TW200423986A - Methods of treating disorders by altering ion flux across cell membranes with electric fields - Google Patents

Methods of treating disorders by altering ion flux across cell membranes with electric fields Download PDF

Info

Publication number
TW200423986A
TW200423986A TW92135644A TW92135644A TW200423986A TW 200423986 A TW200423986 A TW 200423986A TW 92135644 A TW92135644 A TW 92135644A TW 92135644 A TW92135644 A TW 92135644A TW 200423986 A TW200423986 A TW 200423986A
Authority
TW
Taiwan
Prior art keywords
supplement
electric field
current density
organism
induced current
Prior art date
Application number
TW92135644A
Other languages
Chinese (zh)
Other versions
TWI278327B (en
Inventor
Akikuni Hara
Hiroyuki Hara
Naoyoshi Suzuki
Shinji Harakawa
Nobuo Uenaka
David E Martin
Original Assignee
Hakuju Inst For Health Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/417,142 external-priority patent/US20030233124A1/en
Application filed by Hakuju Inst For Health Science filed Critical Hakuju Inst For Health Science
Publication of TW200423986A publication Critical patent/TW200423986A/en
Application granted granted Critical
Publication of TWI278327B publication Critical patent/TWI278327B/en

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The invention relates to methods and devices for treating disorders with electric current or electric field therapy. The invention uses applied electric current or current induced by an external electric field to manipulate movement of ions across cell membranes and to alter ionic concentrations. The invention is useful, for example, for treating hyperproliferative and cardiovascular disorders and for ameliorating the effects of stress.

Description

200423986 玖、發明說明: I[号务明所屬技蚀^領域]I 互相參照之相關申請案 本申請案係為一於2001年12月14日提出申請,於2002 5 年12月5日公告之美國申請案第ι〇/〇ΐ7,ι〇5號的部份延續申 請案。本申請案亦請求於2002年12月17日提出申請的美國 臨時申請案第60/433,766號以及於2002年7月30日提出申請 的美國臨時申請案第60/399,249號之利益。所有前述申請案 之全部内容在此處被併入以作為參考。 10 【先前技術】 發明背景 各式各樣的電療法裝置(electrical therapy devices)係為 已知的。典型地,一裝置的電極接觸病人,在此種狀況中 該電療法裝置採用外施電流(applied current)並且可被稱為 15 一種電流療法裝置(electric cwrreni therapy device)。實例包 括 TENS 或 PENS (Ghoname,Ε·Α·,et al·,Anesth· Analg” 88:841-46 (1999); Lee,R.C” et al·,J Bum Care Rehabil” 14:319-335 (1993)) 〇 右黾極;又有接觸病人,電療法裝置係藉由_種外電場 20 (以下稱為“EF”)的方式在病人中誘導電流,而可被稱為一種 電場(electric field)或電位(eiectric 户療法事置。ef 在所有傳導的身體(包括動物或人類身體)當中產生表面電 荷。當EF被施用時,正電荷與負電荷將會出現在_身體的 對面(opposite sides)。當電場交替時,電荷將會在位置上交 6 200423986 替,在身體内造成交流電(參見Hara,H·,et al·,Niigata Med·,75:265-73 (1961))。 在 1972年’日本保健福利部(Japan’s Ministry of Health and Welfare)核准一種電刺激裝置(核准編號 5 147〇〇ΒΖΖ009〇4)。在19了8年,USFDA核准電刺激用來治療 骨疾病。然而,治療文獻報導了廣泛多樣對於電刺激的生 物學反應。例如’外正弦交流電場(external sinusoidal alternating fields)(ac EF)已經被顯示出在其他生物體中去 改變細胞型態、在纖維母細胞中的蛋白質合成、嵌入性膜 10 蛋白質的重新分布(redistribution)、在軟骨細胞中之DNA合 成、細胞内#5離子濃度、在人類肝癌細胞(hepatoma cells) 中的微絲結構,以及在血液中的電解質位準(Kim,Y.V.,et al·,Bioelectromagnetics,19:366-376 (1998); Cho,M.R·,et al·,FASEB J.,13:677-682 (1999); Hara,H·,Niigata Med·, 15 75:265-73 (1961))。有些研究員相信許多觀察到的功效並非 直接起因於EF,但係為EF在初級細胞結構(primary cellular structures)諸如膜-受體(membrane-receptor)複合物與離子-轉換器通道(ion-transport channels)上之影響的次要功效。 雖然感應電流(induced current)之生物學效用在最近25 20 年已經被研究出來,大多數的研究因著被暴露在從高傳遞 動力線與相關的電裝置而來的強烈電或磁場中之人員的安 全而被激發。例如,公用設施公司的工作人員例行地被暴 露在50-500 kV/m的電場與如5 G—樣高的磁場,而一般公 眾通常被暴露在1-10 kV/m的電場與至多2 G的磁場(Portier, 7 C.J. & Wolfe, M.S. (eds.) Assessment of Health Effects from Exposure to Power-line Frequency Electric and Magnetic Fields, NIEHS Publ. No. 98-3981 (National Institute of Environmental Health Sciences,1998))。先前技藝缺乏相對 地低電壓與弱電場之功效的充分研究。此外,傳統的EF療 法叙置採用南電壓並且沒有說明在越過身體的型態學上不 同區域之EF強度的差異。 簡言之,如Sporer在美國專利第5,387,231號中所指出 的,「先前技藝沒有立意於適當的、有效的電參數之組合供 用於真正有效的電治療。先前技藝裝置一般已在非常高的 電壓或非常高的電流下操作,此二者可在被治療的組織中 產生一種透熱療法功效(diathermy effect)。在很多案例中, 前先技藝可能提及各種不同電參數中的一或另一個,但卻 疏於考慮到其他參數的重要性。」 因為先别技藝展現了完全不同的生物學反應,並且倚 賴不精確的測量法與集中焦點在高電壓與高電流的功效 上,因此仍存有一個確認出特定參數供用於電療法,特別 是採用相對地低的電壓與電流之電療法的需求。 【發明内容】 發明概要 發明人已經測定出成功地治療特定障礙之£17與外施電 流(applied current)的參數值。此等參數包括,例如,頻率(以 Hertz為單位)、電壓(以volts為單位)、感應電流密度(以 mA/m2為單位)、外施電流密度(以mA/m2為單位)、個別連續 200423986 暴2期的時間(以分鐘、小時以及天為單位),以及全部的 暴路N·間(無論是以—個連續暴露週期抑或是多重連續暴 露週期的全部總和)。 长如此處所用的,“平均,,外施電流密度與“平均,,感應電 5流密度意指產生遍及至少—個有興趣的生物體(例如,一人 類、動物、植物,或其等的—部份,或其等的細胞)的細胞 膜之每單位面積的平均電流。例如,若有興趣的生物體係 為一人類且有興趣部份係為該人類的整個手部,平均電流 密度係為針對該整個手部的平均值,此即,該平均電流密 10度係為手的各個部份之電流密度的總和除以它們面積的總 和。被描述於此處後方之特殊的公式與技術被用來估算該 平均外施電流密度與平均感應電流密度。除非另有明確地 陳述,否則“生物體”此詞包含人類以及其他類型的生物體 這兩者。 15 本發明的一具體例倚賴外施電流(applied electric current)。較佳地,外施電流密度係在約1〇至約2〇〇〇lnA/m2 的範圍内。 本發明的另一具體例倚賴特別低量的感應電流來控制 離子越過細胞膜的移動。為了治療因著在一生物體細胞中 20之一不正常的離子濃度所引起或被引起的障礙,此感應電 流具體例包括使該生物體經歷到一外電場,該外電場產生 一約0.001 mA/m2至約 15 mA/m2,較佳約0.001 mA/m2至約 10 mA/m2,更較佳約0.01 mA/m2至約2 mA/m2之遍及細胞膜 的平均(平均數的)感應電流密度。在較佳具體例中,該外電 9 200423986 場(E)以式子Ε = Ι/εοωδ中的項而被測量出來,其中S係為一 電場量測感應器(measurement sensor)的切面(section),ε〇 係為在一真空中的一誘導速率(induction rate),I係為一電 流,ω係為2πί,而f係為頻率。亦較佳的,以式子J == I/B 5 中的項來測量感應電流(J),其中I係為一經測量的電流,B 係為一被表示為B = Α2/4π的圓形面積(circle area),A係為 一被表示為A = 2icr的圓周(circumference),而r係為一半 徑。在本發明附加的較佳具體例中,感應電流密度被產生 遍及細胞膜歷時一約10分鍾至約240分鐘的連續期間。在 10 重複實施上(In reapplication),該平均感應電流密度較佳地 被產生歷時外加約30分鐘至約90分鐘的連續期間,較佳地 致使一少於約1,500分鐘的全部暴露時間。 本發明之外施電流與感應電流這兩個具體例可被應用 於一整個身體或只是該身體的一部份。該身體的一部份可 15 包括一肢體、一器官、確定的身體組織、一身體的一部位(諸 如,軀幹)、身體系統,或其等之次部分(subsecti〇ns)。一個 經過訓練的個體可以決定一特殊障礙依據本發明應用於一 整個身體或該身體的一部份。 本發明可進一步包含對生物體提供一鈣補充品、一維 2〇 生素D補充品、一植物凝集系(丨ectin)補充品,或該等補充$ 之一組合。較佳地,該植物凝集素補充品包含刀豆球蛋白 A(C〇ncanavalin A)或小麥胚芽凝集素(wheat germ agglutinin) 〇 在較佳具體例中,本發明改變或以不同的方式影響約 10 200423986 或其他陽離子或多價的陽離子(包括陽離子電解質與在細 胞外液中在活化與Ca++攝取有關的電-敏感鈣受體 (electro-sensitive calcium receptor (CaR))上扮演重要角色的 蛋白質)的流動。 5 本發明之一另擇的具體例涉及一種用來作為EF療法的 裝置。一較佳的EF療法裝置係為一種電場療法裝置,其係 包含:一主要電極(main electrode)與一相對電極(0pp0Sed electrode),一用來施加一電壓至該等電極的電壓產生p (voltage generator); —感應電流產生器,其係藉由改變電 10壓或介於該相對電極與該生物體或其部份之間的距離來控 制外電場;以及一用來驅動該電壓產生器的電源。較佳地, 該電壓產生器具有一增壓器線圈(booster c〇il)且該電壓產 生器被接地在該增壓器線圈的中間點或一端上。 在本發明之一更較佳的£!7療法裝置中,其具有一主要 15電極與一相對電極,該相對電極被安置接近於一人類身體 的頭部、肩部、腹部、腰部或臀部,且介於該相對電極與 該人類個體的軀幹範圍之表面間的距離係約丨至乃cm,更 較佳約1至15 cm。在另擇的態樣中,該相對電極係為天花 板、牆壁、地板、家具或在相内的其他物件或表面。 2〇 另—另擇的具體例涉及決定出針軸EF或外施電流療 法的最佳參數。-決定出針對職法的最佳參數之較佳的 方法包括下列步驟:⑴確認一要在一活生物體内誘發出的 所欲生物學反應;(ii)筛選或測量出一位在該生物體或一衍 生自該生物體的組織樣品或培養物之細胞的胞膜上之平均 11 200423986 感應電流密度;(iii)篩選或測量一外電場,該外電場在離該 生物體、樣品或培養物之一特定距離處會產生被篩選或測 量的感應電流密度;(iv)篩選或測量一用以於該等胞膜上產 生被篩選或測量的感應電流密度之連續時間期間;(v)施加 5 該經篩選或測量的電場至該生物體、樣品或培養物,俾以 於該等細胞膜上產生該被篩選或測量的感應電流密度歷時 該被篩選或測量的連續時間期間;(vi)測定該所欲生物學反 應發生之程度;(vii)選擇性地重複步驟(ii)至(vi)中的任一 者;以及/或(viii)確認最佳地誘發出該所欲生物學反應之作 10 為該被篩選或測量的感應電流密度之數值、作為該被篩選 或測量的外電場之數值或作為該被篩選或測量的連續時間 期間的數值。關於此具體例,“測量”此詞包含其中實驗者 沒有意識地、故意地或在起初預先選擇參數值之情形。例 如,“測量”此詞包含一EF裝置產生一隨機的或起初未知數 15 量的平均感應電流密度而後研究員直接或間接地決定該數 量為多少的案例。 本發明藉由下列圖示與詳細說明而進一步被例示說 明。 圖式簡單說明 20 第1圖顯示出一個在一 EF暴露系統中的電場暴露jidl (field exposure dish); 第2圖顯示出在EF暴露之後的可存活細胞百分比; 第3圖顯示出在含有12.5 pg/ml Con-A之經EF暴露與未 經暴露這兩種細胞懸浮液中,在高[Ca2+]j®胞數量上有一 12 200423986 明顯的增加; 第4A與4B圖概述含有不同濃度的Con-A,有與沒有 ImM CaCl2之經EF暴露的細胞培養物(cell cultures)之結果; 第5圖顯示出在含有植物血凝集素(phytohemaglutinin, 5 PHA)之經EF暴露與未經暴露這兩種細胞中,在高[〇32+]。細 胞上有明顯的增加; 第6圖顯示出當補充以3.125-12.5 pg/ml的Con-A時,無 論是經EF暴露或未經暴露的細胞,相較於那些被刺激以 0.025 pg/ml Con-A的細胞,在高[Ca2+]c^胞上有一明顯的增 10 加; 第7圖實例說明了在脾細胞(splenocyte cells)中ConA所 誘導的鈣離子濃度增加; 第8圖顯示出以一最終濃度〇·4 μΜ A23187予以刺激的 BALB 3Τ3小鼠胚胎細胞中DiBAC染色強度的時程變化; 15 弟9圖顯示出一個在1〇〇 Hz產生一大約200 uA/cm2電 流密度的電場(EF)對於在BALB3T3中膜電位的影響; 第10圖亦顯示一個在100 Hz產生一大約200 μΑ/(:ηι2 電流密度的電場(EF)對於在BALB 3Τ3中膜電位的影響; 第11圖顯示出壓力對於血漿促腎上腺皮質激素(以下 20 稱為“ACTH”)位準的影響; 第12A與12B圖顯示出暴露於EF對於在正常與卵巢 切除(〇variectomized)(B)的大鼠中血漿ACTH位準的影響; 第13圖顯示出EF暴露對於在正常大鼠(n=:6)中血紧 ACTH位準的影響; 13 200423986 第14A與14B圖顯示出EF暴露對於在正常⑷與印巢切 除(B)的大鼠中約束-誘導(restraint-induced)血漿葡萄糖位 準改變的影響; 第15A與15B圖顯示出EF暴露對於在正常⑷與印巢切 5除(B)的大鼠中約束-誘導(restraint_induced)血漿乳酸 (lactate)位準的影響; 第16圖顯示出EF暴露對於在卵巢切除的大鼠中約束_ 誘導(restraint-induced)血漿丙酮酸(pyruvate)位準的影響; 第17圖顯示出EF暴露對於在卵巢切除的大鼠中約束_ 10 誘導白血球(WBC)計數的影響; 第18圖實例說明一經由使用一種EF療法裝置(在此案 例中’係為一種來自白哥健康科學協會的BioniTron椅子) 所產生的電場的一概念輪廓; 第19圖係為一本發明之一較佳的EF療法裝置的示意 15 圖; 第20A與20B圖顯示出另一較佳的EF療法裝置; 第21A與21B圖顯示出另一較佳的EF療法裝置; 第22圖係為一顯示出一EF療法裝置之較佳電子組態的 圖不, 20 第23A圖係為一個被刺激的人類身體的一前視圖,第 23B圖係為一透視圖,而第23C圖係為一顯示出一被附於該 身體頸部之EF量測感應器(measurement sensor)的圖; 第24圖顯示一用以測量由該EF療法裝置所產生之感 應電流的裝置; 14 弟25圖顯示出在一外施電壓(appHed v〇itage)與一感應 電流之間的關係; 苐26圖顯示出在一頭部電極位置與在頸部被誘導出的 電流之間的關係; 5 , > _ 第27圖貫例說明在一未接地的人類個體之不同位置的 感應電流密度(mA/m2);以及 第28圖顯示EF暴露對於人類不同症狀的減輕功效。 t實施方式3 較佳實施例之詳細說明 A·調節越過細胞膜之離子流的方法(Meth〇d 〇f M〇dulating Ion Flux Across Cell Membranes) 一離子不平衡可能源自於一障礙或病狀,或可能係為 一醫學治療或補充品的一副作用。本發明藉由產生一遍及 細胞膜的電流來改變越過細胞膜的離子流。本發明亦影響 15細胞膜的組成(諸如其跨膜蛋白)。本發明可恢復或平衡細胞 的離子恒定性(cellular ionic homeostasis)或改變細胞膜的 膜電位。因此,本發明可應用於預防或治療與細胞或細胞 外離子濃度(諸如,鈣(Ca2)、鎂、鈉(Na+)、鉀(κ+), 以及氯(cr)濃度)有關的障礙。 20 為了治療與血清鈣濃度有關的障礙,被產生遍及細胞 膜的平均感應電流密度較佳地係約0.3 mA/m2至約0.6 mA/m2 ’更較佳約〇 4 mA/m2至約0.5 mA/m2,最佳約〇·42 mA/m2。使用外施電流來治療一與血清妈濃度有關的障 礙’平均外施電流密度較佳地係約60 mA/m2至約2,〇〇〇 15 200423986 mA/m2,且該平均外施電流密度被產生遍及細胞膜歷時一 約1分鐘至約20分鐘,更較佳約2至約10分鐘的連續期間。 可被本發明之方法施用的組織包括,例如··骨骼肌組 織(musculo-skeletal tissues)、中樞或末梢神經系統組織 5 (tissues of the central and peripheral nervous system)、胃腸 系統組織(gastrointestinal system tissues)、生殖系統組織(男 性與女性這兩者)、肺系統組織(pulmonary system tissues)、 心血管系統組織(cardiovascular system tissues)、内分泌系統 組織(endocrine system tissues)、免疫系統組織(immune 10 system tissues)、淋巴系統組織(lymphatic system tissues), 以及泌尿生殖系統組織(urogenital system tissues)。 真核細胞的生物膜,諸如質膜(plasma membrane),對 這些離子係為選擇性可滲透的。選擇滲透性允許用來建立 一越過膜之膜電位。細胞利用該膜電位來運送分子越過 15 膜。許多與產生一膜電位有關的離子執行生命功能。例如, 在肌肉細胞中一閾濃度(threshold concentration)的I弓離子 啟動了收縮。在胰臟系統(pancreatic system)的外分泌細胞 中’一閾濃度的妈離子引發了分解酶(digestive enzymes)的 分泌。同樣地,不同濃度的鈉與鉀離子對於電脈衝(electric 20 impulses)經由神經軸突(nerve axons)的電位傳導係為必須 的。 一廣泛被稱為電壓-閘門離子通道(voltage-gated ion channels)的蛋白質族群維持離子濃度與膜電位。電壓-閘門 離子通道係為包含離子選擇性孔洞的跨膜蛋白,該離子選 16 200423986 擇〖生孔/同^而視遠通道的構形狀態(c〇nf〇rmati〇nal state)而允 許離子通過生物膜。該通道的構形狀態受到一電壓敏感部 分(voltage-sensitive portion)的影響,該電壓敏感部分包含 會對膜電位有反應的帶電荷胺基酸(charge(j amino acids)。 5該通道係為傳導性的(開啟/活化的)亦或是非傳導性的(關 閉/非活化的)。 由於特殊離子(亦即,Ca2+)與心血管健康有關,本發明 可用於預防與治療心血管障礙。這些障礙包括,例如,心 肌病(cardiomyopathy)、擴張性充血性心肌病(dilated 10 congestive cardiomyopathy)、肥大性心肌病(hypertrophic cardiomyopathy)、咽峽炎(angina)、變異型心絞痛(variant angina)、不穩定性心絞痛(unstable angina)、動脈粥樣硬化 (atherosclerosis)、動脈瘤(aneurysms)、腹主動脈瘤 (abdominal aortic aneurysms)、周邊動脈血管疾病(peripheral 15 arterial disease)、血壓障礙(諸如,低血壓與高血壓)、起立 性低血壓(orthostatic hypotension)、慢性心包炎(chronic pericarditis)、心律不整(arrhythmias)、心房纖維性顫動(atrial fibrillation)與撲動(flutter)、心臟疾病(heart disease)、左心 室肥大(left ventricular hypertrophy)、右心室肥大(right 20 ventricular hypertrophy)、心動過速(tachycardia)、心房性心 動過速(atrial tachycardia)、心室性心動過速(ventricular tachycardia),以及高血壓(hypertension)。 本發明亦可用於預防或治療血液障礙。這些血液障礙 包括,但不限定於,低血鈉症(hyp〇natremia)、高血鈉症 17 200423986 (hypernatremia)、低血鉀症(hypokalemi)、高血鉀症 (hyperkalemia)、低血鈣症(hypocalcemia)、高血鈣症 (hypercalcemia)、低磷酸鹽血症(hypophosphatemia)、高磷 酸鹽血症(hyperphosphatemia)、低血鎮症(hypomagnesemia) 5 與高血鎂症(hypermagnesemia),以及血糖調節障礙(諸如, 糖尿病、成年型糖尿病,以及青少年型糖尿病)。 在本發明的一具體例中,一植物凝集素(lectin)與EF被 共同施用(co-applied),俾以增強Ca2+流動越過細胞膜。可 用於本發明的植物凝集素包括,例如,刀豆球蛋白 10 Akoncanavalin A)與小麥胚芽凝集素(wheat germ agglutinin)。在另一具體例中,由本發明所造成的離子流與 一鈣補充同時被產生。在另一具體例中,由本發明所造成 的離子流與一維生素D補充或與一鈣補充以及一維生素d 補充這兩者同時被產生。树明的維生素〇補充品包括,例 丄5如,維生素A(骨化醇)與維生素化醇)。同樣地,本 發明之方法可以連同-補充光源一起來被施行,該補充光 源被施予至-生物樣品或病人的表面上。㈣ -在約225奈米至約7〇〇奈米之範圍内的波長。在本發明的 一具體财,與本發明之方法—起被共同刻_光源放 20射出一在約230奈米至約313奈米之範圍内的波長。 在本發明的-附加具體例中,另一個分子可與一由本 發明所產生的離子流同時轉移越過一細胞膜。可與該離子 流同時轉移之該額外的分子可被身體自然地產生,或另擇 地可藉由補充(例如,經由一維生素等等)的方法被提供。例 18 200423986 如,細胞葡萄糖攝取可藉由鈣離子流越過一細胞膜而被增 強。可以與一由本發明所產生之離子流同時被轉移越過一 細胞膜之額外的分子包括營養醫療品(例如,一種被設計與 調配來幫助預防或治療一障礙與/或病狀的營養補充品)。此 5 外,本發明之方法可連同高量營養療法(hyperalimeiitation treatment)(例如,投予超出正常需求的營養素來治療障 礙,例如,諸如昏迷或嚴重燒傷或胃腸障礙)一起來被使用。 實施例1-60 Hz電場向上調節(Upregulates)經植物凝集素刺 激之小鼠脾細胞中的胞質鈣(Ca2+)位準 10 被供用於此實驗的EF暴露系統係由四個部分所組成: 由聚碳酸酯(polycarbonate)所製成的電場暴露皿;函數信號 產生器(the function generator) (SG-4101,IWATSU Co· Ltd·, Tokyo, Japan);數位萬 用電表(digital multi-meter)(VOAC-7411 IWATSU,Tokyo, Japan);以及控制 15 器(Hakuju Co· Ltd” Tokyo, Japan)。第 1圖顯示在一EF暴露 系統中的一電場暴露皿。該電場暴露ϋϋ由一蓋(lid)、一皿 以及一環形欲入物(doughnut-shaped insert)(内部直徑: 12mm)所組成。一介於兩個圓形白金電極(細胞培養物空間) 之間的EF經由該函數產生器被產生出來,並且藉由使用該 20 控制器與該數位萬用電表來被仔細地調整。60 Hz電場的電 場強度(field strength)藉由測量一在該電場暴露皿之細胞培 養物空間内的電流密度而被偵測出來。 該電流密度藉由式子:電流密度=Ι/S來被計算出來, 其中“Γ係為供應電流(supplied cmrent)(pA),而S係為細胞 19 200423986 培養物空間(0·36π)的面積(cm2)。因此,該電流密度可藉 由:電流密度=0·885Ι[μΑ/αη2]而被計算出來 在EF暴露之前,大約1.5 ml的分析緩衝液(137 mM NaCl、5 mM KC1、1 mM Na2HP〇4、5 mM glucose、1 mM 5 CaCl2、〇·5 mM MgCl2、0.1% (w/v) BSA 以及 10 mM HEPES pH 7.4)被倒進電極室。為了避免與細胞以及下層電極(lower electrode)接觸,聚碳酸酯膜(Isop〇re,MILLIPORE,MA USA) 被置於該jbi與該嵌入物之間。大約1 ml的細胞懸浮液被倒 進培養井(well)/間隔内且被覆蓋以一蓋子。 10 細胞製備(Cell preparation) 被飼養在一配備有清潔空氣過濾裝置之傳統動物房中 的雌性BALB/c小鼠(4-7週大,得自於CLEA公司(Tokyo, Japan))在麻醉之下被切除脾臟(splenectomized),並且脾細 胞之細胞懸浮液被製備出來。為了檢驗細胞生存能力(ceu 15 viability),該等細胞被培養在補充有1〇%胎牛血清(fetal bovine serum,FSB)的杜貝可氏改良的依格氏培養基 (Dulbecco,s modified Eagle’s medium(SIGMA,MO,USA)) 中。在[Ca2+]d^測期間該等細胞被維持在漢克斯氏平衡鹽 溶液(HBSS)(SIGMA,MO, USA)中,該[Ca2+]^測在細胞製 2〇 備後的4小時内被進行。細胞在使用之前被貯存在4ac。 ί貞測經EF暴露之細胞的生存能力(viability) 小鼠脾細胞(5 X 106細胞/ml)被暴露至60 Hz,6 μΑ/cm2 抑或60μΑ/οηι2之EF,在37°C,5%C〇2下歷時3〇分鐘與24 小時。模擬的(sham)細胞被留在電場暴露皿歷時3〇分鐘與 20 200423986 24小時,但不被暴露至EF。在30分鐘與24小時暴露結束時, 自該電場暴露孤所收集到的細胞懸浮液在4 °C下以2.5 pg/ml溴化丙錠(propidium iodide)予以染色歷時30分鐘,且 死細胞百分比經由流式細胞儀(flow cytometry)被計算出 5 來。 用於分析高[Ca2+]Jm胞的細胞製備與植物凝集素的使用 脾細胞(106 cells/ml)於37°C下以含有2.5 μΜ的氟-3-乙 酸氧基甲基(fluo-3-acetoxylmethyl)(Molecular Probes,USA) [Vandenberghe et al·,1990]的HBSS予以培育歷時20分鐘。該 10 細胞懸浮液接而以含有1% FBS的HBSS予以稀釋5次,在37 °(:下予以培育歷時40分鐘,以分析緩衝液予以清洗3次,並 且該等細胞接而被懸浮在該分析緩衝液中成為一個1x 106/ml的濃度。在整個細胞製備期間,該等細胞懸浮液被輕 柔地混合。 15 考慮到在EMF與有絲分裂原(mitogen)(Walleczek and200423986 发明. Description of the invention: I [No. Mingming's technical erosion field] I Cross-referenced related applications This application is an application filed on December 14, 2001 and announced on December 5, 2002 Part of US Application No. ι〇 / 〇ΐ7, 〇 05 continues the application. This application also benefits from US Provisional Application No. 60 / 433,766, which was filed on December 17, 2002, and US Provisional Application No. 60 / 399,249, which was filed on July 30, 2002. The entire contents of all the aforementioned applications are incorporated herein by reference. [Prior Art] Background of the Invention A wide variety of electrical therapy devices are known. Typically, the electrodes of a device are in contact with the patient, in which case the electrotherapy device uses an applied current and may be referred to as an electric cwrreni therapy device. Examples include TENS or PENS (Ghoname, E · A ·, et al ·, Anesth · Analg "88: 841-46 (1999); Lee, RC" et al ·, J Bum Care Rehabil "14: 319-335 (1993 )) 〇 Right pole; there is contact with the patient, the electrotherapy device uses an external electric field 20 (hereinafter referred to as "EF") to induce current in the patient, and can be called an electric field Or potential (eiectric household therapy). Ef generates surface charges in all conducting bodies (including animal or human bodies). When EF is applied, positive and negative charges will appear on the opposite sides of the body (opposite sides) When the electric field alternates, the electric charge will be transferred at the position 6 200423986, causing an alternating current in the body (see Hara, H., et al., Niigata Med., 75: 265-73 (1961)). In 1972 'Japan's Ministry of Health and Welfare has approved an electrical stimulation device (approval number 5 147〇〇ΒΒΖ0094). In 19 and 8 years, the USFDA approved electrical stimulation for the treatment of bone diseases. However, the treatment literature Reports a wide variety of biological aspects of electrical stimulation Reactions. For example, 'external sinusoidal alternating fields (ac EF) have been shown to alter cell type in other organisms, protein synthesis in fibroblasts, and redistribution of embedded membrane proteins. (redistribution), DNA synthesis in chondrocytes, intracellular # 5 ion concentration, microfilament structure in human hepatoma cells, and electrolyte levels in the blood (Kim, YV, et al., Bioelectromagnetics, 19: 366-376 (1998); Cho, MR ·, et al ·, FASEB J., 13: 677-682 (1999); Hara, H ·, Niigata Med ·, 15 75: 265-73 (1961 )). Some researchers believe that many of the observed effects are not directly attributed to EF, but are due to the fact that EF is in primary cellular structures such as membrane-receptor complexes and ion-converter channels. -transport channels). Although the biological effects of induced currents have been studied in the last 25 to 20 years, most of the research is due to people who are exposed to strong electric or magnetic fields from high transmission power lines and related electrical devices. Was inspired. For example, staff of utility companies are routinely exposed to an electric field of 50-500 kV / m and a magnetic field as high as 5 G, while the general public is usually exposed to an electric field of 1-10 kV / m and at most 2 G's magnetic field (Portier, 7 CJ & Wolfe, MS (eds.) Assessment of Health Effects from Exposure to Power-line Frequency Electric and Magnetic Fields, NIEHS Publ. No. 98-3981 (National Institute of Environmental Health Sciences, 1998 )). Previous techniques lack adequate research on the efficacy of relatively low voltages and weak electric fields. In addition, the traditional EF therapy uses a south voltage and does not account for the differences in EF intensity in different regions of the morphology across the body. In short, as pointed out by Sporer in U.S. Patent No. 5,387,231, "Prior art has not intended a combination of appropriate, effective electrical parameters for truly effective electrotherapy. Previous art devices have generally been at very high voltages. Or operate at very high currents, both of which can produce a diathermy effect in the tissue being treated. In many cases, prior art may mention one or the other of various electrical parameters , But carelessly considers the importance of other parameters. ”Because the first technique shows a completely different biological response, and relies on inaccurate measurement methods and focus on the efficacy of high voltage and high current, it still exists There is a need to identify specific parameters for use in electrotherapy, particularly electrotherapy using relatively low voltage and current. [Summary of the invention] Summary of the invention The inventors have determined parameter values of £ 17 and applied current that have successfully treated a specific disorder. These parameters include, for example, frequency (in Hertz), voltage (in volts), induced current density (in mA / m2), applied current density (in mA / m2), individual continuous 200423986 The duration of storm 2 (in minutes, hours, and days), and the total number of storms N · times (whether in one continuous exposure cycle or the sum of multiple consecutive exposure cycles). As used herein, "average, the applied current density and" average, the induced current density "means the generation of at least one organism of interest (for example, a human, animal, plant, or the like). —Parts, or their cells) the average current per unit area of the cell membrane. For example, if the biological system of interest is a human and the part of interest is the entire hand of the human, the average current density is the average value for the entire hand, that is, the average current density is 10 degrees as The sum of the current densities of the various parts of the hand divided by the sum of their areas. Special formulas and techniques described later here are used to estimate the average applied current density and average induced current density. Unless explicitly stated otherwise, the term “organism” encompasses both humans and other types of organisms. 15 A specific example of the present invention relies on an applied electric current. Preferably, the applied current density is in the range of about 10 to about 2000 lnA / m2. Another embodiment of the invention relies on a particularly low amount of induced current to control the movement of ions across the cell membrane. In order to treat a disorder caused or caused by an abnormal ion concentration of one of 20 in a cell of a living body, specific examples of the induced current include exposing the living body to an external electric field which generates a voltage of about 0.001 mA / m2 to about 15 mA / m2, preferably about 0.001 mA / m2 to about 10 mA / m2, more preferably about 0.01 mA / m2 to about 2 mA / m2, the average (mean) induced current density across the cell membrane. In a preferred embodiment, the field (E) of the external electric 9 200423986 is measured by a term in the formula E = Ι / εοωδ, where S is a section of an electric field measurement sensor. , Ε0 is an induction rate in a vacuum, I is a current, ω is 2πί, and f is a frequency. It is also preferable to measure the induced current (J) by the term in the formula J == I / B 5, where I is a measured current and B is a circle expressed as B = Α2 / 4π Area (circle area), A is a circle expressed as A = 2icr, and r is a radius. In an additional preferred embodiment of the invention, the induced current density is generated throughout the cell membrane for a continuous period of about 10 minutes to about 240 minutes. In 10 repeated implementations (In reapplication), the average induced current density is preferably generated over a continuous period of about 30 minutes to about 90 minutes, preferably resulting in a total exposure time of less than about 1,500 minutes. The two specific examples of applied current and induced current outside the present invention can be applied to an entire body or only a part of the body. The part of the body 15 may include a limb, an organ, defined body tissue, a part of the body (such as the trunk), a body system, or a subsection of the same. A trained individual can determine a particular obstacle to apply to an entire body or part of the body according to the present invention. The invention may further include providing a calcium supplement, a one-dimensional 20-vitamin D supplement, a plant agglutination (ectin) supplement, or a combination of these supplements to the organism. Preferably, the plant lectin supplement comprises Concanavalin A or wheat germ agglutinin. In a preferred embodiment, the present invention changes or affects about about 10 200423986 or other cations or polyvalent cations (including cationic electrolytes and proteins that play an important role in activating extracellular Ca-2 + -associated electro-sensitive calcium receptor (CaR) in extracellular fluid) Flow. 5 An alternative embodiment of the present invention relates to a device used as an EF therapy. A preferred EF therapy device is an electric field therapy device, which includes: a main electrode and a counter electrode (0pp0Sed electrode); a voltage for applying a voltage to the electrodes to generate p (voltage generator); an inductive current generator that controls an external electric field by changing the electrical voltage or the distance between the opposite electrode and the living body or part thereof; and a means for driving the voltage generator power supply. Preferably, the voltage generator has a booster coil and the voltage generator is grounded at a middle point or one end of the booster coil. In a more preferred treatment device of the present invention, it has a main 15 electrode and an opposite electrode, the opposite electrode is arranged close to a human body's head, shoulders, abdomen, waist or hips, And the distance between the opposite electrode and the surface of the torso range of the human individual is about 丨 to even cm, more preferably about 1 to 15 cm. In alternative aspects, the opposing electrode system is a ceiling, wall, floor, furniture, or other object or surface within the phase. 2〇 Alternative—An alternative specific example involves determining the optimal parameters for the needle shaft EF or external current therapy. -A better method to determine the best parameters for the occupational law includes the following steps: (i) identify a desired biological response to be induced in a living organism; (ii) screen or measure a The average 11 200423986 induced current density on the cell membrane of an organism or a tissue sample or cell derived from the organism; (iii) screening or measuring an external electric field that is separated from the organism, sample or A specific distance of the culture will produce a screened or measured induced current density; (iv) a screen or measurement of a continuous time period used to produce a screened or measured induced current density on the cell membranes; (v) Applying 5 the screened or measured electric field to the organism, sample or culture to produce the screened or measured induced current density on the cell membranes for a continuous period of time that is screened or measured; (vi) Determine the extent to which the desired biological response occurs; (vii) selectively repeat any of steps (ii) to (vi); and / or (viii) confirm that the desired biological response is best elicited Work 10 The induced current density values are measured or screened, as a value of the external electric field is measured or screened or as a value of the continuous time period is measured or screened. For this specific example, the term "measurement" includes situations where the experimenter chooses the parameter values unconsciously, intentionally, or initially. For example, the term "measurement" includes a case where an EF device produces a random or initially unknown 15 average induced current density, and the researcher directly or indirectly decides how much that amount. The invention is further illustrated by the following figures and detailed description. Brief Description of the Drawings 20 Figure 1 shows an electric field exposure jidl (field exposure dish) in an EF exposure system; Figure 2 shows the percentage of viable cells after EF exposure; Figure 3 shows the ratio of cells containing 12.5 There was a significant increase in the number of high [Ca2 +] j® cells in both EF exposed and unexposed cell suspensions of pg / ml Con-A 12 200423986. Figures 4A and 4B summarize the different concentrations of Con -A, results with EF-exposed cell cultures without ImM CaCl2; Figure 5 shows EF-exposed and unexposed cells containing phytohemaglutinin (5 PHA). In both cells, high [〇32 +]. There was a significant increase in cells; Figure 6 shows that when supplemented with 3.125-12.5 pg / ml of Con-A, both EF exposed and unexposed cells were compared to those stimulated at 0.025 pg / ml Con-A cells have a significant increase in high [Ca2 +] c ^ cells; Figure 7 illustrates the increase in calcium concentration induced by ConA in splenocyte cells; Figure 8 shows Time course of DiBAC staining intensity in BALB 3T3 mouse embryo cells stimulated with a final concentration of 0.4 μM A23187; Figure 9 shows an electric field that produces a current density of about 200 uA / cm2 at 100 Hz (EF) Effect on membrane potential in BALB3T3; Figure 10 also shows the effect of an electric field (EF) generating a current density of about 200 μA / (: ηι2 at 100 Hz on membrane potential in BALB 3T3; Figure 11 Shows the effect of stress on the level of plasma adrenocorticotropic hormone (hereinafter referred to as "ACTH"); Figures 12A and 12B show exposure to EF in normal and ovariectomized (B) rats Effect of Plasma ACTH Level; Figure 13 shows EF exposure Effect on blood tight ACTH levels in normal rats (n =: 6); 13 200423986 Figures 14A and 14B show that EF exposure is constrained-induced in normal palate and Indian nest resection (B) rats (B) restraint-induced) changes in plasma glucose levels; Figures 15A and 15B show EF exposure on restraint-induced plasma lactate sites in normal tadpoles and Indosectomy 5 (B) rats Figure 16 shows the effect of EF exposure on restraint-induced plasma pyruvate levels in ovariectomized rats; Figure 17 shows the effect of EF exposure on ovariectomy Effect of Constrained _ 10 Induced White Blood Cell (WBC) Counts in Rats; Figure 18 illustrates an example of an electric field generated by the use of an EF therapy device (in this case 'a BioniTron chair from the White Brother Health Science Association) A conceptual outline of Fig. 19 is a schematic diagram 15 of a preferred EF therapy device of the present invention; Figs. 20A and 20B show another preferred EF therapy device; Figs. 21A and 21B show another A better EF therapy pack Figure 22 is a diagram showing a preferred electronic configuration of an EF therapy device. Figure 23A is a front view of a stimulated human body, and Figure 23B is a perspective view. Fig. 23C is a diagram showing an EF measurement sensor attached to the neck of the body; Fig. 24 shows a device for measuring an induced current generated by the EF therapy device Figure 14 shows the relationship between an applied voltage (appHed v〇itage) and an induced current; Figure 26 shows the relationship between the position of a head electrode and the current induced in the neck Relationship; 5, > _ Figure 27 illustrates the induced current density (mA / m2) at different locations of an ungrounded human individual; and Figure 28 shows the mitigation effect of EF exposure on different human symptoms. Embodiment 3 Detailed description of the preferred embodiment A. Method of regulating ion flow across the cell membrane (MethOd 0f Mofdulating Ion Flux Across Cell Membranes) An ion imbalance may originate from a disorder or condition, Or it could be a side effect of a medical treatment or supplement. The present invention changes the ion flow across the cell membrane by generating a current across the cell membrane. The invention also affects the composition of 15 cell membranes (such as its transmembrane proteins). The present invention can restore or balance cellular ionic homeostasis or change the membrane potential of cell membranes. Therefore, the present invention is applicable to prevent or treat disorders related to cell or extracellular ion concentrations such as calcium (Ca2), magnesium, sodium (Na +), potassium (κ +), and chlorine (cr) concentrations. 20 In order to treat disorders related to serum calcium concentration, the average induced current density generated across the cell membrane is preferably about 0.3 mA / m2 to about 0.6 mA / m2 'more preferably about 0.4 mA / m2 to about 0.5 mA / m2, the best is about 0.42 mA / m2. Using an externally applied current to treat a disorder related to serum maternal concentration 'The average externally applied current density is preferably about 60 mA / m2 to about 2,000,00,2004,23,986 mA / m2, and the average externally applied current density is A continuous period of time ranging from about 1 minute to about 20 minutes, more preferably from about 2 to about 10 minutes, is generated throughout the cell membrane. Tissues that can be administered by the methods of the present invention include, for example, musculo-skeletal tissues, tissues of the central and peripheral nervous system 5 (tissues of the central and peripheral nervous system), gastrointestinal system tissues, Reproductive system tissue (both male and female), pulmonary system tissues, cardiovascular system tissues, endocrine system tissues, immune system tissue (immune 10 system tissues), Lymphatic system tissues, and urogenital system tissues. Biofilms of eukaryotic cells, such as plasma membranes, are selectively permeable to these ion systems. Selective permeability allows to establish a membrane potential across the membrane. Cells use this membrane potential to transport molecules across the membrane. Many ions involved in generating a membrane potential perform vital functions. For example, a threshold concentration of I-bow ions in muscle cells initiates contraction. A threshold concentration of ma ion in exocrine cells of the pancreatic system triggers the secretion of digestive enzymes. Similarly, different concentrations of sodium and potassium ions are necessary for the electrical conduction of electrical impulses through nerve axons. A protein family widely known as voltage-gated ion channels maintains ion concentration and membrane potential. The voltage-gated ion channel is a transmembrane protein that contains ion-selective pores. The ion selects 16 200423986, and selects pores / syntheses depending on the configuration state of the distant channel (confomatial state) and allows ions. Through biofilm. The configuration state of the channel is affected by a voltage-sensitive portion that contains a charged (j amino acids) that reacts to the membrane potential. 5 The channel is Conductive (on / activated) or non-conductive (off / non-activated). Since special ions (ie, Ca2 +) are related to cardiovascular health, the present invention can be used to prevent and treat cardiovascular disorders. These Disorders include, for example, cardiomyopathy, dilated 10 congestive cardiomyopathy, hypertrophic cardiomyopathy, angina, variant angina, instability Unstable angina, atherosclerosis, aneurysms, abdominal aortic aneurysms, peripheral 15 arterial disease, blood pressure disorders (such as hypotension and Hypertension), orthostatic hypotension, chronic pericardiitis tis), arrhythmias, atrial fibrillation and flutter, heart disease, left ventricular hypertrophy, right 20 ventricular hypertrophy, Tachycardia, atrial tachycardia, ventricular tachycardia, and hypertension. The present invention can also be used to prevent or treat blood disorders. These blood disorders include, However, it is not limited to hyponatremia, hypernatremia 17 200423986 (hypernatremia), hypokalemi, hyperkalemia, hypocalcemia, and hypercalcemia. Hypercalcemia, hypophosphatemia, hyperphosphatemia, hypomagnesemia 5 and hypermagnesemia, and disorders of blood glucose regulation (such as diabetes , Adult diabetes, and adolescent diabetes). In a specific example of the present invention, a lectin and EF are co-applied to enhance Ca2 + flow across the cell membrane. Plant lectins useful in the present invention include, for example, concanavalin 10 (Akoncanavalin A) and wheat germ agglutinin. In another specific example, the ion current caused by the present invention is generated simultaneously with a calcium supplement. In another specific example, the ion current caused by the present invention is generated simultaneously with a vitamin D supplement or with a calcium supplement and a vitamin d supplement. Shuming's vitamin 0 supplements include, for example, Example 5 (Vitamin A (calciferol) and vitaminized alcohol). Likewise, the method of the present invention can be performed in conjunction with a supplemental light source that is applied to a biological sample or the surface of a patient. ㈣-a wavelength in the range of about 225 nm to about 700 nm. In a specific aspect of the present invention, the method and the method of the present invention are used to collectively engrave the light source 20 to emit a wavelength in the range of about 230 nm to about 313 nm. In an additional embodiment of the present invention, another molecule can be transferred across a cell membrane simultaneously with an ion current generated by the present invention. The additional molecules that can be transferred simultaneously with the ion current can be produced naturally by the body, or alternatively can be provided by means of supplementation (e.g., via a vitamin, etc.). Example 18 200423986 For example, cellular glucose uptake can be enhanced by the flow of calcium ions across a cell membrane. Additional molecules that can be transferred across a cell membrane simultaneously with an ion stream generated by the present invention include nutritional medicines (e.g., a nutritional supplement designed and formulated to help prevent or treat a disorder and / or condition). In addition, the method of the present invention can be used in conjunction with hyperalimeiitation treatment (e.g., administering nutrients beyond normal requirements to treat disorders, such as coma or severe burns or gastrointestinal disorders). Example 1 60 Hz Upregulates the cytoplasmic calcium (Ca2 +) level in spleen cells of mouse lectins stimulated by lectin 10 The EF exposure system used for this experiment consists of four parts: An electric field exposure dish made of polycarbonate; the function generator (SG-4101, IWATSU Co. Ltd., Tokyo, Japan); digital multi-meter ) (VOAC-7411 IWATSU, Tokyo, Japan); and control 15 devices (Hakuju Co. Ltd. Tokyo, Japan). Figure 1 shows an electric field exposure dish in an EF exposure system. The electric field exposure is covered by a cover (lid), a dish, and a doughnut-shaped insert (inner diameter: 12mm). An EF between two circular platinum electrodes (cell culture space) passes through the function generator Is generated and carefully adjusted by using the 20 controller and the digital multimeter. The field strength of the 60 Hz electric field is measured by measuring the cell culture space in the electric field exposure dish. Current density The current density is calculated by the formula: current density = 1 / S, where "Γ is the supplied cmrent (pA) and S is the cell 19 200423986 culture space (0 · 36π). Therefore, the current density can be calculated by: current density = 0.885Ι [μΑ / αη2]. Before EF exposure, about 1.5 ml of analysis buffer (137 mM NaCl, 5 mM KC1, 1 mM Na2HP〇4 5 mM glucose, 1 mM 5 CaCl2, 0.5 mM MgCl2, 0.1% (w / v) BSA and 10 mM HEPES pH 7.4) were poured into the electrode chamber. To avoid contact with cells and lower electrodes, a polycarbonate membrane (Isopore, MILLIPORE, MA USA) was placed between the jbi and the insert. Approximately 1 ml of the cell suspension was poured into a well / spacer and covered with a lid. 10 Cell preparation Female BALB / c mice (4-7 weeks old, available from CLEA Corporation (Tokyo, Japan)) housed in a traditional animal room equipped with a clean air filter The spleen was splenectomized and a cell suspension of spleen cells was prepared. To test cell viability (ceu 15 viability), the cells were cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum (FSB). (SIGMA, MO, USA)). These cells were maintained in Hanks' Balanced Salt Solution (HBSS) (SIGMA, MO, USA) during the [Ca2 +] d test. The [Ca2 +] test was detected within 4 hours after the cell preparation. get on. Cells were stored at 4ac before use. The viability of EF-exposed cells was measured. Mouse spleen cells (5 X 106 cells / ml) were exposed to 60 Hz, 6 μA / cm2 or 60 μΑ / οηι2 EF at 37 ° C, 5% Co2 lasted 30 minutes and 24 hours. Sham cells were left in an electric field exposure dish for 30 minutes and 20 200423986 for 24 hours, but were not exposed to EF. At the end of the 30-minute and 24-hour exposures, the cell suspension collected from the electric field exposure was stained with 2.5 pg / ml propidium iodide at 4 ° C for 30 minutes, and the percentage of dead cells It is calculated by flow cytometry5. Cell preparation and analysis of lectins for analysis of high [Ca2 +] Jm cells Using spleen cells (106 cells / ml) at 37 ° C to contain 2.5 μM of fluoro-3-acetoxymethyl (fluo-3- HBSS of acetoxylmethyl) (Molecular Probes, USA) [Vandenberghe et al., 1990] was cultured for 20 minutes. The 10 cell suspension was then diluted 5 times with HBSS containing 1% FBS, incubated at 37 ° for 40 minutes, washed 3 times with analysis buffer, and the cells were suspended in the suspension. The analysis buffer became a concentration of 1x 106 / ml. The cell suspension was gently mixed throughout the cell preparation. 15 Considering the EMF and mitogen (Walleczek and

