TW200538552A - Hybridization-mediated analysis of polymorphisms - Google Patents

Hybridization-mediated analysis of polymorphisms Download PDF

Info

Publication number
TW200538552A
TW200538552A TW093117905A TW93117905A TW200538552A TW 200538552 A TW200538552 A TW 200538552A TW 093117905 A TW093117905 A TW 093117905A TW 93117905 A TW93117905 A TW 93117905A TW 200538552 A TW200538552 A TW 200538552A
Authority
TW
Taiwan
Prior art keywords
amplicon
probe
strand
probes
complementary
Prior art date
Application number
TW093117905A
Other languages
Chinese (zh)
Inventor
Ghazala Hashmi
Michael Seul
Original Assignee
Bioarray Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2004/015224 external-priority patent/WO2004104172A2/en
Application filed by Bioarray Solutions Ltd filed Critical Bioarray Solutions Ltd
Publication of TW200538552A publication Critical patent/TW200538552A/en

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Described are methods of assay design and assay image correction, useful for multiplexed genetic screening for mutations and polymorphisms, including CF-related mutants and polymorphs, using an array of probe pairs (in one aspect, where one member is complementary to a particular mutant or polymorphic allele and the other member is complementary to a corresponding wild type allele), with probes bound to encoded particles (e.g., beads) wherein the encoding allows identification of the attached probe. The methods related to avoiding cross-hybridization by selection of probes and amplicons, as well as separation of reactions of certain probes and amplicons where a homology threshold is exceeded. Methods of correcting a fluorescent image using a background map, where the particles also contain an optical encoding system, are also disclosed.

Description

200538552 玖、發明說明: 相關申請案200538552 说明 、 Explanation of invention: Related applications

本申請案主張2003年5月15曰所提申的M 請案No. 60/470, 806號之優先權。 曰T 【發明所屬之技術領域與先前技術】 對於突變或多型性(包含CF)的基因組分析的 、 係為“點-潰(dot-blot),,方法。含右許、準方法 s韦的股( strands))的檢體被點在一硝化纖維支持物上,y 突變或多型性的區域相互補的標定探針接觸。該=可入 得可偵測到與固定化的互補標的序列雜交的探針「疋物使 結的標定探針則以清洗的方式移除。在另一種方、而未鍵 種“反向點-潰版(]reverse d〇t — M〇t f〇rmat),,〜^中—一 ㈣探針陣列係連結在—固態支持物上,而後核 欲標的序列的檢體接觸。參見(例如)美::二: 5, 837, 832號。 寻利弟 二種分析突變或多型性的方法均具有明顯的缺點。該 點-潰方法本身為勞力密集。其 也了月匕因為试驗信號的不 正確判頃而得到錯誤的結果,豆 吊疋由自動放射照相所 元成’知加更多的勞力’因為探針必須常常再-標定。在 :國專5’837,832號中所述之方法牽涉一種複雜且昂 貝的晶片上合成募核脊酸陣列,為—種較適詩大規模 (⑽㈣叫的基因組分析,且其對於只需要有限的作探 針數目改變的診斷應用上並不具實用性或成本效益。 200538552 一種可避免許多上述方法相關之問題的適合多樣性 (inul tiplex)分析的試驗方法係使用了微粒的隨機編碼化陣 列,其中該編碼係表示鍵結在其上之寡核苷酸探針分子的 身分。見美國專利申請序號第1 0/204, 799號:利用應用一 特殊隨機微粒陣列的多重分析分子的分析方法 (Multianalyte Molecular Analysis Using Application-Specific Random Particle Arrays),,。該小珠陣列係與由 一患者樣本所產生的經標定之重複子載體(amplic〇ns)接觸 ’然後彳貞測该標定物(若該標定物為一螢光物質,可以光 學方式偵測),而該鍵結的擴增子(amp 1 i c〇n )可用陣列解密 辨識。 在一多樣性雜父分析中(錯誤配對但近似於同源 (homologous)的交互-雜交反應),探針與擴增子可產生錯 誤的陽性信號。因此,該分析需被設計成可降低此類影響 。一些突變與多型性僅在其為同型合子(h〇m〇zyg〇us)時^ 顯著的,因此,為了在此類的案例中具有實用性,該分析 方法必須能夠分辨異型合子和同型合子。同時,在判斷這 些分析結果時,其中對小珠編編碼的方法與分析結果的決 定係經由光學可偵測的方法,該設定在小珠上的編碼可導 致光譜漏損量(spectral leakage),作為試驗信號的辨別 。因此同時須有一可校正該光譜漏損量的方法。 囊性纖維化(“CF”)在高加索人(caucasians)中是一種 最4見的隱性疾病之一,其在美國發生機率為每2〇 〇〇個存 活新生兒中出現1個。在囊性纖維化跨膜傳導調控子 200538552 (transmembrane conductance regulator ; CFTR)基因的突 變與該疾病相關。CFTR突變數量的增加是持續且快速的’ 且至今已經有高於1 000個突變被偵測出。見Kulczycki L. L.等人(2003)在 Am J Med Genet 116:262-67 所發表的 研究。人口研究指出:最常見的囊性纖維化突變(在CFTR 胺基酸序列(定為ΔΡ508)第508位置編碼苯丙氨酸處有3 個核苷酸的缺失)與大約70%的囊性纖維化案例相關聯。該 突變導致上皮細胞氣離子通道對cAMP反應失調(Frizzell R. A.等人(1 986) Science 233:558-560 ; Welsh,Μ· J. (1986) Sience 232:1648-1650 ; Li, M.等人(1988) Nature 331:358-360 ; Quinton, P. M. (1989) Clin Chem. 35:726-730)。在氣管細胞中,該突變導致鐵離子與 體液傳送的不平衡。一般廣泛地認為此造成囊性纖維化病 人中不正常的黏液分泌,且最後導致肺部感染與上皮細胞 傷害。一些突變係與囊性纖維化相關,研究者持續揭露與 該疾病相關的新突變。美國醫藥遺傳大學(The American College of Medical Genetics ’’ACMG”)已經提出族群中最 常見的囊性纖維化-相關性突變的25控制板(panel),特別 是那些中歐猶太人(Ashkenazi Jewish)與非裔美國人 (African-American)族群。對於一般族群之囊性纖維化相 關性突變的多樣性雜交分析將對該控制板進行測試。 目 【發明内容】 概述 200538552 所敘述的是試驗設計與試驗影像校正的方法 性!ί本J文益’有效用於突變與多型性的多樣性基因:選 ^〜目關突變與多型性’係利用探針對的陣列(在— 方面’其:成員可與一特定突變或多型性的對偶基因 I另—成員可與相應的野生型對偶基因互補),該探針係 與經編編碼的微粒(例如:小珠)鍵結,其中該編編可 一 了者的彳木針。在此所揭示的設計方法係用於設計 -針對CF-相關突變的試驗(係藉由雜交中介多樣性分析) ’且在許多病人檢體中廣泛有效,且證明能夠辨識 見的突變’包含在CFTR基因的外顯子(⑽)3、4、5、了、 9、10、11、13、14b、16、18、19、2〇、21 及内含子 (intron)8 、 12 、 19 〇 在雜交反應前,以二個引子放大在基因組樣本中所欲 區域各引子分別與所欲基因的一股配對。在放 驟中所產生的二股,在此任意指定其中一股為“意放義大: (sense)”另一股為“反義股(anti — sense)”。在某些實例中 ,為了後來利用雜交反應的突變分析,其需要選擇意義股 標的股(與意義股探針雜交)或反義股標的股—與反義股探 針雜父。股的選擇可(舉例而言)利用後—pcR消化(如 PCR digestion)磷酸化的股來達成。尤其當牵涉一穩定的 錯誤配對構形(例如G-T鹼基配對)的探針-標的結合(例如 •意義股-楝針/意義股標的雜交反應)可以被避免時,股轉 換(strand switching)是令人滿意的。 同時本發明揭示針對突變與多型性遺傳篩選的探針與 200538552 擴增子選擇的方法 步驟: 該探針與擴增子選擇的方法牽涉下列 提供-單股MP擴增子家族,其中一股係選 而其互補股係定成反義股,言亥MP擴增子包含經放^的基 因組片段,在其上有該基因的突變或多型性; 針對MP擴增子家族的每-成員選擇互補性MP探針; 測試互補的MP探針之間或Mp擴增子家族之間的同源This application claims the priority of M Application No. 60/470, 806 filed on May 15, 2003. [Technical field and prior art to which the invention belongs] For the analysis of mutations or polymorphisms (including CF) in the genome, the method is "dot-blot," which includes the right and quasi-methods. Specimens of strands) are spotted on a nitrocellulose support, and the y mutation or polymorphic region is complementary to the calibration probe. This = can be detected and can be detected with the immobilized complementary target The probe for sequence hybridization "the target calibration probe is removed by washing. On the other side, the unbonded species" reverse point-decompression (] reverse dot-Motfroma) In the middle, a probe array is connected to a solid support, and then the specimens of the sequence to be labeled are contacted. See, for example, U.S .: 2: Secondary: 5, 837, 832. Seeking a profit. Both methods for analyzing mutations or polymorphisms have significant disadvantages. The point-and-break method itself is labor-intensive. It also obtained incorrect results due to incorrect test signal test signals. Beans are used in automatic radiography to "know more labor" because probes must often be re-calibrated. The method described in: National Patent No. 5'837,832 involves the synthesis of a nuclear and spinal acid array on a complex and Amber wafer, which is a more poetic large-scale (howling genomic analysis, and it requires only limited The diagnostic application for changing the number of probes is not practical or cost-effective. 200538552 A test method suitable for inul tiplex analysis that avoids many of the problems associated with the above methods uses a random coded array of microparticles, The code indicates the identity of the oligonucleotide probe molecule bound to it. See US Patent Application Serial No. 10/204, 799: Analytical method using multiple analysis molecules using a special random particle array ( Multianalyte Molecular Analysis Using Application-Specific Random Particle Arrays). The bead array is contacted with a calibrated repeating subcarriers (amplicons) generated from a patient sample, and then the calibration object (if the The calibration substance is a fluorescent substance, which can be detected optically), and the bonded amplicon (amp 1 icON) can be identified by array decryption. In a heterogeneous heterogeneous analysis (mismatched but nearly homologous cross-hybridization), probes and amplicons can produce false positive signals. Therefore, the analysis needs to be designed to reduce Such effects. Some mutations and polymorphisms are significant only when they are homozygous (h〇m〇zyg〇us) ^ Therefore, in order to be useful in such cases, the analysis method must be able to distinguish the heterotype Zygotes and homozygotes. At the same time, when judging these analysis results, the method of encoding the beads and the analysis result are determined by optically detectable methods. The encoding set on the beads can cause spectral leakage. (Spectral leakage), as the identification of the test signal. Therefore, there must be a method to correct the spectral leakage. Cystic fibrosis ("CF") is the most common hidden disease in the Caucasians. One, it occurs in the United States at a rate of 1 per 2,000 surviving newborns. In the cystic fibrosis transmembrane conductance regulator 200538552 (transmembrane conductance regulator; CFTR) Due to mutations associated with the disease. The increase in the number of CFTR mutations is continuous and rapid 'and to date more than 1,000 mutations have been detected. See Kulczycki LL et al. (2003) in Am J Med Genet 116: 262 -67 published research. Population studies indicate that the most common cystic fibrosis mutation (a deletion of 3 nucleotides at the 508th position encoding phenylalanine in the CFTR amino acid sequence (designated ΔP508)) and Approximately 70% of cystic fibrosis cases are associated. This mutation causes dysregulation of epithelial air ion channels to cAMP (Frizzell RA et al. (1 986) Science 233: 558-560; Welsh, M.J. (1986) Sience 232: 1648-1650; Li, M. et al. (1988) Nature 331: 358-360; Quinton, PM (1989) Clin Chem. 35: 726-730). In tracheal cells, this mutation results in an imbalance between iron ions and body fluid transport. This is widely believed to cause abnormal mucus secretion in patients with cystic fibrosis and ultimately lead to lung infections and epithelial cell damage. Some mutations are associated with cystic fibrosis, and researchers continue to uncover new mutations associated with the disease. The American College of Medical Genetics ("ACMG") has proposed 25 panels of the most common cystic fibrosis-related mutations in the population, especially those of Central European Jews (Ashkenazi Jewish) and non- African-American ethnic group. This control panel will be tested for diversity hybridization analysis of cystic fibrosis-related mutations in general ethnic groups. [Summary of the Invention] Overview 200538552 describes experimental design and experimental images. Methodology of correction! This J Wenyi 'Effective diversity genes for mutation and polymorphism: selection of mutations and polymorphisms' is an array of probe pairs (in-aspects' which: members can With a specific mutation or polymorphism of the dual gene I—the members can be complementary to the corresponding wild-type dual gene), the probe is bound to a microparticle (eg, a bead) encoded by a warp, where the edit can be Alder needles. The design method disclosed here is used to design-test against CF-related mutations (by analyzing the diversity of hybridization intermediaries) 'and in many diseases Extensive and effective mutations in human specimens that have been shown to recognize the mutations included in exons (CF) of the CFTR gene 3, 4, 5, 3, 9, 10, 11, 13, 14b, 16, 18, 19, 20, 21 and introns 8, 12, 19 Before the hybridization reaction, two primers are used to amplify the desired region in the genome sample. Each primer is paired with the desired gene. In the step, The resulting two strands are arbitrarily designated here as "sense" and the other as "anti-sense." In some instances, mutations in order to later use hybridization reactions For analysis, it is necessary to select the stock of the meaning stock (hybridized with the sense stock probe) or the stock of the antisense stock—the heterosexual parent of the antisense stock probe. The selection of the stock can be used, for example, after pcR digestion (such as PCR digestion) to achieve phosphorylated strands. Especially when probe-target binding (such as the hybridization reaction of meaning stock- 楝 needle / significance stock) involving a stable mismatched configuration (eg GT base pairing) can be avoided At the same time, strand switching is satisfactory. The present invention discloses a method for selecting a probe for genetic and genetic mutation screening and 200538552 amplicon selection. The method for selecting a probe and amplicon involves the following provision-single-strand MP amplicon family, one of which is The complementary strand is selected as an antisense strand, and the MP amplicon contains an amplified genomic fragment on which there is a mutation or polymorphism of the gene; it is selected for each member of the MP amplicon family Complementary MP probes; test for homology between complementary MP probes or between Mp amplicon families

將該MP探針分成一組或一組以上的探針組,且將言 MP擴增子分組’使每—組擴增子的成員與_探針組成員; 補,該分組方式係基於避免同源性大於同組探針間或在房 組MP擴增子間的可接受程度; 依—人刼作該每組擴增子,對每組中的每個卯擴增子合 接下來步驟: (a)(i)根據一意義股Mp擴增The MP probe is divided into one or more probe groups, and the MP amplicons are grouped so that members of each group of amplicons and members of the probe group; complement, the grouping method is based on avoidance The homology is greater than the acceptable degree between the probes of the same group or between the MP amplicons of the room group; the human amplicons are used as the amplicons of each group, and each amplicon in each group is combined with the next step : (A) (i) Amplification based on a sense strand Mp

=子互補的探針組之接觸,決定該意義股ΜΡ擴增^ j铋針、且中的其他ΜΡ探針的交互雜交程度是否超過? 叉的程度,如果沒有: 二穴(8)(11)保留在該擴增子組中的該意義股ΜΡ擴增子與 〆k針組中的該互補Mp探針,並對該家族 增子重複進行步驟(a)⑴; 卯擴 • 1)但是如果該交互雜交程度高過該可接受的程度 _ 罙針組中,以該互補反義股MP探針取代該交互 父的MP控4丄 _ 、,十,及在該擴增子組中,以對該反義股MP探針 11 200538552 互補的該反義股MP擴增子取代互補性意義股Mp擴增子, 以及 (b)(ii)重複步驟(a)(i),且假設該交互雜交的程度是 在可接又的耘度内·保留在其各自所屬組中的該反義股好 探針與相對的互補反義股MP擴增子,且重複步驟; (b)(iii)但假設在重複步驟(&)(1)後,該交互雜交的 程度超過該可接受程度:根據該反義股MP擴增子與在任 一組中的該MP探針之接觸,決定該交互雜交的程度是否 在可接受的程度内,假如是,將該與反義股Mp擴增子互 補的反義股MP楝針放置在該組,且將該反義股Mp擴增子 ^置至4互補性反義股Mp擴增子組;但假設根據該針對 每一存在之探針組的決定方法超過交互雜交該可接受的程 度,重複該原始意義股MP探針與互補性意義股Mp擴增子 且放置忒思義股MP探針與該互補性意義股Mp擴增子至 一新的組内,及 (C)在該家族中,對其他意義股做擴增子重複步驟(a) 至(C) 〇 办^同時,本發明揭示一設計探針對的方法(有可分別與一 —又或野生型擴增子互補的成員),該探針係用於與已標 :的擴增子(經由檢體放大反應所產生)和野生型控制組雜 交。針對每—個可預期的變化,成對提供探針,—可與野 生型序列互補’另一與變化型序列互補),該二序列通常 僅具有一個核苷酸不同。一個用以加強多型性雜交中介多 樣性分析(hMAP)可信度的方法係m號的比例(該信號的 12 200538552 產生係因為捕獲標的配對與錯誤配對探針),以及設定可 *頁示正$與異型合子或同型合子變化型的相關數值範圍。 述用表大變及多型性的基因筛選的選擇探針及擴增 子的方法可作為選擇探針對(野生型與變化型)的部分方法 ’再添加下述的方法至前述方法中:The contact of the complementary probe sets determines the MP amplification of the sense strand. ^ Is the degree of cross-hybridization of other MP probes in the bismuth needle more than? The degree of crossover, if not: Two points (8) (11) The significance MP amplicon retained in the amplicon group and the complementary Mp probe in the 针 k-needle group, and the family of amplicons Repeat step (a) ⑴; 卯 Extend • 1) But if the degree of cross-hybridization is higher than the acceptable level _ 罙 Needle group, replace the MP of the cross-parent with the complementary antisense MP probe 4 丄_,, Ten, and in the amplicon set, the antisense strand MP amplicon complementary to the antisense strand MP probe 11 200538552 replaces the complementary sense strand Mp amplicon, and (b) ( ii) Repeat steps (a) and (i), assuming that the degree of cross-hybridization is within reachability. The antisense stock good probes and relative complementary antisense stocks retained in their respective groups MP amplicons, and repeating the steps; (b) (iii) but assuming that after repeating steps (&) (1), the degree of cross-hybridization exceeds the acceptable level: according to the antisense MP amplicons and The contact of the MP probe in any group determines whether the degree of cross-hybridization is acceptable, and if so, the complement of the antisense strand Mp amplicon is complementary. The sense strand MP needle is placed in this group, and the antisense strand Mp amplicon ^ is set to the 4 complementary antisense strand Mp amplicon group; but it is assumed that according to the determination method for each existing probe set Beyond the acceptable level of cross-hybridization, repeat the original sense stock MP probe and the complementary sense stock Mp amplicon and place the Sisi stock MP probe and the complementary sense stock Mp amplicon into a new group And (C) in this family, repeat steps (a) to (C) for amplicons of other meaningful strands. At the same time, the present invention discloses a method for designing a probe pair (there is a Or wild-type amplicon complementary members), this probe is used to hybridize with the labeled amplicon (produced by the amplification reaction of the sample) and the wild-type control group. For each predictable change, the probes are provided in pairs, which can be complementary to the wild-type sequence '(the other is complementary to the variable sequence), and the two sequences usually differ by only one nucleotide. A method to enhance the credibility of the polymorphic hybrid intermediary diversity analysis (hMAP) is the proportion of m number (12 200538552 of this signal is generated because of the capture of the target pair and the mismatched probe), and the setting can be shown on the page The range of values associated with positive $ and heterozygous or homozygous variants. The method of selecting probes and amplicons for gene screening using polymorphism and polymorphism can be described as part of the method for selecting probe pairs (wild type and variant type). 'Add the following method to the aforementioned method:

提供—單股wt擴增子的家族,其中一股係經選定為意 義股與該互補股係經敎為反義股,該家族各自表現一男 f型基因、组的放大部&,且相對於基因組的每一個該放太 部分,其在當MP擴增子的家族產生時被放大; 提供及選擇-意義股或一反義股WT探針,以便在相同 中同時擁有一意義股WT探針與一相對的意義股如 :―’或在—相同的探針組中同時擁有一反義股訂探針 人一相對的反義股MP探針; 伏疋:(i)在一探針 π,日丁丹一; 二針之間的交互雜交的程度’與在一探針組中的一打Provide—A family of single-strand wt amplicons, in which one strand is selected as a sense strand and the complementary strand is warped as an antisense strand. Each of these families expresses a male f-type gene, an amplified portion of the group & For each part of the genome that is amplified, it is amplified when a family of MP amplicons is produced; provision and selection of a sense strand or an antisense strand WT probe to have a sense strand WT probe at the same time Needle and a relative sense unit such as: ― 'or in the same probe set at the same time have an antisense stock subscription probe person an opposite antisense stock MP probe; Fu Xi: (i) a probe π, Zintandan I; the degree of cross-hybridization between two needles' and one dozen in a probe set

二與—相料MP探針之間的交互雜交程度,是否起 範圍,如果是,(⑴假設將選擇之意義股或反 月up及WT探針替換為互補性_ Mp_ > mu 二程:是否將落入在可接受範圍内;(ιιι)決定該互補 ,探針與在相同探針組中可與其他成員互補的擴 二互雜交是否將超過可接受程度,且假設為是,。 探互㈣WT及ΜΡ探針放至另_探針組中,在相 出可二:二其他成貝互補的擴增子之交互雜交是否將 又的程度,且假設為否,將該互補η及ΜΡ探針 13 200538552 在該探針組中;作咖< —假政為疋,(V)對每一存在的探針組重複 步騎A ( 1 V ),且假兮令叙 . 又口又母一存在的探針組超出該接受程度,則 將該互補WT及MP控# # s ^ iThe degree of cross-hybridization between the two-phase material MP probes, whether it is in range, and if so ((assuming that the selected meaning stock or anti-moon up and WT probes are replaced with complementary _ Mp_ > mu two-way: Whether it will fall within an acceptable range; (ιιι) Determines whether the complementarity, whether the probe and an extended two-hybrid that can be complementary to other members in the same probe set will exceed the acceptable level, and it is assumed to be yes. Mutual WT and MP probes are placed in another probe set, and the degree of cross hybridization between two complementary amplicons of two other shellfish complementary amplicons will be reached again, and if not, the complementary n and MP Probe 13 200538552 In this probe set; make coffee < — fake government as a sham, (V) repeat step A (1 V) for each existing probe set, and falsely order Syria. If the probe set existing on the parent exceeds the acceptance level, the complementary WT and MP control # # s ^ i

,十放至一新組中,且將互補Π及MP 擴知子放至一相應的新組中。 雜又疋相關於在任何分析中牽涉多重雜交,且 可避免在分析結果中不良效應的方法也包含在内。一種用 以杈正在一陣列格式的交互雜交的方法係設定一系列的增 溫條件,選擇使得在每一、、田 牡母 1度下包含特定錯誤配對構形的, Put ten into a new group, and put the complementary Π and MP amplicon into a corresponding new group. Miscellaneous is also related to methods that involve multiple hybridizations in any analysis and that avoid adverse effects in the analysis results. A method of cross-hybridization in an array format is to set a series of temperature increasing conditions, and select the one that contains a specific mismatched configuration at 1 degree per field.

