TR2021020092A2 - PRODUCTION OF BIOPOLYMER MATERIAL CONTAINING NANOPARTICLE AND HERB EXTENSION PRODUCED BY GREEN SYNTHESIS FOR HEALTH - Google Patents

PRODUCTION OF BIOPOLYMER MATERIAL CONTAINING NANOPARTICLE AND HERB EXTENSION PRODUCED BY GREEN SYNTHESIS FOR HEALTH

Info

Publication number
TR2021020092A2
TR2021020092A2 TR2021/020092A TR2021020092A TR2021020092A2 TR 2021020092 A2 TR2021020092 A2 TR 2021020092A2 TR 2021/020092 A TR2021/020092 A TR 2021/020092A TR 2021020092 A TR2021020092 A TR 2021020092A TR 2021020092 A2 TR2021020092 A2 TR 2021020092A2
Authority
TR
Turkey
Prior art keywords
produced
production
green
health
polymer
Prior art date
Application number
TR2021/020092A
Other languages
Turkish (tr)
Inventor
Kübra Yontar Ari̇fe
Çevi̇k Si̇nem
Original Assignee
Arife Kuebra Yontar
Ondokuz Mayis Üni̇versi̇tesi̇
Sinem Cevik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arife Kuebra Yontar, Ondokuz Mayis Üni̇versi̇tesi̇, Sinem Cevik filed Critical Arife Kuebra Yontar
Priority to TR2021/020092A priority Critical patent/TR2021020092A2/en
Publication of TR2021020092A2 publication Critical patent/TR2021020092A2/en
Priority to PCT/TR2022/051481 priority patent/WO2023113751A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3637Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the origin of the biological material other than human or animal, e.g. plant extracts, algae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • A61L2300/104Silver, e.g. silver sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Dental Preparations (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Bu buluşta sağlık alanında, dişçilikte kullanılan metal malzemelerin malzemelerin kaplanmasında, üretiminde kullanılacak doğal bitki özleriyle (yeşil sentezle) üretilen biyo uyumlu polimer malzemeler üretmek ve üretilen parçaların canlı doku ile olan olan etkileşimlerinden ortaya çıkabilecek aşınma, enfeksiyon ve toksisite gibi olumsuz etkileri en aza indirebilmek amaçlanmıştır. Bitki özleri kullanılarak yeşil sentez yöntemiyle üretilen metal nano parçacıklarla üretilen malzemenin daha doğal içerikli olması, antibakteriyel, biyouyumluluk ve osseintegrasyon gibi özelliklerini iyileştirerek toksik maddelerin kullanımının azaltılması amaçlanmaktadır. Buluş yeşil, sürdürülebilir ve ekonomik bir kaplama, paketleme ve sağlık alanında kullanılabilecek polimer parçaların malzemesinin üretimini kapsamaktadır.In this invention, it is aimed to produce biocompatible polymer materials produced with natural plant extracts (green synthesis) to be used in the coating and production of metal materials used in the field of health, dentistry, and to minimize the negative effects such as abrasion, infection and toxicity that may arise from the interaction of the produced parts with living tissue. . It is aimed to reduce the use of toxic substances by improving the properties such as antibacterial, biocompatibility and osseintegration of the material produced with metal nanoparticles produced by the green synthesis method using plant extracts. The invention covers the production of the material of polymer parts that can be used in a green, sustainable and economical coating, packaging and health field.

