SU905228A1 - Method for preparing thiourea - Google Patents

Method for preparing thiourea Download PDF

Info

Publication number
SU905228A1
SU905228A1 SU802892710A SU2892710A SU905228A1 SU 905228 A1 SU905228 A1 SU 905228A1 SU 802892710 A SU802892710 A SU 802892710A SU 2892710 A SU2892710 A SU 2892710A SU 905228 A1 SU905228 A1 SU 905228A1
Authority
SU
USSR - Soviet Union
Prior art keywords
bis
synthesis
derivatives
trimethylsilyl
carbonate
Prior art date
Application number
SU802892710A
Other languages
Russian (ru)
Inventor
Малхаз Михайлович Заалишвили
Рамаз Давидович Кацарава
Тамара Михайловна Картвелишвили
Original Assignee
Институт Физиологии Им. Акад.И.С. Бериташвили Ан Гсср
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт Физиологии Им. Акад.И.С. Бериташвили Ан Гсср filed Critical Институт Физиологии Им. Акад.И.С. Бериташвили Ан Гсср
Priority to SU802892710A priority Critical patent/SU905228A1/en
Application granted granted Critical
Publication of SU905228A1 publication Critical patent/SU905228A1/en

Links

Landscapes

  • Polyamides (AREA)

Description

(54) СПОСОБ ПОЛУЧЕНИЯ ПОЛИМОЧЕВИНЫ(54) METHOD FOR OBTAINING POLYMOCHEVINA

II

Изобретение относитс  к синтезу высокомолекул рных соединений, а именно к синтезу полимочевины на основе природных диаминокарбоновых кислот, которые могут быть использованы в различных област х медицины в качестве биосовместимых полимеров .The invention relates to the synthesis of high molecular weight compounds, namely the synthesis of polyurea based on natural diaminocarboxylic acids, which can be used in various fields of medicine as biocompatible polymers.

Известен способ получени  полимочевины путем взаимодействи  диизоцианата с. диаминами в среде диметилформамида t A known method for producing polyurea by reacting a diisocyanate with. diamines in dimethylformamide t

Однако неплавкость и значительна  гидрофильность этих продуктов не позвол ет примен ть получаемые полимочевины дл  производства пластических масс и волокон.However, the low melting point and the significant hydrophilicity of these products prevent the use of the resulting polyureas for the production of plastics and fibers.

Наиболее близкий к предлагаемому по технической сущности  вл етс  способ получени  полимочевин путем взаимодействи  N,N -бистриметилсилильных производных ткиров природных диаминокарбоновых кислот с карбонильными производными орранических соединений в среде апротонного растворител  2.The closest to the proposed technical essence is the method of producing polyureas by reacting N, N -brystrimethylsilyl derivatives of natural diaminocarboxylic acid tkirov with carbonyl derivatives of organic compounds in an aprotic solvent medium 2.

