TW200423813A - Organic light-emitting diode containing fullerene as a hole-injection modification layer or hole-transporting layer - Google Patents

Organic light-emitting diode containing fullerene as a hole-injection modification layer or hole-transporting layer Download PDF

Info

Publication number
TW200423813A
TW200423813A TW92110212A TW92110212A TW200423813A TW 200423813 A TW200423813 A TW 200423813A TW 92110212 A TW92110212 A TW 92110212A TW 92110212 A TW92110212 A TW 92110212A TW 200423813 A TW200423813 A TW 200423813A
Authority
TW
Taiwan
Prior art keywords
layer
hole
organic light
light emitting
emitting diode
Prior art date
Application number
TW92110212A
Other languages
Chinese (zh)
Other versions
TW588572B (en
Inventor
Chien-Hong Cheng
Huai-Ting Shih
Original Assignee
Chien-Hong Cheng
Huai-Ting Shih
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chien-Hong Cheng, Huai-Ting Shih filed Critical Chien-Hong Cheng
Priority to TW92110212A priority Critical patent/TW588572B/en
Application granted granted Critical
Publication of TW588572B publication Critical patent/TW588572B/en
Publication of TW200423813A publication Critical patent/TW200423813A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Abstract

An organic light-emitting diode includes a positive electrode, an electroluminescent medium on the positive electrode, and a negative electrode on the electroluminescent medium, wherein the electroluminescent medium contains a hole-transporting layer formed of a fullerene compound such as C60.

Description

200423813200423813

發明所屬之技術領域 本發明係關於一種有機發光二極體,尤其有關一種使 用芙化合物(fullerene)作爲電洞注入修飾層或電洞傳遞層 的有機發光二極體。TECHNICAL FIELD The present invention relates to an organic light emitting diode, and more particularly to an organic light emitting diode using a fullerene as a hole injection modification layer or a hole transfer layer.

先前技術 有機發光二極體的硏究始於1963年Pope等人(J. Chem. Phys. 38 (1963) 2042)以蒽(anthracene)的單晶爲發光材 料,在高電壓下可發出藍色光。其後雖經一些學者的硏究 己夂進(Phys. Rev. Lett. 14 (1965) 229; Sol. State Comm. 32 (1979) 683; Thin Solid Films 94 (1982) 476),其操作電壓 仍舊偏高,且能量轉換效率偏低,沒有應用上之價値。Research on organic light-emitting diodes of the prior art began in 1963. Pope et al. (J. Chem. Phys. 38 (1963) 2042) used a single crystal of anthracene as a light-emitting material and can emit blue light at high voltage . Although it has been studied by some scholars since then (Phys. Rev. Lett. 14 (1965) 229; Sol. State Comm. 32 (1979) 683; Thin Solid Films 94 (1982) 476), its operating voltage is still On the high side, and the energy conversion efficiency is low, there is no price tag in application.

