SK597A3 - Streptogramines and method for preparing same by mutasynthesis - Google Patents

Streptogramines and method for preparing same by mutasynthesis Download PDF

Info

Publication number
SK597A3
SK597A3 SK5-97A SK597A SK597A3 SK 597 A3 SK597 A3 SK 597A3 SK 597 A SK597 A SK 597A SK 597 A3 SK597 A3 SK 597A3
Authority
SK
Slovakia
Prior art keywords
group
pristinamycin
dimethylamino
seq
dichloromethane
Prior art date
Application number
SK5-97A
Other languages
Slovak (sk)
Inventor
Veronique Blanc
Denis Thibaut
Nathalie Bamas-Jacques
Francis Blanche
Joel Crouzet
Jean-Claude Barriere
Laurent Debussche
Alain Famechon
Jean-Marc Paris
Gilles Dutruc-Rosset
Original Assignee
Rhone Poulenc Rorer Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9465182&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=SK597(A3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rhone Poulenc Rorer Sa filed Critical Rhone Poulenc Rorer Sa
Publication of SK597A3 publication Critical patent/SK597A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/14Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D295/155Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/34Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • C07C229/36Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings with at least one amino group and one carboxyl group bound to the same carbon atom of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/40Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino groups bound to carbon atoms of at least one six-membered aromatic ring and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/42Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino groups bound to carbon atoms of at least one six-membered aromatic ring and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton with carboxyl groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by saturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/12Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms or by nitro or nitroso groups
    • C07C233/15Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms or by nitro or nitroso groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/24Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
    • C07C233/25Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/62Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • C07C323/63Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/76Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Streptogramin B derivs. of formula (I) are new, in which R2 and R4 = H or Me; R3 = H or OH; X = CO, CHOH or CH2; R1 = 2-thienylmethyl, 2-naphthylmethyl or a gp. of formula (i); for meta derivs., A,C,D,E = H; B = halo; mono- or di-alkylamino; ether or thioether gp.; 1-3C alkyl; or trihalomethyl; for para derivs., A, B, D, E = H; C = halo; NRaRb; opt. substd. N-pyrrolidinyl; ether or thioether gp.; acyl; alkoxycarbonyl; 1-6C alkyl; alkylthiomethyl; aryl; or trihalomethyl; Ra and Rb = H, 1-4C alkyl (if one is Me, the other must be Et), alkyl (3-4C cycloalkyl)methyl, opt. substd. 3-4C cycloalkyl or 1-4C alkenyl (if one is alkenyl the other cannot be Me or cycloalkyl); for meta-para derivs., A ,D, E = H, B is as defined for meta derivs. but not trihalomethyl; and C is halo; NH2 (opt. substd. by 1 or 2 alkyl, provided that B is not Cl, Br or opt. substd. allyl) ; ether or thioether gp.; 1-6C alkyl; or trihalomethyl; for ortho-para derivs., B, E, D = H; A=C=Me. Also claimed is prodn. of streptogramins by culturing an appropriate microorganism having a modification in a gene involved in biosynthesis of streptogramin gp. B precursors, in a medium contg. a new precursor (other than the one whose synthesis is being affected). Further claimed are (inter alia) (1) new DNA contg. specified genes from Streptomyces pristinaespiralis, and (2) certain specified new precursors.

Description

Streptogramíny a spôsob prípravy streptogramínov mutasyntézouStreptogramins and method for the preparation of streptogramins by mutase synthesis

Oblasť technikyTechnical field

Vynález sa týka najmä nových zlúčenín príbuzných streptogramínom skupiny B a spôsobu prípravy streptogramínov. Vynález sa takisto týka nových génov uplatňujúcich sa pri biosynt téze prekurzorov streptogramínov skupiny B, ako i ich použitia.In particular, the invention relates to novel compounds related to group B streptogramins and to a process for the preparation of streptogramins. The invention also relates to novel genes involved in the biosynthesis of Group B streptogramin precursors, as well as their use.

Doterajší stav technikyBACKGROUND OF THE INVENTION

Streptogramíny tvoria homogénnu skupinu antibiotík pozostávajúcich z kombinácie dvoch chemicky odlišných typov molekúl, t.j. ako polynenasýtených makrolaktónov (zložky skupinyStreptogramins form a homogeneous group of antibiotics consisting of a combination of two chemically different types of molecules, i. as polyunsaturated macrolactones (constituents of the

A), tak i depsipeptidov (zložky skupiny B). Táto skupina antibiotík zahŕňa početné antibiotiká, ktoré sú známe pod rôznymi menami označujúcimi ich pôvod, z ktorých je možné uviesť pristinamycíny, mikamycíny a virginiamycíny (Cocito 1979, 1983).A) as well as depsipeptides (group B components). This class of antibiotics includes a number of antibiotics known under various names denoting their origin, including pristinamycins, micamycins and virginiamycins (Cocito 1979, 1983).

Zložky A a B vykazujú synergickú antibakteriálnu účinnosť, ktorá môže dosahovať až stonásobok účinnosti samotných zložiek A a B a ktorá má, na rozdiel od účinnosti jednotlivých uvedených zložiek, baktericídny charakter (Cocito 1979). Táto účinnosť sa uplatňuje najmä proti Gram-pozitívnym baktériám, akými sú stafylokoky a streptokoky (Cocito 1979, Videau 1982). Zložky A a B inhibujú proteínovú syntézu tým, že sa fixujú na podjednotku 50S ribozómu (Cocito 1979, Di Giambattista a kol. 1989) .Components A and B exhibit synergistic antibacterial efficacy, which may be up to 100 times the efficacy of components A and B alone and which, in contrast to the efficacy of the individual components, are bactericidal (Cocito 1979). This activity is particularly effective against Gram-positive bacteria such as staphylococci and streptococci (Cocito 1979, Videau 1982). Components A and B inhibit protein synthesis by fixing to the 50S ribosome subunit (Cocito 1979, Di Giambattista et al. 1989).

Až doteraz sú biosyntézne mechanizmy tvorby každej z uvedených zložiek známe len čiastočne, i keď štúdie opísané v patentovej prihláške PCT/FR93/0923 umožnili identifikovať niekoľko proteínov a génov zodpovedajúcich štruktúr, ktoré sa uplatňujú pri biosyntéze obidvoch typov uvedených zložiek.Heretofore, the biosynthesis mechanisms of the formation of each of these components are only partially known, although the studies described in patent application PCT / FR93 / 0923 have made it possible to identify several proteins and genes of the corresponding structures that are involved in the biosynthesis of both types of said components.

Pri procese biosyntézy streptogramínov skupiny B je možné rozlíšiť dve nasledujúce etapy:In the B-group streptogramin biosynthesis process, the following two stages can be distinguished:

1) biosyntéza prekurzorov alebo ich analógov, makrocyklu: kyselina 3-hydroxypikolínová, kyselina L-2-aminomaslová, 4-dimetylamino-L-fenylalanín, kyselina L-pipekolová, L-fenylglycín.1) biosynthesis of precursors or their analogs, macrocycle: 3-hydroxypicolinic acid, L-2-aminobutyric acid, 4-dimethylamino-L-phenylalanine, L-pipecolic acid, L-phenylglycine.

2) tvorba makrocyklu L-treonínu a L-prolínu alebo ich analógov z vyššie uvedených prekurzorov a prípadná nasledujúca modifikácia alebo prípadné následné modifikácie typu N-peptidovej metylácie, epimerácie, hydroxylácie a oxidácie.2) formation of the macrocycle of L-threonine and L-proline or analogues thereof from the above precursors and any subsequent modification or possible subsequent modifications of the N-peptide methylation, epimerization, hydroxylation and oxidation type.

Predmetom medzinárodnej patentovej prihlášky PCT/FR9/0923 sú enzýmy katalyzujúce inkorporáciu prekurzorov do peptidového reťazca streptogramínov B v priebehu elongácie reťazca, ako i ich štruktúrne gény. Tieto výsledky umožnili ozrejmiť peptidový neribozomálny charakter syntézy uvedených zlúčenín typu BInternational patent application PCT / FR9 / 0923 relates to enzymes catalysing the incorporation of precursors into the peptide chain of streptogramins B during chain elongation, as well as their structural genes. These results made it possible to elucidate the peptide non-ribosomal character of the synthesis of the said type B compounds

Vynález sa týka najmä nových zlúčenín, ktoré sú podobné streptogramínom skupiny B a konkrétnejšie nových zlúčenín skupiny pristinamycínov I (obr. 1 a 2), označovaných ďalej ako PI, alebo skupiny virginiamycínov S (obr. 3).In particular, the invention relates to novel compounds which are similar to group B streptogramins and more particularly to novel compounds of the pristinamycin I group (Figs. 1 and 2), hereinafter referred to as PI, or the virginiamycin S group (Fig. 3).

Hlavnou zložkou pristinamycínov I (PI) je PIa (obr. 1), ktorý predstavuje asi 94 % pristinamycínov I, pričom zostávajúcich asi 6 % je tvorených minoritnými zložkami depsipeptidu (PIB až PI ), ich štruktúry sú zobrazené na obr. 2. Pristinamycín I je v podstate výsledkom kondenzácie aminokyselín, z ktorých niektoré sú nevyhnutné na proteínovú syntézu (treonín a prolín) a ďalšie sú pôvodné a považované ako také za sekundárne metabolity (kyselina L-2-aminomaslová,The major component of pristinamycin I (PI) is PI a (Fig. 1), which represents about 94% of pristinamycin I, while the remaining about 6% are minor depsipeptide components (PI B to PI), their structures are shown in Figure 1. 2. Pristinamycin I is essentially the result of the condensation of amino acids, some of which are essential for protein synthesis (threonine and proline) and others are native and considered as secondary metabolites (L-2-aminobutyric acid,

4-dimetylamino-L-fenylalanín (DMPAPA), kyselina L-pipekolová a L-fenylglycín pre PIa, ako i aromatický prekurzor tvorený kyselinou 3-hydroxypikolínovou.4-dimethylamino-L-phenylalanine (DMPAPA), L-pipecolic acid and L-phenylglycine for PI α , as well as the aromatic precursor of 3-hydroxypicolinic acid.

Ak ide o deriváty virginiamycínov S, tieto deriváty sú výsledkom kondenzácie rovnakých aminokyselín, ktoré sa uvádza3 jú pre PI s výnimkou DMPAPA, ktorý je v tomto prípade nahradený fenylalanínom (viď obr.3).For the virginiamycin S derivatives, these derivatives are the result of condensation of the same amino acids reported for PI except for DMPAPA, which in this case is replaced by phenylalanine (see Fig. 3).