Liburdy,1990)之間被報導出來的協同交互作用(Synergistic interaction) ’ 刀豆球蛋白 A(Con-A)(Seikagaku Co.,Tokyo, Japan)與植物血凝集素(Pha)(SIgmA,MO, USA)被使用。 用於測定60 Hz (6 μΑ/cm2) EF對於產生高[Ca2Um胞之效 20 用的實驗設計 在考慮到早期分析經暴露的鼠的脾細胞之生存能力測 試結果’我們選擇使用最佳的培養與暴露條件(60 Hz,6 pA/cm2EF)來進行下面五個實驗: ⑴懸浮在HEPES-緩衝溶液(BS) + 1 mM CaCl2的細胞 21 200423986 被暴露至EF歷時共40分鐘,且在暴露的最初8分鐘之後12.5 pg/ml的Con-A被添加。對照組係由含有Con-A之未經EF暴 露的細胞與不含Con-A之經EF暴露的細胞所組成。高 [Ca2+]c-細胞百分比在確定的暴露時間點被查驗; 5 (2)在HEPES-BS + 1 mM CaCl2中的細胞被暴露歷時共 12分鐘,且不同濃度(1 ng- 12.5 pg/ml)的Con_A在暴露的最 初4分鐘之後被添加。對照組本質上係與實驗組的相同但沒 有EF暴露; (3) 在HEPES-BS + 1 mM CaCl2中的細胞被暴露歷時共 10 8分鐘,且5 pg/ml的PHA在暴露的最初4分鐘之後被添加。 對照組係由含有PHA之未經EF暴露的細胞以及不含PHA之 經EF暴露的細胞所組成; (4) 懸浮在沒有CaCl2的HEPES-BS之細胞被暴露歷時共 12分鐘,且不同濃度(1 ng - 5 pg/ml)的Con-A在暴露的最初4 15 分鐘之後被添加。對照組本質上係與實驗組相同但沒有EF 暴露;以及 (5) 為了評估EF暴露的持續性效用,懸浮在HEPES-BS + 1 ml CaCl2的細胞被暴露歷時共4分鐘,而後不同濃度(0.025 -12.5 pg/ml)的Con-A被添加,且接下來沒有EF暴露的8分 20 鐘,高[Ca^+]。細胞的產生以流式細胞儀予以追縱。對照組 本質上係與實驗組相同但沒有任何EF暴露。 統計學分析(Statistical Analysis) 細胞生存能力的統計學分析經使用史徒登氏t試驗 (Student’s t test)而被決定出來。作為EF暴露在群組之間 22 200423986 [Ca ]c效用上的數據藉由 ANOVA(ANalysis Of VAriance between groups)、史徒登氏t試驗以及成對的丨試驗(paired t test)而被分析出來。所有針對統計學分析的計算在 MS-EXCEL® 日本版本(Microsoft Office software: Ver. 9.0.1 5 Microsoft Japan Inc· Tokyo, Japan)中被進行。 結果 第2圖顯示出在EF暴露之後存活細胞的百分比。在所 有二重複中’無論是在暴露至6 μΑ/cm2或是60 μΑ/cm2之 後,超過98%的細胞係為可存活的。 10 在含有12·5 Mg/ml Con-A之經EF暴露與未經暴露這兩 種細胞懸浮液中高[Ca2+]c細胞數目顯著地增加(第3圖)。在 第3圖中’圓形表示沒有Con-A的懸浮液,三角形表示被暴 露至EF之具有Con-A的懸浮液,而正方形表示沒有被暴露 至EF之具有Con-A的懸浮液。在沒有(^〇11-八存留之經£卩暴 !5露的細胞懸浮液中的高[Ca2+]c細胞本質上沒有改變。c〇n-A 誘導的反應立即被注意到並且在添加有絲分裂原(mit〇gen) 之後的5-8分鐘内達到一飽和點。在經暴露與未經暴露之 Con-A誘導的細胞之間的差異係為不顯著的 (insignificant) (Ρ>0·05)。 20 第4Α與4Β圖概述含有不同濃度的Con-A,有與沒有Liburdy (1990) reported a synergistic interaction between concanavalin A (Con-A) (Seikagaku Co., Tokyo, Japan) and phytohemagglutinin (Pha) (SIgmA, MO , USA). The experimental design used to determine 60 Hz (6 μA / cm2) EF for producing high [Ca2Um cells20 effect was designed taking into account the early analysis of the viability test results of the spleen cells of exposed mice 'We chose to use the best culture The following five experiments were performed with exposure conditions (60 Hz, 6 pA / cm2EF): ⑴ Cells suspended in HEPES-buffered solution (BS) + 1 mM CaCl2 21 200423986 were exposed to EF for a total of 40 minutes, and in the exposed Con-A was added at 12.5 pg / ml after the first 8 minutes. The control group consisted of EF-exposed cells with Con-A and EF-exposed cells without Con-A. High [Ca2 +] c-cell percentages were examined at determined exposure time points; 5 (2) Cells in HEPES-BS + 1 mM CaCl2 were exposed for a total of 12 minutes, and different concentrations (1 ng- 12.5 pg / ml Con_A is added after the first 4 minutes of exposure. The control group was essentially the same as the experimental group but without EF exposure; (3) Cells in HEPES-BS + 1 mM CaCl2 were exposed for a total of 10 8 minutes, and 5 pg / ml of PHA during the first 4 minutes of exposure Added later. The control group consisted of cells not exposed to EF with PHA and cells exposed to EF without PHA; (4) Cells suspended in HEPES-BS without CaCl2 were exposed for a total of 12 minutes and at different concentrations ( Con-A (1 ng-5 pg / ml) was added after the first 4 15 minutes of exposure. The control group was essentially the same as the experimental group but without EF exposure; and (5) In order to evaluate the sustained effect of EF exposure, cells suspended in HEPES-BS + 1 ml CaCl2 were exposed for a total of 4 minutes, and then at different concentrations (0.025 -12.5 pg / ml) of Con-A was added, and the next 8 minutes and 20 minutes without EF exposure were high [Ca ^ +]. The production of cells was followed by flow cytometry. The control group was essentially the same as the experimental group but without any EF exposure. Statistical Analysis Statistical analysis of cell viability was determined using the Student's t test. The data on the utility of EF exposure between groups 22 200423986 [Ca] c were analyzed by ANOVA (Analysis Of VAriance between groups), Stuart's t test, and paired t test. . All calculations for statistical analysis were performed in the MS-EXCEL® Japanese version (Microsoft Office software: Ver. 9.0.1 5 Microsoft Japan Inc. Tokyo, Japan). Results Figure 2 shows the percentage of viable cells after EF exposure. In all two replicates', either after exposure to 6 μA / cm2 or 60 μA / cm2, more than 98% of the cell lines were viable. 10 The number of high [Ca2 +] c cells increased significantly in both EF-exposed and unexposed cell suspensions containing 12.5 Mg / ml Con-A (Figure 3). In Fig. 3, the circle indicates a suspension without Con-A, the triangle indicates a suspension with Con-A exposed to EF, and the square indicates a suspension with Con-A not exposed to EF. High [Ca2 +] c cells in cell suspensions that did not survive the exposure were essentially unchanged. The reaction induced by cOnA was immediately noticed and the mitogen ( Mitogen) reached a saturation point within 5-8 minutes. The difference between exposed and unexposed Con-A-induced cells was insignificant (P > 0.05). 20 Figures 4A and 4B outline the different concentrations of Con-A, with and without

ImM的CaCl2之經EF暴露的細胞培養物的結果。第4A圖顯 不含有lmM的CaCl2之培養物的結果。在第4A圖中,經ef 暴露的培養物(黑色直條)與沒有被暴露至EF的培養物(白色 直條)這兩者含有ImM的CaCh以及不同濃度的con-A (〇.〇1 23 200423986 pg/ml至5 pg/ml)。CaCl2存在時(第4A圖),EF顯著地增強 了 Con-A依賴性的[Ca2+]c(/><〇.〇l: ANOVA)。雖然在0.675 -5.0 pg/ml (:〇11-八刺激的群組中高[〇32+](:細胞的增加係為較 實質的,但只有1.25 pg/ml與2.5 pg/ml Con-A誘導的細胞顯 5 示出顯著的差異(尸<〇·〇5:成對的t試驗)。在第4B圖中,經EF 暴露的培養物(黑色直條)與沒有被暴露至EF的對照組培養 物(白色直條)這兩者含有不同濃度的Con-A,但不含 CaCl2 〇在對照組與經EF暴露這兩個群組中,在沒有Ca2+的 細胞狀態下(第4B圖)Con-A依賴性的[Ca2+]c上昇係為微小 10 的。 為了測定EF依賴性的[Ca2+]c向上調節作用 (upregulation)是否受限於Con-A,經PHA刺激的細胞亦被分 析。含有PHA之經EF暴露與未經暴露這兩種細胞在高 [Ca2+]c細胞上顯示出顯著的增加(第5圖)。然而相較於該未 15 經暴露的群組,在經EF暴露之細胞中的增加係為顯著的 〇Ρ<0·05:成對的t試驗)。ImM CaCl2 results from EF-exposed cell cultures. Figure 4A shows the results of a culture without CaCl2 containing lmM. In Figure 4A, the cultures exposed by ef (black bars) and those not exposed to EF (white bars) contain ImM CaCh and different concentrations of con-A (0.01 23 200423986 pg / ml to 5 pg / ml). In the presence of CaCl2 (Figure 4A), EF significantly enhanced the Con-A-dependent [Ca2 +] c (/ > < 0.01: ANOVA). Although 0.675 -5.0 pg / ml (: 〇11-eight stimulated group is high [〇32 +] (: cell increase line is more substantial, but only 1.25 pg / ml and 2.5 pg / ml Con-A induction Significant difference was shown in 5 of the cells (cadaver <0.05; paired t-test). In Figure 4B, cultures exposed by EF (black bars) were compared to controls not exposed to EF. Group cultures (white bars) contained different concentrations of Con-A, but did not contain CaCl2. In the two groups of control group and EF exposure, in the state of cells without Ca2 + (Figure 4B) Con-A-dependent [Ca2 +] c rise is minimal 10. To determine whether EF-dependent [Ca2 +] c upregulation is restricted to Con-A, cells stimulated with PHA were also analyzed. Both EF-exposed and unexposed PHA-containing cells showed a significant increase in high [Ca2 +] c cells (Figure 5). However, compared to the non-exposed group, exposure to EF The increase in the cells is a significant OP < 0.05: paired t-test).

相較於被刺激以0.025 pg/ml Con-A的那些細胞,添加 3.125-12.5 pg/ml的Con-A至細胞懸浮液(無論是未經暴露亦 或是初期被暴露至EF歷時4分鐘)中在高[Ca2+]c細胞上顯示 20 出顯著的增加(第6圖)。被刺激以3.125與6.25 pg/ml Con-A 的細胞在高[Ca2+]c細胞(其在Con-A刺激後大約8分鐘持平) 上展現出持續性的增加,反之,被刺激以較高濃度 Con-A(12.5 pg/ml)的細胞培養物在Con-A刺激後大約4分 鐘,於高[Ca2+]j®胞上顯示出一衰退。EF暴露的增強效用 24 200423986 只有在6.25 pg/ml Con-A的存在下於2-4分鐘時(Ρ<0·05:成 對的t試驗)係為顯著可證實的。 實施例2-低頻率電場對於在人類血管内虔細胞(Human Vascular Endothelial cells)中血管活性物質誘導(Vasoactive 5 Substance -Induced)細胞内鈣(Ca2+)反應的影響。 為了評估EF在人類血管内皮細胞(以下稱為HUVEC)上 的效用,細胞内鈣位準以HUVEC被刺激以ATP與組織胺的 方式被檢測出來。為了評估EF在HUVEC上的效用,HUVEC 被暴露至一個50 Hz(30,000 V/m),3,000伏特的EF。HUVEC 10 上的EF感應電流密度被估算出來係為0.42 mA/m2。HUVEC 被暴露至這些測試參數歷時24小時。 在暴露之後,細胞質游離Ca2+濃度藉由fluo3流式細胞 儀被測定出來。一在fluo3影像強度上的改變以即時曝光共 輛焦雷射顯微鏡(real-exposure confocal laser microscopy)予 15 以確認。結果證實EF增加了 HUVEC中的鈣濃度。 B·治療增生性細胞障礙(Proliferative cell disorders)的方法 為治療增生性細胞障礙,特別是涉及分化的纖維母細 胞(differentiated fibroblast cells)的那些,被產生遍及細胞膜 的平均感應電流密度較佳地係為約〇·1 mA/m2至約2 20 mA/m2,更較佳約0.2 mA/m2至約1·2 mA/m2,且仍更較佳約 0.29 mA/m2至約1.12 mA/m2。用外施電流,被產生遍及細 胞膜的平均外施電流密度較佳地約10 mA/m2至約1〇〇 mA/m2 ° 纖維母細胞係為一種衍生自胚胎中胚層組織 25 200423986 (embryonic mesoderm tissue)的細胞類型。纖維母細胞能夠 在活體外培養,並且分泌基質蛋白質(matrix proteins)諸 如,層粘連蛋白(laminin)、纖維連結素(fibronectin),以及 膠原蛋白。經培養的纖維母細胞通常不會像組織纖維母細 5 胞一樣分化。然而,有適當刺激時,纖維母細胞具有能力 分化成為許多細胞類型諸如,例如,脂肪細胞、結締組織 細胞、肌肉細胞、膠原纖維(collagen fibers)等等。 特定的纖維母細胞能夠分化成許多與結締組織以及肌 肉骨骼系統(musculoskeletal system)有關的細胞類型,控制 10 未分化的纖維母細胞在活體内或活體外生長的方法可應用 於控制衍生自纖維母細胞之已分化的細胞之生長。例如, 肌肉骨絡糸統組織的過度增生性障礙(hyperproliferative disorders)可藉由預防纖維母細胞生長的方法予以控制或預 防。我們測定出產生一個約10、50或100 mA/m2的外施電流 15 密度遍及細胞膜歷時一個約24小時/天,至少約7天的時間 以一個電流密度依賴方式抑制經培養的纖維母細胞之生 長0 過度增生性障礙包括,例如,與結締以及肌肉骨骼系 統組織有關的腫瘤(neoplasms),諸如纖維肉瘤 20 (fibrosarcoma)、橫紋肌肉瘤(rhabdomyosarcoma)、黏液肉瘤 (myxosarcoma)、軟骨肉瘤(chondrosarcoma)、惡性骨肉瘤 (osteogenic sarcoma)、脊索瘤(chordoma),以及脂肉瘤 (liposarcoma)。可以使用本發明方法來被預防、改善或治療 之額外的過度增生性障礙包括,例如,惡性腫瘤 26 200423986 (malignancies)的進展(progression)和/或轉移,此等惡性腫 瘤包括位於諸如:腹部(the abdomen)、骨頭、腦、乳房、 結腸、消化系統、内分泌腺(腎上腺、副甲狀腺、腦下垂體、 睪丸、卵巢、胸腺、甲狀腺)、眼睛、頭部與頸部、肝臟、 5 淋巴系統、神經系統(中樞的與周邊的)、胰臟、骨盆、腹膜 (peritoneum)、皮膚、軟組織(soft tissue)、脾臟、胸部,以 及泌尿生殖道(urogenital tract)的腫瘤,白血病(leukemias) [包括急性前骨體細胞性(acute promyelocytic)、急性淋巴細 胞性白血病(acute lymphocytic leukemia)、急性骨髓:性白血 10 病(acute myelocytic leukemia)、骨體母細胞性 (myeloblastic)、前骨髓:細胞性(promyelocytic)、骨髓單核細 胞性(myelomonocytic)、單核球性(monocytic)、紅血球性白 血病(erythroleukemia)]、淋巴瘤(lymphomas)[包括何杰金 (Hodgkins)與非何杰金淋巴瘤(non-Hodgkins 15 lymphomas)]、多發性骨髓:瘤(multiple myeloma)、結腸癌 (colon carcinoma)、前列腺癌(prostate cancer)、肺癌(lung cancer)、小細胞肺癌(small cell lung carcinoma)、支氣管癌 (bronchogenic carcinoma)、睪丸癌(testicular cancer)、子宮 頸癌(cervical cancer)、印巢癌(ovarian cancer)、导匕癌(breast 20 cancer)、血管肉瘤(angiosarcoma)、淋巴管肉瘤 (lymphangiosarcoma)、内皮肉瘤(endotheliosarcoma)、淋巴 管内皮肉瘤(lymphangioendotheliosarcoma)、滑液膜癌 (synovioma)、間皮細胞瘤(mesothelioma)、依汉氏瘤(Ewing’s sarcoma)、平滑肌肉瘤(leiomyosarcoma)、鱗狀細胞癌 27 200423986 (squamous cell carcinoma)、基底細胞癌(basal cell carcinoma)、胰臟癌(pancreatic cancer)、腎細胞癌(renal cell carcinoma)、威爾姆氏腫瘤(Wilm’s tumor)、肝癌 (hepatoma)、膽管癌(bile duct carcinoma)、腺癌 5 (adenocarcinoma)、上皮細胞癌(epithelial carcinoma)、黑色 素瘤(melanoma)、汗腺癌(sweat gland carcinoma)、皮脂腺 癌(sebaceous gland carcinoma)、乳突癌(papillary carcinoma)、乳突狀腺癌(papillary adenocarcinoma)、神經 膠質瘤(glioma)、星狀細胞瘤(astrocytoma)、神經管胚細胞 10 瘤(medulloblastoma)、顱咽管瘤(craniopharyngioma)、室管 膜瘤(ependymoma)、松果腺瘤(pinealoma)、血管母細胞瘤 (hemangioblastoma)、聽神經瘤(acoustic neuroma)、寡樹突 膠質瘤(oligodendroglioma)、腦膜瘤(meiiangioma)、神經母 細胞瘤(neuroblastoma)、視網膜母細胞瘤(retinoblastoma)、 15 膀胱癌(bladder carcinoma)、胚性癌(embryoTial carcinoma)、 囊腺癌(cystadenocarcinoma)、髓樣腺管癌(medullary carcinoma)、絨毛膜癌(choriocarcinoma),以及精細胞瘤 (seminoma) 〇 實施例3-EF暴露對於鼠的脾細胞輿3T3/A31纖維母細胞中 20 Ca2+濃度的影響 對鼠的脾細胞的影響 為了測定EF對鼠的脾細胞中鈣離子濃度的影響,6〇Hz 之特殊的EF電場暴露被施用於鼠的脾細胞。小鼠在麻醉下 被切除脾臟。在一個60 mm的皿中,脾臟被注入以pbs(含 28 200423986 有0.083% NhCl的磷酸鹽緩衝溶液)。該等細胞被再懸浮並 且於[Ca2+]c檢測期間被維持在漢克斯氏平衡鹽溶液 (HBSS)(SIGMA,MO, USA)中,該,2+]。檢測在細胞製備後 的4小時内被進行。細胞在使用前被貯存在4°c。 5 施用一個60 Hz EF於脾細胞上產生了 6、20、60,以及 200 μΑ/cm2的外施電流密度。脾細胞被暴露至這些條件下 歷時4分鐘,在這些暴露之後,該等脾細胞樣品以刀豆球 蛋白A(ConA)予以刺激。在脾細胞以c〇nA刺激之後,細胞 質游離Ca2+濃度藉由fluo3流式細胞儀予以測定。 10 該實驗證實了 ConA增加脾細胞中的約濃度。妈離子濃 度因著一個6-200 μΑ/cm2 EF之施用而增加。更重要地,舞 離子濃度的增加係取決於電流密度(參見第7圖,其中Y軸顯 示鈣濃度,而X軸顯示時間,以分鐘為單位)。 對BALB 3T3的影響 15 為了測定EF對於鼠的3T3/A31纖維母細胞中鈣離子濃 度的影響,該等3T3細胞被引至一在60Hz的EF。3T3細胞株 係得自於日本原生動物疾病國際研究中心的細胞銀行(tlle cell bank of the Japanese National Research Center forCompared to those cells stimulated with 0.025 pg / ml Con-A, add 3.125-12.5 pg / ml Con-A to the cell suspension (whether unexposed or initially exposed to EF for 4 minutes) Medium shows a significant increase on high [Ca2 +] c cells (Figure 6). Cells stimulated with 3.125 and 6.25 pg / ml Con-A exhibited a sustained increase in high [Ca2 +] c cells (which were flat about 8 minutes after Con-A stimulation), whereas they were stimulated at higher concentrations Con-A (12.5 pg / ml) cell cultures showed a decline on high [Ca2 +] j® cells approximately 4 minutes after Con-A stimulation. The enhanced effect of EF exposure 24 200423986 was significantly verifiable only in the presence of 6.25 pg / ml Con-A at 2-4 minutes (P < 0.05: paired t-test). Example 2-Effect of Low Frequency Electric Field on Vasoactive 5 Substance-Induced Intracellular Calcium (Ca2 +) Response in Human Vascular Endothelial Cells In order to evaluate the effect of EF on human vascular endothelial cells (hereinafter referred to as HUVEC), intracellular calcium levels were detected by HUVEC stimulated by ATP and histamine. To evaluate the effectiveness of EF on HUVEC, HUVEC was exposed to a 50 Hz (30,000 V / m), 3,000 volt EF. The EF induced current density on HUVEC 10 is estimated to be 0.42 mA / m2. HUVEC was exposed to these test parameters for 24 hours. After exposure, the cytoplasmic free Ca2 + concentration was determined by a fluo3 flow cytometer. A change in fluo3 image intensity was confirmed by real-time exposure to a real-exposure confocal laser microscopy (15). The results confirmed that EF increased the calcium concentration in HUVEC. B. The method of treating proliferative cell disorders is to treat proliferative cell disorders, especially those involving differentiated fibroblast cells. The average induced current density generated across the cell membrane is preferably It is about 0.1 mA / m2 to about 2 20 mA / m2, more preferably about 0.2 mA / m2 to about 1.2 mA / m2, and still more preferably about 0.29 mA / m2 to about 1.12 mA / m2. With an applied current, the average applied current density generated across the cell membrane is preferably about 10 mA / m2 to about 100 mA / m2. The fibroblast cell line is an embryonic mesoderm tissue 25 200423986 (embryonic mesoderm tissue ) Cell type. Fibroblasts can be cultured in vitro and secrete matrix proteins such as laminin, fibronectin, and collagen. Cultured fibroblasts usually do not differentiate like tissue fibroblasts. However, with appropriate stimulation, fibroblasts have the ability to differentiate into many cell types such as, for example, adipocytes, connective tissue cells, muscle cells, collagen fibers, and the like. Specific fibroblasts are able to differentiate into many cell types related to connective tissue and the musculoskeletal system. Methods to control the growth of undifferentiated fibroblasts in vivo or in vitro can be applied to control derived from fibroblasts The growth of differentiated cells. For example, hyperproliferative disorders of the musculoskeletal system can be controlled or prevented by preventing fibroblast growth. We determined that an applied current of about 10, 50, or 100 mA / m2 was generated across the cell membrane at a density of about 24 hours / day for at least about 7 days to inhibit the growth of fibroblasts in a current density-dependent manner. Growth 0 Hyperproliferative disorders include, for example, neoplasms associated with connective and musculoskeletal tissues, such as fibrosarcoma 20 (rhabdomyosarcoma), myxosarcoma, chondrosarcoma, Osteogenic sarcoma, chordoma, and liposarcoma. Additional hyperproliferative disorders that can be prevented, ameliorated or treated using the methods of the present invention include, for example, the progression and / or metastasis of malignancies 26 200423986 (malignancies). These malignancies include those located in, for example, the abdomen ( the abdomen), bones, brain, breasts, colon, digestive system, endocrine glands (adrenal, parathyroid, pituitary, testis, ovary, thymus, thyroid), eyes, head and neck, liver, 5 lymphatic system, Neoplasms of the nervous system (central and peripheral), pancreas, pelvis, peritoneum, skin, soft tissue, spleen, chest, and urogenital tract, leukemias [including acute Anterior bone somatic (acute promyelocytic), acute lymphocytic leukemia, acute bone marrow: acute myelocytic leukemia, myeloblastic, anterior bone marrow: promyelocytic ), Bone marrow mononuclear (myelomonocytic), monocytic (monocytic), red blood cells Erythroleukemia], lymphomas [including Hodgkins and non-Hodgkins 15 lymphomas], multiple myeloma: multiple myeloma, colon cancer (colon carcinoma, prostate cancer, lung cancer, small cell lung cancer, bronchogenic carcinoma, testicular cancer, cervical cancer, Yin Chao Ovarian cancer, breast 20 cancer, angiosarcoma, lymphangiosarcoma, endotheliosarcoma, lymphangioendotheliosarcoma, synovial membrane cancer (synovioma), Mesothelioma, Ewing's sarcoma, leiomyosarcoma, squamous cell carcinoma 27 200423986 (squamous cell carcinoma), basal cell carcinoma, pancreatic cancer ), Renal cell carcinoma, Wilm's tumor, liver cancer (hepatoma), bile duct carcinoma, adenocarcinoma 5 (epithelial carcinoma), melanoma, sweat gland carcinoma, sebaceous gland carcinoma, breast Papillary carcinoma, papillary adenocarcinoma, glioma, astrocytoma, meduloblastoma, craniopharyngioma, craniopharyngioma, Ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meiangioma, neuroblastoma (Neuroblastoma), retinoblastoma, 15 bladder cancer, embryo cancer (embryoTial carcinoma), cystadenocarcinoma, medullary carcinoma, choriocarcinoma ), And seminoma. Example 3-EF exposure to mouse splenocytes and 3T3 / A31 fibers Effect of 20 Ca2 + Concentration in Uteroblasts on Mouse Spleen Cells In order to determine the effect of EF on calcium ion concentration in mouse spleen cells, a special EF electric field exposure at 60 Hz was applied to mouse spleen cells. Mice were excised from the spleen under anesthesia. In a 60 mm dish, the spleen was injected with pbs (a phosphate buffer solution containing 0.083% NhCl 28 200423986). The cells were resuspended and maintained in Hanks' Balanced Salt Solution (HBSS) (SIGMA, MO, USA) during [Ca2 +] c assay, which, 2+]. Detection was performed within 4 hours after cell preparation. Cells were stored at 4 ° C before use. 5 Application of a 60 Hz EF to spleen cells produced 6, 20, 60, and 200 μA / cm2 of applied current density. Splenocytes were exposed to these conditions for 4 minutes, and after these exposures, the splenocyte samples were stimulated with concanavalin A (ConA). After spleen cells were stimulated with cOnA, the cytoplasmic free Ca2 + concentration was measured by a fluo3 flow cytometer. 10 This experiment confirms that ConA increases the approximate concentration in splenocytes. The ma ion concentration was increased by the application of a 6-200 μA / cm2 EF. More importantly, the increase in dance ion concentration depends on the current density (see Figure 7 where the Y-axis shows the calcium concentration and the X-axis shows the time in minutes). Effect on BALB 3T3 15 In order to determine the effect of EF on calcium ion concentration in mouse 3T3 / A31 fibroblasts, these 3T3 cells were directed to an EF at 60 Hz. The 3T3 cell line was obtained from the tlle cell bank of the Japanese National Research Center for