有機發光二極體的硏究從1987年Tang等人(Appl. Phys. Lett·,51 (1987) 914)利用蒸鍍的方式製成結構爲 ITO/二胺/Alq3/Mg:Ag之元件,其中ITO爲具有導電性的 透明銦錫氧化物(indium/tin oxide),Alq3爲Tris(8-經喹嗤 琳)錫[Tris(8-hydroxyquinoline) aluminum],因該元件具 1 %的外部量子效率及1000 ed/m2的高亮度(10V),故有機發 光二極體之硏究始有快速發展與應用之價値。 其後,由於元件結構與材料的改進,如材料效率之提 升、摻雜(dope)技術的開發、電極的改進、與電洞注入修 飾層(hole-injection modification material)的引用等,使得 有機發光二極體於平面顯示器的應用大爲提升。電洞注入 7 200423813 修飾層的功用爲修飾ITO與電洞傳遞層二者之間的最高佔 據分子軌域(HOMO)能階差,使得電洞由負極注入電洞傳遞 層的效率能提升,而使元件整體的效率能提升,且降低元 件的啓動電壓與操作電壓,有較低的操作電壓將可使元件 之壽命提昇。文獻中較著名的電洞注入修飾層材料例如 CuPc、PEDOT/PSS 與 DetDOe6T 等。 芙化合物(fullerene)是一系列僅由碳原子構成的碳化 合物,類似於石墨及鑽石,包括圓球狀Cn,其中η代表 60, 70,76,80,82,84,…等偶數。代表性芙化合物有C60 及C7G,圖五所示即爲C6G芙化合物的結構。C6G芙化合物 在500°C時具有約1 mTorr的蒸氣壓,因此可以藉由蒸鍍 來形成一鍍膜。 發明內容 本發明揭示一種有機發光二極體,包含一形成於一基 材上的正極,一形成於該正極上的電致發光區,及一形成 於該電致發光區上的負極,其特徵在於該電致發光區包含 一層芙化合物作爲電洞注入修飾層。 較佳的,該芙化合物爲C6〇,該芙化合物層具有一介 於1奈米至200奈米的厚度。 較佳的,該電致發光區進一步包含一形成於該電洞注 入修飾層及該負極之間的電子傳遞層,其中該電子傳遞層 兼作爲一具有發光能力的發光層的功能。更佳的,該芙化 合物層兼具一電洞傳遞層的功能;或者該電致發光區進一 8 200423813 步包含一形成於該電洞注入修飾層及該電子傳遞層之間的 電洞傳遞層,其中該電子傳遞層或電洞傳遞層兼作爲一具 有發光能力的發光層的功能。 較佳的,該電致發光區進一步包含一形成於該電洞注 入修飾層上的電洞傳遞層,一形成於該電洞傳遞層上的發 光層,及一形成於該發光層及該負極之間的電子傳遞層。 更佳的,該發光層爲單一發光材料或數種發光材料摻雜而 成。較佳的,該發光層爲螢光材料或磷光材料。 實施方式 由文獻對芙化合物中的C6G (fullerene,C6Q)的性質之 各種報導,知悉其最高佔據分子軌域約爲5.OeV,與ITO 的最高佔據分子軌域(約4.7〜5.0 eV)相近;而其電洞傳遞 速率約爲1.7 土 0.2 cn^V·、·1。根據上述之性質,C60可作 爲有機發光二極體的電洞注入修飾材料或電洞傳遞材料 (hole-transporting material) 〇 本發明以C6G作爲有機電致發光二極體(organic light-emitting diode,OLED)元件之電洞注入修飾材料或電 洞傳遞材料,發現其可降低元件所需之驅動電壓,及使元 件於較低之操作電壓有較大的電流密度,且隨操作之電壓 昇高電流密度上升較快。此外元件之最大效率於較低的操 作電壓即可到達,使元件於較低之電壓便可產生較高之亮 度。 本發明之有機電致發光二極體,其元件之結構可爲雙 200423813 層(double layer)(圖一)、三層(triple layer)(圖一)與多層 (multiple layer)(圖三)結構。上述之7Π件結構可根據兀件 之需求,依序由基板【1〇〇】、正極【+】電洞注入修飾層【10】、 電洞傳遞層【20】、電子阻隔層(electron-blocking layer)(未 示於圖中)、發光層(emitter)【40】、電洞阻隔層 (hole-blocking layer)(未示於圖中)、電子傳遞層 (electron-transporting layer)【60】及負極【-】組成,其 中電子阻隔層與電洞阻隔層可包含或不包含於元件結構 中,視元件之需求而定,其中介於該正極及負極之層構成 元件的電致發光區域(electroluminescent medium)【400】。 發光層【40】可爲營光材料(fluorescence materials)或 磷光材料(phosphorescence materials)組成;此外發光層可 爲單一材料或由數種材料經由摻雜(dope)方式形成。合適 之發光層【40】材料可爲習知技藝中已知者,由於其並非 本發明所欲討究者,且熟悉本項技術者可從習知技藝中得 知故在此不予詳述。 圖一所示之雙層元件以芙化合物,較佳的C6G,作爲 電洞注入修飾層【10】兼電洞傳遞層【20】,搭配一具有發 光能力的電子傳遞材料【60】製成。元件之電致發光區域 【400】由上述兩層組成。(圖一)僅爲示意圖,各層之實際 厚度與圖中所顯示之尺寸無關係。 圖二所示之三層元件爲使用芙化合物,較佳的C6〇,作 爲電洞注入修飾層【10】搭配電洞傳遞層【20】與電子傳 遞層【60】製成,其中發光層可爲電洞傳遞層或電子傳遞 10 200423813 層,元件之電致發光區域【400】由上述數層組成。(圖二) 僅爲示意圖,各層之實際厚度與圖中所顯示之尺寸無關係。 圖三所示之多層結構可根據元件之需求,由芙化合 物,較佳的C6G,作爲電洞注入修飾層【10】,搭配電洞傳 遞層【20】、發光層【40】與電子傳遞層等【60】製成。元 件之電致發光區【400】由上述數層組成。(圖三)僅爲示意 圖,各層之實際厚度與圖中所顯示之尺寸無關係。此外, 此元件之電致發光區【400】可進一步於電洞傳遞層【20】 與發光層【40】之間形成有一電子阻隔層(未示於圖中); 及於發光層【40】與電子傳遞層等【60】之間形成有一電 洞阻隔層(未示於圖中)。 實施例及對照例 以下實施例及對照例經由下列之方式製作:元件使用 玻璃爲基板,及依序形成基板上的正極、電洞注入修飾層、 電洞傳遞層、電子阻隔層、發光層、電洞阻隔層、電子傳 遞層與負極,其中某些層可被省略,實際的構造如表一及 二所示。正極爲具有導電性質的銦錫氧化物(ITO, Indium-Tin-Oxide),其厚度約爲100奈米;在蒸鍍相關的 之前先進行ITO玻璃之淸潔,使用購買之淸潔劑與有機溶 劑,最後以紫外線臭氧淸潔機(UV-ozone cleaner)處理。 電洞注入修飾層爲C6〇,將其置於鉬舟(tantalum boat) 中,將其置於鉅舟中,以真空蒸鍍方法鍍膜,其厚度約爲 10奈米。所使用的電洞傳遞層材料可爲芳香族胺(aryl 11 200423813 amines)或是其他同樣具有傳輸電洞能力之材料,將其置於 鉬舟中,以真空蒸鍍方法鍍膜,其厚度約爲60奈米。 發光層與電子傳遞層依序鍍於電洞傳遞層上,將其置 於鉬舟中,以真空蒸鍍方法鍍膜,其厚度約共爲80奈米。 元件製作中碳族及其他有機物的蒸鍍使用一腔體壓力 爲約2x1 〇·6 ton:,其蒸鍍之速率約爲0.1〜0.4奈米/秒。負 極爲鎂銀合金,鍍膜之速率鎂爲5 A/s,銀爲0.5 A/ s,鎂: 銀=1〇:1,膜之厚度約爲100奈米,最後鍍上銀作爲保護 層’膜之厚度約爲100奈米。上述各種材料蒸鍍爲連續之 過程,無須破真空之步驟。元件各種數據之量測皆於大氣 與室溫下進行。 所製備的有機電致發光元件之電致發光區域的結構及 發光表現列於表一與表二中,其中所有使用之材料的化學 構造被表示於圖四中。 表一中的對照例一爲雙層元件,對照例二與實施例三 爲當做比較的三層元件,由它們的數據可知,以芙化合物 C60作爲有機電致發光元件之電洞注入修飾層可使元件之 啓動電壓下降,並可使元件之能量效率(power effifiency) 提升1 0〜35%,並使元件之最佳效率能在較低操作電壓即可 到達且有較高之亮度,在相同操作電壓下(3〜8伏特)亮度可 爲無電洞注入修飾層或使用CuPc作爲電洞注入修飾層的2 至3倍。於11伏特下元件皆維持較高之亮度,啓動電壓也 可下降0.2〜0.25伏特。 表一的實施例四中C6〇可同時作爲電洞注入修飾層與 12 200423813 電洞傳遞層,使元件進行放光。 此外,c6G也可作爲使用芳香族爲藍光材料的有機電致 發光元件(實施例5)之電洞注入修飾層;與文獻相比(對照 例六),元件之最佳效率也在較低操作電壓即可到達且有較 高之度,啓動電壓也可下降。如以BTP爲發光層於6伏特 下,以C6G作爲電洞注入修飾層的發光亮度爲以CuPc作爲 電洞注入修飾層之元件的4.7倍。 表一 電洞注 入修飾 層 電洞傳 遞層 電子傳遞層兼發 光層 啓動電壓 (V) 操作電 壓(V) 亮度 (cd/m2) 能量效 率 (lm/W) 電流效 率 (cd/A) 顏色 對照例 無 NPB Alq3 3.05 6.25 821 1.94 (最大) 3.85 綠色 對照例 4jrr 撕 NPB Alq3 3.05 8.25 5650 1.66 4.35 (最大) 綠色 對照例 CuPC NPB Alq3 3.1 4.25 14 2.34 (最大) 3.16 綠色 對照例 CuPC NPB Alq3 3.1 7.25 2060 1.82 4.19 (最大) 綠色 實施例 C6〇 NPB Alq3 2.85 4.25 86 2.57 (最大) 3.47 綠色 實施例 NPB Alcb 2.85 6.0 1736 2.10 4.0 (最大) 綠色 電洞注入修飾層 兼電洞傳遞層 電子傳遞層兼發 光層 啓動電壓 (V) 操作電 壓(V) 亮度 (cd/m2) 能量效 率 (lm/W) 電流效 率 (cd/A) 顏色 實施例 四 Q〇 Alq3 3.2 6.0 112 0.86 1.64 綠色 電洞注 入修飾 層 電洞傳 遞層 發光層 電子傳 遞層 啓動電壓 (V) 操作電 壓(V) 亮度 (cd/m2) 能量效 率 (lm/W) 電流效 率 (cd/A) 顏色 實施例 五 C6〇 NPB (50 run) BTP (30 nm) ΤΡΒΙ (40 nm) 3.3 6.0 1767 1.37 2.6 藍色 對照例 CuPC NPB (40 nm) BTP (20 nm) TPBI (40 nm) 3.5 6.0 380 1.3 2.87 藍色 13 200423813 表二所列爲多層元件施作範例,其中對照例七與實施 例八爲相互做比較的一組元件。對照例七與實施例八以 C545T摻雜於Alq3中作爲發光層的元件,以C6G作爲電洞 注入修飾層的本發明發光元件相較於使用CuPc作爲電洞 注入修飾層的習知元件具有下降0.5伏特之啓動電壓,提 升約10%之能量效率(power effifiency)。實施例八的本發 明元件之最佳效率能在較低操作電壓即可到達且有較高之 亮度,且在相同操作電壓下,亮度可爲使用CxxPc作爲電 洞注入修飾層的對照例七的習知元件的10倍(4.0伏特, C60 (1 03 cd/m2)/CuPc (10.2 cd/m2))至 2·2 倍(9.0 伏特,C60 (1 5825 cd/m2)/CuPc (36938 cd/m2)。於 2.75〜12.0 伏特下實 施例八的本發明元件皆維持較高之亮度。 表二中外對照例九與實施例十均以DCJTB摻雜於 Alq3中作爲發光層的元件,使用C6〇作爲電洞注入修飾層 的實施例十本發明元件相較於未使用電洞注入修飾層的對 照例九習知元件具有較低之啓動電壓與較高之亮度。 表二中外對照例十一與實施例十二均以磷光材料 Ir(PPy)3摻雜於CBP中作爲發光層,使用C6G作爲電洞注 入修飾層的實施例十二本發明元件相較於未使用電洞注入 修飾層的對照例十一習知元件,也具有降低的啓動電壓, 並於相同之電壓下具有較高之亮度。