Недостатками известного способа синтеза полимочевины  вл ютс ; необходимость применени  дл  их синтеза диизоцианатов на основе эфиров диаминокарбоновых кислот, которые получают в результате трудоемкого и нетехнологического процесса синтеза, заключающегос  в применении абсолютных, легковоспламен ю1Е1Ихс  растворителей (например серного эфира), охла дени  реакционной среды при фосгенировании N,N -бистриметилснлильных производных зфиров ot-диаминокарбоновых кислот , необходимость многократной высоковакуумной перегонки диизоцианатов с целью доведени  их до необходимой кондиции; применение абсолютного спирта (метилового или этилового ) дл  деблокировани  силилированных аминогрупп; необходимость синтеза большого числа диизоцианатоБ ДЛЯ получени  полиночевин различной структурьц например, дл  синтеза полимочевин на основе И.ЛИ ДЬ изомеров природной диамино«арбоновой кислоты, необходим синтез ка вдого диизоцианата в отдельности . Цель изобретени  - получение по лимочевинь с широким диапазоном свойств при одновременном упрощеНИИ спс:-соба, Указанна  цель достигаетс  т; . |лто при получении полимочевины ну тем взаимодействи  N,N-бистриметшг силильных производных эфиров природных диаминокарбоновых кислот с карбонильными производными органиче ких соединений в среде апротонного ;-:г. ../БОрител  в качестве карбонильных производных органических соединений используют бис-(п-нитрофенил )карбонат или бис-(254-динитpoфeнил .)кapбoнaт и реакцию провод т при 20--25С ч и при 80-JOO C . -3 ч ., последующим выделением поли мера-. Иод термином активированный ка |бонат подразумеваетс  карбонат стро ОуН-(о) (j-2. 4o))-NO2 - blOi NOi Лслученные таким образом полимоченины имеют Ц 0,3-0,9 дл/г, а по остальным параметрам (ИК-спектрЫ растворимость, температура плавлени идентичны полимерам5 полученным по известному способу из соо.тветствующих диизодианатов, Пример I. В трехгорлой кол бе снабженной мешалкой, вводом и выводом дл  аргона, 3,28 г (0,01 мо этилового эфира N,N-бис-триметилсш1Ил- (1)-TMCL-лизина раствор ют в 0 мл M,N диметилацетамида (ДМАА) при добавл ют 3,94 г (0,01 мол бис 254-динитрофенилкарбоната (ДНФК наблюдаетс  сильный экзотермический эффект) и включают мешалку. Через ЗГ - 40 мин раствор быстро загустеваiг и образуетс  студнеобразна  масс лл обеспечени  гомогенного течени  реакции смесь нагревают до 90 с и пйремешивают 3 ч, все врем  продува ; опг.v аргоном. Образуетс  в зкий раствору который в гор чем виде вь ливают в воду. Выпавший в виде порошка полимер отфильтровывают. тщатапьно промывают водой; сушат ii экстрагируют в аппарате Сокслепа ацетоне;-), Вы-ход 96% Ifip 0,95 дл/г в диметилсу ьфоксиде , г/дл -fc 25с. Пример 2.В трехгорлой колDEj снабженной мешалкой, вводом и вывoдo s дл  аргона, 3, 18 г (0,0 моль) этилового эфира N,N -бис-триметштсшшл-L-лизина раствор ют в Ю мл диметиладетамида, при 25°С добавл ют 3„04 г (OjO мо.чь) бис.: li-нитрофенилкарбоната (наЬлюд&атс  экзотер мический эффект) включают мешалку и перемешивают 2 ч,. В зкость раствора при комнатной температуре за этот период времени возрастает незначительно , поэтому включают обогрев и реакционную смесь выдерживают при 6 ч, все врем  продува  колбу аргоном. Раствор охлаждают до комнатной температуры (образование гелеобразной массы не наблюдалось) и выливают в воду. Полимер (в комплек се с И-нитрофенолом) выпадает в виде жидкой смолы, котора  затвердевае по мере отьывки Ь-нитрофг :ла водой Тщательно промьЕтый поли,,. . сушат в вакууме и экстрагируют в аппарате Сокслетта ацетоном Выход полимера 97%, Inp - ДЛ/г в диметилсульфо..е5С 0 „ 5 г/дл, , Пример Зо Синтез полимера осуществл ют в соответствии с методикой , приведенной в примере j с той разницей, что вместо -диметилацетй ,; :ипа и:;:пользутот N-MeTmiлирролидон (N-Mn) о Выход полимера 95%, дл/г в диметилсульфоксиде . Пример 4 Синтез полимера осуществл ют в соответствии с мето дикой приведенной в примере 1, с той разницей, что вместо этилового эфира N,К-бис триметилсилил-1-лизина берут этиловый эфир N,N-бис-триметилсилш1-01-лизина (ДЬ) TMCL. Выход полимера 97% ,76 дл/г в диметилсульфоксиде, ,5 г/дл, t -Пример 5, Синтез полимера осу1цествл5пот в соответствии с примером f с том разницей, что вместо этилового эфира N,N -бис-триметкп силил-1-личина используют этиловый эфир N,М-бис-триметш1силил-1-орнит Выходполимера 90% ,)р 0, 32 дл/г в диметилсульфоксиде, ,5 г/дл, С, Пример 6, Синтез полимера осуществл ют в соответствии с мето дикой, приведенной в примере 1 , с той разницей, что вместо этилового эфира N,N -бис-триметилсилил-L-лиз на используют диэтиловый эфир N,N -бис-триметилсилил-L-цистина. Вы- ход полимера 96%, 0,85 дл/г в диметилсульфоксиде, ,5 г/дл, . Пример 7.В трехгорлую ко бу снабженную мешалкой, вводом и выводом дл  аргона помещают 1,59 г (0,005 моль) этилового эфира N,N-бис-метил-С-лизина раствор ют в 10 мл N,N -диметилацетамида, добав л ют 3,94 г (0,01 моль) бис-2,4-динитрофенилкарбоната , включают мешалку и смесь перемешивают при комнатной температуре 2 ч. К реакционному раствору затем добавл ют 2,20 г (0,005 моль) диэтилового эфи ра N,N -бис-триметилсилил-L-цистин ( соотношение производных двух диаминокарбоновых кислот 1:1)включают обогрев и смесь нагревают до 90 С 3 ч. Реакционный раствор выливают в воду. Выпавший полимер отфильтровывают , тщательно промьшают ЕГрдой, сушат и экстрагируют этилаце татом в аппарате Сокслетта. Выход полимера 97%) 0,68 дл/г в диметилсульфоксиде , ,5 г/дл, Пример 8. Синтез полимера осуществл ют в соответствии с методикой , приведенной в примере 7, с той разницей, что вначале вместо этилового эфира N,N -бис-триметилси лил-1-лизина используют диэтиловый эфир N, N -бис-триметилсшпш-Ь-цистина , а затем к регисционному раствору добавл ют этиловый эфир N,N (L) ТМСЛ (ОThe disadvantages of the known polyurea synthesis method are; the need to use for their synthesis diisocyanates based on diaminocarboxylic acid esters, which are obtained as a result of a laborious and nontechnological synthesis process, consisting in the use of absolute, highly flammable J1E1Xx solvents (e.g. - diaminocarboxylic acids, the need for multiple high-vacuum distillation of diisocyanates in order to bring them to the required condition; using absolute alcohol (methyl or ethyl) to release silylated amino groups; the need to synthesize a large number of diisocyanatoB for the preparation of polinocevins of various structures, for example, for the synthesis of polyureas based on I.LI D isomers of the natural diamino arbonic acid, it is necessary to synthesize separately for diisocyanate. The purpose of the invention is to obtain limochevins with a wide range of properties with simultaneous simplification of the THRD: -sob. The specified goal is achieved t; . In the preparation of polyurea, the interaction of N, N-bistrymethyl silyl derivatives of natural diaminocarboxylic acid esters with carbonyl derivatives of organic compounds in an aprotic medium; -: g. ../Britel as a carbonyl derivative of organic compounds, bis- (p-nitrophenyl) carbonate or bis- (254-dinitrophenyl.) Can be used and the reaction is carried out at 20-25 ° C and at 80-JOO C. -3 hours, followed by isolation of the polymer-. Iodine by the term activated carbon is meant to carbonate OUH- (o) (j-2. 4o)) —NO2 — blOi NOi. The polychlocenes thus obtained have C 0.3–0.9 dl / g, and for the rest of the parameters (IR -spectra solubility, melting point is identical to polymers 5 obtained by a known method from the corresponding diisodianates, Example I. In a three-necked collar equipped with a stirrer, inlet and outlet for argon, 3.28 g (0.01 mo N, N-bis ethyl ester -trimethylsl1Il- (1) -TMCL-lysine was dissolved in 0 ml of M, N dimethylacetamide (DMAA) and 3.94 g (0.01 mol of bis 254-dinitrophenylcarbo Ata (DNFK has a strong exothermic effect) and turn on the stirrer. After ZG - 40 minutes, the solution quickly thickens and a jelly-like mass is formed to ensure a homogeneous flow of the reaction, the mixture is heated up to 90 seconds and re-stirred for 3 hours, purging all the way; argon. a viscous solution that is poured in hot form into water. The polymer which is precipitated in the form of a powder is filtered off and washed thoroughly with water; dried ii extracted in a Coxlep acetone apparatus ;-), You yield 96% Ifip 0.95 dl / g in dimethyl oxide, g / dl -fc 25c. Example 2. In a three-necked column, equipped with a stirrer, inlet and outlet s for argon, 3, 18 g (0.0 mol) of N, N-bis-trimethacryl-L-lysine ethyl ester is dissolved in 10 ml of dimethylethamide, at 25 ° C add 3 „04 g (OjO monk) bis .: li-nitrophenyl carbonate (human diet & exothermic effect) turn on the stirrer and stir for 2 hours. The viscosity of the solution at room temperature for this period of time increases slightly, therefore, include heating and the reaction mixture is maintained at 6 h, all the time blowing the flask with argon. The solution is cooled to room temperature (the formation of a gel-like mass was not observed) and poured into water. The polymer (in combination with I-NITROPHENOL) drops out in the form of a liquid resin, which solidifies as L-nitrofg removes: la Water thoroughly poly. . dried in vacuum and extracted in Soxhlett’s apparatus with acetone. Polymer yield 97%, Inp — DL / g in dimethyl sulfo. e 5 C 0 5 g / dl., Example 3 Synthesis of the polymer is carried out in accordance with the procedure given in example j with the difference that instead of dimethyl acetate,; : ipa i:;: user N-MeTmylirrolidone (N-Mn) o Polymer yield 95%, dl / g in dimethyl sulfoxide. Example 4 Synthesis of the polymer is carried out in accordance with the procedure given in Example 1, with the difference that instead of N, K-bis trimethylsilyl-1-lysine ethyl ester, N, N-bis-trimethylsil-1-01-lysine ethyl ester is taken (Db ) TMCL. The polymer yield is 97%, 76 dl / g in dimethyl sulfoxide, 5 g / dl, t-Example 5, Synthesis of a polymer is of an essence 5 sweat in accordance with example f with the difference that instead of ethyl ester N, N-bis-trimethc silyl-1- The substance used is N, M-bis-trimethyl-silyl-1-ornitol 90% yield of ethyl ester,) p 0, 32 dl / g in dimethyl sulfoxide, 5 g / dl, C, Example 6, Synthesis of the polymer is carried out in accordance with the method shown in example 1, with the difference that instead of ethyl ester N, N-bis-trimethylsilyl-L-lys on the use of diethyl ester N, N-bis-trimethylsilyl-L-cystine. Polymer yield 96%, 0.85 dl / g in dimethyl sulfoxide, 5 g / dl,. Example 7. In a three-necked co with a stirrer, inlet and outlet for argon, 1.59 g (0.005 mol) of N, N-bis-methyl-C-lysine ethyl ester is dissolved in 10 ml of N, N-dimethyl acetamide, added 3.94 g (0.01 mol) of bis-2,4-dinitrophenyl carbonate are added, the stirrer is turned on and the mixture is stirred at room temperature for 2 hours. To the reaction solution is then added 2.20 g (0.005 mol) of diethyl ether N, N -bis-trimethylsilyl-L-cystine (the ratio of two diaminocarboxylic acid derivatives is 1: 1) include heating and the mixture is heated to 90 ° C for 3 hours. The reaction solution is poured into water. The precipitated polymer is filtered off, rinsed thoroughly with an Egrda, dried and extracted with ethyl acetate in a Soxhlett apparatus. The polymer yield is 97%) 0.68 dl / g in dimethyl sulfoxide, 5 g / dl, Example 8. The synthesis of the polymer is carried out in accordance with the procedure described in example 7, with the difference that instead of ethyl N, N - Bis-trimethylsilyl-1-lysine is used with N, N-bis-trimethyl-spm-L-cystine diethyl ether, and then N, N (L) TMSL (O) is added to the registration solution.

ДНФКDNFK

(L) ТМСЛ (О(L) TML (O

ПНФКPFC

ДММА 25/0,5 96 0,95 90/3DMMA 25 / 0.5 96 0.95 90/3

97 0,497 0.4

ДМАА- 25/2 100/6 -бис-триметилсш1ил-1-лизина. Выход полимера 98%, 0,71 дл/л в диметилсульфоксиде , ,5 г/дл, t 25C. Пример 9. Синтез полимера осуществл ют в соответствии с методикой , приведенной в примере 7, с той разницей, что вместо 0,005 берут 0,002 моль этилового эфира N,N -бис-триметилсилил-1-лизина , а вместо 0,005 моль берут 0,008 моль диэтилового эфира N,N -бис-триметилсилил-1-цистина . Выход полимера 96% ,70 дл/г в диметилсульфоксиде, ,5 г/дл, . Пример 10. Синтез полимера осуществл ют в соответствии с методикой, приведенной в примере 7, с той разницей, что берут 0,008 моль этилового эфира N,N -бис-тримет1тсилил-1-лизина и 0,002 моль диэтилового эфира-L-цистина. Выход 97%,lfip 0,68 дл/г в диметилсульфоксиде , ,5 г/дл, . Пример П. Синтез полимера осуществл ют в соответствии с методикой, приведенной в примере 7, с той разницей, что вместо этилового эфира N,N -бис-триметилсилил-L-лизина берут этиловый эфир N,N-бис-триметилсилил-Д1-лизина . Выход полимера 95%,К)рр 0,52 дл/г в диметилсульфоксиде, ,5 г/дл, . Пример 12. Синтез полимера осуществл ют в соответствии с методикой , приведенной в примере 7,, с той разницей, что вместо этилового эфира N,N -бис-триметилсилил-L-лизина берут этиловый эфир N,N-биc-тpимeтилcилил-L-opнитинa . Выход полимера 89%, 0,28 дл/г в иметилсульфоксиде, ,5 г/дл, t 25C. Основные характеристики полуенных полимеров приведены в табли- е.DMAA-25/2 100/6 -bis-trimethylsil-1-lysine. The polymer yield is 98%, 0.71 dl / l in dimethyl sulfoxide, 5 g / dl, t 25C. Example 9. Synthesis of the polymer was carried out in accordance with the procedure described in Example 7, with the difference that 0.002 mol of N, N-bis-trimethylsilyl-1-lysine ethyl ester was taken instead of 0.005, and 0.008 mol of diethyl ether was taken instead of 0.005 mol N, N -bis-trimethylsilyl-1-cystine. The polymer yield 96%, 70 DL / g in dimethyl sulfoxide, 5 g / dL,. Example 10. Synthesis of the polymer was carried out in accordance with the procedure described in Example 7, with the difference that 0.008 mol of N, N-bis-trimethyl-1-silyl-1-lysine ethyl ester and 0.002 mol of L-cystine diethyl ether were taken. Yield 97%, lfip 0.68 dl / g in dimethyl sulfoxide, 5 g / dl,. Example P. Synthesis of the polymer is carried out in accordance with the procedure described in example 7, with the difference that instead of ethyl ester of N, N-bis-trimethylsilyl-L-lysine, take ethyl ester of N, N-bis-trimethylsilyl-D1-lysine . The polymer yield is 95%, K) pp 0.52 dl / g in dimethyl sulfoxide, 5 g / dl,. Example 12. Synthesis of the polymer is carried out in accordance with the procedure given in Example 7, with the difference that instead of N, N-bis-trimethylsilyl-L-lysine ethyl ester, N, N-bis-trimethylsilyl-L- ethyl ester is taken opnitine. The polymer yield is 89%, 0.28 dl / g in imethyl sulfoxide, 5 g / dl, t 25C. The main characteristics of semi-polymers are given in table.

(L) -шел (1)(L) -shap (1)

ДНФКDNFK

(Д1) шел (1)(D1) walking (1)

ДНФКDNFK

(L) тасо (1)(L) taso (1)

ДИФКDIFK

(L) ТМСЦ (1)(L) TMSC (1)

ДНФКDNFK

{L) ТМСЛ (0,5) {L) TML (0.5)

( L) ТМСЦ (0,5) (L) TMSC (0.5)

ДНФК(L) ТМСЦ (0,5)DNFK (L) TMSC (0.5)

++

(L) ТМСЛ (0,5)(L) TML (0.5)

Примечание: ТМСО - этиловый эфир N,N -бис-триметилсилил-орнитина; ТМСЛ - этиловый эфир N,N-биc-тpимeтилcилиллизинa; ТМСЦ - диэтиловый эфир N,N -бис-триметилсилилцистина; ДНФК-бис-2,4-динитрофенилкар6онат, ПНФК-бис п-нитрофенилкарбонат; ДМАА - N,N -диметилацетамид; N-MII-N-метилпирролидон. В зкость определена в диметилсульфоксиде при , ,5 г/дл.Note: TMSO is N, N-bis-trimethylsilyl-ornithine ethyl ester; TMHL is ethyl ester of N, N-bis-trimethylsilyl lysine; TMSC - N, N-bis-trimethylsilylcystine diethyl ether; DNFC-bis-2,4-dinitrophenylcaronate, PNFC-bis p-nitrophenylcarbonate; DMAA - N, N-dimethylacetamide; N-MII-N-methylpyrrolidone. Viscosity is determined in dimethyl sulfoxide at, 5 g / dL.

Применение предлагаемого способа получени  полимочевины на основе природных днаминокарбоновых кислот обеспечивает по сравнению с известными способами, следующие преимущества: легкость получени  нысокомолекул рных гголимочевин на основе при905228The use of the proposed method for the preparation of polyurea based on natural dinocarboxylic acids provides the following advantages compared with the known methods: ease of preparation of high molecular weight glymethyl urea based on 905228

8 Продолжение таблицы8 Continuation of the table

N-МП 25/0,5 95 0,95 90/3NMP 25 / 0.5 95 0.95 90/3

ДМАА 25/0,5 97 0,76 90/3DMAA 25 / 0.5 97 0.76 90/3

ДМАА25/0,5 900,32DMAA25 / 0.5 900.32

90/390/3

ДМАА 25/0,5 96 0,85 90/3DMAA 25 / 0.5 96 0.85 90/3

Д11АА 25/2 D11AA 25/2

970,68 90/3970.68 90/3

25/225/2

9898

0,710.71

ДМААDMAA

Claims (2)

родных диаминокарбоновых кислот с использованием только их триметилсилильных производных и одного активированного карбоната, например бис-2,4-динитрофенилкарбоната, не прибега  к труднодоступным диизоци анатам отсутствие необходимости сн 9 тн  трнметилсилилышх защитных груТТ пировок с аминогрупп,- широкие возмо ности синтеза сополимочевин различного состава на основе двух или более диаминокарбоновых кислот (в том числе или DL), использу  дл  этой цели лишь N,N-бис-триметилсилильны производные их эфиров и один активировашсый карбонат, например бис-2 ,4-динитрофенилкарбонат; простота в обращении и легкость очистки активированных карбонатов,  вл кидихс  кристаллическими соединени ми . Формула изобретени  Способ получени  полимочевины путем взаимодействи  N,N-биc-тpимeтилсилильных производных эфиров природных диаминокарбоновых кислот с карбонильными производными органических соединений в среде апротон28 ного растворител , отличающийс  тем, что, с целью получени  полимочевины с широким диапазоном свойств при одновременном упрощении способа, в качестве карбонильных производных органических соединений используют бис-(п-нитрофенип )карбонат или бис-(2,4-динитрофенил )карбонат и реакцию провод т при 20-25С 0,5-2 ч и при 80-100°С с последующим выделением поли Источники информации, прин тые во внимание при экспертизе 1.Саундерс Дж.Х., Фриш К.К. Хими  полиуретанов. М., Хими , 1968, с. 13-14. Native diaminocarboxylic acids using only their trimethylsilyl derivatives and one activated carbonate, for example bis-2,4-dinitrophenylcarbonate, did not use hard-to-reach diiso-anats, no need to remove 9 tons of trin-methyls of protective protective groups from amino groups, there is a wide possibility of synthesis. the basis of two or more diaminocarboxylic acids (including or DL), using for this purpose only N, N-bis-trimethylsilyl derivatives of their esters and one activated carbon , For example bis-2, 4-dinitrofenilkarbonat; ease of handling and ease of purification of activated carbonates are reduced with crystalline compounds. The invention method for producing polyurea by reacting N, N-bic-trimethylsilyl derivatives of esters of natural diaminocarboxylic acids with carbonyl derivatives of organic compounds in an aprotic solvent medium, in order to obtain a polyurea with a wide range of properties while simplifying the process carbonyl derivatives of organic compounds use bis- (p-nitrophenip) carbonate or bis- (2,4-dinitrophenyl) carbonate and the reaction is carried out at 20-25 ° C for 0.5-2 hours and at 80-10 0 ° C followed by the release of poly. Sources of information taken into account in the examination 1. Saunders J.H., Frish K.K. Polyurethane Chemistry. M., Himi, 1968, p. 13-14. 2.Сенцова Т.И., Бутаева В.И„ Давидович Ю.А., Рогожин С.В., Коршак В.В. Синтез синтетических активных полимочевин на основе природных диаминокарбоновых кислот. Доклад АН СССР 232, 225, 1977 (прототип ) .2.Sentsova T.I., Butaeva V.I. “Davidovich Yu.A., Rogozhin S.V., Korshak V.V. Synthesis of synthetic active polyureas on the basis of natural diaminocarboxylic acids. Report of the Academy of Sciences of the USSR 232, 225, 1977 (prototype).
SU802892710A 1980-03-06 1980-03-06 Method for preparing thiourea SU905228A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU802892710A SU905228A1 (en) 1980-03-06 1980-03-06 Method for preparing thiourea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU802892710A SU905228A1 (en) 1980-03-06 1980-03-06 Method for preparing thiourea

Publications (1)

Publication Number Publication Date
SU905228A1 true SU905228A1 (en) 1982-02-15

Family

ID=20882107

Family Applications (1)

Application Number Title Priority Date Filing Date
SU802892710A SU905228A1 (en) 1980-03-06 1980-03-06 Method for preparing thiourea

Country Status (1)

Country Link
SU (1) SU905228A1 (en)

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503538B1 (en) 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US7304122B2 (en) 2001-08-30 2007-12-04 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US7648725B2 (en) 2002-12-12 2010-01-19 Advanced Cardiovascular Systems, Inc. Clamp mandrel fixture and a method of using the same to minimize coating defects
US7682669B1 (en) 2001-07-30 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
US7691401B2 (en) 2000-09-28 2010-04-06 Advanced Cardiovascular Systems, Inc. Poly(butylmethacrylate) and rapamycin coated stent
US7699889B2 (en) 2004-12-27 2010-04-20 Advanced Cardiovascular Systems, Inc. Poly(ester amide) block copolymers
US7713637B2 (en) 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US7735449B1 (en) 2005-07-28 2010-06-15 Advanced Cardiovascular Systems, Inc. Stent fixture having rounded support structures and method for use thereof
US7749263B2 (en) 2004-10-29 2010-07-06 Abbott Cardiovascular Systems Inc. Poly(ester amide) filler blends for modulation of coating properties
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7766884B2 (en) 2004-08-31 2010-08-03 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
US7772359B2 (en) 2003-12-19 2010-08-10 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US7775178B2 (en) 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US7785512B1 (en) 2003-07-31 2010-08-31 Advanced Cardiovascular Systems, Inc. Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US7785647B2 (en) 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
US7794743B2 (en) 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US7795467B1 (en) 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US7803394B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide hydrogel coatings for cardiovascular therapy
US7803406B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US7807211B2 (en) 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US7807210B1 (en) 2000-10-31 2010-10-05 Advanced Cardiovascular Systems, Inc. Hemocompatible polymers on hydrophobic porous polymers
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US7823533B2 (en) 2005-06-30 2010-11-02 Advanced Cardiovascular Systems, Inc. Stent fixture and method for reducing coating defects
US7892592B1 (en) 2004-11-30 2011-02-22 Advanced Cardiovascular Systems, Inc. Coating abluminal surfaces of stents and other implantable medical devices
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US7985440B2 (en) 2001-06-27 2011-07-26 Advanced Cardiovascular Systems, Inc. Method of using a mandrel to coat a stent
US8007775B2 (en) 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US8017140B2 (en) 2004-06-29 2011-09-13 Advanced Cardiovascular System, Inc. Drug-delivery stent formulations for restenosis and vulnerable plaque
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US8029816B2 (en) 2006-06-09 2011-10-04 Abbott Cardiovascular Systems Inc. Medical device coated with a coating containing elastin pentapeptide VGVPG
US8052912B2 (en) 2003-12-01 2011-11-08 Advanced Cardiovascular Systems, Inc. Temperature controlled crimping
US8062350B2 (en) 2006-06-14 2011-11-22 Abbott Cardiovascular Systems Inc. RGD peptide attached to bioabsorbable stents
US8067025B2 (en) 2006-02-17 2011-11-29 Advanced Cardiovascular Systems, Inc. Nitric oxide generating medical devices
US8067023B2 (en) 2002-06-21 2011-11-29 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating plasma polymerized film layers and charged amino acids
US8069814B2 (en) 2006-05-04 2011-12-06 Advanced Cardiovascular Systems, Inc. Stent support devices
US8109904B1 (en) 2007-06-25 2012-02-07 Abbott Cardiovascular Systems Inc. Drug delivery medical devices
US8110211B2 (en) 2004-09-22 2012-02-07 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices including polyacrylates
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
US8173199B2 (en) 2002-03-27 2012-05-08 Advanced Cardiovascular Systems, Inc. 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US8192752B2 (en) 2003-11-21 2012-06-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US8304012B2 (en) 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
US8303651B1 (en) 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US8568764B2 (en) 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US8586069B2 (en) 2002-12-16 2013-11-19 Abbott Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US8597673B2 (en) 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US8609123B2 (en) 2004-11-29 2013-12-17 Advanced Cardiovascular Systems, Inc. Derivatized poly(ester amide) as a biobeneficial coating
US8647655B2 (en) 2002-12-11 2014-02-11 Abbott Cardiovascular Systems Inc. Biocompatible polyacrylate compositions for medical applications
US8652504B2 (en) 2005-09-22 2014-02-18 Medivas, Llc Solid polymer delivery compositions and methods for use thereof
US8673334B2 (en) 2003-05-08 2014-03-18 Abbott Cardiovascular Systems Inc. Stent coatings comprising hydrophilic additives
US8685431B2 (en) 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US8778014B1 (en) 2004-03-31 2014-07-15 Advanced Cardiovascular Systems, Inc. Coatings for preventing balloon damage to polymer coated stents
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
US9102830B2 (en) 2005-09-22 2015-08-11 Medivas, Llc Bis-(α-amino)-diol-diester-containing poly (ester amide) and poly (ester urethane) compositions and methods of use
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US9339592B2 (en) 2004-12-22 2016-05-17 Abbott Cardiovascular Systems Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US9364498B2 (en) 2004-06-18 2016-06-14 Abbott Cardiovascular Systems Inc. Heparin prodrugs and drug delivery stents formed therefrom
US9517203B2 (en) 2000-08-30 2016-12-13 Mediv As, Llc Polymer particle delivery compositions and methods of use
US9561309B2 (en) 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US9561351B2 (en) 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
US9580558B2 (en) 2004-07-30 2017-02-28 Abbott Cardiovascular Systems Inc. Polymers containing siloxane monomers
US10076591B2 (en) 2010-03-31 2018-09-18 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807211B2 (en) 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US6503538B1 (en) 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US7408018B2 (en) 2000-08-30 2008-08-05 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US9517203B2 (en) 2000-08-30 2016-12-13 Mediv As, Llc Polymer particle delivery compositions and methods of use
US7691401B2 (en) 2000-09-28 2010-04-06 Advanced Cardiovascular Systems, Inc. Poly(butylmethacrylate) and rapamycin coated stent
US7807210B1 (en) 2000-10-31 2010-10-05 Advanced Cardiovascular Systems, Inc. Hemocompatible polymers on hydrophobic porous polymers
US10064982B2 (en) 2001-06-27 2018-09-04 Abbott Cardiovascular Systems Inc. PDLLA stent coating
US7985440B2 (en) 2001-06-27 2011-07-26 Advanced Cardiovascular Systems, Inc. Method of using a mandrel to coat a stent
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US7682669B1 (en) 2001-07-30 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
US7304122B2 (en) 2001-08-30 2007-12-04 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US8303651B1 (en) 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US8173199B2 (en) 2002-03-27 2012-05-08 Advanced Cardiovascular Systems, Inc. 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US8961588B2 (en) 2002-03-27 2015-02-24 Advanced Cardiovascular Systems, Inc. Method of coating a stent with a release polymer for 40-O-(2-hydroxy)ethyl-rapamycin
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US7901703B2 (en) 2002-06-21 2011-03-08 Advanced Cardiovascular Systems, Inc. Polycationic peptides for cardiovascular therapy
US8067023B2 (en) 2002-06-21 2011-11-29 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating plasma polymerized film layers and charged amino acids
US7875286B2 (en) 2002-06-21 2011-01-25 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US7803406B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US7794743B2 (en) 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US9084671B2 (en) 2002-06-21 2015-07-21 Advanced Cardiovascular Systems, Inc. Methods of forming a micronized peptide coated stent
US7803394B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide hydrogel coatings for cardiovascular therapy
US8647655B2 (en) 2002-12-11 2014-02-11 Abbott Cardiovascular Systems Inc. Biocompatible polyacrylate compositions for medical applications
US8871883B2 (en) 2002-12-11 2014-10-28 Abbott Cardiovascular Systems Inc. Biocompatible coating for implantable medical devices
US8871236B2 (en) 2002-12-11 2014-10-28 Abbott Cardiovascular Systems Inc. Biocompatible polyacrylate compositions for medical applications
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US8986726B2 (en) 2002-12-11 2015-03-24 Abbott Cardiovascular Systems Inc. Biocompatible polyacrylate compositions for medical applications
US7648725B2 (en) 2002-12-12 2010-01-19 Advanced Cardiovascular Systems, Inc. Clamp mandrel fixture and a method of using the same to minimize coating defects
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8586069B2 (en) 2002-12-16 2013-11-19 Abbott Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US8673334B2 (en) 2003-05-08 2014-03-18 Abbott Cardiovascular Systems Inc. Stent coatings comprising hydrophilic additives
US9175162B2 (en) 2003-05-08 2015-11-03 Advanced Cardiovascular Systems, Inc. Methods for forming stent coatings comprising hydrophilic additives
US7785512B1 (en) 2003-07-31 2010-08-31 Advanced Cardiovascular Systems, Inc. Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US8192752B2 (en) 2003-11-21 2012-06-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US8052912B2 (en) 2003-12-01 2011-11-08 Advanced Cardiovascular Systems, Inc. Temperature controlled crimping
USRE45744E1 (en) 2003-12-01 2015-10-13 Abbott Cardiovascular Systems Inc. Temperature controlled crimping
US7786249B2 (en) 2003-12-19 2010-08-31 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US7772359B2 (en) 2003-12-19 2010-08-10 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US8685431B2 (en) 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US8778014B1 (en) 2004-03-31 2014-07-15 Advanced Cardiovascular Systems, Inc. Coatings for preventing balloon damage to polymer coated stents
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US9101697B2 (en) 2004-04-30 2015-08-11 Abbott Cardiovascular Systems Inc. Hyaluronic acid based copolymers
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US9561309B2 (en) 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US9364498B2 (en) 2004-06-18 2016-06-14 Abbott Cardiovascular Systems Inc. Heparin prodrugs and drug delivery stents formed therefrom
US9375445B2 (en) 2004-06-18 2016-06-28 Abbott Cardiovascular Systems Inc. Heparin prodrugs and drug delivery stents formed therefrom
US8017140B2 (en) 2004-06-29 2011-09-13 Advanced Cardiovascular System, Inc. Drug-delivery stent formulations for restenosis and vulnerable plaque
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8758801B2 (en) 2004-07-30 2014-06-24 Abbott Cardiocascular Systems Inc. Coatings for implantable devices comprising poly(hydroxy-alkanoates) and diacid linkages
US8586075B2 (en) 2004-07-30 2013-11-19 Abbott Cardiovascular Systems Inc. Coatings for implantable devices comprising poly(hydroxy-alkanoates) and diacid linkages
US9580558B2 (en) 2004-07-30 2017-02-28 Abbott Cardiovascular Systems Inc. Polymers containing siloxane monomers
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US7766884B2 (en) 2004-08-31 2010-08-03 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
US8110211B2 (en) 2004-09-22 2012-02-07 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices including polyacrylates
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US9067000B2 (en) 2004-10-27 2015-06-30 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US7749263B2 (en) 2004-10-29 2010-07-06 Abbott Cardiovascular Systems Inc. Poly(ester amide) filler blends for modulation of coating properties
US8609123B2 (en) 2004-11-29 2013-12-17 Advanced Cardiovascular Systems, Inc. Derivatized poly(ester amide) as a biobeneficial coating
US7892592B1 (en) 2004-11-30 2011-02-22 Advanced Cardiovascular Systems, Inc. Coating abluminal surfaces of stents and other implantable medical devices
US9339592B2 (en) 2004-12-22 2016-05-17 Abbott Cardiovascular Systems Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US7699889B2 (en) 2004-12-27 2010-04-20 Advanced Cardiovascular Systems, Inc. Poly(ester amide) block copolymers
US8007775B2 (en) 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US7795467B1 (en) 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US7823533B2 (en) 2005-06-30 2010-11-02 Advanced Cardiovascular Systems, Inc. Stent fixture and method for reducing coating defects
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US7785647B2 (en) 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
US7735449B1 (en) 2005-07-28 2010-06-15 Advanced Cardiovascular Systems, Inc. Stent fixture having rounded support structures and method for use thereof
US8652504B2 (en) 2005-09-22 2014-02-18 Medivas, Llc Solid polymer delivery compositions and methods for use thereof
US9102830B2 (en) 2005-09-22 2015-08-11 Medivas, Llc Bis-(α-amino)-diol-diester-containing poly (ester amide) and poly (ester urethane) compositions and methods of use
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US8067025B2 (en) 2006-02-17 2011-11-29 Advanced Cardiovascular Systems, Inc. Nitric oxide generating medical devices
US7713637B2 (en) 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US8304012B2 (en) 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US8069814B2 (en) 2006-05-04 2011-12-06 Advanced Cardiovascular Systems, Inc. Stent support devices
US7775178B2 (en) 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US9561351B2 (en) 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
US8568764B2 (en) 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US8029816B2 (en) 2006-06-09 2011-10-04 Abbott Cardiovascular Systems Inc. Medical device coated with a coating containing elastin pentapeptide VGVPG
US8778376B2 (en) 2006-06-09 2014-07-15 Advanced Cardiovascular Systems, Inc. Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US8062350B2 (en) 2006-06-14 2011-11-22 Abbott Cardiovascular Systems Inc. RGD peptide attached to bioabsorbable stents
US8114150B2 (en) 2006-06-14 2012-02-14 Advanced Cardiovascular Systems, Inc. RGD peptide attached to bioabsorbable stents
US8118863B2 (en) 2006-06-14 2012-02-21 Abbott Cardiovascular Systems Inc. RGD peptide attached to bioabsorbable stents
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
US8597673B2 (en) 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
US8109904B1 (en) 2007-06-25 2012-02-07 Abbott Cardiovascular Systems Inc. Drug delivery medical devices
US10076591B2 (en) 2010-03-31 2018-09-18 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device

Similar Documents

Publication Publication Date Title
SU905228A1 (en) Method for preparing thiourea
EP0130935B1 (en) Biodegradable polypeptide and its use in the sustained release of medicaments
EP0179023B1 (en) With micro-organisms degradable polypeptide, and its use for the progressive release of medicaments
SU872531A1 (en) Method of producing polyurethans
EP0129396A2 (en) Biocompatible poly-(ether-urethane-urea) and process for its preparation
Dey et al. Hydrolytically degradable, dendritic polyglycerol sulfate based injectable hydrogels using strain promoted azide–alkyne cycloaddition reaction
Huynh et al. Preparation and swelling properties of “click” hydrogel from polyaspartamide derivatives using tri-arm PEG and PEG-co-poly (amino urethane) azides as crosslinking agents
JPH01284529A (en) Maleimide functional group-containing aromatic polyamideimide, its production and use thereof in production of crosslinked polymer
JP4628951B2 (en) Compound having phosphorylcholine group, polymer thereof and method for producing the same
FR2501698A1 (en) PROCESS FOR THE PREPARATION OF POLYAMIDE-TYPE COMPOUNDS USING ALKALINE MONO-METAL SALT OF DICARBOXYLIC ACID
Yamada et al. Synthesis and properties of polyurethanes containing phosphatidylcholine analogues in the polymer backbone
JP2665522B2 (en) New alpha-oxyacid polymer
US10793670B2 (en) Synthesis of tyrosine derived polyarylates
EP0424224B1 (en) Nadimide resin based expanded materials
EP0159293A1 (en) Film-forming polymeric material for use in dressings, and its production
Shi et al. Biocompatible in situ-forming glycopolypeptide hydrogels
CA1336848C (en) Process for the preparation of thermostables copoly (imide-amide), comprising diorganosiloxane groups
Karal-Yilmaz et al. Synthesis and characterization of poly (L-lactic acid-co-ethylene oxide-co-aspartic acid) and its interaction with cells
JP3026629B2 (en) Method for producing poly-γ-glutamic acid grafted product
KR102220444B1 (en) Novel polymer containing multi hydroxyl group, menufacturing method of the polymer, and complex comprising the polymer
SU504801A1 (en) The method of producing polyureas
Yamada et al. Synthesis and properties of polyurethanes containing phosphatidylcholine analogues in the side chains
RU2059609C1 (en) 1-phenoxy-3,5-diaminobenzene as a monomer for synthesis of polyimides and polyamides and polyimides or polyamides on its basis as thermostable materials with improved processibility
US4043978A (en) Polyimides
SU451339A1 (en) Method of obtaining aromatic polyamidosulphamides