Description

TARIFNAME SAGLIK ALANI IÇIN YESIL SENTEZLE ÜRETILEN NANOPARTIKÜL VE BITKI ÖzÜ IÇEREN BIYOPOLIMER MALZEM E ÜRETIMI Teknik Alan Bu bulus saglik alani için yesil sentezle üretilen nanopartikül(gümüs) ve bitki özü içeren biyo- nano polimer malzemesi üretimini kapsamaktadir. Bu bulus yesil kompozit üretimi göz önüne alinarak ince polimer malzemelerin disçilikte kullanilan metallerin kaplama malzemesi olarak üretilmesini içermektedir. Bu malzemelerin yesil kompozit sinifinda adlandirilabilmesi için matriks malzemesi bitki özleri(kenevir, sari kantaron, biberiye, karayemis yapragi) ile katkilandirilacaktir. Böylece bitki özleri ve yesil üretilen nano parçaciklar kullanilarak üretilen yesil kompozitlere antimikrobiyal özellik kazandirilacaktir. Bulus yöntemi olarak polimer malzemeler için çözücü döküm yöntemi kullanilacaktir. Bitki özlerinin saglik açisindan çok önemli özellikleri bulunur. Birçok bitki özü A, B 1, 32, B 3, Bö, C. E vitaminleri ve folik asit (B9) bakimindan zengindir. Ayrica Kalsiyum, demir, magnezyum, manganez, fosfor, potasyum, sodyum ve çinko minerallerini içerirler. Örnegin kenevir tohumu; GLA (gama linolenik asit) adi verilen bir yag asidi de içeren bu özelligi sayesinde vücuttaki hormon dengesini saglamaya yardimci olur. Omega yag asitleri bakimindan oldukça zengindir, bu sayede beyin sagligini destekler. Kolesterolü düsürmeye yardimci olarak kalp-damar sagligini da korur. Saç ve cilt sagligi için faydalidir. Düzenli olarak tüketildiginde saçlarin ve cildin daha parlak, canli görünmesine yardimci olur. Adet döneminde yasanabilen çesitli sorunlari önlemeye yardimci olur. Içerdigi gama linolenik asit, hormon dengesini desteklerken, hormonal sorunlara bagli yasanan adet öncesi sendromu, asiri agrili adet gibi sorunlari önler. Içerdigi yüksek oranda magnezyum sayesinde uyku sorunlari için de oldukça faydalidir. Kemikleri güçlendirir. Içerdigi vitaminler ve özellikle demir sayesinde, kansizlik ve kansizliga bagli yasanabilen yorgunluk, bas agrisi, halsizlik gibi sikayetlerin önlenmesine yardimci olur. Yukarida bahsedilen özelliklere sahip olan bitkilerin biyo-polimer nano kompozit malzemelerde kullanilmasiyla antimikro'biyal özellikler kazandirilmasi, enfeksiyonlari önlemesi ve Vücut içi osseintegrasyonun iyilesitirilmesi saglanabilecektir. Mevcut üretilen ve kullanilan örneklerine göre daha dogal içerikli ve toksitisesi düsük ürünler elde edilecektir. Teknigin Bilinen Durumu Saglik alaninda kullanilan metalik parçalarin polimer kaplama malzemelerine bakildiginda içeriklerinde kullanilan nano parçaciklarin toksik özellikler gösterdigi bilinmektedir. Ayrica kaplamalarda kullanilan bitki özlerinin bu bulusun içerdigi bitki çesitlerini(kenevir, sari kantaron, biberiye, karayemis yapragi) ve yesil sentez ile üretilen nano parçaciklari içermedigi yapilan patent ve literatür arastirmalari sonucu tespit edilmistir. EP2529763BI patent numarali çalisma incelendiginde tibbi araçlarin yüzeyinin bir kisminda, kalsiyum fosfat ve/Veya kalsiyum karbonat bazli olan bir osteoindüktif ve/Veya osteokondüktif örtü tabakasina sahip örtü tabakasinin üzerinde bosluklar birakilarak yama seklinde kaplama yapilmistir. Benzer sekilde E P193732881 patent numarali bulusta da bir silan türevinin metal yüzeye kovalent biçimde baglanmasiyla, bir lakton polimerinin in situ halka açma ile polimerizasyon yoluyla silan türevine kovalent biçimde baglanmasiyla ve baglanan lakton üzerine bir poli(laktid-ko-kaprolakton) kopolimerinin en azindan bir tabakasinin biriktirilmesiyle aktive edilebilen kaplamalar gerçeklestirilmistir. Yine benzer sekilde patenti alinan bir diger bulusta (EP1492581B1) bir Siian türevinin metal yüzeyine kovalent olarak baglanmasiyla; bir lakton polimerinin yerinde halka açilmali polimerizasyon ile silan türevine kovalent olarak baglanmasiyla ve en azindan bir poliester katinin, bagli lakton üzerine çökeltilmesiyle yüzeylerin etkin hale getirildigi kaplamalar saglanmistir. CN111471363A patent numarali bulusta ise titanium dioksit, nano çinko oksit ve kafur yapraklari, kabuk tozu ve ginkgo yapraklari özü kullanilarak kaplama malzemesi olusturulmustur. Bizim bulusumuzda kenevir, sari kantaron, biberiye ve karayemis yapragi kullanilmaktadir. A. Gudimalla ve digerlerinin yaptgi yayinda ise sadece gümüs nanopartiküller bitki özlerinden üretilmis ve polimere yani kimyasal olarak polimer yapisina doped edilmistir. Bizim bulusumuzda ise polimer nano kompozit bir ince film üretimi söz konusudur. Kullanilan bitkiler farkli bitkiler de farklidir. Bizim bulusumuz bu yayinda yapilan çalismadan farklidir. Yesil sentez yöntemin genel adidir. Sentezde kullanilan bitki çesidi üretilen nano parçaciklarin boyutunu ve kalitesini etkilemektedir. Öm; Bulusta kullanilan Kenevir nano parçaciklarin daha küçük boyutlu üretilmesini saglamaktadir ve kompozitin dayaniminin artmasini saglamaktadir. Ayrica bulusta kullanilan bitkiler yayinda kullanilanlardan farklidir, bu da üretilen kompozitin diste kullanilan metalik malzemelerin sahip olacagi özelliklerin farkli olmasini saglamaktadir. Ayrica bahsedilen yayinda polimer baglari ve kimyasal sekilde bir bio-film üretimi söz konusudur. Kompozit malzemenin ince film seklinde üretimi çok farkli unsurlar içerrnektedir. Malzemeler 5 sinifta incelenmektedir. Metaller, seramikler, polimerler, kompozitler ve yari iletkenler. Malzeme açisindan polimerler ve kompozitler basli basina farkli malzeme gruplarini ifade etmektedirler. Bizim bulusumuz polimer nano kompozit malzeme üretimini içermektedir. Bu bulusta yesil sentezlenen nano gümüs ve bitki özü içeren kompozit iilmler sprey yöntemleri ile kaplanarak implant üretilecektir. özlerinden metal nanopartiküllerin üretimi ile ilgili oldugu görülmektedir. Bizim bulusumuz yesil sentez ve bitki özü kullanilarak üretilen polimer nano kompozit kaplama malzemesinin üretimi ile ilgilidir. Bizim bulusumuzda polimer- kompozit ince film metal dis implantlarina kaplanacaktir. Sadece antimikrobiyal etki degil ince filmlerin mukavemeti ve agirlik/ mukavemet orani da önemlidir. Malzemenin çene ve implant yapisina uygun ve çigneme kaynakli gerilimlere dirençli olmasi gerekmektedir. Ayrica metal implanti agiz içi korozyon, asinma ve sertlik kuvvetlerine karsi korumasi beklenmektedir. U59491947BI basvuru numarali patentte sadece bitki özütü kullanilan nanoparçacik ve nanoparçacik-poiimer sentezlerinden bahsedilmektedir. Bizim bulusumuzda ise kaplama malzeme üretimini mevcuttur. Sadece nanokompozit malzeme üretmek bizim bulusumuz için yeterli degildir. Bir malzemeyi ince film haline getirmek ve özellikle metal malzeme üzerine kaplamak farkli yöntem ve teknikler gerektirmektedir. Ayrica bulk malzemelerde bulunmayan fonksiyel özellikler malzemeyi ince film haline getirdigimizde elde edilebilmektedir. Bulusumuzda kenevir kullanilarak daha mukavemetli, antimikrobiyal, enfeksiyon karsiti kompozit üretiminden bahsedilmektedir. Üretilen kompozit malzeme agiz içi metallerin kaplama uygulamalarinda kullanilarak metal parçalarin daha biyo uyumlu, asinmaya dayanikli olmasini saglayacaktir. Ayrica kaplamanin içerigindeki kenevir, sari kantaron, biberiye ve karayemis yapragi özleri agiz içindeki dis eti ile olan uyumun artmasini, enfeksiyonu azaltici etkilere sahiptir. Kullanilan bitki özleri üretilen nano metallerin kalitesini artirtmaktadir. B u da üretilen kaplama malzemesinin teknik etki ve özelliklerinin farkli olmasina neden olmaktadir. G. Ong ve digerlerinin yaptigi derleme çalismaya bakildiginda sadece bitki özlerinin kaplama uygulamalarinda katki olarak kullanilmasiyla ilgili literatür çalismasindan bahsedildigi görülmektedir. Kullanilan bitki içeriklerinin farkliligi ve kaplama için kullanilacak bir malzeme üretimini içermesi bizim bulusumuzu özgün kilmaktadir. Yapilan bu makaleler sonucunda her zaman bir ürün ortaya konulmamistir. Bunlarin disinda bulusta kullanilan bitki çesitleri ve kaplama teknigi ile dis implantlarinin ve disçilikte kullanilan metal malzemelerinin kaplanmasi için uygulamada mevcut degildir. Bulusun Çözümünü Amaçladigi Teknik Problemler Saglik alaninda kullanilan metalik malzemelerin antibakteriyel özellik kazanmasi ve daha biyouyumlu olmasi için kaplama yapilmaktadir. Kaplama malzemesine antibakteriyel özellik kazandirmak için katkilanan metalik nanoparçalarin üretiminde toksik içeriklerin fazla olmasi ve kullanilan polimer malzemelerin yeterli biyouyumluluk özellikleri sergilememesi sonucu meydana gelen enfeksiyon veya basarisiz osseintegrasyon mevcut ürünlerin basarisizliklari ve eksiklikleri olmaktadir. Saglik alaninda kullanilan metalik malzemelerin antibakteriyel özelliklerinin saglanmasi, asinmaya ve korozyona karsi direncinin artirilmasi, enfeksiyon ve yara benzeri iritasyonlarin azaltilmasi üretilen yesil biyo-nano polimer malzeme ile saglanabileeektir. Yesil sentez ile üretilecek nanoparçaciklar ile toksik özellikleri düsük kaplama malzemesi üretilecektir. Ayrica ayni sekilde bitki özleri de kullanilarak daha dogal içerikli ve antibakteriyel polimer malzeme üretilecektir. Diger taraftan Avrupa Yesil Mutabakati ile öngörülen kapsamli degisikliklere ve Türkiye-AB Gümrük Birligi kapsaminda saglanan bütünlesmeyi koruyacak ve daha da ileriye tasiyacak sekilde uyum saglamasini teminen, yesil mutabakat 2021 Eylem Planinda, 1) sinirda karbon düzenlemeleri, 2) yesil ve döngüsel bir ekonomi, 3) yesil finansman, 4) temiz, ekonomik ve güvenli enerji arzi, 5) sürdürülebilir tarim, 6] sürdürülebilir akilli ulasim, 7) iklim degisikligi ile mücadele basliklari altinda belirlenen hedeflere ulasilmasi amaciyla hayata geçirilecek eylemlere yer verilmistir. Ayrica yine yesil mutabakat 2021 eylem planina göre Avrupa Komisyonu'nun 2030 itibariyla her türlü ambalaj ve paketlemenin biyolojik olarak çözünür ve bitki bazli plastiklerden saglanmasi yönünde uygulamalari tesvik edecegi ve tek kullanimlik plastiklere yaptirimlar getirecegi vurgulaniyor. Ihracatçilarin ambalaj ve paketleme konularinda da degisime gitmeleri gerekebilecektir. Bunun dogrultusunda yesil sentezle üretilen bitki özlü polimer nano kompozitler paketleme alaninda da kullanilarak daha saglikli, çevreci ve antibakteriyei ürünler elde edilecektir. Kullanilan yöntem ve malzemeler boyutunda bakildiginda yesil mütabakat, iklim degisikligi eylem plani, paris iklim sözlesmesi ve kyoto anlasmasina uygun yesil ve sürdürülebilir ürünlerin elde edilmesi saglanacaktir. Dogal metalik nano partiküllerin yesil sentez yoluyla üretilmesi sonucunda dogal hammadde kaynaklarinin tüketimi de azaltilmis olacaktir. Bitki özü olarak kenevir de kullanilarak kenevirin uygulama alanlari artacak ve kenevir yetistiriciligi gelisecektir. Karbon negatif bir bitki de olan kenevir istatistiklere göre bir hektarlik dönümüyle hasat dönemi boyunca 22 ton karbondioksiti atmosferden çekmektedir. Bu özelligi ile de karbon ayak izi, sera gazi emisyonlari gibi çevresel durumlara pozitif yarar saglayacaktir. Bu bulus polimer- kompozit ince film metal dis implantlarinin kaplamalarini gelistirmektedir. Sadece antimikrobiyal etki degil ince filmlerin mukavemeti ve agirlik/ mukavemet orani da önemlidir ve bizim bulusumuz da farkli olmaktadir. Malzemenin çene ve implant yapisina uygun ve çigneme kaynakli gerilimlere dirençli olmasi gerekmektedir. Ayrica metal implant] agiz içi korozyon etkilerine karsi korumasi beklenmektedir. Bulusta kullanilan bitkilerin sagladigi mekanik etkiler ve saglikta etkileri daha basarili ve etkilidir. Bitki özü olarak kenevirin de kullanilmasiyla kenevirin ve diger bitki özlerinin de sahip oldugu A, B 1, 82, B 3, B6, C, E vitaminleri ve folik asit (B9), kalsiyum, demir, magnezyum, manganez, fosfor, potasyum, sodyum ve çinko minerallerini içeren kaplama malzemesi üretilebilecektir. Ayrica kenevir tohumu; GLA (gama linolenik asit) adi verilen bir yag asidi de içeren bu özelligi sayesinde Vücuttaki hormon dengesini saglamaya yardimci olur. Omega yag asitleri bakimindan oldukça zengindir, bu sayede beyin sagligini destekler. Kolesterolü düsürmeye yardimci olarak kalp-damar sagligini da korur. Içerdigi gama linolenik asit, hormon dengesini desteklerken, hormonal sorunlara bagli yasanan adet öncesi sendromu, asiri agrili adet gibi sorunlari önler. Içerdigi yüksek oranda magnezyum sayesinde uyku sorunlari için de oldukça faydalidir. Kemikleri güçlendirir. Içerdigi vitaminler ve özellikle demir sayesinde, kansizlik ve kansizliga bagli yasanabilen yorgunluk, bas agrisi, halsizlik gibi sikayetlerin önlenmesine yardimci olur. Kenevirin bu özellikleri disinda yesil sentezle nano partikül üretiminde partiküllerin daha küçük boyutlarda üretilmesini saglamaktadir. Sekil 1 incelendiginde kenevir ile üretilen nano gümüsün daha küçük boyutlarda üretilebildigi görülmektedir. Bunun disinda kenevirle üretilen filmlerin shore sertlik degerleri daha yüksek olmaktadir. Yani sertligi yüksek, asinmaya dayanikli film üretil mektedir. Tablo 1. Kenevir ve diger bitki özleriyle üretilen filmlerin shore sertliklerini gösteren yüzdeler Polimerfilmler Polimer filmlerin shore sertlik dereceleri (%l Hemp-St Johns 82,07 Rose. Cherry L 93.03 Ag-Hemp-St Johns 95,72 1" Ag-Rosem.Cherry L. 92,31 Sekillerin açiklanmasi Sekil-1 : Kenevir kullanilarak üretilen nano gümüs partikülleri Sekil-2 : Yesil polimer nano kompozit malzemelerin üretim süreci Sekil-?de Referans Numaralari Ile Gösterilen Parçalarin Açiklanmasi 1) Polimer solüsyonu. 2) Kenevir tohumu, sari kantaron, biberiye ve karayemis yapragi özlerinin su içerisinde kaynatilarak elde edilmesi. 3] 0,1 M°lik gümüs nitrat çözeltisi hazirlanmasi. 4) Gümüs nitrattan bitki özü ile nano gümüs elde edilmesI(Yesil Sentez). ) Polimer solüsyonu, bitki özü ve nano gümüsün bi araya getirilmesi. 6) Elde edi len polimer solüsyon karisiminin malzeme üretimi için kaliplara dökülmesi. 7) Kaliplara dökülen solüsyonun etüv içerisinde bekletilmesi. 8) Polimer nano kompozit malzemenin elde edilmesi. Bulusun Açiklanmasi Bulus saglik alaninda kullanilan parçalarin yesil içerikli polimerik malzemeler(8) ile kaplanmasi ve üretilmesi ile ilgilidir. Bulus kaplama malzeme içerisine katilacak olan bitki Özleri(2) ile metalik implant,krose, tel ve kanca gibi parçalarin Vücut içinde olusturabilecegi enfeksiyon ve yaralarin en aza indirilmesini saglar. Bu bulusta yesil sentez(4) ile gümüs nano parçacik üretimi kullanilarak yesil nano kompozit polimer kaplama, paketleme ve tibbi parçalar için polimerik malzeme üretimi saglanmaktadir. Bu bulus polimer solüsyonun üretimi(1), kenevir tohumu,sari kantaron, biberiye ve karayemis yapraginin bitki özlerinin çikarilmasi(2 ], 0,1 Mrlik gümüs nitrat çözeltisinden(3) bitki özleri ile nano gümüsün elde edilmesi(4), polimer solüsyonu, nano gümüs ve bitki özlerinin bir araya getirilmesiyle karisim çözeltsinin olusturulmasi(5), olusturulan karisimin malzemeye sekil vermek amaciyla kaliplara dökülmesi(6), kalibin etüve yerlestirilerek 40°C" de 24 saat bekletilerek kurutulmasi(7) ve son olarak kuruyan yesil polimer nano kompozit malzemelerin kaliplardan çikartilarak elde edilmesi islem basamaklarini içermektedir. Bulus bitki özleri (kenevir tohumu, sari kantaron, biberiye ve karayemis yapragi) ve yesil sentezlenen nano gümüs içeren biyopolimer nano kompozit malzemenin üretimi ile ilgilidir. Çözücü döküm yöntemi kompozit filmlerin üretilmesi için kullanilacak yöntemdir. Yesil sentez yöntemi bitki özleri kullanilarak nano metal parçaciklarin üretimi için kullanilan genel isimdir. Çözücü döküm yöntemi ile üretilen filmler ile daha düsük maliyetli, yüksek dayanimli filmler üretilebilir. Yesil sentez yöntemi ile üretilen nano metaller daha dogal ve temiz içerikli olmaktadir. Ayrica yesil sentez yönteminde kullanilan bitkinin çesidi çok önemli olmaktadir. Bitkinin tipine göre üretilen metal nano parçacigin boyutu daha küçük olabilmektedir ve üretilen kompozit filmin daha dayanikli ve daha yüksek özellikli olmasini saglamaktadir. Iki yöntem de farkli teknik etkilere sahiptir ve kompozit filmlerin üretilmesinde iki yöntem de kullanilacaktir. Bu bulus polimer- kompozit ince film üretimi ve metal dis implantlarina kaplammasi ile ilgilidir. Sadece antimikrobiyal etki degil ince filmlerin mukavemeti ve agirlik/ mukavemet orani da önemlidir. Malzemenin çene ve implant yapisina uygun ve çigneme kaynakli gerilimlere dirençli olmasi gerekmektedir. Ayrica metal implanti agiz içi korozyon etkilerine karsi korumasi beklenmektedir. Yesil sentezlenen nano gümüs ve bitki özü içeren kompozit filmler sprey yöntemleri ile kaplanarak implant üretilebilecektir. Kaplamanin içerigindeki kenevir, sari kantaron, biberiye ve karayeinis yapragi özleri agiz içindeki dis eti ile olan uyumun artmasini, enfeksiyonu azaltici etkilere sahiptir. Kullanilan bitki özleri üretilen nano metallerin kalitesini artirtmaktadir. Dogal içerikli malzeme kullanimi bulusun en önemli unsurudur. Ayrica üretilen polimer nano kompozit daha önce diste kullanilan metallere kaplama olarak uygulanmamistir. Bulusun Sanayiye Uygulanma Biçimi Üretilen yesil polimer nano kompozit malzemeler saglik alaninda kullanilan metalik(implantlar, kroseler, kancalar, stentler, dis telleri Vb.) parçalarin kaplanmasinda kullanilabilecektir. Bunun disinda üretilen yesil nanoparçacik ve bitki özleri dis protez akriliklerinde, dis plaklarinda kullanilabilir. Üretilen yesil nano parçacik ve bitki özleri saglik alaninda kullanilan polimerik parçalarin içerisinde kullanilabilecektir. Mevcut firmalar göz önüne alindiginda ve yesil mütabakat eylem planina göre yapilacak arge çalismalari düsünüldügünde implant ve dis malzemeleri üreten firmalarin bu pazara girmeleri kaçinilmaz olacaktir. Bu bulusun patentlenmesi sonucunda bunun önüne geçilebilecek ve firmalarla Ür-Ge ve Ar-Ge çalismalari yapilabilecektir. Böylelikle ürün yelpazesi genisletilebilecek Türkiyede yerli bir üretim yapilabilecek, Samsun Mediküm kümelenmesi göz Önüne alinarak da bölgesel ve küresel bazda ticari pazarda yer alinabilecektir. KENEVIR ,_ SARI KANTARONLA ÜRETILEN NAO GÜMÜS BIBERIYEVE KARAYEMIS ILE ÜREmEN NANO GÜMÜS 1) Polimer Çözeltisi 2) Bitki Ekstrati ) Bitki Ekstrati ile Nano Gümüs' 3) 0.1 M'Iik GUmüs Nitrat Çözeltisi Sentezi ) Polimer Çözeltisi, Bitki Ekstrati Ve Nano Gümüs Karisim Çözeltisi 6)Karisim Çözeltisi Kaliplara Dqkiiliir 7) Kalip etüve koyulur Malzeme TR TR DESCRIPTION PRODUCTION OF BIOPOLYMER MATERIALS CONTAINING NANOPARTICLES AND PLANT EXTRACT PRODUCED BY GREEN SYNTHESIS FOR THE HEALTH FIELD Technical Field This invention covers the production of bio-nano polymer materials containing nanoparticles (silver) and plant extracts produced by green synthesis for the healthcare field. This invention involves the production of thin polymer materials as coating materials for metals used in dentistry, considering the production of green composites. In order for these materials to be named in the green composite class, the matrix material will be doped with plant extracts (hemp, St. John's wort, rosemary, black berry leaves). Thus, antimicrobial properties will be provided to green composites produced using plant extracts and green nanoparticles. Solvent casting method will be used for polymer materials as the invention method. Plant extracts have very important properties for health. Many plant extracts are rich in vitamins A, B 1, 32, B 3, Bö, C. E and folic acid (B9). They also contain calcium, iron, magnesium, manganese, phosphorus, potassium, sodium and zinc minerals. For example, hemp seeds; Thanks to this feature, which also contains a fatty acid called GLA (gamma linolenic acid), it helps to maintain hormone balance in the body. It is very rich in omega fatty acids, thus supporting brain health. It also protects cardiovascular health by helping to lower cholesterol. It is beneficial for hair and skin health. When consumed regularly, it helps hair and skin look brighter and more vibrant. It helps prevent various problems that may occur during the menstrual period. The gamma linolenic acid it contains supports hormone balance and prevents problems such as premenstrual syndrome and extremely painful menstruation due to hormonal problems. Thanks to the high amount of magnesium it contains, it is also very useful for sleep problems. It strengthens bones. Thanks to the vitamins and especially iron it contains, it helps prevent anemia and complaints such as fatigue, headache and weakness that may occur due to anemia. By using plants with the above-mentioned properties in bio-polymer nanocomposite materials, antimicrobial properties can be provided, preventing infections and improving intrabody osseintegration. Products with more natural content and lower toxicity will be obtained compared to the currently produced and used samples. State of the Art: When we look at the polymer coating materials of metallic parts used in the healthcare field, it is known that the nanoparticles used in their contents show toxic properties. In addition, it has been determined as a result of patent and literature research that the plant extracts used in the coatings do not contain the plant varieties included in this invention (hemp, St. John's wort, rosemary, black berry leaf) and nanoparticles produced by green synthesis. When the study with patent number EP2529763BI is examined, a part of the surface of medical devices is coated in the form of a patch by leaving gaps on the cover layer with an osteoinductive and/or osteoconductive cover layer based on calcium phosphate and/or calcium carbonate. Similarly, in the invention with patent number E P193732881, a silane derivative is covalently bonded to the metal surface, a lactone polymer is covalently bonded to the silane derivative by polymerization with in situ ring opening, and at least one layer of a poly(lactide-co-caprolactone) copolymer is deposited on the bound lactone. Coatings that can be activated by deposition have been realized. Similarly, in another patented invention (EP1492581B1), by covalently bonding a Siian derivative to the metal surface; Surface-activated coatings have been achieved by covalently bonding a lactone polymer to a silane derivative by in situ ring-opening polymerization and by precipitating at least a polyester layer onto the bound lactone. In the invention with patent number CN111471363A, the coating material was created using titanium dioxide, nano zinc oxide and camphor leaves, bark powder and ginkgo leaves extract. Hemp, St. John's wort, rosemary and black berry leaves are used in our invention. In the publication by A. Gudimalla et al., only silver nanoparticles were produced from plant extracts and were chemically doped into the polymer structure. In our invention, the production of a polymer nanocomposite thin film is in question. The plants used are different and the plants used are different. Our finding is different from the work done in this publication. Green synthesis is the general name of the method. The plant variety used in the synthesis affects the size and quality of the nanoparticles produced. Om; Hemp used in the invention enables the production of nanoparticles in smaller sizes and increases the strength of the composite. In addition, the plants used in the invention are different from those used in publications, which ensures that the produced composite has different properties than the metallic materials used on the teeth. Additionally, in the mentioned publication, polymer bonds and chemical bio-film production are discussed. The production of composite material in thin film form includes many different elements. The materials are examined in 5 classes. Metals, ceramics, polymers, composites and semiconductors. In terms of materials, polymers and composites represent different material groups. Our invention involves the production of polymer nanocomposite materials. In this invention, implants will be produced by coating green synthesized composite films containing nano silver and plant extract with spray methods. It appears to be related to the production of metal nanoparticles from their extracts. Our invention is related to the production of polymer nano composite coating material produced using green synthesis and plant extract. In our invention, the polymer-composite thin film will be coated on metal dental implants. Not only the antimicrobial effect but also the strength and weight/strength ratio of thin films are important. The material must be suitable for the jaw and implant structure and be resistant to stress caused by chewing. It is also expected to protect the metal implant against intraoral corrosion, abrasion and hardness forces. In the patent application number U59491947BI, nanoparticle and nanoparticle-polymer syntheses using only plant extracts are mentioned. Our invention includes the production of coating materials. Just producing nanocomposite materials is not enough for our invention. Turning a material into a thin film and especially coating it on metal requires different methods and techniques. In addition, functional properties that are not available in bulk materials can be obtained when we turn the material into a thin film. In our invention, the production of more durable, antimicrobial, anti-infection composites using hemp is mentioned. The produced composite material will be used in coating applications of intraoral metals, ensuring that the metal parts are more biocompatible and wear-resistant. In addition, the hemp, St. John's wort, rosemary and caraway leaf extracts contained in the coating have effects that increase the harmony with the gums in the mouth and reduce infection. The plant extracts used increase the quality of the nano metals produced. This causes the technical effects and properties of the produced coating material to be different. When we look at the compilation study by G. Ong et al., it can be seen that only literature studies on the use of plant extracts as additives in coating applications are mentioned. The difference in the plant ingredients used and the production of a material to be used for coating make our invention unique. As a result of these articles, a product was not always produced. Apart from these, the plant varieties and coating techniques used in the invention are not available in practice for coating dental implants and metal materials used in dentistry. Technical Problems That the Invention Aims to Solve: Metallic materials used in the healthcare field are coated to gain antibacterial properties and become more biocompatible. Infection or unsuccessful osseintegration occurring as a result of the excess toxic content in the production of metallic nanoparticles added to the coating material to give it antibacterial properties and the polymer materials used not exhibiting sufficient biocompatibility properties are the failures and deficiencies of existing products. Providing the antibacterial properties of metallic materials used in the healthcare field, increasing their resistance to abrasion and corrosion, and reducing infection and wound-like irritations can be achieved with the produced green bio-nano polymer materials. Coating material with low toxic properties will be produced with nanoparticles produced by green synthesis. In addition, more natural and antibacterial polymer materials will be produced by using plant extracts in the same way. On the other hand, in order to ensure compliance with the comprehensive changes envisaged by the European Green Deal and the integration provided within the scope of the Turkey-EU Customs Union in a way that will protect and further advance the green deal, the 2021 Action Plan includes 1) border carbon regulations, 2) a green and circular economy, 3 ) green financing, 4) clean, economical and safe energy supply, 5) sustainable agriculture, 6] sustainable smart transportation, 7) combating climate change, actions to be implemented in order to achieve the targets are included. In addition, according to the green agreement 2021 action plan, it is emphasized that the European Commission will encourage practices to provide all kinds of packaging and packaging from biodegradable and plant-based plastics by 2030 and will impose sanctions on single-use plastics. Exporters may also need to make changes in packaging and packaging issues. In line with this, plant-based polymer nano composites produced by green synthesis will be used in the field of packaging to obtain healthier, environmentally friendly and antibacterial products. Considering the methods and materials used, it will be possible to obtain green and sustainable products in line with the green agreement, climate change action plan, Paris climate agreement and Kyoto agreement. As a result of the production of natural metallic nanoparticles through green synthesis, the consumption of natural raw material resources will also be reduced. By using hemp as plant extract, the application areas of hemp will increase and hemp cultivation will develop. According to statistics, hemp, which is also a carbon negative plant, absorbs 22 tons of carbon dioxide from the atmosphere during the harvest period per hectare. With this feature, it will provide positive benefits to environmental situations such as carbon footprint and greenhouse gas emissions. This invention improves coatings of polymer-composite thin film metal dental implants. Not only the antimicrobial effect, but also the strength and weight/strength ratio of the thin films are important, and our invention is also different. The material must be suitable for the jaw and implant structure and be resistant to stress caused by chewing. It is also expected to protect metal implants against the effects of intraoral corrosion. The mechanical effects and health effects provided by the plants used in the invention are more successful and effective. By using hemp as a plant extract, vitamins A, B 1, 82, B 3, B6, C, E and folic acid (B9), calcium, iron, magnesium, manganese, phosphorus, potassium, sodium, which hemp and other plant extracts also contain. Coating material containing and zinc minerals can be produced. Also hemp seeds; Thanks to this feature, which also contains a fatty acid called GLA (gamma linolenic acid), it helps to maintain hormone balance in the body. It is very rich in omega fatty acids, thus supporting brain health. It also protects cardiovascular health by helping to lower cholesterol. The gamma linolenic acid it contains supports hormone balance and prevents problems such as premenstrual syndrome and extremely painful menstruation due to hormonal problems. Thanks to the high amount of magnesium it contains, it is also very useful for sleep problems. It strengthens bones. Thanks to the vitamins and especially iron it contains, it helps prevent anemia and complaints such as fatigue, headache and weakness that may occur due to anemia. Apart from these features of hemp, it enables the production of nanoparticles with green synthesis in smaller sizes. When Figure 1 is examined, it is seen that nano silver produced with hemp can be produced in smaller sizes. Apart from this, the shore hardness values of films produced with hemp are higher. In other words, a film with high hardness and abrasion resistance is produced. Table 1. Percentages showing shore hardness of films produced with hemp and other plant extracts Polymerfilms Shore hardness degrees of polymer films (%1 Hemp-St Johns 82.07 Rose. Cherry L 93.03 Ag-Hemp-St Johns 95.72 1" Ag-Rosem. Cherry L. 92,31 Explanation of figures Figure-1: Nano silver particles produced using hemp Figure-2: Production process of green polymer nano composite materials. Explanation of the Parts Shown with Reference Numbers in Figure-? 1) Polymer solution 2) Hemp seed, yellow. Obtaining St. John's wort, rosemary and black berry leaf extracts by boiling them in water. 3] Preparation of 0.1 M silver nitrate solution. 4) Obtaining nano silver from silver nitrate with plant extract (Green Synthesis). Combining the silver. 6) Pouring the resulting polymer solution mixture into molds for material production. 7) Keeping the solution poured into the molds in the oven. 8) Obtaining the polymer nano composite material. Description of the Invention The invention is related to the coating and production of parts used in the healthcare field with green-containing polymeric materials (8). The invention ensures that the infections and wounds that may be caused by parts such as metallic implants, clasps, wires and hooks in the body are minimized by adding plant extracts (2) into the coating material. In this invention, green synthesis (4) and silver nanoparticle production are used to produce polymeric materials for green nano composite polymer coating, packaging and medical parts. This invention includes the production of polymer solution (1), extraction of plant extracts from hemp seeds, St. John's wort, rosemary and black berry leaves (2), obtaining nano silver from 0.1 ml silver nitrate solution (3) with plant extracts (4), polymer solution, Forming the mixture solution by combining nano silver and plant extracts (5), pouring the mixture into molds to shape the material (6), placing the mold in the oven and drying it at 40°C for 24 hours (7), and finally drying the green polymer nano composite. The invention involves the production of biopolymer nano composite material containing plant extracts (hemp seeds, St. John's wort, rosemary and black berry leaves) and green synthesized nano silver. The solvent casting method is the method to be used to produce composite films. method is the general name used for the production of nano metal particles using plant extracts. Lower cost, higher strength films can be produced with films produced by the solvent casting method. Nano metals produced by the green synthesis method have more natural and cleaner content. Additionally, the type of plant used in the green synthesis method is very important. Depending on the type of plant, the size of the metal nanoparticle produced may be smaller, ensuring that the composite film produced is more durable and has higher properties. The two methods have different technical effects and both methods will be used to produce composite films. This invention is related to the production of polymer-composite thin films and coating them on metal dental implants. Not only the antimicrobial effect but also the strength and weight/strength ratio of thin films are important. The material must be suitable for the jaw and implant structure and be resistant to stress caused by chewing. It is also expected to protect the metal implant against the effects of intraoral corrosion. Implants can be produced by coating composite films containing green synthesized nano silver and plant extract with spray methods. The hemp, St. John's wort, rosemary and caraway leaf extracts contained in the coating have effects that increase the harmony with the gums in the mouth and reduce infection. The plant extracts used increase the quality of the nano metals produced. The use of natural materials is the most important element of the invention. Additionally, the produced polymer nanocomposite has not been applied as a coating to metals used in teeth before. How the Invention is Applied to Industry: The green polymer nano composite materials produced can be used in the coating of metallic parts (implants, clasps, hooks, stents, dental braces, etc.) used in the healthcare field. Apart from this, the green nanoparticles and plant extracts produced can be used in dental prosthesis acrylics and dental plates. The produced green nanoparticles and plant extracts can be used in polymeric parts used in the health field. Considering the existing companies and the R&D studies to be carried out according to the green agreement action plan, it will be inevitable for companies producing implants and dental materials to enter this market. As a result of patenting this invention, this can be prevented and P&D and R&D studies can be carried out with companies. In this way, the product range can be expanded, a domestic production can be made in Turkey, and taking into consideration the Samsun Medikum cluster, it can be taken part in the commercial market on a regional and global basis. HEMP, NAO SILVER PRODUCED WITH ST. Nano Silver with Extract 3) Synthesis of 0.1 M Silver Nitrate Solution) Polymer Solution, Plant Extract and Nano Silver Mixture Solution 6) Mixture Solution is Pour into Molds 7) Mold is placed in oven Material TR TR

Claims (1)

1.ISTEMLER Saglik alaninda kullanilmak üzere antibakteriyelg enfeksiyon önleyici, ossesintegrasyonu artirici, korozyona, asinmaya dayanikli ve düsük toksik özellikli biyopolimer nanomalzeme olup özelligi, yesil sentez yöntemi kullanilarak üretilmisnano gümüs ile kenevir tohumu, sari kantaron, biberiye ve karayemis yapragi özleri içermesidir. Istem l'e göre bir biyopolimer nanomalzeme olup özelligi disçilikte kullanilan metal malzemelerin kaplanmasinda kullanimi. TR TR1. CLAIMS It is a biopolymer nanomaterial with antibacterial, anti-infection, osseintegration enhancing, corrosion, abrasion resistant and low toxic properties for use in the health field, and its feature is that it contains nano silver produced using the green synthesis method and hemp seed, St. John's wort, rosemary and black berry leaf extracts. It is a biopolymer nanomaterial according to claim 1 and its feature is its use in coating metal materials used in dentistry. TR TR
TR2021/020092A 2021-12-15 2021-12-15 PRODUCTION OF BIOPOLYMER MATERIAL CONTAINING NANOPARTICLE AND HERB EXTENSION PRODUCED BY GREEN SYNTHESIS FOR HEALTH TR2021020092A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2021/020092A TR2021020092A2 (en) 2021-12-15 2021-12-15 PRODUCTION OF BIOPOLYMER MATERIAL CONTAINING NANOPARTICLE AND HERB EXTENSION PRODUCED BY GREEN SYNTHESIS FOR HEALTH
PCT/TR2022/051481 WO2023113751A1 (en) 2021-12-15 2022-12-12 Production of biopolymer material comprising green synthesized nanoparticles and herbal extract for healthcare field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2021/020092A TR2021020092A2 (en) 2021-12-15 2021-12-15 PRODUCTION OF BIOPOLYMER MATERIAL CONTAINING NANOPARTICLE AND HERB EXTENSION PRODUCED BY GREEN SYNTHESIS FOR HEALTH

Publications (1)

Publication Number Publication Date
TR2021020092A2 true TR2021020092A2 (en) 2022-01-21

Family

ID=85116642

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2021/020092A TR2021020092A2 (en) 2021-12-15 2021-12-15 PRODUCTION OF BIOPOLYMER MATERIAL CONTAINING NANOPARTICLE AND HERB EXTENSION PRODUCED BY GREEN SYNTHESIS FOR HEALTH

Country Status (2)

Country Link
TR (1) TR2021020092A2 (en)
WO (1) WO2023113751A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116921688B (en) * 2023-06-20 2024-03-26 渤海大学 Application of nano silver prepared based on peach leaf extract in preparation of drug for inhibiting Harmoninia bacteria

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2728987C (en) * 2008-05-16 2018-12-04 Verutek Technologies, Inc. Green synthesis of nanometals using plant extracts and use thereof
US9491947B1 (en) * 2015-09-28 2016-11-15 King Saud University Method of synthesizing nanoparticles and a nanoparticle-polymer composite using a plant extract

Also Published As

Publication number Publication date
WO2023113751A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
Ramírez-Rodríguez et al. Engineering biomimetic calcium phosphate nanoparticles: a green synthesis of slow-release multinutrient (NPK) nanofertilizers
Moradpoor et al. An overview of recent progress in dental applications of zinc oxide nanoparticles
Gao et al. Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes
Chen et al. Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries
Liu et al. Effect of polydopamine on the biomimetic mineralization of mussel-inspired calcium phosphate cement in vitro
Kumar et al. Flower-like hydroxyapatite nanostructure obtained from eggshell: A candidate for biomedical applications
Jiang et al. A comparative study on root canal repair materials: a cytocompatibility assessment in L929 and MG63 cells
Almeida et al. Synthesis of silver-containing calcium aluminate particles and their effects on a MTA-based endodontic sealer
Naguib et al. Antimicrobial properties of dental cements modified with zein-coated magnesium oxide nanoparticles
Nayak et al. Calcium fluoride-based dental nanocomposites
Neto et al. Surface functionalization of cuttlefish bone-derived biphasic calcium phosphate scaffolds with polymeric coatings
Xu et al. Mussel-inspired bioactive ceramics with improved bioactivity, cell proliferation, differentiation and bone-related gene expression of MC3T3 cells
Javidi et al. Cytotoxicity of a new nano zinc-oxide eugenol sealer on murine fibroblasts
TR2021020092A2 (en) PRODUCTION OF BIOPOLYMER MATERIAL CONTAINING NANOPARTICLE AND HERB EXTENSION PRODUCED BY GREEN SYNTHESIS FOR HEALTH
Zhang et al. A novel dental adhesive containing Ag/polydopamine-modified HA fillers with both antibacterial and mineralization properties
Pirmoradian et al. Remineralization and antibacterial capabilities of resin-based dental nanocomposites
Khurshid et al. Silver-substituted hydroxyapatite
AU2016226553C1 (en) Stabilized calcium phosphate and methods of forming same
Ponnusamy et al. Novel Strategy for Gallium-Substituted Hydroxyapatite/Pergularia daemia Fiber Extract/Poly (N-vinylcarbazole) Biocomposite Coating on Titanium for Biomedical Applications
CA2947930C (en) Antibacterial micro- and nanoparticles comprising a chlorhexidine salt, method of production and uses thereof
Senthil et al. Nano apatite growth on demineralized bone matrix capped with curcumin and silver nanoparticles: dental implant mechanical stability and optimal cell growth analysis
Kamali et al. Effects of chitosan and zirconia on setting time, mechanical strength, and bioactivity of calcium silicate‐based cement
Park et al. Antibacterial effect of silver and gold nanoparticle coated modified C-palatal plate
Heggendorn et al. Initial cytotoxicity assays of media for sulfate-reducing bacteria: An endodontic biopharmaceutical product under development
Koizhaiganova et al. New gelatin-hydroxyapatite nanocomposite films containing nano silver: Synthesis, and, mechanical and antimicrobial properties