類似的觀察亦可於表 二的對照例十三與實施例十四的發光元件中發現,兩者均 以磷光材料Ir-4摻雜於CBP中作爲發光層,前者未使用電 洞注入修飾層而後者使用C6Q作爲電洞注入修飾層。 14 200423813 表二The research on organic light-emitting diodes has been made from Tang et al. (Appl. Phys. Lett., 51 (1987) 914) in 1987 by vapor deposition, and has a structure of ITO / diamine / Alq3 / Mg: Ag. ITO is conductive indium / tin oxide and Alq3 is Tris (8-hydroxyquinoline) aluminum, because the element has 1% external quantum Efficiency and high brightness (10V) of 1000 ed / m2, so the research of organic light-emitting diodes began to have rapid development and application price. Later, due to improvements in element structure and materials, such as improved material efficiency, development of dope technology, improvements in electrodes, and references to hole-injection modification materials, organic light emission The use of diodes in flat panel displays has been greatly enhanced. Hole injection 7 200423813 The function of the modification layer is to modify the highest occupied molecular orbital (HOMO) energy level difference between ITO and the hole transfer layer, so that the efficiency of hole injection from the negative electrode into the hole transfer layer can be improved, and The overall efficiency of the component can be improved, and the startup voltage and operating voltage of the component can be reduced. A lower operating voltage will increase the life of the component. The well-known hole injection modification layer materials in the literature such as CuPc, PEDOT / PSS and DetDOe6T. Fullerene is a series of carbon compounds composed of only carbon atoms, similar to graphite and diamond, including spherical Cn, where η represents an even number such as 60, 70, 76, 80, 82, 84, .... The typical compounds are C60 and C7G. Figure 5 shows the structure of the C6G compound. The C6G compound has a vapor pressure of about 1 mTorr at 500 ° C. Therefore, a plating film can be formed by evaporation. SUMMARY OF THE INVENTION The present invention discloses an organic light emitting diode including a positive electrode formed on a substrate, an electroluminescent region formed on the positive electrode, and a negative electrode formed on the electroluminescent region. The electroluminescence region contains a layer of a compound as a hole injection modification layer. Preferably, the Fu compound is C6O, and the Fu compound layer has a thickness between 1 nm and 200 nm. Preferably, the electroluminescent region further includes an electron transfer layer formed between the hole injection modification layer and the negative electrode, wherein the electron transfer layer also functions as a light emitting layer having a light emitting ability. More preferably, the compound layer also functions as a hole transfer layer; or the electroluminescent region further includes a hole transfer layer formed between the hole injection modification layer and the electron transfer layer. The electron transfer layer or hole transfer layer also functions as a light emitting layer having a light emitting capability. Preferably, the electroluminescent region further includes a hole transfer layer formed on the hole injection modification layer, a light emitting layer formed on the hole transfer layer, and a light emitting layer and the negative electrode. Electron transfer layer. More preferably, the light emitting layer is formed by doping a single light emitting material or a plurality of light emitting materials. Preferably, the light emitting layer is a fluorescent material or a phosphorescent material. According to various reports on the properties of C6G (fullerene, C6Q) in the compound, the highest implementation molecular orbital region is about 5.0 OeV, which is similar to the highest occupied molecular orbital region of ITO (about 4.7 to 5.0 eV). ; And its hole transfer rate is about 1.7 soil 0.2 cn ^ V ·, · 1. According to the above properties, C60 can be used as a hole injection modification material or hole-transporting material for organic light-emitting diodes. In the present invention, C6G is used as an organic light-emitting diode. OLED) elements are injected with modified materials or hole-transmitting materials, and found that it can reduce the driving voltage required by the element, and make the element have a larger current density at a lower operating voltage, and the current increases with the operating voltage The density rises faster. In addition, the maximum efficiency of the component can be reached at a lower operating voltage, so that the component can produce higher brightness at a lower voltage. The structure of the organic electroluminescent diode of the present invention can be a double 200423813 layer (Figure 1), a triple layer (Figure 1), and a multiple layer (Figure 3) structure. . The above 7Π structure can be sequentially ordered from the substrate [100], the positive electrode [+] hole injection modification layer [10], the hole transmission layer [20], and the electron-blocking layer according to the requirements of the element. layer (not shown), emitter [40], hole-blocking layer (not