Protozoan Disease)並且生長在37°C,含有5% FCS 與 10 mM 20 HEPES 的 DMEM 中。 EF產生一個200 μΑ/cm2之遍及細胞的外施電流密度。 在暴露2分鐘之後,細胞質游離Ca2+濃度藉由flu〇3流式細胞 儀予以測定,fluo3流式細胞儀顯示出在該等細胞中鈣濃度 增加。一在fluo3影像強度上的改變以共軛焦雷射顯微鏡予 29 200423986 以確認。 宜座例4-鈣離子通道(Ionophore)與EF對於BALB 3T3中膜 重包的影響Protozoan Disease) and grown at 37 ° C in DMEM containing 5% FCS and 10 mM 20 HEPES. EF produced a 200 μA / cm2 applied current density throughout the cells. After 2 minutes of exposure, the cytoplasmic free Ca2 + concentration was measured by a fluO3 flow cytometer, and the fluo3 flow cytometer showed an increase in calcium concentration in these cells. A change in the fluo3 image intensity was confirmed with a conjugate focus laser microscope 29 200423986. Case 4-Effects of Calcium Channels (Ionophore) and EF on the Membrane Repackaging in BALB 3T3

第8圖顯示出約ionophore改變鼠的BALB 3T3/A31纖維 5 母細胞/胚胎細胞的膜電位。第8圖展示出被刺激以一最終 濃度0.4 mM A23187之BALB 3T3細胞中DiBAC強度的時 程變化。A23187係為一萃取自汾re/加/wyees c/wrir徵se/Ls/s 的單竣酸(11101100&1±)(^7价3(:丨(1),其為一種可動載體妈離子 通道。DiBAC係為一螢光染劑,當細胞膜的電位改變時其 10 進入細胞膜中。因此,當該等BALB 3T3細胞的細胞膜去極 化時,DiBAC進入那些細胞膜中,藉此,增加了在該等BALB 3T3細胞中DiBAC信號的強度(Y軸)。Figure 8 shows that the membrane potential of mouse BALB 3T3 / A31 fibers 5 embryonic / embryonic cells is altered by about ionophore. Figure 8 shows the time course of DiBAC intensity in BALB 3T3 cells stimulated at a final concentration of 0.4 mM A23187. A23187 is a monounsaturated acid (11101100 & 1 ±) (^ 7valence3 (: 丨 (1)) extracted from fenre / plus / wyees c / wrir sign / Ls / s. DiBAC is a fluorescent stain, which enters the cell membrane when the potential of the cell membrane changes. Therefore, when the cell membrane of these BALB 3T3 cells is depolarized, DiBAC enters those cell membranes, thereby increasing the DiBAC signal intensity (Y-axis) in these BALB 3T3 cells.

第9圖顯示出一在100 Hz的電場(EF)對於BALB 3T3中 膜電位的影響,該電場產生一大約200 mA/cm2的電流密 15 度。在膜電位上的改變以流式細胞儀予以測量。關於流式 細胞儀的方法學係如下所示。在DMEM中的培養物被補充 以5% FCS lOmM HEPES。其接而以〇·〇2 %胰蛋白酶與 0.025 % EDTA予以脫離(de-touched)。其接而被再懸浮於 HEPES 緩衝溶液(137 mM NaCl、5 mM KC1、1 mM 20 Na2HP04、5 mM 葡萄糖、1 mM CaC12、0.5 mM MgC12、 0.1 % (w/v) BSA以及 10 mM HEPES pH 7.4)中。其接而以一 最終濃度200nM的DiBAC4(3)予以载入(loaded)。其被培育 在37T:下歷時>5分鐘。接著,流式細胞儀測量法被執行。 第10圖亦顯示出一在100 Hz的電場(EF)對於BALB 3T3 30 200423986 中膜電位的影響’該電場產生一大約2〇〇 mA/cm2的電流密 度。 實施做改變滑膜纖維母細胞(Synovia! ^ 隙連繫(Gap Junction Intercellular 5 Commimication)。― 我們檢測低位準電流對於由connexin43蛋白質所調節 的細胞間隙連繫(GJIC)之影響。滑膜纖維母細胞(HIG-82) 與神經母細胞瘤(neuroblastoma cells)(5Y)的匯合的單細胞 層被暴i各在培育溶液中(bath solution),0-75mA/m2(0-56 10 mV/m ’ 60 Hz) ’ 且單波道電導(S][ngie_channei conductance)、 細胞膜電流-伏特(I-V)曲線,以及Ca2+湧入(influx)使用寧司 泰定(nystatin)double- and single_patch methods而被測量出 來。在被暴露於20 mA/m2 (分別在〇·76ρΑ與0.39 pA)之細胞 中’ HIG-82細胞中間隙連接通道(gap_juncti〇n channei)之關 15閉與開啟狀態的電導各個顯著地被降低;在5Y細胞間之間 隙連接通道的電導上沒有效用發生。與1〇 mA/m2 —樣低的 電流密度顯著地增加HIG-82細胞中的Ca2+湧入,但對5Y細 胞不具效用。這兩種類型細胞的質膜(plaSma membrane)之 I-V曲線不倚賴60-Hz,0-75 mA/m2之電流,表示60-Hz電流 20 對於HIG_82細胞中GJIC的效用不是藉由一種在膜電位上的 改變而被調節的。 結論係為低位準的細胞外電流可以經由一種不依賴膜 電位改變,但可能依賴Ca2+湧入的機制來改變滑膜細胞中 的GJIC。結果指出在滑膜細胞中的GJIC-調節反應(例如, 31 200423986 它們對於前-發炎性細胞激素(pro-inflammatory cytokines) 的分泌反應)可藉由細胞外低頻率電流之施用來被拮抗。 C·降低壓力的方法(Method of Reducing Stress) 本發明可應用於預防或治療壓力以及與壓力有關的障 5 礙’諸如·免疫系統功能降低(reduced immune-system function)、感染、高血壓、動脈粥樣硬化(atherosclerosis), 以及胰島素耐受性血脂肪異常徵候群(insulin-resistance-dyslipidemia syndrome)。為治療壓力、免疫抑制障礙 (immunosuppressive disorders)以及為降低ACTH或皮質醇 10 (cortisol)的位準,被產生遍及細胞膜的平均感應電流密度 較佳地係約0·03 mA/m2至約12 mA/m2,更較佳0.035 mA/m2 至約11.1 mA/m2。用外施電流,平均外施電流密度較佳地 係約 60 mA/m2至約 600 mA/m2。 壓力與許多健康障礙有關,包括高血壓、動脈粥樣硬 15 化,與胰島素耐受性血脂肪異常徵候群,以及確定的免疫 功能障礙(VanitallieT.B·,Meiah//撕,51:40-5 (2002))。研究 人員已經發現壓力可以影響腎上腺皮質激素(adrenocortical hormones)(諸如皮質醇與皮質酮(corticosterone))的正常恆 定性(homeostasis)。該激素皮質酮係由腎上腺所產生,且它 20 的改變係為一種普通的壓力指標。在一涉及被暴露於至多 50 kV/m,60 Hz電場之小鼠的報告中,血漿皮質酮濃度的 降低被觀祭到’但只有在暴露期間的初期(Hackman,R.M. & Graves,H.B” 5e/mv· iVewra/B/o/· 32:201-213 (1981))。同 樣地,Portet與Cabanes報導了當兔子與大鼠被暴露於 32 200423986 50 kV/m,50 Hz時,較低的皮質醇位準在腎上腺中被發現, 但在血液中的皮質醇濃度則沒有被發現(Portet,R. & Cabanes,J·,9:95-104 (1988)) 〇 ACTH係為一種由腦下垂體(pituitary gland)戶斤表現的 5 胜肽(peptide),且幾乎專門控制皮質醇的分泌。ACTH位準 在身體功能方面作為一種身體壓力位準的有力指標,主要 是因為ACTH作用在於控制皮質醇(一種對於例如創傷事件 的壓力反應而言極為重要的主要抗發炎分子)的分泌。有趣 的是,研究人員已經發現在電場暴露30-120天後在ACTH位 10 準上沒有增加(Free,M.J·,et al·,Bioelectromagnetics 2:105-m (1981))。在一研究中,當大鼠被暴露至 100 kV/m,60 Hz,歷時1-3小時,在血漿ACTH上沒有改變 被發現(Quinlan,W.J” et al” Bioelectromagnetics 6:381-389 (1985))。當小鼠被暴露至l〇 kV/m,50 Hz時,血清ACTH濃 15 度比對照組中的還要高(deBmyn,L· & deJager,L·,Environ. Res· 65:149-160 (1994))。在一腎上腺皮質部位中的脂質染 色被提高,但只有在雄性。作者推論電場係為一種壓力源 (stressor)。被改變的血液ACTH濃度亦在被暴露於一 15kV/m,60 Hz電場,歷時30天的大鼠中被發現(Marino, 20 Α·Α·,et al·,Physiol· Chem· Phys. 9:433-441 (1977))。 相反地,我們已經確認出將一種在特殊參數下的電場 施用於測試動物上會造成壓力誘導的ACTH濃度之降低。 例如,施用一為17,500 V/m的電場(50 Hz),一為7,000 V 的電壓,以及一約0.035-0.5 mA/m2的感應電流密度,歷時 33 200423986 一個60分鐘的時間致使在測試動物中壓力誘導的血清 ACTH位準之降低。 二個50 H_z電場對於被約走的大鼠中血漿ACTH、 %萄糖、乳酴,以及丙酮酸的影響 5 電場暴露系統 在此實施例中所使用的EF暴露系統係由下面三個主要 部分所構成:一高電壓產生器(Healthtr〇n TM, maximum output voltage: 9,000 V; Hakuju Institute for Health Science Co· Ltd” Tokyo, Japan)、一 恆定電壓電源(TOKYO SEIDEN, 10 Tokyo, Japan),以及EF暴露籠(cages)。該等暴露籠係由一 圓柱狀塑膠籠(φ: 400 mm,高度·· 400 mm)與兩個被置於該 圓柱狀籠之上方與下方由不鏽鋼所製成的電極(1,2〇〇 x 1,200 mm)所構成。為了在該籠中形成EF (5〇 Hz ; 17,500 V/m),穩定的交流電(50 Hz; 7,000 V)被施加於該上方電極。 15 實驗動物 雌性,7週大,體重300-350 g的Wistar大鼠係購自於 Charles River Japan,Inc.(Tokyo, Japan),且被飼養在一個配 備有一空氣清淨過濾裝置的傳統動物房中。 約束壓力(Restraint Stress) 20 大鼠藉由將各個包裹以一薄的聚碳酸酯板片來予以限 制,並且將其安置在該下方電極之上歷時3〇分鐘。 實驗設計 EF對於約束壓力的影響如下面所述的被確定出來。為 了評估使用薄的聚碳酸酯板片的約束方法,6隻大鼠被分成 34 200423986 兩個群組:僅有約束與約束加上二氮平治療。為了檢測暴 露至EF的影響,我們使用正常的與卵巢切除的大鼠。正常 的大鼠被分成僅有約束與約束加上EF這兩個群組。此外, 卵巢切除的大鼠亦被分成如下的四個次群組:模擬的£^暴 5露(A1)、模擬的EF暴露加上約束(A2)、EF暴露加上約束 (A3)、模擬的EF暴露加上二氮平治療與約束(A4)。 卵巢切除術在實驗的4週之前被執行。在此研究中所應 用的EF暴鉻與約束處理係如下所示:大鼠被暴露至% Η?, 17,500 V/m EF歷時共1小時。大鼠以薄的聚碳酸酯板片予以 10約束歷時該EF暴露期間的後半期。對照組的實驗設計除了 沒有EF暴露之外,係與實驗組相同。 企液樣品的收集 1 ml的血液在實驗開使之前自鎖骨下靜脈(subclavian vein)予以收集,且血漿藉由在4〇 c,於i,5〇〇 χ g下離心歷時 I5 刀名里而被製備出來。血漿在激素測量(hormone measurement)之前被貯存在-8〇。c。在實驗之後,3 ml來自 於各個大鼠的全血在一麻醉之下藉由心臟穿刺(cardiac pimcture)被收集到一含有9 mg eDTA的玻璃管中。1 ml的血 液被用於为析血液狀况。另外的2 mi被離心(在4° C ,於 20 1,5⑻X g下歷日守分鐘)且上澄液被貯存在-80。C直至測量 激素、葡萄糖、乳酸以及丙酮酸為止。 血液分析 包括紅與白血球細胞計數、血小板計數、血球容積 (hematocrit)以及血紅素位準的血液學分析係使用一種自動 35 200423986 多重血球計數器(automatic multi-hemocytometer)予以執行 (Sysmec CC-78, Sysmec inc·,Tokyo, Japan)。血聚葡萄糖、 乳酸以及丙酮酸位準以一自動分析儀予以測量(7170 Hitachi,Hitachi Co· ltd·,Tokyo, Japan)。ACTH位準藉由使 5 用一種ACTH放射免疫分析套組(ACTH IRMA, MITSUBISHI CHEMICAL Co· Ltd.)與一伽瑪計數器 (gramma counter)(Auto -Gamma 5530 Gamma Counting System,Packard Instrument Co· ltd·)予以測量。血漿皮質酮 位準經使用一種商業套組(ImmuChem Double Antibody 10 Corticosterone kit,ICN Biomedicals Inc·)予以測量。 統計學分析 結果被表示為平均值±平均值的標準誤差(S.E.)或如中 位數、25th百分位數、75th百分位數、最小值以及最大值的 數據組。在配對群組間的統計學顯著差異性(Statistical I5 significance of difference)藉由史徒登氏t試驗被計算出來, 而顯著差異(significance)被定義為Ρ<〇.〇5。所有針對統計學 分析的計算在MS-EXCEL®曰本版本(Microsoft 〇ffice software. Ver. 9·0·1,Microsoft Japan Inc· Tokyo,Japan)中被 進行。 20 結果 由約束壓力(restraint stress)所誘導在血漿人位準上的 改變 弟11圖顯示出壓力在血漿ACTH位準上的影響。大鼠被 腹膜内地投予以1 mg/kg B.W·的二氮平(diazepam)(實心圓 36 200423986 形)或鹽水(空心正方形)。在二氮平投藥被執行後30分鐘’ 該等大鼠被約束以激發一壓力反應。第11圖顯示出個別的 大鼠在約束開始30分鐘後的ACTH位準。在該僅有約束的 群組中,約束期間之前與之後的數值(平均值±S.E.)係為231 5 ± 135與1177 ± 325 pg/ml,而在約束加上二氮平的群組中係 為358 ± 73與810± 121 pg/ml。比較在各個群組中在約束壓 力之前與之後的ACTH位準,30分鐘的約束分別在該僅有約 束與該約束+二氮平的群組中增加血漿ACTH位準5.1倍與 2.3倍高。 EF暴露對於約束所誘導之血漿ACTl^±準改變的影響 第12A與12B圖顯示出暴露於EF對於正常的(A)與卵巢 切除的(B)大鼠中血漿acth位準的影響。所有大鼠被約束 歷日守EF暴路期間的後半期。於下列群組中,金滎ACTH位 準在EF暴露前與後60分鐘被測量出來:沒有處理(n=6)、僅 15有約束(模擬的,n=6)、在EF時約束(EF,n=6)以及在模擬 的EF時約束與二氮平(模擬的與二氮平,n=6)。添加二氮平 在EF期間開始的前30分鐘發生。數據被表示為四方框 (boxes),其中顯示出把各個主要四方框分割成兩個小的四 方框的水平線代表中位數,形成各個主要四方框之底邊 2〇 (bottom side)的水平線代表μ、分位數,形成各個主要四 方框之頂邊(top side)的水平線代表75化百分位數,顯示為在 各個主要四方框之上方的水平線代表最大值,以及顯示為 在各個主要四方框之下方的水平線代表最小值。約束前的 數值(Pre values)沒有被顯示出來。*: p<〇〇5來自約束前的 37 200423986 數值。f: Ρ<〇·〇5來自沒有處理的群組。 在卵巢切除的大鼠中,沒有約束的群組之血漿acth 位準在60分鐘這期間沒有顯示出任何改變。在其他三個群 組中,ACTH位準在約束期間被提高(第12β圖)。在期間前 5與期間後之間作比較,在“僅有約束,,、“約束與EF,,,以及“約 束與二氮平”群組中血漿位準分別提高186、134與137 倍。 弟13圖顯示出EF暴露對於正常大鼠(n=6)中血聚acth 位準的影響。數據被表示為一中位數、25th百分位數、75th 10百分位數、最小值以及最大值。第12A與13圖顯示出在正常 大鼠中ACTH與皮質酮之血漿位準的改變。在該“僅有約束,, 與該“約束與EF,,群組中的ACTH位準係分別為1595 ± 365 與1152 ± 183(pg/ml),而皮質酮位準係分別為845 ±48與786 ± 24(ng/ml) 〇 I5 EF暴露對於血漿參數(piasma parameters)的影響 第14A與14B圖顯示出EF暴露對於在正常的(a)與印巢 切除的(B)大鼠中約束所誘導的血漿葡萄糖位準改變的影 響。那些位準在歷時60分鐘的期間(n=6)之後被檢測出來。 在所有群組中樣品數目係為6。數據被表示為一中位數、25th 20百为位數、75化百分位數、最小值以及最大值。*:尸⑼仍 來自沒有處理的群組。 在卵巢切除的大鼠中,約束增加血漿葡萄糖位準 (Ρ<0·05:史徒登氏t試驗),而ef或二氮平具有去抑制這些增 加的傾向(第14B圖)。然而,在該EF群組中抑制血漿葡萄糖 38 200423986 位準的趨勢在沒有接受一卵巢切除術(ovadect〇my)的正常 大鼠中沒有被發現(第14A圖)。 第15A與15B圖顯示出EF暴露對於在正常的(A)與卵巢 切除的(B)大鼠中約束所誘導的血漿乳酸位準的影響。該等 5位準在一個60分鐘的期間之後(n=6)被測量出來。數據被表 示為一中位數、25th百分位數、75thI分位數、最小值以及 最大值。*:尸<0.05來自沒有處理的群組。卞:尸<〇 〇5來自模 擬的群組。在卵巢切除的大鼠中,在僅有約束的群組中之 血漿乳酸位準與沒有處理的群組相較之下沒有顯示出顯著 10的差異(第15B圖)。經EF暴露與投予二氮平的群組之血漿乳 酸位準係明顯地低於僅有約束的群組中(/><0.05:史徒登氏{ 試驗)的那些(第15B圖)。在正常大鼠中,血漿乳酸位準(平 均值±S.E·)在有與沒有EF下係為28·6±3·6與38.1±3 7 (mg/dl),(第15Α圖)。如一統計學分析結果所示,被暴露於 15 EF之動物的乳酸位準係明顯地低於該僅有約束的群組 (Ρ<0·05:史徒登氏t試驗)中的那些。 第16圖顯示出EF暴露對於在卵巢切除的大鼠中約束所 誘導的血漿丙酮酸位準的影響。該等位準在一個6〇分鐘的 期間之後(n=6)被測量出來。數據被表示為一中位數、25th 2〇百分位數、75百分位數、最小值以及最大值。*: 來自沒有處理的群組。在卵巢切除的大氤中,僅有約束的 群組之血漿丙酮酸位準沒有顯著地不同於沒有處理的群組 中的那些,但因著約束而趨於減少。在暴露於£17或被投予 二氮平之群組中的個體係顯著地低於模擬的EF暴露的群組 39 200423986 中的那些(Ρ<0·05:史徒登氏t試驗)(第16圖)。 第17圖顯示出EF暴露對於在卵巢切除的大鼠中約束所 誘導的白血球細胞(WBC)計數的影響。該等位準在一個6〇 分4里的期間之後(n=6)被測量出來。數據被表示為一中位 5數、25&百分位數、75化百分位數、最小值以及最大值。*: Ρ<0·05來自沒有處理的群組。一般而言,所觀察到的約束 依賴性改變與白血球細胞(WBC)的數目有關。在沒有處 理、僅有約束、暴露於EF,以及投予二氮平的群組中之WBC 计數顯示為78、99、96與85(x 102 cells/μΐ),(第 17圖)。如 10 一統計學分析結果所示,在卵巢切除的大鼠中,被約束的 動物中之WBC位準係顯著地高於沒有處理的群組(p<〇 〇5: 史徒登氏t試驗)中的那些。在經EF暴露或經投予二氮平之 群組中的WBC位準傾向高於沒有處理的群組,而低於僅有 約束的群組。 15 1 施例 7-腦電圖研究(Electroencephalogram Studies) 六隻大鼠被暴露於一預估在17,500 V/m的電場中一天 歷時15分鐘,總共7天。被用來暴露該等動物的裝置係為一 種Healthtron暴露籠(如先前所描述的)。六隻大鼠被用來作 為對照組(模擬的暴露)。下列參數(端點endpoints)被觀測出 2〇 來·腦波異常偵測(brain wave abnormalities detection);各 個EEG階段群組(清醒、休息、慢波淺睡睡眠(si〇w wave Hght sleep)、慢波深睡睡眠(si〇w wave deep sleep),以及快波睡 眠(fast wave sleep))的百分比;以及額葉皮質區EEG功率譜 δ (1-3.875 Hz) ^ Q (4-15.875 Hz) > a (8-12 Hz) - β 40 200423986 5 10 1(12·125-15·875 Hz),與/5 2(16·25 Hz)的百分比。在 # 〜 露於7,000 V(17,500 V/m)歷時15分鐘時,在第一天〜 慢波淺睡睡眠階段之增加被觀察到歷時一個1-2小 顯著的 時的期 間。在第7天,休息期與清醒期之顯著的減少在暴露後〇邛 为4里被觀祭出來。一在清醒期上顯著的減少與一在个岛 睡睡眠期上顯著的增加在暴露後歷時一個變化自0.5^ 之範圍内的期間被觀察出來。一在清醒期上顯著的減 一在慢波深睡睡眠期上顯著的增加在暴露後變化自 時之範圍内的期間被觀察出來。此外,一在慢波淺睡睡眠 期上顯著的增加在暴露後歷時一個變化自2-4小時之範圍 内的期間被觀察出來。 沒有自發性的EEG波類型或行為異常被觀察出來。在 此研究中沒有跡象顯示重複暴露於一電場對於在大鼠中額 葉皮質區的頻率分析有呈現任何神經學上的關係。 15 D·額外的障礙或病狀Figure 9 shows the effect of an electric field (EF) at 100 Hz on the membrane potential in BALB 3T3, which produces a current density of about 200 mA / cm2 at 15 degrees. Changes in membrane potential were measured by flow cytometry. The methodology of flow cytometry is shown below. Cultures in DMEM were supplemented with 5% FCS 10 mM HEPES. It was then de-touched with 0.02% trypsin and 0.025% EDTA. It was then resuspended in HEPES buffer solution (137 mM NaCl, 5 mM KC1, 1 mM 20 Na2HP04, 5 mM glucose, 1 mM CaC12, 0.5 mM MgC12, 0.1% (w / v) BSA, and 10 mM HEPES pH 7.4 )in. It was then loaded with DiBAC4 (3) at a final concentration of 200 nM. It was cultivated at 37T: for> 5 minutes. Next, flow cytometry is performed. Figure 10 also shows the effect of an electric field (EF) at 100 Hz on the membrane potential in BALB 3T3 30 200423986. The electric field produces a current density of about 200 mA / cm2. Implementation of changes in synovial fibroblasts (Synovia! ^ Gap Junction Intercellular 5 Commimication). ― We examined the effects of low-level currents on intercellular junctions (GJIC) regulated by the connexin43 protein. Synovial fibroblasts The confluent single cell layer of cells (HIG-82) and neuroblastoma cells (5Y) was exposed to each in a bath solution, 0-75mA / m2 (0-56 10 mV / m '60 Hz) 'and single-channel conductance (S) (ngie_channei conductance), cell membrane current-volt (IV) curve, and Ca2 + influx were measured using nystatin double- and single_patch methods In the cells exposed to 20 mA / m2 (at 0.76ρΑ and 0.39 pA, respectively), the conductance of the closed and open states of the gap junction channel (gap_juncti〇n channei) in HIG-82 cells were each significantly changed Decreased; no utility occurs in the conductance of the gap junction channels between 5Y cells. The low current density as low as 10 mA / m2 significantly increases Ca2 + influx in HIGH-82 cells, but is not effective for 5Y cells. This Two types of fine The IV curve of the plasma membrane (plaSma membrane) does not depend on the current of 60-Hz, 0-75 mA / m2, indicating that the effect of 60-Hz current 20 on GJIC in HIG_82 cells is not affected by a change in membrane potential. The conclusion is that low-level extracellular currents can change GJIC in synovial cells via a mechanism that does not depend on membrane potential changes, but may depend on the mechanism of Ca2 + influx. The results indicate that GJIC-regulated responses in synovial cells (For example, 31 200423986 their secretory response to pro-inflammatory cytokines) can be antagonized by the application of extracellular low-frequency currents. C. Method of Reducing Stress The invention can be applied to prevent or treat stress and disorders related to stress, such as reduced immune-system function, infection, hypertension, atherosclerosis, and insulin-resistant blood Insulin-resistance-dyslipidemia syndrome. For the treatment of stress, immunosuppressive disorders, and to reduce the level of ACTH or cortisol, the average induced current density generated across the cell membrane is preferably about 0.03 mA / m2 to about 12 mA / m2, more preferably 0.035 mA / m2 to about 11.1 mA / m2. With the applied current, the average applied current density is preferably about 60 mA / m2 to about 600 mA / m2. Stress is associated with many health disorders, including hypertension, atherosclerosis, and signs of insulin-resistant dyslipidemia, as well as established immune dysfunction (VanitallieT.B., Meiah // Tear, 51: 40- 5 (2002)). Researchers have found that stress can affect the homeostasis of adrenocortical hormones, such as cortisol and corticosterone. The hormone corticosterone is produced by the adrenal glands, and its changes are a common indicator of stress. In a report involving mice exposed to electric fields of up to 50 kV / m and 60 Hz, the decrease in plasma corticosterone concentration was observed 'but only in the early part of the exposure period (Hackman, RM & Graves, HB " 5e / mv · iVewra / B / o / · 32: 201-213 (1981)). Similarly, Portet and Cabanes reported that when rabbits and rats were exposed to 32 200423986 50 kV / m, 50 Hz, the lower Cortisol level was found in the adrenal glands, but cortisol concentration in the blood was not found (Portet, R. & Cabanes, J., 9: 95-104 (1988)). ACTH is a kind of The peptide of the pituitary gland shows a 5-peptide, and almost exclusively controls the secretion of cortisol. The ACTH level is a powerful indicator of body pressure in terms of physical function, mainly because ACTH acts on Controls the secretion of cortisol, a major anti-inflammatory molecule that is extremely important for stress responses such as traumatic events. Interestingly, researchers have found no increase in ACTH level 10 after 30-120 days of electric field exposure ( Free, MJ ·, et al ·, Bioelectro magnetics 2: 105-m (1981)). In one study, when rats were exposed to 100 kV / m, 60 Hz, for 1-3 hours, no change in plasma ACTH was found (Quinlan, WJ "et al ”Bioelectromagnetics 6: 381-389 (1985)). When mice were exposed to 10 kV / m at 50 Hz, serum ACTH concentrations were 15 degrees higher than those in the control group (deBmyn, L. & deJager , L., Environ. Res. 65: 149-160 (1994)). Lipid staining is increased in an adrenal cortex, but only in males. The authors conclude that the electric field is a stressor. The changed Blood ACTH concentrations were also found in rats exposed to a 15 kV / m, 60 Hz electric field for 30 days (Marino, 20 Α · Α ·, et al ·, Physiol · Chem · Phys. 9: 433-441 (1977)) Conversely, we have confirmed that applying an electric field at a particular parameter to a test animal results in a decrease in stress-induced ACTH concentration. For example, applying an electric field of 17,500 V / m (50 Hz) , A voltage of 7,000 V, and an induced current density of about 0.035-0.5 mA / m2, which lasted 33 200423986 for a period of 60 minutes Resulting in lower test animals stress-induced serum level of ACTH. Effects of Two 50 H_z Electric Fields on Plasma ACTH,% Glucose, Lactam, and Pyruvate in Rats Who Are Absent 5 Electric Field Exposure System The EF exposure system used in this example consists of the following three main parts Composition: a high voltage generator (Healthtron TM, maximum output voltage: 9,000 V; Hakuju Institute for Health Science Co. Ltd. Tokyo, Japan), a constant voltage power supply (TOKYO SEIDEN, 10 Tokyo, Japan), and EF exposure cages (cages). These exposure cages are made of a cylindrical plastic cage (φ: 400 mm, height · 400 mm) and two made of stainless steel above and below the cylindrical cage. Electrode (1,200 x 1,200 mm). In order to form EF (50 Hz; 17,500 V / m) in the cage, a stable alternating current (50 Hz; 7,000 V) was applied to the upper electrode 15 female experimental animals, 7 weeks old, Wistar rats weighing 300-350 g were purchased from Charles River Japan, Inc. (Tokyo, Japan) and housed in a traditional animal room equipped with an air purification filter Restraint Stress 20 Rats Borrow Each package was constrained with a thin polycarbonate plate and placed on the lower electrode for 30 minutes. Experimental design The effect of EF on the restraint pressure was determined as described below. For evaluation Using the thin polycarbonate plate restraint method, 6 rats were divided into two groups: 34 200423986: only restraint and restraint plus diazepine treatment. To detect the effects of exposure to EF, we used normal and Ovariectomized rats. Normal rats are divided into two groups: restraint and constraint plus EF. In addition, ovariectomized rats are also divided into the following four subgroups: simulated (A1), simulated EF exposure plus restraint (A2), EF exposure plus restraint (A3), simulated EF exposure plus diazepine treatment and restraint (A4). Ovariectomy was performed 4 weeks before the experiment Executed. The EF exposure and restraint treatment applied in this study is shown below: Rats were exposed to% Η, 17,500 V / m EF for a total of 1 hour. Rats were treated with thin polycarbonate plates Subject to 10 constraints for the second half of the EF exposure period The experimental design of the control group was the same as that of the experimental group, except that there was no EF exposure. Collection of Enterprise Liquid Samples 1 ml of blood was collected from the subclavian vein before the experiment was started, and the plasma was collected at 40%. c. It was prepared by centrifugation at I, 5000 g for I5. Plasma was stored at -80 before hormone measurement. c. After the experiment, 3 ml of whole blood from each rat was collected into a glass tube containing 9 mg eDTA by cardiac pimcture under anesthesia. 1 ml of blood is used to analyze the blood condition. The other 2 mi was centrifuged (at 4 ° C, min at 20 1,5⑻X g) and the supernatant was stored at -80. C until hormones, glucose, lactic acid, and pyruvate are measured. Hematology analysis including red and white blood cell counts, platelet counts, hematocrit, and heme levels is performed using an automated 35 200423986 automatic multi-hemocytometer (Sysmec CC-78, Sysmec inc., Tokyo, Japan). Blood polydextrose, lactic acid, and pyruvate levels were measured with an automatic analyzer (7170 Hitachi, Hitachi Co. Ltd., Tokyo, Japan). The ACTH level uses an ACTH radioimmunoassay kit (ACTH IRMA, MITSUBISHI CHEMICAL Co. Ltd.) and a gamma counter (Auto-Gamma 5530 Gamma Counting System, Packard Instrument Co. ltd. ) To measure. Plasma corticosterone levels were measured using a commercial kit (ImmuChem Double Antibody 10 Corticosterone kit, ICN Biomedicals Inc.). Statistical analysis results are expressed as mean ± standard error of the mean (S.E.) or data sets such as median, 25th percentile, 75th percentile, minimum, and maximum. Statistical I5 significance of difference between paired groups was calculated by the Stuart's t test, and significance was defined as P < 0.05. All calculations for statistical analysis were performed in the MS-EXCEL® Japanese version (Microsoft Office software. Ver. 9.0.1, Microsoft Japan Inc. Tokyo, Japan). 20 Results Changes in plasma level induced by restraint stress. Figure 11 shows the effect of stress on plasma ACTH level. Rats were administered intraperitoneally with 1 mg / kg B.W. diazepam (filled circle 36 200423986 shape) or saline (open square). Thirty minutes after the diazepine administration was performed, the rats were restrained to provoke a stress response. Figure 11 shows the ACTH levels of individual rats 30 minutes after the start of restraint. In this constraint-only group, the values before and after the constraint period (mean ± SE) are 231 5 ± 135 and 1177 ± 325 pg / ml, while in the constraint plus diazepine group, It is 358 ± 73 and 810 ± 121 pg / ml. Comparing the ACTH levels before and after the restraint pressure in each group, the 30-minute restraint increased the plasma ACTH level by 5.1 times and 2.3 times in the only restraint and the restraint + diazepine groups, respectively. Effects of EF Exposure on Constrained Induced Plasma ACT1 ^ ± Figures 12A and 12B show the effects of EF exposure on plasma acth levels in normal (A) and ovariectomized (B) rats. All rats were restrained during the second half of the EF storm. In the following groups, the Kimchi ACTH level was measured 60 minutes before and after EF exposure: no treatment (n = 6), only 15 constraints (simulated, n = 6), constraints at EF (EF , N = 6) and constraints and diazepine in simulated EF (simulated and diazepine, n = 6). The addition of diazepine occurred 30 minutes before the beginning of the EF period. The data is represented as four boxes, showing the horizontal line that divides each main four box into two small four boxes representing the median, and the horizontal line that forms the bottom side of each main four box represents 20 μ, quantiles, the horizontal line forming the top side of each major quadrilateral represents the 75th percentile, shown as the horizontal line above each major quadrilateral represents the maximum, and is displayed as the major quadrilateral The horizontal line below the box represents the minimum value. Pre values are not displayed. *: p < 0.05 is from 37 200423986 value before constraint. f: P < 0.05 is from the untreated group. In ovariectomized rats, the plasma ACTH level of the unconstrained group did not show any change during the 60 minute period. In the other three groups, the ACTH level was raised during the restraint period (Figure 12β). Comparisons were made between the first 5 periods and after the period. Plasma levels were increased by 186, 134, and 137 times in the "constraints only", "constraints and EF," and "restraint and diazepine" groups, respectively. Figure 13 shows the effect of EF exposure on blood polyacth levels in normal rats (n = 6). Data are expressed as a median, 25th percentile, 75th 10th percentile, minimum, and maximum. Figures 12A and 13 show changes in plasma levels of ACTH and corticosterone in normal rats. In this "only constraint," and "" constraint and EF, the ACTH levels in the group are 1595 ± 365 and 1152 ± 183 (pg / ml), and the corticosterone levels are 845 ± 48 And 786 ± 24 (ng / ml). The effect of EF exposure on piasma parameters. Figures 14A and 14B show that EF exposure is constrained in normal (a) and Indian nested (B) rats. Effects of Changes in Plasma Glucose Levels Induced. Those levels were detected after a period of 60 minutes (n = 6). The number of samples was 6 in all groups. Data are expressed as a median, 25th to 20th percentile, 75th percentile, minimum, and maximum. *: The corpse remains from the unprocessed group. In ovariectomized rats, plasma glucose levels were constrained to increase (P < 0.05: Stuart's t test), and ef or diazepine tended to suppress these increases (Figure 14B). However, the tendency to suppress the plasma glucose 38 200423986 level in this EF cohort was not found in normal rats that did not undergo an ovariectomy (Figure 14A). Figures 15A and 15B show the effect of EF exposure on the plasma lactate level induced by restraint in normal (A) and ovariectomized (B) rats. The 5 levels were measured after a 60-minute period (n = 6). Data are expressed as a median, 25th percentile, 75thI quantile, minimum, and maximum. *: Corpse < 0.05 from untreated group.卞: The corpse < 0.05 was from the simulated group. In ovariectomized rats, plasma lactate levels in the restricted-only cohort did not show significant differences compared to the untreated cohort (Figure 15B). Plasma lactate levels in the EF-exposed and administered diazepine groups were significantly lower than those in the restricted-only group (/><0.05: Stuart's {test) (Figure 15B) ). In normal rats, the plasma lactate levels (mean ± S.E.) were 28. 6 ± 3. 6 and 38.1 ± 37 (mg / dl) with and without EF (Figure 15A). As shown by the results of a statistical analysis, the lactate levels of animals exposed to 15 EF were significantly lower than those in this constraint-only group (P < 0.05: Stuart's t-test). Figure 16 shows the effect of EF exposure on the plasma pyruvate level induced by restraint in ovariectomized rats. The level was measured after a 60 minute period (n = 6). Data are expressed as a median, 25th-20th percentile, 75th percentile, minimum, and maximum. *: From a group without processing. In the ovariectomized large salamander, the plasma pyruvate level of the only-constrained group was not significantly different from those in the untreated group, but tended to decrease due to the restriction. Individual systems in the cohort exposed to £ 17 or administered to diazepine were significantly lower than those in cohort 39 200423986 of simulated EF exposure (P < 0.05: Stuart's t test) ( (Figure 16). Figure 17 shows the effect of EF exposure on confinement-induced white blood cell (WBC) counts in ovariectomized rats. The level is measured after a period of 60 minutes and 4 (n = 6). The data are expressed as a median of 5 digits, 25 & percentiles, 75 percentiles, minimum and maximum. *: P < 0 · 05 is from a group without processing. In general, the observed constraint-dependent changes are related to the number of white blood cells (WBCs). The WBC counts in the untreated, only constrained, EF-exposed, and diazepine-administered groups showed 78, 99, 96, and 85 (x 102 cells / μΐ), (Figure 17). As shown by the results of a statistical analysis, in the ovariectomized rats, the WBC level in the restrained animals was significantly higher than in the untreated group (p < 005: Stuart's t test ). The WBC level tended to be higher in the EF exposed or administered diazepine groups than in the untreated group and lower than in the restricted group only. 15 1 Example 7-Electroencephalogram Studies Six rats were exposed to an electric field estimated at 17,500 V / m for a period of 15 minutes for a total of 7 days. The device used to expose the animals was a Healthtron exposure cage (as previously described). Six rats were used as a control group (simulated exposure). The following parameters (endpoints) were observed: 20 brainwave abnormalities detection; each EEG stage group (wake, rest, siwave wave Hght sleep), Slow wave deep sleep and percentage of fast wave sleep; and EEG power spectrum of frontal cortex δ (1-3.875 Hz) ^ Q (4-15.875 Hz) > a (8-12 Hz)-β 40 200423986 5 10 1 (12 · 125-15 · 875 Hz), and a percentage of / 5 2 (16 · 25 Hz). When # ~ exposed to 7,000 V (17,500 V / m) for 15 minutes, an increase in the slow-wave light sleep sleep stage was observed over a period of 1-2 hours, which was significant over the first day. On the seventh day, a significant reduction in rest periods and awake periods was observed at 4 ° after exposure. A significant decrease in awake periods and a significant increase in island sleep periods were observed over a period of time varying from 0.5 ^ after exposure. A significant decrease in the awake period and a significant increase in the slow-wave deep sleep sleep period were observed over a period of time that varied from time to time after exposure. In addition, a significant increase in the slow wave light sleep period was observed over a period of time ranging from 2-4 hours after exposure. No spontaneous EEG wave type or behavioral abnormalities were observed. There was no evidence in this study that repeated exposure to an electric field showed any neurological relationship to frequency analysis of the frontal cortex in rats. 15 D. Additional disorders or conditions

為治療電解質不平衡(electrolyte imbalance),被產生遍 及細胞膜的平均感應電流密度較佳地係約〇·4 mA/m2至約 6.0 mA/m2,更較佳約〇·4 mA/m2至約5·6 mA/m2,而仍更較 佳約0.43 mA/m2至約5.55 mA/m2。 20 為治療關節炎,被產生遍及細胞膜的平均感應電流密 度較佳地係約0.02 mA/m2至約〇·4 mA/m2,更較佳約0·025 mA/m2至約 0.35 mA/m2,最較佳約 0 026 mA/m2至約 〇 32 mA/m2 ° 為治療體重過重,被產生遍及細胞膜的平均感應電流 41 200423986 密度較佳地係約〇·〇2 mA/m2至約1.5 mA/m2,更較佳約0.02 mA/m2至約 1·2 mA/m2,最較佳約 0·024 mA/m2至約 1.12 mA/m2 ° 本發明亦可應用於預防或治療肌肉骨骼與結締組織障 5 礙。此等障礙包括,例如,骨質疏鬆(osteoporosis)(包括老 年性、繼發性,以及幼年特發性)、骨質薄化障礙 (bone-thinning disorders)、乳糜瀉(celiac disease)、熱帶性腹 瀉(tropical sprue)、滑囊炎(bursitis)、硬皮病(scleroderma)、 CREST 徵候群(CREST syndrome)、夏克氏關節(Charcot’s 10 joints)、骨折之骨骼的適當修復,以及韌帶(ligaments)與軟 骨(cartilage)撕裂的適當修復。本發明亦可應用於類風濕性 關節炎(rheumatoid arthritis)、 免疫抑制障礙 (immunosuppression disorders)、神經痛(neuralgia)、失眠 (insomnia)、頭痛、彥員面神經痲療(facial paralysis)、精神官 15 能症(neurosis)、關節炎(arthritis)、關節痛(joint pain)、過敏 性鼻炎(allergic rhinitis)、壓力、慢性胰腺炎(chronic pancreatitis) 、DiGeorge異常、子宮内膜異位 (endometriosis)、泌尿道阻塞(urinary tract obstructions)、假 性痛風(pseudogout)、甲狀腺障礙、副甲狀腺障礙、腦下垂 20 體機能低下(hypopituitarism)、膽結石(gallstones)、消化性 潰瘍(peptic ulcers)、唾腺障礙(salivary gland disorders)、飲 食障礙(appetite disorders)、嗔心、喔吐、口渴、過度的尿 產生(excessive urine production)、眩暈(vertigo)、良性陣發 性姿勢性眩暈(benign paroxysmal positional vertigo)、食道 42 200423986 賁門失弛症(achalasia)與其他神經障礙、急性腎衰竭(acute kidney failure)、慢性腎衰竭(chronic kidney failure)、獼漫 性食道痙攣(diffuse esophageal spasms),以及暫時性腦缺血 (transient ischemic attacks,TIAs)。本發明亦可應用於治療 5 包括滲透度、其維持之額外的腎臟障礙,以及包括一滲透 不平衡(osmolar imbalance)的病狀或障礙。 E.EF療法裝置 EF裝置被設計成產生一種個體被安置於其中的電場。 如第18圖所例示說明,該電場可包圍整個個體。另擇地, 10 該電場可以只包圍該個體的一特殊部位或器官。 第19圖係為一個顯示出本發明之一具體例的高電壓產 生(voltage generation)裝置(1)的一示意圖。即,電位療法裝 置(1)包含一電位治療裝置(2)、一高電壓產生裝置(3)以及 一商業電源(4)。該電位治療裝置(2)包含一個讓一個體(5) 15坐著之具有扶手(6)的椅子(7); —個頭部電極(8),其係作為 一附聯於讜椅子上端且設置在該個體頭部(5)頂端上方的相 對電極;以及一如ottoman電極的第二電極(9),其係為一個 主要電極,该個體(5)將他/她的腿放置在該第二電極的頂面 上。注意到的是該頭部電極(8),其係作為該第二電極(9)(其 20係為一個主要電極)的一相對電極,可另為天花板、牆壁、 地板、家具或房間的其他内部物件或部份。該高電壓產生 裊置(3)產生一而電壓來對該頭部電極(8)與該第二電極(9) 外施-電壓。該高電壓產生裝置⑶通常被安裝在該椅子⑺ 的下方,介於腿之間且位於地板上,或在該椅子⑺的附近。 43 一介於該第-Μ部f極⑻與該病人頭部了_之_距離 (d)可以被改變。一種絶緣材料(insulation matedal)圍繞在該 頌部電極(8)與該第二電極(9)。此第二電極(9)藉由一電線 (11)被連結至該高電壓產生裝置(3)的一高電壓輸出端 (10)。其亦a又有a玄咼黾壓輸出端(1〇)來對該頭部電極(8)與該 第二電極(9)外施一電壓。此外,該椅子(7)與該第二電極(9) 在與地板接觸的位置包含絕緣體(12)、(12),。在人類身體表 面與該第-電極(8a)之間的該距離⑷可以藉由在床底座⑼ 上放置不同厚度的墊子而被輕易地改變。 10 一種仍設有另一構造的電位治療裝置(2C)具有一種被 顯不在第20A圖[透視圖]與第2〇B圖[側視圖],其例示說明了 該個體(5)與各個被繪成黑色的電極之間的位置關係]中的 椅子型態。該椅子(7a)設有一個覆蓋於該個體(5)的前開式 遮蓋體(front open cover body)(34)。此遮蓋體(Μ)設有一第 15 一電極(8c),其係作為一容納該個體(5)頭部的相對電極; 一第二電極(9c),其係為一個作為主要電極的〇tt〇man電 極;以及另一個設置在呈坐姿時肩部至腰部之位置的第一 電極(80c) ’作為一設置在身體較高部位之腰部的相對電 極。該另一個第一電極(8〇c)具有數個側電極(8〇c,),俾以從 20側邊覆盍该個體(5)的身體。較佳地,該第一電極(8c)係沿 著該人類身體頭部來予以排列,而另一個第一電極(8〇c)以 數個層從雙肩至腰沿著縱向來予以設置。這些第一電極 (8c)、另一個第一電極(8〇c)、該等側電極(8〇cf)以及第二電 極(9c)被排列在一絕緣材料(35)中。一由絕緣體所製成的可 44 200423986 卸式塾子組件(detachable cushion member)被附在該遮蓋體 (34)上。因此,一墊子組件的附著,可用不同的厚度,可改 I:该人類身體表面與該等第一電極(8c)、(80c)、(8〇c,)之間 的距離。亦如上面所提及的,在此種電位治療裝置(2c)中感 5應電流控制構件可以藉由產生被施加至作為一相對電極的 該等第一電極(8c)、(8〇c)、(80c’),以及該第二電極(9幻上 之外施電壓,且介於該等第一電極(8c)、(8〇c)、(8〇c,)與該 人類身體軀幹表面之間的該距離(d)係為可變的,或藉由控 制被施加至該等第一電極(8c)、(8〇c)、(8〇c,)與第二電極(9c) 10的外施電壓,以及更進一步地,藉由改變介於該等第一電 極(8c)、(80c)、(80c’)與該人類身體表面之間的該距離⑷來 控制該身體表面的電場並在一人類身體軀幹的各個區域流 動一非常小量的感應電流。 一種設有另一構造的電位治療裝置(2A)被顯示在第 15 21A圖[透視圖]與第21B圖[側視圖]中。此電位治療裝置(2A) 具有一床型。一用以容納該個體(5)的箱子(32)被設置在一 床基座(31)上。各個電極被設置在此箱子(32)中。簡言之, 其設有一作為一相對電極的第一電極(8a)與一置於該人類 身體的一腿部作為主要電極的第二電極(9a)。該第一電極 20 (8a)被置於一人類身體的頭、肩、腹部、腿以及臀部或其他 區域。且較佳地,該第一電極(8a)具有大約相等於一人類身 體的頭、肩、腹部與臀部之形狀、寬度與面積。在這些圖 示中的空白區域顯示沒有電極被設置的地方。電極被設置 在一絕緣體(33)中。一個由一絕緣體(未顯示)所製成的塾子 45 200423986 被放置在該床基座(31)的各個電極上。不同厚度的墊子被製 備出來。 在上面所提及的第19圖中,在頭部上方的頭電極(8)與 該個體(5)之人類身體軀幹表面之間的該距離(d)被設定在 5約1至25 cm,在第2〇A圖中,在該等第一電極(8c)、(8〇c)、 (80cf)與該個體(5)之人類身體軀幹表面之間的該距離(d)被 設定在約1至25 cm,較佳地約4至25 cm,而在第21A圖中, 在該等第一電極(8a)、(8b)與該個體(5)之人類身體軀幹表面 之間的該距離(d)被設定在約1至25 cm,較佳地約3至25 cm。 10 如在下面第22圖中作為一電子組態方塊圖所述的,該 高電壓產生裝置(3)具有一種用以將該商業電源之一電壓 100V AC提高至例如15,0〇〇 V的增壓變壓器(booster tmnsfomier)(t),以及用以控制流至各個電極之電流的電流 限制電阻器(current limitation resistors )(R)、(R)f。此高電壓 15產生裝置(3)具有一組態,其中一增壓器線圈(T)的一中間點 (s)被接地’且接地電壓(ground voltage)被設定為增加電壓 (boosted voltage)的一半。如由例示的臨時線(provisory line) 所顯示的,一點(sf)可被接地。於此,如第22圖中之方塊圖 所顯示的,一高電壓(其高電壓側中間點(s)藉由該增壓變壓 20 器(下)來予以接地)自一個100V AC電源經由通過該高電壓 產生裝置(3)的一電壓控制器(13)而被獲得,且更進一步 地,各個高電壓經過用以作為人類身體保護之該等電流限 制電阻器(R)、(Rf)而被連接至該等頭部電極(8)、(8c)或其類 似之物(參見下方),與該等第二電極(9)、(9c)或其類似之物 46 200423986 (爹見下方)。亚且,該電位療法裝置⑴設有感應電流控制 構件。此感應電流控制構件可以造成一非常小量的感應電 流來流至構成該個體(5)之—人類身體軀幹的各個區域,藉 由改變被施加到該頭部電極⑻與第二電極(9)的外施^ 5壓,,及—介於該頭部電極⑻與該人類身體麵幹表面之間 的距離⑷’或藉由控制被施加到該頭部電極⑻與第二電極 (9)的外〜$壓’或進__步藉由改變介於該頭部電極⑻與該 人類身體艇幹表面之間的距離⑷來控制該身體躺幹電場。 介於該人類身體表面與該第—電極(8a)之間的距離⑷可以 ίο藉由將例如+同厚度的墊子放置在該床基座(31)上而被輕 易地改變。 藉由增加該感應電流,即使在一種一高電壓被施加到 該電位療法裝置(1)的狀態下,一較高的治療功效可以被獲 得,即使歷時與在傳統方法中相同的時間期間。此外,該 15治療可以在一個比之前更短的時間内來被完成。而更進一 步地,為了獲得相同的治療功效,一與先前技藝相同數值 的感應電流可以以一較低的電壓以及在一與先前相同的 治療時間下而被獲得。 本發明之電位療法裝置(1)被設計成盡可能的免除於高 20輸出電子噪音、高位準射頻噪音以及強磁場。為了要降低 電磁場干擾該電位療法裝置(1)的影響,較佳的使用驅動機 械開關,繼電器(relay)與電動馬達(electric motor)或電計時 器或其他電組件更甚於電子組件、半導體、功率組件(power component)(諸如閘流體(thyristor)、雙向矽控整流器(triac)) 47 200423986 電子計時器或EMI感測微電腦(sensible microcomputer)來作 為其攻計與製造。然而’如電子功能性組件,電子連續匯 流開關調整器(electronic serial bus switching regulator)作為 光學發射二極體(optical emitter diode)電源係為有效的,而 5 此光學發射二極體被用來作為一種通知該個體或操作員本 發明之電位療法裝置之活動或非活動狀態的光源(optical source) 〇 如上面所論述的,一種模擬人類身體(h)可以被用來測 I違EF與感應電流,如在第23A、23B與23C圖中所顯示的。 10此種模擬人類身體(h)由PVC所製成且其表面被塗覆以一種 銀與氣化銀的混合溶液。此造成電阻(1Κ Ω或更少)相當於 個真正人類身體的電阻。模擬人類身體(h)眾所週知的被 用來作為一種護理模擬器(nursing simulat〇r),且其尺寸相 似於一個平均人類身體的尺寸,例如其係為174 (^1高。該 I5 寺尺寸進一步被描述在表1中。 48 200423986 表1:模擬人類身體中電流密度的測量 區域部分 (Section of Area) 圓周 (mm) 橫切面面積(Cross Sectional Area) (m2) 眼睛 550 0.02407 鼻子 475 0.01795 頸部 328 0.00856 胸部 770 0.04718 上腹部 710 0.04012 手臂 242 0.00466 手腕 170 0.00230 軀幹 660 0.03466 大腿 450 0.01611 膝蓋 309 0.00760 腳踝 205 0.00334 身體表面電場藉由將一圓盤狀電場測量感應器(e)附加 於該模擬人類身體(h)的一測量區域而被測量出來。該等測 量在115V/60HZ與120V/60HZ的狀態下發生。 5 一種測量一感應電流的方法與一種為此目的之裝置被 顯示在第24圖中。在感應電流測量裝置(20)中,如在第23A 與23B圖中所顯示的,該模擬人類身體(h)以一種正常坐姿 被放置在該椅子上(7)。在頭部上方的頭部電極(8)(其係為相 對電極)被調整與安裝成離該模擬人類身體(h)的一頭部上 10 方llcm處。該等測量藉由測量各個部分(諸如,例如在第24 圖中所例示說明的k-kf線部分)、透過光學轉移(optical tmnsfer)將感應電流波形轉移,以及在該感應電流測量裝置 (20)之接地側觀察此波形而被達成。於此,外施電壓係為 15,000 V。在此測量方法中,測量在該模擬人類身體(h)的 15 各個區域部分被誘導出的電流藉由使用兩條引線來產生一 流動越過該模擬人類身體⑼部分的電流的一短路 49 200423986 (s.hort-ci:rcuit)(22)[未顯示]而獲得該感應電流。所測量到的 感應電流經由一種I/V變換器(23)被轉換成為一種電壓信號 (第24圖)。緊接著,此電壓信號經由一種在傳遞側的光學類 比數據連結被轉換成為一種光學信號。 5 這些光學信號經由一種光纖纜線(optical fiber cable)(25)被轉移至在接收側的一種光學類比數據連結 (optical analog data link)(26)中,並且被轉換成為一電壓信 號。此電壓信號接而藉由一種頻率分析儀(27)予以處理,經 由一波形的觀祭與分析紀錄器來作頻率分析。一緩衝器與 10 一加法器(adder)被設置在介於該I/V變換器(23)與位於傳遞 側的光學類比數據連結(24)之間[未顯示]。因此,在該模擬 人類身體(h)之各個區域位置,於115 v/6〇 ]^與12〇 v/6〇 Hz 下所測量到的電場值與感應電流被顯示在表2中。若該電場 值係不同於此表2’那麼,已知通過那裡的感應電流值亦係 15為不同的。因此,假設對於_個真正人類身體躺幹的各個 區域有效的感應電流很顯然的可以經由改變所涉及到的各 個區域之電場而被獲得。 50 200423986 表2:電場值與感應電流值之間的關係 區域部分 @TT5V/50Hz @120 V/60Hz 電場值 (kV/m) 感應電流 U a) 電場值 (kV/m) 感應電流 (UA) 面 182 0.72 190 0.90 前面 81 0.32 84 0.40 ^ 1_二- Μ部後面 113 0.44 118 0.55 面 16 0.06 " 16 0.08 肩部 37 0.15 38 0.18 19 0.08 20 0.10 29 0.1Ϊ 30 0.14 33 ^ 0.14 34 0.17 _ 52 0.20 "" 54 0.25 面 21 0.08 22 0.10 ____ 42 0.17 43 0.21 11 0.05 12 0.06 21 0.08 22 0.10 端 3.4 0.01 3.5 0.02 348 1.37 363 1.72 身體表面電場E可以經由使用下面方程式,藉由顯示 在第24圖中各個區域之感應電流的測量方法所獲得的各個 區域之感應電流值來被獲得。即,E = I/soooS。於此,S係 5 為電場測量感應器的一切面,εο係為在一真空中的一個誘 導速率(induction rate),I係為一感應電流,ω係為2jtf而f係 為頻率。當各個區域的感應電流藉由上述的方法來被獲得 時,各個區域的一感應電流密度j可使用下面式子而被獲 得。即,A = 2πΓ,B = jcr2,B = Α2/4π,J = I/B,其中 A係 1〇為—圓周,B係為一圓形面積,r係為一半徑,I係為一測量 到的電流(measured current),而j係為一感應電流密度。 當電位療法藉由控制該頭部電極(8)的電壓與被施加到 該第二電極⑼的外施電壓來予以執行時上面所提及的該 寺感應電流控制構件可造成—非常小量的感應電流來流至 一人類身體軀幹的各個區域。 51 200423986 表3顯示出在下列之間的關係:(i)在鼻子、頸部與軀幹 的感應電流(μ A) ; (2)在鼻子、頸部與軀幹的感應電流密度 (mA/m2);以及在120V/60HZ的外施電壓(KV)。在相同的 外施電壓下,該電流密度在頸部趨於最高,在軀幹為次高 5 而在鼻子最低。注意到的是,在表3中的感應電流密度係小 於10 mA/m2,而10 mA/m2或更少的電流密度已經經由國際 非游離輕射防護委員會(the International Commi ssion on Non Ionizing Radiation Protection)被確立為安全的。 表3:外施電壓與感應電流 外施電壓 [kV] 感應電流值(//A) 感應電流密度(mA/mz) 頭部(鼻子) 頸部 軀幹部 頭部(鼻子) 頸部 軀幹部 0 0 0 0 0.0 0.0 0.0 5 10 11 30 0.6 1.3 0.9 10 20 23 61 1.1 2.6 1.7 15 30 34 91 1.7 3.9 2.6 20 40 45 121 2.2 5.2 〇 25 50 57 152 2.8 6.6 4Λ 30 60 68 182 3.3 7.9 Γ2 10 第25圖亦顯示了在鼻子、頸部與軀幹中該外施電壓(κν) 與該感應電流(// A)之間的關係。如在第25圖中明顯所示 的’該外施電壓與該感應電流 係相互成比例的。 表4顯示出一人類頸部中感應電流與感應電流密度的 15 變化,作為介於該頭部電極(8)與該頭部頂端之間的該距離 (d)的一個函數。 52 200423986 表4:感應電流的變化作為從電極而來之距離的函數 第一電極與頭部頂端的距離 感應電流值 感應電流密度 距離 (cm) (/z A) (mA/mz) 4.3 50 5.8 5.4 46 5.4 6.3 43 5.0 6.9 40 4.7 8.3 39 4.5 9 38 4.4 9.9 35 4.1 11 34 3.9 12 34 3.9 13 33 3.8 14 31 3.7 15 30 3.5 16.1 30 3.5 17.2 30 3.5 表4指出,在一個15cm或更多的距離,該感應電流穩定 在30 μΑ。因此,為了藉由改變距離來改變該感應電流,該 距離應係為15 cm或更少。第26圖亦顯示出因應該距離(d) 5 而來的感應電流變化。 在一個包含約300位腰痛人類案例的實驗中,我們測定 出EF在治療腰痛上係為有效的。我們亦測定出如下之最佳 的劑量與參數。簡言之,最佳劑量藉由控制流經構成一人 · 類身體躺幹的區域之該感應電流值的產生與該感應電流的 10 流通時間而被獲得。另外,藉由控制該第一電極電壓與該 · 第二電極電壓之外施電壓總和的產生,以及其施用時間來 獲得。對腰痛而言,EF的治療功效藉由在一約10 KV至約 30 KV(較佳約15 KV)的電壓下施用其歷時約30分鐘而予以 最佳化。換言之,在約300 KV/min至約900 KV/min,較佳 15 約 450 KV/min。 於此,表5顯示出在構成模擬人類身體(h)軀幹的各個區 53 域W分中以115 V/50 Hz所測量出的感應電流值,以及在考 慮到表1中該模擬人類身體的尺寸下,從此感應電流值之計 异所得到的感應電流密度。從表5中,在構成人類身體軀幹 之各個區域的感應電流(μΑ)測量值以及感應電流密度 (mA/m2)的計算值係如下所示:眼睛:18/0.8 ;鼻子:24/1.3 ; 工員 4 · 27/3.1 ;胸部:44/0.9 ;胃小凹(pit 〇f the stomach): 8·6/1·6 ;以及軀幹:91/2.8。 域、感應電流值,以及感應電流密度 區域部分 感應電流 @115V/50Hz 〇 A) 感應電流密度 @115V/50Hz (mA/m2) 眼睛 18 0.8 鼻子 24 1.3 頸部 27 3.1 胸部 44 0.9 胃小凹 65 1.6 手臂Arm 8.6 1.8 手腕Wrist 3.1 1.3 軀幹 73 2.1 大腿Thigh 46 2.8 膝蓋Knee 52 6.8 腳踝Ankle 58 17 此外,基於前述的感應電流與感應電流密度,在12〇 10 V/60 Hz下的感應電流與感應電流密度依據下列式子丨與式 子2被計算出來。 式子1: 感應電流: I(60Hz)=I(50Hz)x 60/50x 120/115 15 式子2: 感應電流密度: J(60Hz)=J(50Hz)x 60/50X 120/115 54 200423986 表6顯示出在120 v/60 Hz下人類身體軀幹各個區域之 感應電流與感應電流密度的計算結果。從表6中,在構成人 4員身體軀幹之各個區域的感應電流(μΑ)測量值以及减鹿電 流密度(mA/m2)的計算值係如下所示:眼睛:23/〇·9 ;鼻子· 5 30/1.7 ;頸部:34/3.9 ;胸部:55Α.2 ;胃小凹:11/2 3 ; 以及軀幹:114/3.6。 表6:區域、感應電流值,以及感應電流密度 區域部份 感應電流 @120V/60Hz (# A) 感應電流密度 @120V/60Hz (mA/m2) 眼睛 23 0.9 - 鼻子 30 1.7 頸部 34 3.9 - 胸部 — 55 1.2 一 胃小凹 81 2.0 11 2.3 3.9 1.7 躺幹 91 2.6 大腿 57 3.6 膝蓋 64 " 83 ~~— 腳哀 72 22 當在電極與人類身體區域之間的距離被固定時,上面 所&及流經一人類身體之身體躺幹各個區域的外施電壓與 10感應電流係成比例關係。因此,當一人類身體以一椅子予 以治療時,最佳的劑量可藉由控制該外施電壓的產生與施 用的時間而被後得,因為若該電極與該人類身體之間的距 離以一最佳共同因子(common divisor)之方法被決定出 來,那麼一人類身體之各個區域的電場強度幾乎係由該外 15 施電壓來決定的。 一個經過训練的個體將了解到施加電壓的量以及電流 密度可經使用一適當的電場裝置(諸如,一 Healthtr〇n 55 200423986 HES-30™裝置(Hakuju Co·))來予以控制。例如,在一生物 樣品中所產生存在的感應電流可藉由透過EF被施加來提高 電極的電位而被增加。其他適當的裝置對於經過訓練的個 體而言係為已知的,並且包括但不限定於,00298裝置 5 (Hakuju Co·)、HEF-K 9000裝置(Hakuju Co·)、HES-15A裝 置(Hakuju Co·)、HES-30裝置(Hakuju Co·)、AC/DC產生器 (Sankyo, Inc·),以及功能產生器 SG4101 (Iwatsu,Inc.)。一 些模範裝置的特徵與那些裝置的規格說明一起被呈現在表 7中。 10 可與本發明方法一起應用的額外的電場裝置包括被揭 示在美國專利第4,094,322號中的電場產生裝置,其全部内 容在此併入本案以為參考資料。此治療裝置能夠直接的傳 送一電場至一躺臥在該裝置上的病人之一所欲的部分。其 他的電場裝置被揭示在美國專利第4,033,356、4,292,98〇、 15 4,8〇2,470 ’以及英國專利gb 2 274 593中,其各個之全部内 容在此併入本案以為參考資料。 表7提供了被挑選出來可與本發明方法一起使用之ef 裝置的特殊規格說明。 56 重量 高電壓 組佝 I 40 kg 主體 41kg 130 kg 240 kg 絕緣墊 (N 具有電 源關閉 開關盒 的治療 椅 15 kg 00 椅子 [ 15.8 kg -Μ bJQ (N 控制 開關 盒 Μ ω -4 < 自動計時 器時間 30分鐘 +/-10% 30分鐘 與 1、2、 4、6以及 8小時 無限制 無限制 輸出電壓 充電腳凳 (Charging Footrest) > ^ N 充電腳凳 o rn ό > 0-15,000 V 0-30,000 V > > 88 ss ϋ u < Q AC:0-3,500 V; DC:0-3,500 V 上方電極 (Upper Electrode) .u >沴c 82 n 「上方電極 > o to cn ό 功率 18VA+/- 15% 10 W 100 VA 200 VA 25 W 25 W 額定電源 供應器頻 率 60 Hz 50 或 60 Hz 50 或 60 Hz i 50 或 60 Hz 50 或 60 Hz 50 或 60 Hz 額定電 源供應 器電壓 115 V AC 100 V AC 100 V AC 100 V AC 100 V AC 100 V AC 裝置類型 I 00298 HEF-K 9000 HES-15A HES-30 AC/DC Generator Function Generator: SG4101 200423986 在同種(homogeneous)但外型不規則的人類模型中由 60-Hz電場所誘導的電流-密度分布經由使用一種二階有 限差程序(twc)-stage finite-difference procedure)(Hart,F.X·, 11:213-228 (1990))而被計算出來。針對 5 被暴露於一個10 kV/m電場之未接地的人類模型案例而 言,在通過軀幹下層背部高度的平面之感應電流密度係為 1·14 mA/m2 (第27圖)。在其他位置的電流密度分佈在 0.8-3.5 mA/m2之範圍。正確的值端視在模型與地面之間的 聯結能力(capacitive coupling)而定,但一合理的聯結條件範 10 圍致使在計算出的電流密度上小於一為2的因子之變化。相 似的結果被其他人發現(Gandhi,O.P. & Chen,J.Y·, Bioelectromagnetics Suppl. 1:43-60 (1992); King,R.W.P·, /五五五 7>fl肌 Eng· 45:520-530 (1998))。 限差時域分法(finite-difference time-domain method)被 15 用來計算在人類身體之解剖學基礎模型中的感應電流 (Furse, C.M. & Gandhi, O.P·, Bioelectromagnetics 19:293-299 (1998))。此計算在一超級電腦(supercomputer) 中被執行,以允許比先前所能的還要更為大量的解析。得 自於在該模型之特殊組織中所誘導出的電流密度之結果被 20 顯示在表8中。可比較的結果經由其他人使用包括脂肪-肌 肉(Chuang,H.-R· & Chen, Κ·-Μ·,/五五五 Tram £^客· 36:628-634 (1989))以及骨-腦(Hart, F.X· & Marino, Α·Α” Mel BwZ·五ng· Camp· 24:105-108 (1986))之混合的組織模 型而被發現。 58 200423986 表8·被暴露於60Hz,10 kV/m電場的人類個體特殊組織中 所誘導出的電流密度 組織 感應電流密度 (mA/m2) 小腸 1.3 脾臟 1.4 胰臟 1.5 肝臟 1.4 腎臟 2.8 肺 0.6 膀胱 1.9 心臟 2.2 胃 1.2 睪丸 0.7 前列腺 1.0 眼睛水樣液(Eye humor) 5.6 腦脊髓液 4.8 松果腺 1.4 腦下垂體 3.5 腦 1.9To treat electrolyte imbalance, the average induced current density generated across the cell membrane is preferably about 0.4 mA / m2 to about 6.0 mA / m2, and more preferably about 0.4 mA / m2 to about 5 6 mA / m2, and still more preferably about 0.43 mA / m2 to about 5.55 mA / m2. 20 For the treatment of arthritis, the average induced current density generated across the cell membrane is preferably about 0.02 mA / m2 to about 0.4 mA / m2, more preferably about 0.025 mA / m2 to about 0.35 mA / m2, Most preferably about 0 026 mA / m2 to about 032 mA / m2 ° For the treatment of overweight, the average induced current generated across the cell membrane 41 200423986 density is preferably about 0.002 mA / m2 to about 1.5 mA / m2, more preferably about 0.02 mA / m2 to about 1.2 mA / m2, most preferably about 0.024 mA / m2 to about 1.12 mA / m2 ° The present invention can also be applied to prevent or treat musculoskeletal and connective tissue Obstacle 5 obstacles. These disorders include, for example, osteoporosis (including senile, secondary, and juvenile idiopathic), bone-thinning disorders, celiac disease, tropical diarrhea ( tropical sprue, bursitis, scleroderma, CREST syndrome, Charcot's 10 joints, proper repair of fractured bones, and ligaments and cartilage (Cartilage) Proper repair of the tear. The present invention can also be applied to rheumatoid arthritis, immunosuppression disorders, neuralgia, insomnia, headache, facial paralysis, and mental officer 15 Neurosis, arthritis, joint pain, allergic rhinitis, stress, chronic pancreatitis, DiGeorge abnormality, endometriosis, urinary Urinary tract obstructions, pseudodogout, thyroid disorders, parathyroid disorders, hypoptosis, 20 hypopopituitarism, gallstones, peptic ulcers, salivary disorders salivary gland disorders, appetite disorders, heart palpitations, vomiting, thirst, excessive urine production, vertigo, benign paroxysmal positional vertigo, Esophagus 42 200423986 achalasia and other neurological disorders, acute kidney Dried (acute kidney failure), chronic renal failure (chronic kidney failure), rhesus diffuse esophageal spasm (diffuse esophageal spasms), and transient cerebral ischemia (transient ischemic attacks, TIAs). The present invention is also applicable to the treatment of conditions or disorders including osmolarity, additional renal disorders that it maintains, and an osmolar imbalance. E.EF Therapy Device The EF device is designed to generate an electric field in which an individual is placed. As illustrated in Figure 18, this electric field can surround the entire individual. Alternatively, the electric field may surround only a particular part or organ of the individual. Fig. 19 is a schematic diagram of a high voltage generation device (1) showing a specific example of the present invention. That is, the potential therapy device (1) includes a potential therapy device (2), a high voltage generating device (3), and a commercial power source (4). The potential therapy device (2) includes a chair (7) with armrests (6) for a body (5) 15 to sit on; a head electrode (8), which is attached to the upper end of a cymbal chair and An opposite electrode provided above the top of the individual's head (5); and a second electrode (9), such as an ottoman electrode, which is a main electrode, and the individual (5) places his / her legs on the first The top surface of the two electrodes. It is noted that the head electrode (8) is an opposite electrode of the second electrode (9) (its 20 is a main electrode), and may be another ceiling, wall, floor, furniture or other room Internal objects or parts. The high voltage generating device (3) generates a voltage to apply a-voltage to the head electrode (8) and the second electrode (9). The high voltage generating device ⑶ is usually installed below the chair ⑺, between the legs and on the floor, or near the chair ⑺. 43 A distance (d) between the f-th pole of the -M part and the patient's head can be changed. An insulation material surrounds the chanter electrode (8) and the second electrode (9). The second electrode (9) is connected to a high voltage output terminal (10) of the high voltage generating device (3) through a wire (11). It also has a high voltage output terminal (10) to apply a voltage to the head electrode (8) and the second electrode (9). In addition, the chair (7) and the second electrode (9) include insulators (12), (12) at a position in contact with the floor. The distance ⑷ between the surface of the human body and the first electrode (8a) can be easily changed by placing cushions of different thicknesses on the bed base ⑼. 10 A potential treatment device (2C) still provided with another structure has a type shown in Figure 20A [perspective view] and Figure 20B [side view], which exemplifies the individual (5) and each subject Chair shape in the positional relationship between the electrodes drawn in black]. The chair (7a) is provided with a front open cover body (34) covering the individual (5). The covering body (M) is provided with a fifteenth electrode (8c), which is used as an opposite electrode for accommodating the head of the individual (5); a second electrode (9c), which is used as a main electrode. Oman electrode; and another first electrode (80c) provided at a position from the shoulder to the waist when in a sitting position, as an opposing electrode provided at the waist of a higher part of the body. The other first electrode (80c) has a plurality of side electrodes (80c,) to cover the body of the individual (5) from the 20 sides. Preferably, the first electrode (8c) is arranged along the head of the human body, and the other first electrode (80c) is arranged in several layers from the shoulders to the waist along the longitudinal direction. These first electrodes (8c), another first electrode (80c), the side electrodes (80cf), and the second electrodes (9c) are arranged in an insulating material (35). A detachable cushion member (2004) made of an insulator is attached to the cover (34). Therefore, the attachment of a pad component can be changed with different thicknesses. I: The distance between the surface of the human body and the first electrodes (8c), (80c), (80c,). As also mentioned above, in this kind of potential therapy device (2c), the responsive 5 current control member can be applied to the first electrodes (8c), (80c) which are applied as a counter electrode. , (80c '), and the second electrode (a voltage is applied on the ninth phantom, and is between the first electrodes (8c), (80c), (80c,) and the torso surface of the human body The distance (d) between them is variable or is applied to the first electrodes (8c), (80c), (80c,) and the second electrode (9c) by controlling 10 Applied voltage, and further, controlling the electric field on the surface of the human body by changing the distance ⑷ between the first electrodes (8c), (80c), (80c ') and the surface of the human body A very small amount of induced current flows in various regions of a human body's torso. A potential therapy device (2A) provided with another configuration is shown in Figures 15-21A [perspective view] and 21B [side view] The potential therapy device (2A) has a bed type. A box (32) for accommodating the individual (5) is provided on a bed base (31). Each electrode is provided here Sub (32). In short, it is provided with a first electrode (8a) as a counter electrode and a second electrode (9a) placed on a leg of the human body as a main electrode. The first electrode 20 (8a) is placed on the head, shoulders, abdomen, legs, buttocks or other areas of a human body. Preferably, the first electrode (8a) has a head, shoulders, abdomen, and The shape, width, and area of the buttocks. The blank areas in these illustrations show where no electrodes are placed. The electrodes are placed in an insulator (33). A cricket 45 made of an insulator (not shown) 200423986 was placed on each electrode of the bed base (31). Mats of different thicknesses were prepared. In the above-mentioned figure 19, the head electrode (8) above the head and the individual (5 The distance (d) between the torso surfaces of the human body is set to about 5 to 1 to 25 cm. In Figure 20A, the first electrodes (8c), (80c), (80cf) ) And the torso surface of the human body of the individual (5) is set at about 1 to 25 cm, preferably 4 to 25 cm, and in Figure 21A, the distance (d) between the first electrodes (8a), (8b) and the torso surface of the human body of the individual (5) is set to about 1 to 25 cm, preferably about 3 to 25 cm. 10 As described in Figure 22 below as an electronic configuration block diagram, the high voltage generating device (3) has a voltage for one of the commercial power sources. 100V AC is increased to, for example, 15,000V booster transformer (booster tmnsfomier) (t), and current limitation resistors (R), (R) to control the current flowing to each electrode f. The high voltage 15 generating device (3) has a configuration in which an intermediate point (s) of a booster coil (T) is grounded and the ground voltage is set to a boosted voltage. half. As shown by the illustrated temporary line, a point (sf) can be grounded. Here, as shown in the block diagram in Fig. 22, a high voltage (its intermediate point (s) on the high voltage side is grounded by the boost transformer 20 (bottom)) from a 100V AC power supply via Obtained by a voltage controller (13) of the high voltage generating device (3), and further, each high voltage passes through the current limiting resistors (R), (Rf) for protecting human body And connected to these head electrodes (8), (8c) or the like (see below), and these second electrodes (9), (9c) or the like 46 200423986 (see below ). Furthermore, the potential therapy device is provided with an induced current control means. This induced current control member can cause a very small amount of induced current to flow to various regions constituting the individual (5), the human body's torso, and is applied to the head electrode ⑻ and the second electrode (9) by changing ^ 5 pressure, and-the distance between the head electrode ⑻ and the dry surface of the human body face ⑷ 'or by applying control to the head electrode ⑻ and the second electrode (9) The external pressure is controlled by changing the distance between the head electrode ⑻ and the stem surface of the human body to control the electric field lying on the body. The distance between the surface of the human body and the first electrode (8a) can be easily changed by placing, for example, a pad of the same thickness on the bed base (31). By increasing the induced current, even in a state where a high voltage is applied to the potential therapy device (1), a higher therapeutic effect can be obtained, even if it lasts for the same period of time as in the conventional method. In addition, the 15 treatments can be completed in a shorter time than before. Furthermore, in order to obtain the same therapeutic effect, an induced current of the same value as in the prior art can be obtained at a lower voltage and at the same treatment time as before. The potential therapy device (1) of the present invention is designed to be as free as possible from high-output electronic noise, high-level radio frequency noise, and strong magnetic fields. In order to reduce the influence of electromagnetic field interference on the potential therapy device (1), it is better to use a driving mechanical switch, a relay and an electric motor, or an electrical timer or other electrical components than electronic components, semiconductors, Power components (such as thyristor, triac) 47 200423986 electronic timer or EMI sensing microcomputer for attack and manufacture. However, 'such as electronic functional components, electronic serial bus switching regulators are effective as optical emitter diode power supplies, and 5 this optical emitting diode is used as An optical source that informs the individual or operator of the active or inactive state of the potential therapy device of the present invention. As discussed above, a simulated human body (h) can be used to measure IEF and induced current. , As shown in Figures 23A, 23B and 23C. 10 This simulated human body (h) is made of PVC and its surface is coated with a mixed solution of silver and vaporized silver. This results in resistance (1K Ω or less) equivalent to that of a real human body. The simulated human body (h) is well known as a nursing simulator (nursing simulat〇r), and its size is similar to an average human body size, for example, its line is 174 (^ 1 high. The I5 temple size is further It is described in Table 1. 48 200423986 Table 1: Section of Area that simulates the current density in the human body. Circle (mm) Cross Sectional Area (m2) Eye 550 0.02407 Nose 475 0.01795 Neck 328 0.00856 Chest 770 0.04718 Upper abdomen 710 0.04012 Arm 242 0.00466 Wrist 170 0.00230 Torso 660 0.03466 Thigh 450 0.01611 Knee 309 0.00760 Ankle 205 0.00334 Electric field on the surface of the body by attaching a disc-shaped electric field measurement sensor (e) to the simulated human body (h) is measured in a measurement area. These measurements occur at 115V / 60HZ and 120V / 60HZ. 5 A method for measuring an induced current and a device for this purpose are shown in Figure 24 In the inductive current measuring device (20), as shown in Figures 23A and 23B, the simulated human body (h) It is placed on the chair (7) in a normal sitting position. The head electrode (8) (which is the opposite electrode) above the head is adjusted and installed on a head from the simulated human body (h) 10 square llcm. These measurements are performed by measuring various portions (such as, for example, the k-kf line portion illustrated in Figure 24), transferring the induced current waveform through optical tmnsfer, and This waveform was achieved by observing this waveform on the ground side of the current measurement device (20). Here, the applied voltage was 15,000 V. In this measurement method, measurements were made in 15 regions of the simulated human body (h). The induced current is obtained by using two leads to generate a short circuit that flows across the simulated human body's puppet part 49 200423986 (s.hort-ci: rcuit) (22) [not shown] to obtain the induced current. Measured The resulting induced current is converted into a voltage signal via an I / V converter (23) (Figure 24). This voltage signal is then converted into an optical signal via an optical analog data link on the transmission side. 5 These optical letters The signal is transferred via an optical fiber cable (25) to an optical analog data link (26) on the receiving side and converted into a voltage signal. This voltage signal is then processed by a frequency analyzer (27), and frequency analysis is performed by a waveform observation and analysis recorder. A buffer and a 10 adder are placed between the I / V converter (23) and the optical analog data link (24) on the transmission side [not shown]. Therefore, the measured electric field values and induced currents at 115 v / 60] ^ and 120 v / 60 Hz at the locations of various regions of the simulated human body (h) are shown in Table 2. If the electric field value is different from Table 2 'of this table, then it is known that the value of the induced current passing there is also different. Therefore, it is assumed that the effective induced currents for each area where a real human body lies dry can obviously be obtained by changing the electric field of each area involved. 50 200423986 Table 2: Relationship between the electric field value and the induced current value @ TT5V / 50Hz @ 120 V / 60Hz Electric field value (kV / m) Induced current U a) Electric field value (kV / m) Induced current (UA) Face 182 0.72 190 0.90 Front 81 0.32 84 0.40 ^ 1_Second-Back of M section 113 0.44 118 0.55 Face 16 0.06 " 16 0.08 Shoulder 37 0.15 38 0.18 19 0.08 20 0.10 29 0.1Ϊ 30 0.14 33 ^ 0.14 34 0.17 _ 52 0.20 " " 54 0.25 surface 21 0.08 22 0.10 ____ 42 0.17 43 0.21 11 0.05 12 0.06 21 0.08 22 0.10 end 3.4 0.01 3.5 0.02 348 1.37 363 1.72 The body surface electric field E can be displayed by using the following equation, The induced current value of each region obtained by the method of measuring the induced current of each region in FIG. 24 is obtained. That is, E = I / soooS. Here, S series 5 is all surfaces of the electric field measurement sensor, εο is an induction rate in a vacuum, I is an induced current, ω is 2jtf and f is frequency. When the induced current in each area is obtained by the above method, an induced current density j in each area can be obtained using the following formula. That is, A = 2πΓ, B = jcr2, B = Α2 / 4π, and J = I / B, where A is a circle of 10, B is a circular area, r is a radius, and I is a measurement The measured current, and j is an induced current density. When the potential therapy is performed by controlling the voltage of the head electrode (8) and the external voltage applied to the second electrode ⑼, the temple-induced current control member mentioned above can cause—a very small amount of Induced currents flow to various areas of the trunk of a human body. 51 200423986 Table 3 shows the relationship between: (i) the induced current in the nose, neck and torso (μ A); (2) the induced current density in the nose, neck and torso (mA / m2) ; And the applied voltage (KV) at 120V / 60HZ. At the same applied voltage, this current density tends to be highest in the neck, second highest in the trunk 5 and lowest in the nose. It is noted that the induced current density in Table 3 is less than 10 mA / m2, and the current density of 10 mA / m2 or less has been approved by the International Commi ssion on Non Ionizing Radiation Protection ) Is established as safe. Table 3: Applied voltage and induced current Applied voltage [kV] Induced current value (// A) Induced current density (mA / mz) Head (nose) Neck torso Head (nose) Neck torso 0 0 0 0 0.0 0.0 0.0 5 10 11 30 0.6 1.3 0.9 10 20 23 61 1.1 2.6 1.7 15 30 34 91 1.7 3.9 2.6 20 40 45 121 2.2 5.2 〇25 50 57 152 2.8 6.6 4Λ 30 60 68 182 3.3 7.9 Γ 2 10 Figure 25 also shows the relationship between the applied voltage (κν) and the induced current (// A) in the nose, neck, and trunk. As apparent from Fig. 25, 'the applied voltage and the induced current are proportional to each other. Table 4 shows the change in induced current and induced current density in a human neck as a function of the distance (d) between the head electrode (8) and the top of the head. 52 200423986 Table 4: Change in induced current as a function of distance from the electrode. Distance between the first electrode and the top of the head. Induced current value. Induced current density distance (cm) (/ z A) (mA / mz) 4.3 50 5.8 5.4 46 5.4 6.3 43 5.0 6.9 40 4.7 8.3 39 4.5 9 38 4.4 9.9 35 4.1 11 34 3.9 12 34 3.9 13 33 3.8 14 31 3.7 15 30 3.5 16.1 30 3.5 17.2 30 3.5 Table 4 indicates that in a 15cm or more Distance, the induced current is stable at 30 μΑ. Therefore, in order to change the induced current by changing the distance, the distance should be 15 cm or less. Figure 26 also shows the change in induced current due to the distance (d) 5. In an experiment involving approximately 300 human cases of low back pain, we determined that EF is effective in treating low back pain. We also determined the optimal dosage and parameters as follows. In short, the optimal dose is obtained by controlling the generation of the induced current value and the transit time of the induced current through the area that constitutes a person's body lying dry. In addition, it is obtained by controlling the generation of a sum of applied voltages other than the first electrode voltage and the second electrode voltage, and the application time thereof. For low back pain, the therapeutic efficacy of EF is optimized by administering it at a voltage of about 10 KV to about 30 KV (preferably about 15 KV) for about 30 minutes. In other words, at about 300 KV / min to about 900 KV / min, preferably 15 about 450 KV / min. Here, Table 5 shows the values of the induced currents measured at 115 V / 50 Hz in the 53 domain W points of each region constituting the simulated human body (h) torso, and considering the simulated human body in Table 1 Under the size, the induced current density obtained from the difference of this induced current value. From Table 5, the measured values of the induced current (μΑ) and the calculated values of the induced current density (mA / m2) in the various regions constituting the torso of the human body are as follows: eyes: 18 / 0.8; nose: 24 / 1.3; Worker 4.27 / 3.1; chest: 44 / 0.9; pit 〇f the stomach: 8.6 / 1. 6; and torso: 91 / 2.8. Range, induced current value, and induced current density part of the induced current @ 115V / 50Hz 〇A) Induced current density @ 115V / 50Hz (mA / m2) Eye 18 0.8 Nose 24 1.3 Neck 27 3.1 Chest 44 0.9 Stomach depression 65 1.6 Arm Arm 8.6 1.8 Wrist 3.1 1.3 Torso 73 2.1 Thigh 46 2.8 Knee 52 6.8 Ankle Ankle 58 17 In addition, based on the aforementioned induced current and induced current density, the induced current and induction at 1210 V / 60 Hz The current density is calculated according to the following equations and 2. Formula 1: Induced current: I (60Hz) = I (50Hz) x 60 / 50x 120/115 15 Formula 2: Induced current density: J (60Hz) = J (50Hz) x 60 / 50X 120/115 54 200423986 Table 6 shows the calculation results of the induced current and induced current density in various regions of the human body trunk at 120 v / 60 Hz. From Table 6, the measured values of the induced current (μΑ) and the calculated value of the reduced deer current density (mA / m2) in each area constituting the trunk of the four people are as follows: eyes: 23 / 〇 · 9; nose · 5 30 / 1.7; Neck: 34 / 3.9; Chest: 55A.2; Stomach depression: 11/2 3; and Torso: 114 / 3.6. Table 6: Area, induced current value, and induced current density part of the induced current @ 120V / 60Hz (# A) Induced current density @ 120V / 60Hz (mA / m2) Eye 23 0.9-Nose 30 1.7 Neck 34 3.9- Chest — 55 1.2 Small stomach depression 81 2.0 11 2.3 3.9 1.7 Lying dry 91 2.6 Thigh 57 3.6 Knee 64 " 83 ~~ — Foot sorrow 72 22 When the distance between the electrode and the human body area is fixed, the above & and the applied voltage flowing through various areas of the body of a human body is proportional to 10 induced currents. Therefore, when a human body is treated with a chair, the optimal dose can be obtained by controlling the generation and application time of the applied voltage, because if the distance between the electrode and the human body is The method of the best common divisor is determined, then the electric field strength of each area of a human body is almost determined by the externally applied voltage. A trained individual will understand that the amount of applied voltage and current density can be controlled using an appropriate electric field device, such as a Healthtrón 55 200423986 HES-30 ™ device (Hakuju Co.). For example, the induced current generated in a biological sample can be increased by increasing the potential of the electrode by being applied through EF. Other suitable devices are known to trained individuals and include, but are not limited to, 00298 device 5 (Hakuju Co ·), HEF-K 9000 device (Hakuju Co ·), and HES-15A device (Hakuju Co.), HES-30 device (Hakuju Co.), AC / DC generator (Sankyo, Inc.), and function generator SG4101 (Iwatsu, Inc.). The characteristics of some exemplary devices are presented in Table 7 along with specifications for those devices. 10 Additional electric field devices that can be used with the method of the present invention include the electric field generating device disclosed in U.S. Patent No. 4,094,322, the entire contents of which are incorporated herein by reference. The treatment device is capable of directly transmitting an electric field to a desired portion of a patient lying on the device. Other electric field devices are disclosed in U.S. Patent Nos. 4,033,356, 4,292,9880, 15 4,80,2,470 'and British Patent GB 2 274 593, the entire contents of each of which are incorporated herein by reference. Table 7 provides special specifications for the EF device that has been selected for use with the method of the present invention. 56 weight high voltage group I 40 kg body 41kg 130 kg 240 kg insulation pad (N treatment chair with power off switch box 15 kg 00 chair [15.8 kg -M bJQ (N control switch box ω ω -4 < automatic timing Device time 30 minutes +/- 10% 30 minutes with 1, 2, 4, 6, and 8 hours unlimited output voltage Charging Footrest > ^ N Charging Footstool o rn ό > 0-15,000 V 0-30,000 V > > 88 ss ϋ u < Q AC: 0-3,500 V; DC: 0-3,500 V Upper Electrode .u > gtc 82 n 「Upper electrode > o to en ό Power 18VA +/- 15% 10 W 100 VA 200 VA 25 W 25 W Rated power supply frequency 60 Hz 50 or 60 Hz 50 or 60 Hz i 50 or 60 Hz 50 or 60 Hz 50 or 60 Hz rated power supply Voltage 115 V AC 100 V AC 100 V AC 100 V AC 100 V AC 100 V AC Device Type I 00298 HEF-K 9000 HES-15A HES-30 AC / DC Generator Function Generator: SG4101 200423986 In homogeneous but external appearance The current-density distribution induced by a 60-Hz electric field in an irregular human model is A two-stage finite difference procedure (twc) -stage finite-difference procedure (Hart, FX ·, 11: 213-228 (1990)) was calculated. For 5 ungrounded exposed to a 10 kV / m electric field In the case of the human model, the induced current density in the plane passing through the height of the lower back of the torso is 1 · 14 mA / m2 (Figure 27). The current density in other locations is in the range of 0.8-3.5 mA / m2. Correct The value depends on the coupling capacity between the model and the ground (capacitive coupling), but a reasonable coupling condition range of 10 results in a change in the calculated current density of less than a factor of 2. Similar results are obtained by Others have found (Gandhi, OP & Chen, JY ·, Bioelectromagnetics Suppl. 1: 43-60 (1992); King, RWP ·, / 555-7> fl muscle Eng 45: 520-530 (1998)) . The finite-difference time-domain method is used by 15 to calculate the induced current in the basic anatomy model of the human body (Furse, CM & Gandhi, OP ·, Bioelectromagnetics 19: 293-299 ( 1998)). This calculation is performed in a supercomputer to allow a much larger amount of parsing than previously possible. The results obtained from the current density induced in the special tissue of the model are shown in Table 8. Comparable results have been used by others including fat-muscle (Chuang, H.-R · & Chen, KK-M ·, / 55 May Tram £ ^ off · 36: 628-634 (1989)) and bone -A mixed tissue model of the brain (Hart, FX · & Marino, Α · Α "Mel BwZ · 5ng · Camp · 24: 105-108 (1986)) was discovered. 58 200423986 Table 8 · Exposure to 60Hz Current density induced in a human individual special tissue at 10 kV / m electric field Tissue induced current density (mA / m2) Small intestine 1.3 Spleen 1.4 Pancreas 1.5 Liver 1.4 Kidney 2.8 Lung 0.6 Bladder 1.9 Heart 2.2 Stomach 1.2 Testicle 0.7 Prostate 1.0 Eye humor 5.6 Cerebrospinal fluid 4.8 Pineal gland 1.4 Pituitary gland 3.5 Brain 1.9

實施例8-暴露至電場(EF):其對於人類病患中一些臨床症狀Example 8-Exposure to Electric Field (EF): It has some clinical symptoms in human patients

的緩#口效用(Palliative Effect)。 5 電場暴露裝置,Healthtron(Model HES 30,Hakuju的 ## Palliative Effect. 5 Electric field exposure device, Healthtron (Model HES 30, Hakuju

Institute for Health Sciences Co·,Ltd·,Tokyo,Japan)被使 用。Healthtron 包含一升壓器(step-up transformer)( — 種用來 控制電路中之電壓的裝置)、一座椅以及電極。其施加高電 壓至兩個相對電極中之一者上,俾以產生一丨亙定的電位差 10 並在該兩個電極之間的空間形成一EF。 使用者舒服地坐著並且在暴露的時間允許去閱讀一本 書或睡覺。為了避免因為電流的形成而造成意外的電擊, 59 200423986 在治療期間該等個體不允許任何與地板以及任何人(操作 者與其他暴露在電中的人)之身體接觸的形式。有絕緣體包 覆的電極被放置於允許讓腳安置於上的地板上,以及各個 病人的頭上。30,000伏特(50或60 Hz的ELF)的起始電源被施 5 加到置於腳上的電極,產生一個在腳部與頭部電極之間的 EF。暴路至電中母期持績歷時30分鐘’且暴露的頻率變化 自每日一次至每週一次。Institute for Health Sciences Co., Ltd., Tokyo, Japan) is used. Healthtron includes a step-up transformer (a device used to control the voltage in a circuit), a seat, and electrodes. It applies a high voltage to one of the two opposite electrodes to produce a predetermined potential difference 10 and forms an EF in the space between the two electrodes. The user sits comfortably and is allowed to read a book or sleep during the exposed time. In order to avoid accidental electric shock caused by the formation of electrical current, 59 200423986 During treatment, these individuals are not allowed to make any form of physical contact with the floor and anyone (operator and other people exposed to electricity). Insulator-covered electrodes are placed on the floor that allows feet to rest on, and on the heads of individual patients. A starting power of 30,000 volts (ELF at 50 or 60 Hz) is applied to the electrode placed on the foot, producing an EF between the foot and the head electrode. It took 30 minutes for the track record to reach the mother's stage during the road crash and the frequency of exposure changed from once a day to once a week.

Healthtron的功效基於在Yuichi Ishikawa醫生的直接監 督下,在曰本東京都港區虎之門(Toranomon Clinic 10 Minato-ku,Tokyo, Japan)從 1994年8 月 1 曰至 1997 年6 月 30 曰,所投予的調查表而獲得的結果來被評估出來。總計 1,253位的病人(489位男性,764位女性)以該儀器予以執 行,其中505位(208位男性,297位女性)探訪診所與使用該 Healthtron裝置並且實行該儀器至少兩次。其他人可使用該 15 裝置超過兩次。為了降低調查表中參與者的主觀程度, Healthtron之緩和效用的評估被限定在這些505位的病人。 每一個Healthtron使用者被一位醫生照顧,並且在之前 的探訪中面談該儀器的緩和效用。該面談包括在主要的身 體不適(=症狀)、過去的醫療史與治療、Healthtron的使用頻 20 率以及使用後的觀感(包括它的緩和效用與使用者之個人 的Healthtron持有)方面的詢問。在第一次醫院探訪的症狀嚴 重度被評定在一為3的等級,而在Healthtron療法之後的嚴 重度被區分成5個等級,即:非常好(5)、好(4)、沒有改變(3)、 惡化(2),以及高度惡化(1)。非常好與好被區分為“緩和 60 200423986 的’而不考慮暴露的頻率/間隔(interval),緩和的時間(以 天為單位)同樣地被紀錄。 結果 病人的年齡分布在20與90歲之間,有85.3%係由>40歲 5年齡層所構成(表9)。有208(41%)位男性與297(59%)女性。 55種不同的症狀被確認出來,且每一種症狀以Heahhtr〇n 療法而被報導出有緩和的那些病人的比例被概述於表9「應 中。由至少ίο位病人所確認出來的症狀包括:四 肢感到奉冷(cold feeling)、疲勞、頭痛、高血壓、失眠、關 10節痛、下背痛、四肢疼痛、皮膚搔癢(pruritus cutaneous)、 四肢感到麻痺、肩/頸疼痛與僵硬。Healthtron療法的緩和 效用在下列係為顯著的:沒有伴隨發燒的頭痛、器官療法 (organotherapy)(諸如蜘蛛膜下腔或腦出血(CerebralThe effectiveness of Healthtron is based on the direct supervision of Dr. Yuichi Ishikawa at Toranomon Clinic 10 Minato-ku (Tokyo, Japan) in Minato-ku, Tokyo from August 1, 1994 to June 30, 1997. The results obtained from the questionnaires submitted were evaluated. A total of 1,253 patients (489 men, 764 women) performed the device, of which 505 (208 men, 297 women) visited the clinic and used the Healthtron device and implemented the device at least twice. Others can use the 15 device more than twice. To reduce the subjectivity of the participants in the questionnaire, the assessment of Healthtron's moderating effect was limited to these 505 patients. Each Healthtron user was taken care of by a doctor and interviewed for the moderating effects of the device during previous visits. The interview included inquiries regarding major physical discomfort (= symptoms), past medical history and treatment, frequency of use of Healthtron20, and perception after use (including its moderating effect and the user's personal healthtron holding) . The severity of symptoms during the first hospital visit was rated on a scale of 3, and the severity after Healthtron therapy was divided into 5 scales: very good (5), good (4), no change ( 3), deterioration (2), and highly deterioration (1). Very good and good are distinguished as "Easy 60 200423986 'regardless of the frequency / interval of exposure, and the time of ease (in days) is also recorded. As a result, the age distribution of patients was between 20 and 90 years old Among them, 85.3% were made up of> 40 years and 5 age groups (Table 9). There were 208 (41%) men and 297 (59%) women. 55 different symptoms were identified, and each of them The proportion of patients reported to be relieved by Heahhtrn therapy is summarized in Table 9 "Response. Symptoms identified by at least one patient include: cold feeling in the limbs, fatigue, headache, High blood pressure, insomnia, 10 knots pain, lower back pain, pain in the limbs, pruritus cutaneous, paralysis of the limbs, shoulder / neck pain and stiffness. The alleviating effect of Healthtron therapy is significant in the following systems: no accompanying fever Headaches, organotherapy (such as subarachnoid or cerebral hemorrhage)

Hemorrhage))、或發炎(91.7%)、關節痛(60.7%)、下背痛 15 (57·3%)、肩/頸疼痛與僵硬(56.0-57.8%),以及疲勞(55.0%) 的減輕。有趣地,在會影響運動器官(locomotodal organs)(頭、關節、肩、頸、四肢以及腹部)之與疼痛有關的 症狀上之緩和效用被紀錄為299案例中有175位(58.5%)。這 些與疼痛有關的症狀非起因於創傷(traumas)。在第一次治 20療之後,10位有皮膚搔癢的病人中,其中有4位聲稱已經被 緩和’一位病人的S品床病徵(clinical manifestations)被惡化。 61 表9: Healthtron使用者之年齡範圍與性別分布 年齡範圍 使用者的數目 男性:女性 〜20 2 2:0 21 〜30 38 15:23 31 〜40 34 10:24 41 〜50 81 29:52 51 〜60 147 59:88 61 〜70 143 69:74 71 〜80 50 20:30 81 〜90 10 4:6 總計 505 208 (41%) : 297 (59%) 表10顯示出在505位病人中55種被確認出來的臨床症 200423986 狀之緩和率(palliation rate)。 表10-在505位病人中55種臨床症狀的緩和率。 症狀 病人數目 有緩和的病人數目 (%) 腹脹(abdominal fullness) 1 0(0) 腹痛(abdominal pain) 2 1(50) 過敏性體質(allergic constitution) 7 3 (42.9) 禿頭(alopecia) 3 3 (100) 心律不整(arrhythmia) 2 1(50) 背痛(back pain) 5 3 (60) 視力模糊(blurred vision) 5 2 (40) 胸痛(chest pain) 1 1(0) 四肢感到寒冷(cold feeling in the extremities) 14 6 (42.9) 便秘(constipation) 5 3 (60) 咳漱(cough) 5 3 (60) 耳聾(deafness) 2 1(50) 腹萬(diarrhea) 3 3 (100) 頭暈(dizziness) 5 3 (60) 耳鳴(ear ringing) 7 1 (14.3) If (enervation) 4 3(75) | 皮療(exanthema) 4 1(25) 62 200423986 眼睛疲勞(eyestrain) 5 1(20) 臉部水腫(facial edema) 1 1 (100) 臉部麻瘁(facial numbness) 2 0(0) 顏面神經麻痺(facial paralysis) 1 1(100) 臉部僵硬(facial stiffness) 1 0(0) 疲勞(fatigue) 20 11 (55) 全身性肌肉僵硬 (generalized muscle stiffness) 1 〇(〇) 牙齦痛(gingival pain) 1 0(0) 糖尿(glycosuria) 7 4 (57.1) 頭痛(headache) 12 11 (91.7) 身體感到沉重(Heavy feeling in the body) 4 2(50) 頭部感到沉重(Heavy feeling in the head) 1 〇(〇) 腿部感到沉重(Heavy feeling in the legs) 1 1 (100) 胃部感到沉重(Heavy stomach feeling) 1 〇(〇) 高血壓(hypertension) 10 4 (40) 失目民(insomnia) 17 8 (47.1) 黃痕(jaundice) 1 1(100) 關節痛(joint pain) 45 30 (66.7) 食慾不振(loss of appetite) 1 0(0) 握力喪失(loss of grip) 1 0(0) 下背痛(lower back pain) 89 51 (57.3) 月經不規則(menstrual irregularity) 1 〇(〇) 四肢疼痛(pain in the extremities) 31 10 (32.3) 心悸(Palpitation) 1 1 (100) 四肢麻痺(Paralysis in the extremities) 3 〇(〇) 足底水腫(plantar edema) 4 2(50) 頻尿(Pollakiuria) 1 1 (100) 皮膚搔癢 (pruritus cutaneous) 10 4 (40) 63 200423986 手臂僵直(rigidity of the arms) 1 1 (100) 四肢感到麻痒(sensation of numbness in the extremities) 29 11 (38.0) separation of the. calx epidermis 1 1 (100) 肩或頸疼痛(shoulder or neck pain) 25 14 (56) 肩或頸僵硬(shoulder or neck stiffness) 90 52 (57.8) 喉17龍痛(sore throat) 2 1(50) 胃痛(stomachache) 5 4 (80) 關節腫脹(swelling of joints) 2 2 (100) 四肢顫動(trembling of the extremities) 1 1 (100) 尿失禁 (urinary incontinence) 1 〇(〇) 總計 505 268 (53.1) 第28圖顯示出在不考慮Healthtron療法的頻率/間隔的 情況下,505位病人中每個症狀的平均緩和時間。在考慮到 許多被確認出的症狀中之小的樣品大小,在此研究一固有 的限制中,研究員係僅僅依賴從調查表而來的數據,我們 5 相信治療之緩和效用的持續性只有在那些被至少10位顯示 出>50%緩和率的病人確認的症狀才可以被適當的描述。疲 勞的緩和持續歷時約50天;關節、下背以及肩/頸僵硬被緩 和歷時稱微小於100天。在許多其他症狀中所指出的較長平 均緩和時間可能係為一種樣品大小的反應而非治療的真正 10 效用。 F.電療法參數最佳化之方法 本發明參數範圍的選擇與控制而同時避免可能因EF的 64 200423986 使用而產生不必要的副作用使得能夠利用EF作為一治療工 具。因此,本發明提供參數與它們使用的範圍使得能夠讓 一個經過訓練的個體來使用EF作為一種治療工具,俾以達 到一特定的生物學結果並且避免不必要的副作用。 5 一種決定出EF療法之最佳參數的較佳方法包括下列 步驟: (i)確認一要在一活生物體内誘發出的所欲生物學反 應;(ii)選擇或測量出一位在該生物體或一衍生自該生物體 的組織樣品或培養物之細胞的胞膜上之平均感應電流密 10度;(ϋ〇選擇或測量一外電場,該外電場在離該生物體、樣 品或培養物之一特定距離處會產生被選擇或測量的感應電 流密度;(iv)選擇或測量一用以於該等胞膜上產生被選擇或 測量的感應電流密度之連續時間期間;(v)施加該經選擇或 測a:的電場至該生物體、樣品或培養物,俾以於該等細胞 15膜上產生該被選擇或測量的感應電流密度歷時該被選擇或 測量的連續時間期間;(vi)測定該所欲生物學反應發生之程 度;(Vii)選擇性地重複步驟(ii)至(Vi)中的任一者;以及(viii) 確認最佳地誘發出該所欲生物學反應之該被選擇或測量的 感應電流密度、該被選擇或測量的外電場或該被選擇或測 20 量的連續時間期間的數值。較佳地,該方法進一步包括, 在步驟(viii)之鈾’產生一劑量-反應曲線(d〇se-response curve)作為該經選擇或測量的感應電流密度、該經選擇或測 量的外電場,或該經選擇或測量的連續時間期間中任一者 的一個函數。仍更較佳地,該方法進一步包含,在步驟(viii) 65 200423986 之前,選擇或測Ϊ出下列:步驟(V)被重複的次數,在步驟 (V)重複之間的時間間隔,以及該經選擇或測量的感應電流 密度被產生遍及該等膜的全部時期。 更較佳的具體例包括一或更多下列的特徵:該經選擇 5或測量的感應電流密度係約〇·〇〇1 mA/m2至約15 mA/m2;該 感應電流密度藉由測量出流經活生物體或其部分之一特定 區域的感應電流,將偵測到的電流轉換成為一電壓信號, 將该電壓彳§ 5虎轉換成為一光學彳§號,接而將該光學信號再 轉換成為一電壓#號,並且分析波形與頻率而被選擇或測 10 ®出來,以及/或5亥外電場(E)以式子E = I/socoS中的項被選 擇或測量出來,其中s係為一電場量測感應器(measurement sensor)的切面(section),εο係為一個在一真空中的誘導速率 (induction rate),I係為一電流,且£〇〔〇S係為2jxf£應該是〇〕係 為2πί,參見原始英說p-3之說明1,而f係為頻率。 15 一種用以決定外施電流療法之最佳參數的較佳方法包 括下列步驟: (i)確認一要在一活生物體内誘發出的所欲生物學反 應;(ii)選擇或測量出一位在該生物體或一衍生自該生物體 的組織樣品或培養物之細胞的胞膜上之平均感應電流密 20 度,其中該平均外施電流密度為大約10 mA/m2至約2,000 mA/m2 ; (iii)選擇或測量一將會產生該被選擇或測量的外施 電流密度的電流;(iv)選擇或測量一連續時間期間,俾以產 生該被選擇或測量的外施電流密度;(v)施加該被選擇或測 量的電流,俾以產生該被選擇或測量的外施電流密度歷時 25 該被選擇或測量的連續時間期間;(vi)決定該所欲生物學反 66 200423986 應發生的私度,(vii)重複步驟(ϋ)至(vi)中之任一者,俾以產 生一劑量-反應曲線作為該被選擇或測量的電流、該被選擇 或測量的外施電流密度或該被選擇或測量的連續時間期間 的一個函數;以及(viii)確認最佳地誘發出該所欲生物學反 5應之該被選擇或測量的電流、該被選擇或測量的外施電流 密度或該被選擇或測量的連續時間期間的數值。較佳地, 該方法進一步包括,在步驟(viii)之前,選擇或測量出下列: 步驟(V)被重複的次數,在步驟重複之間的時間間隔,以 及該外施電流密度被產生遍及該等膜的全部時期。 〇 發明人已經測疋出最佳治療特定障礙的參數。總而言 之,EF電壓(外生的)可以在約50 v至約3〇kv之間的範圍來 被施用。感應電流密度可被產生在約0 001至約15 mA/m2之 間的範圍内。較佳地,EF感應電流密度被產生在約〇 〇12至 約11.1111八/1112,更較佳約0.026至約5 55 111八/1112之範圍内。 5 外施電流密度可以在約10至約2,000 mA/m2之間的範 圍内來被使用。在本發明的另一具體例中,外施電流被產 生在約50至約600 mA/m2之間的範圍内。在本發明的一進一 步的具體例中,EF外施電流被產生在約6〇至約1〇〇 mA/m2 之間的範圍内。 表11提供較佳的參數組用以治療障礙與病狀。表11提 供該參數組被施用的特殊的障礙、病狀、器官或系統。表 11亦提供特殊的參數值,然而要被了解到的是該等值係為 近似值且相等的範圍係被本發明所預期的。 67 200423986 暴露時間 4分鐘 2分鐘 24小時/天,歷 時7天 2與24小時/ 天 2小時/天,歷 時56天 24小時 30分鐘與24 小時 外施電流密度(以 mA/m2為單位) 60、200、600、 或 2,000 2000 10、50,以及 100 60 或 600 l^r S暑与 T?^ g 0.42 0.026-0.32 0.42 EF電壓 (以 volts 為單位) 2000 3000 ί_ EF頻率 (以Hertz為單 位) S S 50(30 kV/m) 50(30 kV/m) 障礙、病狀、器官或系統 攆 mw 朝· CN 溪 塑: mw> Λ a U S: 溪 铼 與纖維母細胞增生有關的障礙 ass Λ a 屋 魏 類風濕性關節炎 A 穩 齋 A 餐 j, 铼 參數組 rH (N 寸 ο 200423986 禦 H< l> 令 (N rH Φ 寸 令 〇 令 (N 令 寸 24小 .〇 〇 Ο 〇 〇 〇 Oh l〇 o rH 0.035-0.5 (N 寸 〇 7000 3000 » ε /«S S ° 9 co σ /—s Ο \〇 '^―1 \ χ> ° ^ «νΊ VO ο > un以 o tu.-tfrC mr ^r + (N cd + CN σ3 + (N cd + (N cd + C4 cd 0 U U U υ u € ε 餐穩 溪镩 餐镓 溪璨 契攆 4 ti: 破"S 铼:S 驗)楚 硃:s 硃忘 00 〇\ 〇 rH rH τ-Η (N cn 寸 τ-Η 200423986 30分鍾與24 小時 12分鐘 1小時/天,歷 時72或100 天 7次以7000 V ; 23次以 30000 V Φ #⑺舉〇 ,較褽·螫。 2 4 1, ^ ^ ^ ^ ~缴舉學S 60 或 600 0.0001-0.42 2.3-11.1 7.5-11.1 50與 15000(AC, DC+? DC-) 9000 或 30000 30000 < 增加免疫系統細胞對ConA的誘 導反應 增加免疫系統細胞對ConA的誘 導反應 與電解質不平衡有關的障礙 *2 *2 驗1 2 2 u U 2二靶 w (55 2觀1穿 > 〇 〇 疲勞 in 00 〇\ 200423986Hemorrhage)), or inflammation (91.7%), joint pain (60.7%), lower back pain 15 (57.3%), shoulder / neck pain and stiffness (56.0-57.8%), and reduction of fatigue (55.0%) . Interestingly, the mitigating effect on pain-related symptoms affecting locomotodal organs (head, joints, shoulders, neck, limbs, and abdomen) was recorded as 175 (58.5%) of 299 cases. These pain-related symptoms do not result from traumas. After the first 20 treatments, 4 of the 10 patients with itchy skin claimed to have been relieved 'and the clinical manifestations of one patient were exacerbated. 61 Table 9: Age range and gender distribution of Healthtron users Number of users in age range Male: Female to 20 2 2: 0 21 to 30 38 15:23 31 to 40 34 10:24 41 to 50 81 29:52 51 ~ 60 147 59:88 61 ~ 70 143 69:74 71 ~ 80 50 20:30 81 ~ 90 10 4: 6 Total 505 208 (41%): 297 (59%) Table 10 shows that among 505 patients, 55 A confirmed clinical symptom of 200423986 is the Palliation Rate. Table 10-Remission rates of 55 clinical symptoms in 505 patients. Number of patients with symptoms (%) Abdominal fullness 1 0 (0) Abdominal pain 2 1 (50) Allergic constitution 7 3 (42.9) Alopecia 3 3 ( 100) arrhythmia 2 1 (50) back pain 5 3 (60) blurred vision 5 2 (40) chest pain 1 1 (0) cold feeling in the limbs in the extremities) 14 6 (42.9) constipation 5 3 (60) cough 5 3 (60) deafness 2 1 (50) diarrhea 3 3 (100) dizziness ) 5 3 (60) ear ringing 7 1 (14.3) If (enervation) 4 3 (75) | exanthema 4 1 (25) 62 200423986 eyestrain 5 1 (20) face Facial edema 1 1 (100) Facial numbness 2 0 (0) Facial paralysis 1 1 (100) Facial stiffness 1 0 (0) Fatigue ) 20 11 (55) generalized muscle stiffness 1 〇 (〇) gingival pain 1 0 (0) glycosuria 7 4 (57.1) Headache 12 11 (91.7) Heavy feeling in the body 4 2 (50) Heavy feeling in the head 1 〇 (〇) Heavy feeling in the legs ) 1 1 (100) Heavy stomach feeling 1 〇 (〇) Hypertension 10 4 (40) Insomnia 17 8 (47.1) jaundice 1 1 (100 ) Joint pain 45 30 (66.7) loss of appetite 1 0 (0) loss of grip 1 0 (0) lower back pain 89 51 (57.3) menstruation Menstrual irregularity 1 〇 (〇) pain in the extremities 31 10 (32.3) Palpitation 1 1 (100) paralysis in the extremities 3 〇 (〇) plantar edema ( plantar edema) 4 2 (50) Pollakiuria 1 1 (100) pruritus cutaneous 10 4 (40) 63 200423986 stiffness of the arms 1 1 (100) limbs sensation of numbness in the extremities) 29 11 (38.0) separation of the. calx epidermis 1 1 (100) Shoulder or neck pain 25 14 (56) Shoulder or neck stiffness 90 52 (57.8) Sore throat 2 1 (50) Stomachache 5 4 (80) swelling of joints 2 2 (100) trembling of the extremities 1 1 (100) urinary incontinence 1 〇 (〇) Total 505 268 (53.1) Figure 28 Shows the average time to remission of each symptom in 505 patients regardless of the frequency / interval of Healthtron therapy. Considering the small sample size of many of the identified symptoms, in an inherent limitation of this study, the researcher relied solely on data from the questionnaire, and we believe that the continuity of the moderating effect of treatment is limited to those Symptoms confirmed by at least 10 patients showing a> 50% remission rate can be properly described. The relaxation of fatigue lasted for about 50 days; joints, lower back and shoulder / neck stiffness were alleviated and said to be less than 100 days. The longer average relaxation time noted in many other symptoms may be a sample-size response rather than the true utility of the treatment. F. Method of optimizing electrotherapy parameters The selection and control of the parameter range of the present invention while avoiding unnecessary side effects that may be caused by the use of EF 64 200423986 makes it possible to use EF as a treatment tool. Therefore, the present invention provides parameters and the range in which they are used to enable a trained individual to use EF as a treatment tool to achieve a specific biological result and avoid unnecessary side effects. 5 A preferred method for determining the optimal parameters of EF therapy includes the following steps: (i) confirming a desired biological response to be induced in a living organism; (ii) selecting or measuring a The average induced current density on the cell membrane of an organism or a tissue sample or cell derived from the organism is 10 degrees; (ϋ 〇 Select or measure an external electric field, which is away from the organism, sample or A selected distance is measured or measured at a specific distance of the culture; (iv) a continuous time period is selected or measured to produce the selected current density at the cell membrane; (v) Applying the selected or measured a: electric field to the organism, sample, or culture, so that the selected or measured induced current density is generated on the membranes of the cells for a continuous period of time of the selected or measured; (Vi) determining the extent to which the desired biological response occurs; (Vii) selectively repeating any of steps (ii) to (Vi); and (viii) confirming that the desired biological response is best induced The response should be selected or measured The induced current density, the selected or measured external electric field, or the value selected during the continuous time of 20 measurements. Preferably, the method further includes generating a dose-response curve for uranium 'in step (viii) (Dose-response curve) as a function of any of the selected or measured induced current density, the selected or measured external electric field, or the selected or measured continuous time period. Still more preferred The method further comprises, before step (viii) 65 200423986, selecting or measuring the following: the number of times step (V) is repeated, the time interval between steps (V) repetition, and the selected or measured The induced current density is generated throughout the entire period of the films. More preferred specific examples include one or more of the following characteristics: The selected 5 or measured induced current density is about 0.001 mA / m2 to About 15 mA / m2; the induced current density measures the induced current flowing through a specific area of a living organism or a part thereof, converts the detected current into a voltage signal, and converts the voltage 彳 § 5 tiger to make An optical signal, and then the optical signal is converted into a voltage #, and the waveform and frequency are analyzed and selected or measured. 10 and / or the external electric field (E) is expressed as E = I The terms in / socoS are selected or measured, where s is the section of an electric field measurement sensor, εο is an induction rate in a vacuum, and I is A current, and £ 〇 [0S is 2jxf £ should be 0] is 2πί, see the explanation 1 of the original English p-3, and f is the frequency. 15 One is used to determine the best external current therapy The preferred method of parameters includes the following steps: (i) confirming a desired biological response to be induced in a living organism; (ii) selecting or measuring a bit in the organism or a derivative of the organism The average induced current density on the cell membrane of a tissue sample or culture cell is 20 degrees, where the average applied current density is about 10 mA / m2 to about 2,000 mA / m2; (iii) selecting or measuring one will produce The selected or measured current of the applied current density; (iv) selected or measured During continuous time, 俾 to produce the selected or measured applied current density; (v) apply the selected or measured current to produce the selected or measured applied current density for 25 seconds to be selected or measured (Vi) determine the degree of privacy that the desired biological reaction 66 200423986 should occur, (vii) repeat any one of steps (i) to (vi), and generate a dose-response curve as A function of the selected or measured current, the selected or measured applied current density, or the continuous time period of the selected or measured; and (viii) confirming that the desired biological response is best induced The selected or measured current, the selected or measured applied current density, or the value of the selected or measured continuous time period. Preferably, the method further comprises, before step (viii), selecting or measuring the following: the number of times step (V) is repeated, the time interval between step repetitions, and the applied current density is generated throughout the The full period of the isomery. O The inventors have determined the parameters that best treat a particular disorder. All in all, the EF voltage (exogenous) can be applied in a range between about 50 v to about 30 kv. The induced current density can be generated in a range between about 0.001 to about 15 mA / m2. Preferably, the EF induced current density is generated in a range of about 0.012 to about 11.11111 eight / 1112, more preferably about 0.026 to about 5 55 111 eight / 1112. 5 The applied current density can be used in the range of about 10 to about 2,000 mA / m2. In another embodiment of the invention, the applied current is generated in a range between about 50 to about 600 mA / m2. In a further specific example of the present invention, the EF applied current is generated in a range between about 60 to about 100 mA / m2. Table 11 provides a better set of parameters for treating disorders and conditions. Table 11 provides the particular disorder, condition, organ or system to which this parameter group was administered. Table 11 also provides special parameter values, however it is understood that the values are approximate and equal ranges are contemplated by the present invention. 67 200423986 Exposure time 4 minutes 2 minutes 24 hours / day, 7 days 2 and 24 hours / day 2 hours / day, 56 days 24 hours 30 minutes and 24 hours of applied current density (in mA / m2) 60 , 200, 600, or 2,000 2000 10, 50, and 100 60 or 600 l ^ r S and T? ^ G 0.42 0.026-0.32 0.42 EF voltage (in volts) 2000 3000 ί_ EF frequency (in Hertz) ) SS 50 (30 kV / m) 50 (30 kV / m) Obstacles, pathologies, organs or systems 撵 mw toward · CN Xisu: mw > Λ a US: dysfunction related to fibroblast proliferation ass Λ a House rheumatoid arthritis A Wenzhai A meal j, 铼 parameter group rH (N inch ο 200423986 Royal H < l > order 〇Oh l〇o rH 0.035-0.5 (N inch 〇7000 3000 »ε /« SS ° 9 co σ / —s 〇 \ 〇 '^ ― 1 \ χ > ° ^ ν VO > -tfrC mr ^ r + (N cd + CN σ3 + (N cd + (N cd + C4 cd 0 UUU υ u € ε稳定 溪 镩 食 镓 溪 灿 璨 撵 4 ti: broken " S 铼: S) Chu Zhu: s Zhu forget 00 〇 \ 〇rH rH τ-Η (N cn inch τ-Η 200423986 30 minutes and 24 hours 12 minutes 1 hour / day, 72 times or 100 days 7 times with 7000 V; 23 times with 30000 V Φ # ⑺〇, compared with 褽 · 螫. 2 4 1, ^ ^ ^ ^ ~ S60 or 600 0.0001-0.42 2.3-11.1 7.5-11.1 50 and 15000 (AC, DC +? DC-) 9000 or 30,000 30000 < Increases the induction of ConA by immune system cells ConA increases the induction of ConA by immune system cells is related to electrolyte imbalance Obstacle * 2 * 2 Test 1 2 2 U U 2 two targets w (55 2 watch 1 wear > 〇〇 fatigue in 00 〇 \ 200423986

cn 分鐘/期 ,每隔一 •歷時14 天 徵(N 〇 ® ^ CN ^ T叫 #s 墩in Φ您 〇哟 ^ S? ό 〇> cn ^ 1 O m ^ 0.08-1.12 3.75-5.55 (N r-H rH 1 o d 0.024-1.12 8000 15000 40000 < 50(12-40 kV/m) 50(12-40 kV/m) 壓力反應與細胞激素誘導的 障礙 與電解質不平衡有關的障礙 體重抑制(Suppression) 細胞增殖障礙 (N CN CO CM 200423986 本發明亦被指向於一種決定出一所欲的參數組(諸如 EF特徵、感應電流密度、外施電流密度,以及暴露時間) 的方法,藉此,最大所欲的效用在生物測試個體中被獲得。 在本發明的一較佳具體例中,最佳化的方法包括下列 5 步驟:確認在一生物體或其部分中想要誘導出的一所欲的 生物學效用(例如,在肌肉細胞中造成一向内的妈離子流 動);選擇一數值作為在該生物體或其部分之細胞膜的一平 均外施電流密度或一感應電流密度,其中就外施電流而 言,該數值較佳地落在約10mA/m2至約2,000mA/m2的範圍 10 内,而就感應電流而言則落在約〇.〇〇lniA/m2至約15 mA/m2 的範圍内;決定出將會產生該經選擇的電流密度之外施電 流或EF的值(諸如頻率與EF電壓);選擇一不連續的時間期 間來產生該外施電流密度,其中該週期落在約2分鐘至連續 或不連續的約1〇,〇8〇分鐘之範圍内;施用該外施電流或EF 15 來產生該經選擇的電流密度;決定出該所欲的生物學效用 發生的程度;以及重複該等步驟中之任一者。較佳地,該 最佳化步驟亦伴隨產生一劑量-反應曲線作為一個所選擇 的值的函數。在另一較佳具體例中,該外施電流或EF的值 係鑒於該生物體的身體形態、體重、體脂肪百分比,以及 2 0其他與誘導電流遍及細胞膜有關的因子而被測定出來。 在本發明的一些具體例中,被用來在活體内調節越過 細胞膜之離子流的參數藉由被呈現於表12中的組合而予以 例示說明。在本發明的其他具體例中,被用來在活體外調 節越過細胞膜之離子流的參數藉由被呈現於表13中的組合 25 而予以例示說明。 72 200423986 表12-用以在活體内調節離子流的模範參數 參數 組 EF電壓(以 volts為單位) EF頻率(以 Hz為單位) 感應電流密 度(以mA/m2 為單位) 外施電流密 度(以mA/m2 為單位) 暴露時間 1 2,000 50 0.026-0.32 2小時/天,歷 時7天 2 2,000 50 0.026-0.32 2小時/天, 歷時56天 3 7,000 50 (17.5 KV/m) 0.035-0.5 60分鐘 4 30,000 60 7.5-11.1 30分鐘 5 7,700 50 0.015-0.22 2小時/天,6 天/週,歷時 15週 6 15,000 60 3.8-5.6 20分鐘/天, 每期間4 次,歷時15 天 7 50 50 0.0001-0.42 72天 8 15,000 50 0.0001-0.42 100天 9 3,000 60 0.006-0.08 35天 10 10,000 60 0.05-0.7 15分鐘/ 天,歷時91 天 11 7,000 60 (17.5 KV/m) 0.035-0.5 15分鐘/天, 歷時7天 12 8,000 40 KV/m 2小時 13 15,000 50 3.75-5.55 30分鐘/期 間,每隔一 天,歷時2 週 14 10,000 -30,000 50 2.5-11.1 30分鐘 15 30,000 50 7.5-11.1 15分鐘/天,3 次/週,歷時2 週 16 30,000 50 7.5-11.1 30分鐘/天 17 30,000 60 7.5-11.1 30分鐘/天 73 200423986 18 2,400 50 (6 KV/m) 0.012-0.17 19 8,000 50 (40 KV/m) 0.08-1.12 2小時 20 1,200 50 (6 KV/m) 0.012-0.17 1小時/天,歷 時7天 21 50 (12-40 KV/m) 0.024-1.12 30-120 分鐘/ 天,歷時4 週 22 50 (12-40 KV/m) 0.024-1.12 30-120 分鐘/ 天,歷時8 週 23 2,400 50 (6 KV/m) 0.012-0.17 30分鐘 24 2,400 50 (6 KV/m) 0.012-0.17 120分鐘 25 10,000 ' 20,000 或 30,000 2.5-11.1 20分鐘 26 10,000 2.5-3.7 10分鐘/天,3 次/週,歷時5 週 74 200423986 表13_用以在活體外調節離子流的模範參數 參數組 EF電壓(以 volts 為單 位) EF 頻率 (以Hz為單 位) 感應電流密 度(以mA/m2 為單位) 外施電流密 度(以mA/m2 為單位) 暴露時間 1 60 60 4分鐘 2 60 200 4分鐘 3 60 600 4分鐘 4 60 2000 4分鐘 5 60 2000 4分鐘 6 60 10 24小時/天, 歷時7天 7 60 50 24小時/天, 歷時7天 8 60 100 24小時/天, 歷時7天 9 50 (30 KV/m) 0.42 2小時 10 50 (30 KV/m) 0.42 24小時 11 50 (30 KV/m) 0.42 24小時 12 60 60 或 600 30分鐘 13 60 60 或 600 24小時 14 60 60 12分鐘 15 60 60 4分鐘 16 3,000 50(30 KV/m) 0.42 24小時 17 50 100-1000 18 50 10 7天 19 50 50 7天 20 50 100 7天 21 15,000 60 22 1,000 50(150 KV/m) 3.9 48小時 23 1,000 50(10 KV/m) 0.26-0.34 48小時 24 50(8.3 KV/m) 0.28 48小時 75 200423986 在一另擇的具體例中,本發明可用於作為一診斷工具 來測定一個體是否正遭受到一特殊的障礙或病狀。與預 防、改善與治療一障礙或病狀有關的特定參數可用於偵測 相同障礙或病狀的存在。該等參數可被應用來作為一種診 5斷,且效用以反應來監測。若病人對於一個所給予的參數 組(該參數組係與疾病有關的)沒有反應,那麼缺乏一反應暗 示著該病人沒有遭受到特殊的障礙或病狀。另擇地,若該 病人對於一個所給予的參數組(該參數組係與疾病有關的) 有反應,那麼出現一反應係表示特殊障礙與/或病狀的存 10 在。本發明的診斷具體例可被用於每個障礙與/或病狀(對於 各個,一個特定的EF參數組已經被測定出來)。 將清楚知道的是,本發明可以不同於特別地被描迷於 前面的敘述與實施例中的方法來被應用。本發明的許多修 飾與變化在依據上面的教示下係為可能的,且因此,係落 15 在隨文檢附的申請專利範圍之範疇内。 在發明背景、詳細說明,以及實施例中所引述的各個 文件(包括專利、專利申請案、期刊論文、摘錄、實驗室手 冊、書籍,或其他揭示内容)之全部揭露内容以其整體在此 被併入本案以作為參考資料。 確切的電療法裝置與施用電場的方法被揭示在美國專 利申請案序號10/017,105(在2001年12月U日提出申請) 中,該美國專利申請案以其整體在此被併入本案以作為泉 考資料。 76 200423986 【圖簡曰月j 第1圖顯示出一個在一 EF暴露系統中的電場暴露皿 (field exposure dish); 第2圖顯示出在EF暴露之後的可存活細胞百分比; 5 弟3圖顯示出在含有12.5 pg/ml Con-A之經EF暴露與未 經暴露這兩種細胞懸浮液中,在高[(::^-|。細胞數量上有一 明顯的增加; 第4A與4B圖概述含有不同濃度的c〇n_A,有與沒有 ImM CaCl2之經EF暴露的細胞培養物(cen cuitures)之結果; 10 第5圖顯示出在含有植物金凝集素(phytohemaglutinin, PHA)之經EF暴鉻與未經暴露這兩種細胞中,在高[ca2+]c細 胞上有明顯的增加; 第6圖顯示出當補充以3.125-12.5 gg/ml的Con-A時, 無論是經EF暴露或未經暴露的細胞,相較於那些被刺激以 15 〇·〇25 pg/ml Con-A的細胞,在高[Ca2+]c細胞上有一明顯的增 加; 第7圖實例說明了在脾細胞(Spien0Cyte cells)中c〇nA所 誘導的鈣離子濃度增加; 第8圖顯示出以一最終濃度〇·4 μΜ A23187予以刺激的 2〇 BALB3T3小鼠胚胎細胞中DiBAC染色強度的時程變化; 第9圖顯示出一個在1〇〇 Hz產生一大約2〇〇 μΑ/酿2電 流密度的電場(1EF)對於在BALB 3T3中膜電位的影響; 第10圖亦顯示一個在1〇〇 Hz產生一大約2〇〇 μΑ/(:ίη2電 流密度的電場(EF)對於在BALB 3Τ3中膜電位的影響; 77 200423986 第11圖顯示出壓力對於血漿促腎上腺皮質激素(以下 稱為“ACTH”)位準的影響; 第12A與12B圖顯示出暴露於EF對於在正常(A)與印巢 切除(ovariectomized)(B)的大鼠中血漿ACTH位準的影響; 5 第13圖顯示出EF暴露對於在正常大鼠(n==6)中血聚 ACTH位準的影響; 第14A與14B圖顯示出EF暴露對於在正常(A)與印巢切 除(B)的大鼠中約東-誘導(restraint-induced)血漿葡萄糖位 準改變的影響; 10 第15A與15B圖顯示出EF暴露對於在正常(A)與卵巢切 除(B)的大鼠中約束-誘導血漿乳酸(lactate)位準的影響; 第16圖顯示出EF暴露對於在卵巢切除的大鼠中約束_ 誘導血漿丙酮酸(pyruvate)位準的影響; 第17圖顯示出EF暴露對於在卵巢切除的大鼠中約束_ 15 誘導白血球(WBC)計數的影響; 第18圖實例說明一經由使用一種E F療法裝置(在此案 例中,係為一種來自白哥健康科學協會的Bi〇niTr〇n椅子) 所產生的電場的一概念輪廓; 第19圖係為一本發明之一較佳的£]?療法裝置的示意 20 圖; 第20A與20B圖顯示出另一較佳的EF療法裝置; 第21A與21B圖顯示出另一較佳的EF療法裝置; 第22圖係為-顯tf出-EF療法裝置之較佳電子組態的 圖不, 78 200423986 第23A圖係為一個被刺激的人類身體的一前視圖,第 23B圖係為一透視圖,而第23C圖係為一顯示出一被附於該 身體頸部之EF量測感應器(measurement sensor)的圖; 第24圖顯示一用以測量由該EF療法裝置所產生之感 5 應電流的裝置; 第25圖顯示出在一外施電壓與一感應電流之間的關 係; 第26圖顯示出在一頭部電極位置與在頸部被誘導出的 電流之間的關係; 10 第27圖實例說明在一未接地的人類個體之不同位置的 感應電流密度(mA/m2);以及 第28圖顯示EF暴露對於人類不同症狀的減輕功效。 【圖式之主要元件代表符號表】cn minutes / periods, every 14 days (N 〇® ^ CN ^ T called #s inin Φ 你 〇yo ^ S? ό 〇 > cn ^ 1 O m ^ 0.08-1.12 3.75-5.55 ( N rH rH 1 od 0.024-1.12 8000 15000 40000 < 50 (12-40 kV / m) 50 (12-40 kV / m) Stress response and cytokine-induced disorders and electrolyte imbalance disorders Suppression Cell proliferation disorder (N CN CO CM 200423986) The present invention is also directed to a method for determining a desired parameter set (such as EF characteristics, induced current density, applied current density, and exposure time), thereby maximizing The desired effect is obtained in a biological test subject. In a preferred embodiment of the present invention, the optimization method includes the following 5 steps: confirming a desired one to be induced in an organism or part thereof Biological effect (for example, causing inward ma ion flow in muscle cells); choose a value as an average applied current density or an induced current density in the cell membrane of the organism or part thereof, where the applied current is In terms of this number It preferably falls within a range of about 10 mA / m2 to about 2,000 mA / m2, and falls within a range of about 0.00lniA / m2 to about 15 mA / m2 in terms of induced current; A value of applied current or EF (such as frequency and EF voltage) other than the selected current density is generated; a discontinuous time period is selected to generate the applied current density, where the period falls between about 2 minutes to continuous or Within a discontinuous range of about 10.80 minutes; applying the applied current or EF 15 to produce the selected current density; determining the extent to which the desired biological effect occurs; and repeating the steps Either of these. Preferably, the optimization step is also accompanied by generating a dose-response curve as a function of a selected value. In another preferred embodiment, the value of the applied current or EF is It is determined in view of the body shape, body weight, body fat percentage of the organism, and 20 other factors related to the induction current throughout the cell membrane. In some specific examples of the present invention, it is used to regulate the cell membrane across the body in vivo. The parameters of the ion current are The combinations presented in Table 12 are exemplified. In other specific examples of the present invention, the parameters used to regulate the ion flux across the cell membrane in vitro are exemplified by the combination 25 presented in Table 13. 72 200423986 Table 12-Exemplary parameters for adjusting ion current in vivo Parameter group EF voltage (in volts) EF frequency (in Hz) Induced current density (in mA / m2) Applied current density (In mA / m2) Exposure time 1 2,000 50 0.026-0.32 2 hours / day for 7 days 2 2,000 50 0.026-0.32 2 hours / day for 56 days 3 7,000 50 (17.5 KV / m) 0.035-0.5 60 minutes 4 30,000 60 7.5-11.1 30 minutes 5 7,700 50 0.015-0.22 2 hours / day, 6 days / week, 15 weeks 6 15,000 60 3.8-5.6 20 minutes / day, 4 times per period, 15 days 7 50 50 0.0001-0.42 72 days 8 15,000 50 0.0001-0.42 100 days 9 3,000 60 0.006-0.08 35 days 10 10,000 60 0.05-0.7 15 minutes / day, which lasts 91 days 11 7,000 60 (17.5 KV / m) 0.035-0.5 15 minutes / Day, 7 days 12 8,000 40 KV / m 2 hours 13 15,000 50 3.75-5.55 30 minutes / period, every other day, 2 weeks 14 10,000 -30,000 50 2.5-11.1 30 minutes 15 30,000 50 7.5-11.1 15 minutes / day, 3 times / week, 2 weeks 16 30,000 50 7.5-11.1 30 minutes / day 17 30,000 60 7.5-11.1 30 minutes / day 73 200423986 18 2,400 50 (6 KV / m) 0.012-0.17 19 8,000 50 (40 KV / m) 0.08-1.12 2 hours 20 1,200 50 (6 KV / m) 0.012-0.17 1 hour / day, 7 days 21 50 (12-40 KV / m) 0.024-1.12 30-120 minutes / day, 4 weeks 22 50 (12-40 KV / m) 0.024- 1.12 30-120 minutes / day over 8 weeks 23 2,400 50 (6 KV / m) 0.012-0.17 30 minutes 24 2,400 50 (6 KV / m) 0.012-0.17 120 minutes 25 10,000 '20,000 or 30,000 2.5-11.1 20 minutes 26 10,000 2.5-3.7 10 minutes / day, 3 times / week, 5 weeks 74 200423986 Table 13_ Model parameters for adjusting ion current in vitro Parameter group EF voltage (in volts) EF frequency (in Hz) Unit) Induced current density (in mA / m2) Applied current density (in mA / m2) Exposure time 1 60 60 4 minutes 2 60 200 4 minutes 3 60 600 4 minutes 4 60 2000 4 minutes 5 60 2000 4 minutes 6 60 10 24 hours / day, 7 days 7 60 50 24 hours / day, 7 days 8 60 100 24 hours / day, 7 hours Day 9 50 (30 KV / m) 0.42 2 hours 10 50 (30 KV / m) 0.42 24 hours 11 50 (30 KV / m) 0.42 24 hours 12 60 60 or 600 30 minutes 13 60 60 or 600 24 hours 14 60 60 12 minutes 15 60 60 4 minutes 16 3,000 50 (30 KV / m) 0.42 24 hours 17 50 100-1000 18 50 10 7 days 19 50 50 7 days 20 50 100 7 days 21 15,000 60 22 1,000 50 (150 KV / m) 3.9 48 hours 23 1,000 50 (10 KV / m) 0.26-0.34 48 hours 24 50 (8.3 KV / m) 0.28 48 hours 75 200423986 In an alternative embodiment, the present invention can be used as a diagnostic tool Determine if a body is experiencing a particular obstacle or condition. Specific parameters related to the prevention, improvement, and treatment of an obstacle or condition can be used to detect the presence of the same obstacle or condition. These parameters can be used as a diagnostic tool and can be used to monitor response. If the patient does not respond to a given parameter set (the parameter set is related to the disease), then a lack of a response implies that the patient has not experienced a particular disorder or condition. Alternatively, if the patient responds to a given parameter set (the parameter set is related to the disease), then the presence of a response indicates the presence of a particular disorder and / or condition. Specific diagnostic examples of the present invention can be used for each disorder and / or condition (for each, a specific EF parameter set has been determined). It will be clear that the present invention may be applied differently from the method particularly described in the foregoing description and embodiments. Many modifications and variations of the present invention are possible based on the above teachings, and therefore, fall within the scope of the patent application attached to the document. The entire disclosure of each document (including patents, patent applications, journal articles, excerpts, laboratory manuals, books, or other disclosures) cited in the background, detailed description, and examples is hereby incorporated in its entirety. Incorporated into this case for reference. The exact electrotherapeutic device and method of applying an electric field are disclosed in U.S. Patent Application Serial No. 10 / 017,105 (filed on December U. 2001), which U.S. patent application is hereby incorporated in its entirety as this Spring test information. 76 200423986 [Simplified figure of the month j Figure 1 shows a field exposure dish in an EF exposure system; Figure 2 shows the percentage of viable cells after EF exposure; Figure 3 shows In both EF-exposed and unexposed cell suspensions containing 12.5 pg / ml Con-A, there was a significant increase in cell numbers at high [(:: ^-| .; Figures 4A and 4B summarize Conon A with different concentrations, with and without ImM CaCl2, EF exposed cell cultures (cen cuitures); 10 Figure 5 shows EF exposure to chromium containing phytohemaglutinin (PHA) There was a significant increase in high [ca2 +] c cells in both cells with and without exposure; Figure 6 shows that when supplemented with Con-A at 3.125-12.5 gg / ml, whether exposed to EF or not The exposed cells showed a significant increase in high [Ca2 +] c cells compared to those stimulated with 15.025 pg / ml Con-A; Figure 7 illustrates an example in splenocytes (Spien0Cyte cells), the increase in calcium ion concentration induced by coonA; Figure 8 shows the Time course of DiBAC staining intensity in embryonic cells of 20BALB3T3 mice stimulated with 0.4 μM A23187; Figure 9 shows an electric field that produces a current density of about 200 μA / μ2 at 100 Hz ( 1EF) on the membrane potential in BALB 3T3; Figure 10 also shows the effect of an electric field (EF) that produces a current density of about 200μA / (: 2η 2 at 1000Hz) on the membrane potential in BALB 3T3 77 200423986 Figure 11 shows the effect of stress on the level of plasma adrenocorticotropic hormone (hereinafter referred to as "ACTH"); Figures 12A and 12B show exposure to EF for normal (A) and ovariectomized ) (B) The effect of plasma ACTH levels in rats; 5 Figure 13 shows the effect of EF exposure on blood poly ACTH levels in normal rats (n == 6); Figures 14A and 14B show Effect of EF exposure on changes in about East-induced-induced plasma glucose levels in normal (A) and indo-removed (B) rats; Figures 15A and 15B show EF exposure for normal ( (A) Constrained-induced plasma lactate level in rats with ovariectomy (B) Figure 16 shows the effect of EF exposure on confinement _ induced plasma pyruvate levels in ovariectomized rats; Figure 17 shows the effect of EF exposure on confinement _ 15 induction in ovariectomized rats Effect of WBC count; Figure 18 illustrates an example of the concept of the electric field generated by the use of an EF therapy device (in this case, a BiOniTrón chair from the White Brothers Health Science Association) Outline; Figure 19 is a schematic 20 diagram of a preferred treatment device of the present invention; Figures 20A and 20B show another preferred EF therapy device; Figures 21A and 21B show another The preferred EF therapy device; Figure 22 is a diagram of the preferred electronic configuration of the -effect tf out-EF therapy device, 78 200423986 Figure 23A is a front view of a stimulated human body, Figure 23B The diagram is a perspective view, and FIG. 23C is a diagram showing an EF measurement sensor attached to the neck of the body; FIG. 24 shows a device for measuring the EF therapy device. The device that produces the sense of 5 current; Figure 25 Shows the relationship between an applied voltage and an induced current; Figure 26 shows the relationship between the position of a head electrode and the current induced in the neck; 10 Figure 27 illustrates an example Induced current density (mA / m2) at different locations of a grounded human individual; and Figure 28 shows the mitigation effect of EF exposure on different human symptoms. [Representation of the main components of the diagram]

7979

Claims (1)

200423986 拾、申請專利範圍: 1. 一種用於治療或預防一障礙的方法,該障礙造成一生物 體或其一部分的細胞中之一異常的離子濃度或是由該 異常的離子濃度所造成,該方法包含使該等細胞恢復一 5 正常的離子濃度,而包括對該生物體或部分施加一外電 場,該外電場於該等細胞的胞膜上產生一為大約0.001 mA/m2至大約15 mA/m2之平均感應電流密度。 2. 如申請專利範圍第1項之方法,其中該等離子包括鈣離 子。 10 3.如申請專利範圍第1項之方法,其進一步包含對該生物 體或其部分提供一鈣補充品、一維生素D補充品、一 植物凝集素補充品,或該等補充品之一組合。 4. 如申請專利範圍第3項之方法,其中該植物凝集素補充 品被提供,並且該植物凝集素補充品包含刀豆球蛋白A 15 或小麥胚芽凝集素。 5. 如申請專利範圍第1至4項中任一項的方法,其中該平 均感應電流密度是為大約0.01 mA/m2至大約2mA/m2。 6. 如申請專利範圍第5項之方法,其中該生物體係為一人 類,並且該電場於該人類的細胞的胞膜上產生該平均感 20 應電流密度歷時一為大約10分鐘至約240分鐘的連續 期間。 7. 如申請專利範圍第6項之方法,其進一步包含隨後對該 人類或其部分重複施加該外電場以及重複產生該平均 感應電流密度歷時大約30分鐘至大約90分鐘之額外的 80 200423986 連續期間。 8. —種用來執行如申請專利範圍第1項之方法的裝置,其 中該裝置係為一種電場療法裝置,該裝置包含: (a) —主要電極與一相對電極; 5 (b) —用以施加一電壓至該等電極的電壓產生器; ’ (c) 一感應電流產生器,其藉由改變該電壓或介於該相 . 對電極與該生物體或其部分之間的距離來控制該外 電場;以及 φ (d) —用以驅動該電壓產生器的電源。 10 9.如申請專利範圍第8項之裝置,其中該主要電極沒有接 觸該生物體或其部分。 10. —種用於治療一增生性細胞障礙的方法,該方法包含改 變越過一生物體或其一部分之細胞膜的離子流,而包括 對該生物體或部分施加一外電場,該外電場於該等細胞 15 膜上產生一為大約0.1 mA/m2至大約2mA/m2的平均感 應電流密度。 · 11. 如申請專利範圍第10項之方法,其中該平均感應電流 密度為大約0.2 mA/m2至大約1.2 mA/m2。 ^ 12. 如申請專利範圍第11項之方法,其中該平均感應電流 身 20 密度為大約0.29 mA/m2至大約1.12 mA/m2。 13. 如申請專利範圍第11項之方法,其中該等離子包含鈣 離子。 14. 如申請專利範圍第10項之方法,其進一步包含對該生 物體或其部分提供一鈣補充品、一維生素D補充品、一 81 200423986 植物凝集素補充品,或該等補充品之一組合。 15.如申請專利範圍第14項之方法,其中該植物凝集素補 充品被提供,並且該植物凝集素補充品包含刀豆球蛋白 A或小麥胚芽凝集素。 5 16.如申請專利範圍第11項之方法,其中該增生性細胞障 礙涉及到經分化的纖維母細胞。 17. 如申請專利範圍第11或14項之方法,其中該生物體係 為一人類,並且該電場於該人類的細胞之胞膜上產生該 平均感應電流密度歷時一為大約10分鐘至大約240分 10 鐘的連續期間。 18. 如申請專利範圍第17項之方法,其進一步包含隨後對 該人類或其部分重複施加該電場以及重複產生該平均 感應電流密度歷時大約30分鐘至大約90分鐘之額外的 連續期間。 15 19.如申請專利範圍第18項之方法,其中該人類被安排在 一醫院或診所的床上。 20. —種用來執行如申請專利範圍第11項之方法的裝置, 其中該裝置係為一包含下列的電場療法裝置: (a) —主要電極與一相對電極; 20 (b) —用以施加一電壓至該等電極的電壓產生器; (C) 一感應電流產生器,其藉由改變該電壓或介於該相 對電極與該生物體或其部分之間的距離來控制該外 電場;以及 (d) —用以驅動該電壓產生器的電源。 82 200423986 21. 如申請專利範圍第20項之裝置,其中該主要電極沒有 接觸該生物體或其部分。 22. —種用於治療電解質不平衡的方法,該方法包含改變越 過一生物體或其部分之細胞膜的離子流,而包括對該生 5 物體或部分施加一外電場,該外電場於該等細胞膜上產 生一為大約0.4 mA/m2至大約6.0 mA/m2的平均感應電 流密度。 23. 如申請專利範圍第22項之方法,其中該平均感應電流 密度為大約0.4 mA/m2至大約5.6 mA/m2。 10 24.如申請專利範圍第23項之方法,其中該平均感應電流 密度為大約0.43 mA/m2至大約5.55 mA/m2。 25. 如申請專利範圍第23項之方法,其中該等離子包含鈣 離子。 26. 如申請專利範圍第22項之方法,其進一步包含對該生 15 物體或其部分提供一鈣補充品、一維生素D補充品、一 植物凝集素補充品,或該等補充品之一組合。 27. 如申請專利範圍第26項之方法,其中該植物凝集素補 充品被提供,並且該植物凝集素補充品包含刀豆球蛋白 A或小麥胚芽凝集素。 20 28.如申請專利範圍第23或26項之方法,其中該生物體係 為一人類,並且該電場於該人類的細胞之胞膜上產生該 平均感應電流密度歷時一為大約10分鐘至大約240分 鐘的連續期間。 29.如申請專利範圍第28項之方法,其進一步包含隨後對 83 200423986 該人類或其部分重複施加該電場以及重複產生該平均 感應電流密度歷時大約30分鐘至大約90分鐘之額外的 連續期間。 30. 如申請專利範圍第29項之方法,其中該人類被安排在 5 一醫院或診所的床上。 π 31. —種用來執行如申請專利範圍第22項之方法的裝置, . 其中該裝置係為一包含下列的電場療法裝置: (a) —主要電極與一相對電極; 馨 (b) —用以施加一電壓至該等電極的電壓產生器; 10 (c) 一感應電流產生器,其藉由改變該電壓或介於該相 對電極與該生物體或其部分之間的距離來控制該外 電場;以及 (d) —用以驅動該電壓產生器的電源。 32. 如申請專利範圍第31項之裝置,其中該主要電極沒有 15 接觸該生物體或其部分。 33. —種用於治療與血清鈣濃度有關的障礙之方法,該方法 · 包含改變越過一生物體或其部分之細胞膜的妈離子 流,而包括對該生物體或部分施加一外電場,該外電場 、 於該等細胞膜上產生一為大約0.3 mA/m2至大約0.6 瞥 20 mA/m2的平均感應電流密度。 34. 如申請專利範圍第33項之方法,其中該平均感應電流 密度為大約0.4 mA/m2至大約0.5 mA/m2。 35. 如申請專利範圍第34項之方法,其中該平均感應電流 密度為大約0.42 mA/m2。 84 200423986 36. 如申請專利範圍第33項之方法,其進一步包含對該生 物體或其部分提供一鈣補充品、一維生素D補充品、一 植物凝集素補充品,或該等補充品之一組合。 37. 如申請專利範圍第36項之方法,其中該植物凝集素補 5 充品被提供,並且該植物凝集素補充品包含刀豆球蛋白 A或小麥胚芽凝集素。 38. 如申請專利範圍第34或36項之方法,其中該生物體係 為一人類,並且該電場於該人類的細胞之胞膜上產生該 平均感應電流密度歷時一為大約10分鐘至大約240分 10 鐘的連續期間。 39. 如申請專利範圍第38項之方法,其進一步包含隨後對 該人類或其部分重複施加該電場以及重複產生該平均 感應電流密度歷時大約30分鐘至大約90分鐘之額外的 連續期間。 15 40.如申請專利範圍第39項之方法,其中該人類被安排在 一醫院或診所的床上。 41. 一種用來執行如申請專利範圍第33項之方法的裝置, 其中該裝置係為一包含下列的電場療法裝置: (a) —主要電極與一相對電極; 20 (b) —用以施加一電壓至該等電極的電壓產生器; (c) 一感應電流產生器,其藉由改變該電壓或介於該相 對電極與該生物體或其部分之間的距離來控制該外 電場;以及 (d) —用以驅動該電壓產生器的電源。 85 200423986 42.如申請專利範圍第41項之裝置,其中該主要電極沒有 接觸該生物體或其部分。 43· —種用以降低ACTH或皮質醇(c〇rtis〇1)位準之方法,該 方法包含改變越過一生物體或其部分之細胞膜的離子 Μ而包括對讜生物體或部分施加一外電場,該外電場 於該等細胞膜上產生一為大約〇〇3 mA/m2至大約12 mA/m2的平均感應電流密度。 44·如申請專利範圍第43項之方法,其中該平均感應電流 密度為大約0.035 mA/m2至大約1L1 mA/m2。 10 45·如申請專利第44項之方法,其中該平均感應電流 密度為大約0.035至大約〇.5 mA/m2。 46·如申請專利範圍第43項之方法,其中該等離子包含鈣 離子,亚且該方法進一步包含對該生物體或其部分提供 一辆充品、—維生素D補充品、-植物凝集素補充 15 品,或該等補充品之一組合。 47. 如申請專利範’ 46項之方法,其中該植物凝集素補 充品被提供’並且該植物㈣素補充品包含刀豆球蛋白 A或小麥胚芽凝集素。 48. 如申請專利範圍第44 < 46項之方法,其中該生物體係 2〇 為一人類,並且該電場於該人類的細胞之胞膜上產生該 平均感應電流密度歷時—為大約1〇分鐘至大約㈣分 鐘的連續期間。 49. 如申請專利範圍第48項之方法,其進一步包含隨後對 該人類或其部分重複施加該電場以及重複產生該平均 86 200423986 感應電流密度歷時約30分鐘至約90分鐘之額外的連續 期間。 50.如申請專利範圍第49項之方法,其中該人類被安排在 一醫院或診所的床上。 5 51. —種用來執行如申請專利範圍第43項之方法的裝置, 其中該裝置係為一包含下列的電場療法裝置: (a) —主要電極與一相對電極; (b) —用以施加一電壓至該等電極的電壓產生器; (c) 一感應電流產生器,其藉由改變該電壓或介於該相 10 對電極與該生物體或其部分之間的距離來控制該外 電場;以及 (d) —用以驅動該電壓產生器的電源。 52.如申請專利範圍第51項之裝置,其中該主要電極沒有 接觸該生物體或其部分。 15 53. —種用於治療壓力的方法,該方法包含改變越過一生物 體或其部分之細胞膜的離子流,而包括對該生物體或部 分施加一外電場,該外電場於該等細胞膜上產生一為大 約0.03 mA/m2至大約12mA/m2的平均感應電流密度。 54. 如申請專利範圍第53項之方法,其中該平均感應電流 20 密度為大約0.035 mA/m2至大約11.1 mA/m2。 55. 如申請專利範圍第54項之方法,其中該等離子包含鈣 離子。 56. 如申請專利範圍第53項之方法,其進一步包含對該生 物體或其部分提供一鈣補充品、一維生素D補充品、一 87 200423986 植物凝集素補充品,或該等補充品之一組合。 57.如申請專利範圍第56項之方法,其中該植物凝集素補 充品被提供,並且該植物凝集素補充品包含刀豆球蛋白 A或小麥胚芽凝集素。 5 58.如申請專利範圍第54或56項之方法,其中該生物體係 11 為一人類,並且該電場於該人類的細胞之胞膜上產生該 . 平均感應電流密度歷時一為大約10分鐘至大約240分 鐘的連續期間。 φ 59. 如申請專利範圍第58項之方法,其進一步包含隨後對 10 該人類或其部分重複施加該電場以及重複產生該平均 感應電流密度歷時大約30分鐘至大約90分鐘之額外的 連續期間。 60. 如申請專利範圍第59項之方法,其中該人類被安排在 一醫院或診所的床上。 15 61. —種用來執行如申請專利範圍第53項之方法的裝置, 其中該裝置係為一包含下列的電場療法裝置: H (a) —主要電極與一相對電極; (b) —用以施加一電壓至該等電極的電壓產生器; 、 (c) 一感應電流產生器,其藉由改變該電壓或介於該相 ψ 20 對電極與該生物體或其部分之間的距離來控制該外 電場;以及 (d) —用以驅動該電壓產生器的電源。 62.如申請專利範圍第61項之裝置,其中該主要電極沒有 接觸該生物體或其部分。 88 200423986 63. —種用於治療關節炎的方法,該方法包含改變越過一生 物體或其部分之細胞膜的離子流,而包括對該生物體或 部分施加一外電場,該外電場於該等細胞膜上產生一為 大約0.02 mA/m2至大約0.4 mA/m2的平均感應電流密 5 度。 64. 如申請專利範圍第63項之方法,其中該平均感應電流 密度為大約0.025 mA/m2至大約0.35 mA/m2。 65. 如申請專利範圍第64項之方法,其中該平均感應電流 密度係約 0.026 mA/m2 至約 0.32 mA/m2。 10 66.如申請專利範圍第64項之方法,其中該等離子包含鈣 離子。 67.如申請專利範圍第63項之方法,其進一步包含對該生 物體或其部分提供一鈣補充品、一維生素D補充品、一 植物凝集素補充品,或該等補充品之一組合。 15 68.如申請專利範圍第67項之方法,其中該植物凝集素補 充品被提供,並且該植物凝集素補充品包含刀豆球蛋白 A或小麥胚芽凝集素。 69. 如申請專利範圍第64或67項之方法,其中該生物體係 為一人類,並且該電場於該人類的細胞之胞膜上產生該 20 平均感應電流密度歷時一為大約10分鐘至大約240分 鐘的連續期間。 70. 如申請專利範圍第69項之方法,其進一步包含隨後對 該人類或其部分重複施加該電場以及重複產生該平均 感應電流密度歷時大約30分鐘至大約90分鐘之額外的 89 200423986 連續期間。 71. 如申請專利範圍第70項之方法,其中該人類被安排在 一醫院或診所的床上。 72. —種用來執行如申請專利範圍第63項之方法的裝置, 5 其中該裝置係為一包含下列的電場療法裝置: (a) —主要電極與一相對電極; (b) —用以施加一電壓至該等電極的電壓產生器; (c) 一感應電流產生器,其藉由改變該電壓或介於該相 對電極與該生物體或其部分之間的距離來控制該外 10 電場;以及 (d) —用以驅動該電壓產生器的電源。 73. 如申請專利範圍第72項之裝置,其中該主要電極沒有 接觸該生物體或其部分。 74. —種用於治療體重過重的方法,該方法包含改變越過一 15 生物體或其部分之細胞膜的離子流,而包括對該生物體 或部分施加一外電場,該外電場於該等細胞膜上產生一 為大約0.02 mA/m2至大約1.5 mA/m2的平均感應電流密 度。 75. 如申請專利範圍第74項之方法’其中該平均感應電流 20 密度為大約0.02 mA/m2至大約1.2 mA/m2。 76. 如申請專利範圍第75項之方法,其中該平均感應電流 密度為大約0.024 mA/m2至大約1.12 mA/m2。 77. 如申請專利範圍第75項之方法,其中該等離子包含鈣 離子。 90 200423986 78. 如申請專利範圍第74項之方法,其進一步包含對該生 物體或其部分提供一鈣補充品、一維生素D補充品、一 植物凝集素補充品,或該等補充品之一組合。 79. 如申請專利範圍第78項之方法,其中該植物凝集素補 5 充品被提供,並且該植物凝集素補充品包含刀豆球蛋白 A或小麥胚芽凝集素。 80. 如申請專利範圍第74或78項之方法,其中該生物體係 為一人類,並且該電場於該人類的細胞之胞膜上產生該 平均感應電流密度歷時一為大約10分鐘至大約240分 10 鐘的連續期間。 81. 如申請專利範圍第80項之方法,其進一步包含隨後對 該人類或其部分重複施加該電場以及重複產生該平均 感應電流密度歷時大約30分鐘至大約90分鐘之額外的 連續期間。 15 82.如申請專利範圍第81項之方法,其中該人類被安排在 一醫院或診所的床上。 83. —種用來執行如申請專利範圍第74項之方法的裝置, 其中該裝置係為一包含下列的電場療法裝置: (a) —主要電極與一相對電極; 20 (b) —用以施加一電壓至該等電極的電壓產生器; (c) 一感應電流產生器,其藉由改變該電壓或介於該相 對電極與該生物體或其部分之間的距離來控制該外 電場;以及 (d) —用以驅動該電壓產生器的電源。 91 200423986 84. 如申請專利範圍第83項之裝置,其中該主要電極沒有 接觸該生物體或其部分。 85. —種用以決定用於治療一障礙之外電場暴露的最佳參 數之方法,該方法包含: (i) 確認一要在一活生物體内誘發出的所欲生物學反 應, (ii) 選擇或測量出一位在該生物體或一衍生自該生物 體的組織樣品或培養物之細胞的胞膜上之平均感 應電流密度; ίο (iii) 選擇或測量一外電場,該外電場在離該生物體、樣 品或培養物之一特定距離處會產生被篩選或測量 的感應電流密度; (iv) 選擇或測量一用以於該等胞膜上產生被篩選或測 量的感應電流密度之連續時間期間; 15 (v) 施加該被選擇或測量的電場至該生物體、樣品或培 養物,俾以於該等細胞膜上產生該被選擇或測量的 感應電流密度歷時該被篩選或測量的連續時間期 間; (vi) 測定該所欲生物學反應發生之程度; 20 (vii) 選擇性地重複步驟(ii)至(vi)中的任一者;以及/或 (viii) 確認最佳地誘發出該所欲生物學反應之作為該被 選擇或測量的感應電流密度之數值、作為該被選擇 或測量的外電場之數值或作為該被篩選或測量的 連續時間期間的數值。 92 200423986 86.如申請專利範圍第85項之方法,其進一步包含在步驟 (viii)之前,產生一個劑量-反應曲線作為該被選擇或測 量的感應電流密度、該被選擇或測量的外電場或被經選 擇或測量的連續時間期間之一函數。 5 87.如申請專利範圍第85項之方法,其進一步包含在步驟 k (viii)之前,選擇或測量下列: , 被重複的步驟(v)之次數數目; 介於步驟(V)的重複之間的時間間隔;以及 φ 該被選擇或測量的感應電流密度被產生於胞膜上 10 的全部期間。 88. 如申請專利範圍第85項之方法,其中該被選擇或測量 的感應電流密度為大約0.001 mA/m2至大約15 mA/m2。 89. 如申請專利範圍第85項之方法,其中該等細胞係位在 一培養物中。 15 90.如申請專利範圍第89項之方法,其中位在培養物中的 該等細胞係為人類細胞。 · 91. 如申請專利範圍第85項之方法,其中該等細胞係位在 一活生物體或其部份之中。 β 92. 如申請專利範圍第91項之方法,其中該活生物體係為 t 20 一人類。 93. 如申請專利範圍第85項之方法,其中該感應電流密度 係藉由測量於該活生物體或其部分之一給定區域内流 動的感應電流、藉由將被測量到的電流轉換成為一電壓 信號、藉由將該電壓信號轉換成為一光學信號、接而藉 93 200423986 由將該光學信號再轉換成為一電壓信號以及分析波形 與頻率而被選擇或測量出來。 94.如申請專利範圍第85項之方法,其中該感應電流密度 係以J來作表示,而J係以J = I/B來作表示。 5 95.如申請專利範圍第85項之方法,其進一步包含對該生 物體、樣品或培養物提供一鈣補充品、一維生素D補充 品、一植物凝集素補充品,或該等補充品之一組合。 96. 如申請專利範圍第95項之方法,其中該植物凝集素補 充品被提供,並且該植物凝集素補充品包含刀豆球蛋白 10 A或小麥胚芽凝集素。 97. —種用來執行如申請專利範圍第85項之方法的裝置, 其中該裝置係為一包含下列的電場療法裝置: (a) —主要電極與一相對電極; (b) —用以施加一電壓至該等電極的電壓產生器; 15 (c) 一感應電流產生器,其藉由改變該電壓或介於該相 對電極與該生物體或其部分之間的距離來控制該外 電場;以及 (d) —用以驅動該電壓產生器的電源。 98. 如申請專利範圍第97項之裝置,其中該主要電極沒有 20 接觸該生物體或其部分。 99. 一種用以治療一增生性細胞障礙的方法,該方法包含改 變越過一生物體或其部分之細胞膜的離子流,而包括使 該生物體或部分與一電流接觸,該電流於該等細胞膜上 產生一為大約10 mA/m2至大約100 mA/m2的平均外施 94 200423986 電流密度。 100.如申請專利範圍第99項之方法,其中該等離子包含鈣 離子,並且該平均外施電流密度被產生於該等細胞膜上 歷時一實質上為至少大約7天的連續期間。 5 101.如申請專利範圍第99項之方法,其進一步包含對該生 物體或其部分提供一鈣補充品、一維生素D補充品、一 植物凝集素補充品,或該等補充品之一組合。 102. 如申請專利範圍第101項之方法,其中該植物凝集素補 充品被提供,並且該植物凝集素補充品包含刀豆球蛋白 10 A或小麥胚芽凝集素。 103. 如申請專利範圍第99、100或101項之方法,其中該生 物體係為一人類。 104. —種用來執行如申請專利範圍第99項之方法的電流療 法裝置。 15 105. —種用以治療與壓力有關的障礙或症狀的方法,該方法 包含改變越過一生物體或其部分之細胞膜的離子流,而 包括使該生物體或部分與一電流接觸,該電流於該等細 胞膜上產生一為大約60 mA/m2至大約600 mA/m2的平 均外施電流密度。 20 106.如申請專利範圍第105項之方法,其中該等離子包含鈣 離子。 107.如申請專利範圍第105項之方法,其進一步包含對該生 物體或其部分提供一鈣補充品、一維生素D補充品、一 植物凝集素補充品,或該等補充品之一組合。 95 200423986 108. 如申請專利範圍第107項之方法,其中該植物凝集素補 充品被提供,並且該植物凝集素補充品包含刀豆球蛋白 A或小麥胚芽凝集素。 109. 如申請專利範圍第105或107項之方法,其中該生物體 5 係為一人類。 110. —種用來執行如申請專利範圍第105項之方法的電流 療法裝置。 111. 一種用以治療一與血清鈣濃度有關的障礙之方法,該方 法包含改變越過一生物體或其部分之細胞膜的鈣離子 10 流,而包括使該生物體或部分與一電流接觸,該電流於 該等細胞膜上產生一為大約60 mA/m2至大約2000 mA/m2的平均外施電流密度。 112. 如申請專利範圍第111項之方法,其中該等離子包含鈣 離子。 15 113.如申請專利範圍第111項之方法,其進一步包含對該生 物體或其部分提供一鈣補充品、一維生素D補充品、一 植物凝集素補充品,或該等補充品之一組合。 114. 如申請專利範圍第113項之方法,其中該植物凝集素補 充品被提供,並且該植物凝集素補充品包含刀豆球蛋白 20 A或小麥胚芽凝集素。 115. 如申請專利範圍第111或113項之方法,其中該生物體 係為一人類。 116. 如申請專利範圍第111項之方法,其中該電流於該等細 胞膜上產生該平均外施電流密度歷時一為大約1分鐘 96 200423986 至約20分鐘的連續期間。 117.如申請專利範圍第116項之方法,其中該電流於該等細 胞膜上產生該平均外施電流密度歷時一為大約2分鐘 至約10分鐘的連續期間。 5 118. —種用來執行如申請專利範圍第111項之方法的電流療 法裝置。 · 119. 一種用以決定用於治療一障礙之電流暴露的最佳參數 之方法,該方法包含: _ (i) 確認一要在一活生物體内誘發出的所欲生物學反 10 應; (ii) 選擇或測量出一位在該生物體或一衍生自該生物 體的組織樣品或培養物之細胞的胞膜上之平均感 應電流密度,其中該平均外施電流密度為大約10 mA/m2 至大約 2,000 mA/m2 ; 15 (iii)選擇或測量一將會產生該被選擇或測量的外施電 流密度的電流; _ (iv) 選擇或測量一用以產生該被選擇或測量的外施電 流密度的連續時間期間; . (v) 施加該被選擇或測量的電流,俾以產生該被選擇或 f 20 測量的外施電流密度歷時該被選擇或測量的連續 時間期間; (vi) 測定該所欲生物學反應發生之程度; (vii) 重複步驟(ii)至(vi)中的任一者,俾以產生一劑量-反應曲線以作為該被選擇或測量的電流、該被選擇 97 200423986 或測量的外施電流密度或該被選擇或測量的連續 時間期間之一函數;以及 (viii)確認最佳地誘發出該所欲生物學反應之該被選擇 或測量的電流、該被選擇或測量的外施電流密度或 5 該被選擇或測量的連續時間期間的數值。 120.如申請專利範圍第119項之方法,其進一步包含在步驟 (viii)之前,選擇或測量下列:200423986 The scope of patent application: 1. A method for treating or preventing an obstacle that causes an abnormal ion concentration in a cell of an organism or a part thereof or is caused by the abnormal ion concentration. The method It includes restoring the cells to a normal ion concentration, and includes applying an external electric field to the organism or part, the external electric field generating a cell membrane of the cells of about 0.001 mA / m2 to about 15 mA / m2 average induced current density. 2. The method of claim 1 in which the ions include calcium ions. 10 3. The method of claim 1, further comprising providing the organism or a part thereof with a calcium supplement, a vitamin D supplement, a phytolectin supplement, or a combination of these supplements . 4. The method of claim 3, wherein the lectin supplement is provided and the lectin supplement comprises concanavalin A 15 or wheat germ agglutinin. 5. The method according to any one of claims 1 to 4, wherein the average induced current density is about 0.01 mA / m2 to about 2 mA / m2. 6. The method of claim 5, wherein the biological system is a human, and the electric field generates the average sensation on the cell membrane of the human cell. The current density should last from about 10 minutes to about 240 minutes. Continuous period. 7. The method of claim 6, further comprising the subsequent repeated application of the external electric field to the human or part thereof and the repeated generation of the average induced current density for an additional 80 200423986 continuous period . 8.-A device for performing the method as described in the first item of the patent application, wherein the device is an electric field therapy device, the device comprises: (a)-a main electrode and an opposite electrode; 5 (b)-used A voltage generator that applies a voltage to the electrodes; (c) an induced current generator that is controlled by changing the voltage or the phase. The distance between the counter electrode and the organism or part thereof The external electric field; and φ (d) —a power source for driving the voltage generator. 10 9. The device according to item 8 of the application, wherein the main electrode is not in contact with the living body or a part thereof. 10. A method for treating a proliferative cell disorder, the method comprising altering an ion flow across a cell membrane of an organism or part thereof, and including applying an external electric field to the organism or part, the external electric field being applied to the The cell 15 membrane produces an average induced current density of about 0.1 mA / m2 to about 2 mA / m2. · 11. The method of claim 10, wherein the average induced current density is about 0.2 mA / m2 to about 1.2 mA / m2. ^ 12. The method according to item 11 of the patent application range, wherein the average induced current body 20 has a density of about 0.29 mA / m2 to about 1.12 mA / m2. 13. The method of claim 11 in which the ions include calcium ions. 14. The method of claim 10, further comprising providing the organism or a part thereof with a calcium supplement, a vitamin D supplement, a 81 200423986 plant lectin supplement, or one of the supplements combination. 15. The method of claim 14 in which the phytolectin supplement is provided, and the phytolectin supplement comprises concanavalin A or wheat germ agglutinin. 5 16. The method of claim 11 in which the proliferative cell disorder involves differentiated fibroblasts. 17. The method of claim 11 or 14, wherein the biological system is a human, and the electric field generates the average induced current density on the cell membrane of the human cell for about 10 minutes to about 240 minutes. 10 consecutive minutes. 18. The method of claim 17 further comprising the additional continuous period of subsequent repeated application of the electric field to the human or part thereof and repeated generation of the average induced current density for approximately 30 minutes to approximately 90 minutes. 15 19. The method of claim 18, wherein the human is arranged in a hospital or clinic bed. 20.-A device for performing the method according to item 11 of the patent application, wherein the device is an electric field therapy device comprising: (a)-a main electrode and an opposite electrode; 20 (b)-for A voltage generator that applies a voltage to the electrodes; (C) an induced current generator that controls the external electric field by changing the voltage or the distance between the opposing electrode and the organism or part thereof; And (d)-a power source for driving the voltage generator. 82 200423986 21. The device according to claim 20, wherein the main electrode is not in contact with the living body or a part thereof. 22.-A method for treating an electrolyte imbalance, the method comprising altering an ion current across a cell membrane of an organism or part thereof, and comprising applying an external electric field to the living body or part, the external electric field being applied to the cell membranes This produces an average induced current density of about 0.4 mA / m2 to about 6.0 mA / m2. 23. The method of claim 22, wherein the average induced current density is about 0.4 mA / m2 to about 5.6 mA / m2. 10 24. The method of claim 23, wherein the average induced current density is about 0.43 mA / m2 to about 5.55 mA / m2. 25. The method of claim 23, wherein the ions include calcium ions. 26. The method of claim 22, further comprising providing a calcium supplement, a vitamin D supplement, a phytolectin supplement, or a combination of these supplements to the 15 biological objects or parts thereof. . 27. The method of claim 26, wherein the plant lectin supplement is provided and the plant lectin supplement comprises concanavalin A or wheat germ agglutinin. 20 28. The method of claim 23 or 26, wherein the biological system is a human, and the electric field generates the average induced current density on the cell membrane of the human cell for about 10 minutes to about 240. Continuous period of minutes. 29. The method of claim 28, which further comprises an additional continuous period of subsequent repeated application of the electric field to 83 200423986 the human or part thereof and the repeated generation of the average induced current density for approximately 30 minutes to approximately 90 minutes. 30. The method according to item 29 of the patent application, wherein the human is arranged in a hospital or clinic bed. π 31. A device for performing the method as described in the scope of patent application No. 22, wherein the device is an electric field therapy device including the following: (a) —the main electrode and an opposite electrode; Xin (b) — A voltage generator for applying a voltage to the electrodes; 10 (c) an induced current generator that controls the voltage by changing the voltage or the distance between the opposite electrode and the organism or part thereof External electric field; and (d)-a power source to drive the voltage generator. 32. The device according to item 31 of the patent application, wherein 15 of the main electrode is not in contact with the living body or a part thereof. 33. A method for treating a disorder related to serum calcium concentration, the method comprising altering a mother ion current across a cell membrane of an organism or part thereof, and including applying an external electric field to the organism or part, the external An electric field produces an average induced current density on the cell membrane of approximately 0.3 mA / m2 to approximately 0.6 mA at 20 mA / m2. 34. The method of claim 33, wherein the average induced current density is about 0.4 mA / m2 to about 0.5 mA / m2. 35. The method of claim 34, wherein the average induced current density is about 0.42 mA / m2. 84 200423986 36. The method according to claim 33, further comprising providing the organism or a part thereof with a calcium supplement, a vitamin D supplement, a phytolectin supplement, or one of the supplements combination. 37. The method of claim 36, wherein the plant lectin supplement is provided, and the plant lectin supplement comprises concanavalin A or wheat germ agglutinin. 38. The method of claim 34 or 36, wherein the biological system is a human, and the electric field generates the average induced current density on the cell membrane of the human cell for about 10 minutes to about 240 minutes 10 consecutive minutes. 39. The method of claim 38, further comprising an additional continuous period of subsequent repeated application of the electric field to the human or part thereof and repeated generation of the average induced current density for approximately 30 minutes to approximately 90 minutes. 15 40. The method of claim 39, wherein the human is arranged in a hospital or clinic bed. 41. A device for performing the method as described in claim 33, wherein the device is an electric field therapy device comprising: (a)-a main electrode and an opposite electrode; 20 (b)-for applying A voltage generator from a voltage to the electrodes; (c) an induced current generator that controls the external electric field by changing the voltage or the distance between the opposing electrode and the organism or part thereof; and (d)-the power source used to drive the voltage generator. 85 200423986 42. The device according to claim 41, wherein the main electrode is not in contact with the living body or a part thereof. 43 · —A method for lowering ACTH or cortisol level, which comprises changing the ion M across a cell membrane of an organism or part thereof and including applying an external electric field to the organism or part The external electric field generates an average induced current density on the cell membranes of about 0.000 mA / m2 to about 12 mA / m2. 44. The method of claim 43 in the patent application range, wherein the average induced current density is about 0.035 mA / m2 to about 1 L1 mA / m2. 10 45. The method of claim 44 wherein the average induced current density is about 0.035 to about 0.5 mA / m2. 46. The method according to item 43 of the patent application, wherein the ions include calcium ions, and the method further includes providing a supplement to the organism or a part thereof, a vitamin D supplement, and a lectin supplement 15 Or a combination of these supplements. 47. The method of claim 46, wherein the phytoalexin supplement is provided ' and the phytoalexin supplement comprises concanavalin A or wheat germ agglutinin. 48. The method of claim 44 < 46, wherein the biological system 20 is a human, and the electric field generates the average induced current density on the cell membrane of the human cell for about 10 minutes Continuous period to approximately ㈣ minutes. 49. The method of claim 48, further comprising the subsequent repeated application of the electric field to the human or part thereof and the repeated generation of the average 86 200423986 induced current density for an additional continuous period of about 30 minutes to about 90 minutes. 50. The method of claim 49, wherein the human is arranged in a hospital or clinic bed. 5 51. —A device for performing the method as claimed in the scope of patent application No. 43, wherein the device is an electric field therapy device including the following: (a) —main electrode and an opposite electrode; (b) —for A voltage generator that applies a voltage to the electrodes; (c) an inductive current generator that controls the outside by changing the voltage or the distance between 10 pairs of electrodes in the phase and the organism or part thereof Electric field; and (d)-a power source to drive the voltage generator. 52. The device of claim 51, wherein the main electrode is not in contact with the living body or a part thereof. 15 53. A method for treating stress, the method comprising altering an ion current across a cell membrane of an organism or part thereof, and comprising applying an external electric field to the organism or part, the external electric field being generated on the cell membrane One is an average induced current density of about 0.03 mA / m2 to about 12 mA / m2. 54. The method of claim 53 in which the average induced current density is about 0.035 mA / m2 to about 11.1 mA / m2. 55. The method of claim 54 in which the ions include calcium ions. 56. The method of claim 53, further comprising providing the organism or a part thereof with a calcium supplement, a vitamin D supplement, a 87 200423986 phytolectin supplement, or one of the supplements combination. 57. The method of claim 56 in which the plant lectin supplement is provided and the plant lectin supplement comprises concanavalin A or wheat germ agglutinin. 5 58. The method of claim 54 or 56, wherein the biological system 11 is a human, and the electric field generates the on the cell membrane of the human cell. The average induced current density lasts about 10 minutes to Continuous period of about 240 minutes. φ 59. The method according to item 58 of the scope of patent application, further comprising an additional continuous period of subsequent repeated application of the electric field to the human or part thereof and repeated generation of the average induced current density for approximately 30 minutes to approximately 90 minutes. 60. The method of claim 59, wherein the human is arranged on a hospital or clinic bed. 15 61. A device for performing the method as claimed in the scope of patent application No. 53, wherein the device is an electric field therapy device including the following: H (a)-the main electrode and an opposite electrode; (b)-used A voltage generator that applies a voltage to the electrodes; (c) an induced current generator that changes the voltage or the distance between the phase ψ 20 pair of electrodes and the organism or part thereof Controlling the external electric field; and (d)-a power source for driving the voltage generator. 62. The device of claim 61, wherein the main electrode is not in contact with the living body or a part thereof. 88 200423986 63.-A method for treating arthritis, the method comprising changing the ion current across a cell membrane of an organism or part thereof, and including applying an external electric field to the organism or part, the external electric field being applied to the cell membranes This produces an average induced current density of about 5 degrees from about 0.02 mA / m2 to about 0.4 mA / m2. 64. The method of claim 63, wherein the average induced current density is about 0.025 mA / m2 to about 0.35 mA / m2. 65. The method of claim 64, wherein the average induced current density is about 0.026 mA / m2 to about 0.32 mA / m2. 10 66. The method of claim 64, wherein the ions include calcium ions. 67. The method of claim 63, further comprising providing the living body or a part thereof with a calcium supplement, a vitamin D supplement, a phytolectin supplement, or a combination of these supplements. 15 68. The method of claim 67, wherein the phytohemagglutinin supplement is provided and the phytohemagglutinin supplement comprises concanavalin A or wheat germ agglutinin. 69. The method of claim 64 or 67, wherein the biological system is a human, and the electric field generates the 20 average induced current density on the cell membrane of the human cell for about 10 minutes to about 240. Continuous period of minutes. 70. The method of claim 69, further comprising an additional 89 200423986 continuous period of subsequent repeated application of the electric field to the human or part thereof and repeated generation of the average induced current density for approximately 30 minutes to approximately 90 minutes. 71. The method of claim 70, wherein the human is arranged in a hospital or clinic bed. 72.-a device for performing the method according to item 63 of the scope of patent application, 5 wherein the device is an electric field therapy device comprising: (a)-a main electrode and an opposite electrode; (b)-for A voltage generator that applies a voltage to the electrodes; (c) an induced current generator that controls the external 10 electric field by changing the voltage or the distance between the opposite electrode and the organism or part thereof And (d)-the power source used to drive the voltage generator. 73. The device of claim 72, wherein the main electrode is not in contact with the organism or part thereof. 74. A method for treating overweight, which method comprises changing the ion current across a cell membrane of a 15 organism or part thereof, and comprising applying an external electric field to the organism or part, the external electric field being applied to the cell membrane This produces an average induced current density of about 0.02 mA / m2 to about 1.5 mA / m2. 75. The method of claim 74, wherein the average induced current 20 has a density of about 0.02 mA / m2 to about 1.2 mA / m2. 76. The method of claim 75, wherein the average induced current density is about 0.024 mA / m2 to about 1.12 mA / m2. 77. The method of claim 75, wherein the ions include calcium ions. 90 200423986 78. The method of claim 74, further comprising providing the organism or a part thereof with a calcium supplement, a vitamin D supplement, a phytolectin supplement, or one of the supplements combination. 79. The method of claim 78, wherein the plant lectin supplement is provided and the plant lectin supplement comprises concanavalin A or wheat germ agglutinin. 80. The method of claim 74 or 78, wherein the biological system is a human, and the electric field generates the average induced current density on the cell membrane of the human cell for about 10 minutes to about 240 minutes 10 consecutive minutes. 81. The method of claim 80, further comprising an additional continuous period of subsequent subsequent application of the electric field to the human or part thereof and repeated generation of the average induced current density for approximately 30 minutes to approximately 90 minutes. 15 82. The method of claim 81, wherein the human is arranged in a hospital or clinic bed. 83.-a device for performing the method as claimed in the scope of patent application 74, wherein the device is an electric field therapy device comprising: (a)-the main electrode and an opposite electrode; 20 (b)-for A voltage generator that applies a voltage to the electrodes; (c) an induced current generator that controls the external electric field by changing the voltage or the distance between the opposing electrode and the organism or part thereof; And (d)-a power source for driving the voltage generator. 91 200423986 84. The device according to item 83 of the patent application, wherein the main electrode is not in contact with the organism or a part thereof. 85. A method for determining the optimal parameters for treating an electric field exposure outside a disorder, the method comprising: (i) identifying a desired biological response to be induced in a living organism, (ii ) Select or measure an average induced current density on the cell membrane of the organism or a tissue sample or cell derived from the organism; (iii) Select or measure an external electric field, the external electric field A screened or measured induced current density is generated at a specific distance from the organism, sample or culture; (iv) selecting or measuring a screened or measured induced current density on the cell membrane 15 (v) applying the selected or measured electric field to the organism, sample, or culture, so that the selected or measured induced current density on the cell membranes should be screened or measured over time (Vi) determine the extent to which the desired biological response occurs; 20 (vii) selectively repeat any of steps (ii) to (vi); and / or (viii) confirm the best Geo-induced The desired biological response of selected Examples of the induced current or the measured density value, as a value of the selected external electric field or the measured value or as the continuous time period is measured or screened. 92 200423986 86. The method of claim 85, further comprising, before step (viii), generating a dose-response curve as the selected or measured induced current density, the selected or measured external electric field, or A function of a continuous time period that is selected or measured. 5 87. The method of claim 85, further comprising before step k (viii), selecting or measuring the following: the number of times that step (v) was repeated; between the repetitions of step (V) Time interval; and φ the selected or measured induced current density is generated over the entire period of 10 times on the cell membrane. 88. The method of claim 85, wherein the selected or measured induced current density is about 0.001 mA / m2 to about 15 mA / m2. 89. The method of claim 85, wherein the cell lines are in a culture. 15 90. The method of claim 89, wherein the cell lines in the culture are human cells. 91. The method of claim 85, wherein the cell lines are located in a living organism or part thereof. β 92. The method of claim 91, wherein the living biological system is t 20 -human. 93. The method of claim 85, wherein the induced current density is obtained by measuring the induced current flowing in a given area of the living organism or a part thereof, and converting the measured current into A voltage signal is selected or measured by converting the voltage signal into an optical signal and then converting the optical signal into a voltage signal and analyzing the waveform and frequency by 93 200423986. 94. The method of claim 85, wherein the induced current density is represented by J, and J is represented by J = I / B. 5 95. The method of claim 85, further comprising providing the organism, sample, or culture with a calcium supplement, a vitamin D supplement, a phytolectin supplement, or the supplement. A combination. 96. The method of claim 95, wherein the phytolectin supplement is provided and the phytolectin supplement comprises concanavalin 10A or wheat germ lectin. 97.-a device for performing the method according to the scope of patent application No. 85, wherein the device is an electric field therapy device comprising: (a)-the main electrode and an opposite electrode; (b)-for applying A voltage generator to the electrodes; 15 (c) an induced current generator to control the external electric field by changing the voltage or the distance between the opposing electrode and the organism or part thereof; And (d)-a power source for driving the voltage generator. 98. For a device according to item 97 of the application, wherein no 20 of the main electrode contacts the organism or a part thereof. 99. A method for treating a proliferative cell disorder, the method comprising altering an ion current across a cell membrane of an organism or part thereof, and comprising contacting the organism or part with an electric current, the current being on the cell membrane This results in an average applied current density of about 2004 mA to about 100 mA / m2 to about 100 mA / m2. 100. The method of claim 99, wherein the ions include calcium ions, and the average applied current density is generated on the cell membranes for a continuous period of substantially at least about 7 days. 5 101. The method of claim 99, further comprising providing the organism or a part thereof with a calcium supplement, a vitamin D supplement, a phytolectin supplement, or a combination of these supplements . 102. The method of claim 101, wherein the plant lectin supplement is provided, and the plant lectin supplement comprises concanavalin 10 A or wheat germ agglutinin. 103. The method according to claim 99, 100 or 101, wherein the biological system is a human. 104. A current therapy device for performing a method as claimed in claim 99. 15 105. —A method for treating a stress-related disorder or condition, the method comprising altering an ion current across a cell membrane of an organism or part thereof, and including contacting the organism or part with an electric current, the electric current being The cell membranes have an average applied current density of about 60 mA / m2 to about 600 mA / m2. 20 106. The method of claim 105, wherein the ions include calcium ions. 107. The method of claim 105, further comprising providing the living body or a part thereof with a calcium supplement, a vitamin D supplement, a phytolectin supplement, or a combination of these supplements. 95 200423986 108. The method as claimed in claim 107, wherein the phytolectin supplement is provided and the phytolectin supplement comprises concanavalin A or wheat germ agglutinin. 109. The method of claim 105 or 107, wherein the organism 5 is a human. 110. An electrotherapeutic device for performing a method such as that described in claim 105. 111. A method for treating a disorder related to serum calcium concentration, the method comprising altering a flow of calcium ions 10 across a cell membrane of an organism or part thereof and including contacting the organism or part with an electric current, the electric current An average applied current density of about 60 mA / m2 to about 2000 mA / m2 is generated on the cell membranes. 112. The method of claim 111, wherein the ions include calcium ions. 15 113. The method according to claim 111, further comprising providing the organism or a part thereof with a calcium supplement, a vitamin D supplement, a phytolectin supplement, or a combination of these supplements . 114. The method of claim 113, wherein the phytolectin supplement is provided and the phytolectin supplement contains concanavalin 20 A or wheat germ lectin. 115. The method of claim 111 or 113, wherein the organism is a human. 116. The method of claim 111, wherein the current generates the average applied current density on the cell membranes for a continuous period of about 1 minute 96 200423986 to about 20 minutes. 117. The method of claim 116, wherein the current generates the average applied current density on the cell membranes for a continuous period of about 2 minutes to about 10 minutes. 5 118. An electrotherapy device for performing a method such as that claimed in claim 111. · 119. A method for determining the optimal parameters of current exposure for treating a disorder, the method comprising: _ (i) identifying a desired biological response to be induced in a living organism; (ii) selecting or measuring an average induced current density on the cell membrane of the organism or a cell derived from a tissue sample or culture of the organism, wherein the average applied current density is about 10 mA / m2 to about 2,000 mA / m2; 15 (iii) selecting or measuring a current that will produce the selected or measured applied current density; _ (iv) selecting or measuring a current used to produce the selected or measured Continuous time period during which the current density is applied; (v) applying the selected or measured current to produce the selected or measured applied current density for the continuous time period during which the selected or measurement is made; (vi) Determine the degree to which the desired biological response occurs; (vii) repeat any of steps (ii) to (vi) to generate a dose-response curve as the selected or measured current, the selected 97 200423986 OR A function of the applied current density or a continuous time period of the selection or measurement; and (viii) confirming that the selected or measured current, the selected or measured current that best induces the desired biological response The applied current density or 5 is the value during the continuous time that is selected or measured. 120. The method of claiming scope 119, further comprising, before step (viii), selecting or measuring the following: 被重複的步驟(v)之次數數目; 介於步驟(v)的重複之間的時間間隔;以及 10 該被選擇或測量的感應電流密度被產生於胞膜上 的全部期間。 121.如申請專利範圍第120項之方法,其中該等細胞係位 在一培養物中。 122·如申請專利範圍第121項之方法,其中位在該培養物 15 中的該等細胞係為人類細胞。The number of times that step (v) is repeated; the time interval between the repetitions of step (v); and 10 the entire period during which the selected or measured induced current density is generated on the cell membrane. 121. The method of claim 120, wherein the cell lines are located in a culture. 122. The method of claim 121, wherein the cell lines in the culture 15 are human cells. 123. 如申請專利範圍第120項之方法,其中該等細胞係位 在一活生物體或其部份之中。 124. 如申請專利範圍第123項之方法,其中該活生物體係 為一人類。 20 125·如申請專利範圍第120項之方法,其進一步包含對該 生物體、樣品或培養物提供一鈣補充品、一維生素D 補充品、一植物凝集素補充品,或該等補充品之一組 合。 126.如申請專利範圍第125項之方法,其中該植物凝集素 98 200423986 補充品被提供,並且該植物凝集素補充品包含刀豆球 蛋白A或小麥胚芽凝集素。 127·—種用來執行如申請專利範圍第120項之方法的電流 療法裝置。123. The method of claim 120, wherein the cell lines are located in a living organism or a part thereof. 124. The method of claim 123, wherein the living biological system is a human. 20 125. The method of claim 120, further comprising providing the organism, sample, or culture with a calcium supplement, a vitamin D supplement, a phytolectin supplement, or a supplement of the supplement. A combination. 126. The method of claim 125, wherein the phytolectin 98 200423986 supplement is provided, and the phytolectin supplement comprises concanavalin A or wheat germ lectin. 127. An electrotherapy device for performing a method such as that described in claim 120. 9999
TW92135644A 2002-12-17 2003-12-16 An apparatus for treating disorders by altering ion flux across cell membranes with electric fields TWI278327B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43376602P 2002-12-17 2002-12-17
US10/417,142 US20030233124A1 (en) 2000-12-18 2003-04-17 Methods of treating disorders by altering ion flux across cell membranes with electric fields

Publications (2)

Publication Number Publication Date
TW200423986A true TW200423986A (en) 2004-11-16
TWI278327B TWI278327B (en) 2007-04-11

Family

ID=38645118

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92135644A TWI278327B (en) 2002-12-17 2003-12-16 An apparatus for treating disorders by altering ion flux across cell membranes with electric fields

Country Status (1)

Country Link
TW (1) TWI278327B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11247063B2 (en) 2019-04-11 2022-02-15 Btl Healthcare Technologies A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11253717B2 (en) 2015-10-29 2022-02-22 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
US11253718B2 (en) 2015-07-01 2022-02-22 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
US11266852B2 (en) 2016-07-01 2022-03-08 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
US11458307B2 (en) 2016-05-23 2022-10-04 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11464994B2 (en) 2016-05-10 2022-10-11 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11484727B2 (en) 2016-07-01 2022-11-01 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11491329B2 (en) 2020-05-04 2022-11-08 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11612758B2 (en) 2012-07-05 2023-03-28 Btl Medical Solutions A.S. Device for repetitive nerve stimulation in order to break down fat tissue means of inductive magnetic fields
US11633596B2 (en) 2020-05-04 2023-04-25 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11612758B2 (en) 2012-07-05 2023-03-28 Btl Medical Solutions A.S. Device for repetitive nerve stimulation in order to break down fat tissue means of inductive magnetic fields
US11253718B2 (en) 2015-07-01 2022-02-22 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
US11266850B2 (en) 2015-07-01 2022-03-08 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US11253717B2 (en) 2015-10-29 2022-02-22 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11883643B2 (en) 2016-05-03 2024-01-30 Btl Healthcare Technologies A.S. Systems and methods for treatment of a patient including RF and electrical energy
US11602629B2 (en) 2016-05-03 2023-03-14 Btl Healthcare Technologies A.S. Systems and methods for treatment of a patient including rf and electrical energy
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11464994B2 (en) 2016-05-10 2022-10-11 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11590356B2 (en) 2016-05-10 2023-02-28 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11691024B2 (en) 2016-05-10 2023-07-04 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11896821B2 (en) 2016-05-23 2024-02-13 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11878162B2 (en) 2016-05-23 2024-01-23 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11458307B2 (en) 2016-05-23 2022-10-04 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11623083B2 (en) 2016-05-23 2023-04-11 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11628308B2 (en) 2016-07-01 2023-04-18 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11497925B2 (en) 2016-07-01 2022-11-15 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11607556B2 (en) 2016-07-01 2023-03-21 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11266852B2 (en) 2016-07-01 2022-03-08 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
US11524171B2 (en) 2016-07-01 2022-12-13 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11484727B2 (en) 2016-07-01 2022-11-01 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11794029B2 (en) 2016-07-01 2023-10-24 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11679270B2 (en) 2016-07-01 2023-06-20 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11484725B2 (en) 2019-04-11 2022-11-01 Btl Medical Solutions A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11247063B2 (en) 2019-04-11 2022-02-15 Btl Healthcare Technologies A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
TWI764665B (en) * 2019-04-11 2022-05-11 捷克商比特樂醫療科技股份有限公司 Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11679255B2 (en) 2020-05-04 2023-06-20 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11633596B2 (en) 2020-05-04 2023-04-25 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11806528B2 (en) 2020-05-04 2023-11-07 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11813451B2 (en) 2020-05-04 2023-11-14 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11826565B2 (en) 2020-05-04 2023-11-28 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11491329B2 (en) 2020-05-04 2022-11-08 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient

Also Published As

Publication number Publication date
TWI278327B (en) 2007-04-11

Similar Documents

Publication Publication Date Title
McGlone et al. Touching and feeling: differences in pleasant touch processing between glabrous and hairy skin in humans
TW200423986A (en) Methods of treating disorders by altering ion flux across cell membranes with electric fields
Biemans et al. Efficacy and effectiveness of percutaneous tibial nerve stimulation in the treatment of pelvic organ disorders: a systematic review
Paulus Transcranial electrical stimulation (tES–tDCS; tRNS, tACS) methods
US20030233124A1 (en) Methods of treating disorders by altering ion flux across cell membranes with electric fields
Sator-Katzenschlager et al. Auricular electro-acupuncture as an additional perioperative analgesic method during oocyte aspiration in IVF treatment
Earhart et al. Gait and balance in essential tremor: variable effects of bilateral thalamic stimulation
Taniguchi et al. Study on application of static magnetic field for adjuvant arthritis rats
AU2007297340B2 (en) Method of treating inflammation and autoimmune diseases
Hillert et al. Hypersensitivity to electricity: working definition and additional characterization of the syndrome
Dong et al. A randomized controlled trial to explore the efficacy and safety of transcranial direct current stimulation on patients with post-stroke fatigue
Bayer et al. Reduction of intra-abdominal pain through transcranial direct current stimulation: A systematic review
Alm et al. Neuropathic pain: transcranial electric motor cortex stimulation using high frequency random noise. Case report of a novel treatment
Evans et al. Retinal and cortical contributions to phosphenes during transcranial electrical current stimulation
Deng et al. Augmentation of fear extinction by theta-burst transcranial magnetic stimulation of the prefrontal cortex in humans
Kremenic et al. Transcutaneous magnetic stimulation of the quadriceps via the femoral nerve
Piva et al. Neuromuscular electrical stimulation and volitional exercise for individuals with rheumatoid arthritis: a multiple-patient case report
JP2006167476A (en) Methods for treating disease with electric field
Wang et al. Activation of astrocyte Gq pathway in hippocampal CA1 region attenuates anesthesia/surgery induced cognitive dysfunction in aged mice
Palsson et al. The area of pressure-induced referred pain is dependent on the intensity of the suprathreshold stimulus: An explorative study
Sean et al. Comparison of thermal and electrical modalities in the assessment of temporal summation of pain and conditioned pain modulation
Yamamoto et al. Cathodal tDCS on the motor area decreases the tactile threshold of the distal pulp of the hallux
Onaka et al. Standing and supine positions are better than sitting in improving rightward deviation in right-hemispheric stroke patients with unilateral spatial neglect: A randomized trial
Leonard An investigation of masturbation and coping style
US20210228718A1 (en) Water irradiated with electromagnetic energies for use as a medicament

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees