channel usually carries all the information intended for a given user from the various layers on the physical layer, including information on actual services and higher-level control information. ^ The term shared channel used in this article refers to a—transmission channel that carries information to multiple user units, 1 and / or a single user unit / UE. A shared channel is not dedicated to—specific use, but to all users early Meta / UE common carrier information. Book ij is divided among all users in a hive ϋ use tonic, bitterness ^ ^ ^

Lb J通道。共用通道不具有軟式交遞。 文中所使用之術語點對點(ρτρ)通信意謂一經由 用通信通道傳輸之通信。 本文中所制之術語廣播通信或點對多點(ρτΜ)通 才曰—經由一通用通信通道 /、 的通信。 而至後數個叮戶端/使用者裝備 98232.doc 200541355 本文中所使用之術語物理通道係指一經由無線電界面載 運使用者資料或控制資訊之通道。一物理通道通常包含頻 率擾碼與通道化碼之組合。在上行鏈路方向上,亦包含相 對相位。基於該用戶單元/使用者裝備試圖做什麼而在該上 行鏈路方向上使用許多不同物理通道。由物理映射及用以 經由無線電界面轉移資料之屬性來界定物理通道。物理通 道係,’傳輸媒體”,其提供無線電平臺(經由該無線電平臺可 實際轉移該資訊)且用以經由該無線電鏈路載運訊號傳輸 及使用者資料。 本文中所使用之術語傳送通道意謂—用於在同等物理層 實體之間進行資料料料信路㈣擇。—料通道由如 何左由4物理層上之無線電界面轉移資料且具有什麼特徵 來界定’例如’是否使用專用或通用物理通道,或邏輯通 道之複用。可❹傳送通道以在㈣存取㈣(mac)層該 ㈣層(L1)之μ運訊號傳輸及使用者資料。無線網路控 制為(RNC)聋看傳輸通道。經由被映射至物理通道之許多傳 达通道中之任—者將資訊自MAC層傳輸至物理層。 -邏輯通道為—專用於一特定類型之資訊之轉移的資訊 流或無線電介面。邏輯通道被提供於該MAC層之頂端上。 一 f輯通道由轉移什麼類型之資訊(例如訊號傳輸或使用 者身料)來界定’且可被理解為該網路及終端機在不 點處應執行之不同任務。 、本文中所使用之術語反向鏈結上行鏈路通道係指一單向 通^通道7鍵路’ 11由該單向通信通道/鏈路用彳單元/使用 98232.doc -12- 200541355 者裝備在無線存取網路(RAN)中將訊號發送至一基地台。該 上行鏈路通道亦可用於將訊號自一行動台傳輸至一行動基 地台或自一行動基地台傳輸至一基地台。 本文中所使用之術語前向鏈結或下行鏈路意謂一通信通 道/鏈路,藉由該通信通道/鏈路無線存取網路(RAN)將訊號 發送至一無線通信裝置/用戶單元/使用者裝備。 本文中所使用之術語遠端台/基地台/節點B意謂訂戶端/ 使用者裝備將通信訊號發送至其或自其接收通信訊號的硬 體。蜂巢視其中使用該術語之情形而定指代該硬體或一地 理覆蓋區域。一扇區係一蜂巢之一分區。因為一扇區具有 一蜂巢之屬性,所以依據蜂巢所描述之教示不難擴展至扇 區。 本文中所使用之術語無線通信裝置/訂戶端/使用者裝備 (UE)意謂一存取網路將通信訊號發送至其或自其接收通信 訊號之硬體。一訂戶端/使用者裝備可為行動型或固定型。 一無線通信裝置/訂戶端/使用者裝備可為經由一無線通道 或經由一有線通道(例如,使用光導纖維或同軸電纜)進行通 之任一資料設備或終端機。一無線通信裝置/使用者裝備 可進一步為諸多類型設備中之任一者,包括(但不限於)pc 卡、緊密快閃記憶體、外部或内部數據機或無線或有線電 話。 本文中所使用之術語軟式交遞意謂在一訂戶端與兩個或 兩個以上扇區之間的通信,其中每一扇區均屬於一不同蜂 巢。反向鍵結通信被兩個扇區接收,且經由兩個或兩個以 98232.doc -13 - 200541355 上扇區之前向鏈結來同時載運前向鏈結通信。 本文中所使用之術語更軟式交遞意謂在一訂戶端與兩個 或兩個以上扇區之間的通信,其中每一扇區均屬於相同蜂 巢。反向鏈結通信被兩個扇區接收,且經由兩個或兩個以 上扇區之前向鏈結中之一者同時載運前向鏈結通信。 綜述 在以下描述中,將描述一例示性通信系統。隨後將描述 一用於選擇一服務扇區之例示性無線通信裝置及技術。其 後,將描述更多利用用於傳遞扇區負載資訊至無線通信裝 置之技術的最優服務扇區選擇機制。一般言之,所描述之 實施例藉由提供用於傳遞扇區負載資訊至無線通信裝置之 技術來處理對改良之服務扇區選擇機制的需求。根據一態 樣,該無線通信裝置可使用其有效集(AS)扇區中之每一者 (或其有效集(AS)中之所有扇區)的連續載波干擾(c/i)比量 測及扇區負載資訊以自主地判定一新/最佳服務扇區。 例示性通信系統 圖1為無線通信系統100之圖,該無線通信系統100可經設 計以支援一或多個CDMA標準及/或設計(例如,W_CDMA標 準、IS-95標準、cdma2000標準、HDR規格、lxEV_Dv標準)。 在一替代實施例中,系統100亦可佈署除7(:1)]^八系統外的 任何無線標準或設計。 為簡單之目標,系統100被展示為包含與兩個行動台1〇6 進行通信之三個基地台104。該基地台及其覆蓋區域常被共 同稱為一”蜂巢”。在IS-95系統中,一蜂巢可包含一或多個 98232.doc -14- 200541355 扇區。在W_CDMA規格中,—基地台之每一扇區及該扇區 之覆息區域被稱為一蜂巢。視正被建構之系統而 疋,母一行動台106均可在任一給定時刻經由該前向鏈結而 二(或可把夕個)基地台104通信,且可視該行動台是否處 於权式父遞而定經由該反向鏈結而與一或多個基地台通 信。該前向鏈結(即下行鏈路)係指自該基地台至該行動台之 通k,且该反向鏈結(即上行鏈路)係指自該行動台至該基地 台之通信。 如上文中所描述,無線通信系統1〇〇可支援同時共用通信 貝源之夕個使用者(諸如IS_95系統卜可偶爾將整個通信資 源配置給一使用者(諸如IS_856系統)、或可分攤該通信資源 以允許兩種類型之接取。lxEV_DV系統為一系統之一實例, 該系統能在兩種類型之接取之間劃分該通信資源,且根據 使用者要求動態配置該分攤情況。 在lxEV-DV系統中,儘管在一蜂巢中諸多使用者可能正在 使用封包服務,但該基地台通常經由F-PDCm傳輸至_ 打動台。(藉由為兩個或兩個以上使用者排程傳輸並將功率 及/或Walsh通道適當配置給每—使用者來傳輸至兩個或兩 個以上使用者亦可行。)基於排程演算法來為前向鏈結傳輸 選擇行動台。 在-類似於IS-856或lxEV-DV之系統中,排程部分地基於 來自正接党服務之行動台的通道品質反饋。舉例而言,在 IS-856中,行動台估計前向鏈結之品質並計算所期望之對 於田$條件而a可保持的傳輸速率。纟自每—行動台之所 98232.doc -15- 200541355 要速率均被傳輸至基地a 土也口。该排程演算法可(例如)為能支援 一相對較高傳輸速率之傳耠 y 寻輸璉擇一行動台以便更充分地利 用該共用通信通道。如另一每—7 τ 为 只施例,在lxEV-DV系統中,每 订動口均^由反向通道品質指示通道或傳輸一 載波干㈣⑴估計料通&質估計。使㈣排程演算法 以判定經選擇用於傳輸之行動台以及根據通道品質之適當 速率及傳輸格式。 例示性通道 一典型資料通信系統可包含各種類型之—或多個通道。 更具體言之’共同佈署一或多個資料通道。儘管頻帶内 (in-band)控制訊號傳輸可包含於一資料通道上,但佈署一 或多個控制通道亦是常見的。舉例而言,在1xEv_dv系統 中,經由該前向鏈結分別為控制及資料之傳輸界定前向封 包資料控制通道(F-PDCCH)及前向封包資料通道(f_pdch)。 前向封包資料通道(F-PDCH)為一能支援高速操作流量之 共用封包資科通道。經由MAC層排程來處理至該通道之接 取。由於自適應調變及編碼,此通道不同於所有其它通道。 並且,利用可變Walsh碼空間。意即,當基於來自該行動台 之反饋資訊而由該MAC層導引時,調變及編碼可在訊框之 間變化。該反饋資訊被包含於R-CQICH(其報告所接收之最 強F-PICH的導頻晶片能量Ec與總雜訊密度价之比率^/奶) 中及R-ACKCH中,該R-ACKCH指示該訊框接收是否成功。 該所選擇之調變及編碼亦取決於該等可用之WalsIuf。不同 於所有其它通道,F-PDCH僅利用基地台處之剩餘資源。此 98232.doc -16 - 200541355 意謂被該F-PDCH消耗之功率以及Walsh碼可在訊框之間變 化。 前向封包資料控制通道(F-PDCCH)為一共用通道,其主 要用於傳遞關於F-PDCH傳輸格式之資訊。由經由F-PDCCH 並行傳輸之層2控制資訊來伴隨經由F-PDCH之資料傳輸。 控制資訊町允許相關聯之F-PDCH訊框的正確解調變及解 碼0 反向通道品質指示通道(R-CQICH)為一支援通道,其用於 經由F-PDCH進行自適應編碼及調變。該通道用於將F-PICH Ec/Nt傳遞至服務基地台。此資訊用於選擇適當調變及編碼 機制。此外,可基於預定公平度量及r_CqICH值來選擇經 選擇用於經由F-PDCH進行傳輸之一行動台或在某些情況 下為兩個行動台。經由該通道傳送之資訊可為F-PICH Ec/Nt 之全4位元編碼值,或相對於先前累加值之一上行/下行指 示。該R-CQICH亦用於指示所報告之f_PIch Ec/Nt對應的 基地台。R-gQICH Walsh隱蔽(Walsh Cover*)指數識別彼 基地台。 圖2描繪了被組態於一適於資料通信之系統丨〇〇中的一例 示性行動台106及基地台104。基地台1〇4及行動台106被展 示為經由一前向鏈結及一反向鏈結進行通信。行動台106接 收接收子系統220中之前向鏈結訊號。一能對該前向資料及 控制通道(詳述於下文)進行通信之基地台104在本文中可被 稱為行動台106之服務台。參考圖3在下文進一步詳述一例 示性接收子系統。在行動台106中為自該服務基地台所接收 98232.doc 200541355 之W向鏈結訊號進行載波干擾(C/Ι)估計。一 C/Ι量測係一用 作一通道估計之通道品質度量的一實例,且在替代實施例 中可佈署替代通道品質度量。在基地台104中將該C/Ι量測 傳遞至傳輸子系統210,其一實例將參考圖3而進一步詳述 於下文。 傳輸子系統210經由反向鏈結傳遞c/i估計,其中其被傳 遞至服務基地台。注意:在一軟式交遞情形中,自一行動 台所傳輸之反向鏈結訊號可被除該服務基地台以外之一或 多個基地台(本文中稱為非服務基地台)接收。基地台1〇4中 之接收子系統230自行動台ι〇6接收C/I資訊。 使用基地台104中之排程軟體24〇來判定是否且應如何將 資料傳輸至服務蜂窩之覆蓋區域内的一或多個行動台。可 在本發明之範鹫内佈署任何類型之排程演算法。在申請於 1997年2月11日且於2002年!月!日頒予仏“瞻等人的標Lb J channel. The shared channel does not have soft handover. The term point-to-point (ρτρ) communication used in this text means a communication transmitted via a communication channel. The term broadcast communication or point-to-multipoint (ρτM) general term used in this article refers to-communication via a common communication channel /. However, the following several client / user equipment 98232.doc 200541355 The term physical channel used in this article refers to a channel that carries user data or control information through a radio interface. A physical channel usually contains a combination of a frequency scrambling code and a channelization code. In the uplink direction, the relative phase is also included. Many different physical channels are used in the uplink direction based on what the subscriber unit / user equipment is trying to do. The physical channel is defined by physical mapping and attributes used to transfer data through the radio interface. A physical channel is a 'transmission medium' that provides a radio platform through which the information can be physically transferred and is used to carry signals for transmission and user data over the radio link. As used herein, the term transmission channel means —Used to perform data channel selection between entities in the same physical layer. — How the material channel is transferred from the radio interface on the 4 physical layer and what characteristics are used to define 'for example' whether to use dedicated or general physics Channels, or multiplexing of logical channels. Transmission channels can be used to access μ-transmission and user data at the (mac) layer (L1). Wireless network control (RNC) deaf-looking transmission Channel. Any one of the many communication channels that are mapped to the physical channel transmits information from the MAC layer to the physical layer. The logical channel is an information stream or radio interface dedicated to the transfer of a particular type of information. Logic Channels are provided on top of the MAC layer. A series of channels is defined by what type of information (such as signal transmission or user profile) is transferred ' It can be understood as the different tasks that the network and the terminal should perform at different points. The term reverse link uplink channel used in this article refers to a one-way communication channel 7-channel '11. Unidirectional communication channel / link unit / Using 98232.doc -12- 200541355 is equipped to send signals to a base station in a radio access network (RAN). This uplink channel can also be used to send signals from A mobile station transmits to or from a mobile base station. The term forward link or downlink as used herein means a communication channel / link by which the communication channel / link The Link Radio Access Network (RAN) sends a signal to a wireless communication device / subscriber unit / user equipment. As used herein, the term remote station / base station / node B means that the subscriber / user equipment will The hardware to which a communication signal is sent or received. The hive, depending on where the term is used, refers to the hardware or a geographical coverage area. A sector is a partition of a hive. Because a sector Has the properties of a hive, so According to the teachings described by Hive, it is not difficult to expand to sectors. The term wireless communication device / subscriber / user equipment (UE) as used herein means that an access network sends or receives communication signals to or from it. Signal hardware. A subscriber / user equipment can be mobile or fixed. A wireless communication device / subscriber / user equipment can be via a wireless channel or via a wired channel (for example, using optical fiber or coaxial) Cable) for any data device or terminal. A wireless communication device / user equipment may further be any of many types of devices, including (but not limited to) a pc card, compact flash memory, external or Internal modem or wireless or wired telephone. The term soft handover as used herein means communication between a subscriber and two or more sectors, where each sector belongs to a different hive. Reverse key communication is received by two sectors, and forward link communication is carried simultaneously via two or two forward links on sectors 98232.doc -13-200541355. The term softer handover as used herein means communication between a subscriber and two or more sectors, where each sector belongs to the same honeycomb. The reverse link communication is received by two sectors, and the forward link communication is carried simultaneously through one of the two or more previous sector links. Summary In the following description, an exemplary communication system will be described. An exemplary wireless communication device and technique for selecting a serving sector will be described later. Thereafter, more optimized service sector selection mechanisms using techniques for transmitting sector load information to the wireless communication device will be described. In general, the described embodiments address the need for an improved serving sector selection mechanism by providing techniques for communicating sector load information to wireless communication devices. According to one aspect, the wireless communication device may measure a continuous carrier-to-interference (c / i) ratio using each of its active set (AS) sectors (or all sectors in its active set (AS)). And sector load information to autonomously determine a new / best serving sector. Exemplary Communication System FIG. 1 is a diagram of a wireless communication system 100 that can be designed to support one or more CDMA standards and / or designs (eg, W_CDMA standard, IS-95 standard, cdma2000 standard, HDR specifications , LxEV_Dv standard). In an alternative embodiment, the system 100 may also deploy any wireless standard or design other than the 7 (: 1)] ^ 8 system. For simplicity, the system 100 is shown as including three base stations 104 in communication with two mobile stations 106. This base station and its coverage area are often collectively referred to as a "honeycomb". In the IS-95 system, a hive can contain one or more 98232.doc -14- 200541355 sectors. In the W_CDMA specification, each sector of the base station and the coverage area of the sector are called a honeycomb. Depending on the system being constructed, the mother-mobile station 106 can communicate with the two (or may be) base stations 104 via the forward link at any given moment, and it can be seen whether the mobile station is in power The parent hand communicates with one or more base stations via the reverse link. The forward link (ie, the downlink) refers to the communication k from the base station to the mobile station, and the reverse link (ie, the uplink) refers to the communication from the mobile station to the base station. As described above, the wireless communication system 100 can support simultaneous users (such as the IS_95 system, and occasionally allocate the entire communication resource to a user (such as the IS_856 system), or can share the communication The resource is to allow two types of access. The lxEV_DV system is an example of a system that can divide the communication resource between the two types of access and dynamically configure the allocation according to user requirements. In lxEV- In the DV system, although many users may be using packet services in a hive, the base station is usually transmitted to the _impulse station via F-PDCm. (By scheduling transmission for two or more users and The power and / or Walsh channels are appropriately configured for each user to transmit to two or more users.) Based on a scheduling algorithm, a mobile station is selected for forward link transmission. On-similar to IS- In the 856 or lxEV-DV system, the scheduling is based in part on channel quality feedback from the mobile station serving the party. For example, in IS-856, the mobile station estimates the quality of the forward link and Calculate the expected transmission rate that can be maintained for the field condition. 纟 Since each mobile station's place 98232.doc -15- 200541355, the required rate is transmitted to the base a Toyakou. The scheduling algorithm can For example) In order to support transmission at a relatively high transmission rate, select a mobile station in order to make fuller use of the shared communication channel. As another example, every -7 τ is only an example, in the lxEV-DV system Each subscription port is instructed by the reverse channel quality channel or transmitted by a carrier to estimate the material quality & quality estimation. The scheduling algorithm is used to determine the mobile station selected for transmission and the appropriateness according to the channel quality Rates and transmission formats. Exemplary channels A typical data communication system may include various types of channels or channels. More specifically, 'commonly deploy one or more data channels. Although in-band control signal transmission Can be included on a data channel, but it is also common to deploy one or more control channels. For example, in a 1xEv_dv system, forward packet data is defined for control and data transmission through the forward link respectively The control channel (F-PDCCH) and the forward packet data channel (f_pdch). The forward packet data channel (F-PDCH) is a shared packet resource channel that can support high-speed operation traffic. It is processed by the MAC layer scheduling to the Channel access. This channel is different from all other channels due to adaptive modulation and coding. Also, it uses a variable Walsh code space. This means that when guided by the MAC layer based on feedback information from the mobile station The modulation and coding can be changed between frames. The feedback information is included in R-CQICH (the ratio of the pilot chip energy Ec to the total noise density price of the strongest F-PICH received in its report ^ / milk) During R-ACKCH, the R-ACKCH indicates whether the frame is successfully received. The chosen modulation and coding also depends on the available WalsIuf. Unlike all other channels, F-PDCH uses only the remaining resources at the base station. This 98232.doc -16-200541355 means that the power consumed by the F-PDCH and the Walsh code can be changed from frame to frame. The forward packet data control channel (F-PDCCH) is a shared channel, which is mainly used to transfer information about the F-PDCH transmission format. Layer 2 control information transmitted in parallel via the F-PDCCH is accompanied by data transmission via the F-PDCH. The control information channel allows correct demodulation and decoding of the associated F-PDCH frame. 0 The reverse channel quality indicator channel (R-CQICH) is a support channel, which is used for adaptive coding and modulation via F-PDCH. . This channel is used to transfer F-PICH Ec / Nt to the serving base station. This information is used to select the appropriate modulation and coding mechanism. Further, one mobile station selected for transmission via F-PDCH or, in some cases, two mobile stations may be selected based on a predetermined fairness metric and r_CqICH value. The information transmitted through the channel can be a full 4-bit coded value of F-PICH Ec / Nt, or an up / down indication relative to one of the previously accumulated values. The R-CQICH is also used to indicate the base station corresponding to the reported f_PIch Ec / Nt. The R-gQICH Walsh Cover * index identifies each base station. FIG. 2 depicts an exemplary mobile station 106 and a base station 104 configured in a system suitable for data communication. Base station 104 and mobile station 106 are shown as communicating via a forward link and a reverse link. The mobile station 106 receives the forward link signal in the receiving subsystem 220. A base station 104 that can communicate with this forward data and control channel (detailed below) may be referred to herein as a service station for mobile station 106. An exemplary receiving subsystem is described in further detail below with reference to FIG. Carrier interference (C / I) estimation is performed in the mobile station 106 for the W-directional link signal received from the serving base station at 98232.doc 200541355. A C / I measurement is an example of a channel quality metric used as a channel estimate, and alternative channel quality metrics may be deployed in alternative embodiments. This C / I measurement is passed to the transmission subsystem 210 in the base station 104, an example of which will be further detailed below with reference to FIG. The transmission subsystem 210 passes the c / i estimate via a reverse link, where it is passed to the serving base station. Note: In a soft handover scenario, the reverse link signal transmitted from a mobile station can be received by one or more base stations other than the serving base station (referred to herein as a non-serving base station). The receiving subsystem 230 in the base station 104 receives C / I information from the mobile station 106. The scheduling software 24o in the base station 104 is used to determine whether and how data should be transmitted to one or more mobile stations within the coverage area of the serving cell. Any type of scheduling algorithm can be deployed within the scope of the present invention. The application was filed on February 11, 1997 and in 2002! month! Awarded to Zhan "Zhan et al.

題為”METHOD AND APPARATUS FOR F〇RWARD UNK RATE SCHEDULING,”的美國專利第6,335,922號中揭示了 一實例,該專利被讓渡於本發明之受讓人。 牡一 1夕丨J不性lxt V_ W Η π 叫軔谷所接收 ^量測指示可以-確定速率傳輸某_資料時,為前向鍵 傳輸而選擇該行動台。依據系統容量選擇—目標行動台 得可-直以其最大可支援速率來㈣該共用㈣資源: 利的。因此’所選擇之典型目標行動台可為—具有最大 報告之c/ι的行動台。亦可將其它因素併入排程決策中。 例而言,可能已向各種使用者作出了最低服務品、質保證 98232.doc -18- 200541355 2可為具有-相對較低之所報告的行動台^ 擇用於傳輸以維護—最低資料轉移速率至某一使用者^ > =示性系統中,排程她糊定傳輸至哪— 仃動σ,且亦判定某一傳輸An example is disclosed in U.S. Patent No. 6,335,922, entitled "METHOD AND APPARATUS FOR FORR UNK RATE SCHEDULING," which is assigned to the assignee of the present invention. On the first day of the day, J instability lxt V_ W Η π is received by 轫 谷 ^ Measurement indication can-determine the rate of transmission of certain data, the mobile station is selected for forward key transmission. Select based on system capacity—Target mobile station DEK—Directly share the resources at its maximum supported rate: Profitable. Therefore, the typical target mobile station selected may be the mobile station with the largest reported c / ι. Other factors can also be incorporated into scheduling decisions. For example, a minimum service product and warranty may have been made to various users. 98232.doc -18- 200541355 2 Can be a-relatively low reported mobile station ^ Optional for transmission for maintenance-minimum data transfer Rate to a certain user ^ > = In the illustrative system, she schedules the transmission to which it is scheduled — σσ, and also determines a transmission

科速率、調變格式及功率 日代性實施例中,舉例而言,諸如⑶咖系統, :基於在行動台處量測之通道品質而在該行動台處 W速率/調變格式的決策’且可將該傳輸格式傳輸至該服 務基地台來代替C/I量測。熟f此項技術者將認識到,存在 可在本發明之㈣内佈署的可支援速率、調變格式、功率 位準及其類似物之無數組合。此外,㈣在本文所描述之 ,種實施例中該等排程任務在基地台中執行,但在替代實 施例中’某些或全部排程過程可發生於行動台中。 排程軟體240導引傳輸子系統27〇以使用所選速率、調變 才。式X力率位準及其類似物經由前向鏈結而傳輸至所選行 動台。 $例示性實施例中,㈣通道(或F_pDcCH)上之訊息連 同貝料通道(或F-PDCH)上之資料一起傳輸。可使用該控制 匕逼來識別F_PDCH上之資料的接收行動台,以及識別在通 “會活期間有用的其它通信參數。當F-PDCH指示某一行動 口為忒傳輸之目標時,此行動台應接收並解調變來自該 bPDCCH之資料。該行動台在接收到此資料之後在該反向 鍵、纟α上回應一指示該傳輸成功或失敗之訊息。在資料通信 系統中一般佈署此項技術中熟知之重新傳輸技術。 一行動台可與一個以上之基地台通信(一情形為熟知之 98232.doc -19- 200541355 軟式交遞)。軟式交遞可包含來自—基地台(或—基地收發器 子系統(BTS))之多㈣區(熟知為更軟式交遞)以及來自多 個BTS之輕。呈軟式交遞之基地台扇區料被儲存於一 行動台之有效集中。在一同時共用之通信資源系統(諸如 IS-95 ' IS-2_或一 lxEV_DV系統之對應部分)中,該行動台 可組合自該有效集中之全部扇區所傳輸的前向鏈結訊號。 在一僅資料系統(諸如IS_856或一 lxEV_Dv系統之對應部分) 中,一行動台自該有效集中之一基地台接收一前向鏈結資 料訊號,其中該服務基地台(根據諸如彼等描述於 C.S0002.C標準中之行動台選擇演算法而得以判定)。亦可 自非服務基地台接收其它前向鏈結訊號(其實例將進一步 詳述於下文)。 可在多個基地台處接收來自該行動台之反向鏈結訊號, 且通常為該有效集中之基地台維護該反向鏈結之品質。可 組合在多個基地台處所接收之反向鏈結訊號。一般而言, 對來自非佈置之基地台的反向鏈結訊號進行軟式組合可能 需要具有很小延遲之顯著網路通信頻寬,且其因此無法由 上文中所列出之例示性系統所支援。在更軟式交遞中,可 在不需要網路訊號傳輸之前提下組合在單個BTS中之多個 扇區處所接收之反向鏈結訊號。在上文中所描述之例示性 系統中’反向鏈結功率控制維護了品質使得可在一 BTS(切 換分集)處成功解碼反向鏈結訊框。 例示性無線通信裝置 圖3為諸如行動台1〇6或基地台1〇4之無線通信設備的一 98232.doc -20- 200541355 方塊圖。此例示性實施例中所描述之方塊將通常為包人於 基地台104或行動台106中之組件的一 ^ 示热白此項技術 者將不難調適圖3所展示之用於任意數目之基地台 台組態中的實施例。 Q s行 訊號在天線310處被接收並被傳遞至接收器32〇。接收器 320根據-或多個無線系統標準(諸如上文中所列出之伊準^ 執行處理。接收器32〇執行各種處理,諸如射頻(rf)轉^領 轉換、放大、類比轉數位轉換、遽波及其類似處理。二 接收之各種技術已在此項技術巾為吾人所熟知。當接收器 320分別為行動台或基地台時’該設備可用於量測前向或反 向鏈結之通道品質,然而為論述之清楚起見,而展示了一 獨立通道品質估計器335(詳述於下文)。 根據-或多個通信標準,在解調變器325中解調變來自接 收器320之訊號。在一例示性實施例中,佈署一能夠解調變 IxEV-DV訊號之解調變器。在替代實施例中,可支援替代標 準’且若干實施例可支援多個通信格式。解調變器325可^ 行RAKE接收、等化、組合、解交錯、解碼及如由該等所接 收之訊號的格式所需之各種其它功能。各種解調變技術在 此項技術中已為吾人所熟知。在基地台⑽中,解調變器奶 將根據反向鏈結進行解調變。在行動台⑽中,解調變器奶 將根據前向鏈結進行解調變。本文中所描述之資料及控制 通道兩者均為可在接收器320及解調變器325中被接收並進 行解調變之通道的實例。前向資料通道之解調變將根據控 制通道上之訊號傳輸而發生,如上文中所描述。 98232.doc 200541355 訊息解碼器33〇接收被M难找七吹丄丨2 & 、 受叹、、,工解凋變之貧料並提取分別經由前 向或反向鏈、、Ό而被導引至行動台iQ6或基地台⑽之訊號或 訊息。訊息解碼㈣〇解碼用於在一系統上設定、維護及切 斷呼4 (包括音sfL或資料會話)之各種訊息。訊息可包括諸 如C"量測之通道品質指示、功率控制訊息或用於解調變前 向資料通道之控制通道訊息。各種其它訊息類型在此項技 術中已為吾人所熟知且可在所支援之各種通信標準中得到 洋細s兄明。將該等訊息傳遞至處理器35〇以用於隨後之處 理。可在處理器3 50中進行訊息解碼器33〇之某些或全部功 能,儘管為論述之清楚起見而展示了 一離散方塊。或者, 解调變益325可解碼某資訊並直接將其發送至處理器 350(實例為諸如ACK/NAK之單個位元訊息或功率控制上/ 下命令)。 將通道品質估計器335連接至接收器320,且將該通道品 貝估计器3 3 5用於進行各種功率位準估計,以用於本文中所 描述之程序:以及用於在通信中(諸如解調變)所使用之各種 其它處理。在行動台106中,可進行C/Ι量測。另外,可在 一給定貫施例之通道品質估計器3 3 5中量測用於該系統中 之任何訊號或通道的量測。在基地台104或行動台1 〇6中, 可進行諸如所接收之導頻功率的訊號強度估計。僅為了論 述之清楚起見將通道品質估計器335展示為一離散方塊。將 此方塊併入諸如接收器320或解調變器325之另一方塊内係 常見的。視哪一訊號或哪一系統類型正進行估計而定,可 進行各種類型之訊號強度估計。一般而言,在本發明之範 98232.doc -22- 200541355 疇内’可佈署任何類型之通道品質度量估計方塊來代替通 道品質估計器335。在基地台1〇4中,將該等通道品質估計 傳遞至處理ϋ35(ΠΧ用於排程或判定反向鏈結品質,如下文 進-步所描述。可使用通道品質估計來判定是否需要上或 下功率控制命令以將前向或反向鏈結功率驅動至所要設定 點。如上文中所描述’可藉由一外部迴路功率控制機:來 判定該所要設定點。 經由天線310傳輸訊號。根據諸如彼等上文中所列出之一 或多個無線系統標準而在傳輸器3 7 G中格式化該等經傳輸 之訊號。可包含於傳輸器37G中之組件的實例為放大器、過 遽器、數位至類比(D/A)轉換器、射頻(RF)轉換器及其類似 物。藉由調變器365將用於傳輸之資料提供給傳輸器37〇。 可根據多種格式為傳輸格式化資料及控制通道。可根據一 由-排程演算法根據C/I或其它通道品質量測而指示之速 率及調變格式而在調變器365中格式化用於經由前向鏈結 資料通道而進行傳輸之資料…排程軟體(諸如上文中所描 述之排程軟體)可存心處理器35Q中。同樣地,可根據 -亥排H法導引傳輸器37G在—功率位準下傳輸。可併入 調變器365之組件的實例包括:編碼器、交錯器、擴展器及 各種類型之調變器。 可使用訊息產生器360來準備各種類型之訊息,如本文中 所描述。舉例而言,可在一行動台中產生經由反向鏈結進 行傳輸之c/i訊息。可在基地台1()4或行動台⑽中分別產生 經由前向或反向鏈結進行傳輪之各種類型的控制訊息。 98232.doc -23- 200541355 可將在解調變器325中所接收並進行解調變之資料傳遞 至處理器350以用於音訊或資料通信以及傳遞至各種豆它 組件。同樣地,可將用於傳輸之資料自處理器35〇導引至調 變器奶及傳輸器37〇。舉例而言,各種資料應用可存在於 處理器35G上’或存在於被包含於無線通信設備⑽或⑽中 之另-處理器(未圖示)上。可經由未圖示之其它裝備將基地 $ HM連接至諸如網際網路(未圖示)之一或多個外部網路。 行動台106可包含至諸如一膝上型電腦(未圖示)之外部In the embodiment of daily rate, modulation format, and power, for example, such as a CD system, the decision of the rate / modulation format at the mobile station is based on the channel quality measured at the mobile station. The transmission format can be transmitted to the serving base station instead of C / I measurement. Those skilled in the art will recognize that there are countless combinations of supported rates, modulation formats, power levels, and the like that can be deployed within the framework of the present invention. In addition, as described herein, the scheduling tasks in this embodiment are performed in the base station, but in alternative embodiments, some or all of the scheduling process may occur in the mobile station. The scheduling software 240 directs the transmission subsystem 27 to use the selected rate and modulation. The formula X force level and the like are transmitted to the selected stage via a forward link. In the exemplary embodiment, the information on the channel (or F_pDcCH) is transmitted along with the data on the shell channel (or F-PDCH). The control dagger can be used to identify the receiving mobile station of the data on F_PDCH, as well as other communication parameters that are useful during the communication session. When F-PDCH indicates a certain mobile port as the target of radio transmission, this mobile station Should receive and demodulate the data from the bPDCCH. After receiving this data, the mobile station responds on the reverse key, 纟 α with a message indicating the success or failure of the transmission. This is generally deployed in data communication systems Retransmission technology is well-known in this technology. A mobile station can communicate with more than one base station (a situation is the well-known 98232.doc -19- 200541355 soft handover). Soft handover can include from-base station (or- Base Transceiver Subsystem (BTS)) with multiple areas (known as softer delivery) and light from multiple BTSs. Base station sectors that are delivered in soft delivery are stored in an efficient set of mobile stations. In a simultaneous shared communication resource system (such as the corresponding part of the IS-95 'IS-2_ or a lxEV_DV system), the mobile station can combine forward link signals transmitted from all sectors in the active set. One In a data system (such as the corresponding part of the IS_856 or a lxEV_Dv system), a mobile station receives a forward link data signal from a base station in the active set, where the serving base station (as described in C.S0002 according to The mobile station selection algorithm in the .C standard is determined.) Other forward link signals can also be received from non-serving base stations (examples of which will be further detailed below). Multiple base stations can be received from the base station. The reverse link signal of the mobile station, and usually the base station of the effective concentration, maintains the quality of the reverse link. It can combine the reverse link signals received at multiple base stations. Generally speaking, the The soft combining of the reverse link signals of the deployed base stations may require significant network communication bandwidth with a small delay, and therefore it cannot be supported by the exemplary systems listed above. In softer delivery , The reverse link signal received at multiple sectors combined in a single BTS can be picked up before network signal transmission is not needed. In the exemplary system described above, the Link power control maintains quality such that reverse link frames can be successfully decoded at a BTS (Handover Diversity). Exemplary Wireless Communication Device FIG. 3 is a wireless communication device such as mobile station 106 or base station 104 A block diagram of 98232.doc -20- 200541355. The blocks described in this exemplary embodiment will generally be a component of a component that is included in the base station 104 or the mobile station 106. The person skilled in the art will not Difficult to adapt the embodiment shown in Figure 3 for any number of base station configurations. The Q s line signal is received at the antenna 310 and passed to the receiver 32. The receiver 320 is based on-or multiple wireless System standards (such as those listed above) perform processing. The receiver 32 performs various processes such as radio frequency (rf) conversion, amplification, analog to digital conversion, chirping, and the like. 2. The various technologies received are well known to me in this technology. When the receiver 320 is a mobile station or a base station, respectively, 'the device can be used to measure the channel quality of the forward or reverse link, but for the sake of clarity, an independent channel quality estimator 335 (detailed (Described below). The signal from the receiver 320 is demodulated in a demodulator 325 according to one or more communication standards. In an exemplary embodiment, a demodulator capable of demodulating IxEV-DV signals is deployed. In alternative embodiments, alternative standards' may be supported and several embodiments may support multiple communication formats. The demodulator 325 can perform RAKE reception, equalization, combining, deinterleaving, decoding, and various other functions as required by the format of the received signal. Various demodulation techniques are well known in this technology. In base station ⑽, the demodulator will perform demodulation based on the reverse link. In mobile station 解调, the demodulator will perform demodulation based on the forward link. Both the data and control channels described herein are examples of channels that can be received and demodulated in receiver 320 and demodulator 325. The demodulation of the forward data channel will occur according to the signal transmission on the control channel, as described above. 98232.doc 200541355 The message decoder 33 receives the hard-to-find seven blows 2 2 & sigh, ,, work out the depleted materials and extracts them through the forward or reverse chain, Ό respectively. Signal or message leading to mobile iQ6 or base station. Message decoding: Decoding is used to set up, maintain, and disconnect calls on a system (including tone sfL or data sessions). The messages may include channel quality indicators such as C " measurements, power control messages, or control channel messages used to demodulate forward data channels. Various other message types are already familiar to me in this technology and can be found in the various communication standards supported. These messages are passed to the processor 350 for subsequent processing. Some or all of the functions of the message decoder 33 may be performed in the processor 3 50, although a discrete block is shown for clarity of discussion. Alternatively, the demodulation gain 325 can decode some information and send it directly to the processor 350 (examples are single bit messages such as ACK / NAK or power control up / down commands). The channel quality estimator 335 is connected to the receiver 320 and the channel pin estimator 3 3 5 is used for various power level estimations for the procedures described herein: and for use in communications such as Demodulation) and various other processes. In the mobile station 106, C / I measurement can be performed. In addition, the measurement of any signal or channel used in the system can be measured in the channel quality estimator 3 35 of a given embodiment. In the base station 104 or the mobile station 106, a signal strength estimation such as the received pilot power can be performed. The channel quality estimator 335 is shown as a discrete square for clarity of discussion only. It is common to incorporate this block into another block such as the receiver 320 or the demodulator 325. Depending on which signal or system type is being estimated, various types of signal strength estimates can be made. In general, within the scope of the present invention, 98232.doc -22-200541355, any type of channel quality metric estimation block can be deployed instead of the channel quality estimator 335. In the base station 104, these channel quality estimates are passed to the processing unit 35 (Π × for scheduling or determining the quality of the reverse link, as described in the next step. The channel quality estimation can be used to determine whether it is necessary to Or issue a power control command to drive forward or reverse link power to the desired setpoint. As described above, 'the external setpoint power control machine can be used to determine the desired setpoint. The signal is transmitted via the antenna 310. According to The transmitted signals are formatted in the transmitter 37G, such as one or more of the wireless system standards listed above. Examples of components that may be included in the transmitter 37G are amplifiers, amplifiers , Digital-to-analog (D / A) converter, radio frequency (RF) converter and the like. The modulator 365 provides the data for transmission to the transmitter 37. The transmission can be formatted according to a variety of formats Data and control channels. Can be formatted in modulator 365 for forward link data channels according to a rate-and-modulation format indicated by C / I or other channel quality measurements based on a scheduling algorithm. While transmitting Data ... Scheduling software (such as the scheduling software described above) can be stored in the processor 35Q. Similarly, the transmitter 37G can be transmitted at the -power level according to the -H schedule H method. Can be incorporated Examples of the components of the modulator 365 include: encoders, interleavers, expanders, and various types of modulators. The message generator 360 can be used to prepare various types of messages, as described herein. For example, the Generates c / i messages transmitted through a reverse link in a mobile station. Various types of control messages can be generated in base station 1 () 4 or mobile station ⑽ for transmission via forward or reverse link, respectively. 98232.doc -23- 200541355 The data received and demodulated in the demodulator 325 can be passed to the processor 350 for audio or data communication and to various bean components. Similarly, the Directs the data for transmission from the processor 35 to the modulator and transmitter 37. For example, various data applications may exist on the processor 35G 'or on a wireless communication device, or The other in the-processor (not (Shown). The base $ HM may be connected to one or more external networks such as the Internet (not shown) via other equipment (not shown). The mobile station 106 may include, for example, a laptop (not shown) (Illustrated)

的一鏈路。 I 處理器MO可為一通用微處理器、一數位訊號處理器(DSP) 或-專用處理器。處理器35〇可執行接收器32〇、解調變器 325、訊息解碼器33〇、通道品質估計器335、訊息產生器 360、調變器365或傳輸器37〇之某些或全部功能,以及該無 線通仏設備所需之任何其它處理。處理器35〇可與專用硬體 相連接以辅助此等任務(未展示細節)。資料或音訊應用可在 外部(諸如一外部連接之膝上型電腦或連接至一網路、可在 無線通信設備104或1〇6内之一額外處理器(未圖示)上進行 或可在處理器350本身上進行。處理器350與記憶體355相連 接,該記憶體355可用於儲存資料以及用於執行本文中所描 述之各種耘序及方法的指令。熟習此項技術者應瞭解··記 憶體355可包含各種類型之一或多個記憶體組件,其可整體 或部分地嵌入處理器350内。 如上文中所描述,在諸如IxEV-DV之資料系統中,需要在 該等基地台(切·換分集)中之至少一者中以高機率對反向鏈 98232.doc -24 - 200541355 結通信通道進行解碼且應最小化對全部反向鏈結基地台之 干擾。另外,在服務基地台處需要R-CQICH之可靠接收。 該R-CQICH為BTS提供快速前向鏈結通道條件更新以有效 操作 F-PDCH。 圖4描繪了一用於控制當前服務扇區41〇A1及用於控制非 服務扇區410A2、410B1、B2、41〇C2之系統的一例示性實 施例。行動台106自每一有效集基地台1〇4A_1〇4c、F-CPcCH 接收一前向鏈結功率控制流。在此實例中,每一基地台 l〇4A-104C、BSl_BS3分別包含三個扇區(扇區丨_3),其分別 被標記為410A1-410C3。在此實例中,該有效集包括扇區 410A1-2、410B1-2及410C2。此為所謂之軟式-更軟式交遞 之一實例,因為該行動台與多個基地台(軟式)以及一或多個 也口内之夕個扇區(更軟式)處於交遞。行動台^ 被提供 有來自每有效集扇區之反向鏈結功率控制反饋。將 R-CQICH自行動台1〇6導引至該服務扇區。 服務扇區選擇 前向封包資料通道操作 、PDCH使得對於延遲允許流量能夠有效利用BS資源。其 =:用通道’且可以延遲抖動為代價來充分利用由於衰 =2 V致的短期無線電通道變化。藉由巧妙的排程,衰退 貝~上可_著^t界面之效率。 因於多使用去八隹^ 干又艮你% 刀集。在點對多點鏈路中,諸如存在於單個 傳播、—給定蜂巢中之該等廳之間的點對多點鏈路,無線電 通道獨立地變化。然後該BS可選擇將其資源配置至彼 98232.doc -25- 200541355 蜂巢中之全部行動台中經歷最佳無線電傳播環境之MS且 因此最大化該生產量。在一群行動台中選擇一 MS —般被稱 為多使用者分集。 此外’若沒有施加於該B S排程軟體上之公平約束,則該 BS可對可支援最高資料速率之MS進行排程,且某些MS可 能根本接收不到任何資料。可使用一排程演算法,其使多 使用者分集效應成為可能、滿足某些公平準則並最小化物 理層生產量變化。排程時間間隔對應於單個訊框,其可為 1.25 ms、2.5 ms或5 ms。自通道品質資訊及可用BS資源來 判定資料速率。當經由F-PDCH已對MS進行排程時,該前 向鏈結控制通道通知該MS。控制F-PDCH操作之實體被稱 為PDCH控制功能(PDCHCF)。此實體控制鏈路調適、排程 及H-ARQ II型操作,且其負責將f-pdch邏輯通道映射至對應 物理通道。PDCHCF被認為是MAC層之一部分且可於BTS 處進行建構。 控制訊號傳輸 F-PDCH係一共用通道,該BS准予在其上進行接取高達5 ms。此快速接取需要快速訊號傳輸協定以警告MS。該BS 使用F-PDCCH,其與F-PDCH並行操作。該F-PDCCH訊框長 度通常等於F-PDCH訊框長度。該MS對F-PDCCH及F-PDCH 上所接收之訊號進行緩衝。考慮全部三個可能之訊框長度 1.25、2.5 及 5 ms 來解碼 F-PDCCH。 標準F-PDCCH控制訊息 圖5為一含有21個位元之標準F-PDCCH控制訊息。另外, 98232.doc -26 - 200541355 存在1 6個位元以用於C R C及8個編碼裔尾位元。 在控制訊息本身中,將初始8個位元保留用於MAC_ID ’ 該MAC_ID識別MS。該BS通常將規定一MAC識別符之MAC 識別符(MAC_ID)欄位設定成被指派給該MS之MAC識別 符,其中該MS將對與經由F-PDCH之此訊息的傳輸同時的 F-PDCH子封包傳輸進行解碼。MAC_ID之範疇為每一 CDMA通道或導頻。當該MS執行與另一導頻之交遞時, MAC_ID可改變。該MAC_ID最初經由擴展通道指派訊息 (EC AM)而與該MS通信,且隨後可在一軟式交遞事件情況 下藉由發送通用交遞指示訊息(UHDM)而得以更新。 WALSH_MASK欄位規定Walsh空間遮罩點陣圖(Mask Bitmap)。該BS通常將此攔位設定成該Walsh空間遮罩點陣 圖以便當解碼F-PDCH時能指示該MS將省略該封包資料通 道Walsh集中之確定實體。該BS通常將此欄位中之每一位元 設定為,〇,或,1,以指示該MS將包含Γ〇’)或省略(’Γ)該Walsh指 數表(WCI)中之對應指數。 EP—SIZE欄位規定編碼器封包大小。存在該編碼器封包大 小可採用之六個不同值。MS需要知道該編碼器封包大小以 便對引入封包成功解碼。該編碼器封包大小被包含於3位元 之EP_SIZE欄位中。EP—SIZE-111係指用於F-PDCCH控制訊 息之擴展訊息類型。若此訊息含有一擴展訊息,則該83通 常將此攔位設定成否則,對於與經由F_PDCH之此訊 息的傳輸同時的F-PDCH子封包傳輸而言,該BS通常將此欄 位設定成該編.碼器封包大小之編碼值(而非'111 f)。控制 98232.doc -27- 200541355 F-PDCCH訊息僅含有MAC—ID、EP—SIZE=111及10位元控制 資訊。 MS可同時接收經由四個獨立ARQ通道傳輸之四個並行 物理層資料流。為了在該等通道之間加以區別,F_PDCCH 訊息含有一被稱為ARQ通道識別符(ACID)之2位元欄位。每 一 ACID支援獨立Η-ARQ II型操作。對於與經由F-PDCH之 此訊息的傳輸同時的F-PDCH子封包傳輸而言’ BS通常將該 ARQ通道識別符(ACID)攔位設定成該ARQ通道識別符。 對於與經由F-PDCH之此訊息的傳輸同時的F-PDCH子封 包傳輸而言,BS通常將該子封包識別符(SPID)欄位設定成 子封包識別符。對於與經由F-PDCH之此訊息的傳輸同時的 F-PDCH子封包傳輸而言,BS通常將該ARQ識別符序列號 (AI_SN)欄位設定為該ARQ識別符序列號。因為該序列並非 具有強制性且可重複SPID=00,所以當新的編碼器封包開始 時必須通知該MS。將該ARQ識別符序列號(AI_SN)位元添 加至F-PDCCH訊息。每當新的編碼器封包傳輸開始時便雙 態觸發AI_SN位元。 最後,F-PDCCH訊息含有能識別Walsh碼樹中之最後 Walsh碼的最後Walsh碼指數(LWCI)。僅有28個長度為32的 Walsh碼可潛在用於F-PDCH。正是此等可用之28個碼藉由 WALSH—TABLE—ID 而被訊號傳輸至 MS。WALSH—TABLE_ID 之範疇為每一導頻。其係3位元欄位且為ECAM及UHDM兩 者之一部分。由於(例如)F-SCH之指派及切斷,Walsh碼空 間會變得分段_。因為LWCI指示一鄰接Walsh碼空間中之最 98232.doc -28- 200541355 後碼,所以F-PDCCH訊息(如圖5中所示)無法定址分段之 Walsh空間。對於與經由F-PDCH之此訊息的傳輸同時的 F-PDCH子封包傳輸而言,該BS通常將最後Walsh碼指數 (LWCI)欄位設定為最後Walsh碼指數。若經由F-PDCCH0物 理通道來傳輸此訊息,則該BS通常設定此攔位以指示該 Walsh碼集包括WCI表中第0個至第LWCI個實體。否則,若 經由F-PDCCH1物理通道來傳輸此訊息,則該BS通常設定此 欄位以指示該Walsh碼集包括該WCI表中第(lwci0+ 1)個至 第LWCI個實體.。若與此訊息同時傳輸之F-PDCCH0訊息中 的]^八<3」〇大於或等於,01000000’,則^(^為?-?〇(:(:110訊息 中之最後Walsh碼指數。若該F-PDCCH0訊息中之MACJD 小於,01000000,,則 lwciO為 1。 為了減輕Walsh分段問題,設計一專門的F-PDCCH廣播訊 息來以訊號傳輸F-PDCH可用之分段Walsh碼空間。將此訊 息中之MAC jD設定成00000000,其指示該訊息被定址至該 蜂巢中之全部行動台。藉由LWCI來訊號傳輸長度為32之最 後兩個Walsh碼(未被位映射的長度為16之Walsh碼的派生 物)的可用性。 BS通常將擴展訊息類型識別符(EXT-MSG—TYPE)欄位設 定成,〇〇,或,0Γ。該BS可將此攔位設定成f〇〇f以指示該MS將 退出PDCH控制維持模式。該BS可將此欄位設定成’〇 1 ’以指 示該MS將在最大數目之切換訊框(REV—NUM—SOFT一 SWITCH—FRAMESS 或 REV—NUM一SOFTER—SWITCH—FRAMES) 之前終止當前切換傳輸模式。 98232.doc -29- 200541355 該BS通常將保留位元之RESERVED欄位設定為 ’00000000、 該標準允許兩個F-PDCH同時操作;意即,可同時排程高 達兩個行動台。添加此可撓性以更有效支援WAP流量及層3 訊號傳輸。 鏈路調適 該F-PDCH允許自適應調變及編碼以改良頻譜效率。藉由 反向通道品質指示通道(R-CQICH)將MS處之無線電通道狀 態資訊通信傳達至BS。此反饋通道允許該BS建構一能充分 利用通道可變性以達成多使用者分集增益之排程軟體。其 亦允許在給定了當前通道條件之情形下選擇最優F-PDCH 資料速率。 通道品質之反饋 MS經由R_CQICH報告其通道品質。存在經允許之兩個模 式:完整及差異載波干擾(C/Ι)報告。該完整C/Ι報告比該差 異C/Ι報告更t精確,但其會產生更多反向鏈結費用。 該完整C/Ι報告表示被映射至4位元通道品質指示的導頻 晶片能量與總雜訊加上干擾之比率導頻Ec/Nt的量測的結 果。在該完整模式中,每隔PCG或1.25 ms報告當前導頻 Ec/Nt。將差異更新解釋為相對於最近累加之C/Ι值的土0.5 dB校正。該差異機制本身由每隔20 ms之一完整報告及其間 之15 士0.5 dB更新組成。該累加器每隔PCG對該等差異更新 進行求和且其當接收到該完整報告時便每隔20 ms刷新其 本身。 98232.doc -30- 200541355 在一完整報告之後為15個差異報告。可重複該完整報告 以便改良可靠性。在此情形中’該接收器軟式組合該等重 複符號。可由該BS使用REV—CQICH—REP;M位、告!5分 ECAM、UHDM及速率變化訊息(RATCHGM)來組態重複該 完整C/Ι報告之次數。因為R-CQICH需要由服務BS來編碼, 所以R-CQICH符號得以重複並被軟式組合以改良可靠性。 該經改良之偵測係以減少R-CQICH符號速率為代價而獲得 的。 蜂巢選擇及切換 MS藉由使用長度為8之晶片的六個不同Walsh功能中之 一者π隱蔽’%R-CQICH符號來指示該服務BS。在R-CQICH 操作之情形中,此等Walsh功能被稱為Walsh隱蔽。將每一 R-CQICH傳輸導引(藉由一不同Walsh隱蔽)至一特殊導頻, 其中MS希望自該導頻接收封包資料通道傳輸。該MS基於來 自該封包資料通道有效集中之導頻的相對已接收之強度來 判定自該封包資料通道有效集至R-CQICH傳輸將發生之處 的導頻。在呼叫建立處,經由ECAM(或當經由一 UHDM更 新該有效集時),該網路使用REV_CQICH_COVER欄位以將 該PILOT_PN訊號傳輸至Walsh隱蔽映射。MS期望由與在報 告C/Ι時所使用之Walsh隱蔽相關聯的BS來服務。 通常,該MS藉由選擇具有最強所接收之導頻訊號(Ec/Nt) 的BS來達成選擇分集。然而,因為蜂巢切換對於未完成之 資料而言需要隊列同步,所以該MS無法立即改變服務之 BS。當該MS判定需要改變該服務之Bs導頻時,該MS調用 98232.doc -31 · 200541355 一扇區/蜂巢切換程序。為了初始化該切換,MS經由 R-CQICH傳輸一與眾不同之切換模式,其向該服務之BS指 示應完成任何未完成之編碼器封包(EP)之傳輸,且一旦完 成了傳輸,該MS便應切換至目標BS。在切換週期期間,該 等R-CQICH傳輸經修改以使用該封包資料通道有效集中之 目標導頻的Walsh隱蔽。該切換週期之長度取決於該源導頻 及目標導頻(在該封包資料通道有效集(AS)中)是在相同 BTS内還是在不同蜂巢中。該等切換週期之時間間隔由兩 個參數規定一NUM—SOFTER—SWITCHING_FRAMES 及 NUM_SOFT_S WITCHING JFRAMES(包含於 ECAM或 UHDM 中)。參數NUM—SOFTER—SWITCHING—FRAMES組態 MS 中 之切換程序,而切換延遲PDCH_SOFTER_SWITCHING_ DELAY(或 PDC_SOFT_SWITCHINGJDELAY)貝J 僅通知 MS 由於切換而引起服務中之可能的中斷及由於諸如隊列同步 之問題而引起之網路延遲。 最優化之服務扇區選擇機制 為了提供改良之服務選擇機制,可提供至少兩個選擇。 根據第一選擇,每一扇區可廣播其自身負載值。然而,根 據此選項,該MS必須使當前服務扇區收集來自另一扇區之 負載資訊,在此期間其將不接收來自該當前服務扇區之資 料。因為該廣播必須按一預定排程運作,所以此將減少共 用F-PDCH之TDM增益。根據第二選項,可由該服務扇區來 傳遞全部鄰接扇區之負載資訊。雖然此會導致在許多扇區 中相同資訊發生多個冗餘傳輸;然而,此可藉由BS以一方 98232.doc -32- 200541355 式自由地排程該訊息傳輸以保護fl容量的事實而得到補 損。並且’不需要L3訊號傳輸來禁用/啟用該特徵。bS可按 需要僅選擇發送或不發送該負載資訊廣播訊息。 再次參考圖4,在一態樣中,提供了一系統,其包含··複 數個BS104A-C,其各自均包含複數個扇區41〇A1—41〇C3 ; 及一由當前服務扇區410A1服務之MS 106。每一扇區可具 有複數個鄰接扇區。注意··在該等例示性實施例中僅為了 清楚之目標而使用服務及非服務術語。所揭示之技術適用 於基地台之任何集合,而不管其為服務基地台還是非服務 基地台。可以”主要,,代替”服務”且以”其它,,或,,第二”基地台 代替”非服務”來描述該等實施例,且所揭示之原理將以相 等力度應用。 每一 BS 104判定扇區負載資訊,並傳輸該扇區負載資 訊。該MS 106量測MS 106之有效集(AS)中之每一扇區的載 波干擾(c/i)比、儲存Ms 106之有效集(AS)中之該等扇區的 載波干擾(C/J)比量測並基於用於該等八§扇區中之每一者 的載波干擾(C/Ι)比量測及負載資訊來自主判定新的或最佳 服務扇區在貫施例中,當前服務扇區將用於全部鄰接 扇區之扇區負載資訊傳輸至Ms 1〇6。或者,每一扇區可傳 輸對應於其扇區負載資訊之負載值。 該等BS 1〇4可使用-專用通道(諸如,傳輸至單個⑽ι〇6 之前向鏈結通道)來傳輪扇區負載資訊。在一建構中,該專 用通道為-前向封包資料通道(F_pDCH)或—前向封包資料 控制通道(F-PDCCH)。在另-建構中,用於載運該扇區負 98232.doc -33- 200541355 載資§fl之專用通道為一前向基礎通道(F_FCH)或一前向專 用控制通道(F-DCCH)。 在另一實施例中,該等BS 104使用一共用通道多點播送 該扇區負載資訊。該共用通道可為(例如)一傳輸至該扇區所 服務之全部MS 106的前向鏈結通道。在一建構中,該共用 通道包含一前向封包資料通道(F-PDCH),其中單個F-pDCH 訊息載運一個以上扇區之負載資訊。在另一建構中,用於 載運該扇區負載資訊之共用通道為一共用前向基礎通道、 一共用前向專甩控制通道、一共用前向補充通道、一尋呼 通道(PCH)、一前向廣播控制通道(F_BCCH)或一前向通用 控制通道(F-CCCH)。 在又貫知例中,该扇區負載資訊包含一(例如)經由 F-PDCH或F-PDCCH而發送至該扇區所服務之全部^^的負 載資訊廣播訊息。對於廣播方法而言,可經由F_pDccH(較 佳、工由F-PDCCH1)發送一新訊息。然而,應瞭解:亦可使 用其它適當格式,具體言之,可存在所界定之若干格式, 其中單個P-PDCCH訊息可載運用於—個以上之扇區的負載 資訊。 圖6為根據本發明之一態樣的經修改之F-PDCCH控制訊 、了使用此t修改之控制訊息來傳遞扇區負載資訊。在 〜、樣中’可使用一新的訊息類型,其中該訊息列出了 PN—OFFSET值及對應負載值資訊。在—實施例巾,該扇區 負載資訊包含一負載資訊訊息,該負載資訊訊息包含一 PN-OFFSET攔位(其包括ρΝ ορρςρτ〆吉、β 匕枯 PM—OFFSET值)及 _ pN—L〇AD櫊 98232.doc 200541355 位(其包括對應負載值資訊)。在一建構中,該PN—OFFSET 欄位規定一導頻PN偏移,且該PN—L0AD攔位規定扇區負載 參數。在當以一專用方式將該負載資訊發送至一特殊使用 者時之情形中,可由對應於彼PN_0FFSET之Walsh隱蔽指數 來代替PN—OFFSET欄位。因為該Walsh隱蔽指數通常為3位 元值,而該PN—OFFSET通常為9位元值,所以此減少了所要 之訊息長度。然而,並不期望該PN_OFFSET之相同替代在 負載資訊廣播之情形中起作用,因為該PN_0FFSET至Walsh 隱蔽指數映射在行動台之間改變。該扇區負載資訊可包含 於(例如)其它現有CDMA2000層3(L3)訊息中,舉例而言, 諸如擴展通道指派訊息(ECAM)或通用交遞指示訊息 (UHDM)。 在此建構中,該負載資訊廣播訊息亦可包含一 MAC_ID 欄位及一 WALSH JVIASK欄位。該基地台通常將該MAC識別 符(MAC—ID)欄位(其規定一MAC識別符)設定成被指派給行 動台之MAC識別符,其中該行動台將對與經由F-PDCH之此 訊息的傳輸同時的F-PDCH子封包傳輸進行解碼。 若該MAC_ID具有第一值,則該BS 104在該負載資訊廣播 訊息中包含WALSH—MASK欄位且省略了其它欄位。其它剩 餘欄位可包含(例如)一EP—SIZE欄位、一 ACID欄位、一 SPID 攔位、一 AI—SN欄位、一 LWCI攔位、EXT—MSG—TYPE欄位 及一 RESERVED攔位。舉例而言,若該MAC_ID被設定為 *0000000(Τ,則該基地台包含WALSH—MASK欄位且省略了 剩餘欄位。 98232.doc -35- 200541355 若該MAC_ID具有第二值,則BS 104在該負載資訊廣播訊 息中包含PN—OFFSET及PN—LOAD櫊位。舉例而言,若該 MAC_ID被設定為’0000000Γ,則該基地台可包含 PN—OFFSET及 PN_LOAD欄位。 若該MAC_ID具有第三值,則BS 104在經由F-PDCCH而傳 輸之專用負載資訊訊息中包含REV_CQICH_COVER(對應 於一 AS扇區導頻之Walsh隱蔽指數)及PN_LOAD欄位。 若該MAC_ID具有第四值,則BS 104在經由F-PDCH而傳 輸之負載資訊廣播訊息中包含PN_OFFSET及PNJLOAD攔 位。 若該MAC_ID具有另一值,則BS 104在該負載資訊廣播訊 息中包含其它剩餘欄位且省略了 WALSHJMASK欄位、 PN_OFFSET欄位及PN_LOAD欄位。舉例而言,該基地台可 省略WALSH—MASK欄位及PN—OFFSET及PN—LOAD欄位且 包含了剩餘欄位。 圖7為一流程圖,其詳細描述了根據本發明之另一態樣之 遠端台的操作。在此態樣中,提供了 BS 104,其包含複數 個扇區、一處理器及一傳輸器。每一扇區均可具有複數個 鄰接扇區。在步驟710處,該處理器判定扇區負載資訊,且 在步驟720處,該傳輸器傳輸該扇區負載資訊。一當前服務 扇區傳輸用於全部鄰接扇區之扇區負載資訊。可(例如)使用 F-PDCH或其它適當FL通道以一專用方式來將該扇區負載 資訊獨立地發送至每一使用者。 圖8為一流程.圖,其詳細描述了根據本發明之又一態樣之 98232.doc -36- 200541355 無線通信裝置的操作。在此另一態樣中,提供了一由一當 前服務扇區服務之MS 106。該MS 106包含一接收器、一通 道品質估計器335、一記憶體及一處理器。在步驟810處, 該接收器接收MS 106之有效集(AS)中的每一扇區之扇區負 載資訊。在步驟820處,通道品質估計器335量測MS 106之 有效集(AS)中之每一扇區的載波干擾(C/Ι)比。記憶體355儲 存MS 106之有效集(AS)中之每一扇區的載波干擾(C/Ι)比量 測。在步驟83 0處,該處理器基於該等AS扇區中之每一者的 載波干擾(C/Ι)比量測及扇區負載資訊來自主地判定一新的 服務扇區。在圖6之實施例中,該扇區負載資訊可包括一負 載資訊廣播訊息,其包含一 PN_OFFSET攔位(其包含 PN—OFFSET值)及一 PN—LOAD欄位(其包含對應負載值資 訊)。若未接收到其中PN—OFFSET欄位值對應於一導頻之 F-PDCCH訊息,貝ij對彼導頻而言PN—LOAD之預設值可為 ,0000,〇若PN一LOAD之最後更新遠在1\時間之前,則可將 PN—LOAD重設為f0000,。該Tx值或該預設PN—LOAD或兩者 皆可在該標準中得以界定或由L3進行訊號傳輸,或兩者皆 可達成。 若該處理器判定PN—OFFSET之值匹配該等AS扇區導頻 中之任一者,則記憶體355儲存PN_L0AD值。或者,當一 所接收到之UHDM將新扇區導頻添加至該AS時,可儲存全 部PN—LOAD值以供將來使用。 當判定了該新的服務扇區時,該處理器可基於pn__load 之對應值來修改將用於該新的服務扇區選擇之所量測的載 98232.doc -37- 200541355 波干擾(c/i)比值。在一建構中,該處理器將pN—l〇ad之對 應值的成比例型式添加至所量測之载波干擾(c/i)比值。在 一貫施例中,當該MS判定最佳服務扇區時,其可藉由將 PN_LOAD值添加至所量測之c/m (以犯表示)而對該添加 進行修改,其中將PN 一 L0AD解釋為以ldB為單位之兩個補 充二進位數字。可以其它方式界定該負載f訊之範圍及解 析度。 應注意·· MS操作相類似,而不管該Bs是選擇使用一專用 程序還是使用一廣播程序來傳遞該蜂巢負載資訊。 亦應注意··在上文中所描述之全部實施例中,可在不脫 離本發明之範轉之情況下互換方法步驟。本文中所揭示之 說明已在諸多情形中係#與lxEV_DV標準相關聯之訊號、參 數及程序,但本發明之範缚並不㉟限於此。_習此項技術 者應不難將本文中之原理應用於各種其它通信系統。此等 及其它修改對一般的熟習此項技術者而言將顯而易見。 熟習此項技術者應瞭解:可使用多種不同工藝及技術中 之任者來代表資訊及訊號。舉例而言,可由電壓、電流、 電磁波、磁場或粒子、光場或粒子或其任何組合來代表可 在貫穿上文之描述中被引用的資料、指令、命令、資訊、 訊號、位元、符號及晶片。 热習此項技術者應進一步瞭解:可將所描述之與本文中 所揭不的實施例有關的各種說明性邏輯方塊、模塊、電路 及演算法步驟建構為電子硬體、電腦軟體或兩者之組合。 為了清楚地說明硬體及軟體之此互換性,在上文中已通常 98232.doc -38- 200541355 依據功月b性描述了各種說明性組件、方塊、模塊、電路 及步驟:是否將此功能性建構為硬體或軟體取決於被施加 、们系、4上之特殊應用及設計約束。熟習此項技術者可 以k化的方式針對每一特殊應用建構所描述之功能性,但 不應將此等建構決策解釋為導致脫離了本發明之範嘴。 可使用一通用處理器、一數位訊號處理器(Dsp)、一特殊 應用積體電路(ASIC)、一場可程式化閘陣列(FPGA)或其它 可程式化邏輯設備、離散閘或電晶體邏輯、離散硬體組件 或經設計以執行本文中所描述之功能的其任意組合來建構 或執㈣描述之與本文中所揭示之實施例有關的各種說明 性邏輯方塊、模塊及電路一通用處理器可為一微處理器, α在曰代例中’ 4處理II可為任_習知處理器、控制器、 微控制is或狀態機。亦可將一處理器建構為若干計算設備 之、、且口(例一DSP及一微處理器之組合卜複數個微處理 益、一或多個微處理器連同—DSP核心或任何其它此組態。 所福述之與本文中所揭示之實施财關的方法及演算法 2驟可直接體現於-硬體、一由一處理器執行之軟體模 i5、、者之組合中。一軟體模塊可存在於R规記憶體、 快閃記憶體、ROM記憶體、砸⑽記憶體、ΕΕρ_記憶 暫存器、硬碟、—可移除之碟片、_cd初Μ或此項 術中熟知之任何其它形式的儲存媒體中。將一例示性儲 次子媒體為接至該處理器使得該處理器可自該儲存媒體讀取 二寫人至_存媒體Q在替代例中’該儲存媒 體可為該處理器之一完整部分。該處理器及該儲存媒體可 98232.doc -39- 200541355 2在於一ASIC中。該ASIC可存在於一使用者終端機中。 曰代例中,该處理裔及該儲存媒體可作為離散組件而 於一使用者終端機中。 子在 提供了所揭示之實施例的先前描述以使得熟習此項技術 者能夠製作或使用本發明。熟習此項技術者可不難明白= 此等實施例所進行之各種修改,且在不脫離本發明之精神 f範疇之情況下可將本文中所界定之一般原理應用於 實施例。因此,本發明並不意欲受限於本文中所展示之實 加例而疋將符合與本文中所揭示之原理及新穎特徵相二 致之隶廣泛範轉。 【圖式簡單說明】 圖ί方塊圖;為一能夠支援許多使用者之無線通信系統的 一普通 圖2描繪了被組態於一適於資料通信之系統中的一例示 性行動台及基地台; 圖3為諸知一行動台或基地台之無線通信設備的一方塊 圖; 圖4描繪了一用於控制一服務基地台及若干非服務基地 台之系統的一例示性實施例; 圖5為一標準F-PDCCH控制訊息; 圖6為一根據本發明之一態樣的經修改之f-PdcCH控制 訊息; 圖7為一流程圖,其詳細描述了根據本發明之另一態樣之 一遠端台的操作;及 98232.doc -40 - 200541355 s 8為",L耘圖,其詳細描述了根據本發明之又一態樣之 一無線通信裝置的操作。 【主要元件符號說明】 100 無線通信系統 104A、l〇4B、104C 基地台 106A、106B 行動台 210 傳輸子系統 220 接收子系統 230 接收子系統 240 排程軟體 250 處理器 260 處理器 270 傳輸子系統 310 天線 320 接收器 325 解調變器 330 訊息解碼器 335 通道品質估計器 350 處理器 355 記憶體 365 調變器 370 傳輸器 410A1 服務扇區 410A2、410B1、B2、410C2 非服務扇區 98232.doc -41 -A link. The I processor MO may be a general-purpose microprocessor, a digital signal processor (DSP), or a special-purpose processor. The processor 35 may perform some or all of the functions of the receiver 32, the demodulator 325, the message decoder 33, the channel quality estimator 335, the message generator 360, the modulator 365, or the transmitter 37. And any other processing required by the wireless communication device. The processor 350 can be connected to dedicated hardware to assist in these tasks (details not shown). Data or audio applications can be performed externally, such as an externally connected laptop or connected to a network, on an additional processor (not shown) within the wireless communication device 104 or 106, or on an external processor The processor 350 itself. The processor 350 is connected to a memory 355, which can be used to store data and to execute instructions of various tasks and methods described herein. Those skilled in the art should understand · The memory 355 may include one or more memory components of various types, which may be wholly or partially embedded in the processor 350. As described above, in data systems such as IxEV-DV, the base stations need to be (Cut-change diversity) Decode the reverse link 98232.doc -24-200541355 with a high probability in at least one of them and minimize the interference to all reverse link base stations. In addition, in service The base station needs reliable reception of the R-CQICH. The R-CQICH provides the BTS with fast forward link channel condition updates to effectively operate the F-PDCH. Figure 4 depicts a 41A1 used to control the current serving sector and the Yu Kong An exemplary embodiment of a system of the non-serving sectors 410A2, 410B1, B2, and 41 ° C2. The mobile station 106 receives a forward link power control flow from each active set base station 104A_1104c, F-CPcCH In this example, each base station 104A-104C, BS1_BS3 contains three sectors (sectors 丨 _3), respectively, which are labeled as 410A1-410C3. In this example, the active set includes a fan Zones 410A1-2, 410B1-2, and 410C2. This is an example of a so-called soft-softer handover because the mobile station has multiple base stations (soft) and one or more sectors in the mouth ( Softer) in handover. Mobile station ^ is provided with reverse link power control feedback from each active set sector. R-CQICH is directed from mobile station 106 to the serving sector. Service sector selection Forward packet data channel operation and PDCH make it possible to effectively use BS resources for delay-allowed traffic. It =: use the channel 'and can delay the jitter to fully utilize the short-term radio channel changes due to attenuation = 2 V. By clever Scheduling, declining the efficiency of the interface. For multi-use, go to 隹 干 又 % %%% knife set. In a point-to-multipoint link, such as a point-to-multipoint link that exists in a single transmission, between the rooms in a given hive, radio The channels change independently. Then the BS can choose to allocate its resources to MSs that experience the best radio propagation environment among all mobile stations in the hive and therefore maximize the production capacity. Choose among a group of mobile stations An MS is generally called multi-user diversity. In addition, 'if there is no fair constraint imposed on the BS scheduling software, the BS can schedule the MS that can support the highest data rate, and some MSs may not No information was received. A scheduling algorithm can be used, which makes multi-user diversity effects possible, meets certain fairness criteria, and minimizes changes in physical layer production. The schedule interval corresponds to a single frame, which can be 1.25 ms, 2.5 ms, or 5 ms. Self-channel quality information and available BS resources to determine the data rate. When the MS has been scheduled via F-PDCH, the forward link control channel notifies the MS. The entity that controls F-PDCH operation is called PDCH Control Function (PDCHCF). This entity controls link adaptation, scheduling, and H-ARQ Type II operations, and it is responsible for mapping f-pdch logical channels to corresponding physical channels. PDCHCF is considered as part of the MAC layer and can be constructed at the BTS. Control signal transmission F-PDCH is a shared channel on which the BS grants access for up to 5 ms. This fast access requires a fast signal transmission protocol to warn the MS. The BS uses F-PDCCH, which operates in parallel with F-PDCH. The F-PDCCH frame length is usually equal to the F-PDCH frame length. The MS buffers the signals received on the F-PDCCH and F-PDCH. Consider all three possible frame lengths of 1.25, 2.5, and 5 ms to decode the F-PDCCH. Standard F-PDCCH control message FIG. 5 is a standard F-PDCCH control message containing 21 bits. In addition, 98232.doc -26-200541355 has 16 bits for CR C and 8 encoding tail bits. In the control message itself, the first 8 bits are reserved for the MAC_ID ', which identifies the MS. The BS usually sets the MAC identifier (MAC_ID) field that specifies a MAC identifier to the MAC identifier assigned to the MS, where the MS will pair the F-PDCH with the transmission of this message via the F-PDCH Sub-packet transmissions are decoded. The range of MAC_ID is each CDMA channel or pilot. When the MS performs handover with another pilot, the MAC_ID may change. The MAC_ID is initially communicated with the MS via an Extended Channel Assignment Message (EC AM), and can then be updated by sending a Universal Delivery Indication Message (UHDM) in the event of a soft delivery event. The WALSH_MASK field specifies the Walsh space mask bitmap. The BS usually sets this block as the Walsh space mask bitmap so that when decoding the F-PDCH, it can indicate that the MS will omit certain entities in the packet data channel Walsh set. The BS usually sets each bit in this field to 0, or 1, to indicate that the MS will include Γ 'and omit (' Γ) the corresponding index in the Walsh Index Table (WCI). The EP_SIZE field specifies the encoder packet size. There are six different values that the encoder packet size can take. The MS needs to know the encoder packet size in order to successfully decode the incoming packet. The encoder packet size is included in the 3-bit EP_SIZE field. EP_SIZE-111 refers to the extended message type for F-PDCCH control information. If this message contains an extended message, the 83 usually sets this block to otherwise. For F-PDCH sub-packet transmissions that are concurrent with the transmission of this message via F_PDCH, the BS usually sets this field to the Encoding value of the encoder packet size (not '111 f). Control 98232.doc -27- 200541355 The F-PDCCH message contains only MAC-ID, EP-SIZE = 111 and 10-bit control information. The MS can simultaneously receive four parallel physical layer data streams transmitted over four independent ARQ channels. To distinguish between these channels, the F_PDCCH message contains a 2-bit field called the ARQ channel identifier (ACID). Each ACID supports independent AR-ARQ Type II operation. For F-PDCH sub-packet transmissions concurrent with the transmission of this message via F-PDCH, the BS usually sets the ARQ channel identifier (ACID) block as the ARQ channel identifier. For F-PDCH sub-packet transmission concurrent with the transmission of this message via F-PDCH, the BS usually sets the sub-packet identifier (SPID) field as the sub-packet identifier. For F-PDCH sub-packet transmission simultaneously with the transmission of this message via F-PDCH, the BS usually sets the ARQ identifier sequence number (AI_SN) field as the ARQ identifier sequence number. Because the sequence is not mandatory and repeatable with SPID = 00, the MS must be notified when a new encoder packet begins. The ARQ identifier sequence number (AI_SN) bit is added to the F-PDCCH message. Whenever a new encoder packet transmission starts, the AI_SN bit is toggled. Finally, the F-PDCCH message contains a final Walsh code index (LWCI) that can identify the last Walsh code in the Walsh code tree. Only 28 Walsh codes of length 32 are potentially available for F-PDCH. It is these 28 codes that are available to be transmitted to MS via WALSH_TABLE-ID. The scope of WALSH_TABLE_ID is each pilot. It is a 3-bit field and is part of both ECAM and UHDM. Due to, for example, F-SCH assignment and cut-off, the Walsh code space becomes fragmented_. Because the LWCI indicates the 9898.doc -28- 200541355 postcode in an adjacent Walsh code space, the F-PDCCH message (shown in Figure 5) cannot address the segmented Walsh space. For F-PDCH sub-packet transmission concurrent with transmission of this message via F-PDCH, the BS usually sets the last Walsh code index (LWCI) field to the last Walsh code index. If this message is transmitted via the F-PDCCH0 physical channel, the BS usually sets this block to indicate that the Walsh code set includes the 0th to LWCI entities in the WCI table. Otherwise, if the message is transmitted via the F-PDCCH1 physical channel, the BS usually sets this field to indicate that the Walsh code set includes (lwci0 + 1) th to LWCI entities in the WCI table. If in the F-PDCCH0 message transmitted at the same time as ^^ < 3 "〇 is greater than or equal to 01000000 ', ^ (^ is?-? 〇 (:: the last Walsh code index in the 110 message. If the MACJD in the F-PDCCH0 message is less than 01000000, then lwciO is 1. In order to alleviate the Walsh segmentation problem, a special F-PDCCH broadcast message is designed to use the signal to transmit the segmented Walsh code space available for F-PDCH. Set the MAC jD in this message to 00000000, which indicates that the message is addressed to all mobile stations in the hive. The last two Walsh codes with a length of 32 are transmitted by LWCI (the length without bit mapping is 16 (Walsh code derivatives). BS usually sets the extended message type identifier (EXT-MSG-TYPE) field to 0, 0, or 0 Γ. The BS can set this block to f〇〇f To indicate that the MS will exit the PDCH control maintenance mode. The BS can set this field to '〇1' to indicate that the MS will switch between the maximum number of frames (REV_NUM_SOFT_SWITCH_FRAMESS or REV_NUM (SOFTER-SWITCH-FRAMES) before terminating the current switching transmission mode. 98232.d oc -29- 200541355 The BS usually sets the RESERVED field of the reserved bit to '00000000. This standard allows two F-PDCHs to operate simultaneously; meaning that up to two mobile stations can be scheduled at the same time. Add this flexibility To more effectively support WAP traffic and layer 3 signal transmission. Link adaptation The F-PDCH allows adaptive modulation and coding to improve spectral efficiency. The reverse channel quality indicator channel (R-CQICH) is used to link the radio channel at the MS State information communication is communicated to the BS. This feedback channel allows the BS to construct a scheduling software that can fully utilize channel variability to achieve multi-user diversity gain. It also allows the optimal F to be selected given the current channel conditions -PDCH data rate. Channel quality feedback MS reports its channel quality via R_CQICH. There are two modes allowed: full and differential carrier interference (C / I) report. The full C / I report is better than the differential C / I report More accurate, but it will generate more reverse link costs. This complete C / I report indicates the ratio of the pilot chip energy to the total noise plus interference that is mapped to the 4-bit channel quality indicator. The pilot Ec / N Result of measurement of t. In this full mode, the current pilot Ec / Nt is reported every PCG or 1.25 ms. The difference update is interpreted as a 0.5 dB correction from the most recently accumulated C / I value. The difference mechanism It itself consists of a complete report every 20 ms and updates of 15 ± 0.5 dB in between. The accumulator sums these difference updates every PCG and refreshes itself every 20 ms when the full report is received. 98232.doc -30- 200541355 15 differences are reported after a full report. This complete report can be repeated for improved reliability. In this case, the receiver softly combines the repeated symbols. The BS can use REV_CQICH_REP; M bit, report! 5 points ECAM, UHDM, and rate change message (RATCHGM) to configure the number of times to repeat the complete C / I report. Because R-CQICH needs to be coded by the serving BS, R-CQICH symbols are repeated and soft-combined to improve reliability. The improved detection is obtained at the cost of reducing the R-CQICH symbol rate. Honeycomb Selection and Switching The MS indicates the serving BS by using one of the six different Walsh functions of the chip of length 8 to conceal the '% R-CQICH symbol. In the case of R-CQICH operation, these Walsh functions are called Walsh covert. Each R-CQICH transmission is steered (by a different Walsh concealment) to a special pilot, where the MS wishes to receive packet data channel transmission from the pilot. The MS determines the pilots from the effective set of the packet data channel to where R-CQICH transmission will occur based on the relative received strength of the pilots from the effective set of the packet data channel. At the call setup, via ECAM (or when the active set is updated via a UHDM), the network uses the REV_CQICH_COVER field to transmit the PILOT_PN signal to the Walsh covert map. The MS expects to be served by the BS associated with the Walsh covert used in reporting the C / I. Usually, the MS achieves selective diversity by selecting the BS with the strongest received pilot signal (Ec / Nt). However, because hive switching requires queue synchronization for uncompleted data, the MS cannot immediately change the serving BS. When the MS determines that the Bs pilot of the service needs to be changed, the MS calls 98232.doc -31 · 200541355 one sector / honeycomb switching procedure. To initiate the handover, the MS transmits a distinctive handover mode via R-CQICH, which indicates to the serving BS that any outstanding encoder packet (EP) transmission should be completed, and once the transmission is completed, the MS will Should switch to the target BS. During the handover period, these R-CQICH transmissions are modified to use the Walsh concealment of the target pilot in which the packet data channel is effectively concentrated. The length of the switching period depends on whether the source pilot and the target pilot (in the packet data channel active set (AS)) are in the same BTS or in different honeycombs. The time interval of these switching cycles is specified by two parameters-NUM_SOFTER_SWITCHING_FRAMES and NUM_SOFT_S WITCHING JFRAMES (included in ECAM or UHDM). The parameter NUM_SOFTER_SWITCHING_FRAMES configures the switching procedure in MS, and the switching delay PDCH_SOFTER_SWITCHING_ DELAY (or PDC_SOFT_SWITCHINGJDELAY) only informs the MS of possible interruptions in service due to switching and problems caused by problems such as queue synchronization Network delay. Optimized service sector selection mechanism In order to provide an improved service selection mechanism, at least two options can be provided. According to the first option, each sector may broadcast its own load value. However, according to this option, the MS must cause the currently serving sector to collect load information from another sector, during which it will not receive data from the currently serving sector. Because the broadcast must operate on a predetermined schedule, this will reduce the TDM gain of the shared F-PDCH. According to the second option, the load information of all adjacent sectors can be passed by the serving sector. Although this will result in multiple redundant transmissions of the same information in many sectors; however, this can be obtained by the fact that the BS freely schedules the transmission of the message to protect the capacity of FL in one party 98232.doc -32- 200541355 Compensation. And 'does not require L3 signal transmission to disable / enable this feature. bS can choose to send or not send the load information broadcast message only as needed. Referring again to FIG. 4, in one aspect, a system is provided, which includes a plurality of BS104A-C, each of which includes a plurality of sectors 41〇A1-41〇C3; and a current serving sector 410A1 Service MS 106. Each sector may have a plurality of adjacent sectors. Note ... In these exemplary embodiments, service and non-service terms are used for clarity purposes only. The disclosed technology is applicable to any collection of base stations, whether they are serving base stations or non-serving base stations. These embodiments may be described "primarily, instead of" serving "and" other, "or" second "base station instead of" non-serving, "and the principles disclosed will be applied with equal force. Each BS 104 Determine the sector load information and transmit the sector load information. The MS 106 measures the carrier-to-interference (c / i) ratio of each sector in the MS 106's active set (AS) and stores the effective set of Ms 106 ( AS) for these sectors in the carrier-to-interference (C / J) ratio measurement and based on the carrier-to-interference (C / I) ratio measurement and load information for each of the eight § sectors from the master Determine New or Best Serving Sector In this embodiment, the current serving sector will transmit the sector load information for all adjacent sectors to Ms 106. Alternatively, each sector may transmit a sector corresponding to its sector The load value of the zone load information. The BS 104 can use a dedicated channel (such as a link channel before transmitting to a single channel) to transmit round sector load information. In a construction, the dedicated channel is -Forward Packet Data Channel (F_pDCH) or-Forward Packet Data Control Channel (F-PDCCH). -During construction, the dedicated channel used to carry the sector negative 98232.doc -33- 200541355 with §fl is a forward basic channel (F_FCH) or a forward dedicated control channel (F-DCCH). In an embodiment, the BSs 104 use a common channel to multicast the sector load information. The common channel may be, for example, a forward link channel transmitted to all MSs 106 served by the sector. In the construction, the shared channel includes a forward packet data channel (F-PDCH), in which a single F-pDCH message carries the load information of more than one sector. In another construction, it is used to carry the load information of the sector. The channel is a shared forward basic channel, a shared forward dedicated control channel, a shared forward supplementary channel, a paging channel (PCH), a forward broadcast control channel (F_BCCH), or a forward universal control channel ( F-CCCH). In another conventional example, the sector load information includes, for example, a load information broadcast message that is sent to all sectors served by the sector via F-PDCH or F-PDCCH. For broadcast In terms of method, F_pDccH (preferred F-PDCCH1) sends a new message. However, it should be understood that other suitable formats may also be used, in particular, there may be several defined formats, in which a single P-PDCCH message may be carried for more than one fan Figure 6 shows the modified F-PDCCH control message according to one aspect of the present invention. The modified control message is used to transfer the sector load information. In ~, the sample can use a new Message type, where the message lists the PN_OFFSET value and the corresponding load value information. In the embodiment, the sector load information includes a load information message, and the load information message includes a PN-OFFSET block (which Including ρΝ ορρςρτ〆 吉, β DJPM PM_OFFSET value) and _ pN_L〇AD 櫊 98232.doc 200541355 bits (which includes the corresponding load value information). In a construction, the PN_OFFSET field specifies a pilot PN offset, and the PN_LOAD block specifies a sector load parameter. In the case when the load information is transmitted to a special user in a dedicated manner, the PN_OFFSET field may be replaced by a Walsh concealment index corresponding to that PN_0FFSET. Because the Walsh concealment index is usually a 3-bit value, and the PN_OFFSET is usually a 9-bit value, this reduces the required message length. However, it is not expected that the same substitution of the PN_OFFSET will work in the case of load information broadcasting, because the PN_0FFSET to Walsh concealment index mapping changes between mobile stations. This sector load information may be included in, for example, other existing CDMA2000 layer 3 (L3) messages, such as, for example, an extended channel assignment message (ECAM) or a universal handover indication message (UHDM). In this construction, the payload information broadcast message may also include a MAC_ID field and a WALSH JVIASK field. The base station usually sets the MAC-ID field (which specifies a MAC identifier) as the MAC identifier assigned to the mobile station, where the mobile station will match this message via F-PDCH The transmission is decoded simultaneously with the F-PDCH sub-packet transmission. If the MAC_ID has a first value, the BS 104 includes a WALSH_MASK field in the load information broadcast message and omits other fields. Other remaining fields may include, for example, an EP-SIZE field, an ACID field, a SPID field, an AI-SN field, an LWCI field, an EXT-MSG-TYPE field, and a RESERVED field . For example, if the MAC_ID is set to * 0000000 (T, the base station includes the WALSH_MASK field and the remaining fields are omitted. 98232.doc -35- 200541355 If the MAC_ID has a second value, the BS 104 The load information broadcast message includes the PN_OFFSET and PN_LOAD bits. For example, if the MAC_ID is set to '0000000Γ', the base station may include the PN_OFFSET and PN_LOAD fields. If the MAC_ID has the first Three values, the BS 104 includes REV_CQICH_COVER (Walsh concealment index corresponding to an AS sector pilot) and PN_LOAD fields in the dedicated load information message transmitted via the F-PDCCH. If the MAC_ID has a fourth value, the BS 104 includes the PN_OFFSET and PNJLOAD blocks in the load information broadcast message transmitted through the F-PDCH. If the MAC_ID has another value, the BS 104 includes other remaining fields in the load information broadcast message and the WALSHJMASK field is omitted. , PN_OFFSET field and PN_LOAD field. For example, the base station can omit the WALSH_MASK field and the PN_OFFSET and PN_LOAD fields and include the remaining fields. Figure 7 is a flowchart showing the details The operation of the remote station according to another aspect of the present invention is described. In this aspect, a BS 104 is provided, which includes a plurality of sectors, a processor, and a transmitter. Each sector may have A plurality of adjacent sectors. At step 710, the processor determines sector load information, and at step 720, the transmitter transmits the sector load information. A current serving sector is transmitted for a fan of all adjacent sectors. Zone load information. For example, F-PDCH or other appropriate FL channels can be used to independently send the sector load information to each user in a dedicated way. Figure 8 is a flow chart. 9832.doc -36- 200541355 operation of a wireless communication device according to yet another aspect of the present invention. In this other aspect, an MS 106 served by a current serving sector is provided. The MS 106 includes a receiver , A channel quality estimator 335, a memory, and a processor. At step 810, the receiver receives sector load information for each sector in the active set (AS) of the MS 106. At step 820, Channel quality estimator 335 measures MS 106 Carrier to interference (C / I) ratio of each sector in the active set (AS). Memory 355 stores the carrier to interference (C / I) ratio measurement of each sector in the active set (AS) of the MS 106 At step 830, the processor determines a new serving sector from the host based on the carrier-to-interference (C / I) ratio measurement and sector load information for each of the AS sectors. In the embodiment of FIG. 6, the sector load information may include a load information broadcast message, which includes a PN_OFFSET block (which contains a PN_OFFSET value) and a PN_LOAD field (which contains corresponding load value information). . If the F-PDCCH message corresponding to the PN_OFFSET field is not received, the default value of PN_LOAD for the pilot can be 0000, 〇 If the last update of PN_LOAD Far before 1 \ time, you can reset PN_LOAD to f0000 ,. The Tx value or the preset PN_LOAD or both can be defined in the standard or signal transmission by L3, or both can be achieved. If the processor determines that the value of PN_OFFSET matches any of the AS sector pilots, the memory 355 stores the value of PN_L0AD. Alternatively, when a received UHDM adds a new sector pilot to the AS, all PN_LOAD values may be stored for future use. When the new serving sector is determined, the processor may modify the measured load 98232.doc -37- 200541355 wave interference (c / i) ratio. In one construction, the processor adds a proportional version of the corresponding value of pN-10ad to the measured carrier-to-interference (c / i) ratio. In a consistent embodiment, when the MS determines the best serving sector, it can modify the addition by adding the PN_LOAD value to the measured c / m (expressed as a crime), where PN_L0AD Interpreted as two supplementary binary numbers in ldB. The range and resolution of the load can be defined in other ways. It should be noted that the MS operation is similar regardless of whether the Bs chooses to use a dedicated program or a broadcast program to deliver the honeycomb load information. It should also be noted that in all the embodiments described above, the method steps can be interchanged without departing from the scope of the invention. The descriptions disclosed herein have been the signals, parameters, and procedures associated with the lxEV_DV standard in many cases, but the scope of the present invention is not limited to this. _ It should be easy for those skilled in the art to apply the principles in this article to a variety of other communication systems. These and other modifications will be apparent to those of ordinary skill in the art. Those skilled in the art should understand that any of a number of different processes and technologies can be used to represent information and signals. For example, voltage, current, electromagnetic waves, magnetic fields or particles, light fields or particles, or any combination thereof may represent data, instructions, commands, information, signals, bits, symbols that can be cited throughout the description above And chips. Those skilled in the art should further understand that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments not disclosed herein can be constructed as electronic hardware, computer software, or both Of combination. In order to clearly illustrate this interchangeability of hardware and software, the above has generally described various illustrative components, blocks, modules, circuits, and steps based on the power of 98232.doc -38- 200541355: whether to use this functionality The construction as hardware or software depends on the particular application and design constraints imposed on them. Those skilled in the art can construct the described functionalities for each particular application in a k-based manner, but such construction decisions should not be interpreted as causing a departure from the scope of the present invention. A general-purpose processor, a digital signal processor (Dsp), a special application integrated circuit (ASIC), a programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, Discrete hardware components or any combination of functions designed to perform the functions described herein to construct or execute the various illustrative logic blocks, modules, and circuits described in connection with the embodiments disclosed herein. A general-purpose processor may As a microprocessor, α's processing II in the example can be any conventional processor, controller, microcontroller or state machine. A processor can also be constructed as a number of computing devices, such as a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors together-a DSP core or any other such group The two steps described in this article and the method and algorithm for implementing financial relations disclosed in this article can be directly embodied in the combination of hardware, a software module i5 executed by a processor, and a software module. A software module Can exist in R-type memory, flash memory, ROM memory, flash memory, ΕΕρ_memory register, hard disk, —removable disc, _cd initial M or any of the well known in the art In other forms of storage media, an exemplary storage sub-media is connected to the processor so that the processor can read from the storage medium to the storage medium. In an alternative example, the storage medium may be A complete part of the processor. The processor and the storage medium may be 98232.doc -39- 200541355 2 in an ASIC. The ASIC may exist in a user terminal. In the example, the processing and The storage medium can be used as a discrete component at a user end. The terminal provides the previous description of the disclosed embodiments to enable those skilled in the art to make or use the present invention. It is not difficult for those skilled in the art to understand = various modifications made to these embodiments, and The general principles defined herein can be applied to the embodiments without departing from the spirit and scope of the present invention. Therefore, the present invention is not intended to be limited to the actual examples shown herein but will be consistent with this article. The principle and the novel features disclosed in this article are consistent with each other. [Brief Description of the Drawings] Figure 方块 Block diagram; a general wireless communication system capable of supporting many users. An exemplary mobile station and base station in a system suitable for data communication; FIG. 3 is a block diagram of wireless communication equipment of a mobile station or base station; FIG. 4 depicts a base station for controlling a serving base station And several non-serving base stations as an exemplary embodiment; Figure 5 is a standard F-PDCCH control message; Figure 6 is a modified f-PdcCH control message according to one aspect of the present invention; 7 is a flowchart detailing the operation of a remote station according to another aspect of the present invention; and 98232.doc -40-200541355 s 8 is a " Another aspect of the invention is the operation of a wireless communication device. [Explanation of the symbols of the main components] 100 Wireless communication systems 104A, 104B, 104C Base stations 106A, 106B Mobile stations 210 Transmission subsystem 220 Receiving subsystem 230 Receiving subsystem 240 Scheduling Software 250 Processor 260 Processor 270 Transmission Subsystem 310 Antenna 320 Receiver 325 Demodulator 330 Message Decoder 335 Channel Quality Estimator 350 Processor 355 Memory 365 Modulator 370 Transmitter 410A1 Service Sector 410A2, 410B1, B2, 410C2 Non-Serving Sectors 98232.doc -41-

Claims (1)

200541355 十、申請專利範圍: 1. 一種系統,其包含: 複數個遠端台,其各自均包含複數個扇區,其中每一 遠端台均包含: 一處理為’其判定扇區負載貢訊;及 一傳輸裔,其傳輸該扇區負載資訊;及 一無線通信裝置,其由一當前服務扇區服務,其包 含: 一通道品質估計器,其量測該無線通信裝置之有效 集(AS)中之每一扇區的該載波干擾(C/I)比; 一 A憶體’其餘存該無線通信裝置之有效集(AS)中 之该等扇區的該等載波干擾(C/Ι)比量測;及 一處理器,其基於該等AS扇區中之每一者的該等載 波干擾(C/Ι)比量測及該扇區負載資訊來判定一新服務 扇區。 2. 如請求項1之系統, 其中每一扇區具有複數個鄰接扇區,且 其中該當前服務扇區將全部鄰接扇區之該扇區負載資 訊傳輸至該無線通信裝置。 3·如,月求項1之系統,其中該扇區負載資訊包含一負載資訊 Λ心’该負載資訊訊息包含PN—〇FFSET欄位及一 PN—L〇AD欄位,其中該pN—⑽咖欄位包括pN—㈣咖 值且遠PN—L〇AD欄位包括對應負載值資訊。 4·如1求項3之系統,其中該扇區貞載資訊被包含於一通道 98232.doc 200541355 指派訊息(CAM)中。 5. 6. 7. 8. 9· 10. 11. 12. 13. 14. ::求項3之系統’其中該扇區負栽資訊被包含於一交遞 指示訊息(HDM)中。 如:求項1之系統’其中該等遠端台使用一專用通道來傳 輸該扇區負載資訊。 如請求項6之系統’其中該專用通道為-傳輸至-單個無 線通信裝置之前向鏈結通道。 如口月求項1之系統,其中兮直 γ ^專用通道為一前向封包資料通 道(F-PDCH)。 如請求項!之系統’其中該等遠端台使用—共用通道來多 點播送該扇區負載資訊。 如請求項9之系統,其中該共用通道為一傳輸至由該扇區 服務之全部無線通信裝置的前向鏈結通道。 如請求項10之系統,其中該共用通道為一前向封包資料 通道(F-PDCH),其中一單個F_PDCH訊息載運一個以上扇 區之負載資訊。 如請求項10之系統,其中該專用通道為一前向封包資料 控制通道(F-PDCCH)。 如晴求項1之系統,其中該扇區負載資訊包含一負載資訊 廣播訊息’該負載資訊廣播訊息包含PN_〇ffSET欄位及 一 PN—LOAD攔位,其中該PN—OFFSET欄位包括 PN一OFFSET值,且該PNJLOAD欄位包括對應負載值資於 如請求項13之系統,其中該負載資訊廣播訊息進一步包 含一 MAC—ID欄位及一 WALSH—MASK欄位。 98232.doc 200541355 15·如請求項14之系統,其中若該MAC_ID具有一第一值,則 該遠端台在該負載資訊廣播訊息中包含該 WALSH—MASK欄位且省略了其它欄位。 16·如請求項14之系統,其中若該MAC_ID具有一第二值,則 該遠端台在該負載資訊廣播訊息中包含該PN_OFFSET欄 位及該PN_LOAD欄位。 17. 如請求項14之系統,其中若該MAC_ID具有一第三值,則 該遠端台在經由該F-PDCH而傳輸之該負載資訊廣播訊 息中包含該PN—OFFSET欄位及該PN—LOAD欄位。 18. 如請求項14之系統,其中若該MAC_ID具有另一值,則該 遠端台在該負載資訊廣播訊息中包含其它剩餘欄位且省 略了該WALSHJV1ASK欄位、該PN—OFFSET欄位及該 PN_L0AD攔位。 19. 如請求項14之系統,其中該等其它剩餘欄位包含一 EP—SIZE欄位、一 ACID欄位、一 SPID欄位、一 AI_SN欄 位、一 LWCI欄位、EXTJMSG—TYPE欄位及一 RESERVED 欄位。 20·如請求項1之系統,其中該扇區負載資訊包含一負載資訊 廣播訊息,該負載資訊廣播訊息包含PN_OFFSET欄位及 一 PN—LOAD欄位,其中該PN—0FFSET欄位包括 PN—OFFSET值,且該PN_L0AD欄位包括對應負載值資 訊,且其中若PN—OFFSET之該值匹配該等AS扇區導頻中 之任一者,則該無線通信裝置儲存該PN—LOAD值。 21 ·如請求項20之系統,其中當判定了該新的服務扇區時, 98232.doc 200541355 該無線通信裝置基於pN一LOAD之該對應值來修改將用於 該新服務扇區選擇的該經量測之該載波干擾(C/I)比值。 汝明求項20之系統,其中當判定了該新服務扇區時,該 無線通信裝置將PN一LOAD之該對應值添加至該經量測之 該載波干擾(C/Ι)比值。 23 ·如明求項i之系統,其中每一扇區傳輸一對應於其扇區負 載資訊之負載值。 24. —種包含複數個扇區之遠端台,其包含·· 一處理器,.其判定扇區負載資訊;及 一傳輸器,其傳輸該扇區負載資訊。 25. 如請求項24之遠端台,其中每一扇區均具有複數個鄰接 扇區,且其中一當前服務扇區傳輸全部鄰接扇區之該扇 區負載資訊。 26. 如請求項24之遠端台,其中該扇區負載資訊包含一負載 資訊訊息,該負載資訊訊息包含pN_〇FFSET^位及一 pn_load攔位,其中該PN—卿咖欄位包括pn—〇ffset 值’且該PN一LOAD欄位包括對應負載值資訊。 27. 如請求項26之遠端台,其中該扇區負載資訊被包含於一 通道指派訊息(CAM)中。 28. 如請求項26之遠端台,其中該扇區負載資訊被包含於一 交遞指示訊息(HDM)中。 29. 如請求項24之遠端台,其中該遠端台使用一專用通道傳 輸該扇區負載資訊。 30. 如請求項29之遠端台,其中該專用通道為一傳輸至一單 98232.doc 200541355 個無線通信裝置之前向鏈結通道。 3 1.如請求項24之遠端台,其中該專用通道為一前向封包資 料通道(F-PDCH)。 32. 如請求項24之遠端台,其中該等遠端台使用一共用通道 來多點播送該扇區負載資訊。 33. 如請求項32之遠端台,其中該共用通道為一傳輸至由該 扇區服務之全部無線通信裝置的前向鏈結通道。 34. 如請求項33之遠端台,其中該共用通道為一前向封包資 料通道(F-PDCH),其中一單個F-PDCH訊息載運一個以上 扇區之負載資訊。 35·如請求項33之遠端台,其中該專用通道為一前向封包資 料控制通道(F-PDCCH)。 36·如請求項24之遠端台,其中該扇區負載資訊包含一負載 資訊廣播訊息,該負載資訊廣播訊息包含PN_OFFSET欄 位及一 PN—LOAD欄位,其中該PN—OFFSET欄位包括 PN—OFFS马T值,且該PN—L0AD欄位包括對應負載值資 訊。 3 7.如請求項36之遠端台,其中該負載資訊廣播訊息進一步 包含一 MAC_ID欄位及一 WALSH_MASK欄位。 3 8.如請求項37之遠端台,其中若該MAC_ID具有一第一值, 則該遠端台在該負載資訊廣播訊息中包含該 WALSH_MASK欄位且省略了其它攔位。 39.如請求項37之遠端台,其中若該MAC_ID具有一第二值, 則該遠端台在該負載資訊廣播訊息中包含該pn_offset 98232.doc 200541355 攔位及該PN—LOAD攔位。 40. 如請求項37之遠端台,其中若該MAC_ID具有一第三值, 則該遠端台在經由該F-PDCH而傳輸之該負載資訊廣播 訊息中包含該PN—OFFSET欄位及該PNJLOAD欄位。 41. 如請求項37之遠端台,其中若該MAC_ID具有另一值,則 該遠端台在該負載資訊廣播訊息中包含其它剩餘欄位且 省略了該WALSH—MASK欄位、該PN—OFFSET欄位及該 PN_LOAD欄位。 42. 如請求項37之遠端台,其中該等其它剩餘攔位包含一 EP_SIZE欄位、一 ACID欄位、一 SPID欄位、一 AI_SN攔 位、一LWCI攔位、EXT—MSG—TYPE攔位及一 RESERVED 攔位。 43. 如請求項24之遠端台,其中每一扇區傳輸一對應於其扇 區負載資訊之負載值。 44. 一種無線通信裝置,其由一當前服務扇區服務,其包含: 一接收器,其接收該無線通信裝置之有效集(AS)中之 每一扇區的扇區負載資訊; 一通道品質估計器,其量測該無線通信裝置之有效集 (AS)中之每一扇區的該載波干擾(C/Ι)比; 一記憶體,其儲存該無線通信裝置之有效集(AS)中之 該等扇區的該等載波干擾(C/Ι)比量測;及 一處理器,其基於該等AS扇區中之每一者的該等載波 干擾(C/Ι)比量測及該扇區負載資訊來判定一新服務扇 區0 98232.doc -6- 200541355 45·如請求項44之無線通信裝置, 其中每一扇區具有複數個鄰接扇區,且 其中該當前服務扇區將全部鄰接扇區之該扇區負載資 訊傳輸至該無線通信裝置。 ' 46·如請求項44之無線通信裝置,其中該扇區負載資訊包含 一負載資訊訊息,該負載資訊訊息包含pN—〇FFSET欄位 及一 PN—LOAD攔位,其中該PN—〇FFSET^位包括 PN—OFFSET值,且該pn—LOAD攔位包括對應負載值資 訊。 ' 47. 如μ求項46之無線通信裝置,其中該扇區負載資訊被包 含於一通道指派訊息(cam)中。 48. 如請求項46之無線通信裝置,其中該扇區負載資訊被包 含於一交遞指示訊息(HDM)中。 49·如請求項44之無線通信裝置,其中經由一專用通道來接 收該扇區負載資訊。 5〇·如請求項49之無線通信裝置,其中該專用通道為一僅傳 輸至遠無線通信裝置之前向鏈結通道。 51. 如請求項44之無線通信裝置,其中該專用通道為一前向 封包資料通道(f_pdch)。 52. 如請求項44之無線通信裝置,其中經由—共用通道來接 收该扇區負載資訊。 53·如請求項52之無線通信裝置,其中該共用通道為一傳輪 至由忒扇區服務之一個以上無線通信裝置的前向鏈結通 道0 98232.doc 200541355 54.如請求項53之無線通信裝置,其中該共用通道為一前向 封包資料通道(F-PDCH),其中一單個F-PDCH訊息載運一 個以上扇區之負載資訊。 5 5.如請求項53之無線通信裝置,其中該專用通道為一前向 封包資料控制通道(F-PDCCH)。 56.如請求項44之無線通信裝置,其中該扇區負載資訊包含 一負載資訊廣播訊息,該負載資訊廣播訊息包含 PN—OFFSET欄位及一 PN—LOAD欄位,其中該 PN—OFFSET 攔位包括PN—OFFSET值,且該PN—LOAD攔位包括對應負 載值資訊。 5 7 ·如請求項5 6之無線通信裝置’其中邊負載資δ孔廣播訊息 進一步包含一 MAC JD欄位及一 WALSH一MASK欄位。 5 8.如請求項57之無線通信裝置,其中若該MAC一ID具有一第 一值,則該負載資訊廣播訊息包含該WALSH-MASK欄位 且無其它欄位。 59. 如請求項5k7之無線通信裝置,其中若該MAC—ID具有一第 二值,則該負載資訊廣播訊息包含該PN一OFFSET欄位及 該PN_L0AD欄位。 60. 如請求項57之無線通信裝置’其中右该MAC 一ID具有一弟 三值’則該負載資訊廣播机息包含違PN__〇FFSET搁位及 該PNJL0AD攔位且其經由該F-PDCH而被接收。 61. 如請求項57之無線通信裝置,其中若該MAC_ID具有另一 值,則該負載資訊廣播訊息包含其它剩餘欄位且不包含 該WALSH MASK欄位、該PN—OFFSET欄位及該 98232.doc 200541355 PN_LOAD爛位。 62. 如請求項57之無線通信裝置,其中該等其它剩餘欄位包 含一 EP—SIZE欄位、一 ACID攔位、一 SPID攔位、一 AI_SN 欄位、一 LWCI攔位、EXTJVISG—TYPE欄位及一 RESERVED攔位。 63. 如請求項44之無線通信裝置,其中該扇區負載資訊包含 一負載資訊廣播訊息,該負載資訊廣播訊息包含 PN_OFFSET欄位及一 PN—LOAD欄位,其中該 PN—OFFSET 欄位包括PN—QFFSET值,且該PN—LOAD欄位包括對應負 載值資訊,且其中若該處理器判定PN_OFFSET之該值匹 配該等AS扇區導頻中之任一者,則該記憶體儲存該 PN_L0AD 值。 64. 如請求項63之無線通信裝置,其中當判定了該新服務扇 區時,該處理器基於PN_LOAD之該對應值來修改將用於 該新服務扇區選擇的該經量測之該載波干擾(C/Ι)比值。 65. 如請求項03之無線通信裝置,其中當判定了該新服務扇 區時,該處理器將PN_LOAD之該對應值添加至該經量測 之該載波干擾(C/Ι)比值。 66. 如請求項44之無線通信裝置,其中每一扇區傳輸一對應 於其扇區負載資訊之負載值。 6 7. —種方法,其包含: 判定包含一當前服務扇區之複數個扇區的扇區負載資 訊;傳輸該扇區負載資訊;及 量測一有敫集(AS)中之每一扇區的該載波干擾(C/I) 98232.doc -9- 200541355 比; 儲存該有效集(AS)中之該等扇區的該等載波干擾(C/I) 比量測;及 基於該等AS扇區中之每一者的該等載波干擾(C/Ι)比量 測及該扇區負載資訊來判定一新服務扇區。 68. 如請求項67之方法, 其中每一扇區具有複數個鄰接扇區,且 其中該當前服務扇區傳輸全部鄰接扇區之該扇區負載 資訊。 69. 如請求項67之方法’其中該扇區負載貢訊包含一負載資 訊訊息,該負載資訊訊息包含PN—OFFSET欄位及一 PN—LOAD欄位,其中該PN—OFFSET欄位包括PN—OFFSET 值,且該PN_LOAD欄位包括對應負載值資訊。 70·如請求項67之方法,其中經由一專用通道傳輸該扇區負 載資訊。 71. 如請求項6k7之方法,其中該專用通道為一前向封包資料 通道(F-PDCH)。 72. 如請求項67之方法,其中經由一共用通道來多點播送該 扇區負載資訊。 73. 如請求項67之方法,其中該扇區負載資訊包含一負載資 訊廣播訊息,該負載資訊廣播訊息包含PN—OFFSET攔位 及一 PN—LOAD欄位,其中該PN—OFFSET欄位包括 PN—OFFSET值,且該PN—LOAD攔位包括對應負載值資 訊0 98232.doc -10- 200541355 74. 如請求項67之方法,其中該扇區負載資訊包含一負載資 訊廣播訊息,該負載資訊廣播訊息包含PN_OFFSET欄位 及PN—LOAD攔位,其中該PN—OFFSET欄位包括 PN—OFFSET值,且該PN—LOAD欄位包括對應負載值資 訊,且其中若PN_OFFSET之該值匹配該等AS扇區導頻中 之任一者,則儲存該PN_LOAD值。 75. 如請求項74之方法,其中當判定了該新服務扇區時: 基於PN_LOAD之該對應值來修改將用於該新服務扇區 選擇的經量測之該載波干擾(C/Ι)比值。 76. 如請求項67之方法,其中每一扇區傳輸一對應於其扇區 負載資訊之負載值。 77. —種方法,其包含: 判定扇區負載資訊;及 傳輸該扇區負載資訊。 78. 如請求項77之方法,其中每一扇區具有複數個鄰接扇 區,且其中一當前服務扇區傳輸全部鄰接扇區之該扇區 負載資訊。 79. 如請求項77之方法,其中該扇區負載資訊包含一負載資 訊訊息,該負載資訊訊息包含PN—OFFSET欄位及一 PNJLOAD欄位,其中該PN_OFFSET欄位包括PN_OFFSET 值,且該PN—OFFSET攔位包括對應負載值資訊。 80. 如請求項77之方法,其中該遠端台使用一專用通道傳輸 該扇區負載貧訊。 8 1.如請求項77之方法,其中該專用通道為一前向封包資料 98232.doc • 11- 200541355 通道(F-PDCH)。 士明求項77之方法,其中該等遠端台使用一共用通道來 多點播送該扇區負載資訊。 月长項77之方法,其中該扇區負载資訊包含一負載資 廣播Λ息,该負載資訊廣播訊息包含pN—〇FFSET欄位 及一 PN—L0AD攔位,其中該pN—〇ffset欄位包括 N—OFFSET值,且該pN—L〇Ac^位包括對應負載值資 訊。 、 84.如請求項77之方法,其中每一扇區傳輸一對應於其扇區 負載資訊之負載值。 用於由一當則服務扇區服務之無線通信裝置的方 法,其包含: 接收該無線通信裝置之有效集(A s)中之每一扇區的扇 區負载資訊; 置测該無線通信袭置之有效集(AS)中之每一扇 載波干擾CC/i)比; μ 々儲存該無線通信裝置之有效集(AS)中之該等扇區的該 專載波干擾(c/l)比量測;及 、基於遠等AS扇中之每一者之該等載波干擾(C/I)比量 測及該扇區負載資訊來判定一新服務扇區。 86.如請求項85之方法, 其中每一扇區具有複數個鄰接扇區,且 八中。亥§月丨』服務扇區將全部鄰接扇區之該扇區負載資 訊傳輸至該無線通信裝置。 98232.doc •12- 200541355 87. 如請求項85之方法,其中該扇區負載資訊包含一負載資 訊訊息,該負載資訊訊息包含PN—OFFSET欄位及一 PN一LOAD欄位,其中該PN_OFFSET欄位包括PN_0FFSET 值,且該PN—LOAD欄位包括對應負載值資訊。 88. 如請求項85之方法,其中經由一專用通道接收該扇區負 載資訊。 89. 如請求項85之方法,其中該專用通道為一前向封包資料 通道(F-PDCH)。 90. 如請求項85之方法,其中經由一共用通道接收該扇區負 載資訊。 91. 如請求項85之方法,其中該扇區負載資訊包含一負載資 訊廣播訊息,該負載資訊廣播訊息包含PN_OFFSET欄位 及一 PN—LOAD欄位,其中該PN—OFFSET襴位包括 PN—OFFSET值,且該PN—LOAD攔位包括對應負載值資 訊。 92. 如請求項8J之方法,其中該扇區負載資訊包含一負載資 訊廣播訊息,該負載資訊廣播訊息包含PN_OFFSET欄位 及一 PN—LOAD欄位,其中該PN—OFFSET欄位包括 PN_0FFSET值,且該PN—LOAD欄位包括對應負載值資 訊,且其中若該處理器判定PN—OFFSET之該值匹配該等 AS扇區導頻中之任一者,則該記憶體儲存該PN_LOAD 值。 93. 如請求項92之方法,其中當判定了該新服務扇區時,該 處理器基於P.N JLOAD之該對應值來修改將用於該新服務 98232.doc -13- 200541355 扇區選擇的該經量測之該載波干擾(c/i)比值。 94.如請求項85之方法,其中每一扇區傳輸一對應於其扇區 負載資訊之負載值。200541355 10. Scope of patent application: 1. A system including: a plurality of remote stations, each of which includes a plurality of sectors, each of which includes: ; And a transmission source, which transmits the sector load information; and a wireless communication device, which is served by a currently serving sector, which includes: a channel quality estimator, which measures the effective set of the wireless communication device (AS The carrier-to-interference (C / I) ratio of each sector in); an A-memory 'the remaining carrier-interference (C / I) of the sectors in the active set (AS) of the wireless communication device. ) Ratio measurement; and a processor that determines a new serving sector based on the carrier-to-interference (C / I) ratio measurement and the sector load information for each of the AS sectors. 2. The system of claim 1, wherein each sector has a plurality of adjacent sectors, and wherein the currently serving sector transmits the sector load information of all adjacent sectors to the wireless communication device. 3. For example, the system of month term 1, in which the sector load information includes a load information Λxin ', the load information message includes a PN_FFSET field and a PN_LOAD field, where the pN—⑽ The coffee field includes the pN-N coffee value and the far PN-LOAD field includes the corresponding load value information. 4. The system of item 3 in item 1, wherein the sector load information is contained in a channel 98232.doc 200541355 assignment message (CAM). 5. 6. 7. 8. 9 · 10. 11. 12. 13. 14. :: System of finding item 3 ', wherein the sector load information is included in a delivery instruction message (HDM). For example: the system of term 1 where the remote stations use a dedicated channel to transmit the sector load information. The system according to claim 6, wherein the dedicated channel is a -to-link channel before transmission to a single wireless communication device. For example, the system of item 1 of the month and month, in which the γ ^ dedicated channel is a forward packet data channel (F-PDCH). As requested! The system 'wherein the remote stations use a shared channel to multicast the sector load information. The system of claim 9, wherein the shared channel is a forward link channel transmitted to all wireless communication devices served by the sector. For example, the system of claim 10, wherein the shared channel is a forward packet data channel (F-PDCH), and a single F_PDCH message carries the load information of more than one sector. The system of claim 10, wherein the dedicated channel is a forward packet data control channel (F-PDCCH). For example, the system of item 1 includes the load information of the sector including a load information broadcast message. The load information broadcast message includes a PN_00ffSET field and a PN_LOAD block. The PN_OFFSET field includes PN. An OFFSET value, and the PNJLOAD field includes a corresponding load value for a system such as item 13, wherein the load information broadcast message further includes a MAC-ID field and a WALSH-MASK field. 98232.doc 200541355 15. As in the system of claim 14, wherein if the MAC_ID has a first value, the remote station includes the WALSH-MASK field in the load information broadcast message and omit other fields. 16. The system of claim 14, wherein if the MAC_ID has a second value, the remote station includes the PN_OFFSET field and the PN_LOAD field in the load information broadcast message. 17. The system of claim 14, wherein if the MAC_ID has a third value, the remote station includes the PN_OFFSET field and the PN_ in the load information broadcast message transmitted via the F-PDCH. LOAD field. 18. If the system of claim 14, wherein if the MAC_ID has another value, the remote station includes other remaining fields in the load information broadcast message and omits the WALSHJV1ASK field, the PN_OFFSET field, and The PN_L0AD stops. 19. The system of claim 14, wherein the other remaining fields include an EP-SIZE field, an ACID field, a SPID field, an AI_SN field, an LWCI field, an EXTJMSG-TYPE field, and A RESERVED field. 20. The system according to claim 1, wherein the sector load information includes a load information broadcast message, the load information broadcast message includes a PN_OFFSET field and a PN_LOAD field, wherein the PN-0FFSET field includes PN_OFFSET Value, and the PN_L0AD field includes corresponding load value information, and if the value of PN_OFFSET matches any of the AS sector pilots, the wireless communication device stores the PN_LOAD value. 21 · The system of claim 20, wherein when the new serving sector is determined, 98232.doc 200541355 The wireless communication device modifies the new serving sector selection based on the corresponding value of pN_LOAD. The measured carrier-to-interference (C / I) ratio. The system of Ruming term 20, wherein when the new serving sector is determined, the wireless communication device adds the corresponding value of PN_LOAD to the measured carrier interference (C / I) ratio. 23 · If the system is explicitly seeking term i, each sector transmits a load value corresponding to its sector load information. 24. A remote station including a plurality of sectors, which includes a processor that determines sector load information; and a transmitter that transmits the sector load information. 25. The remote station of claim 24, wherein each sector has a plurality of adjacent sectors, and one of the currently serving sectors transmits the sector load information of all adjacent sectors. 26. If the remote station of claim 24, wherein the sector load information includes a load information message, the load information message includes pN_〇FFSET ^ bit and a pn_load block, where the PN-qingca field includes pn —〇ffset value 'and the PN_LOAD field includes the corresponding load value information. 27. The remote station of claim 26, wherein the sector load information is included in a channel assignment message (CAM). 28. The remote station of claim 26, wherein the sector load information is included in a handover indication message (HDM). 29. The remote station of claim 24, wherein the remote station uses a dedicated channel to transmit the sector load information. 30. The remote station of claim 29, wherein the dedicated channel is a forward link channel for transmission to a single 98232.doc 200541355 wireless communication device. 3 1. The remote station according to claim 24, wherein the dedicated channel is a forward packet data channel (F-PDCH). 32. The remote station of claim 24, wherein the remote stations use a common channel to multicast the sector load information. 33. The remote station of claim 32, wherein the shared channel is a forward link channel transmitted to all wireless communication devices served by the sector. 34. The remote station of claim 33, wherein the shared channel is a forward packet data channel (F-PDCH), and a single F-PDCH message carries load information for more than one sector. 35. The remote station of claim 33, wherein the dedicated channel is a forward packet data control channel (F-PDCCH). 36. The remote station of claim 24, wherein the sector load information includes a load information broadcast message, the load information broadcast message includes a PN_OFFSET field and a PN_LOAD field, where the PN_OFFSET field includes a PN —OFFS horse T value, and the PN—L0AD field includes the corresponding load value information. 3 7. The remote station of claim 36, wherein the payload information broadcast message further includes a MAC_ID field and a WALSH_MASK field. 3 8. If the remote station of claim 37, wherein if the MAC_ID has a first value, the remote station includes the WALSH_MASK field in the load information broadcast message and omit other blocks. 39. The remote station of claim 37, wherein if the MAC_ID has a second value, the remote station includes the pn_offset 98232.doc 200541355 block and the PN_LOAD block in the load information broadcast message. 40. If the remote station of claim 37, wherein if the MAC_ID has a third value, the remote station includes the PN_OFFSET field and the PN_OFFSET field in the load information broadcast message transmitted through the F-PDCH. PNJLOAD field. 41. If the remote station of claim 37, wherein if the MAC_ID has another value, the remote station includes other remaining fields in the load information broadcast message and omits the WALSH-MASK field, the PN- OFFSET field and the PN_LOAD field. 42. The remote station of claim 37, wherein the remaining remaining blocks include an EP_SIZE field, an ACID field, a SPID field, an AI_SN field, an LWCI field, and an EXT-MSG-TYPE field. And a RESERVED stop. 43. The remote station of claim 24, wherein each sector transmits a load value corresponding to its sector load information. 44. A wireless communication device, which is served by a current serving sector, comprising: a receiver that receives sector load information for each sector in an active set (AS) of the wireless communication device; a channel quality An estimator that measures the carrier-to-interference (C / I) ratio of each sector in the active set (AS) of the wireless communication device; a memory that stores in the active set (AS) of the wireless communication device The carrier-to-interference (C / I) ratio measurements of the sectors; and a processor based on the carrier-to-interference (C / I) ratio measurements for each of the AS sectors and The sector load information is used to determine a new serving sector. 0 98232.doc -6- 200541355 45. The wireless communication device as claimed in item 44, wherein each sector has a plurality of adjacent sectors, and wherein the current serving sector is The sector load information of all adjacent sectors is transmitted to the wireless communication device. '46. The wireless communication device as claimed in claim 44, wherein the sector load information includes a load information message, the load information message includes a pN_0FFSET field and a PN_LOAD block, where the PN_0FFSET ^ The bit includes the PN_OFFSET value, and the pn_LOAD block includes the corresponding load value information. '47. The wireless communication device as in [mu] 46, wherein the sector load information is included in a channel assignment message (cam). 48. The wireless communication device of claim 46, wherein the sector load information is included in a handover indication message (HDM). 49. The wireless communication device of claim 44, wherein the sector load information is received via a dedicated channel. 50. The wireless communication device of claim 49, wherein the dedicated channel is a forward link channel that is transmitted only to the remote wireless communication device. 51. The wireless communication device of claim 44, wherein the dedicated channel is a forward packet data channel (f_pdch). 52. The wireless communication device of claim 44, wherein the sector load information is received via a shared channel. 53. The wireless communication device as claimed in item 52, wherein the shared channel is a forward link channel to one or more wireless communication devices served by the sector sector 0 98232.doc 200541355 54. The wireless device as claimed in item 53 Communication device, wherein the shared channel is a forward packet data channel (F-PDCH), and a single F-PDCH message carries load information of more than one sector. 5 5. The wireless communication device according to claim 53, wherein the dedicated channel is a forward packet data control channel (F-PDCCH). 56. The wireless communication device of claim 44, wherein the sector load information includes a load information broadcast message, the load information broadcast message includes a PN_OFFSET field and a PN_LOAD field, and the PN_OFFSET block Including the PN_OFFSET value, and the PN_LOAD block includes the corresponding load value information. 57. The wireless communication device according to claim 56, wherein the side-loaded δ-hole broadcast message further includes a MAC JD field and a WALSH-MASK field. 5 8. The wireless communication device of claim 57, wherein if the MAC-ID has a first value, the load information broadcast message includes the WALSH-MASK field and no other fields. 59. The wireless communication device of claim 5k7, wherein if the MAC-ID has a second value, the load information broadcast message includes the PN_OFFSET field and the PN_L0AD field. 60. If the wireless communication device of claim 57 'wherein the MAC-ID has a value of one brother and three values', the load information broadcast information includes a violation of the PN__FFFF place and the PNJL0AD block and it passes the F-PDCH While being received. 61. If the wireless communication device of claim 57, wherein the MAC_ID has another value, the load information broadcast message includes other remaining fields and does not include the WALSH MASK field, the PN_OFFSET field, and the 98232. doc 200541355 PN_LOAD is bad. 62. The wireless communication device of claim 57, wherein the other remaining fields include an EP-SIZE field, an ACID field, a SPID field, an AI_SN field, an LWCI field, and an EXTJVISG-TYPE field. And a RESERVED stop. 63. The wireless communication device of claim 44, wherein the sector load information includes a load information broadcast message, the load information broadcast message includes a PN_OFFSET field and a PN_LOAD field, and the PN_OFFSET field includes a PN —QFFSET value, and the PN—LOAD field includes corresponding load value information, and if the processor determines that the value of PN_OFFSET matches any of the AS sector pilots, the memory stores the PN_L0AD value . 64. The wireless communication device of claim 63, wherein when the new serving sector is determined, the processor modifies the measured carrier that will be used for the new serving sector selection based on the corresponding value of PN_LOAD Interference (C / I) ratio. 65. The wireless communication device of claim 03, wherein when the new service sector is determined, the processor adds the corresponding value of PN_LOAD to the measured carrier interference (C / I) ratio. 66. The wireless communication device of claim 44, wherein each sector transmits a load value corresponding to its sector load information. 6 7. A method comprising: determining sector load information including a plurality of sectors of a current serving sector; transmitting the sector load information; and measuring each sector in an aggregated set (AS) The carrier interference (C / I) 98232.doc -9- 200541355 ratio of the area; the carrier interference (C / I) ratio measurements of the sectors in the active set (AS) are stored; and based on the The carrier-to-interference (C / I) ratio measurements of each of the AS sectors and the sector load information determine a new serving sector. 68. The method of claim 67, wherein each sector has a plurality of adjacent sectors, and wherein the currently serving sector transmits the sector load information of all adjacent sectors. 69. The method of claim 67, wherein the sector load message includes a load information message, the load information message includes a PN_OFFSET field and a PN_LOAD field, and the PN_OFFSET field includes PN- OFFSET value, and the PN_LOAD field includes the corresponding load value information. 70. The method of claim 67, wherein the sector load information is transmitted via a dedicated channel. 71. The method of claim 6k7, wherein the dedicated channel is a forward packet data channel (F-PDCH). 72. The method of claim 67, wherein the sector load information is multicasted via a common channel. 73. The method of claim 67, wherein the sector load information includes a load information broadcast message, the load information broadcast message includes a PN_OFFSET block and a PN_LOAD field, where the PN_OFFSET field includes a PN —OFFSET value, and the PN—LOAD block includes the corresponding load value information 0 98232.doc -10- 200541355 74. The method of claim 67, wherein the sector load information includes a load information broadcast message, and the load information broadcast The message includes the PN_OFFSET field and the PN_LOAD block, where the PN_OFFSET field includes the PN_OFFSET value, and the PN_LOAD field includes the corresponding load value information, and if the value of PN_OFFSET matches the AS fans Any one of the area pilots stores the PN_LOAD value. 75. The method of claim 74, wherein when the new serving sector is determined: based on the corresponding value of PN_LOAD, modifying the measured carrier interference (C / I) to be used for the new serving sector selection ratio. 76. The method of claim 67, wherein each sector transmits a load value corresponding to its sector load information. 77. A method comprising: determining sector load information; and transmitting the sector load information. 78. The method of claim 77, wherein each sector has a plurality of adjacent sectors, and one of the currently serving sectors transmits the sector load information of all adjacent sectors. 79. The method of claim 77, wherein the sector load information includes a load information message, the load information message includes a PN_OFFSET field and a PNJLOAD field, wherein the PN_OFFSET field includes a PN_OFFSET value, and the PN- The OFFSET block includes the corresponding load value information. 80. The method of claim 77, wherein the remote station uses a dedicated channel to transmit the sector load lean signal. 8 1. The method of claim 77, wherein the dedicated channel is a forward packet data 98232.doc • 11- 200541355 channel (F-PDCH). Shi Ming's method of item 77, wherein the remote stations use a common channel to multicast the sector load information. The method of month 77, in which the sector load information includes a load information broadcast message, the load information broadcast message includes a pN_〇FFSET field and a PN_L0AD block, where the pN_〇ffset field includes N_OFFSET value, and the pN_LOAc ^ bit includes corresponding load value information. 84. The method of claim 77, wherein each sector transmits a load value corresponding to the load information of its sector. A method for a wireless communication device served by a serving sector, comprising: receiving sector load information of each sector in an active set (A s) of the wireless communication device; measuring the wireless communication attack Each carrier interference CC / i) ratio in the active set (AS); μ 々 stores the dedicated carrier interference (c / l) ratio of the sectors in the active set (AS) of the wireless communication device Measurement; and, determining a new serving sector based on the carrier-to-interference (C / I) ratio measurements of each of the AS fans and the sector load information. 86. The method of claim 85, wherein each sector has a plurality of contiguous sectors, and eight of them. The service sector transmits the sector load information of all adjacent sectors to the wireless communication device. 98232.doc • 12- 200541355 87. If the method of item 85 is requested, wherein the sector load information includes a load information message, the load information message includes a PN_OFFSET field and a PN_LOAD field, where the PN_OFFSET field The bit includes the PN_0FFSET value, and the PN_LOAD field includes the corresponding load value information. 88. The method of claim 85, wherein the sector load information is received via a dedicated channel. 89. The method of claim 85, wherein the dedicated channel is a forward packet data channel (F-PDCH). 90. The method of claim 85, wherein the sector load information is received via a shared channel. 91. The method of claim 85, wherein the sector load information includes a load information broadcast message, the load information broadcast message includes a PN_OFFSET field and a PN_LOAD field, and the PN_OFFSET field includes PN_OFFSET Value, and the PN_LOAD block includes corresponding load value information. 92. The method of claim 8J, wherein the sector load information includes a load information broadcast message, the load information broadcast message includes a PN_OFFSET field and a PN_LOAD field, wherein the PN_OFFSET field includes a PN_0FFSET value, And the PN_LOAD field includes the corresponding load value information, and if the processor determines that the value of PN_OFFSET matches any of the AS sector pilots, the memory stores the PN_LOAD value. 93. The method of claim 92, wherein when the new service sector is determined, the processor modifies the selected service to be used for the new service 98232.doc -13- 200541355 based on the corresponding value of PN JLOAD. The measured carrier-to-interference (c / i) ratio. 94. The method of claim 85, wherein each sector transmits a load value corresponding to its sector load information. 98232.doc -14-98232.doc -14-
TW93138438A 2003-12-11 2004-12-10 Conveying sector load information to mobile stations TW200541355A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US52913403P 2003-12-11 2003-12-11

Publications (1)

Publication Number Publication Date
TW200541355A true TW200541355A (en) 2005-12-16

Family

ID=52349278

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93138438A TW200541355A (en) 2003-12-11 2004-12-10 Conveying sector load information to mobile stations

Country Status (1)

Country Link
TW (1) TW200541355A (en)

Similar Documents

Publication Publication Date Title
JP4505466B2 (en) Communicating sector load information to mobile stations
JP4504350B2 (en) Congestion control in wireless data networks
JP5017210B2 (en) Downlink signaling system and method for fast uplink packet access
JP5612160B2 (en) Acknowledgment and rate control combination
RU2414097C2 (en) Individual and group identifiers for user equipment in wireless systems with shared transport channel
KR101070208B1 (en) Scheduled and autonomous transmission and acknowledgement
JP4824555B2 (en) An active set of approvals, acknowledgments, and rate control
TWI330969B (en) Method for providing a message to a terminal, method for providing information to a network, and method for providing control information to a terminal in a multi-carrier mobile communicaiton system
KR20050101218A (en) Code division multiplexing commands on a code division multiplexed channel
US7817605B2 (en) Method of transmitting control signals for uplink transmission in communication systems
AU2003286791A1 (en) Method and apparatus for stealing power or walsh-code for a data channel (e.g. shared data channel) from a dedicated channel (e.g. voice channel)
TW200541355A (en) Conveying sector load information to mobile stations
RU2387102C2 (en) Loading management in wireless data network
Laganà Evaluation of channel switching threshold for MBMS in UMTS networks