shown), electron-transporting layer [60], and Negative electrode [-] composition, in which the electron blocking layer and the hole blocking layer may or may not be included in the element structure, depending on the needs of the element, wherein the layer between the positive electrode and the negative electrode constitutes an electroluminescent area of the element (electroluminescent medium) [400]. The light-emitting layer [40] may be composed of fluorescent materials or phosphorescence materials; in addition, the light-emitting layer may be a single material or may be formed of several materials via dope. Suitable materials for the light-emitting layer [40] may be those known in the art, as they are not the subject of the present invention, and those skilled in the art can learn from the art, so they will not be described in detail here. The double-layer element shown in Fig. 1 is made of a compound, preferably C6G, as a hole injection modification layer [10] and a hole transmission layer [20], and an electron transmission material [60] having a light emitting ability. The electroluminescent region [400] of the element is composed of the above two layers. (Figure 1) is only a schematic diagram, and the actual thickness of each layer has nothing to do with the size shown in the figure. The three-layer element shown in FIG. 2 is made of a compound, preferably C60, which is made of a hole injection modification layer [10], a hole transport layer [20], and an electron transport layer [60]. The light-emitting layer can be It is a hole transfer layer or an electron transfer layer 10 200423813. The electroluminescent area [400] of the element is composed of the above layers. (Figure 2) It is only a schematic diagram. The actual thickness of each layer has nothing to do with the size shown in the figure. The multi-layer structure shown in Figure 3 can be based on the element's requirements, and the compound C6G, as the hole injection modification layer [10], with the hole transmission layer [20], the light emitting layer [40] and the electron transmission layer Wait for [60] to make it. The electroluminescent region [400] of the element is composed of the above-mentioned layers. (Figure 3) is only a schematic diagram, and the actual thickness of each layer has nothing to do with the size shown in the figure. In addition, the electroluminescent region [400] of this element can further form an electron blocking layer (not shown in the figure) between the hole transfer layer [20] and the light emitting layer [40]; and on the light emitting layer [40] A hole barrier layer (not shown in the figure) is formed between the electron transfer layer and the like [60]. EXAMPLES AND COMPARATIVE EXAMPLES The following examples and comparative examples were produced by the following methods: the element used glass as a substrate, and the positive electrode on the substrate, a hole injection modification layer, a hole transfer layer, an electron blocking layer, a light emitting layer, Hole barrier layer, electron transfer layer and negative electrode, some of which can be omitted. The actual structure is shown in Tables 1 and 2. The positive electrode is conductive indium tin oxide (ITO, Indium-Tin-Oxide), and its thickness is about 100 nanometers; before the evaporation-related cleaning of the ITO glass, use the purchased cleaning agent and organic The solvent was finally treated with a UV-ozone cleaner. The hole injection modification layer is C60, which is placed in a molybdenum boat (tantalum boat), which is placed in a giant boat, and is coated by a vacuum evaporation method to a thickness of about 10 nm. The material used for the hole transfer layer can be aromatic amines (aryl 11 200423813 amines) or other materials that also have the ability to transmit holes. They are placed in a molybdenum boat and coated by vacuum evaporation. The thickness is about 60 nm. The light-emitting layer and the electron-transporting layer were sequentially plated on the hole-transporting layer, and they were placed in a molybdenum boat, and the film was deposited by a vacuum evaporation method to a thickness of about 80 nm in total. In the production of components, the evaporation of carbon groups and other organic materials uses a cavity pressure of about 2 × 1 6 ton :, and the deposition rate is about 0.1 to 0.4 nanometers / second. The negative electrode is a magnesium-silver alloy. The rate of coating is 5 A / s for magnesium, 0.5 A / s for silver, magnesium: silver = 10: 1, the thickness of the film is about 100 nm, and finally silver is plated as a protective layer. The thickness is about 100 nm. The above-mentioned various materials are vapor-deposited as a continuous process without the need to break the vacuum. The measurement of the various data of the components is performed in the atmosphere and room temperature. The structure and luminescence performance of the electroluminescence regions of the prepared organic electroluminescence elements are shown in Tables 1 and 2, and the chemical structures of all the materials used are shown in Figure 4. Comparative Example 1 in Table 1 is a two-layer element, and Comparative Example 2 and Example 3 are three-layer elements for comparison. From their data, it can be seen that using the compound C60 as a hole injection modification layer for an organic electroluminescent element The starting voltage of the component can be reduced, and the power efficiency of the component can be increased by 10 ~ 35%, and the best efficiency of the component can be reached at a lower operating voltage and has a higher brightness. At operating voltage (3 ~ 8 volts), the brightness can be 2 to 3 times that of hole-less implanted modification layer or using CuPc as hole-injected modification layer. The components maintain high brightness at 11 volts, and the start-up voltage can be reduced by 0.2 ~ 0.25 volts. In the fourth embodiment of Table 1, C60 can be used as a hole injection modification layer and a 12 200423813 hole transmission layer at the same time, so that the device can emit light. In addition, c6G can also be used as a hole injection modification layer for an organic electroluminescent device (Example 5) using an aromatic blue light material; compared with the literature (Comparative Example 6), the optimal efficiency of the device is also lower The voltage can be reached with a high degree, and the starting voltage can also be decreased. For example, with BTP as the light emitting layer at 6 volts, C6G as the hole injection modification layer has a luminous brightness that is 4.7 times as high as that of CuPc as the hole injection modification layer. Table 1 Hole injection modification layer Hole transfer layer Electron transfer layer and light emitting layer Start-up voltage (V) Operating voltage (V) Brightness (cd / m2) Energy efficiency (lm / W) Current efficiency (cd / A) Color comparison example NPB-free Alq3 3.05 6.25 821 1.94 (max) 3.85 Green control 4jrr Tear NPB Alq3 3.05 8.25 5650 1.66 4.35 (max) Green control CuPC NPB Alq3 3.1 4.25 14 2.34 (max) 3.16 Green control CuPC NPB Alq3 3.1 7.25 2060 1.82 4.19 (maximum) green example C60NPB Alq3 2.85 4.25 86 2.57 (maximum) 3.47 green example NPB Alcb 2.85 6.0 1736 2.10 4.0 (maximum) green hole injection modification layer and hole transfer layer electron transfer layer and light emitting layer start Voltage (V) Operating voltage (V) Brightness (cd / m2) Energy efficiency (lm / W) Current efficiency (cd / A) Color example 4 Q〇Alq3 3.2 6.0 112 0.86 1.64 Green hole injection modified layer hole transfer Layer light-emitting layer electron transfer layer starting voltage (V) operating voltage (V) brightness (cd / m2) energy efficiency (lm / W) current efficiency (cd / A) color example 5 C60NPB (50 r un) BTP (30 nm) TPBI (40 nm) 3.3 6.0 1767 1.37 2.6 Blue Comparative Example CuPC NPB (40 nm) BTP (20 nm) TPBI (40 nm) 3.5 6.0 380 1.3 2.87 Blue 13 200423813 Listed in Table 2 An example is given for a multi-layered component, wherein Comparative Example 7 and Example 8 are a group of components which are compared with each other. Comparative Example 7 and Example 8 A device doped with C545T in Alq3 as a light-emitting layer, and a light-emitting device of the present invention using C6G as a hole-injection modification layer have a decrease compared to a conventional device using CuPc as a hole-injection modification layer. The 0.5 volt startup voltage improves power efficiency by about 10%. The best efficiency of the element of the present invention in the eighth embodiment can be reached at a lower operating voltage and has a higher brightness, and at the same operating voltage, the brightness can be compared to the seventh comparative example using CxxPc as a hole injection modification layer. 10 times (4.0 Volts, C60 (1 03 cd / m2) / CuPc (10.2 cd / m2)) to 2.2 times (9.0 Volts, C60 (1 5825 cd / m2) / CuPc (36938 cd / m2). The elements of the present invention of Example 8 maintain high brightness at 2.75 ~ 12.0 volts. The elements of Table II, Chinese and foreign Comparative Examples 9 and 10 are DCJTB doped in Alq3 as the light emitting layer, using C6. Example 10 as a hole injection modification layer The element of the present invention has a lower starting voltage and a higher brightness than the control example 9 without a hole injection modification layer. Table 2 In the twelfth embodiment, the phosphorescent material Ir (PPy) 3 was doped in CBP as the light-emitting layer, and C6G was used as the hole injection modification layer. The twelfth embodiment of the present invention is compared with the control layer without hole injection modification. Example 11 The conventional element also has a reduced start-up voltage, and It has higher brightness under the voltage. Similar observations can also be found in the light-emitting elements of Comparative Example 13 and Example 14 of Table 2, both of which are doped in CBP with phosphorescent material Ir-4 as the light-emitting layer. The former does not use a hole injection modification layer, while the latter uses C6Q as a hole injection modification layer. 14 200423813 Table 2

電洞注 入修飾 層 電洞傳 遞層 摻雜之發 光層 電洞阻 隔層 電子傳 遞層 啓動 電壓 (V) 操作 電壓 (V) 亮度 (cd/m2 ) 功率效 率 (lmAV) 電流 效率 (cd/A) 顏色 對照 例七 CuPc NPB Alq3+2% C545T 4nt m Alq3 3.24 6.0 510 7.72 (最大) 14.7 綠色 對照 例七 CuPc NPB Alq3+2% C545T 無 Alq3 3.24 5.75 340 7.19 13.1 綠色 實施 例八 。6〇 NPB Alq3+2°/〇 C545T 無 Alqa 2.74 4.25 193 8.44 (最大) 11.4 綠色 實施 例八 c60 NPB Alqs+2% C545T 那 Alq3 2.74 5.75 2837 7.00 12.8 (最大) 綠色 對照 例九 /rff m NPB Alqs+2% DCJTB 無 Alq3 3.2 4.75 35 3.36 (最大) 5.08 (最大) 紅色 實施 例十 C6〇 NPB Alq3+2% DCJTB 4nt m Alq3 2.9 4.75 90 1.70 (最大) 2.55 紅色 對照 例十 無 NPB CBP+7% Ir(PPy)3 BCP Alq3 2.8 6.0 4399 11.9 22.7 綠色 實施 例十 Qo NPB CBP+7% Ir(PPy)3 BCP Alq3 2.6 6.0 7520 15.9 30.0 綠色 對照 例十 /rrr m NPB CBP+7% Ir4 BCP Alq3 4.1 6.0 88 1.92 3.66 紅色 實施 例十 四 ^60 NPB CBP+7% Ir4 BCP Alq3 2.10 4.0 (最大) 紅色 圖式簡單說明 圖一爲依本發明的第一實施態樣所製成的雙層有機電 致發光二極體的剖面示意圖。 圖二爲依本發明的第二實施態樣所製成的三層有機電 致發光二極體的剖面示意圖。 圖三爲依本發明的第三實施態樣所製成的多層有機電 致發光二極體的剖面示意圖。 15 200423813 圖四爲用於製造有機電致發光二極體的數種材料的化 學構造。 圖五爲芙化合物(fullerene) C6G的的化學構造。 主要元件之符號說明 60..電子傳遞層;10..電洞注入修飾層;20..電洞傳遞 層;400··發光區域;100"基板;40·.發光層Hole injection modification layer Hole transfer layer Doped luminescent layer Hole barrier layer Electron transfer layer Start-up voltage (V) Operating voltage (V) Brightness (cd / m2) Power efficiency (lmAV) Current efficiency (cd / A) Color Comparative Example 7 CuPc NPB Alq3 + 2% C545T 4nt m Alq3 3.24 6.0 510 7.72 (maximum) 14.7 Green Comparative Example 7 CuPc NPB Alq3 + 2% C545T No Alq3 3.24 5.75 340 7.19 13.1 Green Example 8. 6〇NPB Alq3 + 2 ° / 〇C545T No Alqa 2.74 4.25 193 8.44 (maximum) 11.4 Green Example Eight c60 NPB Alqs + 2% C545T Alq3 2.74 5.75 2837 7.00 12.8 (Maximum) Green Control Example 9 / rff m NPB Alqs + 2% DCJTB No Alq3 3.2 4.75 35 3.36 (Max) 5.08 (Max) Red Example 10 C60NPB Alq3 + 2% DCJTB 4nt m Alq3 2.9 4.75 90 1.70 (Max) 2.55 Red Control Example No NPB CBP + 7% Ir (PPy) 3 BCP Alq3 2.8 6.0 4399 11.9 22.7 Green Example 10 Qo NPB CBP + 7% Ir (PPy) 3 BCP Alq3 2.6 6.0 7520 15.9 30.0 Green Control Example 10 / rrr m NPB CBP + 7% Ir4 BCP Alq3 4.1 6.0 88 1.92 3.66 Red Example Fourteen ^ 60 NPB CBP + 7% Ir4 BCP Alq3 2.10 4.0 (Max.) Schematic illustration in red Figure 1 shows a double-layer organic electro-polymer made according to the first embodiment of the present invention. A schematic cross-sectional view of a light emitting diode. Fig. 2 is a schematic cross-sectional view of a three-layer organic electroluminescent diode made according to a second embodiment of the present invention. Fig. 3 is a schematic cross-sectional view of a multilayer organic electroluminescent diode made according to a third embodiment of the present invention. 15 200423813 Figure 4 shows the chemical structure of several materials used to make organic electroluminescent diodes. Figure 5 shows the chemical structure of fullerene C6G. Explanation of the symbols of the main components 60 .. Electron transfer layer; 10 .. Hole injection modified layer; 20 .. Hole transfer layer; 400 ·· Light emitting area; 100 "Substrate; 40 ·. Light emitting layer

Claims (1)

200423813 申請專利範圍 ι· 一種有機發光二極體,包含一形成於一基材上的正極, 一形成於該正極上的電致發光區,及一形成於該電致發 光區上的負極,其特徵在於該電致發光區包含一層芙化 合物作爲電洞注入修飾層。 2.如申請專利範圍第1項的有機發光二極體,其中該芙化 合物爲C6G,該芙化合物層具有一介於1奈米至200奈 米的厚度。 3·如申請專利範圍第1或2項的有機發光二極體,其中該 電致發光區進一步包含一形成於該電洞注入修飾層及 該負極之間的電子傳遞層。 4.如申請專利範圍第3項的有機發光二極體,其中該芙化 合物層兼具一電洞傳遞層的功能,其中該電子傳遞層兼 作爲一具有發光能力的發光層的功能。 5·如申請專利範圍第3項的有機發光二極體,其中該電致 發光區進一步包含一形成於該電洞注入修飾層及該電 子傳遞層之間的電洞傳遞層,其中該電子傳遞層或電洞 傳遞層兼作爲一具有發光能力的發光層的功能。 6·如申請專利範圍第1或2項的有機發光二極體,其中該 電致發光區進一步包含一形成於該電洞注入修飾層上 的電洞傳遞層,一形成於該電洞傳遞層上的發光層,及 一形成於該發光層及該負極之間的電子傳遞層。 7.如申請專利範圍第6項的有機發光二極體,其中該發光 層爲單一發光材料或數種發光材料摻雜而成。 17 200423813 8.如申請專利範圍第7項的有機發光二極體,其中該發光 層爲螢光材料或磷光材料。 18200423813 Scope of patent application: An organic light emitting diode includes a positive electrode formed on a substrate, an electroluminescent region formed on the positive electrode, and a negative electrode formed on the electroluminescent region. It is characterized in that the electroluminescence region contains a layer of a compound as a hole injection modification layer. 2. The organic light-emitting diode according to item 1 of the application, wherein the compound is C6G, and the compound layer has a thickness between 1 nm and 200 nm. 3. The organic light emitting diode according to item 1 or 2 of the patent application scope, wherein the electroluminescent region further includes an electron transfer layer formed between the hole injection modification layer and the negative electrode. 4. The organic light-emitting diode according to item 3 of the patent application, wherein the compound layer also functions as a hole-transporting layer, and wherein the electron-transport layer also functions as a light-emitting layer having a light-emitting ability. 5. The organic light-emitting diode according to item 3 of the application, wherein the electroluminescent region further comprises a hole-transporting layer formed between the hole-injection-modifying layer and the electron-transporting layer, wherein the electron-transporting layer The layer or hole transfer layer also functions as a light-emitting layer having a light-emitting capability. 6. The organic light emitting diode according to item 1 or 2 of the patent application scope, wherein the electroluminescent region further includes a hole transfer layer formed on the hole injection modification layer, and a hole transfer layer formed on the hole injection modification layer. A light-emitting layer thereon, and an electron transfer layer formed between the light-emitting layer and the negative electrode. 7. The organic light emitting diode according to item 6 of the patent application, wherein the light emitting layer is a single light emitting material or a plurality of light emitting materials doped. 17 200423813 8. The organic light emitting diode according to item 7 of the patent application, wherein the light emitting layer is a fluorescent material or a phosphorescent material. 18
TW92110212A 2003-04-30 2003-04-30 Organic light-emitting diode containing fullerene as a hole-injection modification layer or hole-transporting layer TW588572B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92110212A TW588572B (en) 2003-04-30 2003-04-30 Organic light-emitting diode containing fullerene as a hole-injection modification layer or hole-transporting layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92110212A TW588572B (en) 2003-04-30 2003-04-30 Organic light-emitting diode containing fullerene as a hole-injection modification layer or hole-transporting layer

Publications (2)

Publication Number Publication Date
TW588572B TW588572B (en) 2004-05-21
TW200423813A true TW200423813A (en) 2004-11-01

Family

ID=34059244

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92110212A TW588572B (en) 2003-04-30 2003-04-30 Organic light-emitting diode containing fullerene as a hole-injection modification layer or hole-transporting layer

Country Status (1)

Country Link
TW (1) TW588572B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8496328B2 (en) 2005-09-28 2013-07-30 Yamamoto Kogaku Co., Ltd. Process for producing optical article

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1653529B1 (en) 2004-10-11 2007-11-21 Samsung SDI Co., Ltd. Organic electroluminescent device and method of manufacturing the same
US7358538B2 (en) 2004-10-28 2008-04-15 Zheng-Hong Lu Organic light-emitting devices with multiple hole injection layers containing fullerene
KR100712290B1 (en) 2005-04-12 2007-04-27 삼성에스디아이 주식회사 Ogarnic Light Emitting Device:OLED
JP5709528B2 (en) 2008-02-12 2015-04-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Electroluminescent metal complex using dibenzo [f, h] quinoxaline
KR20090092051A (en) 2008-02-26 2009-08-31 삼성모바일디스플레이주식회사 Organic light emitting diode and fabrication method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8496328B2 (en) 2005-09-28 2013-07-30 Yamamoto Kogaku Co., Ltd. Process for producing optical article

Also Published As

Publication number Publication date
TW588572B (en) 2004-05-21

Similar Documents

Publication Publication Date Title
KR101026514B1 (en) Organic light emitting devices
Okumoto et al. Green fluorescent organic light-emitting device with external quantum efficiency of nearly 10%
TWI413287B (en) Electron impeding layer for high efficiency phosphorescent oleds
EP3370273B1 (en) Organic electrophosphorescence devices
JP4846953B2 (en) High efficiency transparent organic light emitting device
TWI376980B (en) Organic light emitting diode having high efficiency and process for fabricating the same
KR100845694B1 (en) Oled having stacked organic light-emitting units
US5811833A (en) Electron transporting and light emitting layers based on organic free radicals
JP3615536B2 (en) Organic EL light emitting device
KR101688317B1 (en) Organic light emitting diode having low operating voltage and method for fabricating the same
JP4364201B2 (en) Organic electroluminescence device
JP2006295163A (en) Organic electroluminescent element
KR101760004B1 (en) Oled device with stabilized yellow light-emitting layer
WO2013039914A1 (en) Efficient organic light-emitting diodes and fabrication of the same
US20090121619A1 (en) OLED Having A Charge Transport Enhancement Layer
JP2004288619A (en) Efficient organic electroluminescent element
JP2008053664A (en) Organic light emitting element
JP5094781B2 (en) Organic EL device and manufacturing method thereof
KR100777099B1 (en) High efficiency organic light emitting diodes and manufacturing method
KR100769946B1 (en) Organic electroluminesecnt device capable of driving in low voltage
US7919771B2 (en) Composition for electron transport layer, electron transport layer manufactured thereof, and organic electroluminescent device including the electron transport layer
JP2006196861A (en) Organic electroluminescent element
CN101222027B (en) Organic light-emitting device and method for producing the same
TW588572B (en) Organic light-emitting diode containing fullerene as a hole-injection modification layer or hole-transporting layer
EP1227528A2 (en) Organic light emitting devices having a modified electron-transport layer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees