TW200539321A - Method for improving high density plasmachemical vapor deposition process - Google Patents

Method for improving high density plasmachemical vapor deposition process Download PDF

Info

Publication number
TW200539321A
TW200539321A TW93115371A TW93115371A TW200539321A TW 200539321 A TW200539321 A TW 200539321A TW 93115371 A TW93115371 A TW 93115371A TW 93115371 A TW93115371 A TW 93115371A TW 200539321 A TW200539321 A TW 200539321A
Authority
TW
Taiwan
Prior art keywords
filling
vapor deposition
chemical vapor
filling rate
equation
Prior art date
Application number
TW93115371A
Other languages
Chinese (zh)
Inventor
Wei-Cheng Lu
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to TW93115371A priority Critical patent/TW200539321A/en
Publication of TW200539321A publication Critical patent/TW200539321A/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

A method for improving a high-density plasma chemical vapor deposition process is described. First, a filling rate equation that is a function of time, a starting value of a filling rate, and a period of time when a filling step is spent are provided. Additionally, the function of time may be a linear function. The high-density plasma chemical vapor deposition process is then performed to fill a predetermined structure on a substrate according to the filling rate equation, the starting value of the filling rate, and the period of time. Furthermore, the filling rate equation is composed of a deposition equation, an ion bombardment equation, and a composition equation thereof.

Description

200539321 ____ 五、發明說明(1) 【發明所屬之技術領域】 本發明是有關於一種改善半導體製程之方法,且特別是有 關於一種改善高密度電漿化學氣相沉積製程之方法。 【先前技術】 近年來由於半導體工業快速發展,使得各項製程技術與應 用材料皆大幅開發,以持續提升積體電路中元件的積集度 及操作的效能。一般而言,半導體元件所需的薄膜材料, 不論是導體、半導體、或介電材料,皆可藉由化學氣相沈 積(chemical vapor deposition; CVD)製程而得。常見的 化學氣相沈積方法有常壓化學氣相沈積(atmospheric pressure chemical vapor deposition; APCVD)製程、低 壓化學氣相沈積(low pressure chemical vapor deposition; LPCVD)製程、次大氣壓化學氣相沈積 (sub-atmosphere chemical vapor deposition; SACVD) 製程、電漿辅助化學氣相沈積(plasma enhanced chemical vapor deposition; PECVD)製程、及高密度電 衆化學氣相沈積(high density plasma chemical vapor deposition; HDP CVD)製程等,其中高密度電漿化學氣相 沈積製程常做為填補隙縫及形成隔離區域之用。 然而,隨著元件尺寸日趨微小化,其隔離區域與隙縫之縱 橫比(aspect rat i〇)亦大幅提高,是以如何達到無細縫 (seam less)與無孔洞(voicl free)的製程品質要求,已成 為高密度電漿化學氣相沉積製程中重要的研發課題之一。200539321 ____ V. Description of the invention (1) [Technical field to which the invention belongs] The present invention relates to a method for improving a semiconductor process, and in particular, to a method for improving a high-density plasma chemical vapor deposition process. [Previous technology] In recent years, due to the rapid development of the semiconductor industry, various process technologies and application materials have been greatly developed in order to continuously improve the integration degree and operation efficiency of components in integrated circuits. In general, the thin film materials required for semiconductor devices, whether they are conductors, semiconductors, or dielectric materials, can be obtained by a chemical vapor deposition (CVD) process. Common chemical vapor deposition methods include atmospheric pressure chemical vapor deposition (APCVD) process, low pressure chemical vapor deposition (LPCVD) process, and sub-atmospheric pressure chemical vapor deposition (LP-CVD) process. atmosphere chemical vapor deposition (SACVD) process, plasma enhanced chemical vapor deposition (PECVD) process, and high density plasma chemical vapor deposition (HDP CVD) process, etc. The high-density plasma chemical vapor deposition process is often used to fill gaps and form isolated areas. However, as the component size becomes smaller and smaller, the aspect ratio of the isolation area and the gap (aspect rat i0) is also greatly improved. How to achieve the process quality requirements of seam less and void free , Has become one of the important research and development topics in high-density plasma chemical vapor deposition process.

第6頁 200539321 五、發明說明(2) 第1 A至1 C圖為繪示習知高密度電漿化學氣相沉積製程應用 於充填溝渠結構之過程。為了避免產生細縫或孔洞,目前 製造業者通常採用較慢的充填速率來填充高縱橫比之溝渠 結構。然而如第1 A至1 C圖所示,在進行充填一填充層1 6 0 於基材1 0 0上的溝渠結構1 2 0時,隨著充填步驟的進行,溝 渠結構1 2 0的縱橫比亦隨之改變,因此若以一定的充填速 率來填充溝渠結構1 2 0將會嚴重影響製程之生產效率。 【發明内容】 因此本發明之目的就是在提供一種高密度電漿化學氣相沉 積製程,用以有效進行充填步驟來提高生產效率,並能避 免產生細縫或孔洞之問題。 根據本發明之上述目的,提出一種改善高密度電漿化學氣 相沉積製程之方法。其乃提供一為時間函數之充填步驟來 控制充填速率隨著製程時間而變化,以有效縮短製程所需 時間。另一方面,充填步驟所伴隨的製程參數,如氣體流 量、射頻偏壓(radio frequency bias)電源、與電漿產生 器電源等,均會依充填速率而做適當調整,如此更可提高 氣體或電源的有效利用率。故藉由上述之方法可有效進行 充填步驟來填補隙縫或形成隔離區域,進而提高製程之生 產效率,並且不會形成細縫或孔洞於隙縫或隔離區域中而 影響製程品質。 【實施方式】Page 6 200539321 V. Description of the invention (2) Figures 1 A to 1 C show the process of applying the conventional high-density plasma chemical vapor deposition process to fill trench structures. To avoid the creation of fine seams or holes, manufacturers currently use slower filling rates to fill trench structures with high aspect ratios. However, as shown in Figs. 1A to 1C, when a trench structure 1 2 0 is filled with a filler layer 160 on the substrate 1 0, as the filling step proceeds, the trench structure 1 2 0 The ratio also changes accordingly, so if the trench structure is filled with a certain filling rate 120, it will seriously affect the production efficiency of the process. [Summary of the Invention] Therefore, an object of the present invention is to provide a high-density plasma chemical vapor deposition process for effectively performing a filling step to improve production efficiency and avoid the problems of fine seams or holes. According to the above object of the present invention, a method for improving a high-density plasma chemical vapor deposition process is proposed. It provides a filling step as a function of time to control the filling rate to change with the process time to effectively shorten the time required for the process. On the other hand, the process parameters accompanying the filling step, such as gas flow, radio frequency bias power, and plasma generator power, etc., will be appropriately adjusted according to the filling rate, so that the gas or Effective power utilization. Therefore, the above-mentioned method can effectively perform the filling step to fill the gaps or form isolated areas, thereby improving the production efficiency of the process, and will not form fine seams or holes in the gaps or isolated areas, which will affect the quality of the process. [Embodiment]

200539321200539321

五、發明說明(3) 為了提供更有效率 程品質要求,本發 積製程之方法,其 下。 的充填步驟且符合| 明提出一種改善高密 較佳實施例,將參照、 細縫與無孔洞的製 度電漿化學氣相沉 附件圖式詳述如 其,依照本發明一較佳 例ίΓ::積製程改善方法的流程圖。在此較佳實施 ::率ίΓΚΓ,來提供一充填速率方程式,且此充 ΐίif 隨時間改變的時間函數。,中,時間函數V. Description of the Invention (3) In order to provide more efficient process quality requirements, the method of this development process is as follows. The filling steps are in accordance with the present invention. A preferred embodiment for improving the high density is proposed, and the reference plasma slits and poreless system plasma chemical vapor deposition attachments are detailed as follows, according to a preferred example of the present invention. Flow chart of process improvement method. The :: rate ΓΓΓ is preferably implemented here to provide a filling rate equation, and this filling ifif is a time function that changes with time. , Medium, time function

:ί二ί !A圖所示之線性函數,如此充填速率將與製程 ,仃夺間呈線性變丨。由於高密度電漿化學氣相沉積製程 是利用一電漿產生器,如電感耦合式(inductively ⑶upled plasma; ICP)電漿產生器、或電子迴旋共振式: ί 二 ί! A linear function shown in Figure A, so the filling rate will linearly change with the process. Because the high-density plasma chemical vapor deposition process uses a plasma generator, such as an inductively coupled (ICP) plasma generator, or an electron cyclotron resonance

Celectiron cyclotron resonance; ECR)電漿產生器等來 產生一尚電漿密度反應源,並在另一端施加一射頻偏壓 (radio frequency bias),使得於進行充填步驟時,除了 /儿積填充物外’還使離子轟擊(bombardment)填充物表面 而具有消除細缝或孔洞的效果。因此充填速率可決定於沉 積,率、離子轟擊程度或其組合,而沉積速率決定於氣體 流,、電漿產生器的電源大小或其組合,且離子轟擊程度 決定於氣體流量、射頻偏壓的電源大小或其組合。換言 之,充填速率方程式可由一沉積速率方程式、一離子轟擊 方程式,其組合方程式所構成。另外,沉積速率方程式可 具有一氣體流量參數、一電漿產生器電源參數或其組合參 數,而離子轟擊方程式可具有一氣體流量參數、一射頻偏Celectiron cyclotron resonance (ECR) plasma generator, etc. to generate a plasma density reaction source, and apply a radio frequency bias at the other end, so that during the filling step, in addition to 'Also bombardment the surface of the filler and have the effect of eliminating fine seams or holes. Therefore, the filling rate can be determined by the deposition rate, the degree of ion bombardment, or a combination thereof, and the deposition rate can be determined by the gas flow, the size of the power source of the plasma generator, or a combination thereof, and the degree of ion bombardment is determined by the gas flow rate and the RF bias Power supply size or combination. In other words, the filling rate equation can be composed of a deposition rate equation, an ion bombardment equation, and a combination equation thereof. In addition, the deposition rate equation may have a gas flow parameter, a plasma generator power parameter, or a combination thereof, and the ion bombardment equation may have a gas flow parameter, a radio frequency bias

200539321 五、發明說明(4) 壓電源參數或其組合參數。故當改變充填速率時,复 、. 隨的製程參數,如氣體流量、射頻偏壓電源或電聚^所伴 電源等,均會隨之適當地調整,如此不但可提供^ ^生器 填速率,更可提高氣體或電源的有效利用率。、田的充 回溯第2圖,接著進行步驟230來提供一充填速率起如 一充填步驟所進行的時間,然後進行步驟2 5 〇以根始值與 提供之充填速率方程式、充填速率起始值、及充^ 上述 =時間來進行高密度電漿化學氣相沉積製程,而二= 材上的預定結構,例如一隙縫(gap)結構或一淺溝 s基 (shallow trench isolation; STI)結構等。由=隔離 之充填速率方程式乃隨時間變化的函數,、發明 步驟時,可以隨時間連續改變充填速 仃充填 的充填速率需求,目而提高生產效t滿足不同縱橫比 再^ L上述之較佳實施例雖僅提供一充填速率方 速率方…如第_所示=個充填 充結果,同樣能提高製程的生產效率,太.^…、孔洞之填 本發明較佳實施例可知,應、用本;::: =此。 充填速率方程<,因此在進行言=、:連續隨時間變化的 程以填充隙縫或隔離區域時,;:漿化學氣相沉積製 ”供適當的充填速率,進而=驟之進行時間 此外,當充填速率改變時,1 同裊耘之生產效率。 變,如此更可藉由調整參數條2 =的製程參數亦隨之改 數條件而有效提高氣體或電源的200539321 V. Description of the invention (4) Voltage source parameters or their combined parameters. Therefore, when the filling rate is changed, the process parameters, such as gas flow rate, RF bias power or the power source associated with the electro-polymerization, etc., will be appropriately adjusted accordingly. This will not only provide the filling rate of the generator. , Can improve the effective utilization of gas or power. The filling of Tiantian is traced back to the second figure, and then step 230 is performed to provide a filling rate starting from the time of a filling step, and then step 2 50 is performed with the root value and the provided filling rate equation, the filling rate starting value, The above = time is used to perform the high-density plasma chemical vapor deposition process, and the second = predetermined structure on the material, such as a gap structure or a shallow trench isolation (STI) structure. From = the filling rate equation of isolation is a function that changes with time. When inventing the steps, the filling rate can be continuously changed with time. The filling rate of filling is required to improve the production efficiency. To meet different aspect ratios, ^ L Although the embodiment only provides a filling rate square rate ... As shown in the _ = filling results, can also improve the production efficiency of the process, too. ^ ..., hole filling The preferred embodiment of the present invention can be known, should be used This; ::: = this. The filling rate equation < therefore, when the following steps are taken: to fill gaps or isolated areas with continuous time-varying processes;: made by slurry chemical vapor deposition "for an appropriate filling rate, and then = the duration of the sudden addition, When the filling rate is changed, 1 is the same as the production efficiency. So, it is more effective to improve the gas or power supply by adjusting the parameter bar 2 = the process parameters are changed accordingly.

200539321 五、發明說明(5) 利用率。 雖然本發明已以一較佳實施例揭露如上,然其並非用以限 定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作各種之更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 ❿200539321 V. Description of Invention (5) Utilization. Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention. Any person skilled in the art can make various changes and decorations without departing from the spirit and scope of the present invention. The scope of protection of the invention shall be determined by the scope of the attached patent application. ❿

第10頁 200539321 圖式簡單說明 為讓本發明之上述與其他目的、特徵、和優點能更明顯易 懂,配合所附圖式,加以說明如下: 第1 A至1 C圖係繪示習知高密度電漿化學氣相沉積製程應用 於充填溝渠結構之過程; 第2圖係繪示依照本發明一較佳實施例的一種改善高密度 電漿化學氣相沉積製程之方法流程圖;以及 第3A及3B圖係繪示充填速率與製程進行時間的關係圖。 【元件代表符號簡單說明】 1 0 0 基材 1 2 0 溝渠結構 160 填充層 210、230、250 步驟Page 10 200539321 Brief description of the drawings In order to make the above and other objects, features, and advantages of the present invention more comprehensible, in conjunction with the attached drawings, the description is as follows: Figures 1A to 1C are drawings showing the conventional knowledge FIG. 2 is a flowchart of a method for improving a high-density plasma chemical vapor deposition process in accordance with a preferred embodiment of the present invention; and FIG. 3A and 3B are diagrams showing the relationship between the filling rate and the process progress time. [Simple description of component representative symbols] 1 0 0 Base material 1 2 0 Ditch structure 160 Filling layer 210, 230, 250 steps

Claims (1)

200539321 六、申請專利範圍 ^含一種改善高密度電聚化學氣相沉積製程之方法,至少 提供至少一充填i亲i f ,g + 時間函數; U W充填速率方程式係 ^供至一充填速率起始值與至少一 為 間;以及 充填步驟之進行 時 根據該充填速率方程式、該充填速率起始值與該充 之進行時間來進行該高密度電聚化學氣相沉積製程真= 充一預定結構。 異 2·如申請專利範圍第1項所述之改善高密度電漿化學氣相 沉積製程之方法,其中上述之充填速率方程式更包含一沉 積速率方程式。 / 3·如申請專利範圍第2項所述之改善高密度電漿化學氣相 沉積製程之方法,其中上述之沉積速率方程式係受控於一 氣體流量參數、一電漿產生器電源參數或其組合參數。 4 ·如申請專利範圍第1項所述之改善高密度電漿化學氣相 沉積製程之方法’其中上述之充填速率方程式更包含一離 子轟擊方程式。 5 ·如申請專利範圍第4項所述之改善高密度電漿化學氣相 沉積製程之方法,其中上述之離子轟擊方程式係受控於一200539321 6. Scope of patent application ^ Contains a method for improving the high-density electropolymerization chemical vapor deposition process, which provides at least one filling function, g + time function; UW filling rate equation system ^ for a starting value of filling rate And at least one; and performing the filling step according to the filling rate equation, the starting value of the filling rate, and the filling time to perform the high-density electropolymerization chemical vapor deposition process. True = filling a predetermined structure. Difference 2. The method for improving the high-density plasma chemical vapor deposition process as described in item 1 of the scope of the patent application, wherein the above-mentioned filling rate equation further includes a deposition rate equation. / 3. The method for improving the high-density plasma chemical vapor deposition process as described in the second item of the patent application range, wherein the above-mentioned deposition rate equation is controlled by a gas flow parameter, a plasma generator power source parameter, or Combination parameters. 4. The method for improving the high-density plasma chemical vapor deposition process as described in item 1 of the scope of the patent application, wherein the above-mentioned filling rate equation further includes an ion bombardment equation. 5. The method for improving the high-density plasma chemical vapor deposition process as described in item 4 of the scope of the patent application, wherein the above-mentioned ion bombardment equation is controlled by a 200539321 六、申請專利範圍 氣體流量參數、一射頻偏壓電源參數或其組合參數。 6.如申請專利範圍第1項所述之改善高密度電漿化學氣相 沉積製程之方法,其中上述之時間函數係為一線性函數。 7 ·如申請專利範圍第1項所述之改善高密度電漿化學氣相 沉積製程之方法,其中上述之預定結構係為一隙縫結構。 8 ·如申請專利範圍第1項所述之改善高密度電漿化學氣相 沉積製程之方法,其中上述之預定結構係為一淺溝渠隔離 結構。 9 · 一種高密度電漿化學氣相沉積製程之改善方法,至少 包含: 提供至少一充填速率方程式、至少一充填速率起始值與至 少一充填步驟之進行時間,其中該充填速率方程式係為一 線性時間函數;以及 根據該充填速率方程式、該充填速率起始值與該充填步驟 之進行時間來進行該高密度電漿化學氣相沉積製程,以填 充一預定結構。 1 0.如申請專利範圍第9項所述之高密度電漿化學氣相沉 積製程之改善方法,其中上述之充填速率方程式更包含一 沉積速率方程式。200539321 6. Scope of patent application Gas flow parameters, a radio frequency bias power supply parameter or a combination of parameters. 6. The method for improving a high-density plasma chemical vapor deposition process according to item 1 of the scope of the patent application, wherein the above-mentioned time function is a linear function. 7. The method for improving the high-density plasma chemical vapor deposition process as described in item 1 of the scope of patent application, wherein the predetermined structure is a gap structure. 8. The method for improving the high-density plasma chemical vapor deposition process according to item 1 of the scope of the patent application, wherein the predetermined structure is a shallow trench isolation structure. 9 · An improvement method for a high-density plasma chemical vapor deposition process, comprising at least: providing at least one filling rate equation, at least one filling rate starting value, and at least one filling step duration, wherein the filling rate equation is a line Time function; and performing the high-density plasma chemical vapor deposition process to fill a predetermined structure according to the filling rate equation, the initial value of the filling rate, and the time of the filling step. 10. The method for improving the high-density plasma chemical vapor deposition process according to item 9 of the scope of the patent application, wherein the above-mentioned filling rate equation further includes a deposition rate equation. 第13頁 200539321 六、申請專利範圍 沉於。 相控數 氣受參 學係合 化式組 漿程其 電方或 度率數 密速參 高積源 之沉電 述之器 所述生 g上產 10中漿 第其電 圍,一 範法 、 利方數 專善參 請改量 申之流 如程體 •製氣 11積一 沉 相 氣 學 化 漿 度 密 高 之 述 所 9 中 第其 圍, 範法。 利方式 專善程 請改方 之擊 如程轟 製子 2 積離 含 包 更 式 程 方 率 填 充 之 述 3 積一 沉於 相控。 氣受數 學係參 化式合 漿程組 電方其 度擊或 密轟數 高子參 之離源 述之電 所述壓 項上偏 2 1中頻 第其射 圍,一 範法、 利方數 專善參 請改量 申之流 如程體 製氣 @>r結 學-P 匕一 聚J 電構 高預 之之Z述 戶上 gtj= 第其 圍, 範法 利方 專善 請改 申之 如程 製 4 積構 5 製結 積離 所 Λ 9 中 第其 圍, 範法 利方 專善 請改 申之。 如程構 沉 相 氣 學 化 漿 電 度 密 高 之 述 隔 渠 溝 淺 1 為 係 構 結 定 預 之 述 一至 充程 填製 於積 用沉 應相 係氣 ,學 程化 製漿 積電 沉度 相密 氣高 學該 化, 漿構 電結 度定 密預 高 一 種之: 一 上含 •材包 6 1基少Page 13 200539321 VI. Scope of patent application Shen. The phase-controlled number of gas is controlled by the electrical system or degree of the chemical system of the reference department. Please refer to the equations for changes in the amount of application, such as Cheng body • gas production 11 accumulation, Shen phase gasification, chemical density, high density of the 9th paragraph, the paradigm. The method of profit is good, please change the way, such as Cheng Hong's system. 2 Separation of the formula with the inclusion of the formula. The electric side of the Qihecheng group of the qi subject group of the Department of Mathematics of the Department of Mathematics has a high degree of attack or close bombardment. The voltage term described by the source of the electric power is higher than 2 1 and the intermediate frequency is the first range. Some experts please change the application of the flow of the system like the process of gas @ > r 结 学 -P 一一 聚 J The high presupposition of Z Electricity gtj = qiqiwei, Fan Falifang, please change The application of the procedure is as follows: the system of 4 products and the structure of 5 systems; Such as the Cheng Gou Shen phase gas chemical slurry with high electrical density, said the trench is shallow. 1 The structure is predetermined, and the filling process is filled with the Shen Ying phase system gas. The degree of denseness is high, and the degree of denseness of the slurry structure is preliminarily set to one of the following: one containing • material package 6 1 base less 第14頁 200539321 六、申請專利範圍 提供至少一充填速 一時間函數,且該 與一離子轟擊方程 提供至少一充填速 間;以及 根據該充填逮率方 之進行時間來進行 17·如申請專利範 積製程’其中上述 參數、一電漿產生 1 8.如申請專利範 積製程’其中上述 參數、一射頻偏壓 率方程式,其中誃 充填速率方程式7兄填速率方程式係為 式所構成; 係由一沉積速率方程式 率起始值與至少— 充填步驟之進行時 程式、該充填诫盘如, 該高密度電漿化與> °值與该充填步驟 化學虱相沉積製程。 園第16項所述之高密度電漿化 ?沉積速率方程式係受控於一氣體:: 裔電源參數或其組合參數。 。里 圍第1 6項所述之高密度電漿化學氣相" 之離子轟擊方程式係受控於一氣體流= 電源參數或其組合參數。 S 19如中請專利範圍第16項所述之高密度電聚 穑製程,复φ μ、+、 予乳相况 積衣 ,、甲上述之時間函數係為一線性函數。 2 0、^申請專利範圍第1 6項所述之高密度電漿化學氣相沉 積製私’其中上述之預定結構係為一隙縫結構或為_ = 渠隔離結構。 义溝Page 14 200539321 VI. The scope of the patent application provides at least a filling rate as a function of time, and this and an ion bombardment equation provides at least a filling rate; and according to the time of the filling arrest rate to proceed. The integrator process' where the above-mentioned parameters are generated by a plasma 1 8. As described in the patent application, the above-mentioned parameters and a radio frequency bias rate equation, in which the filling rate equation 7 and the filling rate equation are formed by the formula: An initial value of the deposition rate equation and at least the time-step formula of the filling step, the filling commandment such as the high-density plasmatization and > ° value and the chemical lice phase deposition process of the filling step. The high-density plasmatization described in item 16 of the park? The deposition rate equation is controlled by a gas :: power source parameter or a combination of parameters. . The ion bombardment equation of the high-density plasma chemical vapor phase described in Item 16 is controlled by a gas flow = power source parameter or a combination of parameters. S 19 The high-density electropolymerization process described in item 16 of the patent scope of the application, complex φ μ, +, pre-milk phase, and the above-mentioned time function is a linear function. 20, ^ The high-density plasma chemical vapor deposition system described in item 16 of the scope of patent application, wherein the predetermined structure is a gap structure or a _ = trench isolation structure. Yigou 第15頁Page 15
TW93115371A 2004-05-28 2004-05-28 Method for improving high density plasmachemical vapor deposition process TW200539321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93115371A TW200539321A (en) 2004-05-28 2004-05-28 Method for improving high density plasmachemical vapor deposition process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93115371A TW200539321A (en) 2004-05-28 2004-05-28 Method for improving high density plasmachemical vapor deposition process

Publications (1)

Publication Number Publication Date
TW200539321A true TW200539321A (en) 2005-12-01

Family

ID=52349133

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93115371A TW200539321A (en) 2004-05-28 2004-05-28 Method for improving high density plasmachemical vapor deposition process

Country Status (1)

Country Link
TW (1) TW200539321A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10695794B2 (en) 2015-10-09 2020-06-30 Asm Ip Holding B.V. Vapor phase deposition of organic films
US10793946B1 (en) 2016-06-08 2020-10-06 Asm Ip Holding B.V. Reaction chamber passivation and selective deposition of metallic films
TWI707978B (en) * 2015-10-09 2020-10-21 荷蘭商Asm Ip控股公司 Vapor phase deposition of organic films
US10814349B2 (en) 2015-10-09 2020-10-27 Asm Ip Holding B.V. Vapor phase deposition of organic films
US10847361B2 (en) 2015-08-05 2020-11-24 Asm Ip Holding B.V. Selective deposition of aluminum and nitrogen containing material
US10854460B2 (en) 2016-06-01 2020-12-01 Asm Ip Holding B.V. Deposition of organic films
US10872765B2 (en) 2018-05-02 2020-12-22 Asm Ip Holding B.V. Selective layer formation using deposition and removing
US10903113B2 (en) 2015-08-05 2021-01-26 Asm Ip Holding B.V. Selective deposition of aluminum and nitrogen containing material
US10900120B2 (en) 2017-07-14 2021-01-26 Asm Ip Holding B.V. Passivation against vapor deposition
US10923361B2 (en) 2016-06-01 2021-02-16 Asm Ip Holding B.V. Deposition of organic films
US11047040B2 (en) 2014-04-16 2021-06-29 Asm Ip Holding B.V. Dual selective deposition
US11056385B2 (en) 2011-12-09 2021-07-06 Asm International N.V. Selective formation of metallic films on metallic surfaces
US11062914B2 (en) 2015-02-23 2021-07-13 Asm Ip Holding B.V. Removal of surface passivation
US11081342B2 (en) 2016-05-05 2021-08-03 Asm Ip Holding B.V. Selective deposition using hydrophobic precursors
US11094535B2 (en) 2017-02-14 2021-08-17 Asm Ip Holding B.V. Selective passivation and selective deposition
US11139163B2 (en) 2019-10-31 2021-10-05 Asm Ip Holding B.V. Selective deposition of SiOC thin films
US11145506B2 (en) 2018-10-02 2021-10-12 Asm Ip Holding B.V. Selective passivation and selective deposition
US11170993B2 (en) 2017-05-16 2021-11-09 Asm Ip Holding B.V. Selective PEALD of oxide on dielectric
US11174550B2 (en) 2015-08-03 2021-11-16 Asm Ip Holding B.V. Selective deposition on metal or metallic surfaces relative to dielectric surfaces
US11213853B2 (en) 2014-02-04 2022-01-04 Asm Ip Holding B.V. Selective deposition of metals, metal oxides, and dielectrics
US11430656B2 (en) 2016-11-29 2022-08-30 Asm Ip Holding B.V. Deposition of oxide thin films
US11501965B2 (en) 2017-05-05 2022-11-15 Asm Ip Holding B.V. Plasma enhanced deposition processes for controlled formation of metal oxide thin films
US11608557B2 (en) 2020-03-30 2023-03-21 Asm Ip Holding B.V. Simultaneous selective deposition of two different materials on two different surfaces
US11643720B2 (en) 2020-03-30 2023-05-09 Asm Ip Holding B.V. Selective deposition of silicon oxide on metal surfaces
US11898240B2 (en) 2020-03-30 2024-02-13 Asm Ip Holding B.V. Selective deposition of silicon oxide on dielectric surfaces relative to metal surfaces
US11965238B2 (en) 2019-04-12 2024-04-23 Asm Ip Holding B.V. Selective deposition of metal oxides on metal surfaces

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11056385B2 (en) 2011-12-09 2021-07-06 Asm International N.V. Selective formation of metallic films on metallic surfaces
US11975357B2 (en) 2014-02-04 2024-05-07 Asm Ip Holding B.V. Selective deposition of metals, metal oxides, and dielectrics
US11213853B2 (en) 2014-02-04 2022-01-04 Asm Ip Holding B.V. Selective deposition of metals, metal oxides, and dielectrics
US11047040B2 (en) 2014-04-16 2021-06-29 Asm Ip Holding B.V. Dual selective deposition
US11525184B2 (en) 2014-04-16 2022-12-13 Asm Ip Holding B.V. Dual selective deposition
US11062914B2 (en) 2015-02-23 2021-07-13 Asm Ip Holding B.V. Removal of surface passivation
US11174550B2 (en) 2015-08-03 2021-11-16 Asm Ip Holding B.V. Selective deposition on metal or metallic surfaces relative to dielectric surfaces
US10847361B2 (en) 2015-08-05 2020-11-24 Asm Ip Holding B.V. Selective deposition of aluminum and nitrogen containing material
US10903113B2 (en) 2015-08-05 2021-01-26 Asm Ip Holding B.V. Selective deposition of aluminum and nitrogen containing material
US11654454B2 (en) 2015-10-09 2023-05-23 Asm Ip Holding B.V. Vapor phase deposition of organic films
US10814349B2 (en) 2015-10-09 2020-10-27 Asm Ip Holding B.V. Vapor phase deposition of organic films
US11446699B2 (en) 2015-10-09 2022-09-20 Asm Ip Holding B.V. Vapor phase deposition of organic films
TWI827860B (en) * 2015-10-09 2024-01-01 荷蘭商Asm Ip私人控股有限公司 Method for reducing the aspect ratio of three-dimensional structures on a semiconductor substrate and apparatus for organic film deposition
TWI707978B (en) * 2015-10-09 2020-10-21 荷蘭商Asm Ip控股公司 Vapor phase deposition of organic films
US11389824B2 (en) 2015-10-09 2022-07-19 Asm Ip Holding B.V. Vapor phase deposition of organic films
US10695794B2 (en) 2015-10-09 2020-06-30 Asm Ip Holding B.V. Vapor phase deposition of organic films
US11081342B2 (en) 2016-05-05 2021-08-03 Asm Ip Holding B.V. Selective deposition using hydrophobic precursors
US11728175B2 (en) 2016-06-01 2023-08-15 Asm Ip Holding B.V. Deposition of organic films
US10923361B2 (en) 2016-06-01 2021-02-16 Asm Ip Holding B.V. Deposition of organic films
US10854460B2 (en) 2016-06-01 2020-12-01 Asm Ip Holding B.V. Deposition of organic films
US11387107B2 (en) 2016-06-01 2022-07-12 Asm Ip Holding B.V. Deposition of organic films
US10793946B1 (en) 2016-06-08 2020-10-06 Asm Ip Holding B.V. Reaction chamber passivation and selective deposition of metallic films
US11430656B2 (en) 2016-11-29 2022-08-30 Asm Ip Holding B.V. Deposition of oxide thin films
US11094535B2 (en) 2017-02-14 2021-08-17 Asm Ip Holding B.V. Selective passivation and selective deposition
US11501965B2 (en) 2017-05-05 2022-11-15 Asm Ip Holding B.V. Plasma enhanced deposition processes for controlled formation of metal oxide thin films
US11170993B2 (en) 2017-05-16 2021-11-09 Asm Ip Holding B.V. Selective PEALD of oxide on dielectric
US11728164B2 (en) 2017-05-16 2023-08-15 Asm Ip Holding B.V. Selective PEALD of oxide on dielectric
US11396701B2 (en) 2017-07-14 2022-07-26 Asm Ip Holding B.V. Passivation against vapor deposition
US10900120B2 (en) 2017-07-14 2021-01-26 Asm Ip Holding B.V. Passivation against vapor deposition
US11739422B2 (en) 2017-07-14 2023-08-29 Asm Ip Holding B.V. Passivation against vapor deposition
US11804373B2 (en) 2018-05-02 2023-10-31 ASM IP Holding, B.V. Selective layer formation using deposition and removing
US11501966B2 (en) 2018-05-02 2022-11-15 Asm Ip Holding B.V. Selective layer formation using deposition and removing
US10872765B2 (en) 2018-05-02 2020-12-22 Asm Ip Holding B.V. Selective layer formation using deposition and removing
US11145506B2 (en) 2018-10-02 2021-10-12 Asm Ip Holding B.V. Selective passivation and selective deposition
US11830732B2 (en) 2018-10-02 2023-11-28 Asm Ip Holding B.V. Selective passivation and selective deposition
US11965238B2 (en) 2019-04-12 2024-04-23 Asm Ip Holding B.V. Selective deposition of metal oxides on metal surfaces
US11664219B2 (en) 2019-10-31 2023-05-30 Asm Ip Holding B.V. Selective deposition of SiOC thin films
US11139163B2 (en) 2019-10-31 2021-10-05 Asm Ip Holding B.V. Selective deposition of SiOC thin films
US11643720B2 (en) 2020-03-30 2023-05-09 Asm Ip Holding B.V. Selective deposition of silicon oxide on metal surfaces
US11898240B2 (en) 2020-03-30 2024-02-13 Asm Ip Holding B.V. Selective deposition of silicon oxide on dielectric surfaces relative to metal surfaces
US11608557B2 (en) 2020-03-30 2023-03-21 Asm Ip Holding B.V. Simultaneous selective deposition of two different materials on two different surfaces

Similar Documents

Publication Publication Date Title
TW200539321A (en) Method for improving high density plasmachemical vapor deposition process
Oehrlein et al. Foundations of low-temperature plasma enhanced materials synthesis and etching
JP7171604B2 (en) A Two-Step Process for Gapfilling High Aspect Ratio Trench with Amorphous Silicon Films
CN103119695B (en) The plasma of conformal film activates deposition
TW466632B (en) Method of depositing a low K films using an oxidizing plasma
TW201841256A (en) Hydrogen activated atomic layer etching
TW201334115A (en) Doping of dielectric layers
CN109477212A (en) Method and apparatus for filling gap
WO1998021747A1 (en) Plasma film forming method and plasma film forming apparatus
CN106057636A (en) Plasma enhanced chemical vapor deposition of films for improved vertical etch performance in 3D NAND memory devices
CN102906860A (en) Planarizing etch hardmask to increase pattern density and aspect ratio
TW200937517A (en) Plasma etching carbonaceous layers with sulfur-based etchants
TW201128700A (en) Novel gap fill integration with flowable oxide and cap oxide
KR20050034566A (en) Method of manufacturing silicon carbide film
CN102939641A (en) Amorphous carbon deposition method for improved stack defectivity
KR20050112125A (en) Method for plasma etching using periodic modulation of gas chemistry
JP2021520630A (en) Curing of fluid membranes using H2 plasma
JPH098032A (en) Formation of insulation film
US20150140833A1 (en) Method of depositing a low-temperature, no-damage hdp sic-like film with high wet etch resistance
JPS6318323B2 (en)
CN109219866A (en) Engraving method
KR102205227B1 (en) Boron-based film forming method and boron-based film apparatus
KR102616699B1 (en) Systems and methods for eliminating seams in atomic layer deposition of silicon dioxide film in gap fill applications
CN104170068A (en) PVD aln film with oxygen doping for a low etch rate hardmask film
JP2020517097A (en) Surface modification to improve amorphous silicon gap filling