探針-標的複合物會變性的溫度,而包含那些配對的(“互補 驗基對構形者將維持纟#。 订个文…、後偵測雜父到陣列上探針 之經捕獲的標定股所產味的 ^ ^ 屋生的仏唬,並在母一設定的溫度點 、·己錄之“刀析不同信號的演變對溫度的函數可校正超過某 解鏈/皿度日守預期成為不安定狀的每一錯誤配對。當所 有錯誤配對的所有溫声却„中科士 a 吓畀/皿度自又疋點決定後,收集自一較低溫度 的數據可被校正所有的錯誤配對。The temperature at which the probe-target complex will denature, and those that are paired ("Complementary test base pairs will maintain 者 #. Order a text ..., and then detect the heterogeneous parent to capture the calibration of the probe on the array ^ ^ The horror of the house produced, and at the temperature set by the mother, the evolution of the different signals of the "knife analysis" as a function of temperature can be corrected beyond a certain melting point / dish. Unstable every wrong pairing. When all the warm sounds of all wrong pairings have been determined, the data collected from a lower temperature can be corrected for all wrong pairings .

在其他方面,因為在此的分析方法係依賴經編碼的小 珠來鑑認附著於其上的探針,且該編編碼在—具體實例中 係經由染劑染色,試驗信號通常係利用螢光信號標定並除 去背景值所產生。特定而言,本發明揭示一校正分析影像 的方法。即,在選擇來紀錄試驗影像的光譜帶中,可校正 經紀錄的光學特徵組(在試驗中經由標的物抓取小珠-展示 的探針所產生)編碼強度之“光譜漏漏損量(spectrai leakage)”(自該分析影像的該殘餘發射量所得一幾可亂真 貢獻量的來源)的影響,該強度是由低波長的小珠編碼染 14 200538552 劑所釋放。在此提供一試驗設計,其負控制組小珠係包含 在編碼小珠每一形式的隨機編編碼陣列内,該編碼小珠產 生不能接受之大的光譜漏漏損量(例如)對包含不同量的特 定編編碼染劑的小珠。 在此所述的實施例,負控制組小珠展現一 1 8 — mer聚核 苷酸以進行第二用途,即,允許對非專一性吸收效應的試 驗影像的校正。較佳的是,該背景值校正係根據負控制組 小珠的每一型態其隨機位置所建構一背景圖像像,其中負 向控制組小珠的每一該型態係以一預-選擇性的豐富(pre一 selected abundance)包含在該陣列中。對在該陣列中的負 控制組小珠的母一型悲,一背景圖像像係經由位於該型態 的小珠的質量中心,利用標準方法(如第三圖所示;參見 例如Seul,O’Gorman & Sammon,“影像分析的實用演算法 (Practical Algorithms for Image Analysis), “Cambridge University Press,2000;第 222 頁;併入作 為參考資料)建構該相關Voronoi棋盤型,且而後填滿每一 包含一小珠的多邊形,該多邊形具有該強度的小珠可以產 生一圖像像(參見例如第三圖所示的圖像)。視需要地,可 以貫施標準過渡操作方法以使該圖像像平滑;即,平均化 自鄰近的影像值的影響。(參見例如Seul,0,G〇rman & Saminon,“影像分析的實用演算法(Practical Algorithms for Image Analysis), 55 Cambridge University Press, 2 0 0 0對過濾器的描述)。 該圖像在該全部背景值中呈現一有限的檢體,以建構 15 200538552 該分析影像方法,/ ^ . t . 〜方法係記算某些非線性視覺上效果, 為所 冓成的陣列相關,該效果在當該小珠被放 、表面的機械捕捉器時被特別聲明。除此之外, 背景值圖像將顯示出旦 出在4月厅、值中可能升高的非—均一性 牛仞而°自非—均勻的亮度或非—均勻的標的分布或放 、人】珠陣列接觸的分析(analy忱)。用於不同型態的 負控制組圖像,即,包含 ' 匕3不同里的編碼染劑及產生不同程 度的光谱漏損量,"if w ^ 了月b以遠相同平均強度被標準化及以增 加該檢體的速率被加成。 该分析影像可能經由接續利用該背景圖像而校正。在 某些實施例中,該圖像係簡單地自分析影像中去除,用以 產生-校正後的分析影像。在某些具體實例中,該背景值 可以、、、。口平面領域法(flat fielding),,的步驟(參見, 例如· Seul,O’Gorman δ Sammon,“影像分析的實用演算 法(Practice Algorithms for Image Analysis),,, Cambridge University Press,2000)。在這個流程中,該 常數(即,該空間非多變性)成為該背景值圖像的一部分, 且試驗影像被去除,且該經校正的分析影像係經由該校正 的背景圖像分割,以得到一“平面領域法,,強度圖像。 發明詳述 這裡所提供的為一在該囊性纖維化跨膜傳導調控子 (CFTR)基因的選定組(designated set)多型性(hMAp)的多 重分析中介雜交方法。 用於偵測在一標的序列内的突變之探針,與具高親人 16 200538552 力的重複子探舰,當該整個重複子探針或其中 列(subse轉u:e)係為完全與該探針互補(“配對”)時,射 成經選定的標的位置(designated以州We);作是: 與-低親合力的重複子探針雜交時,則具有非完全=田“ 錯誤配對”)區域。通常’本發明的該探針必須足夠長,以 防止與不相關# MA標的序列黏合。在某些具體實:中以 該探針的長度可以為約10纟50個驗基,或較佳的為約Η 至25個鹼基,及更佳的為18至2〇個鹼基。In other respects, because the analytical method here relies on coded beads to identify the probes attached to it, and the code is-in a specific example, stained with a dye, the test signal is usually fluorescent Signal calibration and removal of background values. In particular, the present invention discloses a method for correcting and analyzing images. That is, in the spectral band selected to record the test image, the "spectral leakage amount (the amount of spectral leakage ( spectrai leakage) "(the source of a few distorted contributions from the residual emission of the analysis image), the intensity is released by the low-wavelength bead code 14 200538552 agent. An experimental design is provided here. The negative control set of beads is included in a random coded array of each form of coded beads. The coded beads produce an unacceptably large amount of spectral leakage (for example) containing different A number of beads specifically coded for the dye. In the example described herein, the negative control group beads exhibit an 18-mer polynucleotide for a second use, that is, to allow correction of experimental images of non-specific absorption effects. Preferably, the background value correction is to construct a background image image according to the random position of each type of the negative control group beads, wherein each of the types of the negative control group beads is pre- Selective abundance is included in the array. For the mother type of the negative control group beads in the array, a background image image is passed through the center of mass of the bead located in this type using a standard method (as shown in the third figure; see, for example, Seul, O'Gorman & Sammon, "Practical Algorithms for Image Analysis," "Cambridge University Press, 2000; p. 222; incorporated as reference material" constructs the relevant Voronoi checkerboard pattern and then fills it Each polygon containing a bead, the bead having the intensity of the polygon can produce an image image (see, for example, the image shown in the third figure). Optionally, standard transition operations can be applied to smooth the image; that is, to average the effects from neighboring image values. (See, for example, Seul, 0, Gorman & Saminon, "Practical Algorithms for Image Analysis, 55 Cambridge University Press, 20000 for a description of filters." A limited sample is presented in all background values to construct 15 200538552 The analysis image method, / ^. T. ~ The method calculates some non-linear visual effects, which are related to the resulting array. The bead was placed and the surface of the mechanical catcher was specifically declared. In addition, the background value image will show the non-uniform burdock that may rise in value in April, and since Non-uniform brightness or non-uniform target distribution or placement, analysis of human] bead array contact (analy). Used for different types of negative control group images, that is, the encoding Agents and produce different degrees of spectral leakage, " if w ^ the month b is normalized far more than the same average intensity and is added at a rate that increases the specimen. The analysis image may be corrected by successively using the background image In In the embodiment, the image is simply removed from the analysis image to generate a corrected analysis image. In some specific examples, the background value may be, flat field method, (See, eg, Seul, O'Gorman δ Sammon, "Practice Algorithms for Image Analysis," Cambridge University Press, 2000). In this process, the constant (that is, the spatial non-variability) becomes a part of the background value image, the test image is removed, and the corrected analysis image is segmented via the corrected background image to obtain A "planar field method, intensity image. Detailed description of the invention Provided herein is a multiplexing of a designed set polymorphism (hMAp) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Analyze intermediary hybridization methods. Probes used to detect mutations in a target sequence, and repeater probes with high relatives 16 200538552 power, when the entire repeater probe or one of its repeaters (subseed u: e) When it is completely complementary ("paired") with the probe, it is shot to the selected target position (designated with state We); As a result: when it hybridizes with-low affinity repeater probe, it has incomplete = "Mistaken pairing") region. In general, the probe of the present invention must be long enough to prevent sticking to unrelated #MA target sequences. In some specific embodiments, the length of the probe can be about 10 纟 50 Test basis, or preferably about Η to 25 bases, and more preferably 18 to 20 bases.

探針係利用連接體一部份(linker moieties)以既有技 術中已知的方法經由其個㈣5,端的黏㈣編編碼的微粒 (小珠)上,編碼該微粒具有一化學或物理上可分辨的特 性可獨特的鑑認黏附的探針。探針係被設計成可抓取所欲 的標的序列’該序列包含在與小珠接觸的溶液中。雜交至: 展示在特定小珠上之探針的標的物會產生一光學可偵=的 信號。每個參與的小珠的光學信號獨特地對應於表現在該 小珠上的探針。該雜交步驟之前或接續步驟,操作者可利 用微粒鑑別法及偵測法(例如利用去編碼化(dec〇ding)或利 用多重顏色的螢光顯微鏡)判斷該探針的身分,。 該小珠的成分包含(但不限於)塑膠、陶、玻璃、聚苯 乙烯、曱基苯乙烯、丙烯酸聚合物、順磁性材料、氧化钍 月爹體(thoria sol)、碳石墨、二氧化鈦、乳膠或交鏈的葡 萄聚糖(例如交聯葡萄糖(sepharose))、纖維素、尼龍、交 鏈膠質微粒及鐵氟龍。參見由Bangs Ub〇rat()ries,Probes use linker moieties to encode microparticles (beads) coded by the glutamate on the 5 'end of the linker moieties in a known manner. The microparticles encode a chemically or physically The resolving properties uniquely identify the attached probe. The probe system is designed to capture a desired target sequence 'which is contained in a solution in contact with the beads. Hybridize to: The target of the probe displayed on a particular bead will produce an optically detectable signal. The optical signal of each participating bead uniquely corresponds to the probe displayed on the bead. Before or after the hybridization step, the operator can determine the identity of the probe using particle identification and detection methods (for example, using decoding or multi-color fluorescence microscopy). The composition of the beads includes (but is not limited to) plastic, ceramic, glass, polystyrene, fluorenyl styrene, acrylic polymer, paramagnetic material, thoria sol, carbon graphite, titanium dioxide, latex Or cross-linked glycan (such as sepharose), cellulose, nylon, cross-linked colloidal particles, and Teflon. See by Bangs Ub〇rat () ries,

Fisher IN 的 “Microsphere Detection Guide,,。該微粒不 17 200538552 需要為球形且可為玄 如]_至毫十(=性 的大小可自奈米(例 ”(]如· lmm)的範圍,較佳的是該小珠係 R^勺〇·^米至約2GG微米,更佳的是為約Q· 5微米至約 5微米係尤其較佳者。 :某些具體實例中,小珠可以在雜交步驟之前排列在 土為上成-平面陣列。小珠也可裝載在一平面基質上以 在雜交步驟後的成像。在此處的流程及系統提供一高 ^力刀析%式’允許全部陣列小珠立即顯像,及同時進行 夕重病人檢體的基因分析。 小珠陣列可以為一隨機編碼化編碼陣 =的編碼(放置在該陣列内並未事先知曉的位置= 者们珠上的该募核穿酸的探針身分。隨機編碼化陣列 可以根據揭示在國際申請案第PCT職/2〇179號(在此併 入作為參考)中㈣之該方法與流程來進#。 該小珠陣列可利用分散整批處理製造出適用特殊性的 (卿ilcatl〇n-speciflc)基質(例如:晶圓規格的晶片), 而製造出具有化學編碼及附著於寡核苦酸探針的小珠(例 :規格約每刚"懸浮液1()8個小珠)。這些小珠係與受 :結合(例如·’矽晶片)及在一經選定的基質區域形成一緻 植的陣列。在某些具體實例中,該包含4_自3 ^小 珠的小珠陣列尺寸為300 "乘3〇〇" m。使用不同大小的 小珠則密度會改變。多重小珠陣列也可以同時 上之分離的液態區劃中形成。該種方法係在美國專利二 號弟ig/i 92,352號中揭示,名稱為“微微粒陣列與其製^ 18 200538552 方法’’,在此併入作為參考。小珠陣列可以‘‘leapstm,,的方 法形成,如美國專利第6,251,691 、6,514,771 、 6, 468, 81 1號所述,併入作為參考。 在本發明中所使用的基質(例如:晶片)可為一種平面 電極的模式(patterned),與LEAPS之界面模組化 (interfacial patterning)方法一致,其係藉由(例如)氧 化物或其他電介質物質的模式生長(patterned gr()wth), 在供應AC電場下產生所欲之抗阻梯度的結構。模式 (patterns)可以被設計來產生想要的aC域-誘發液流構形 以及相關的微粒傳送。基質可以利用半導體製程技術被模 組化成晶圓規模。除此之外,受質可以利用放置一種— 可刻劃、可透光聚合物的薄膜來劃分之,固定在基質上一 所欲之液態導管與區塊佈局,使液體限制在一個或數個分 離的區塊内,因此在一所提供的基質上可容納多重檢體。77 罘一 平面型電極而製備,^Fisher IN's "Microsphere Detection Guide." The particles do not need to be spherical and can be Xuanru] _ to milliseconds (= the size of sex can be in the range of nanometers (eg) (] such as · lmm), compared to Preferably, the beads are from R ^ spoon to about 2GG microns, and more preferably from about Q.5 microns to about 5 microns. In some specific examples, the beads may be Arranged on the soil before the hybridization step into a planar array. Beads can also be loaded on a planar substrate for imaging after the hybridization step. The process and system here provides a high-powered analysis method that allows all The array beads are immediately visualized, and the genetic analysis of the patient's specimen is performed at the same time. The bead array can be a random coded coding array = code (placed in a position in the array that is not known in advance = the beads). The identity of the probe for collecting nuclear and acid. The random coded array can be entered according to the methods and procedures disclosed in International Application No. PCT No./201079 (herein incorporated by reference). Bead arrays can be manufactured using discrete batch processing ( Qing ilcatlón-speciflc) substrate (for example: wafer-specific wafers), and beads with a chemical code and attached to an oligonucleotide probe (eg, about 1 in each specification &suspension; 1) 8 beads). These beads are bound to the substrate (eg, silicon wafers) and form a uniformly implanted array in a selected matrix region. In some specific examples, the The size of the bead array of beads is 300 " by 300 " m. The density will change with the use of beads of different sizes. Multiple bead arrays can also be formed in separate liquid zones at the same time. This method is based on U.S. Patent No. 2 ig / i 92,352 discloses that the name is "microparticle array and its method" 18 200538552, which is incorporated herein by reference. Bead arrays can be formed by the method "leapstm", such as the United States Patent Nos. 6,251,691, 6,514,771, 6, 468, 81 are incorporated by reference. The substrate (eg, wafer) used in the present invention may be a mode of a planar electrode ( patterned), modularization of the interface with LEAPS (interfacial patternin g) The method is consistent. It is a patterned growth (for example) of oxide or other dielectric substances (patterned gr () wth), which produces the desired resistance gradient structure under the supply of AC electric field. The patterns can be Designed to produce the desired aC domain-induced flow configuration and associated particle transport. The substrate can be modularized to wafer scale using semiconductor process technology. In addition, substrates can be placed using one—scribing, Divided by a light-transmissive polymer film, fixed on the substrate with a desired liquid conduit and block layout, so that the liquid is confined to one or several separate blocks, so it can be accommodated on a provided substrate Multiple specimens. 77 罘 一 Planar electrode, ^

該小珠陣列可利用提供The bead array is available to provide

電極係實質上平行一第二電極(“三明治,,狀),有二個電4 被-間隙(gap)所分隔’且内含一可極性化的液體培養液 例如-種電解質水溶液。該第二平面型電極的表面或内名 可用界面模組化(interfaeial patterning)的方法來^ 化。該小珠被導入該間隙内。當對該間隙供應一交流電, 壓時,該小珠在該第二電極(例如·曰The electrode system is substantially parallel to a second electrode ("sandwich,"), has two electric electrodes separated by a gap, and contains a polarizable liquid culture medium such as an aqueous electrolyte solution. The surface or internal name of the two planar electrodes can be changed by interfaeial patterning. The beads are introduced into the gap. When an alternating current is applied to the gap, the beads are in the first place. Two electrodes (such as

、〗如·日日片)形成一隨機編石I 化陣列。且,也利用LEAPS’可在光敏感型電極(“晶片” 上形成小珠陣列。較佳的是,上述的三明治狀配置也使用 一平面光敏感型電極及其他平面型電極。再一次,該二 19 200538552 極係以一間隙分隔,且包含一電解質水溶液。將一功能化 且經編碼的小珠導入該間隙中。使用AC電壓及光線,該 小珠在該光敏感型電極上形成一陣列。 在某些具體實例中,小珠可具有一化學的光學可分辨 的特徵。舉例而言,其達成可藉由使用一些光學可分辨之 標籤來染色小珠,該標籤例如那些包含一種或一種以上光 碏可分辨其激發波長、放射波長、激發態生命期或放射強 度的螢光或發色團染劑。製作該光學可分辨的標籤可以特 疋比例用於將小珠染色,舉例而言,如在Fulwyler美國專 利第4, 71 7, 655 (1 988年1月5日)中所述。染色也可使用 該項技術者所熟習的方法增大微粒來達成,見(M〇lday, Dreyer, Rembaum & Yen, J. Mol Bio 64, 75-88 (1975) ,L· Bangs,‘均勻乳膠微粒(uniform iatex particles), Sergen Diagnostics,1 984)。舉例而言,多至12種形式 的小珠是用利用二種顏色增大(swell)及大塊(bulk)染色來 編碼,每一種分別在四個強度分級内,且混合在四個名義 上的莫耳比例内。或者,該組合顏色的編碼化方法(詳述 於國際申請案PCT/US第98/1〇719號中,在併入作為參考 文獻)可用於賦予該小珠陣列光學可分辨地標籤。除了化 學編碼化,小珠也可以利用詳述於國際申請案第 WO/01 /098765號中的方法而具有磁性。 除了染劑的化學編碼,具有某些募核苷酸引子的小珠 也可以被空間分隔(“空間編碼化(spatial encoding)”), 使得小珠的位置提供了 一些放置其中之小珠身分的資訊。 20 200538552 舉例而έ ’空間編碼化 了在陣歹j、、且裝的過程中於一 中完成,,其係藉由使用ί}?Αρς * 4丄上 ,夜相 用LEAPS末針對變化的電場中 根據投射於基質的光握+ t穷中及/或 之結構)。^ μ式來組裝平w料列(任何所欲 LEAPS切晶片與液體之間的界面阻抗產生橫向梯度 ’用以緩和中介陣列組合之電流體力學的力。t的要求是 適度的:於液態間隙(通常兩個平面電極間為10Mm)施用 典型上低⑥l〇Vpp的低交流電壓。此種組合流程是快速的 且是可光學程控的(optically pr〇grammable) ·•包含數千 個小珠的陣列可在電域中於數秒内形成。彡重次陣列 (SUbarrayS)的形成也可以在維持在已劃分之晶片表面上的 多重液態相發生。 陣列形成之後,該陣列可為固定化的。舉例而言,小 珠陣列可(舉Μ而言)施加直流電以產生隨機編碼化陣列來 使其固定化。該直流電壓通常設定為5 —η(對2 —6#m範圍 的小珠,且間隙大小在1〇〇-15〇 # m者),且在“反向偏壓 (reverse bias)”結構中供應小於3〇秒的時間,使得n一 doped石夕基貝可形成正極,導致該陣列被壓縮至可在陣列 内促進相鄰小珠之間接觸的程度,且同時導致小珠移向高 電場區域,接近電極表面。一旦在足夠靠近的情形下,小 珠以藉導物理吸附作用的凡德瓦力被固定住。該吸附流程 可藉由在小珠表面提供一群延伸自小珠表面的“拴繫 (tethers)”而被促進;聚離胺酸(p〇lylysine)及 streptavidin已被應用在此目的。 21 200538552 在某些具體實例中,該微粒陣列可經由化學方法來固 定化,例如經由形成一復合的凝膠-微粒薄膜。在一形成 石亥减膠-復合微粒薄膜的示範性的方》中κ共一微微粒 懸浮液,也包含所有用於後續原位置(in-situ)凝膠形成的 所有成77 ,即單體、交鏈劑及起始劑。該微粒係應用 LEAPS方法在裝配在基質上的平面;例如在液態間隙的電 極間提供頻率範圍自100赫兹至數千赫兹的1-20Vp_pAC電 壓。陣列組合之後,在AC電壓存在下,用熱學加熱細胞 〜40-50°C (利用遠紅外線燈或水銀燈源)來誘發液相聚合反 應,使微粒陣列有效的被陷入凝膠内。凝膠可以由丙烯醯 月女(aery 1 amide)及雙丙稀胺(bisacryiamide)各種單體濃度 自20%至5%的混合物所組成(丙烯醯胺:雙丙烯胺=37. 5 : 1 ’莫耳比例),或任何其他低黏性水溶性的單體或單體混 合物亦可以使用。經由該流程所備製的化學固定化功能化 的微微粒陣列可以被用於多種生物分析中,例如配體 (ligand)受體結合分析。 在一貫施例中,熱水凝膠(thermal hydrogel)係利用 在低 /辰度時以 az〇diis〇butyramidine dihyfrochlorise 作 為一熱起始劑而形成,確保該聚合反應混合物的整個離子 強度落在〜(MmM至i.〇mM的範圍内。用於UV聚合反應的 起使劑為 Irgacure 2959® (2-Hydroxy-4,-hydroxythoxy-2-methylpr〇pi〇phenone, ciba Geigy, Tarrytown, NY)。 該起使劑係加入該單體中得到溶液重的丨· 5%。 在某些具體實例中,微粒陣列可以利用機械方法來固 22 200538552 定化。舉例而言,一微孔陣列可以經由標準半導體流程製 方法在矽基質的低阻抗(impedance)區域產生。微粒陣列 可以利用此等結構來形成,例如藉由LEAPS中介流體力學 及pondermotive力,以傳輸及累積微粒在該小洞陣列上。 而後關閉肖AC域’ ^微粒掉人微孔中,因此形成機械性 限制。過置的小珠被移除,留下幾何學條理的隨機小珠陣 列在基質表面上。 基質(例如:晶片)可以被放置在一個或一個以上封閉 的區間内,允許内部聯繫(interc〇nnecti〇n)。反應也可以鲁 在一相似於微滴定量平盤(micr〇titer plate)的開放區間 内進仃。反應試劑可以利用自動液體處理器被微量滴在晶 片的表面,多重檢體可以同時被處理。該種形式對所存在 的微滴定量平盤格式提供標準檢體處理流程及液體處理, 且結合了檢體處理與陣列偵測。 經編碼的小珠也可以被結合在一基質表面(但不在陣列 内)。舉例而言,利用將小珠懸浮液點在基質的多重區域 内,且允許小珠依重力沉澱,小珠組合可以被形成在該基 _ 負上。相對於利用leaps形成小珠陣列,這些組合通常視 為低密度或非平面結構的混亂結構,涉及堆疊或成塊的小 珠因此防止了受影響之小珠的成像。然而,空間與顏色編 碼的組合(利用將化學編碼小珠的混合物點在基質表面的 夕重分離區域)仍舊允許多樣性。 在某些具體實例中,經解碼之陣列影像比較可以被用 於顯示化學或物理區別性的特徵,及探針的延長。舉例而 23 200538552 曰,這樣的比較可以經由且旦/ 及分析儀器的光學顯微鏡;成:二=電腦化影像捕捉 峨示探針延長的光學信號。;取車=析影像係用以 決定該化學性及/或物理性可分㈣取=解碼的影像用以 地鑑認展示於小珠表面的探針 二㈣徵可獨特 的特徵,在陣列上的备— 此種方式’糟由可分辨 。 试粒上的探針身分可以被鑑認, 像分析的演算法可以用在 用在力析取自經解碼(, Such as · Japanese-Japanese film) to form a random weaving I chemical array. Moreover, LEAPS 'can also be used to form a bead array on a light-sensitive electrode ("wafer". Preferably, the above-mentioned sandwich configuration also uses a planar light-sensitive electrode and other planar electrodes. Once again, this February 19 200538552 The poles are separated by a gap and contain an aqueous electrolyte solution. A functionalized and coded bead is introduced into the gap. Using AC voltage and light, the beads form an array on the light-sensitive electrode In some embodiments, the beads can have a chemically optically distinguishable feature. For example, they can be achieved by staining the beads with some optically resolvable labels, such as those containing one or a The above photoluminescence can distinguish fluorescent or chromophore dyes whose excitation wavelength, emission wavelength, excited state lifetime or radiation intensity. The optically distinguishable label can be used to dye beads in a specific ratio, for example , As described in US Patent No. 4, 71 7, 655 (January 5, 1988) by Fulwyler. Dyeing can also be achieved by increasing the particle size using methods familiar to the skilled person, (Molday, Dreyer, Rembaum & Yen, J. Mol Bio 64, 75-88 (1975), L. Bangs, 'uniform iatex particles, Sergen Diagnostics, 1 984). For example, Up to 12 forms of beads are coded using two color swell and bulk stains, each within four intensity gradings and mixed with four nominal mole ratios Alternatively, the method of encoding the combined color (detailed in International Application PCT / US No. 98/1 10719, incorporated by reference) can be used to give the bead array an optically distinguishable label. In addition to chemical encoding, beads can also be made magnetic by the method detailed in International Application No. WO / 01/098765. In addition to the chemical encoding of dyes, beads with certain nucleotide-priming primers can also be used. Separated by space ("spatial encoding"), so that the position of the beads provides some information about the identity of the beads placed in it. 20 200538552 For example, 'Spatial encoding has In the middle of a process System ,, which by using ί}? Αρς * 4 Shang, late night with LEAPS for phase variation of electric field according to the light projected on the substrate in poor grip + t and / or the structure). ^ μ formula to assemble a flat array (any desired impedance at the interface between the LEAPS chip and the liquid creates a lateral gradient 'to ease the force of the electromechanical mechanics of the intermediary array combination. The requirement of t is moderate: in the liquid gap (Usually 10Mm between two planar electrodes) Apply a low AC voltage of typically low ⑥10Vpp. This combination process is fast and optically programmable • gram containing thousands of beads Arrays can be formed in the electrical domain in seconds. The formation of SUbarrayS can also occur in multiple liquid phases maintained on the surface of the divided wafer. After the array is formed, the array can be immobilized. Examples For example, a bead array (for example, M) can be applied with a direct current to generate a random-encoded array to immobilize it. The DC voltage is usually set to 5 —η (for beads in the range of 2 — 6 #m, and the gap is Those with a size of 100-150 # m), and the supply time of less than 30 seconds in the "reverse bias" structure, so that n-doped Shibajibei can form a positive electrode, resulting in the array Compressed to fit The extent to which the contact between adjacent beads is promoted in the column, and at the same time causes the beads to move to the high electric field area, close to the electrode surface. Once in a sufficiently close situation, the beads are used to guide the physical adsorption of van der Waals force. This adsorption process can be facilitated by providing a group of "tethers" on the bead surface that extend from the bead surface; polylysine and streptavidin have been used for this purpose. 21 200538552 In some specific examples, the particle array can be immobilized by chemical methods, for example, by forming a composite gel-particle film. In an exemplary method for forming a shihaimin-composite particle film Kappa is a microparticle suspension, which also contains all components used for subsequent in-situ gel formation, ie monomers, cross-linking agents and initiators. The particles are assembled using the LEAPS method in the assembly A plane on a substrate; for example, a voltage in the range of 100 Hz to several thousand Hz is provided between the electrodes of the liquid gap in the range of 1-20Vp_pAC voltage. After the array is combined, the cells are heated thermally in the presence of AC voltage ~ 40-50 ° C (Using a far-infrared lamp or a mercury lamp source) to induce a liquid phase polymerization reaction, so that the microparticle array is effectively trapped in the gel. The gel can be made of various monomers such as aery 1 amide and bisacryiamide. Mixtures with a body concentration from 20% to 5% (acrylamide: bisacrylamine = 37.5: 1 'mole ratio), or any other low viscosity water-soluble monomer or monomer mixture can also be used The chemically immobilized and functionalized microparticle arrays prepared through this process can be used in a variety of biological assays, such as ligand receptor binding assays. In a consistent embodiment, a thermal hydrogel is formed by using az〇diis〇butyramidine dihyfrochlorise as a thermal initiator at a low temperature, so as to ensure that the entire ionic strength of the polymerization reaction mixture falls within ~ (In the range of MmM to 1.0 mM. The initiator used for the UV polymerization is Irgacure 2959® (2-Hydroxy-4, -hydroxythoxy-2-methylpropiaphenone, ciba Geigy, Tarrytown, NY). The starting agent is added to the monomer to obtain a solution weight of 5%. In some specific examples, the microparticle array can be fixed by mechanical methods. 22 200538552 For example, a microwell array can be calibrated by standard The semiconductor process method is produced in the low-impedance region of the silicon substrate. Particle arrays can be formed using these structures, for example, by using LEAPS to mediate hydrodynamics and pondermotive forces to transport and accumulate particles on the small hole array. Close the Shaw AC domain 'particles fall into the microwells, thus forming a mechanical constraint. The excessive beads are removed, leaving a geometrically-organized random bead array on the surface of the substrate. A matrix (eg, a wafer) can be placed in one or more closed sections to allow internal contact. Interactions can also be performed in a microtiter plate similar to a microtiter plate. The reaction chamber can be opened in the open section. The reaction reagent can be dripped on the surface of the wafer using an automatic liquid processor, and multiple samples can be processed at the same time. This form provides standard sample processing procedures for the existing microtiter plate format and Liquid processing, combining sample processing and array detection. Coded beads can also be combined on the surface of a substrate (but not inside the array). For example, by using bead suspensions in multiple areas of the substrate Inside, and allow beads to sediment by gravity, bead combinations can be formed on the base_negative. Compared to using bead arrays to form bead arrays, these combinations are generally considered as chaotic structures with low density or non-planar structures, involving stacked or Blocked beads thus prevent imaging of the affected beads. However, the combination of space and color coding (using a mixture of chemically coded beads) Even heavy separation areas on the surface of the substrate) still allow for diversity. In some specific examples, decoded array image comparisons can be used to show chemically or physically distinguishing features, and probe extensions. For example, 23 200538552 That is, such a comparison can be made through the optical microscope of the analysis instrument; into: two = computerized image capture of the extended optical signal of the Ashi probe; car picking = analysis image is used to determine the chemical and / or Physically separable = the decoded image is used to identify the unique features of the probes displayed on the surface of the beads, which are prepared on the array-this way is not discernible. The identity of the probe on the test particle can be identified, and the algorithm of image analysis can be used in force analysis.

Ψ m ΛΑ ^ f曰规胛碼的及WΨ m ΛΑ ^ f

乂 、數據。這些演算法可以用;^ / 矣 曰 J ^用於在一陣列内取得每一 數據。該分析軟體會自動利用陣列的明亮-區 〜像作為模㈣出小珠中心根據種類將小珠分群、給 固小珠定量的強度、去除“汙點(blemishes),,(諸如那 在血清檢體中非規則形狀之“基f (matrix),,物質所產 ^ 刀析月厅、強度統計以及對所有小珠型態評估經 正的平均強度和相關的變異性。該演算法的實施例, 在國際申請號第W0 01/098765號中提出。数据, data. These algorithms can be used; ^ / 矣 J ^ is used to obtain each data in an array. The analysis software will automatically use the bright-zone ~ image of the array as a mold to extract the center of the beads, group the beads according to the type, give a fixed amount of strength to the beads, remove "blemishes," (such as in serum samples The "fractal matrix" of the irregular shape in China, the material produced by the knife analysis, the intensity statistics, and the positive average intensity and related variability of all bead types are evaluated. An embodiment of the algorithm, Filed in International Application No. WO 01/098765.

丄。探針的雜交可以由(例如)與探針相結合之小珠的光學 改變而被顯示。此可以利用在該領域中已知的標定方 、-成包含直接及間接標定。在某些具體實例中,螢光 s、化千染劑可以附著在於探針雜交過程中所加入之核苦酸 固使付雜父到其標的的探針改變了小珠的光學信號 d如螢光強度改變,因此使小珠的光學信號改變)。 型性 本文所描述的是針對高度多型性標的區域實施精確多 分析的方法及組合物。多樣性PCR反應的設計、組成 24 200538552 物及方法的相關考量。 在高度多型性位置(1〇ci) 宁夕4+料敗# 夕1性&域挽度致使所選 斤k的多型性區域的探 性區域最接近處的尸…木針(當黏合至選定的多型 y 亞序列時)會與相鄰的多型性區域 且 养核芽酸探針會與其他相鄰的多型性區域社入 ’該探針係設計來在所選的多型性區域之二 : (interrogate)標的的結 合至正確的標的…± /、有足夠的長度來確保當黏 J打的專一性和熱安定性。此 的多型性區域包括非經 二丁儍 經選擇區域。 UK擇位置以及標的序列中非 …本文“述覆蓋性探針組的設計,其係與在多重不相 絰4夂多型性得分中多型性的雜交中介多樣性分析相關 如同對CF攜帶者篩選的突變分析。在此,該用於突變 全:多樣性的覆蓋性組包含多重次組(muHipie _仏 ’母一個次組可結合一經選定的區域。在第二實施例中Alas. Probe hybridization can be shown by, for example, optical changes in the beads bound to the probe. This can be done using calibration methods known in the art, including direct and indirect calibration. In some specific examples, the fluorescent s and dyes can be attached to the nucleoside acid added during the probe hybridization process, which changes the optical signal of the bead to the target probe, such as fluorescent The light intensity changes, thus changing the optical signal of the beads). Types Described herein are methods and compositions for performing accurate multi-analysis on highly polymorphic target areas. Design and Composition of Diversified PCR Reactions 24 200538552 At the position of high polymorphism (1〇ci) Ning Xi 4+ expected to lose # Xi 1 sex & domain retention caused the body closest to the exploratory region of the selected polymorphic region ... wooden needle (when (Adhered to the selected polytype y subsequence) will be adjacent to the polymorphic region and the nucleogenic probe will be incorporated with other adjacent polytype regions.The probe is designed to Polymorphic area two: (interrogate) the combination of the target to the correct target ... ± /, with sufficient length to ensure the specificity and thermal stability of the j when playing. This polymorphic region includes non-dietically-selected regions. The UK selects positions and non-target sequences. This article describes the design of the coverage probe set, which is related to the analysis of polymorphism in the polymorphism in the multiple dissimilarity 4 polymorphism score, as it is for CF carriers. Screened mutation analysis. Here, the coverage group for mutation: diversity includes multiple subgroups (muHipie_ 仏 'maternal subgroup can be combined with a selected region. In the second embodiment

該覆蓋性組包含建構來縮小在組中探針數量的亞組,在, 亦詳盡的描述。 與小珠結合的探針陣列可以用於一群突變的雜交—中介 =析’ fe圍是囊性纖維跨膜傳導調控子(CFTR)基因中非經 这定之犬k及多型性中。在該組中每一經選定的突變係與 該疾病相關,且必須獨立計分。在點突變的例子中,提供 一個編碼化的採針以確定與該選定位置的結合,一探針互 ' 予生型’另一探針則與突變或多型性標的序列結合。 在某些具體實例中,只要覆蓋性探針組所提供的序列 25 200538552 :::::的序列的配對足夠近似,則鐘認非所選區域碰到 特疋糕的構形就不是所關心的了 — 一 以⑽交。在該類的例子中,所有的序列配對 被刀派成相同的密碼,在一較佳具體實例中,該探針 了 =與相同的固體支持物(“探針庫,,)結合。探針庫可降低 可为辨之固態支持物的數量,該支持物 黨齡| & Μ η 罟用來表不所 針。在—特殊較佳的具體實財,所提供的固 心持物係以-組或可分辨的微微例陣列形式出現,其可 :::原位置(in situ)被解碼。在覆蓋性組中所添加額:的 ‘”標的區域内額外的多型性鑑認為說明多樣族 群單一型態(haplotypes)的一有用方法。 適當的探針可以被設計成相應於CFTR基因位置中已知 的對偶基因。一些多型性及突變對偶基因是已知的且可由 文獻及其他來源取得。 溫度控制的標準方法可容易的應用於設定操作(或施用 一系列預先設定的溫度變化至)單一晶片或多重晶片載體 的μ度上。當結合編碼化小珠的全部陣列之直接影像(如 同在多樣性分析中READTM格式所提供的),預先設定的溫 度循環之應用提供了及時晶片上(reabtime 〇n — chip)延長 產物的放大。給予基因組、粒腺體或其他dna,線狀晶片 上放大反應消除了對預分析DNA放大反應(如pcR)的需要 因此大大縮短完成該全部測定試驗的時間。時間敏感性 應用(例如屍首的測定)因此可以實施。更重要的是,該方 法將消除PCR多樣性的複雜性,在許多基因組篩選及多型 26 200538552 性分析中的具有有限的步驟。在一較佳實施例中,一液態 藥筒(cartridge)提供注射檢體及反應試劑,以及溫度控制 Ο 在此所描述之設計、組合物及方法也關於核酸檢體的 多樣性放大反應。在一較佳具體實例中,pcR引子的覆蓋 組(由起始及黏合次序列所組成)係用於標的的放大反應。 在此之後所描述的為一系列針對雜交分析筛選探針及 標的之適當陣列步驟。 作業: ❿ 辨別(選#) -組的探針,p,去同時實施一種或多種 “多樣性(multiplexed),,允許核酸序列雜交中介質疑 (interrogation)的反應,以決定在每一組選定的多型性位 置s= {Sl5 Y,SN;[的組合物,該位置係位於M<或4核酸 股 T : = {T〗,Y,TM}(“標的,,)。 標的一標的的收集T,{Ti = (mi,σί) ; K或=i <或= Μ}係由聚合酶鏈反應(PCR)所產生,其係使用設計來置入多 個多型性或突變到單一標的上的pcR引子,條件是標的長 度li不超過最大長度lmax,且其中i—th標的、長度li的 Ti進一步具有下列特徵: 一多樣性m i, 給予該選定的多型性(或突變)的數目, 其中 Σ (i = l ; i=M)) ;且 一方位值(orientation)σ丨,其中 意義股(“ci s”)的σ , +ι ;或 27 200538552 反義股(“trans”)的 σ ^ -1。 引子-較佳地,突變分析係牵涉每一選定突變位置s 的質疑(interrogation),其係藉由將相應的標的雜交到至k 少二個選定之質疑探針P/及V,其中至少—第_探針” 具有可與正常(“野生型”)組成物互補的序列,且其中至^ 一第二探針P/具有一可與變異(“突變型,,)組成物互補= 序列。在質疑次序列(interrogated subsequence)區域内( 除了在選定的區域)有多型性或突變存在時,理想上通常 會提供“衰退(degenerate),,探針’其會與位於非選定位置鲁 的預期性組成物配對。該較的PA%)此後可理解為指 稱所有針對k-th敎位置的探針,使得pk的特徵為具有 一些探針,這些探針中的每一個具有一方位值^,相反 於該同源的標的。 特別的是,探針係被選擇的,且探針-標的反應係被裝 :己至成牽彡種或一種以上反應組的方式,這些反應中的 每:個係在-分隔的容器内操作,該方法可降低任何包含 、、工k疋的夕型性位置或突變\之標的的次序列與除了# Φ 相對應的選定探針pk反應。 、 隹:、、;不必然產生一最理想配置(conf iguration) 以下的旨试錯誤的化印^討泌广策略提供了試驗最佳化 的^統性流程基礎,包含在二個序列間相似性的一最大可 ,又&度之關鍵*數,其係表示為同源性得分,和一 “交互 亦隹父的取大可接受程度,其係顯示其在“外對角線(〇ff — diag〇nal)凡素的大小(magnitude),-共親合力的PJ/ 28 200538552 見美國申請號第10/2〇 99號, 泌外扮陆以从☆ p名為利用應用-專一隨 多重分析分子分析”)顯示在所給予的族群或 有木針及所有標的之間相互影響的程产 :::小任何所給予的標的及針對其心 :父互雜父,將標的及其相對應的探針分配至…容哭 ’ W乍C個獨立的“多樣性(mul - 該數目可選擇儘可处,从”A )雜乂反應’ ,所…:小的,以使在—相同容器内的標的間 h , 列相似性(“最大同源性得分(maxifflal homology score)”)其預設定最大可接受程度❶ ㈣m小在—㈣容^,在任何所給予的標的及針 量—的的探針間的交互雜交,藉著轉換此㈣十 的方位值及其相對應探針的方位值,允許在新容對2 他任何標的的再選定(reassignment)e 1、 某些標的可具有—v L ΛΛ Γ- ^ 有種以上的區域,母一個標的在陣列 u &疋^針可與之雜交。在此類的案例中,為了縮 小相同的容器内的交互雜交以及競爭雜交,藉由重新設計 引子、、且以降低此類“干擾(of fending),,標的的多樣性, 以產生-個(或以上)較小的標的來置換原始的單—桿的, 每一:新標的比原先的具有較低的雜交區域多樣性。 元成下面的叙編碼(pseudocode)提供一配置 (configuring)該反應的嘗試錯誤流程的敘述,以便降 互雜交。 * 29 200538552 I-分配標的-及同源(cognate)探針-至c組(“容器,,)The coverage group contains subgroups constructed to reduce the number of probes in the group, and is also described in detail. Bead-bound probe arrays can be used for a herd of mutant hybridizations — intermediary = analysis' fe Wai is a non-regulated canine k and polymorphism in the cystic fiber transmembrane conductance regulator (CFTR) gene. Each selected mutation in this group is associated with the disease and must be scored independently. In the case of point mutations, a coded needle is provided to determine binding to the selected position, one probe is 'probiotic' and the other probe is bound to the sequence of the mutation or polymorphism target. In some specific examples, as long as the sequence of the sequence 25 200538552 ::::: provided by the coverage probe set is sufficiently approximated, it is not of concern that the configuration of the non-selected region meets the special cake It's up — one by one. In this type of example, all sequence pairs are assigned the same code by the knife. In a preferred embodiment, the probe is bound to the same solid support ("probe library,"). Probes The library can reduce the number of discriminable solid supports, which are used to make a statement. In-particularly better specific real estate, the provided solid holders are in groups Or in the form of a distinguishable pico instance array, which can be decoded ::: in situ. The additional polymorphism in the area marked by the "" added in the coverage group: It is considered to indicate that the multiple ethnic groups are single. A useful method for haplotypes. Appropriate probes can be designed to correspond to known dual genes in the CFTR gene position. Some polymorphisms and mutant dual genes are known and can be obtained from the literature and other sources. Standard methods of temperature control can be easily applied to set operations (or apply a series of pre-set temperature changes to) μ degrees of a single wafer or multiple wafer carriers. When combined with direct images of the entire array of coded beads (as provided in the READTM format in the diversity analysis), the application of a preset temperature cycle provides a magnification of the reabtime on-chip extended product in time. Given the genome, mitochondria, or other DNA, the amplification reaction on the linear wafer eliminates the need for a pre-analytical DNA amplification reaction (such as pcR) and therefore significantly reduces the time required to complete the entire assay. Time-sensitive applications (such as the determination of cadaver heads) can therefore be implemented. More importantly, this method will eliminate the complexity of PCR diversity, with limited steps in many genomic screening and polymorphism analysis. In a preferred embodiment, a liquid cartridge provides injectable specimens and reaction reagents, and temperature control. The designs, compositions, and methods described herein are also related to amplifying the diversity of nucleic acid specimens. In a preferred embodiment, the overlay set of pcR primers (consisting of the initiation and adhesion sequences) is used for the target amplification reaction. Described below is a series of suitable array steps for screening probes and targets for hybridization analysis. Assignment: ❿ Identify (select #)-group of probes, p, to perform one or more "multiplexed" at the same time, allowing the interrogation reaction in nucleic acid sequence hybridization to determine the selected in each group Polymorphic position s = {Sl5 Y, SN; [composition, this position is located at M < or 4 nucleic acid strand T: = {T〗, Y, TM} ("subject ,,"). A collection of targets T, {Ti = (mi, σί); K or = i < or = Μ} is produced by polymerase chain reaction (PCR), which uses design to place multiple polytypes Or mutated to a single pcR primer, provided that the target length li does not exceed the maximum length lmax, and the i-th target Ti with length li further has the following characteristics: a diversity mi, which gives the selected polymorphism (Or mutations), where Σ (i = l; i = M)); and an orientation value σ 丨, where σ of the meaning unit ("ci s"), + ι; or 27 200538552 antisense Sigma ("trans") of σ ^ -1. Primers-Preferably, the mutation analysis involves the interrogation of each selected mutation position s by hybridizing the corresponding target to at least two selected challenge probes P / and V, where at least- The _probe ”has a sequence that can be complementary to a normal (" wild type ") composition, and wherein up to a second probe P / has a sequence that can be complementary to a variant (" mutant, ") composition. When interrogated subsequence regions (except in selected regions) are polymorphic or mutated, ideally a "degenerate" is provided, and the probes are Expected composition pairing. The comparative PA%) can be understood as referring to all probes targeting the k-th 敎 position, so that pk is characterized by having some probes, each of which has an orientation value ^ , In contrast to the target of the same origin. In particular, the probe system is selected, and the probe-target reaction system is loaded: in a manner that can be a strain or one or more reaction groups, each of these reactions: Each system is operated in a -separated container. This method can reduce the reaction of any subtypes that contain, or the position of the mutation or the target of the mutation \ with the selected probe pk corresponding to except Φ. 隹: 、,; does not necessarily produce an optimal configuration (conf iguration) The following test and error analysis method is provided. The strategy provides a basis for systematic optimization of experimental optimization. It includes one of the similarities between the two sequences. Max, again & The key * number, which is expressed as the homology score, and an "interaction is also the maximum acceptable degree of the father, which shows its size in the" outer diagonal (〇ff — diag〇nal) (Magnitude),-Co-affinity PJ / 28 200538552 See U.S. Application No. 10 / 2〇99, Bi Wai Shi Lu uses the name ☆ p for application-specific molecular analysis with multiplex analysis ") shown in the given Ethnic group or the process that has a mutual influence between wooden needles and all targets ::: Any target given and targeted at its heart: Fathers and fathers, assign targets and their corresponding probes to ... There are independent "multipliers (mul-the number can be chosen as much as possible from the" A "hybrid reaction), so ...: small, so that the similarity between the targets in the same container, the column similarity ("Maxifflal homology score") its preset maximum acceptable level ❶ 小 m is small-㈣ capacity ^, cross-hybridize between any given target and needle amount- By shifting the bearing value of this unit and its corresponding probe, allow any other Target reassignment e 1. Some targets may have -v L ΛΛ Γ- ^ There are more than one kind of region, and a target in the array u & 疋 ^ needles can hybridize with it. In such cases, in order to reduce the cross hybridization and competitive hybridization in the same container, by redesigning the primers and reducing such "of fending," the diversity of the target to generate a ( (Or above) smaller targets to replace the original single-rod, each: the new target has a lower diversity of hybridization regions than the original. The following pseudocode of Yuancheng provides a configuration for the reaction The description of the process of trial and error in order to reduce cross-hybridization. * 29 200538552 I-assignment target-and cognate probe-to group c ("container,")

c= 0 ; DO REFSEQ=選擇標的⑺ 縮減選擇(Γ,1) S= L(c); 起草目錄(L(g),REFSEQ); 自所提供的集合中隨機選擇一標的 序列,T*/ /*自集合中移除經選擇的標的*/ /將經選擇的標的放至新組(“族群,,)中 … ’在一目錄格式中執行,S*/ 排列標的(REFSEQ,r,HScores);/*排列剩餘的標的至REFSEq ,利用 配對排列或多重序列排列對;回歸同 、, 源性得分*/c = 0; DO REFSEQ = selection target 选择 Reduced selection (Γ, 1) S = L (c); Draft directory (L (g), REFSEQ); Randomly select a target sequence from the provided set, T * / / * Remove selected targets from the set * / / Place the selected targets in a new group ("Clan ,, ..." ... 'Execute in a directory format, S * / arrange the targets (REFSEQ, r, HScores ); / * Arrange the remaining targets to REFSEq, use paired permutations or multiple sequence permutation pairs; regression homology, source score * /

分類標的(Hscores,7) /*根據同源性得分相關REFSEQ的 增加排列標的序列;首先放入最不相 似的,最後放入與REFSEQ最為相 似者*/ ^一 ^配標的(maxHsC0RE,/*自集合中根據增加的同源性得分( ,,); 至maxHSC〇re)移除標的,並將它們 置入表中,從上開始;回歸排列在該 目錄中的標的數目,S * / t) /*自集合中移除t經選擇的標的*/ }當(/不為空白);Classification target (Hscores, 7) / * Arrange the target sequence according to the increase in REFSEQ related to the homology score; first put the least similar, and finally put the most similar to REFSEQ * / ^ 一 ^ (HHCCRERE, / * Remove the targets from the set according to the increased homology score (,,); to maxHSC〇re), and put them into the table, starting from the top; return the number of targets arranged in the directory, S * / t ) / * Remove the selected subject * /} from the set when (/ is not blank);

視需要地,一種或一種以上的目錄可被刪除,若其包含多 於一可接受數目的標的時(舉例而言,假設其被:定基於 在一目錄中有過多的標的,maxHscore應被降低),根據自 該目錄的-種或-種以上的下端移除標的,且放置該標的 至集合7中。 I卜提升族群配置 當(i=0; I<c; i++) 依序測試每個族群*/ 的㈣出針尉目前目錄‘ { S-L(i);If necessary, one or more directories can be deleted, if it contains more than an acceptable number of targets (for example, assuming it is: based on having too many targets in a directory, maxHscore should be reduced ), Remove the target from the lower end of the category or more than the category, and place the target in the collection 7. I. Improving the ethnic group configuration When (i = 0; I <c; i ++) sequentially test the current directory of each ethnic group * / ‘{S-L (i);

Po仏選擇探針〇P,S) 30 200538552 當(S不為空白) T- PopTarget (S); 進行探針標的反應(P〇fS,T) 當(每一探針P,在PofS中) /*每一探針係被設計與至少一個標的 相配對,這係指該探針與該標的為 同源;注意:參照在共親合力陣列中 的對角線(diagonal)元素*/ /*使T與所有經選擇的探針接觸,較 佳的是排列在探針陣列内*/ 1=決定交互作用強度(P,T); /*縮小在共親合力陣列中 大外對角線元素*/ 若((P不與T同源)及(I> maxi) /*翻轉探針的方位值*/ 翻轉方位(P); 翻轉方位(TcP); /*翻轉與P同源的標的方位值*/ 翻^的PopTarget⑻;/*確認在目錄s中的“翻轉,,標的*/ T)進行探針標的反應(p〇fS,翻轉的/*使τ與所有經選擇的探針 佳的是在探針陣列中*/ 較 每一個探針P,在PofS中) k決定交互作用強度(P,經翻轉的T); /*縮小在共親合力陣列中不可接 若大外對角線元素*/ 安又的 up與經翻轉的τ不同源)以及(I> maxI) 目錄 */ 推動標的(經翻轉的τ,TempList); /*放置翻轉標的至臨時 31 200538552 S=TempList; 當(S不為空白){ T= PopTarget (S); 當(j=0;j<c;j++){ 正①⑼吐⑺){ 目錄S臨時保留經翻轉的標的~ /*確魂在臨時目錄内的標的*/ T) (T)); (PcT); 目錄); 認T對抗在所有存在的目錄 除了那些在T,s的原始目錄中*/ τ一、 l=lg); 目錄(L)中選擇探針;/*在族群l中選擇探針” 進仃楝針標的反應_L,/*將T與所有經選擇的探^接觸, f (每-個探針P,在隱巾^是排列在探針陣列内~ 1==決定交互作用強度(P,T); /縮小在共親合力陣列中不可接受 大外對角線元素*/ 若((P與T不同源)以及(I> maxI)) 翻轉方位/**/翻轉標的方位值使回覆成原始狀態 翻轉方位/*翻轉探針的方位值 與標的T同源*/ 推動標的(T,新/*開始新族群*/Po 仏 Select probes (P, S) 30 200538552 When (S is not blank) T- PopTarget (S); Perform the probe target reaction (Pfs, T) When (each probe P, in PofS) / * Each probe is designed to be paired with at least one target, which means that the probe is homologous to the target; note: refer to the diagonal elements in the co-affinity array * / / * Contact T with all selected probes, preferably arranged in the probe array * / 1 = determines the strength of the interaction (P, T); / * Reduce the large outer diagonal elements in the co-affinity array * / If ((P is not homologous to T) and (I > maxi) / * orientation value of flip probe * / flip orientation (P); flip orientation (TcP); / * flip the orientation of the target homologous to P The value of * / turned PopTarget⑻; / * confirm that the "turned, * * T" in the directory s performs the probe-targeted reaction (p0fS, turned / * makes τ better than all selected probes) Is in the probe array * / compared to each probe P, in PofS) k determines the strength of the interaction (P, flipped T); / * narrows down in the co-affinity array which cannot be as large as the outer diagonal Element * / An up and upside down (Different sources) and (I &max;) directory * / push target (inverted τ, TempList); / * place flip target to temporary 31 200538552 S = TempList; when (S is not blank) {T = PopTarget (S) When (j = 0; j <c; j ++) {正 ①⑼ 吐 ⑼) {The directory S temporarily retains the inverted target ~ / * the target of the soul in the temporary directory * / T) (T)); (PcT ); Directory); Recognize T confrontation in all existing directories except those in the original directory of T, s * / τ a, l = lg); select probes in directory (L); / * select probes in group l Needle ”into the needle's response_L, / * contact T with all selected probes, f (each-probe P, the hidden towel ^ is arranged in the probe array ~ 1 == decides the interaction Intensity of action (P, T); / Reduction of large outer diagonal elements is not acceptable in co-affinity arrays * / If ((P and T are different sources) and (I > maxI)) flip orientation / ** / flip target The bearing value makes the response return to the original state. Flip bearing / * The bearing value of the flip probe is the same as the target T * / Push the target (T, new / * start new ethnic group * /

翻轉方位(P); /*翻轉探針方位*/ 翻轉方位(TcP); /*翻轉與P同源的標的方位值*/ 32 200538552 【實施方式】 實施例I : CFTR試驗 自數個病人中萃取出的基因組DNA以相對應的引子在 一多重PCR(mPCR)反應中放大之。該PCR條件及反應試劑 如下: 引子設計:該引子的其中一個(意義股或反義股,依設 計考量,於後討論)係以一標籤(例如Cy3、Cy5及Cy5· 5) 在5’端進行修飾,且用以互補序列的相對應引子具有一加 在5’端的磷酸基團,使擴增子可以在標的的後PCR流程中 被又内切酶切割(見之後敘述)。利用偵測在雜交產物中的 染劑(Cy3、Cy5或Cy5. 5)來偵測雜交。多重PCR(mPCR)係 以二個族群以下列引子(表I及表11)實施,且使用下列反 應試劑及條件。突變所在位置的外顯子數目表示在表I及 表11的左側欄中。Inverted orientation (P); / * Inverted probe orientation * / Inverted orientation (TcP); / * Inverted orientation value with the same origin as P * / 32 200538552 [Embodiment] Example I: CFTR test from several patients The extracted genomic DNA is amplified by corresponding primers in a multiplex PCR (mPCR) reaction. The PCR conditions and reaction reagents are as follows: Primer design: one of the primers (meaning or antisense, depending on design considerations, discussed later) is labeled with a label (such as Cy3, Cy5, and Cy5 · 5) at the 5 'end Modifications and corresponding primers for complementary sequences have a phosphate group added to the 5 'end, so that the amplicon can be cleaved by the endonuclease in the target post-PCR process (see below). Hybridization was detected using a dye (Cy3, Cy5 or Cy5. 5) detected in the hybridization product. Multiplex PCR (mPCR) was performed in two groups with the following primers (Table I and Table 11), and the following reaction reagents and conditions were used. The number of exons at the position of the mutation is shown in the left column of Table I and Table 11.

表ITable I

人工序列人工引子 mPCR族群I引子:(“Cy”表示染劑標籤,且’’P”表示在引子 5’端的磷酸修飾) SEQ ID NO.:l SEQ ID NO.:2 SEQ ID NO.:3 SEQ ID NO.:4 SEQ ID NO.:5 SEQ ID NO.:6 SEQ ID NO.:7 SEQ ID NO.:8 SEQ ID NO.:9 SEQ ID NO.:10 SEQ ID NO·: 11Artificial Sequence Artificial Primer mPCR Group I Primer: ("Cy" represents the dye tag, and "P" represents the phosphate modification at the 5 'end of the primer) SEQ ID NO.:l SEQ ID NO.:2 SEQ ID NO.:3 SEQ ID NO .: 4 SEQ ID NO .: 5 SEQ ID NO .: 6 SEQ ID NO .: 7 SEQ ID NO .: 8 SEQ ID NO .: 9 SEQ ID NO .: 10 SEQ ID NO: 11

EX-5-l-Cy GTC AAG CCG TGT TCT A GAT EX-5-2-P GTT GTA TAA TTT ATA ACA ATA GTEX-5-l-Cy GTC AAG CCG TGT TCT A GAT EX-5-2-P GTT GTA TAA TTT ATA ACA ATA GT

EX-7-1 -P AC TTC AAT AGC TCA GCC TTC EX-7-2-Cy TAT GGT ACA TTA CCT GTA TTT TG EX-9-1 -P TGG TGA CAG CCT CTT CTT EX-9-2-Cy GAA CTA CCT TGC CTG CTC CA EX-12-1-P TCT CCT TTT GGA TAC CTA GAT EX-12-2-Cy TGA GCA TTA TAA GTA AGG TATEX-7-1 -P AC TTC AAT AGC TCA GCC TTC EX-7-2-Cy TAT GGT ACA TTA CCT GTA TTT TG EX-9-1 -P TGG TGA CAG CCT CTT CTT EX-9-2-Cy GAA CTA CCT TGC CTG CTC CA EX-12-1-P TCT CCT TTT GGA TAC CTA GAT EX-12-2-Cy TGA GCA TTA TAA GTA AGG TAT

EX-13-1-P AGG TAG CAG CTA TTT TTA TGG EX-13-2-Cy ATC TGG TAC TAA GGA CAGEX-13-1-P AGG TAG CAG CTA TTT TTA TGG EX-13-2-Cy ATC TGG TAC TAA GGA CAG

EX-14B-1-P TCT TTG GTT GTG CTG TGG CT 33 200538552EX-14B-1-P TCT TTG GTT GTG CTG TGG CT 33 200538552

EX-14B-2-Cy EX16A-1P EX16A-2-Cy EX-18-1-P EX18-2-Cy Ex-19-l-Cy Ex-19-2-PEX-14B-2-Cy EX16A-1P EX16A-2-Cy EX-18-1-P EX18-2-Cy Ex-19-l-Cy Ex-19-2-P

ACA ATA CAT ACA AAC ATA GT CTT CTG CTT ACC ΑΤΑ TTT GAC TAAT ACA GAC ATA CTT AAC G GG AGA AGG AGA AGG AAG AGT ATC TAT GAG AAG GAA AGA AGA GGC CAA ATG ACT GTC AAA GA TGC TTC AGG CTA CTG GGA TT SEQ ID NO.: 12 SEQ ID NO.: 13 SEQ ID NO·: 14 SEQ ID NO.: 15 SEQ ID NO·: 16 SEQ ID NO.:17 SEQ ID NO·: 18ACA ATA CAT ACA AAC ATA GT CTT CTG CTT ACC ΑΤΑ TTT GAC TAAT ACA GAC ATA CTT AAC G GG AGA AGG AGA AGG AAG AGT ATC TAT GAG AAG GAA AGA AGA GGC CAA ATG ACT GTC AAA GA TGC TTC AGG CTA CTG GGA TT ID NO .: 12 SEQ ID NO .: 13 SEQ ID NO .: 14 SEQ ID NO .: 15 SEQ ID NO .: 16 SEQ ID NO .: 17 SEQ ID NO .: 18

表II mPCR族群II引子:Table II mPCR Group II primers:

Ex-3-l-Cy Ex-3-2-P Ex-4-l-P Ex-4-2-Cy EX-10-1-P EX-lO-2-Cy Ex-ll-l-P EXll-2-Cy Int-19-l-Cy Int-19-2-P EX-20-1-P EX20-2-Cy EX21-1-P EX21-2-CyEx-3-l-Cy Ex-3-2-P Ex-4-lP Ex-4-2-Cy EX-10-1-P EX-lO-2-Cy Ex-ll-lP EXll-2-Cy Int-19-l-Cy Int-19-2-P EX-20-1-P EX20-2-Cy EX21-1-P EX21-2-Cy

C GGC GAT GTT TTT TCT GGA G T ACA AAT GAG ATC CTT ACC C AGC TTC CTA TGA CCC GGA TA TGT GAT GAA GGC CAA AAA TG TGT TCT CAG TTT TCC TGG AT CTC TTC TAG TTG GCA TGC TT CAG ATT GAG CAT ACT AAA AG AC ATG AAT GAC ATT TAC AGC AA TCA TTC AGT GGG TAT AAG C CCT CCT CCC TGA GAA TGT TGG C TGG ATC AGG GAA GA GAA GG TCC TTT TGC TCA CCT GTG GT TGA TGG TAA GTA CAT GGG TG CAA AAG TAC CTG TTG CTC CA SEQ ID NO.:19 SEQ ID NO.:20 SEQ ID NO.:21 SEQ ID NO.:22 SEQ ID NO.:23 SEQ ID NO.:24 SEQ ID NO.:25 SEQ ID NO.:26 SEQ ID NO.:27 SEQ ID NO.:28 SEQ ID NO.:29 SEQ ID NO.:30 SEQ ID NO.:31 SEQ ID NO.:32C GGC GAT GTT TTT TCT GGA GT ACA AAT GAG ATC CTT ACC C AGC TTC CTA TGA CCC GGA TA TGT GAT GAA GGC CAA AAA TG TGT TCT CAG TTT TCC TGG AT CTC TTC TAG TTG GCA TGC TT CAG ATT GAG CAT ACT AAA AG AC ATG AAT GAC ATT TAC AGC AA TCA TTC AGT GGG TAT AAG C CCT CCT CCC TGA GAA TGT TGG C TGG ATC AGG GAA GAA GG TCC TTT TGC TCA CCT GTG GT TGA TGG TAA GTA CAT GGG TG CAA AAG TAC CTG TTG CTC CA SEQ ID NO.:19 SEQ ID NO.:20 SEQ ID NO.:21 SEQ ID NO.:22 SEQ ID NO.:23 SEQ ID NO.:24 SEQ ID NO.:25 SEQ ID NO.:26 SEQ ID NO.:27 SEQ ID NO.:28 SEQ ID NO.:29 SEQ ID NO.:30 SEQ ID NO.:31 SEQ ID NO.:32

PCR主要混合組成物Main composition of PCR

為20// 1反應/樣本: 成分 體積(//D 10XPCR緩衝液 2.0 25mM MgCl2 1.4 dNTPs (2.5mM) 4.0 引子混合物(多重l〇x) 3.0 7¾分DNA聚合酶 0.6 ddH20 3.0 DNA 6.0 總體積 20 34 200538552 PCR循環條件 供熱開始 94〇C 15分 94〇C 30 秒,60% ramp 60°C 30 秒,50% ramp 72〇C 50 秒,35% ramp 72〇C 8分 利用一 Perkin Elmer 9700 30循環 針對每一引子對,決定其最適引子濃度。反應體積可以根 據實驗所需而調整。 _ 磋户浚裡··在放大反應之後,PCR產物係利用一 QIAqiuck PCR 純化套組(QIAGEN,Cat #281 04)或以核酸外 切酶I處理(Amersham)加以純化。對後者程序而言:將8 # 1流份(a 1 i quot)的PCR產物加到一乾淨且含有2 5 // 1 核酸外切酶I(Amersham)的試管内,在3TC培養15分鐘, 而後將其在80它變性15分鐘。此後,單股的DNA可經由 下列方式產生: PCR反應產物係與2. 5單位的久核酸外切酶在i倍緩 衝液中進行37 C培養20分鐘,接著利用加熱至75。匸1〇 =鐘將酵素去活化。s這些條件了,該酵素自該磷酸化 端分解雙股DNA中的一股,且釋放出5_磷酸化單核苷酸 t Little等人,1967)。單股標的也可以經由其他在 。玄領域中已知的方法產生,然而對該pcR i物加熱用以產 生單股DNA是不理想的。該單股醒可以在陣列中直接被 35 200538552 利用。 遠方 交-自 Genebank&ww’ncJiijxij^^j^iji^g^)所 得的CFTP基因序列係用作野生型模式。將52個探針根據 其序列的同源性分成兩組,係依照“嘗試錯誤(heuristic),, 採針選擇規則系統(alg〇rithm),即在該種方法中避免在可 能範圍中不同探針的重疊同源性。包含在每一族群中的突 變係經選擇的,以便縮小在任何族群中的探針序列之間的 重豐性,且因此用以縮小在多重分析條件下内—族群 (intra-group)的交互雜交。 探針序列係經由PRIMER 3.0軟體設計(見 在此係作為附錄),使每一 個探針具有下列特徵·· (b) —錯誤配對位於該探針的中央部位; (c) 探針長度為i6 —21鹼基; (d )低自我互補性,· (e)含30-60% GC含量;及 (f )不超過三個連續的相同鹼基。 每一個探針序列係與其互補的外 顯子序列排列。見20 // 1 reaction / sample: composition volume (// D 10XPCR buffer 2.0 25mM MgCl2 1.4 dNTPs (2.5mM) 4.0 primer mix (multiple 10x) 3.0 7¾ points DNA polymerase 0.6 ddH20 3.0 DNA 6.0 total volume 20 34 200538552 PCR cycle conditions Heating start 94 ° C 15 minutes 94 ° C 30 seconds, 60% ramp 60 ° C 30 seconds, 50% ramp 72 ° C 50 seconds, 35% ramp 72 ° C 8 minutes Use a Perkin Elmer 9700 30 cycles for each primer pair to determine the optimal primer concentration. The reaction volume can be adjusted according to the needs of the experiment. _ 户户 浚 里 · After the amplification reaction, the PCR product is a QIAqiuck PCR purification kit (QIAGEN, Cat # 281 04) or purified with exonuclease I treatment (Amersham). For the latter procedure: add 8 # 1 fraction (a 1 i quot) of PCR products to a clean and containing 2 5 // 1 In a test tube of exonuclease I (Amersham), incubate at 3TC for 15 minutes, and then denature it at 80 for 15 minutes. After that, single-stranded DNA can be produced by: PCR reaction product and 2.5 units of Exonuclease in 37 C culture in i-fold buffer 20 Minutes, followed by heating to 75. 匸 10 = bell to deactivate the enzyme. Under these conditions, the enzyme breaks down one strand of double-stranded DNA from the phosphorylated end and releases a 5-phosphorylated single nucleotide. t Little et al., 1967). Single-share targets can also be obtained through others. It is produced by a method known in the field of metaphysics, however, it is not desirable to heat the pcR material to generate single-stranded DNA. This single strand wake can be used directly in the array by 35 200538552. Distant cross-CFTP gene sequence obtained from Genebank & ww'ncJiijxij ^^ j ^ iji ^ g ^) was used as a wild-type pattern. The 52 probes were divided into two groups based on their sequence homology. They were based on "heuristic" and "algorithm". That is, in this method, different probes in the possible range are avoided. Overlapping homology of the needles. Mutants contained in each population were selected to reduce the heavy abundance between probe sequences in any population, and were therefore used to narrow the population within multiple analysis conditions-populations (intra-group) cross-hybridization. The probe sequence is designed by PRIMER 3.0 software (see this series as an appendix), so that each probe has the following characteristics ... (b) — the mismatch is located in the center of the probe (C) probe length is 6-21 bases; (d) low self-complementarity, (e) contains 30-60% GC content; and (f) no more than three consecutive identical bases. Each The probe sequence is aligned with its complementary exon sequence. See

lllt.p;//searrhlai]p.hprihrTri / ,在此系列為附錄。計算每一模 母彳木針及非所欲標的序列丨 ’除了該探針欲雜交的突變庠 列外的其他突變序列)間 冋源性的比例,且選擇探針 便在相同陣列内的每個突 的铋針及非所欲標的序列間 N,原丨生比例少於50%。 36 200538552 *針的選擇係根據該f試錯誤選擇規則“進— :八如上,。探針選擇也可因實驗選擇而部分被改善,且 4刀的考s在於包含錯誤配對的驗基對(特別I G 向於穩定者。在探針可*正確地與錯誤輯雜 ”;、 u對的料巾,且在某些其㈣子中,㈣穩Λ—2 配對可以被避免,或如果實驗證明該不正確的雜交可藉由 使用反義股探針被降低時,則係使用反_意義股探針^ 不用意義股探針。使用反義股探針的案例在以 列表IU中指出。 十序 合成26個CF突變的野生型與突變型探針,在其5,端 進行5’生物素-TEG或胺基修飾(合併〇叫咖鑛a技術 )。不同小珠化學可以使用一不同的5,端,使生物素修飾 可結合至塗覆有neutravidin的小珠,且胺基修飾可以結 合至包覆有BSA的小珠。探針係被溶解於1χ 了£或去離子 水中,濃度為100//M。對每一種型態的小珠而言,含有1% 小珠固體的100# 1液態溶液係經5〇〇// i的TBS — Klx te, 〇.5MNaC12)沖洗三次。探針被加到5〇〇/Μ的小珠懸浮液 中,且在室溫下在滾筒(roller)中培養45一6〇分鐘。小珠 以 TBS-T 溶液(Π ΤΕ,0·15Μ NaCl2,·05% Tween 2〇)或 PBS-T(磷酸緩衝鹽,Tween 20)清洗一次,及以TBS_2(1X TE,0· 15M NaC 12)清洗一次,及重新懸浮在ΐχ TBS-2溶液 中。小珠如前述結合在晶片表面上。也將探針分成兩組並 組裝在兩個分開的晶片上。將一第三族群結合進行反射試 驗(包括5Τ/7Τ/9Τ多型性)。負與正控制組也被包含在該晶 37 200538552 片表面,分析信號係使用這些控制組校正之。對負控制組 而言,小珠係與dCTP(01 igo-C)的1 0-mer股結合,且固定 在晶片表面上。對正控制組而言,係使用人類/3肌動蛋白 序列。產生自01 igo-C的信號係作為背景值用以扣除干擾 ,而/3肌動蛋白係用來標準化數值。 表IIIA -雜交族群I 小珠群 突變 小珠群 突變 1 OLIGO-C (控制組) 19 G542-M 2 BA 20 G551D-WT 3 OligoC-1 21 G551D-M 4 G85E-WT 22 R560-WT 5 G85E-M 23 R560-M 6 621+1G>T-WT 24 R553X-WT 7 621+1G>T-M 25 R553X-M 8 R117H-WT 26 OLIGOC-3 9 R117H-M 27 1717-1G>A-WT 10 I148-WT 28 1717-1G>A-M 11 I148-M 29 3849+10kb-WT 12 A455E-WT 30 3849+10kb-M 13 A455E-M 31 W1282X-WT 14 508-WT 32 OLIGOC-4 15 OLIGOC-2 33 W1282X-M 16 F508 34 N1303K-WT 17 1507 35 N1303K-M 18 G542-WT 36 0LIG0C-5lllt.p; //searrhlai]p.hprihrTri /, this series is an appendix. Calculate the ratio of virulence between each mold parental needle and non-desired target sequences (except for the mutation sequence in which the probe is to hybridize), and select each probe in the same array. The protozoan ratio of N between the protruding bismuth needle and the undesired target sequence is less than 50%. 36 200538552 * The selection of the needle is based on the error selection rules of the f test "into: eight as above. The probe selection can also be partially improved due to the experimental selection, and the test of the 4-knife consists of the test base pair containing the wrong pairing ( In particular, IG is stable. The probe can be correctly mixed with the error "; u pair of towels, and in some of its mules, the stable Λ-2 pairing can be avoided, or if the experiment proves When the incorrect hybridization can be reduced by using the antisense strand probe, the anti_sense strand probe is used ^ The sense strand probe is not used. The case of using the antisense strand probe is indicated in the list IU. Twenty-six CF-mutated wild-type and mutant probes were synthesized in sequence, and 5 'biotin-TEG or amine modification was performed at the 5' end (combined with the technology called Kamine a). Different bead chemistry can use a different At the 5, end, the biotin modification can be bound to the beads coated with neutravidin, and the amine modification can be bound to the beads coated with BSA. The probe system is dissolved in 1χ or deionized water at a concentration of 100 // M. For each type of bead, 100 # 1 containing 1% bead solids State solution system was 5〇〇 // i of TBS - Klx te, 〇.5MNaC12) washed three times. The probe was added to a 500 / M bead suspension and incubated in a roller at room temperature for 45-60 minutes. The beads were washed once with TBS-T solution (ΠTE, 0.15M NaCl2, · 05% Tween 20) or PBS-T (phosphate buffered saline, Tween 20), and TBS_2 (1X TE, 0.15M NaC 12 ) Wash once and resuspend in ΐχ TBS-2 solution. The beads are bonded to the wafer surface as previously described. The probes were also divided into two groups and assembled on two separate wafers. Combine a third group to perform a reflection test (including 5T / 7T / 9T polymorphism). Negative and positive control groups are also included on the surface of this crystal. The analysis signal is corrected using these control groups. For the negative control group, the beads were combined with 10-mer strands of dCTP (01 igo-C) and fixed on the wafer surface. For the positive control group, human / 3 actin sequences were used. The signal generated from 01 igo-C was used as the background value to subtract interference, and the / 3 actin system was used to normalize the value. Table IIIA-Hybrid population I Bead population mutation Bead population mutation 1 OLIGO-C (control group) 19 G542-M 2 BA 20 G551D-WT 3 OligoC-1 21 G551D-M 4 G85E-WT 22 R560-WT 5 G85E -M 23 R560-M 6 621 + 1G > T-WT 24 R553X-WT 7 621 + 1G > TM 25 R553X-M 8 R117H-WT 26 OLIGOC-3 9 R117H-M 27 1717-1G > A-WT 10 I148 -WT 28 1717-1G > AM 11 I148-M 29 3849 + 10kb-WT 12 A455E-WT 30 3849 + 10kb-M 13 A455E-M 31 W1282X-WT 14 508-WT 32 OLIGOC-4 15 OLIGOC-2 33 W1282X -M 16 F508 34 N1303K-WT 17 1507 35 N1303K-M 18 G542-WT 36 0LIG0C-5

38 20053855238 200538552

表IIIB-雜交族群IITable IIIB-Hybrid Group II

小珠群 突變 小珠群 突變 1 BA 18 3659delC-WT 2 1898+5G-WT 19 3659delC-M 3 OLIGO-C (控制組) 20 OLIGO-C-3 4 1898+5G-M 21 R1162X-WT 5 OLIGO-C-1 22 R1162X-M 6 R334W-WT 23 2789+5G-WT 7 R334W-M 24 2789+5G-M 8 1898+1G〉A-WT 25 3120+1G>A-WT 9 1898+1G>A - WT 26 3120+1G>A-WT 10 1078delT-M 27 OLIGO-C-4 11 OLIGO-C-2 28 A455E-WT 12 D1152-WT 29 A455E-M 13 D1152-M 30 2184delA-WT 14 R347P-WT 31 2184delA-M 15 R347P-M 32 1078delT-WT 16 17 711+1G>T-WT 711+1G>T-M 33 OLIGO-C-5 表三me-雜交族群in Cluster # (共6族群) 突變 1 石肌動蛋白 1 Oligo C 2 5T 3 7Τ 4 9Τ 用以偵測每一個突變的探針序列係如下列(如前述針對意 義股或反義股序列選擇探針):Bead group mutation 1 BA 18 3659delC-WT 2 1898 + 5G-WT 19 3659delC-M 3 OLIGO-C (control group) 20 OLIGO-C-3 4 1898 + 5G-M 21 R1162X-WT 5 OLIGO -C-1 22 R1162X-M 6 R334W-WT 23 2789 + 5G-WT 7 R334W-M 24 2789 + 5G-M 8 1898 + 1G> A-WT 25 3120 + 1G > A-WT 9 1898 + 1G > A -WT 26 3120 + 1G> A-WT 10 1078delT-M 27 OLIGO-C-4 11 OLIGO-C-2 28 A455E-WT 12 D1152-WT 29 A455E-M 13 D1152-M 30 2184delA-WT 14 R347P-WT 31 2184delA-M 15 R347P-M 32 1078delT-WT 16 17 711 + 1G> T-WT 711 + 1G> TM 33 OLIGO-C-5 Table 3 me-hybrid groups in Cluster # (total 6 groups) Mutation 1 Stone muscle Kinesin 1 Oligo C 2 5T 3 7T 4 9T The probe sequences used to detect each mutation are as follows (such as the aforementioned probe selection for sense strand or antisense strand sequence):

表IV 正常/變異性 序列 捕捉探針 SEQ ID NO.:33 SEQ ID NO.:34 SEQ ID NO.:35 SEQ ID NO.:36 EX-3 AT GTT CTA TGG AAT CTT ΤΤ ΤΑ G85E AT GTT CTA TGA AAT CTT ΤΤ ΤΑTable IV Normal / variant sequence capture probes SEQ ID NO.:33 SEQ ID NO.:34 SEQ ID NO.:35 SEQ ID NO.:36 EX-3 AT GTT CTA TGG AAT CTT ΤΤ ΤΑ ΤΑΑ85E AT GTT CTA TGA AAT CTT ΤΤ ΤΑ

EX-4 ΤΑ TAA GAA GGT AAT ACT TC CTEX-4 ΤΑ TAA GAA GGT AAT ACT TC CT

621-M TA TAA GAA GTT AAT ACT TC CT 39 200538552621-M TA TAA GAA GTT AAT ACT TC CT 39 200538552

CC TCA TCA CAT TGG AAT GC AG CC TCA TCA CAC TGG AAT GC AG CAA GGA GGA ACG CTC TAT CG C CAA GGA GGA ACA CTC TAT CG C ATG GGT ACA TAC TTC ATC AA A ATG GGT ACA TAA TTC ATC AA A GAA TAT TTT CCG GAG GAT GAT GAA TAT TTT CCA GAG GAT GAT CAT TGT TCT GCG CAT GGC GGT CAT TGT TCT GCC CAT GGC GGT CT CAG GGT TCT TTG TGG TG TT CT CAG GGT TC TTG TGG TG TT ACA GTT GTT GGC GGT TGC TGG ACA GTT GTT GGA GGT TGC TGG AAA GAA AAT ATC ATC TTT GGT AAA GAA AAT ATC ATT GGT GT AAA GAA AAT ATC TTT GGT GT ATA TTT GAA AGG TAT GTT CT TT ATA TTT GAA AGA TAT GTT CT TT GAA ACA AAA AAA CAA TCT TTT GAA ACA AAA AA CAA TCT TTT TTG GAA AGT GAG TAT TCC ATG TTG GAA AGT GAA TAT TCC ATG ACT TCA TCC AGA TAT GTA AAA ACT TCA TCC AGG TAT GTA AAA TAT AGT TCT TGG AGA AGG TGG TAT AGT TCT TTG AGA AGG TGG TCT TTA GCA AGG TGA ATA ACT TCT TTA GCA ACG TGA ATA ACT GAG TGG AGG TCA ACG AGC AAG GAG TGG AGA TCA ACG AGC AAG GTG GAG GTC AAT GAG CAA GA TGG TAA TAG GAC ATC TCC AAG TGG TAA TAA GAC ATC TCC AAG ACT CCA GCA TAG ATG TGG ATA ACT CCA GCA TAC ATG TGG ATA GAA CTG TGA GCC GAG TCT TTA GAA CTG TGA GCT GAG TCT TTA TGG TTG ACT TGG TAG GTT TAC 3659 TGG TTG ACT TG TAG GTT TAC T TAA AAT GGT GAG TAA GA CAC 3849 T TAA AAT GGC GAG TAA GA CAC EX-20 TGC AAC AGT GGA GGA AAG CCT 1282X TGC AAC AGT GAA GGA AAG CCT EX-21 A TTT AGA AAA AAC TTG GAT CC N1303K A TTTAGA AAA AAG TTG GAT CC /3 A-PROBE AG GAC TCC ATG CCC AG INT-4 I148T EX-4 R117H EX-5 711+1G EX-7 334-M EX-7 347-M EX-7 1078DELT EX-9 A455E EX-10 F508 1507 EX-12 1898+1 Ex-13 2184delA EX-14B 2789+5G EX-16 31120+1G/A Ex-11 G542X EX-11 R560 EX-11-553/551 G551D R553X EX-11 1717-M EX-18 1152X EX-19-SENSE R1162X EX-19 INT-19 SEQ ID NO.:37 SEQ ID NO.:38 SEQ ID NO.:39 SEQ ID NO.:40 SEQ ID NO.:41 SEQ ID NO.:42 SEQ ID NO.:43 SEQ ID NO.:44 SEQ ID NO.:45 SEQ ID NO.:46 SEQ ID NO.:47 SEQ ID NO.:48 SEQ ID NO.:49 SEQ ID NO.:50 SEQ ID NO.:51 SEQ ID NO.:52 SEQ ID NO.:53 SEQ IDNO.:54 SEQ ID NO.:55 SEQ ID NO.:56 SEQ ID NO.:57 SEQ ID NO.:58 SEQ IDNO.:59 SEQ ID NO.:60 SEQ ID NO.:61 SEQ ID NO.:62 SEQ ID NO.:63 SEQ ID NO.:64 SEQ ID NO.:65 SEQ ID NO.:66 SEQ ID NO.:67 SEQ ID NO.:68 SEQ ID NO.:69 SEQ ID NO.:70 SEQ ID NO.:71 SEQ ID NO.:72 SEQ ID NO.:73 SEQ ID NO.:74 SEQ ID NO.:74 SEQ ID NO.:76 SEQ ID NO.:77 SEQ ID NO.:78 SEQ ID NO.:79 SEQ IDNO.:80 SEQ ID NO.:81 SEQ ID NO.:82 SEQ ID NO.:83CC TCA TCA CAT TGG AAT GC AG CC TCA TCA CAC TGG AAT GC AG CAA GGA GGA ACG CTC TAT CG C CAA GGA GGA ACA CTC TAT CG C ATG GGT ACA TAC TTC ATC AA A ATG GGT ACA TAA TTC ATC AA A GAA TAT TTT CCG GAG GAT GAT GAA TAT TTT CCA GAG GAT GAT CAT TGT TCT GCG CAT GGC GGT CAT TGT TCT GCC CAT GGC GGT CT CAG GGT TCT TTG TGG TG TT CT CAG GGT TC TTG TGG TGG A TT ACA GTT GTT GGC GGT TGC TGG A GTT GTT GGA GGT TGC TGG AAA GAA AAT ATC ATC TTT GGT AAA GAA AAT ATC ATT GGT GT AAA GAA AAT ATC TTT GGT GT ATA TTT GAA AGG TAT GTT CT TT ATA TTT GAA AGA TAT GTT CT TT GAA ACA AAA AAA CAA TCT TTT GAA ACA AAA AA CAA TCT TTT TTG GAA AGT GAG TAT TCC ATG TTG GAA AGT GAA TAT TCC ATG ACT TCA TCC AGA TAT GTA AAA ACT TCA TCC TCC AGG TAT GTA AAA TAT AGT TCT TGG AGA AGG TGG TAT AGT TCT TTG AGA AGG TTA GCA AGG TGA ATA ACT TCT TTA GCA ACG TGA ATA ACT GAG TGG AGG TCA ACG AGC AAG GAG TGG AGA TCA ACG AGC AAG GTG GAG GTC AAT GAG CAA GA TGG TAA TAG GAC ATC TCC AAG TGG TAA TAA GAC ATC TCC AAG ACT GCA TAG ATG TGG ATA ACT CCA GCA T AC ATG TGG ATA GAA CTG TGA GCC GAG TCT TTA GAA CTG TGA GCT GAG TCT TTA TGG TTG ACT TGG TAG GTT TAC 3659 TGG TTG ACT TG TAG GTT TAC T TAA AAT GGT GAG TAA GA CAC 3849 T TAA AAT GGC GAG TAA GA CAC EX-20 TGC AAC AGT GGA GGA AAG CCT 1282X TGC AAC AGT GAA GGA AAG CCT EX-21 A TTT AGA AAA AAC TTG GAT CC N1303K A TTTAGA AAA AAG TTG GAT CC / 3 A-PROBE AG GAC TCC ATG CCC AG INT- 4 I148T EX-4 R117H EX-5 711 + 1G EX-7 334-M EX-7 347-M EX-7 1078DELT EX-9 A455E EX-10 F508 1507 EX-12 1898 + 1 Ex-13 2184delA EX-14B 2789 + 5G EX-16 31120 + 1G / A Ex-11 G542X EX-11 R560 EX-11-553 / 551 G551D R553X EX-11 1717-M EX-18 1152X EX-19-SENSE R1162X EX-19 INT-19 SEQ ID NO.:37 SEQ ID NO.:38 SEQ ID NO.:39 SEQ ID NO.:40 SEQ ID NO.:41 SEQ ID NO.:42 SEQ ID NO.:43 SEQ ID NO.:44 SEQ ID NO.:45 SEQ ID NO.:46 SEQ ID NO.:47 SEQ ID NO.:48 SEQ ID NO.:49 SEQ ID NO.:50 SEQ ID NO.:51 SEQ ID NO.:52 SEQ ID NO. : 53 SEQ IDNO.:54 SEQ ID NO.:55 SEQ ID NO.:56 SEQ ID NO.:57 SEQ ID NO.:58 SEQ IDNO.:59 SEQ ID NO.:60 SEQ ID NO.:61 SEQ ID NO.:62 SEQ ID NO .: 63 SEQ ID NO.:64 SEQ ID NO.:65 SEQ ID NO.:66 SEQ ID NO.:67 SEQ ID NO.:68 SEQ ID NO.:69 SEQ ID NO.:70 SEQ ID NO .: 71 SEQ ID NO.:72 SEQ ID NO.:73 SEQ ID NO.:74 SEQ ID NO.:74 SEQ ID NO.:76 SEQ ID NO.:77 SEQ ID NO.:78 SEQ ID NO.:79 SEQ IDNO.:80 SEQ ID NO.:81 SEQ ID NO.:82 SEQ ID NO.:83

40 200538552 該雜交緩衝液係在單一及/或多重雜交分析中被最佳化, 且係組成如下(最終濃度):1. 125M四甲基氯化銨(TMAC), 18·75ιηΜ Tris-HCl (ΡΗ8·0),0.75mM EDTA (ΡΗ8·0)及 0.0375% SDS。包含緩衝液及單股DNA的1〇// 1雜交混合物 被加在晶片表面,且於55它培養15分鐘。相較於正常數 小η守的雜父時間而言,這是一個短暫的雜交時間,因為較 長的雜交時間導致產生無法控制的過量雜交。該晶片以1Χ TMAC緩衝液清洗三次,而後覆蓋一乾淨的蓋子,及利用 _ BAS影像系統進行分析。分析影像以決定每一探針的身分 。結果顯示在下列圖1及圖2。 突變中的每一對偶基因係根據以下分析。首先,產生 自雜交對偶基因的信號係經由下列校正: (·)對偶基因A (以擴增子標定)的信號=經標定之擴增子一 雜合的原始信號減去負控制組(背景值)的原始計數 (11)對偶基因B(未標定的擴增子)的信號=未標定之擴增 子雜口的屑、始信號減去負控制組(背景值)之原始計畫文 φ 而後計算對偶基因的比例: =偶比例=對偶基因A的信號/對偶基因B的信號 當⑴值小於或等於0時,其被調整為〇1以避免產生 顯示為::基夕因比例>2係被記為與對偶基因A為同源性( 基因‘多型性),當對偶比例<0.5時係被記為與對偶 為间源性(野生型)。對偶比例為0 8至12時係被 41 200538552 記為異源性。數值落於這些門檻數值之間者,則被視為模 糊不清的,該分析需重複操作。 實施例11 :多重病人檢體的篩選-一以點潰分析法對 hMAP的逐一比較 取得一數量的病人檢體,並放大用於同時篩選。該放 大反應的方法及探針設計係如前述。經過放大反應之後, 檢體的分析技術係對2 6 CFTR突變進行比較。一組檢體係 利用既有的點潰雜交方法進行分析,而相同檢體另利用本 發明的方法及反應試劑進行分析。收集每一病人檢體的分 析結果且比較之。發現在二種偵測方法中具有1 00%—致性 。對於每一個突變,檢體數目確認為正值者被列於表V中 〇 表V :受測檢體的比較 檢體係經由點潰法及本發 突變 #正值 G85E 11 G85E/621+1G 8 621+1G>T 11 621+lG>T/delF50 8 2 R117H 19 R117H/delF508 1 I148T 48 delF508 58 1507 11 delF508/R560 1 G542X 44 G551D 11 R553X 15 1717-1G>A 14 測 檢5 2 所矣2 法 方 之 述值 所#tn 明 3 11 4 1140 200538552 The hybridization buffer was optimized for single and / or multiple hybridization analysis, and the composition was as follows (final concentration): 1. 125M tetramethylammonium chloride (TMAC), 18.75 μM Tris-HCl ( (PQ8 · 0), 0.75mM EDTA (PQ8 · 0) and 0.0375% SDS. A 10 // 1 hybridization mixture containing buffer and single-stranded DNA was added to the wafer surface, and it was incubated at 55 for 15 minutes. This is a short hybridization time compared to the normal number of heterosexuals with small η guards, because longer hybridization times lead to uncontrolled overhybridization. The wafer was washed three times with 1X TMAC buffer, then covered with a clean lid, and analyzed using the BAS imaging system. Analyze the images to determine the identity of each probe. The results are shown in Figures 1 and 2 below. Each dual gene line in the mutation was analyzed according to the following. First, the signals generated from the hybridized dual genes were corrected as follows: (·) Signals from dual gene A (calibrated with amplicons) = calibrated amplicon-hybrid original signal minus negative control group (background value) ) Original count (11) Signal of dual gene B (uncalibrated amplicon) = Uncalibrated amplicon miscellaneous debris, start signal minus original plan text φ of negative control group (background value), and then Calculate the ratio of dual genes: = dual ratio = signal of dual gene A / signal of dual gene B. When the value of ⑴ is less than or equal to 0, it is adjusted to 〇1 to avoid the display. Lines are described as homologous to the dual gene A (gene's polymorphism), and when the ratio of duality is < 0.5, the lines are recorded as intergenic (wild-type) with the duality. When the dual ratio is 0 8 to 12, it is recorded as heterogeneous by 41 200538552. Values falling between these thresholds are considered ambiguous and the analysis needs to be repeated. Example 11: Screening of multiple patient specimens-one-by-one comparison of hMAP by point rupture analysis method A number of patient specimens were obtained and enlarged for simultaneous screening. The amplification reaction method and probe design are as described above. After the amplification reaction, the analysis technique of the specimen is to compare the 2 6 CFTR mutation. One set of test systems was analyzed using the existing point-blot hybridization method, while the same sample was also analyzed using the method and reaction reagent of the present invention. The analysis results of each patient specimen were collected and compared. It was found to be 100% consistent in the two detection methods. For each mutation, those with a positive number of specimens are listed in Table V. Table V: The comparison test system of the test specimens via the point break method and the mutation #Positive values G85E 11 G85E / 621 + 1G 8 621 + 1G > T 11 621 + 1g > T / delF50 8 2 R117H 19 R117H / delF508 1 I148T 48 delF508 58 1507 11 delF508 / R560 1 G542X 44 G551D 11 R553X 15 1717-1G &A; A 14 Test 5 2 The value of French law # tn Ming 3 11 4 11

11 IX 24 1 5 5 15 4 11 11 11 42 200538552 R560T 3849+10kbC>T W1282X N1303K mPCR-WT 711+1G>T 711+1G>T/621+ R334W R347P 1078delT A455E 1898+1G>A 2184delA 2789+5G>A 3120+lg〉A R1162X 3569delC D1152 mPCR-WT 總數 5 3 1 2 5 3 3 5 7 11811 IX 24 1 5 5 15 4 11 11 42 200538552 R560T 3849 + 10kbC > T W1282X N1303K mPCR-WT 711 + 1G > T 711 + 1G > T / 621 + R334W R347P 1078delT A455E 1898 + 1G > A 2184delA 2789 + 5G > A 3120 + lg〉 A R1162X 3569delC D1152 mPCR-WT Total 5 3 1 2 5 3 3 5 7 118

9 3 11 1X 11 G 8 4 0 0 8 3 1X 0/^ 11 2 IX 11 7 11 11 ο ο ο ο 1X II 1X 11 80 9 6 6 7 8 031940081 6 0 3 3648213112323228589 應瞭解,本文所使用的術語、表達方式以及實施例係作為 例示,而非作為限制,且程序及方法可以以任何順序進行 之,除非已指明步驟的順序。本發明係定義於下面之申請 專利範圍中,並包括與申請專利範圍所有的均等者。 【圖式簡單說明】 圖1係表示29個不同CFTR突變的雜交結果,其中較 小的開放性橫條顯示突變雜交,且其中對於“正常型”的雜 交係顯示較大黑色的橫條(例如:EX-1 0具有一高程度的突 變雜交)。 圖2係表示29個不同CFTR突變的雜交結果,該突變 係與圖1所示不同。 圖3係表示一經由校正的陣列影像負控制組攜帶者的9 3 11 1X 11 G 8 4 0 0 8 3 1X 0 / ^ 11 2 IX 11 7 11 11 ο ο ο ο 1X II 1X 11 80 9 6 6 7 8 031940081 6 0 3 3648213112323228589 It should be understood that the terms used in this article , Expressions, and examples are by way of illustration, not limitation, and procedures and methods can be performed in any order, unless the order of steps has been specified. The present invention is defined in the following patent application scope and includes all equivalents to the patent application scope. [Schematic description] Figure 1 shows the hybridization results of 29 different CFTR mutations. The smaller open bars show mutant crosses, and the "normal" hybrid lines show larger black bars (for example, : EX-1 0 has a high degree of mutant crosses). Fig. 2 shows the results of hybridization of 29 different CFTR mutations, which are different from those shown in Fig. 1. FIG. 3 shows the carrier of a negative control group of the array image after correction.

43 200538552 背景圖像。43 200538552 Background image.

44 200538552 序歹fj表 <110> Hashmi, Ghazala Seul, Michael44 200538552 Ordering fj table < 110 > Hashmi, Ghazala Seul, Michael

<12〇>多型性的雜交中介分析 <130>hMAP <150 60/470.806 <151> 2003-05-15 <160> 83 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 19 <212> DNA <213>人工序列 <220 <223>人工引子 <400> 1 gtcaagccgt gttctagat 19< 12〇 > Polymorphic hybridization analysis < 130 > hMAP < 150 60 / 470.806 < 151 > 2003-05-15 < 160 > 83 < 170 > FastSEQ for Windows Version 4.0 < 210 > 1 < 211 > 19 < 212 > DNA < 213 > artificial sequence < 220 < 223 > artificial primer < 400 > 1 gtcaagccgt gttctagat 19

<210>2 <211> 23 <212> DNA <213>人工序列 <220> <223>人工引子 <400> 2 gttgtataat ttataacaat agt 23< 210 > 2 < 211 > 23 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial primer < 400 > 2 gttgtataat ttataacaat agt 23

<210>3 <211 >20 <212>DNA <213>人工序列 <220> <223>人工引子 <400> 3 acttcaatag ctcagccttc 20 <210>4 <211 >23 <212> DNA <213>人工序列 200538552 <220 <223>人工引子 <400> 4 tatggtacat tacctgtatt ttg< 210 > 3 < 211 > 20 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial primer < 400 > 3 acttcaatag ctcagccttc 20 < 210 > 4 < 211 > 23 < 212 > DNA < 213 > artificial sequence 200538552 < 220 < 223 > artificial primer < 400 > 4 tatggtacat tacctgtatt ttg

<210> 5 <211> 18 <212> DNA <213>入工序列 <220> <223>人工引子 <400> 5 tggtgacagc ctcttctt <210> 6 <211> 20 <212> DNA <213>人工序列 <220> <223>人項子 <400> 6 gaactacctt gcctgctcca< 210 > 5 < 211 > 18 < 212 > DNA < 213 > entry sequence < 220 > < 223 > artificial primer < 400 > 5 tggtgacagc ctcttctt < 210 > 6 < 211 > 20 < 212 > DNA < 213 > Artificial sequence < 220 > < 223 > Human item < 400 > 6 gaactacctt gcctgctcca

<210> 7 <211>21 <212> DNA <213>人工序列 <220> <223>人工引子 <400> 7 tctccttttg gatacctaga t< 210 > 7 < 211 > 21 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial primer < 400 > 7 tctccttttg gatacctaga t

<210>8 <211>21 <212〉DNA <213>人工序列 <220> <223>人工引子 <400> 8 tgagcattat aagtaaggta t< 210 > 8 < 211 > 21 < 212> DNA < 213 > artificial sequence < 220 > < 223 > artificial primer < 400 > 8 tgagcattat aagtaaggta t

<210〉9 <211>21 <212> DNA <213>人工序列 200538552 <220> <223>人工引子 <400> 9 aggtagcagc tatttttatg g 21 <210> 10 <211> 18 <212> ΠΝΑ <213>人工序列 <220> <223>人工引子 <400> 10 atctggtact aaggacag 18< 210> 9 < 211 > 21 < 212 > DNA < 213 > artificial sequence 200538552 < 220 > < 223 > artificial primer < 400 > 9 aggtagcagc tatttttatg g 21 < 210 > 10 < 211 > 18 < 212 > ΠΝΑ < 213 > artificial sequence < 220 > < 223 > artificial primer < 400 > 10 atctggtact aaggacag 18

<210> 11 <211>20 <212> DNA <213>人工序列 <220> <223>人工引子 <400> 11 tctttggttg tgctgtggct 20< 210 > 11 < 211 > 20 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial primer < 400 > 11 tctttggttg tgctgtggct 20

<210> 12 <211>20 <212> DNA <213>人工序列 <220> <223>人工引子 <400〉12 acaatacata caaacatagt 20< 210 > 12 < 211 > 20 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial primer < 400> 12 acaatacata caaacatagt 20

<210> 13 <211>21 <212> DNA <213>人工序列 <220> <223>人工引子 <400〉13 cttctgctta ccatatttga c 21< 210 > 13 < 211 > 21 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial primer < 400> 13 cttctgctta ccatatttga c 21

<210> 14 <211>20 <212>DNA <213>&工序列 -3- 200538552 <220> <223>人工引子 <400〉14 taatacagac atacttaacg <210> 15 <211> 20 <212> DNA <13>:人工序列 <220> <223>人工引子 <400> 15 ggagaaggag aaggaagagt< 210 > 14 < 211 > 20 < 212 > DNA < 213 > & engineering sequence-3- 200538552 < 220 > < 223 > artificial primer < 400〉 14 taatacagac atacttaacg < 210 > 15 < 211 > 20 < 212 > DNA < 13 >: artificial sequence < 220 > < 223 > artificial primer < 400 > 15 ggagaaggag aaggaagagt

<210> 16 <211> 21 <212> DNA <213>|人工序^[ <220> <223>人工引子 <400> 16 atctatgaga aggaaagaag a <21〇> 17 <211> 20 <212> DNA <213>人工序列 <220> — <223>人工引子 <400> 17 ggccaaatga ctgtcaaaga< 210 > 16 < 211 > 21 < 212 > DNA < 213 > | Human Procedure ^ [< 220 > < 223 > Artificial primers < 400 > 16 atctatgaga aggaaagaag a < 21〇 > 17 < 211 > 20 < 212 > DNA < 213 > artificial sequence < 220 > — < 223 > artificial primer < 400 > 17 ggccaaatga ctgtcaaaga

<210> 18 <211 >20 <212> DNA <213>人工序列 <220> <223>人工引子 <400> 18 tgcttcaggc tactgggatt <210> 19 <211 >20 <212>DNA <213>人工序列 200538552 <220> <223>人工引子 <400> 19 cggcgatgtt ttttctggag <210> 20 <211> 20 <212> DNA <213>人工序列 <220> <223>人工引子 <400> 20 tacaaatgag atccttaccc< 210 > 18 < 211 > 20 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial primer < 400 > 18 tgcttcaggc tactgggatt < 210 > 19 < 211 > 20 < 212 > DNA < 213 > artificial sequence 200538552 < 220 > < 223 > artificial primer < 400 > 19 cggcgatgtt ttttctggag < 210 > 20 < 211 > 20 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > Artificial primers < 400 > 20 tacaaatgag atccttaccc

<210> 21 <211> 20 <212> DNA <213>人工序刿 <220> <223>人工引子 <400 21 agcttcctat gacccggata< 210 > 21 < 211 > 20 < 212 > DNA < 213 > human process 刿 < 220 > < 223 > artificial primer < 400 21 agcttcctat gacccggata

<210> 22 <211> 20 <212〉DNA <213>人工序列 <220> <223>人工引无 <400〉22 tgtgatgaag gccaaaaatg <210> 23 <211 >20 <212> DNA <213>人工序列 <220> <223>人工引子 <400> 23 tgttctcagt tttcctggat <210> 24 <211>20 <212> DNA <213>人工序列 200538552 <220> <223>,人工引子 <400> 24 ctcttctagt tggcatgctt <210> 25 <211> 20 <212> DNA <213>.人工序列 <220> <223>人工引子 <400〉25 cagattgagc atactaaaag <210 26 <211> 20 <212> DNA <213>人工序列 <220> <223>人工引子 <400> 26 acatgaatga catttacagc< 210 > 22 < 211 > 20 < 212> DNA < 213 > artificial sequence < 220 > < 223 > artificial primer < 400> 22 tgtgatgaag gccaaaaatg < 210 > 23 < 211 > 20 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial primer < 400 > 23 tgttctcagt tttcctggat < 210 > 24 < 211 > 20 < 212 > DNA < 213 > artificial sequence 200538552 < 220 > < 223 >, artificial primers < 400 > 24 ctcttctagt tggcatgctt < 210 > 25 < 211 > 20 < 212 > DNA < 213 >. artificial sequence < 220 > < 223 > artificial primer < 400〉 25 cagattgagc atactaaaag < 210 26 < 211 > 20 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial primer < 400 > 26 acatgaatga catttacagc

<210> 27 <211> 21 <212> DNA <213>人工序列 <220> <223>人工引子 <400〉27 aatcattcag tgggtataag c <210〉28 <211> 21 <212> DNA <213>人工序列 <220> <223>人工引子 <400> 28 cctcctccct gagaatgttg g <210> 29 <211 >20 <212> DNA <213>人工序列 200538552 <220> <223>人工引子 <400 29 ctggatcagg gaagagaagg <210〉30 <211>20 <212> DNA <213>人工序列 <220> <223>|人工引子 <400> 30 tccttttgct cacctgtggt <210>31 <211>20 <212> DNA <213>人工序列 <220> <223>;人工引子 <400> 31 tgatggtaag tacatgggtg <210> 32 <211>20 <212>DNA <213>人工序列 <220> <223>人工引子 <400 32 caaaagtacc tgttgctcca <210〉33 <211>21 <212>DNA <213>人工序列 <220> <223〉人工探針 <400> 33 atgttctatg gaatcttttt a <210〉34 <211>21 <212> DNA <213>人工序列 200538552 <220> <223>人工探針 <400> 34 atgttctatg aaatcttttt a -列 序 nah 3521DN人 >>>> 0 12 3 τ— τ— ^— τ— 2 2 2 2 <220> <223〉人工探針 <400> 35 tataagaagg taatacttcc t< 210 > 27 < 211 > 21 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial primer < 400〉 27 aatcattcag tgggtataag c < 210〉 28 < 211 > 21 <; 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial primer < 400 > 28 cctcctccct gagaatgttg g < 210 > 29 < 211 > 20 < 212 > DNA < 213 > artificial sequence 200538552 < 220 > < 223 > Artificial primers < 400 29 ctggatcagg gaagagaagg < 210〉 30 < 211 > 20 < 212 > DNA < 213 > Artificial sequence < 220 > < 223 > | Artificial primer <; 400 > 30 tccttttgct cacctgtggt < 210 > 31 < 211 > 20 < 212 > DNA < 213 > artificial sequence < 220 > < 223 >; artificial primer < 400 > 31 tgatggtaag tacatgggtg < 210 > 32 < 211 > 20 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial primer < 400 32 caaaagtacc tgttgctcca < 210〉 33 < 211 > 21 < 212 > DNA < 213 > Artificial sequence < 220 > < 223> artificial probe < 400 > 33 atgttctatg gaatcttttt a < 2 10> 34 < 211 > 21 < 212 > DNA < 213 > artificial sequence 200538552 < 220 > < 223 > artificial probe < 400 > 34 atgttctatg aaatcttttt a -column order nah 3521DN person > > > > 0 12 3 τ— τ— ^ — τ— 2 2 2 2 < 220 > < 223> Artificial probe < 400 > 35 tataagaagg taatacttcc t

<210> 36 <211> 21 <212> DNA <213>人工序列 <220〉一 <223>人工探針 <400〉36 tataagaagt taatacttcc t <2i〇> 37 <211> 21 <212> DNA <213>人工序列 <220> <223〉人工探針 <400> 37 cctcatcaca ttggaatgca g <210> 38 <211> 21 <212〉DNA <213>人工序列 <220> <223>人工探針 <400〉38 cctcatcaca ctggaatgca g <210〉39 <211>21 <212> DNA <213>人工序列 200538552 <220> <223> ;人工探針 <400> 39 caaggaggaa cgctctatcg c< 210 > 36 < 211 > 21 < 212 > DNA < 213 > artificial sequence < 220〉-< 223 > artificial probe < 400> 36 tataagaagt taatacttcc t < 2i〇 > 37 < 211 > 21 < 212 > DNA < 213 > Artificial sequence < 220 > < 223〉 Artificial probe < 400 > 37 cctcatcaca ttggaatgca g < 210 > 38 < 211 > 21 < 212> DNA < 213 > artificial sequence < 220 > < 223 > artificial probe < 400〉 38 cctcatcaca ctggaatgca g < 210〉 39 < 211 > 21 < 212 > DNA < 213 > artificial sequence 200538552 < 220 > < 223 >; Artificial probe < 400 > 39 caaggaggaa cgctctatcg c

<210> 40 <211>21 <212> DNA <213>人工序列 <220> <223>人工探針 <400> 40 caaggaggaa cactctatcg c <210>41 <211> 21 <212> DNA <213>人工序列 <220> <223>人工探針 <400 41 atgggtacat acttcatcaa a< 210 > 40 < 211 > 21 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial probe < 400 > 40 caaggaggaa cactctatcg c < 210 > 41 < 211 > 21 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial probe < 400 41 atgggtacat acttcatcaa a

<210> 42 <211> 21 <212> DNA <213>人發列 <220 <223>人工探針 <400〉42 atgggtacat aattcatcaa a <210〉43 <211>21 <212〉DMA <213>人工序列 <220> <223〉人工採針 <400> 43 gaatattttc cggaggatga t< 210 > 42 < 211 > 21 < 212 > DNA < 213 > human hair train < 220 < 223 > artificial probe < 400〉 42 atgggtacat aattcatcaa a < 210> 43 < 211 > 21 < 212> DMA < 213 > Artificial sequence < 220 > < 223> Artificial needle picking < 400 > 43 gaatattttc cggaggatga t

<210> 44 <211>21 <212> DNA <213>人工序列 200538552 <220> <223>人工探針 <400 44 gaatattttc cagaggatga t 21 <210> 45 <211>21 <212〉DNA <213>人工序列 <220> <223>人工探針 <400〉45 cattgttctg cgcatggcgg t 21 <210〉46 <211>21 <212> DNA <213>人工序列 <220> <223>人工探針 <400> 46 cattgttctg cccatggcgg t 21< 210 > 44 < 211 > 21 < 212 > DNA < 213 > artificial sequence 200538552 < 220 > < 223 > artificial probe < 400 44 gaatattttc cagaggatga t 21 < 210 > 45 < 211 > 21 < 212> DNA < 213 > Artificial Sequence < 220 > < 223 > Artificial Probe < 400> 45 cattgttctg cgcatggcgg t 21 < 210> 46 < 211 > 21 < 212 > DNA < 213 > Artificial sequence < 220 > < 223 > artificial probe < 400 > 46 cattgttctg cccatggcgg t 21

<210> 47 <211>21 <212> DNA <213>人工序列 丨 <220> <223>丨人工探針 <400> 47 ctcagggttc tttgtggtgt t 21 <210 48 <211> 20 <212>DNA <213>人工序列— <220> <223〉人工探針 <400> 48 ctcagggttc ttgtggtgtt 20< 210 > 47 < 211 > 21 < 212 > DNA < 213 > artificial sequence 丨 < 220 > < 223 > 丨 artificial probe < 400 > 47 ctcagggttc tttgtggtgt t 21 < 210 48 < 211 > 20 < 212 > DNA < 213 > artificial sequence — < 220 > < 223> artificial probe < 400 > 48 ctcagggttc ttgtggtgtt 20

<210> 49 <211> 21 <212> DNA <213>人工序列 10 200538552 <220 <223>,人工探針 <400> 49 acagttgttg gcggttgctg g <210> 50 <211> 21 <212> DNA <213>人工序列 <220> <223'&工探針 <400〉50 acagttgttg gaggttgctg g <210> 51 <211> 21 <212> DNA <213>人工序列 <220> <223>人工探針 <400〉 51 aaagaaaata tcatctttgg t <210> 52 <211> 20 <212> DNA <213>人工序列 <220> <223>人工探針 <400> 52 aaagaaaata tcattggtgt <210> 53 <211>20 <212〉DNA <213>人工序列 <220> <223>;人工探針 — <400> 53 aaagaaaata tctttggtgt <210〉 54 <211 >22 <212>DNA <213>人工序列 200538552 <220> <223>人工探針 <400〉54 atatttgaaa ggtatgttct tt 22 <210〉55 <211>22 <212〉DNA <213>人工序列 <220> <223>人工探針 <400> 55< 210 > 49 < 211 > 21 < 212 > DNA < 213 > artificial sequence 10 200538552 < 220 < 223 >, artificial probe < 400 > 49 acagttgttg gcggttgctg g < 210 > 50 < 211 > 21 < 212 > DNA < 213 > artificial sequence < 220 > < 223 '& engineering probe < 400〉 50 acagttgttg gaggttgctg g < 210 > 51 < 211 > 21 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial probe < 400> 51 aaagaaaata tcatctttgg t < 210 > 52 < 211 > 20 < 212 > DNA < 213 > artificial sequence < 220 > <; 223 > artificial probe < 400 > 52 aaagaaaata tcattggtgt < 210 > 53 < 211 > 20 < 212> DNA < 213 > artificial sequence < 220 > < 223 >; artificial probe — < 400 > 53 aaagaaaata tctttggtgt < 210> 54 < 211 > 22 < 212 > DNA < 213 > artificial sequence 200538552 < 220 > < 223 > artificial probe < 400> 54 atatttgaaa ggtatgttct tt 22 < 210 > 55 < 211 > 22 < 212> DNA < 213 > artificial sequence < 220 > < 223 > artificial probe < 400 > 5 5

atatttgaaa gatatgttct tt 22 <210〉56 <211> 21 <212〉D|iA <213> Λ工序列 <220> r <223〉人工探針 <400〉56 gaaacaaaaa aacaatcttt t 21atatttgaaa gatatgttct tt 22 < 210〉 56 < 211 > 21 < 212〉 D | iA < 213 > Λ sequence < 220 > r < 223> artificial probe < 400〉 56 gaaacaaaaa aacaatcttt t 21

<210> 57 <211> 20 <212> DNA <213>人工序列 <220>< 210 > 57 < 211 > 20 < 212 > DNA < 213 > artificial sequence < 220 >

<223>人工探針 <400 57 gaaacaaaaa acaatctttt 20 <210> 58 <211>21 <212> DNA <213>人工序列 <220> <223>.人工探針 <400〉58 ttggaaagtg agtattccat g 21< 223 > Artificial probe < 400 57 gaaacaaaaa acaatctttt 20 < 210 > 58 < 211 > 21 < 212 > DNA < 213 > Artificial sequence < 220 > < 223 >. Artificial probe < 400 〉 58 ttggaaagtg agtattccat g 21

<210> 59 <211>21 <212> DNA <213>人工序列 12 200538552 <220> <223〉人工探針 <400 59 ttggaaagtg aatattccat g 21 <210> 60 <211> 21 <212> DNA <21人工序列 一 <220> <223〉人工_土 -<400> 60< 210 > 59 < 211 > 21 < 212 > DNA < 213 > artificial sequence 12 200538552 < 220 > < 223> Artificial probe < 400 59 ttggaaagtg aatattccat g 21 < 210 > 60 < 211 > 21 < 212 > DNA < 21 artificial sequence 1 < 220 > < 223> artificial_soil- < 400 > 60

acttcatcca gatatgtaaa a 21acttcatcca gatatgtaaa a 21

<210> 61 <211> 21 <212> DNA <213>人工序列 <220> <223〉人工探針 <400〉61 acttcatcca ggtatgtaaa a 21< 210 > 61 < 211 > 21 < 212 > DNA < 213 > artificial sequence < 220 > < 223〉 artificial probe < 400〉 61 acttcatcca ggtatgtaaa a 21

<210> 62 <211> 21 <212> DNA <213>人工序列 <220>< 210 > 62 < 211 > 21 < 212 > DNA < 213 > artificial sequence < 220 >

<223〉人工探i十 <400> 62 tatagttctt ggagaaggtg g 21 <210> 63 <211> 21 <212> DNA <213>人工序列 <220> <223>人工探針 <400> 63 tatagttctt tgagaaggtg g 21< 223> Artificial Probe < 400 > 62 tatagttctt ggagaaggtg g 21 < 210 > 63 < 211 > 21 < 212 > DNA < 213 > Artificial Sequence < 220 > < 223 > Artificial Probe <; 400 > 63 tatagttctt tgagaaggtg g 21

<210> 64 <211> 21 <212〉DNA <213>人工序列 13 200538552 、220> <223>人工择針 <4〇〇> 64 tctttagcaa ggtgaataac t< 210 > 64 < 211 > 21 < 212> DNA < 213 > artificial sequence 13 200538552, 220 > < 223 > artificial needle selection < 4〇〇 > 64 tctttagcaa ggtgaataac t

<210>65 <211>21 <212> DNA <213>人工序列 <220> <223>人工探針 <400> 65 tctttagcaa cgtgaataac t <210 66 <211>21 <212> DNA <213>人工序列 <220> <223>人工探針 _ <400> 66 gagtggaggt caacgagcaa g <210> 67 <211> 21 <212> DNA <213>人工序列 <220> <223〉人工探針 <400〉67 gagtggagat caacgagcaa g <210 68 <211> 20 <212> DNA <213>人工序列 <220> <223>人工探針 <400 68 gtggaggtca atgagcaaga <210〉69 <211>21 <212> DMA <213>人工序列 200538552 <220> <223>人工探針 <400> 69 tggtaatagg acatctccaa g 21 <210> 70 <211> 21 <212> DNA <213>,人工序列 <220 <223>人工释針 <400> 70 tggtaataag acatctccaa g 21 <210>71 <211>21 <212> DNA <213>人工序列 <220> <223〉丨人工释針 <400> 71 actccagcat agatgtggat a 21 <210> 72 <211>21 <212> DNA <213>人工序列 <220> <223>人工探針 <400> 72 actccagcat acatgtggat a 21 <210> 73 <211> 21 <212> DNA <213>人工序列 <220> <223>人工探針 <400> 73 gaactgtgag ccgagtcttt a 21 <210 74·< 210 > 65 < 211 > 21 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial probe < 400 > 65 tctttagcaa cgtgaataac t < 210 66 < 211 > 21 <21; 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial probe_ < 400 > 66 gagtggaggt caacgagcaa g < 210 > 67 < 211 > 21 < 212 > DNA < 213 > artificial Sequence < 220 > < 223> artificial probe < 400> 67 gagtggagat caacgagcaa g < 210 68 < 211 > 20 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial probe Needle < 400 68 gtggaggtca atgagcaaga < 210> 69 < 211 > 21 < 212 > DMA < 213 > Artificial Sequence 200538552 < 220 > < 223 > Artificial Probe < 400 > 69 tggtaatagg acatctccaa g 21 < 210 > 70 < 211 > 21 < 212 > DNA < 213 >, artificial sequence < 220 < 223 > artificial release needle < 400 > 70 tggtaataag acatctccaa g 21 < 210 > 71 < 211 > 21 < 212 > DNA < 213 > Artificial sequence < 220 > < 223〉 丨 Artificial release needle < 400 > 71 actccagcat agatgt ggat a 21 < 210 > 72 < 211 > 21 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial probe < 400 > 72 actccagcat acatgtggat a 21 < 210 > 73 < 211 > 21 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial probe < 400 > 73 gaactgtgag ccgagtcttt a 21 < 210 74 ·

<211>21 <212> DNA <213>人工序列 15- 200538552 <220〉. <223>人工探針 <400 74 gaactgtgag ctgagtcttt a <210>75 <211>21 <212> hnja _ <213>人工序到 <220> <223>人工探針 <400> 75 tggttgactt ggtaggttta c <210> 76 <211>20 <212> ΠΝΑ <213〉&工序列 <220> <223>人工探針 <400〉76 tggttgactt gtaggtttac< 211 > 21 < 212 > DNA < 213 > Artificial Sequence 15- 200538552 < 220〉. < 223 > Artificial Probe < 400 74 gaactgtgag ctgagtcttt a < 210 > 75 < 211 > 21 < 212 > hnja _ < 213 > human process to < 220 > < 223 > artificial probe < 400 > 75 tggttgactt ggtaggttta c < 210 > 76 < 211 > 20 < 212 > ΠΝΑ < 213> & Working sequence < 220 > < 223 > Artificial probe < 400> 76 tggttgactt gtaggtttac

<210>77 <211>21 <212> DNA <213> AX^IJ <220> __ <223>么工探針 <400 77 ttaaaatggt gagtaagaca c< 210 > 77 < 211 > 21 < 212 > DNA < 213 > AX ^ IJ < 220 > __ < 223 > Modular probe < 400 77 ttaaaatggt gagtaagaca c

<210> 78 <211>21 <212> DNA <213>人工序列 <220> <223>人工探針 <400> 78 ttaaaatggc gagtaagaca c .< 210 > 78 < 211 > 21 < 212 > DNA < 213 > artificial sequence < 220 > < 223 > artificial probe < 400 > 78 ttaaaatggc gagtaagaca c.

<210> 79 <211>21 <212> DNA <213>人工序列 200538552 <220> <223>人:]^罙針 <400〉79 tgcaacagtg gaggaaagcc t 21 <210> 80 <211> 21 <212> DNA _ <213>人工序列―~ <220 <223>人工探針 <400> 80< 210 > 79 < 211 > 21 < 212 > DNA < 213 > artificial sequence 200538552 < 220 > < 223 > human:] ^ 罙 针 &400; 79 tgcaacagtg gaggaaagcc t 21 < 210 > 80 < 211 > 21 < 212 > DNA _ < 213 > artificial sequence-~ < 220 < 223 > artificial probe < 400 > 80

tgcaacagtg aaggaaagcc t 21tgcaacagtg aaggaaagcc t 21

<210> 81 <211> 21 <212> DNA <213>人工序列 — <220> <223>人工探針 <400> 81 atttagaaaa aacttggatc c 21 <210> 82 <211> 21 <212〉DNA <213〉人工序列 <220>< 210 > 81 < 211 > 21 < 212 > DNA < 213 > artificial sequence — < 220 > < 223 > artificial probe < 400 > 81 atttagaaaa aacttggatc c 21 < 210 > 82 < 211 > 21 < 212〉 DNA < 213> artificial sequence < 220 >

<223>人工探針 <400> 82 atttagaaaa aagttggatc c 21 <210> 83 <211> 16 <212> DNA <213>人工@列 <220> <223>人工探針 — <400> 83 aggactccat gcccag 16 -17 -< 223 > Artificial probe < 400 > 82 atttagaaaa aagttggatc c 21 < 210 > 83 < 211 > 16 < 212 > DNA < 213 > artificial @ 列 < 220 > < 223 > artificial probe— < 400 > 83 aggactccat gcccag 16 -17-

Claims (1)

200538552 拾、申請專利範圍: ▲ i.-種用以偵測已知的基因突變及多型性的最佳化雜 父分析的方法,其係經由下列步驟被起始操作: ,)提供-組寡核苷酸引子對,每—引子對係具有與 互補的多核穿酸股黏合的能力,以描繪出相應的標的區域 ,其包含至少一個經選定的突變或多型性區域; b)將該組寡核苷酸引子對與該標的在可以形成擴增 子對(amplicon pair)的條件下進行接觸,每一擴增子對包 含一經選定之相應於標的意義股或反義股的擴增子意義股鲁 ’以及-擴增子相應於另-個標的股(意義或反義標的股) 的擴增子反義股; C)選擇編碼化探針的二族群,其中具有不同編碼的 探針具有不同核苷酸序列,所選擇之意義股探針係為可與 一擴增子的反義股或一次序列(subsequence)(意指一 ‘‘互 補性擴增子的反義股,,,且其他反義股擴增子意指為“非選 疋的擴礼子)全部或大致上可互補的探針,以及所選擇的 反義股探針可使每一個反義股探針與擴增子的意義股或其 _ 次序列(意指“互補性擴增子意義股,,,而其他意義股擴增子 意指“非選定的擴增子,,)全部或大致上互補;以及 其中該方法包含: 利用將意義股探針及互補性擴增子的反義股分隔在多 於一個以上不同的容器内,用以降低探針與非選定的擴增 子間的交互雜交,以便分別操作在不同的容器内雜交反應 ,該容器的數目應儘可能的少,使得在一相同容器中的擴 45 200538552 增子(與探針)間的序列相似性不超過預設可接受的程度, Ο 2. 如申請專利範圍第1項之方法,其中該多核苷酸係 為 mRNA、cDNA或一包含DNA的雙股多核苹酸。 3. 如申請專利範圍第1項之方法,其中具有不同序列 的探針係經由將探針與載體(包含小珠)載體結合來編碼, 該載體具有不同光學識別標誌。 4. 如申請專利範圍第3項之方法,其中該編碼帶有顏 色。 5·如申請專利範圍第1項之方法,其中在一引子對中 的引子係在5 ’端標定一標定記號,且在該引子對中的另 引子在5端具有一雄酸修飾。 6·如申請專利範圍第5項之方法,其中該併入了磷酸 修飾引子的擴增子係經分解。 7 ·如申明專利範圍弟1或2項之方法,其中該擴增子 及探針間的雜交係經由偵測來自擴增子結合的標定記號所 決定。 8· —種用於偵測已知的基因突變或多型性的最佳化雜 又分析的方法,其係經由下列步驟起始操作: a) 提供一組寡核苷酸引子對,每一引子對係具有與 互補的多核苷酸股黏合的能力,以描繪出該相應標的的區 或5亥標的包含至少一個經選定的突變或多型性區域; b) 將該組寡核苹酸引子對與該標的在可以形成擴增 子對的條件下進行接觸’每一擴增子對包含—經選定的擴 46 200538552 增子意義股(相應於標的意義股或反義股)以及一擴增子反 義股(相應於其他標的股(意義或反義標的股)); C)選擇經編碼化探針的二族群,其中具有不同編碼 的探針具有不同核苷酸序列,所選擇之意義股探針係為可 與擴增子的反義股或一次序列(subsequence)全部或大致 上可互補的探針(意指一 “互補性擴增子的反義股,,,而另一 反義股擴增子意指“非選定的擴增子”),且所選擇的反義股 探針使得每一個反義股探針可與一擴增子的意義股或一次 序列(subsequence)全部或大致上互補(意指一 “互補性擴增 鲁 子意義股’’,且其他意義股擴增子意指‘‘非選定的擴增子,,) :以及 其中該方法包含: 擴增子維持序列的相似性以及探針與非選定擴增子間 的父互雜交的程度在一預設可接受程度之下,其係藉由以 或一種以上反義股探針替換意義股探針(且以互補的擴 增子意義股替代擴增子反義股)。 9. 如申請專利範圍帛8項之方法,其中該替代性反義· 股探針係可與該替代性意義股探針全部或大致上互補。 10. 如申明專利範圍第8項之方法,其中該多核苷酸係 為一 mRNA'cDNA或一包含DNA的雙股核苷酸。 11·如申請專利範圍第8項之方法,其令具有不同序列 的探針係經由將探針與載體(包含小珠)結合來編碼,該載 體具有不同的光學識別標誌。 1 2·如申明專利範圍第i J項之方法,其中該編碼化帶 47 200538552 有顏色。 13.如申請專利範圍第8項之方法,其中在-引子對中 的-引子係在5’端標定-標定記號,且在該引子對中的另 一引子在5’端具有一磷酸修飾。 U.如申請專利範圍第13項之方法,其中該結合有碟 酸修飾引子的擴增子係經分解。 15. 如申請專利範圍第8項之方法’其中該擴增子及探 針間的雜交係經由偵測來自與擴增子相關的標定記號所決 定。 16. -種用於债測已知的基因突變或多型性的最佳化雜 交分析,包含下列步驟: 、a)提供一組寡核苷酸引子對,每一引子對係具有與 互補的多核芽酸股黏合的能力,以描述該相對應標的的區 域,忒軚的包含至少一個經選定的突變或多型性區域; b)將該組寡核苷酸引子對與該標的在可以形成擴增 子對的條件下進行接觸,每一擴增子對包含一經選定的擴 增子思義股(相應於標的意義股或反義股)以及一擴增子反 義股(相應於另一個標的股(意義或反義標的股));且其中 為了、准持序列相似性及交互雜交的程度以及與部份互補 性非選疋抹針的交互雜交處於一預設可接受程度之下,控 制經4疋與探針雜交的擴增子區域的數目。 17·如申睛專利範圍第16項之方法,其中決定經選定 乍為〃探針雜父的擴增子區域的數目,而後少於上述區域 的擴增子係於一接續步驟產生。 48 200538552 18· 一種設計一用於偵測基因突變或多型性之雜交分析 的仏針陣列的方法,其係經由下列步驟起始操作: a) 提供一組寡核苷酸引子對,每一引子對係具有與 互補的多核苷酸股黏合的能力,以描述該相對應標的的區 或°玄"^的包含至少一個經選定的突變或多型性區域; b) 將該組募核苷酸引子對與該標的在可以形成擴增 。1的條件下進行接觸,每一擴增子對包含一經選定的擴 增子意義股(相應於標的意義股或反義股)以及一擴增子反 義股(相應於另一個標的股(意義或反義標股)); φ ” c)選擇編碼化探針的二族群,其中具有不同編碼的 铋針具有不同核苷酸序列,所選擇之意義股探針係為可與 擴曰子的反義股或一次序列(subsequence)全部或大致上 可互補的探針(意指一 “互補性擴增子的反義股,,,且其他反 義月又擴增子意指“非選定的擴增子,,),且所選擇的反義股探 針使侍擴增子每一個反義股探針可與一擴增子的意義股或 其久序列(subsequence)全部或大致上互補(意指一“互補性 擴增子意義股,,,且其他意義股擴增子意指“非選定的擴增 _ 子”);以及 曰 其中該方法包含下列步驟: a) 檢測在個別意義股探針間或個別擴增子意義股間 的同源性程度; b) 分割該意義股探針的數目使成為一個或一個以上 勺、、且’且分割該互補性擴增子意義股成相對應的組,實施 刀方式以便維持母一組探針組一股間的序列相似性的 49 200538552 # ^同% 4持在母—組擴增子意義股間的相似性程度), 使,、處於一預設可接受的程度以下; C)實施下列步驟·· 一/⑴當在雜交料Tit行㈣時,決定―擴增子的 又…亥相對應㈣組;或,在雜交條件下進行接觸時, =針組的—股與該相對應的擴增子組、該股與該探針組 或邊擴增子組中非經選定的一六 又互雜父的程度是否超過 一預設可接受的程度;且,如果否: Α(ϋ)在個別的組内’維持該擴增子的―股及該探針 組的一股’ ^對該擴增子的其他—股或該探針組的直他一 股重複步驟(A)(i); (Β)(υ但假設該交互雜交的程度未超過該可接受的 程度;在該個別組内’置換該交互雜交的探針與一互補性 反義股探針,或置換該交互雜交反義股擴增子與一互補性 擴增子意義股;且 (B)(ii)以該置換的探針及擴增子重複步驟(Α)(〇, 同時假設該交互雜交的程度並未超過該可接受的程度:在 其個別的組内,維持該反義股探針及該經選定的反^股擴 增子的-股,同時對該擴增子組的其他一股重 (A)(i); (B)(iii)但假設以該置換的探針及擴增子在重複步 驟(A)(i)後,交互雜交的程度高過該可接受的程度:決定 是否與在任何其他組的探針,或在任何其他組的擴增子, 根據分別該置換的探針及擴增子進行接觸 如可應用時, 50 200538552 該交互雜交的程度並未超過該可接受的程度;且維持在其 個別的組内該置換的一⑯;但假設依據該決定方式而該: 互雜父的程度超過該可接受的程度,置換該置換的一股到 一新的組内,且 (C)對該擴增子或該探針組的其他一股,重複步驟 (A)(i)至(B)(iii),如可應用時。 19.如申請專利範圍第18項之方法,進一步包含下列 步驟: 對該組擴增子意義股及擴增子反義股的每一個提供能 夠產生一個次族群(subgroup)的條件(分別地命為“竹,,及 “MP,,),其中該次族群係在序列上具有—個或—個以上的不 同區域,其中在一 WT次族群的擴增子相對於在該基因組 序列上的一野生型區域,且其中在WT次族群中的擴增子 相對於在该基因組序列上的一突變或多型性區域; 選擇四個探針的次族群(分別命為WT意義股、訂反義 股、MP意義股、MP反義股),使得在每一次族群中的探針 可以相對擴增子意義股,其被標定卻互補的次族群中或一 次序列中,完全或大致上形成互補; 決定··(i)在一 WT擴增子反義股及該大致上互補的Mp 意義股探針間’或在一 Mp &義股擴增子及該大致上互補 的WT意義股探針間,是否該交互雜交程度將超過一可接 受的程度,假設是,(ii)當假設該MP意義股或該反義 股被分別置換成一互補性的WT反義股探針或一互補性的 MP反義股探針,決定該交互雜交的程度是否將落在該可接 51 200538552 受的程度内;且假今县· 版叹疋,(Hi)決定是否該WT反義股輕 二該立二反義股探針,如可應用時,對於與其他交互雜交 MP思義月又擴增子或盆你w 曰丁a具他rr意義股擴增子,將分別 該可接受的程度,且妒< θ , w 超過 且假扠疋,(v)決定是否置換該WT 股探針或該mp反義股蕊牡 u m , 我 久義月又仏針,共同與互補性的MP擴焫 WT擴增子至一分隔自纟+ π 5 I岡的久無群,如可應用時,則共同與 分隔的次群中任何置他登 /、 ^ 八他k自步驟(i)至(lv)的探針及擴增子 ’與在該分隔的次族群中的其他探針及擴增子,交互雜交 將超過β可接受程度,且設未超過··繼續進行將該分隔在 ^刀^次族群内;但假設是,⑺重複步驟(iv)利用其他分 :岡的认私君’’且對探針戟擴增子繼績進行該》隔至該該期 該分隔次族群,直到可接受程度符合。 ^ ^ 2〇·如申請專利範圍第18或19項之方法,其中該可接 受程度的該決定,包含降低或縮小G-T鹼基配對的數目。 21·如申請專利範圍第18或19項之方法,其中該可接 艾程度係經由電腦程式PAMtm所決定。 ^ M·如申請專利範圍第丨8項之方法,其中該多核苷酸 標的係為一種mRNA、cDNA或包含DNA的雙股多核苷酸。 23·如申請專利範圍第18項之方法,其中探針係帶有 與結合在包含小珠的載體上之探針不同的序列,該載體具 有不同光學辨識標誌。 化二如色申請專利範圍…之方法’其+其中該編碑 25.如申請專利範圍第18或19項之方法,其中在一引 200538552 子對中的一引子係在5,端標定一標定記號,且在該引子對 中的另一引子在5,端具有一磷酸修飾。 26·如申請專利範圍第25項之方法,其中該結合該磷 酸修飾引子的擴增子係經分解。 27·如申請專利範圍第18或19項之方法,其中該擴增 子及棟針間的雜交,係經由該與擴增子結合的標定記號所 決定。 28.如申請專利範圍第25項之方法,其中該標定記號200538552 The scope of patent application: ▲ i.- A method for optimizing heterosexual analysis for detecting known gene mutations and polymorphisms, which is initiated by the following steps:,) Provide-group Oligonucleotide primer pairs, each of which has the ability to adhere to a complementary polynuclear penetrating strand to delineate a corresponding target region that contains at least one selected mutation or polymorphic region; b) the A set of oligonucleotide primer pairs is contacted with the target under conditions that can form an amplicon pair, and each amplicon pair contains a selected amplicon corresponding to the target sense or antisense strand Significant strands' and-amplicons correspond to the amplicon antisense strands of another target strand (meaningful or antisense target strands); C) Selecting a second family of coding probes, which have probes with different codes With different nucleotide sequences, the selected sense strand probe is an antisense strand or a subsequence (meaning an antisense strand of a complementary amplicon), And other antisense strand amplicons mean "non- Selected amplicons) All or substantially complementary probes, and the selected antisense strand probes enable each of the antisense strand probes and the sense strand of the amplicon or its _ subsequence (meaning " Complementary amplicon sense strands, and other sense strand amplicons mean "non-selected amplicons,") all or approximately complementary; and wherein the method includes: using a sense strand probe and complementarity The antisense strand of the amplicon is separated in more than one different container to reduce the cross-hybridization between the probe and the non-selected amplicon in order to separately operate the hybridization reaction in different containers. The number of the container It should be as few as possible, so that the sequence similarity between the expander (2005) and the probe (in the same probe) in the same container does not exceed the preset acceptable level. 〇 2. If the method in the first scope of the patent application, Wherein, the polynucleotide is mRNA, cDNA or a double-stranded polynuclear malate containing DNA. 3. The method according to item 1 of the patent application, wherein the probes having different sequences are obtained by combining the probes with a carrier (including small Beads) carrier binding Code, the carrier has different optical identification marks. 4. If the method of the scope of the patent application is No. 3, the code is colored. 5. If the method of the scope of the patent application, No. 1, the primer system in one primer pair A calibration mark is marked at the 5 ′ end, and the other primer in the primer pair has a maleic acid modification at the 5 end. 6. The method according to item 5 of the patent application scope, wherein the amplicon incorporating the phosphate modified primer It is decomposed. 7 · The method of claim 1 or 2 in which the scope of the patent is declared, wherein the hybridization between the amplicon and the probe is determined by a calibration mark that detects the binding from the amplicon. 8 · — a kind of An optimized hybridization analysis method for detecting known genetic mutations or polymorphisms, which is initiated by the following steps: a) Provide a set of oligonucleotide primer pairs, each primer pair has a complementary complement The ability of the polynucleotide strand to bind to delineate the corresponding target region or the target region containing at least one selected mutation or polymorphism; b) the group of oligonucleotide primer pairs with the target can be Amplicon pair formation Contact under conditions' each amplicon pair contains-selected expansion 46 200538552 amplicon meaning stock (corresponding to the underlying meaning stock or antisense stock) and an amplicon antisense stock (corresponding to other underlying stocks (meaning Or antisense target strand)); C) Select a second family of coded probes, in which probes with different codes have different nucleotide sequences, and the selected sense strand probes are Sense strand or primary sequence (subsequence) all or approximately complementary probes (meaning an "antisense strand of a complementary amplicon, and another antisense strand amplicon means" non-selected "", And the antisense strand probes are selected so that each antisense strand probe can be fully or substantially complementary to the sense strand or subsequence of an amplicon (meaning a "complementary expansion" '' Zhengluzi sense strand '', and other sense strand amplicon means `` non-selected amplicon, ''): and wherein the method includes: the amplicon maintains sequence similarity and the probe and non-selected amplicon Degree of parental cross Below a preset acceptable level, it is to replace the sense strand probe with one or more antisense strand probes (and replace the amplicon antisense strand with a complementary amplicon sense strand). 9. The method of claim 8 in the scope of the patent application, wherein the alternative antisense strand probe can be fully or substantially complementary to the alternative sense strand probe. 10. The method as claimed in claim 8 wherein the polynucleotide is an mRNA 'cDNA or a double-stranded nucleotide containing DNA. 11. The method according to item 8 of the patent application, which allows probes with different sequences to be encoded by combining the probes with a carrier (including beads), which carriers have different optical identification marks. 1 2. As stated in the method of item iJ of the patent scope, wherein the coded band 47 200538552 is colored. 13. The method according to item 8 of the scope of patent application, wherein the -primer in the -primer pair is calibrated at the 5 'end and the other primer in the primer pair has a phosphate modification at the 5'end. U. The method according to item 13 of the application, wherein the amplicon line combined with the acetic acid-modified primer is decomposed. 15. The method according to item 8 of the scope of patent application, wherein the hybridization line between the amplicon and the probe is determined by detecting a calibration mark associated with the amplicon. 16. An optimized hybridization analysis for a known genetic mutation or polymorphism, including the following steps: a) Provide a set of oligonucleotide primer pairs, each primer pair has a complementary The ability of polynucleic acid strands to adhere to describe the corresponding target region, which contains at least one selected mutation or polymorphic region; b) the set of oligonucleotide primer pairs and the target can form The amplicon pairs are contacted, and each amplicon pair contains a selected amplicon sense strand (corresponding to the target sense strand or antisense strand) and an amplicon antisense strand (corresponding to another Target stocks (meaning or antisense target stocks)); and where the degree of sequence similarity and cross-hybridization and cross-hybridization with partially complementary non-selective wipes are below a preset acceptable level, The number of amplicon regions that hybridize to the probe via 4 疋 is controlled. 17. The method of item 16 in the scope of patent application, wherein the number of amplicon regions selected as the hetero-parents of the tadpole probe is determined, and amplicons smaller than the above regions are generated in a subsequent step. 48 200538552 18. A method for designing a needle array for hybridization analysis for detecting gene mutations or polymorphisms, which is initiated by the following steps: a) Provide a set of oligonucleotide primer pairs, each Primer pairs have the ability to adhere to complementary polynucleotide strands to describe the corresponding target region or region containing at least one selected mutation or polymorphism region; b) recruit the group The nucleotide primer pair can form amplification with the target. Each contact is made under the condition of 1 and each amplicon pair contains a selected amplicon sense strand (corresponding to the target meaning strand or antisense strand) and an amplicon antisense strand (corresponding to another target strand (meaning Or antisense stock)); φ ”c) Select the second group of coding probes, in which bismuth needles with different codes have different nucleotide sequences, and the selected sense probes are compatible with Antisense strand or subsequence probes that are all or substantially complementary (meaning an antisense strand of a "complementary amplicon," and other antisense month amplicons mean "non-selected Amplicons, and), and the selected antisense strand probes allow each antisense strand probe of the amplicon to be fully or substantially complementary to the sense strand or subsequence of an amplicon ( Means a "complementary amplicon sense strand, and other sense strand amplicons mean" non-selected amplicons "); and wherein the method includes the following steps: a) detecting the individual sense strands Degree of homology between probes or individual amplicon sense strands b) The number of probes of the sense strand is divided into one or more spoons, and the sense strands of the complementary amplicon are divided into corresponding groups, and a knife method is implemented in order to maintain a gap between the mother group of probe groups and one strand. The sequence similarity of 49 200538552 # 同 %% is maintained at the degree of similarity between the parent-group amplicon meaning strands) so that it is below a preset acceptable level; C) Implement the following steps ... ⑴When walking in the hybrid material Tit, it is decided that ―the amplicon's… corresponding to the corresponding ㈣ group; or, when contacting under hybridization conditions, = needle group—the strands corresponding to the corresponding amplicon group, Whether the degree of non-selected one-sixth and inter-parents of the unit and the probe set or side amplicon group exceeds a preset acceptable level; and if not: Α (ϋ) is in a separate group 'Maintain the strand of the amplicon and one strand of the probe set' ^ Repeat steps (A) (i) for the other strand of the amplicon or the straight strand of the probe set (A) (i); (B) (υ but assuming that the degree of cross-breeding does not exceed the acceptable level; 'replace the cross within the individual group The hybridized probe and a complementary antisense strand probe, or the cross hybrid antisense strand amplicon and a complementary amplicon sense strand; and (B) (ii) the replaced probe and the amplified Repeater step (A) (0), assuming that the degree of cross-hybridization does not exceed the acceptable level: within its individual group, maintain the antisense strand probe and the selected anti-strand amplification -A strand, and the other strand of the amplicon group at the same time (A) (i); (B) (iii) But suppose that the replacement probe and amplicon are repeated in step (A) (i ), The degree of cross-hybridization is higher than this acceptable degree: decide whether to contact with the probe in any other group, or the amplicon in any other group, according to the replaced probe and the amplicon respectively, such as When applicable, 50 200538552 the degree of the cross-breeding does not exceed the acceptable level; and it remains within the individual group of the permutation; but assuming that according to the method of decision: An acceptable degree, replacing the replaced strand into a new group, and (C) the amplification When the probe or an other group, repeating steps (A) (i) to (B) (iii), as applicable. 19. The method according to item 18 of the patent application scope, further comprising the steps of: providing conditions for generating a subgroup for each of the set of amplicon sense strands and amplicon antisense strands (respectively Is "bamboo," and "MP ,," wherein the sub-population has one or more different regions in the sequence, and the amplicons of a WT sub-population are relative to one of the genomic sequences. Wild-type region, and the amplicons in the WT subgroup are relative to a mutation or polymorphic region in the genomic sequence; four subgroups of the probe are selected (named as WT meaning unit, antisense, respectively) Stocks, MP meaning stocks, MP antisense stocks), so that the probes in each population can be relative to the amplicon meaning stocks, which are completely complementary or substantially complementary in the subgroups or sequences that are calibrated but complementary; Decide ... (i) Between a WT amplicon antisense strand and the substantially complementary Mp sense strand probe 'or a Mp & sense strand amplicon and the substantially complementary WT sense strand probe Whether the degree of cross-hybridization will exceed The acceptable degree is assumed to be (ii) the interaction is determined when the MP meaning stock or the antisense stock is replaced with a complementary WT antisense stock probe or a complementary MP antisense stock probe, respectively. Whether the degree of hybridization will fall within the acceptable range of 51 200538552; and if the county version is sighed, (Hi) decides whether the WT antisense stock is lighter than the Li Er antisense probe, if applicable At the same time, for cross-hybridizing the MP amplicons or other amplicons with other meanings, the amplicons with the meaning of rr will be respectively acceptable, and jealousy < θ, w exceeds and false cross疋, (v) decide whether to replace the WT strand probe or the mp antisense strand um, I Jiuyi Yue again, and together with the complementary MP to expand the WT amplicon to a separation from 纟 + π 5 If there is a long-standing group of Igang, if applicable, it will be common to any set of other subgroups in the separated subgroups, ^ octabutase probes and amplicons from steps (i) to (lv) 'and The cross-hybridization of other probes and amplicons in the separated sub-populations will exceed the acceptable level of β. Separated within the ^ knife ^ sub-group; but suppose that ⑺ repeat step (iv) using other points: gang's confidant monarch '' and carry on the succession of the probe amplicon succession '' to this period and the separation Subgroups until acceptable levels are met. ^ 2 20. The method of claim 18 or 19, wherein the determination of the acceptability includes reducing or reducing the number of G-T base pairings. 21. The method of claim 18 or 19, wherein the accessible degree is determined by the computer program PAMtm. ^ M. The method according to item 8 of the patent application, wherein the subject of the polynucleotide is an mRNA, cDNA, or a double-stranded polynucleotide comprising DNA. 23. The method of claim 18, wherein the probe has a different sequence from the probe bound to a bead-containing carrier, and the carrier has a different optical identification mark. The method of applying the scope of patent application of the two-color-colored eruption 'its + where the monument is 25. The method of applying the patent scope No. 18 or 19, in which one primer in a 200538552 sub-pair is at 5, end calibration and calibration Mark, and the other primer in the primer pair has a monophosphate modification at the 5, end. 26. The method according to claim 25, wherein the amplicon line incorporating the phosphoric acid-modified primer is decomposed. 27. The method of claim 18 or 19, wherein the hybridization between the amplicon and the needle is determined by the calibration mark combined with the amplicon. 28. The method of claim 25 in the scope of patent application, wherein the calibration mark 為 Cy3 、 Cy5 及 Cy5.5 。 該 同 29·如申凊專利範圍第19項之方法,其中該WT探針及 MP探針係在序列上十分相近 僅於一個核穿酸位置不 及該 同0 3〇·如申請專利範圍第19項之方法,其中Μτ擴增子 MP探針在序列上十分相近,僅於—個核替酸位置不 3 i · —組根據申請專利範It is Cy3, Cy5 and Cy5.5. The method described in item 29 of the same patent application, where the WT probe and the MP probe are very similar in sequence, but only one nucleotide position is less than that in the same application. The method of item 1, in which the Mτ amplicon MP probes are very similar in sequence, only at a position of 3 nucleotides which is not 3 i · — according to the patent application 法所選擇的探針或擴增子 32·-種用n選與囊性纖維化相關之⑽ 的探針’其具有SEQ ID Nqs. 33至83的序列。 y 33. 一種測試位置(locus)上突變或多型性的 係利用一載體—展示探針對的陣列,复 λ, #r ^ , 八具有可展示不 針對成貝的不同載體,以在—探針對中的— 雜交的方式用於鑑認經敎的正常對偶基因 — 可透過雜交的方式用於鑑認相對應固 、、二邊疋的變異對 53 200538552 因’該載體被編碼以鑑認展示其之探針,包含: 自一疑有所欲突變的檢體中 你股甲,利用對母一該區域的兩 個引子,放大相關於該經 ^ ^ 疋之對偶基因的基因組區域, 中的—個係在5,端被標定,以產生一㈣桿定 的擴增子; 、、,且、、工铋疋 產生單股擴增子; 將該載體展示的探針對放置在基質上; 内 在雜六4不超過&針與擴增子間達成雜交所需之時間 Μ 2件下將結合的探針對陣列與擴增子相接觸; 擴增子偵測探針與擴姆 ^ ^ ^ , 擴日子的雜父,其係基於來自經標 疋之與探針陣_交的擴增子的訊號;且 解碼該陣列以沐$ q A 相應的突變或多型f之擴增子的身分,從而決定 _3由4‘、^^/_圍第33項之方法,其Μ股擴增子 係、、工由消化该擴增子的其中一股所產生。 35·如申請專利範圍第34項之 係利用磷酸化兮、 去,其中一擴增子股 3R由 中的引子來預選為進行消化作用。 36.如申睛專利範圍第 係以入内切酶進行。 、法,其中該消化作用 申請專範圍第33項之方法, 係位於CFTR區域内。 且wocus) 38·如申請專利範圍第 的探針對係固定在基質上。、〉去’其中該載體展示 申μ專利軌圍第33項之方法,其中該反應時間 54 200538552 不超過15分鐘。 4〇·如申請專利範圍第33項之方法,其中該載體係微 小珠。 41.如申請專利範圍帛33項之方*,其中該基質與結 合的載體可以在顯微鏡下被檢視。 42·如申請專利範圍f 33項之方法,其中該基因組區 域為mRNA(或自其所衍生的cDNA)或一包含μα的雙股多核 ^酸。 43·如申請專利範圍帛38項之方法,其中該微小珠係籲 編碼有不同的光學記號。 44.如申請專利範圍帛33項之方法,其中該編媽化係 具有顏色。 45· —種分辨同型合子、異行合子及野生型(用於標的 檢體内突變或多型性或野生型對偶基因)的方法,其係利 用得自探針陣列之結果,該陣列係設計用以透過探針和標 的物的雜交作用來偵測所指定之突變或多型性對偶基因以 及野生型對偶基因,其中該結果包含錯誤配對的探針—標 · 的、、,° a 的代 g 作用(compensation),包含: 放大標的檢體的基因組區域(該檢體係經預測包含經選 疋的犬變或多型性對偶基因或該相應的野生型對偶基因) 以產生經標定之相應於經選定的突變或多型性對偶基因(‘‘ 犬交/多型型擴增子,,)的擴增子以及相應於野生型對偶基因 (野生型擴增子,,)之經標定的重複子載體擴增子; 提供一探針對的陣列,其中一股係與一突變/多型性的 55 200538552 擴曰子互補且另股係與相對應的野生型擴增子互補; 使該陣列探針對與該擴增子接觸; /貞測野生型及突變/多型性擴增子的結合,其係基於來 自經標定之結合擴增子的信號’該信號可以下列方式調整 錯誤配對雜交來校正之: (1)決定來自突變/多型性的擴增子及野生型擴增子 雜交的信號強度,校正背景信號,(⑴&定該信號的比 例(即,…⑹:突變/多型性對野生型的強度或是比例 (b):野生型對突變/多型性的強度);及 對該比例設定三個數值相關範圍:(i)其中比例(a) 的最低範圍表示該檢體係為野生型的同型合子,且該比例 (b)的最低範圍表示該檢體為突變/多型性的同型合子, (Π)中間值範圍表示為異型合子,及(iii)比例(a)的最高 範圍表示該檢體係為突變/多型性的同型合子,且比例(b) 的最高範圍表示該檢體為野生型的同型合子。 46·如申請專利範圍的45項之方法,進一步包含自野 生型及突變/多型性擴增子中產生單股DNA的步驟。 47·如請專利範圍第46項之方法,進一步包含標定該 野生型或突變/多型性的其中一股的步驟。 48·如申請專利範圍第45項之方法,其中比例(的係解 釋如下·· >2表示突變/多型性的同型合子,<〇·5表示野 生型的同型合子,〇· 8至1.2表示異型合子。 49· 一種校正來自錯誤配對探針—檢體(或探針-擴增子) 結合之偽陽性訊號的方法,其係根據得自寡核苷酸探針陣 56 200538552 列的信號,該陣列r ^ . , °又汁來透過探針對檢體的雜交或探斜 對產生自檢體之擴 ^衣針 ,包含· ,、千的雜父以偵測基因組突變或多型性 形成一探針的陣列; 在黏合的溫度及彳各彳生 y、 放置该陣列及檢體(或該陣列及 擴乓子),使其接觸; 毒一口 ’皿度開始加熱’經過多個設定的溫度點,每一The probe or amplicon selected by the method 32 ·-a probe for selecting 选 related to cystic fibrosis with n 'has a sequence of SEQ ID Nqs. 33 to 83. y 33. A mutation or polymorphism at a test locus uses a vector-array of display probe pairs, complex λ, #r ^, and eight have different vectors that can not be targeted at Chengbei, in order to detect Targeting-hybridization method used to identify the normal dual gene of Jingjing-can be used to identify the corresponding solid, two-sided mutation pair by hybridization method 53 200538552 because 'the vector is encoded for identification display The probe includes: from a specimen suspected of being mutated, you use a pair of primers in the region of the mother and amplify the genomic region related to the dual gene of the ^ ^ 疋-Each line was calibrated at the 5 'end to generate a single amplicon; 、, 且, and 工 bismuth 疋 produced a single-strand amplicon; the probe pair displayed on the vector was placed on a substrate; intrinsic Miscellaneous 4 does not exceed the time required for the hybridization between the & needle and the amplicon. M 2 pieces will contact the probe pair array and the amplicon; the amplicon detection probe and the amplicon ^ ^ ^, Spread fathers, based on the The probe array _ crosses the signal of the amplicon; and decodes the array to identify the corresponding mutation or polymorphic amplicon of f q A, thereby determining that _3 is 4 ', ^^ / _, and the 33rd In the method of this item, the M strand amplicon line is produced by digesting one strand of the amplicon. 35. If the scope of the patent application is No. 34, phosphorylation is used, and one of the amplicon strands 3R is preselected by the primers for digestion. 36. The scope of the patent application is based on the introduction of endonucleases. The law, the method of application of the digestion application special scope item 33, is located in the CFTR area. And woocus) 38. The probe pair according to the scope of the patent application is fixed on the substrate. ">", Where the carrier exhibits the method of claim 33 of the patent patent, wherein the reaction time 54 200538552 does not exceed 15 minutes. 40. The method according to claim 33, wherein the carrier is a microbead. 41. For example, the scope of the patent application: item 33 *, wherein the matrix and the combined carrier can be inspected under a microscope. 42. The method of claim 33, wherein the genomic region is mRNA (or a cDNA derived therefrom) or a double-stranded polynucleic acid containing μα. 43. The method of claim 38 in the scope of patent application, wherein the microbeads are encoded with different optical marks. 44. The method according to scope 33 of the application for a patent, wherein the compilation is colored. 45 · —A method for distinguishing homozygote, heterozygote and wild type (used for mutation or polymorphism or wild type dual gene in the target sample), which uses the results obtained from the probe array, which is designed Used to detect the specified mutation or polymorphic dual gene and wild-type dual gene through the hybridization of the probe and the target, wherein the result includes the mismatched probes—standard, ,,, and ° a generations. g Compensation, which includes: Enlarging the genomic region of the target specimen (the assay system is predicted to contain the selected canine or polymorphic dual gene or the corresponding wild-type dual gene) to produce a calibration corresponding to Amplicons of selected mutations or polymorphic dual genes ('' canine / polymorphic amplicons, '') and calibrated repeats corresponding to wild-type dual genes (wild-type amplicons ,,) Daughter vector amplicons; an array of probe pairs is provided, where one strand is complementary to a mutant / polymorphic 55 200538552 amplicon and the other strand is complementary to the corresponding wild type amplicon; making the array For contact with the amplicon; / wild-type and mutant / polymorphic amplicon binding, based on the signal from the calibrated binding amplicon 'This signal can be corrected by adjusting the mismatch hybridization in the following ways (1) Determine the signal strength from mutation / polymorphic amplicon and wild type amplicon hybridization, correct the background signal, (⑴ & determine the proportion of this signal (ie, ⑹: mutation / polymorphism) Intensity or ratio to wild type (b): Intensity of wild type to mutation / polymorphism); and to set three numerical correlation ranges for this ratio: (i) where the lowest range of ratio (a) represents the inspection system Is a wild-type homozygote, and the lowest range of the ratio (b) indicates that the specimen is a mutant / polymorphic homozygote, (Π) the median range is expressed as an heterozygote, and (iii) the ratio of (a) The highest range indicates that the test system is a mutant / polymorphic homozygote, and the highest range of the ratio (b) indicates that the test sample is a wild-type homozygote. 46. If the method of 45 items of the patent application, further includes Wild type and mutation / polymorphism The step of generating single-stranded DNA in the booster. 47. If the method of item 46 of the patent is requested, further comprising the step of calibrating one of the wild type or mutation / polymorphism. 48. If the item of patent scope is 45 The method in which the ratio is explained as follows: > 2 represents mutation / polymorphic homozygotes, < 0.5 represents wild type homozygotes, and 0.8 to 1.2 represents heterozygotes. 49. A correction Method for false positive signal from wrong paired probe-sample (or probe-amplifier) binding, based on the signal obtained from the column of the oligonucleotide probe array 56 200538552, r ^., ° In addition, the probe passes through probe hybridization or probe pairing to generate self-expansion expansion needles, including heterozygous fathers, to detect genomic mutations or polymorphisms to form an array of probes; Place the array and specimens (or the array and pongs) in contact with each other at a temperature of approximately 5%, and then let them come in contact with each other; after passing a number of set temperature points, 们”、纟表不有一特定錯誤配對雜交物會預期去黏合^ 一 anneal)的溫度; 、在加熱期間監測產生自陣列的信號,以決定起始加熱 點以及所設定之溫度點雜交物的數目(或相關數目及 解^該監測步驟的結果,其係基於假設在不同的設定 中’’又有任何一個信號是來自錯誤的配對物,該錯誤配 對係預期在低於各該設定點時已經去黏合。 50·如申請專利範圍帛49項之方法,其中該信號係來"," Indicates that there is a temperature at which a particular mismatched hybrid will be expected to de-adhesive; an signal generated from the array is monitored during heating to determine the starting heating point and the number of hybrids at the set temperature point (Or the relevant number and solution of the monitoring step results, which are based on the assumption that in any different setting, any signal is from the wrong pair. The wrong pair is expected to be below each set point. De-bonding. 50. For example, the method of 49 patent applications, where the signal is 自相關於擴增子或檢體上的標定。 51·如申請專利範圍第5〇項之方法,其中該標定係為 光學可偵測的。 52·如申請專利範圍第49項之方法,其中在錯誤配對 的雜父物中的檢體或擴增子在序列上具有一個核脊酸與正 確配對的檢體或擴增子不同。 53·如申請專利範圍第49項之方法,其中該溫度範圍 係自45至60°C。 54. —種設計探針陣列的方法,其係用於互補擴增子的 57 200538552 雜交分析 包含: 以偵測在基因 組區域中已知的突變及多型性 (i ) Φζ供一擴增子的家旌, 、其中一股被命為奇蠢月a 其互補股被命為反義股,該擴增子係 …▲又, 多型性的特定基因組區域; 、 3省犬變達 (ii)自該家族中選擇一擴增子; (i i i )將所選的擴增子盥 9于與豕族中剩餘的擴增子相排列 ,其係藉由配對排列或多筆序Autocorrelation to calibration on amplicons or specimens. 51. The method of claim 50 in the scope of patent application, wherein the calibration is optically detectable. 52. The method according to item 49 of the patent application, wherein the specimen or amplicon in the mismatched heterofather has a nucleotide in the sequence that is different from the correctly paired specimen or amplicon. 53. The method according to item 49 of the patent application range, wherein the temperature range is from 45 to 60 ° C. 54. A method of designing a probe array for use in complementary amplicons 57 200538552 Hybrid analysis includes: Detecting mutations and polymorphisms known in the genomic region (i) Φζ for an amplicon Jiajing, one of which was designated as Stupid Moon a, and its complementary strand was designated as antisense strand, the amplicon line ... ▲, and the specific genomic region of polymorphism; ) Select an amplicon from the family; (iii) Align the selected amplicon 9 with the remaining amplicons in the Dai family, which is arranged by pairing or multiple strokes 子的同源性得分;夕葦序列排列,及決定所選之擴增 ㈤根據遞增或遞減的同源性得分排列家族中… 子; 、曰 (V)自該家族中移除同源性得分超過預設可接受程声 的擴增子,且將該移除的擴增子(及互補探針)放置在分: 的族群内,且對該家族中的其他擴增子重複步驟⑴至(V) (VI)放置每一個擴增子使其輪流接觸在一特定族群 内的彳木針,且決定與在該族群中的其他探針的交互雜交; “(Vii)選擇任何探針及擴增子的互補股(其步驟(vi) 7交互雜交超過預設可接受的程度),且再次決定與在該 族群内的其他探針的交互雜交; (VI 11)將步驟(vi i)中交互雜交超過預設之可接受程 度的任何探針及擴增子放置至一分隔的族群内。 55·如申請專利範圍第54項之方法,其中在步驟 (vi U )之後重複該方法,但目的係在產生最小數量的擴增 58 200538552 子及探針分隔族群。 5 6.如申請專利篇 . 圍弟54項之方法,其中在步驟 (V111)之後,目古 、/、夕;一種預決定數量的擴增子(及探針〕 :預:Γ式,且決定該族群是否根據定義-新的較低的最 疋性的同源性得分來決定其中的擴增子(及探針)需 被放置至於-新的且分隔的族群中。 一二7·如申:專利範圍帛54項之方法,其中係藉由產生The homology score of the daughter; the sequence arrangement of the reed, and the selection of the selected amplification; the family is arranged according to the increasing or decreasing homology score ... the son; (V) removes the homology score from the family Amplicons that exceed the preset acceptable range, and place the removed amplicons (and complementary probes) in the subgroup :, and repeat steps ⑴ to (for other amplicons in the family) V) (VI) Place each amplicon in turn in contact with alder needles in a particular group and decide to cross-hybridize with other probes in that group; "(Vii) select any probe and expand The complementary strand of the proton (the cross-hybridization of step (vi) 7 exceeds a preset acceptable level), and again decides to cross-hybridize with other probes in this group; (VI 11) In step (vi i) Any probes and amplicons that cross-hybridize beyond a preset acceptable level are placed in a separate population. 55. The method of claim 54 in which the method is repeated after step (vi U), but The goal is to generate the smallest number of amplifications. Ethnic groups. 5 6. For the method of applying for patents, the method of item 54 in Si, wherein after step (V111), Mugu, Xi, Xi; a predetermined number of amplicons (and probes): pre: Γ formula , And determine whether the group is based on the definition-the new lower most homologous homology score to determine which amplicons (and probes) need to be placed in the-new and separated group. · If applied: Method of 54 items of patent scope, which is generated by “曰子使父互雜交被降低,該擴增子短於展現了過度交 互雜交之擴增子。 夕種杈正陣列訊號之試驗影像的方法,該訊號係產 生自:重雜交-中介分析,纟中個別的信號表示雜交事件 ’且其中光學編碼的載體係用於在該試驗編碼個別的雜交 事件,包含: 利用來自負控制組(即,經編碼但並不與雜交事件相關 的載體)的信號建構一背景圖像;及 自”式驗影像中減去背景圖像信號以產生一經校正的試 驗影像。 59.如申請專利範圍第58項之方法,其中將背景圖像 的匣定(即,空間中非變化性者)區域自試驗影像中減去, 而後该試驗影像被經校正的背景圖像劃分。 60·如申請專利範圍第58項之方法,其中背景圖像藉 由將包含在陣列中之負控制組載體的中心定位在一預選擇 的大里’該負控制組載體被編碼且經設計使其不會參與雜 又’且建構相關的Voronoi棋盤,其係由一系列的多邊形 59 200538552 所組成,各含有一負控制組載體,且以該建構的負控制組 載體的強度充滿每一個多邊形以產生圖像。 61.如申請專利範圍第58項之方法,其中過濾操作係 應用來校正來自鄰近負控制組載體的影響。 拾壹、圖式: 如次頁"The son reduces the parental cross-hybridization, the amplicon is shorter than the amplicon that exhibits excessive cross-hybridization. The method of experimental image of the positive array signal, which is derived from: re-hybridization-intermediate analysis, Individual signals in represent hybridization events' and where the optically encoded vectors are used to encode the individual hybridization events in this experiment, including: the use of vectors from negative control groups (ie, vectors that are encoded but not related to hybridization events) The signal constructs a background image; and the background image signal is subtracted from the "type" test image to generate a corrected test image. 59. The method according to item 58 of the scope of patent application, wherein the boxed (ie, non-variable in space) area of the background image is subtracted from the test image, and then the test image is divided by the corrected background image . 60. The method of claim 58 in which the background image is obtained by positioning the center of the negative control group vector contained in the array in a pre-selected area. The negative control group vector is coded and designed such that The Voronoi board that does not participate in the complex and construction is composed of a series of polygons 59 200538552, each containing a negative control group carrier, and each polygon is filled with the strength of the constructed negative control group carrier to generate image. 61. The method of claim 58 in which the filtering operation is applied to correct for the influence from a nearby negative control group carrier. Pick up, schema: as the next page 6060
TW093117905A 2004-05-17 2004-06-21 Hybridization-mediated analysis of polymorphisms TW200538552A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2004/015224 WO2004104172A2 (en) 2003-05-15 2004-05-17 Hybridization-mediated analysis of polymorphisms

Publications (1)

Publication Number Publication Date
TW200538552A true TW200538552A (en) 2005-12-01

Family

ID=52350468

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093117905A TW200538552A (en) 2004-05-17 2004-06-21 Hybridization-mediated analysis of polymorphisms

Country Status (1)

Country Link
TW (1) TW200538552A (en)

Similar Documents

Publication Publication Date Title
AU2021200925B2 (en) Assays for single molecule detection and use thereof
US7771939B2 (en) Correcting an assay image of an array of signals generated from a multiplexed hybridization-mediated assay
EP1124990B1 (en) Complexity management and analysis of genomic dna
US7108976B2 (en) Complexity management of genomic DNA by locus specific amplification
US10415081B2 (en) Multiplexed analysis of polymorphic loci by concurrent interrogation and enzyme-mediated detection
US8129120B2 (en) Methods for genetic analysis of DNA to detect sequence variances
US20170096713A1 (en) Applications of single molecule sequencing
CA2409774A1 (en) Methods for genetic analysis of dna to detect sequence variances
EP1723261A1 (en) Detection of strp, such as fragile x syndrome
US20040023237A1 (en) Methods for genomic analysis
US20090061440A1 (en) Method for amplifying plural nucleic acid sequences for discrimination
KR101249635B1 (en) Novel EGR2 SNPs Related to Bipolar Disorder, Microarrays and Kits Comprising them for Diagnosing Bipolar Disorder
TW200538552A (en) Hybridization-mediated analysis of polymorphisms
US7659054B1 (en) Methods for genetic analysis of DNA to detect sequence variances
JPWO2005090565A1 (en) DNA array and single nucleotide polymorphism detection method
US20100285970A1 (en) Methods of sequencing nucleic acids