Takéto rôzne zlúčeniny sú produkované biosyntézou, teda predbežnou syntézou s použitím produkčného kmeňa vyššie uvedených pôvodných prekurzorov.Such various compounds are produced by biosynthesis, i.e., pre-synthesis using a production strain of the above-mentioned precursors.

Uvedené presnejšie, vynález vyplýva z pôvodného spôsobu prípravy streptogramínov, pri ktorom sa používa ako produkčný kmeň streptogramínov kmeň mikroorganizmov, ktorý je mutovaný tak, že pozmeňuje biosyntézu prekurzorov streptogramínov skupiny B. Podľa tohto spôsobu sa uvedený mutantný kmeň kultivuje v prostredí komplementovanom pôvodným prekurzorom, ktorý je odlišný od prekurzora, ktorého biosyntéza je modifikovaná. Celkom neočakávane sa takto dosiahla produkcia nových zlúčenín, ktoré sú štruktúrne blízke streptogramínom skupiny B, pričom tieto nové zlúčeniny sú zaujímavé pre terapeutickú oblasť.More precisely, the invention results from the original streptogramin preparation method, wherein a strain of microorganisms that is mutated to alter the biosynthesis of group B streptogramin precursors is used as the streptogramin production strain. According to this method, said mutant strain is cultured in an environment complemented by the original precursor which is different from a precursor whose biosynthesis is modified. Quite unexpectedly, this has resulted in the production of novel compounds which are structurally close to Group B streptogramin, which are of interest to the therapeutic field.

Podstata vynálezuSUMMARY OF THE INVENTION

Vynález sa týka nových zlúčenín všeobecného vzorca I .0 ŕThe invention relates to novel compounds of the general formula I

HOHO

(I) v ktoromIn which

R2 a R4 nezávisle jeden na druhom znamenajú atóm vodíka alebo metylovú skupinu,R 2 and R 4 independently of one another are hydrogen or methyl;

R3 znamená atóm vodíka alebo hydroxylovú skupinu,R 3 represents a hydrogen atom or a hydroxyl group,

X znamená skupinu CO, CHOH alebo CH2 aX is CO, CHOH or CH 2 and

R1 znamená R1 is

pričomwhile

- pre deriváty metá:- for meta derivatives:

A, C, D a E znamenajú atóm vodíka aA, C, D and E are hydrogen and

B môže znamenať:B may mean:

- atóm halogénu a výhodne atóm fluóru,- a halogen atom and preferably a fluorine atom,

- monoalkylamino skupinu alebo dialkylamino skupinu, v ktorých alkylový zvyšok výhodne znamená metylovú skupinu alebo etylovú skupinua monoalkylamino group or a dialkylamino group, in which the alkyl radical preferably represents a methyl group or an ethyl group

- éterovú skupinu, pričom najmä ide o skupinu OR, v ktorej R výhodne znamená metylovú skupinu, etylovú skupinu, trifluórmetylovú skupinu alebo alylovú skupinu,- an ether group, in particular an OR group in which R preferably represents a methyl group, an ethyl group, a trifluoromethyl group or an allyl group,

- tioéterovú skupinu, ktorou je výhodne alkyltio skupina, v ktorej alkylový zvyšok výhodne znamená metylovú skupinu,- a thioether group, which is preferably an alkylthio group, in which the alkyl radical is preferably a methyl group,

- alkylovú skupinu s 1 až 3 atómami uhlíka aleboan alkyl group having 1 to 3 carbon atoms, or

- trihalogénmetylovú skupinu, výhodne trifluórmetylovú skupinu,- a trihalomethyl group, preferably a trifluoromethyl group,

- pre deriváty para:- for para derivatives:

A, B, D a E znamenajú atóm vodíka aA, B, D and E are hydrogen and

C môže znamenať:C can mean:

- atóm halogénu,- halogen atom,

- skupinu NRXR2, v ktorej R1 a R2 nezávisle ne sebe znamenajú- NR X R 2 in which R 1 and R 2 are independently of one another

- atóm vodíka,- a hydrogen atom,

- priamu alebo rozvetvenú alkylovú skupinu s 1 až 4 ató5 mami uhlíka, pričom v prípade, že jeden zo substituentov R1 alebo R2 znamená metylovú skupinu, potom druhý obligatórne znamená etylovú skupinu,- a straight or branched (C 1 -C 4) alkyl group, where one of R 1 or R 2 is methyl, the other obligatory is ethyl,

- alkylcykloalkylmetylovú skupinu, v ktorej cykloalkylový zvyšok obsahuje 3 alebo 4 atómy uhlíka,- an alkylcycloalkylmethyl group in which the cycloalkyl radical contains 3 or 4 carbon atoms,

- prípadne substituovanú cykloalkylovú skupinu obsahujúcu 3 alebo 4 uhlíkové atómy,- an optionally substituted cycloalkyl group containing 3 or 4 carbon atoms,

- priamu alebo rozvetvenú alkenylovú skupinu obsahujúcu 1 až 4 atómy uhlíka, pričom v prípade, že jeden zo substituentov R1 alebo R2 znamená alkenylovú skupinu, potom druhý z týchto substituentov je odlišný od metylovej skupiny alebo cykloalkylovej skupiny obsahujúcej 3 až 6 atómov uhlíka, výhodne znamená alkyltio skupinu, výhodne znamená alkylovú skupinu substituovanú alebo nesubstituovanú N-pyrolidinylovú skupinu, éterovú skupinu, pričom výhodne ide o skupinu OR, v ktorej R výhodne znamená metylovú skupinu, etylovú skupinu, prípadne substituovanú atómami chlóru, trifluórmetylovú skupinu a alkenylovú skupinu, tioéterovú skupinu, ktorá v ktorej alkylový zvyšok s 1 až 3 atómami uhlíka, acylovú skupinu alebo alkoxykarbonylovú skupinu a najmä skupinu COR, v ktorej R výhodne znamená alkylovú skupinu s 1 až 3 atómami uhlíka alebo alkoxy skupinu s 1 až 3 atómami uhlíka,straight or branched (C 1 -C 4) alkenyl, where in the case where one of R 1 or R 2 is an alkenyl group, the other is different from a methyl or cycloalkyl group containing 3 to 6 carbon atoms, preferably alkylthio, preferably alkyl substituted or unsubstituted N-pyrrolidinyl, ether, preferably OR, wherein R is preferably methyl, ethyl, optionally substituted with chlorine atoms, trifluoromethyl and alkenyl, thioether a group in which an alkyl radical of 1 to 3 carbon atoms, an acyl group or an alkoxycarbonyl group and in particular a COR group in which R preferably represents an alkyl group of 1 to 3 carbon atoms or an alkoxy group of 1 to 3 carbon atoms,

- lineárnu alebo rozvetvenú alkylovú skupinu s 1 až 6 atómami uhlíka, výhodne metylovú skupinu, izopropylovú skupinu a terc-butylovú skupinu,- a linear or branched alkyl group having 1 to 6 carbon atoms, preferably a methyl group, an isopropyl group and a tert-butyl group,

- alkyltiometylovú skupinu a najmä skupinu CH2SR, v ktorej R výhodne znamená alkylovú skupinu s 1 až 3 atómami uhlíka,- an alkylthiomethyl group and in particular a CH 2 SR group in which R preferably represents an alkyl group having 1 to 3 carbon atoms,

- arylovú skupinu a výhodne fenylovú skupinu aleboan aryl group and preferably a phenyl group; or

- trihalogénmetylovú skupinu a výhodne trifluórmetylovú skupinu,- trihalomethyl and preferably trifluoromethyl,

- pre disubstituované deriváty meta-para:- for disubstituted meta-para derivatives:

A, D a E znamenajú atóm vodíka aA, D and E are hydrogen and

B môže znamenať:B may mean:

- atóm halogénu a výhodne atóm fluóru,- a halogen atom and preferably a fluorine atom,

- monoalkylamino skupinu alebo dialkylamino skupinu, v ktorej alkylový zvyšok výhodne znamená metylovú skupinu alebo etylovú skupinu,- a monoalkylamino group or a dialkylamino group, in which the alkyl radical preferably represents a methyl group or an ethyl group,

- éterovú skupinu a výhodne skupinu OR, v ktorej R výhodne znamená metylovú skupinu, etylovú skupinu a trifluórmetylovú skupinu,- an ether group and preferably an OR group, in which R preferably represents a methyl group, an ethyl group and a trifluoromethyl group,

- tioéterovú skupinu a výhodne alkyltio skupinu, v ktorej alkylový zvyšok výhodne znamená etylovú skupinu, aleboa thioether group and preferably an alkylthio group in which the alkyl moiety preferably represents an ethyl group, or

- alkylovú skupinu s 1 až 3 atómami uhlíka aan alkyl group having 1 to 3 carbon atoms, and

C môže znamenať:C can mean:

- atóm halogénu a výhodne atóm fluóru,- a halogen atom and preferably a fluorine atom,

- amino skupinu, monoalkylamino skupinu alebo dialkylamino skupinu, v ktorých alkylový zvyšok výhodne znamená metylovú skupinu s podmienkou, že B je odlišný od atómu brómu alebo atómu chlóru, alebo substituovanú alebo nesubstituovanú alylovú skupinu,- an amino group, a monoalkylamino group or a dialkylamino group, in which the alkyl radical preferably represents a methyl group, with the proviso that B is different from a bromine or chlorine atom, or a substituted or unsubstituted allyl group,

- éterovú skupinu a výhodne skupinu OR, v ktorej R výhodne znamená metylovú skupinu, etylovú skupinu alebo trifluórmetylovú skupinu,- an ether group, and preferably an OR group, in which R preferably represents a methyl group, an ethyl group or a trifluoromethyl group,

- tioéterovú skupinu a výhodne alkyltio skupinu, v ktorej alkylový zvyšok znamená metylovú skupinu,- a thioether group and preferably an alkylthio group in which the alkyl radical is a methyl group,

- alkylovú skupinu s 1 až 6 atómami uhlíka aleboan alkyl group having 1 to 6 carbon atoms, or

- trihalogénmetylovú skupinu, výhodne trifluórmetylovú skupinu, aa trihalomethyl group, preferably a trifluoromethyl group, and

- pre disubstituované deriváty orto-para:- for disubstituted ortho-para derivatives:

B, E a D znamenajú atóm vodíka a A a C znamenajú metylovú skupinu.B, E and D are hydrogen and A and C are methyl.

Ako výhodné zlúčeniny sa môžu uviesť: 4ζ-Γη6Γ/1ίίο-άβ5(4ζ-<ϋιτΐ6ίγΐ3ΐτπηο)ρπ5ΐίηαπινάη IA 4ζ^εΐν1ύο-ά68(4ζ-<1ίπΐ6ίγΐ3ηιΐηο)ρη8ϋη3πιγαη IH 5y-hydroxy^-rnetyltio-des^-dimetylamino)pristinamycín IH 4ú-metyl-des^-dimetylamino)pnstmamycín IA 4ú-metyl-des^-dimetylamino) pristinamycín IH 4ζ-ιη6ΐοχγ·^65(4ζ·^ίιη6ίγΐ3ππηο)ρΓί5ΐίη3ΐηγοίη IA 4ζ^εΐοχγ1ί3ΐ1)οηγ1-ά63(4ζ-άίπΐ6ΐγΐΗπύηο)ρή3ίιη3πιγοίη IA 4ζ-εΜ0Γ^63(4ζ^ίΓη6ΐγΐ3ΐηιηο)ρη3ΐιη3η'ΐγοίη IA 4£-bróm-des^-dimetylamino)pristinamycín IA Preferred compounds can include: 4ζ-Γη6Γ / 1ίίο-άβ5 (4ζ- <ϋιτΐ6ίγΐ3ΐτπηο) ρπ5ΐίηαπινάη IA ^ εΐν1ύο 4ζ-ά68 (4ζ- <1ίπΐ6ίγΐ3ηιΐηο) ρη8ϋη3πιγαη I H 5y-hydroxy--rnetyltio ^ of ^ -dimethylamino) pristinamycin I H-4u of methyl N-dimethylamino) pnstmamycín I and 4u-methyl-des ^ -dimethylamino) pristinamycin I H-4ζ ιη6ΐοχγ · 65 ^ (^ · 4ζ ίιη6ίγΐ3ππηο) ρΓί5ΐίη3ΐηγοίη IA ^ εΐοχγ1ί3ΐ1 4ζ) οηγ1-ά63 (4ζ -άζίΐΐΐΐύύ)) ρή3ίιη3πιγοίη I A 4ζ-εΜ0Γ ^ 63 (4ζ-ΐΓΓ6ΐγΐ3ΐηιηο) ρη3ΐιη3η'ΐγοίη I A 4--bromo-des (4-dimethylamino) pristinamycin I A

4ζ-bróm-des(4ζ-dimetylamino)pristinaπlycín ΙΗ 4ζ-Bromo-des (4ζ-dimethylamino) pristinaπlycine Ι Η

4ζ-jód-des(4ζ-dimetylamino)pristinamycín ΙΑ 4ζ-Iodo-des (4ζ-dimethylamino) pristinamycin Ι Α

4ζ-)<^^ε8(4ζ^ίιη^1αηιίηο)ρπ5ΐίηαπψ(;ίη Ιη4ζ -) <^^ ε8 (4ζ ^ ίιη ^ 1αηιίηο) ρπ5ΐίηαπψ (; ίη Ιη

4ζ-ίτίΑυόπη^Μ65(4ζ^πη^ΐΗηιίηο)ρΓί5ίίηΗπψ(;ίη ΙΑ 4ζ-ίιί1υόπτ^Μβ5(4ζ^ιιτ^ΐΗΓηίηο)ρη5ίιηΗΐΓ^οίη ΙΗ 4ζ-ΐ6Γε-Βι^Με5(4ζ^ίπ^ΐ3ΐηίηο)ρη5ίίη3π^<;ίη ΙΑ 4ζ-izopropyl-des(4ζ-dimetylanlino)pristinaInycín ΙΑ 4ζ-izopropyl-des(4ζdίmetylamino)pristinamycín Ιε 48-metylammo-des^-dimetylammo)pnstinamycín ΙΑ 48-metoxy-des^-dimetylamino)pristinamycín ΙΑ 4s-metoxy-des(47-dimetylammo)pristinamycín ΙΗ 4s-fluór-41metyl-des^-dimetylamino)pristmamycín ΙΑ 4ζ-8πυηο^68(4ζ^ίηι^ΐ8ΐηίηο)ρΓί5ΐίη3η·^οίη ΙΑ 4ζ-etylamino-des(4ζ-dimetylamino)pristinamycín ΙΑ 4ζ-dietylamino-des(4ζ-dimetylamino)pristinamycín ΙΑ 4ζ-alylamino-des(4ζ-dimetylamino)pristinamycín ΙΑ 4ζ-dialylamino-des(4ζ-dimetylamino)pristinamycín ΙΑ 4ζ-alyletylanlino-des(4ζ-dπnetylamlno)pristinamycín ΙΑ 4ζ-etylpropylamίno-des(4ζ-dimetylamino)pristinamycín ΙΑ 47-etylizopropylamino-des(47-dimetylainmo)pristinamycín ΙΑ 4ζ-etylmetylcyklopropylamino-des(4ζ-dimetylamino)pristinamycín ΙΑ 4ζ-( l-pyrolidinyl)-des^-dimetylamino)pnstinamycín ΙΑ 4C4rifluórmetoxy-des^-dimetylamino)pristinaniycm ΙΑ 4ζ-alyloxy-des(4ζ-dimetylamino)pristinamycín ΙΑ 4ζ-etoxy-des(4ζ-dimetylamino)pristinamycín ΙΑ 4ζ-etyltio-des(4ζ-dimetylamino)pristinaInycín ΙΑ 4ζ-metyltiometyl-des(4ζ-dimetylamino)pristinamycín ΙΑ 47-(2-chlóretoxy)-des^-dirnetylamino)pristinamycín ΙΑ 4ζ-αο^Με3(4ς^ίπι^ΐ3ΐηίηο)ρΓί5ΐίη3πψ<;ίη ΙΑ 4ζ-etyl-des(4ζ-dimetylamino)pristlnamycín ΙΑ 4ζ-etyl-des(4ζ-dimetylamino)pristinamycín Ιη 4e-dirnetylamino-des^-dimetylamino)pristinamycín ΙΑ 4e-metyltio-des(47-dimetylannno)pristinamycín ΙΑ 4s-etoxy-des^-dimetylamino)pristinamycín ΙΑ 4ζ-ίτίΑυόπη ^ Μ65 (4ζ ^ πη ^ ΐΗηιίηο) ρΓί5ίίηΗπψ (; ίη Ι Α 4ζ-ίιί1υόπτ ^ Μβ5 (4ζ ^ ιιτ ^ ΐΗΓηίηο) ρη5ίιηΗΐΓ ^ οίη Ι Η 4ζ-ΐ6Γε-Βι ^ Με5 (4ζ ^ ίπ ^ ΐ3ΐηίηο) ρη5ίίη3π ^ <, ίη Ι Α 4ζ-isopropyl-de (4ζ-dimetylanlino) pristinaInycín Ι Α 4ζ-isopropyl-de (4ζdίmetylamino) pristinamycin Ιε 48-methylamino-des ^ dimethylamino) pnstinamycín Ι Α-methoxy-48 of N-dimethylamino) pristinamycin Ι Α 4s-methoxy-de (47-dimethylamino) pristinamycin Ι Η-fluoro-4 s-41metyl of N-dimethylamino) pristmamycín Ι Α 4ζ-8πυηο ^ 68 (4ζ ^ ^ ίηι ΐ8ΐηίηο) ρΓί5ΐίη3η · ^ οίη Ι Α 4ζ- ethylamino-des (4ζ-dimethylamino) pristinamycin Ι Α 4ζ-diethylamino-des (4ζ-dimethylamino) pristinamycin Ι Α 4ζ-allylamino-des (4ζ-dimethylamino) pristinamycin Α ζ 4ζ-Dialylamino-des (4ζ-dimethylamino) pristinamycin Ι Α 4ζ-alyletylanlino-de (4ζ-dπnetylamlno) pristinamycin Ι Α 4ζ-etylpropylamίno-de (4ζ-dimethylamino) pristinamycin Ι Α 47-ethylisopropylaminocarbonyl amino-de (47-dimetylainmo) pristinamycin Ι Α 4ζ-etylmetylcyklopropylamino-de (4ζ-dimethylamino) pristinamycin Ι Α 4ζ- (l-pyrrolidinyl) des ^ -dimethylamino) pnstinamycín Ι Α-4C4rifluórmetoxy of N-Dimethylamino) pristinaniycm Ι Α 4ζ-allyloxy-de (4ζ-dimethylamino) pristinamycin Ι Α 4ζ-ethoxy-de (4ζ-dimethylamino) pristinamycin Ι Α 4ζ-ethylthio-de (4ζ-dimethylamino) pristinaInycín Ι Α 4ζ-methylthiomethyl-de (4ζ-dimethylamino) pristinamycin Ι Α 47- (2-chloroethoxy) des ^ -dirnetylamino) pristinamycin Ι Α 4ζ-αο Με3 ^ (^ 4ς ίπι ^ ΐ3ΐηίηο) ρΓί5ΐίη3πψ <; ίη Ι Α 4ζ-ethyl-de (dimethylamino 4ζ) pristlnamycín Ι Α 4ζ -ethyl-des (4ζ-dimethylamino) pristinamycin Ιη 4e-dimethylamino-des (4-dimethylamino) pristinamycin Ι -Methylthio-des (47-dimethylamino) pristinamycin Ι -ethoxy-des (4-dimethylamino) pristinamycin Ι Α

Vynález sa týka tiež spôsobu, najmä vhodného na prípravu zlúčenín všeobecného vzorca I.The invention also relates to a process, in particular suitable for the preparation of the compounds of formula I.

Vynález sa týka spôsobu prípravy streptogramínov, podstata ktorého je v tom, že sa použije kmeň mikroorganizmov produkujúci streptogramíny, ktorý má aspoň jednu genetickú modifikáciu, ktorá postihuje biosyntézu prekurzora skupiny B, a v tom, že sa uvedený mutantný kmeň kultivuje v kultivačnom prostredí, ktoré je adekvátne a komplementované aspoň jedným pôvodným prekurzorom, ktorý je iný ako prekurzor, ktorého biosyntéza bola pozmenená, a v tom, že sa izolujú uvedené streptogramíny .The invention relates to a process for the preparation of streptogramins, which comprises using a strain of streptogramin-producing microorganisms having at least one genetic modification affecting the biosynthesis of a Group B precursor, and wherein said mutant strain is cultivated in a culture medium which is adequately and complemented by at least one parent precursor other than the precursor whose biosynthesis has been altered and that said streptogramins are isolated.

Použité kmene v rozsahu vynálezu sú teda mutovanými kmeňmi, ktoré produkujú streptogramíny. Uvedená genetická modifikácia alebo uvedené genetické modifikácie môžu byť lokalizované buď na úrovni génov uplatňujúcich sa pri biosyntéze uvedených prekurzorov, alebo nimi kódujúcu oblasť, napríklad v oblasti zodpovednej za expresiu alebo/a transkripčnú alebo post-transkripčnú reguláciu uvedených génov alebo v oblasti, ktorá prináleží k transkriptu, ktorý obsahuje uvedené gény.Thus, the strains used within the scope of the invention are mutant strains that produce streptogramins. Said genetic modification or said genetic modifications may be located either at the level of the genes involved in the biosynthesis of said precursors or the coding region thereof, for example in the region responsible for expression and / or transcriptional or post-transcriptional regulation of said genes or in the region belonging to a transcript comprising said genes.

Podľa výhodného spôsobu uskutočnenia vynálezu majú mutantné kmene jednu alebo niekoľko genetických modifikácií v na úrovni aspoň jedného z ich génov, ktoré sa uplatňujú v biosyntéze streptogramínov skupiny B.According to a preferred embodiment of the invention, the mutant strains have one or more genetic modifications at the level of at least one of their genes which are involved in the biosynthesis of group B streptogramins.

Uvedená alebo uvedené genetické modifikácie pozmeňujú expresiu uvedeného génu, to znamená, že robí tento gén a prípadne ďalšie gény, ktoré sa uplatňujú pri biosyntéze prekurzorov, čiastočne alebo úplne neschopnými kódovať prírodný enzým, ktorý sa uplatňuje pri biosyntéze aspoň jedného prekurzora.Said or said genetic modifications alter the expression of said gene, i.e., it makes this gene and optionally other genes which are involved in the biosynthesis of precursors, partially or wholly incapable of encoding a natural enzyme that is involved in the biosynthesis of at least one precursor.

Neschopnosť uvedených génov kódovať prírodné proteiny sa môže prejaviť buď produkciou neaktívneho proteínu ako dôsledok štruktúrnych alebo konformačných modifikácií, alebo absenciou produkcie alebo produkciou proteínu, ktorý má pozmenenú enzymatickú účinnosť, alebo tiež produkciou prírodného proteínu v zmenšenej miere. Súbor týchto možných prejavov má za následok zhoršenie alebo dokonca zablokovanie aspoň jedného z prekurzorov streptogramínov skupiny B, na úrovni syntézy.The inability of said genes to encode natural proteins can be manifested either by the production of an inactive protein as a result of structural or conformational modifications, or by the absence or production of a protein having altered enzymatic activity, or also by the production of a natural protein to a reduced extent. A set of these possible manifestations results in a deterioration or even blockage of at least one of the group B streptogramins precursors at the synthesis level.

Génmi, ktoré sú schopné mutácie, sú výhodne gény, ktoré sa uplatňujú pri biosyntéze nasledujúcich prekurzorov: kyselina L-2-aminomaslová, 4-dimetylamino-L-fenylalanín (DMPAPA), kyselina L-pipekolová, L-fenylglycín alebo/a kyselina 3-hydroxypikolínová (3-HPA).The genes which are capable of mutation are preferably those which are involved in the biosynthesis of the following precursors: L-2-aminobutyric acid, 4-dimethylamino-L-phenylalanine (DMPAPA), L-pipecolic acid, L-phenylglycine and / or acid 3 -hydroxypicoline (3-HPA).

Výhodne ide o gény papA. papM. papB (SEQ ID č. 3), papC (SEQ ID Č. 2), hpaA (SEQ ID Č.8), snbF (SEQ ID Č.6), pipA (SEQ ID č.5), ktoré sa opisujú ďalej.They are preferably papA genes. papM. papB (SEQ ID NO: 3), papC (SEQ ID NO: 2), hpaA (SEQ ID NO: 8), snbF (SEQ ID NO: 6), pipA (SEQ ID NO: 5), which are described below.

čo sa týka génov papA a papM. tieto gény sú opísané v medzinárodnej patentovej prihláške PCT/FR93/0923. Tieto gény sú prítomné v kozmide pOBV2. Gén papA zjavne zodpovedá génu biosyntézy 4-amino-L-fenylalanínu z chorizmátu. 4-Amino-L-fenylalanín sa potom dimetyluje produktom génu papM, ktorým je N-metyltransferáza a vzniká 4-dimetylamino-L-fenylalanín (DMPAPA, ktorý sa potom inkorporuje do pristinamycínu Ia. Tieto dva gény teda špecifickejšie zasahujú na úrovni syntézy prekurzora, ktorým je uvedený DMPAPA.for the papA and papM genes. these genes are described in International Patent Application PCT / FR93 / 0923. These genes are present in the cosmid pOBV2. The papA gene appears to correspond to the 4-amino-L-phenylalanine biosynthesis gene from the chorismate. 4-amino-L-phenylalanine is then dimethylated by the product of the gene papM, which is N-methyltransferase, and to give 4-dimethylamino-L-phenylalanine (DMPAPA, which is then incorporated into pristinamycin IA in. The two genes are therefore specific procedure related to the synthesis of the precursor indicating DMPAPA.

Čo sa týka ostatných génov papB. papC. pipA. snbF a hpaA. tieto gény sú definované a charakterizované v rozsahu vynálezu. Tieto gény sú zoskupené s génmi snbA. papA a papM v chromozomálnej oblasti asi 10 kb (obr.7).As for the other papB genes. papC. Pip. snbF and hpaA. these genes are defined and characterized within the scope of the invention. These genes are grouped with the snbA genes. papA and papM in the chromosomal region of about 10 kb (Fig. 7).

Sekvenčné homológie preukázané pre proteíny PapB a PapC ukazujú, že tieto proteíny sa takisto uplatňujú pri biosyntéze prekurzora DMPAPA a to spoločne s proteínmi PapA a PapM. Obidva nové korešpodenčné gény papB a papC boli izolované a identifikované subklonovaním uskutočneným z kozmidu pIBV2, ktorý je opísaný v medzinárodnej patentovej prihláške PCT/FR93/0923, a plazmidu pVRC900, ktorý je odvodený z pIBV2 deléciou HindlII a takisto opísaného v uvedenej medzinárodnej patentovej prihláške PCT/FR93/0923.Sequence homologies shown for the PapB and PapC proteins show that these proteins also play a role in the biosynthesis of the precursor DMPAPA together with the PapA and PapM proteins. Both novel papB and papC co-genes were isolated and identified by subcloning made from the cosmid pIBV2 described in International Patent Application PCT / FR93 / 0923 and the plasmid pVRC900, which is derived from pIBV2 by the HindIII deletion and also described in the aforementioned PCT International Patent Application. / FR93 / 0,923th

Z porovnania proteínu kódovaného génom pape s proteínovými sekvenciami obsiahnutými v banke Genpro vyplýva 27 % homológia s oblasťou uplatňujúcou sa na aktivite prefenát-dehydrogenázy bifunkčných proteínov TyrA z Escherichia coli (Hudson a Davidson, 1984) a z Erwinia herbicola (EMBL data library, 1991). Táto oblasť TyrA katalyzuje aromatizáciu prefenátu na 4-hydroxyfenylpyrohroznan pri biosyntéze tyrozínu. Obdobná aromatizácia vychádzajúca z 4,-deoxy-4-aminoprefenátu, ktorá vedie k -aminofenylpyrohroznanu, veľmi pravdepodobne pôsobí i pri syntéze DMPAPA. Bola by katalyzovaná proteínom PapC (SEQ ID č.2).Comparison of the protein encoded by the pape gene with the protein sequences contained in the Genpro bank shows 27% homology to the region of the predicate dehydrogenase activity of the bifunctional TyrA proteins from Escherichia coli (Hudson and Davidson, 1984) and Erwinia herbicola (EMBL data library, 1991). This region of TyrA catalyzes the aromatization of the prefenate to 4-hydroxyphenylpyruvate in tyrosine biosynthesis. A similar aromatization starting from 4'-deoxy-4-aminoprephenate, which leads to -aminophenylpyruvate, is very likely to work in the synthesis of DMPAPA. It would be catalyzed by the PapC protein (SEQ ID No. 2).

Čo sa týka proteínu PapB, má tento proteín 24 až 30 % homológiu s oblasťou uplatňujúcou sa v rámci aktivity chorízmát-mutázy bifunkčných proteínov TyrA a PheA z Escherichia coli (Hudson a Davidson, 1984) a proteínu TyrA y Erwinia herbicola. Táto oblasť katalyzuje izomerizáciu chorizmátu na prefenát pri biosyntéze tyrozínu a fenylalanínu. Proteín PapB (SEQ ID č.3) pôsobí pravdepodobne v obdobnej izomerizačnej úrovni, ktorá vychádza z 4-deoxy-4-aminochorizmátu a vedie k 4-deoxy-aminoprefenátu pri syntéze DMPAPA. Čo sa týka génov pipA. snbF a hpaA, tieto gény boli lokalizované v oblastiach, ktoré sa nachádzajú medzi génom snbA kódujúcim kyselinuAs for the PapB protein, this protein has 24 to 30% homology to the region exerted in the chorizmate mutase activity of the bifunctional TyrA and PheA proteins of Escherichia coli (Hudson and Davidson, 1984) and TyrA y Erwinia herbicola. This region catalyzes the isomerization of chorismate to the prefenate in tyrosine and phenylalanine biosynthesis. The PapB protein (SEQ ID No. 3) appears to act at a similar isomerization level starting from 4-deoxy-4-aminochorismate and resulting in 4-deoxy-aminoprephenate in the synthesis of DMPAPA. Regarding pipA genes. snbF and hpaA, these genes were located in regions located between the snbA gene encoding the acid

3-hydroxypikolínovú/AMP-ligázu, opísanou v medzinárodnej patentovej prihláške PCT/FR9/0923, a génmi papA alebo snbR. Tieto boli presne lokalizované subklonovaním uskutočneným z plazmidu pVRC900 a kozmidu pIBV2, ktoré sú opísané v medzinárodnej patentovej prihláške PCT/FR93/0923.3-hydroxypicolin / AMP ligase described in PCT / FR9 / 0923 and papA or snbR genes. These were precisely localized by subcloning performed from plasmid pVRC900 and cosmid pIBV2, which are described in International Patent Application PCT / FR93 / 0923.

Z porovnania proteínu kódovaného génom hpaA a proteínových sekvencií nachádzajúcich sa v banke Genpro sa preukázala 30 až 40 % homológia so skupinou proteínov, ktorá sa pravdepodobne uplatňuje (Thorson a kol., 1993) pri transaminácii medziproduktov biosyntézy rôznych antibiotík (DnrJ, EryCl, TylB, StrS, PrgL). Syntéza prekurzora 3-HPA, ktorý je pravdepodobne odvodený od lyzínu, inou cestou, ako je cyklodeaminácia (viď príklady 1-2 a 2-1), pravdepodobne vyžaduje transaminačnú etapu schopnú katalýzy produktom tohto génu nazvaným hpaA (SEQ ID č.8). Výsledky mutácie uskutočnenej v tomto géne ukazujú jasné uplatnenie tohto génu pri syntéze prekurzora 3-HPA.Comparison of the protein encoded by the hpaA gene and the protein sequences found in the Genpro bank showed 30-40% homology to the protein family likely to be involved (Thorson et al., 1993) in the transamination of various biosynthesis intermediates of various antibiotics (DnrJ, EryCl, TylB, StrS, PrgL). Synthesis of the 3-HPA precursor, which is presumably derived from lysine, by another route, such as cyclodeamination (see Examples 1-2 and 2-1), probably requires a transamination step capable of catalysing the product of this gene called hpaA (SEQ ID NO 8). The results of the mutation made in this gene show a clear application of this gene in the synthesis of the precursor 3-HPA.

Z porovnania produktu kódovaného génom označeným ako pipA s proteínovými sekvenciami nachádzajúcimi sa banke Genpro vyplýva 30 % homológia s ornitín-cyklodeaminázou z Agrobacterium tumefasciens (Schindler a kol., 1989). Tento enzým pôsobí v poslednej etape katabolizmu oktopínu a mení L-ornitín na L-prolín mechanizmom cyklodeaminácie. Autori preukázali inkorporáciou označeného lyzínu, že kyselina 4-oxopipekolová a kyselina 3-hydroxypikolínová, nájdené ako v PIA, tak i vo virginiamycíne, sú odvodené od lyzínu (Molinero a kol., 1989, Reed a kol., 1989. Cyklodeaminačná reakcia lyzínu obdobná reakcii opísanej pre ornitín by viedla k vytváraniu kyseliny pipekolovej. Keď sa táto hypotéza zobrala do úvahy, bol tento produkt označený ako PipA (SEQ ID č.5). Výsledky mutácie v géne pipA. uvedené v ďalej v príkladoch, ukazujú na skutočnosť, že sa uvedený gén pipA uplatňuje pri samotnej syntéze kyseliny pipekolovej. Je potrebné uviesť, že táto mutácia neovplyvňuje biosyntézu kyseliny 3-hydroxypikolínovej, ktorá je tiež odvodená od lyzínu a ktorej prekurzorom by mohla byť kyseliny pipekolová.Comparison of the product encoded by the gene designated pipA with the protein sequences found on the Genpro bank shows 30% homology to ornithine cyclodeaminase from Agrobacterium tumefasciens (Schindler et al., 1989). This enzyme acts in the final stage of octopine catabolism and converts L-ornithine to L-proline by a cyclodeamination mechanism. The authors have shown by incorporation of labeled lysine that 4-oxopipecolic acid and 3-hydroxypicolinic acid, found in both PI A and virginiamycin, are derived from lysine (Molinero et al., 1989, Reed et al., 1989. Cyclodeamination reaction of lysine A similar reaction to that described for ornithine would lead to the formation of pipecolic acid, and, taking this hypothesis into account, this product was designated PipA (SEQ ID No. 5.) The results of the mutation in the pipA gene shown in the examples below show that It should be noted that this mutation does not affect the biosynthesis of 3-hydroxypicolinic acid, which is also derived from lysine and whose precursor could be pipecolic acid.

Z porovnania produktu génu označeného ako snbF s proteínovými sekvenciami obsiahnutými v banke Genpro sa zistila 30 až 40 % homológia s niekoľkými hydroxylázami typu cytochróm P450, uplatňujúcimi sa pri biosyntéze sekundárnych metabolitov (Omer a kol., 1990, Trower a kol., 1992). Niektoré hydroxylácie je možné predpokladať pri biosyntéze prekurzorov pristinamycínu I, najmä na úrovni biosyntézy 3-HPA (hydroxylácia v polohe 3 kyseliny pikolínovej) a kyseliny 4-oxopipekolovej (hydroxylácia v polohe 4 kyseliny pipekolovej). Zodpovedajúci proteín bol označený ako SnbF (SEQ ID č.6).Comparison of the snbF gene product with the protein sequences contained in the Genpro bank revealed 30-40% homology to several cytochrome P450-like hydroxylases involved in secondary metabolite biosynthesis (Omer et al., 1990, Trower et al., 1992). Some hydroxylations can be envisaged in the biosynthesis of pristinamycin I precursors, particularly at the level of 3-HPA (hydroxylation at the 3-position of picolinic acid) and 4-oxopipecolic acid (hydroxylation at the 4-position of pipecolic acid). The corresponding protein was designated as SnbF (SEQ ID No. 6).

Výsledky mutácie v géne pipA s polárnymi účinkami na expresiu génu snbF poukazujú na pôsobenie génu snbF pri hydroxylácii zvyšku kyseliny pipekolovej streptogramínov skupiny B.The results of the mutation in the pipA gene with polar effects on snbF gene expression indicate the action of the snbF gene in hydroxylating the pipecolic acid residue of group B streptogramins.

Takto je expresia génu snbF modifikovaná v dôsledku genetickej modifikácie na úrovni génu pipA.Thus, the expression of the snbF gene is modified due to genetic modification at the pipA gene level.

Výhodne uvedená genetická modifikácia alebo uvedené genetické modifikácie robí uvedený gén čiastočne alebo celkom neschopným kódovať prírodný proteín.Preferably, said genetic modification or said genetic modifications make said gene partially or wholly incapable of encoding a natural protein.

Genetickou modifikáciou je potrebné rozumieť hlavne akúkoľvek supresiu, substitúciu, deléciu alebo adíciu jednej alebo niekoľkých báz v uvažovanom géne alebo v uvažovaných génoch. Takéto modifikácie sa môžu dosiahnuť in vitro (na izolovanej DNA) alebo in situ, napríklad s použitím techník génového inžinierstva, alebo tiež vystavením uvedených mikroorganizmov účinku mutagénnych činidiel. Ako takéto mutagénne činidlá je možné napríklad uviesť fyzikálne činidlá, akými sú energetické žiarenia (rôntgenové žiarenie, gama-žiarenie, ultrafialové žiarenie a pod.), alebo chemické činidlá, ktoré sú schopné reagovať s rôznymi funkčnými skupinami báz DNA a ktorými sú napríklad alkylačné činidlá [etylmetánsulfonát (EMS), N-metyl-N'-nitro-N-nitrózoguanidín, N-nitrochinolín-l-oxid (NQO)], bialkylačné činidlá, interkalačné činidlá, atď.. Deléciou sa rozumie akékoľvek potlačenie časti alebo celku zvažovaného génu. Hlavne môže ísť o oblasť kódujúcu uvedené proteíny alebo/a o celú promočnú oblasť alebo o časť promočnej oblasti transkripcie, translácie alebo tiež transkriptu.Genetic modification is to be understood in particular to mean any suppression, substitution, deletion or addition of one or more bases in a gene or genes of interest. Such modifications can be achieved in vitro (on isolated DNA) or in situ, for example using genetic engineering techniques, or also by exposing said microorganisms to mutagenic agents. Such mutagenic agents include, for example, physical agents such as energetic radiation (X-rays, gamma-radiation, ultraviolet radiation, etc.) or chemical agents that are capable of reacting with various functional bases of DNA bases, such as alkylating agents. [ethyl methanesulfonate (EMS), N-methyl-N'-nitro-N-nitrosoguanidine, N-nitroquinoline-1-oxide (NQO)], bialkylating agents, intercalating agents, etc. Deletion means any suppression of some or all of the gene under consideration . In particular, it may be the coding region of said proteins and / or the entire promoter region or part of the transcriptional, translational or transcriptional promoter region.

Genetické modifikácie sa tiež môžu dosiahnuť génovou poruchou, realizovanou napríklad podľa protokolu pôvodne opísaného Rothsteinom (Meth. Enzymol. 101 (1983) 202) alebo výhodne dvojitou homológovou rekombináciou. V tomto prípade bude kódovacia sekvencia prerušená, aby bolo prípadne umožnené nahradenie homológovou rekombináciou divokej genómovej sekvencie nefunkčnou alebo mutantnou sekvenciou.Genetic modifications can also be achieved by a gene disorder, realized, for example, according to the protocol originally described by Rothstein (Meth. Enzymol. 101 (1983) 202) or preferably by double homologous recombination. In this case, the coding sequence will be interrupted in order to optionally allow replacement by homologous recombination of the wild-type genomic sequence with a non-functional or mutant sequence.

V rozsahu iného alternatívneho uskutočnenia vynálezu môžu uvedené genetické modifikácie spočívať v zavedení génu alebo génov kódujúcich uvedené proteíny pod kontrolou regulovaného promótora.In another alternative embodiment of the invention, said genetic modification may consist in introducing a gene or genes encoding said proteins under the control of a regulated promoter.

Mutantné kmene mikroorganizmov podľa vynálezu sa môžu získať z ľubovoľného mikroorganizmu produkujúceho streptogramíny (viď tabuľka V). Podľa špecifického uskutočnenia vynálezu ide o kmeň odvodený od S. pristinaespiralis a najmä o S. pristinaespiralis SP92.The mutant strains of the microorganisms of the invention can be obtained from any streptogramin producing microorganism (see Table V). According to a specific embodiment of the invention, it is a strain derived from S. pristinaespiralis and in particular S. pristinaespiralis SP92.

Ako výhodný mutantný kmeň v rozsahu vynálezu je možné uviesť najmä kmeň SP92::pVRC508, mutovaný pri biosyntéze prekurzora DMPAPA prerušením mechanizmom crossing-over génu papA. alebo kmeň SP212 mutovaný pri biosyntéze prekurzora DMPAPA prerušením génu papA mechanizmom dvojitej homológovej rekombinácie. Tieto kmene už neprodukujú PI s výnimkou prípadov, keď sú komplementované' prekurzorom DMPAPA. Neočakávane sa zistilo, že keď sa do produkčného prostredia pridá pôvodný prekurzor, odlišný od DMPAPA a schopný po prípadnej metabolizácii inkorporácie PI-syntetázou (proteín SnbD zodpovedajúci za inkorporáciu zvyškov L-prolín a DMPAPA), potom sa tieto obidva stávajú schopnými produkovať nové pristinamycíny I alebo virginiaamycíny, alebo produkovať majoritne zložku, ktorá je normálne minoritnou zložkou PI, najmä zložku PIb (obr.2).A preferred mutant strain within the scope of the invention is, in particular, the strain SP92 :: pVRC508, mutated in DMPAPA precursor biosynthesis by disruption by the papA gene cross-over mechanism. or the SP212 strain mutated in DMPAPA precursor biosynthesis by disruption of the papA gene by a double homologous recombination mechanism. These strains no longer produce PI except when complemented by DMPAPA precursor. Unexpectedly, it has been found that when an original precursor different from DMPAPA and capable of potentially metabolizing incorporation by PI synthetase (the SnbD protein responsible for incorporating the residues L-proline and DMPAPA) is added to the production environment, both become capable of producing new pristinamycins. or virginiaamycins, or produce a majority component that is normally a minor component of PI, especially a component of PI b (FIG. 2).

V rozsahu vynálezu boli pripravené dva ďalšie mutantné kmene. Ide o kmeň SP92pipA::DamR prerušený v géne pipA homológovou rekombináciou a kmeň SP92hpaA::namR prerušený v géne hpaA. Kmeň SP92pipA;:DamR jednak už neprodukuje PI v štandartných fermentačných podmienkach a jednak v prítomnosti kyseliny pipekolovej umožňuje vysokú produkciu pôvodne minoritnej zložky zložiek B streptogramínov, v ktorých je kyselina 4-oxopipekolová nahradená kyselinou L-pipekolovou. Čo sa týka kmeňa S. pristinaespiralis SPhpaA:;flamR. tento kmeň tiež už pri štandartných fermentačných podmienkach neprodukuje PI, ale je schopný produkovať nové streptogramíny skupiny B v prítomnosti pôvodných prekurzorov.Two additional mutant strains were prepared within the scope of the invention. These are the SP92pipA :: Dam R strain disrupted in the pipA gene by homologous recombination and the SP92hpaA :: nam R strain disrupted in the hpaA gene. The SP92pipA: Dam R strain no longer produces PI under standard fermentation conditions and, in the presence of pipecolic acid, allows high production of the originally minor component of streptogramin components B, in which 4-oxopipecolic acid is replaced by L-pipecolic acid. As regards S. pristinaespiralis SPhpaA: flam R. this strain also no longer produces PI under standard fermentation conditions, but is able to produce novel group B streptogramins in the presence of the original precursors.

Ukazuje sa, že je možné komplementáciou kultivačného prostredia obsahujúceho mutantné kmene podlá vynálezu aspoň jedným pôvodným prekurzorom orientovať biosyntézu buď smerom k novým streptogramínom, alebo k jednej z minoritných foriem, alebo privilegovať tvorbu jednej z nich.It has been shown that by complementing the culture medium containing the mutant strains according to the invention with at least one original precursor, it is possible to orient the biosynthesis either towards new streptogramins or one of the minor forms, or to privilege the formation of one of them.

Deriváty alebo analógy aminokyselín a najmä fenylalanínu, ako i organických kyselín, najmä α-ketokarboxylových kyselín a najmä deriváty kyseliny fenylpyrohroznovej môžu byť prekurzormi použitými v rozsahu vynálezu.Derivatives or analogs of amino acids, and in particular phenylalanine, as well as organic acids, in particular α-ketocarboxylic acids, and in particular phenylpyruvic acid derivatives, can be precursors used within the scope of the invention.

Pôvodným prekurzorom je samozrejme taký prekurzor, ktorý spôsobí pozmenenie alebo dokonca blokádu v rozsahu vynálezu na úrovni biosyntézy jedného z prirodzených prekurzorov streptogramínov skupiny B, čo vedie k syntéze streptogramínov. V rozsahu špecifického uskutočnenia vynálezu sa tento pôvodný prekurzor zvolí tak, aby bol blízky prekurzoru, ktorého syntéza je pozmenená. Takto v špecifickom prípade mutantu blokovaného pri biosyntéze DMPAPA je pôvodným prekurzorom výhodne derivát fenylalanínu.Of course, the original precursor is one which causes alteration or even blockade within the scope of the invention at the level of biosynthesis of one of the natural precursors of group B streptogramins, leading to the synthesis of streptogramins. Within the scope of a specific embodiment of the invention, the original precursor is selected to be close to the precursor whose synthesis is altered. Thus, in the specific case of the mutant blocked in DMPAPA biosynthesis, the parent prodrug is preferably a phenylalanine derivative.

Ako prekurzory, ktoré môžu byť vhodné na použitie v rozsahu vynálezu, je možné uviesť najmä nasledujúce prekurzory:Precursors which may be suitable for use within the scope of the invention include, but are not limited to, the following precursors:

4-dimetylaminof enylalanin,4-dimethylaminophenylalanine,

4-metylaminofenylalanín,4-metylaminofenylalanín,

4-aminofenylalanín,4-amino phenylalanine.

4-dietylaminofenylalanín,4-dietylaminofenylalanín,

4-etylaminofenylalanín,4-etylaminofenylalanín,

4-metyltiofenylalanín,4-metyltiofenylalanín,

4-metylfenylalanín,4-phenylglycine,

4-metoxyfenylalanín,4-methoxyphenylalanine,

4-trifluórmetoxyfenylalanín,4-trifluórmetoxyfenylalanín,

4-metoxykarbonylfenylalanín,4-metoxykarbonylfenylalanín,

4-chlórfenylalanin,4-chloro-phenylalanine,

4-brómfenylalanín,4-bromophenylalanine,

4-jódfenylalanín,4-iodophenylalanine,

4-trifluórmetylfenylalanín,4-trifluórmetylfenylalanín,

4-terc-butylfenylalanín,4-tert-butylfenylalanín,

4-izopropylfenylalanín,4-izopropylfenylalanín,

3-metylaminofenylalanín,3-metylaminofenylalanín,

3-metoxyfenylalanín,3-methoxyphenylalanine,

3-metyltiofenylalanín,3-metyltiofenylalanín,

3- fluór-4-metylfenylalanín, kyselina L-pipekolová, kyselina 4-terc-butylfenylpyrohroznová kyselina 4-metylaminofenylpyrohroznová,3-fluoro-4-methylphenylalanine, L-pipecolic acid, 4-tert-butylphenylpyruvic acid 4-methylaminophenylpyruvic acid,

2- naftylfenylalanín,2- Naphthylphenylalanine

4- fluórfenylalanín,4-fluorophenylalanine,

3- fluórfenylalanín,3-fluorophenylalanine,

3-etoxyfenylalanín,3-etoxyfenylalanín,

2.4- dimetylfenylalanín,2,4-dimethylphenylalanine,

3.4- dimetylfenylalanín,3.4- dimethylphenylalanine,

3- metylfenylalanín,3-Methylphenylalanine

4- fenylfenylalanín,4-phenylphenylalanine,

4-butylfenylalanín,4-butylfenylalanín,

2- tienyl-3-alanín,2-Thienyl-3-alanine

3- trifluórmetylfenylalanín, hydroxyfenylalanín,3-trifluoromethylphenylalanine, hydroxyphenylalanine,

3- etylaminofenylalanín,3-ethylaminophenylalanine,

4- alylaminofenylalanín,4-allylaminophenylalanine,

4-dialylaminofenylalanín,4-dialylaminofenylalanín,

4-alyletylaminofenylalanín,4-alyletylaminofenylalanín,

4-etylpropylaminofenylalanín,4-ethylpropylaminophenylalanine,

4-etylizopropylaminofenylalanín, 4-etylmetylcyklopropylfenylalanín,4-ethylisopropylaminophenylalanine, 4-ethylmethylcyclopropylphenylalanine,

4-(1-pyrolidinyl)fenylalanín, 4-0-alyltyrozín,4- (1-pyrrolidinyl) phenylalanine, 4-0-allyltyrosine,

4-O-ety1tyroz ín,4-O-ethyltyrosine,

4-etyltiofenylalanín,4-etyltiofenylalanín,

4-etyltiometylfenylalanín,4-etyltiometylfenylalanín,

4-0-(2-chlóretyl)tyrozín,4-0- (2-chloroethyl) tyrosine,

4-acetylfenylalanín,4-acetyl phenylalanine,

4-etylfenylalanín,4-ethyl phenylalaninate,

3-dimetylaminofenylalanín,3-dimetylaminofenylalanín,

3-etoxyfenylalanín,3-etoxyfenylalanín,

3- fluór-4-metylfenylalanín a3-Fluoro-4-methylphenylalanine a

4- aminometylfenylalanín.4-aminomethylphenylalanine.

Z týchto prekurzorov sú 4-trifluórmetoxyfenylalanín,Of these precursors, 4-trifluoromethoxyphenylalanine,

3- metyltiofenylalanín, 3-fluór-4-metylfenylalanín, kyselina3-methylthiophenylalanine, 3-fluoro-4-methylphenylalanine, acid

4- metylaminofenylpyrohroznová, 3-etoxyfenylalanín, 4-alylaminofenylalanín, 4-dialylaminofenylalanín, 4-alyletylaminofenylalanín, 4-etylpropylaminofenylalanín, 4-etylmetylcyklopropylfenylalanín, 4-(l-pyrolidinyl)fenylalanín, 4-etyltiometylfenylalanín, 4-0-(2-chlóretylJtyrozín, 3-dimetylaminofenylalanín, 3-etylaminofenylalanín, novými látkami, ktoré boli pripravené a charakterizované v rozsahu vynálezu. Tieto prekurzory sa ukázali zvlášť užitočné na prípravu streptograminov podľa vynálezu.4-methylaminophenylpyruvinyl, 3-ethoxyphenylalanine, 4-allylaminophenylalanine, 4-dialylaminophenylalanine, 4-allylethylaminophenylalanine, 4-ethylpropylaminophenylalanine, 4-ethylmethylcyclopropylphenylalanine, 4- (1-pyrrolidinyl) thienyl, 4- (1-pyrrolidinyl) thienyl 3-Dimethylaminophenylalanine, 3-ethylaminophenylalanine, novel compounds which have been prepared and characterized within the scope of the invention, these precursors have proven particularly useful for the preparation of streptogramins of the invention.

Nárokovaný spôsob sa ukázal zaujímavý najmä na prípravu nových streptograminov skupiny B alebo tiež na preferovanú tvorbu niektorých z nich. Tento spôsob je zvlášť vhodný na prípravu PIB.The claimed method has proven to be of particular interest for the preparation of novel group B streptogramins or also for the preferred formation of some of them. This method is particularly suitable for preparing PIB.

Predmetom vynálezu je takisto nukleotidová sekvencia zvolená z množiny zahŕňajúcej:The present invention also provides a nucleotide sequence selected from the group consisting of:

a) celok alebo časť génov papC (SEQ ID č.3), pipA (SEQ ID č.5), snbF (SEQ ID č.6) a hpaA (SEQ ID č.8),(a) all or part of the papC (SEQ ID No.3), pipA (SEQ ID No.5), snbF (SEQ ID No.6) and hpaA (SEQ ID No.8) genes,

b) hybridné sekvencie s celými alebo časťou génov a) a(b) hybrid sequences with all or part of the genes of:

c) sekvencie odvodené od sekvencií a) a b) ako dôsledok degenerácie genetického kódu.(c) sequences derived from sequences (a) and (b) as a result of the degeneracy of the genetic code.

V špecifickom prípade hybridných sekvencií b), tieto sekvencie výhodne kódujú polypeptid uplatňujúci sa pri biosyntéze streptograminov.In the specific case of hybrid sequences b), these sequences preferably encode a polypeptide useful in streptogramin biosynthesis.

Ešte výhodnejšie sú predmetom vynálezu nukleotidové sekvencie reprezentované génmi papC (SEQ ID č.2), papB (SEQ ID č.3), PÍPA (SEQ ID č.5), snbF (SEQ ID č.6) a hpaA (SEQ ID Č.8).Even more preferably, the invention provides nucleotide sequences represented by the genes papC (SEQ ID No. 2), papB (SEQ ID No. 3), PIPA (SEQ ID No. 5), snbF (SEQ ID No. 6), and hpaA (SEQ ID No. 2). .8).

Predmet vynálezu sa ďalej týka rekombinantnej DNA obsahujúcej gén papC (SEQ ID č.2), papB (SEQ ID č.3), pipA (SEQ ID č.5), snbF (SEQ ID č.6) a hpaA (SEQ ID č.8).The present invention further relates to recombinant DNA comprising the papC gene (SEQ ID NO: 2), papB (SEQ ID NO: 3), pipA (SEQ ID NO: 5), snbF (SEQ ID NO: 6) and hpaA (SEQ ID NO: 2). .8).

Vyššie definované nukleotidové sekvencie môžu byť samozrejme súčasťou vektoru typu expresného vektora, ktorý môže byť vektorom s autonómnou alebo integračnou replikáciou alebo samovražedným vektorom (vecteur suicide). Vynález sa takisto vzťahuje na tieto vektory ako i na ľubovoľné použitie sekvencie podľa vynálezu alebo zodpovedajúceho vektora, najmä na prípravu zaujímavých metabolitov.Of course, the above-defined nucleotide sequences may be part of an expression vector type vector, which may be a vector with autonomous or integrative replication or a suicide vector (vecteur suicide). The invention also relates to these vectors as well as to any use of the sequence of the invention or the corresponding vector, in particular for the preparation of interesting metabolites.

Vynález sa takisto týka ľubovoľného mutovaného kmeňa S. pristinaespiralis, ktorý má aspoň jednu genetickú modifikáciu na úrovni niektorého z génov papC (SEQ ID č.2), papB (SEQ ID Č.3), PÍPA (SEQ ID Č.5), snbF (SEQ ID Č.6) a hpaA (SEQ ID č.8) a hlavne kmeňov SP92pipA::OamR. SP92hpaA::DamR. ako i kmeňa S. pristinaespiralis majúceho genetickú modifikáciu, ktorá spočíva v prerušení génu papA dvojitou homológovou rekombináciou, akým je SP212.The invention also relates to any mutated S. pristinaespiralis strain having at least one genetic modification at the level of any of the genes papC (SEQ ID No. 2), papB (SEQ ID No. 3), PIPA (SEQ ID No. 5), snbF (SEQ ID NO. 6) and hpaA (SEQ ID NO. 8), and especially strains of SP92pipA :: Oam R. SP92hpa :: Dam R. as well as a S. pristinaespiralis strain having a genetic modification consisting in disruption of the papA gene by double homologous recombination, such as SP212.

Kombinácia zložky streptogramínov skupiny A a zlúčeniny všeobecného vzorca I podľa vynálezu tvorí kompozície, ktoré sú zaujímavé najmä v terapeutickej oblasti. Tieto kompozície sa používajú najmä na liečenie ochorení spôsobených Gram-pozitívnymi baktériami (rodov Staphylococcus, Streptococcus, Pneumococcus a Enterococcus) a Gram-negatívnych baktérií (rodov Haemophilus, Gonococcus, Meningococcus). Zlúčeniny podľa vynálezu takto synergizujú antibakteriálny účinok pristinamycínu IIB na Staphylococcus aureus IP8203 in vivo u myší v dávkach, ktoré sa v podstate pohybujú medzi 30 mg/kg a 100 mg/kg na perorálne podanie, v prípade, že sú kombinované v pomere PI/PII, ktorý sa rovná 30 : 70.The combination of the group A streptogramin component and the compound of formula I according to the invention forms compositions of particular interest in the therapeutic field. These compositions are used in particular for the treatment of diseases caused by Gram-positive bacteria (genera Staphylococcus, Streptococcus, Pneumococcus and Enterococcus) and Gram-negative bacteria (genera Haemophilus, Gonococcus, Meningococcus). The compounds of the invention thus synergize the antibacterial effect of pristinamycin IIB on Staphylococcus aureus IP8203 in vivo in mice at doses that are substantially between 30 mg / kg and 100 mg / kg for oral administration when combined in a PI / PII ratio. that equals 30: 70.

Vynález sa vzťahuje na každú farmaceutickú kompozíciu, ktorá obsahuje aspoň jednu zlúčeninu všeobecného vzorca I, v prípadnej kombinácii so streptogramínom skupiny A.The invention relates to any pharmaceutical composition comprising at least one compound of the formula I, optionally in combination with group A streptogramin.

V nasledujúcej časti opisu bude vynález bližšie opísaný pomocou príkladov konkrétneho uskutočnenia, pričom tieto príklady majú iba ilustratívny charakter a vôbec neobmedzujú roz18 sah vynálezu, ktorý je jednoznačne vymedzený formuláciou patentových nárokov.In the following, the invention will be described in more detail by way of examples of a specific embodiment, these examples being illustrative only and not limiting in any way the scope of the invention, which is clearly defined by the wording of the claims.

Prehľad obrázkov na výkresoch obr obr obr obr obr obr obr obr obr obr obr obr obrBRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. FIG. FIG. FIG. FIG

Na priložených výkresoch znázorňuje štruktúru pristinamycínu I , znázorňuje štruktúru minoritných zložiek pristinamycínu I, znázorňuje príklady štruktúr zložiek B streptogramínov, znázorňuje zobrazenie oblasti Pstl-Xhol s 2,9 kb, znázorňuje zobrazenie oblasti Xhol-PstI s 4,5 kb, znázorňuje zobrazenie oblasti HindlII-BglII s 1,6 kb, znázorňuje zobrazenie oblasti BglII-Xhol s asi 10 kb, znázorňuje zobrazenie plazmidu pVRC415, znázorňuje zobrazenie plazmidu pVRC420, znázorňuje zobrazenie plazmidu pVRC411, znázorňuje zobrazenie plazmidu pVRC421, znázorňuje zobrazenie plazmidu pVRC414 a znázorňuje stratégiu konštrukcie SP212.In the accompanying drawings it shows the structure of pristinamycin I, shows the structure of minor components of pristinamycin I, shows examples of the structures of the streptogramin B components, shows the 2.9 kb Pst1-Xhol region, shows the 4.5 kb Xhol-PstI region, illustrates the HindIII region -BglII with 1.6 kb, shows the BglII-XhoI region of about 10 kb, shows the plasmid pVRC415, shows the plasmid pVRC420, shows the plasmid pVRC411, shows the plasmid pVRC414, shows the plasmid pVRC414, and shows the construction strategy SP212.

Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION

Príklad 1Example 1

Sekvenovanie a identifikácia génov uplatňujúcich sa pri biosyntéze pristinamycínu I a jeho prekurzorovSequencing and identification of genes involved in the biosynthesis of pristinamycin I and its precursors

Identifikácia sekvenovaním génov situovaných za a pred génom kódujúcim enzým PapA opísaná v patente PCT/FR93/0923, ako i génu umiestneného za génom kódujúcim enzým SnbA, takisto opísaná v patente PCT/FR93/0923.Identification by sequencing of genes located downstream and upstream of the PapA coding gene described in PCT / FR93 / 0923, as well as the gene located behind the SnbA coding gene, also described in PCT / FR93 / 0923.

V tomto príklade je opísané, ako je možné u kozmidu pIBV2, opísaného v patente PCT/FR93/0923 a obsahujúceho štruktúrne gény enzýmov PapA a PapM intervenujúce do syntézy prekurzora 4-dimetylamino-L-fenylalanínu (DMPAPA) pristinamycínuThis example describes how it is possible for the pIBV2 cosmid described in PCT / FR93 / 0923 and containing the structural genes of PapA and PapM enzymes intervening in the synthesis of the precursor 4-dimethylamino-L-phenylalanine (DMPAPA) pristinamycin

I a štruktúrny gén enzýmu SnbA zodpovedný za aktiváciu aromatického prekurzora pristinamycínu I, ktorým je kyselina 3-hydroxypikolínová (3-HPA), identifikovať sekvenovaním okolo uvedených génov a štúdiom zodpovedajúcich mutantov identifikovať i ostatné gény uplatňujúce sa pri biosyntéze prekurzora DMPAPA alebo pri biosyntéze ďalších prekurzorov pristinamycínu I.I and the structural gene of the enzyme SnbA responsible for activation of the aromatic precursor pristinamycin I, which is 3-hydroxypicolinic acid (3-HPA), identified by sequencing around these genes and studies of corresponding mutants to identify other genes involved in biosynthesis of precursor DMPAPA precursor or other pristinamycin I.

Na tento účel sa uskutočnilo subklonovanie vychádzajúce z kozmidu pIBV2 a plazmidu pVRC900, odvodeného od pIBV2 deléciou HindlII a takisto opísaného v patente PČT/FR93/0923.For this purpose, subcloning was performed starting from the cosmid pIBV2 and the plasmid pVRC900, derived from pIBV2 by the deletion of HindIII and also described in patent PTC / FR93 / 0923.

Tento príklad ilustruje, ako sa môžu získať nukleotidové sekvencie fragmentov situovaných za a pred génmi papA a snbA zo S. pristinaespiralis.This example illustrates how nucleotide sequences of fragments located downstream and upstream of the papa and snbA genes from S. pristinaespiralis can be obtained.

Techniky klonovania uvažovaných fragmentov DNA vo vektoroch M13mpl8/19 (Messing a kol., 1981) s) klasickými klonovacími technikami z Escherichia coli, ktoré sú opísané v Maniatis a kol.. (1989).Techniques for Cloning of Contemplated DNA Fragments in M13mp18 / 19 Vectors (Messing et al., 1981) s) by classical cloning techniques from Escherichia coli as described in Maniatis et al. (1989).

1-1 Sekvenovanie a analýza oblasti za génom papA1-1 Sequencing and analysis of the region downstream of the papA gene

Na účel sekvenovania tejto oblasti, nachádzajúcej sa medzi génmi papA a papM. boli fragmenty Pstl-PstI s 1,5 kb, Pstl-Xhol s 0.7 kb a Xhol-Xhol s 0,7 kb subklonované vo vektoroch M13mpl8 a 13mpl9, pričom sa vychádza z plazmidu pVRC900. Klonovacie miesta boli traverzované sekvenovaním na dvojreťazcovej DNA použitím plazmidov pVRC409, opísaných v patente PCT/FR93/0923.Uvedené klonovania sa uskutočnili nasledujúcim spôsobom.For the purpose of sequencing this region between the papA and papM genes. fragments of 1.5 kb PstI-PstI, 0.7 kb PstI-XhoI, and 0.7 kb XhoI-XhoI were subcloned into the M13mpl8 and 13mpl9 vectors, starting from plasmid pVRC900. The cloning sites were traversed by sequencing on double stranded DNA using the plasmids pVRC409 described in PCT / FR93 / 0923. The cloning steps were performed as follows.

Asi 2μg plazmidu pVRC900 sa štiepilo reštrikčnými enzýmami Pst! alebo/a Xhol (New England Biolabs) v podmienkach uvedených dodávateľom. Takto získané reštrikčné fragmenty separovali na 0,8 % agarózovom géli, pričom sa požadované fragmenty Pstl-PstI s 1,5 kb, Pstl-Xhol s 0,7 kb a Hhol-Xhol s 0,7 kb izolujú a prečistia systémom Geneclean (BiolOl, La Jolla, California). Pre každé klonovanie sa asi 10 ng M13mpl9 alebo/aAbout 2µg of plasmid pVRC900 was digested with PstI restriction enzymes. and / or Xhol (New England Biolabs) under the conditions specified by the supplier. The thus obtained restriction fragments were separated on a 0.8% agarose gel, whereby the desired 1.5 kb Pst1-PstI, 0.7 kb Pst1-Xhol and 0.7 kb Hhol-Xhol fragments were isolated and purified by Geneclean (BiolO1). , La Jolla, California). For each cloning, about 10 ng of M13mpl9 and / or

M13mnl8 štiepených použitím PstI alebo/a Xhol viaže 100 ng fragmentu ku klonovaniu v podmienkach opísaných Maniatisem a kol, 1989. Po transformácii kmeňa TG1 (K12, delta(lac-pro) supE thi hsd deltaS traD36 proA^B* laclq lacZ deltaMIS, Gibson, 1984) a selekciou oblastí lýzie na prostredí LB+X-gal+IPTG technikou opísanou Maniatisom a kol. (1989) sa izolujú fágy, ktoré nesú požadované fragmenty. Jednotlivé inzerty boli sekvenované metódou terminácie reťazca použitím vo funkcii iniciátora syntézy univerzálneho priméru alebo syntetických a komplementárnych oligonukleotidov sekvencie 20 nukleotidov inzertu na sekvenovanie. Reakcie sa uskutočnili s použitím fluoroscenčných dideoxynukleotidov (Prism Ready Reactions DyeDeoxy terminátor Cycle Sequncing Kit-Applied Biosystem) a analyzovali na zariadení na sekvenovanie DNA typu Applied Biosystems Model 373A. Vykrytie medzi týmito rôznymi inzerentmi umožnilo zostaviť celú nukleotidovú sekvenciu, ktorá je prítomná medzi génmi papA a papM (SEQ ID č.l).M13mn18 digested with PstI and / or XhoI binds 100 ng of the fragment to cloning under the conditions described by Maniatis et al., 1989. After transformation of the TG1 strain (K12, delta (lac-pro) supE thi hsd deltaS traD36 for A ^ B * laclq lacZ deltaMIS, Gibson , 1984) and selecting lysis regions on LB + X-gal + IPTG media by the technique described by Maniatis et al. (1989) isolate phages that carry the desired fragments. The individual inserts were sequenced by the chain termination method using as a universal primer synthesis initiator or synthetic and complementary oligonucleotides of the 20 nucleotide sequence of the insert for sequencing. Reactions were performed using fluoroscopic dideoxynucleotides (Prism Ready Reactions DyeDeoxy terminator Cycle Sequncing Kit-Applied Biosystem) and analyzed on an Applied Biosystems Model 373A DNA sequencing machine. The cleavage between these different advertisers made it possible to assemble the entire nucleotide sequence that is present between the papA and papM genes (SEQ ID NO: 1).

Z tejto nukleotidovej sekvencie je možné stanoviť čítacie otvorené fázy a identifikovať takto gény uplatňujúce sa pri biosyntéze PI alebo jeho prekurzorov u S. pristinaespiralis, ako i polypeptidy kódované týmito génmi.From this nucleotide sequence, it is possible to determine the open reading frames and thus to identify genes involved in the biosynthesis of PI or its precursors in S. pristinaespiralis, as well as polypeptides encoded by these genes.

Skúmala sa prítomnosť otvorených čítacích fáz vo fragmente Pstl-Xhol s 2,9 kb obsahujúcom nukleotidovú sekvenciu medzi génmi papA a papM, pričom sa využíva skutočnosť, že DNA zo Streptomyces obsahuje vysoký percentuálny podiel báz G a C, ako i vhodné použitie kodónov, ktoré tvoria kódujúce fázy (Bibb a kol. 1984). Metóda Stadena a Mc Lachlana (1982) umožňuje vypočítať pravdepodobnosť kódujúcich fáz v závislosti na použití kodónov Streptomyces už sekvenovaných a zhrnutých v súbore obsahujúcom 19673 kodónov získaných z informačnej bázy Bosance (Dessen a kol.)The presence of open reading frames in the 2.9 kb PstI-XhoI fragment containing the nucleotide sequence between the papA and papM genes was investigated, taking advantage of the fact that Streptomyces DNA contains a high percentage of G and C bases as well as the appropriate codon usage that they form coding phases (Bibb et al. 1984). The Staden and Mc Lachlan method (1982) allows the probability of coding phases to be calculated based on the use of Streptomyces codons already sequenced and summarized in a file containing 19673 codons obtained from the Bosance information base (Dessen et al.)

Táto metóda umožňuje vo fragmente Pstl-Xhol s 2,9 kb charakterizovať štyri velmi pravdepodobné otvorené čítacie fázy, ktoré sú uvedené v nasledujúcej tabuľke (tabuľka I). Tieto fázy sú označené ako fázy 1 až 4 podľa ich polohy od miestaThis method makes it possible to characterize the four very likely open reading phases in the 2.9 kb PstI-XhoI fragment shown in the following table (Table I). These phases are designated as phases 1 to 4 according to their location from the site

Pstl. Pre každú z týchto fáz je uvedená jej dĺžka ako počet báz a jej poloha vo fragmente (miesto Pstl je situované v polohe 1). Pre otvorené čítacie fázy 2 a 3 je takisto uvedený počet aminokyselín kódovaného polypeptidu. Fáza 1,3a 4 sú kódované rovnakým reťazcom a fáza 2 je kódovaná komplementárnym reťazcom (obr.4). Fáza 1 a 4 zodpovedajú C-terminálnej oblasti proteínu PapA resp. N-terminálnej oblasti proteínu PapM, ktoré predtým boli identifikované a opísané v patente PCT/FR/00923.Pst. For each of these phases, its length is indicated as the number of bases and its position in the fragment (the PstI site is situated at position 1). The number of amino acids of the encoded polypeptide is also indicated for open reading phases 2 and 3. Phases 1,3 and 4 are encoded by the same strand and phase 2 is encoded by the complementary strand (Fig. 4). Phases 1 and 4 correspond to the C-terminal region of the PapA protein, respectively. The N-terminal regions of the PapM protein previously identified and described in PCT / FR / 00923.

Tabuľka ITable I

číslo fázy alebo/a označenie génu phase number and / or mark gene Poloha location Počet nukleotidov Count nucleotides Počet aminokyselín Number of amino acids 1 (PapA) 1 (PapA) 1-684 1-684 684 684 - - 2 (PapC)(inv) 2 (PapC) 949-1836 949-1836 888 888 296 296 3 (PapB) 3 (PapB) 1873-2259 1873-2259 387 387 129 129 4 (PapM) 4 (PapM) 2259-2887 2259-2887 629 629 -

Z porovnania produktu fázy 2 (tabuľka I) s proteínovými sekvenciami obsiahnutými v banke Genpro vyplýva 27 % homológia s oblasťou uplatňujúcou sa v rámci aktivity prefenát-dehydrogenázy bifunkčných proteínov TyrA odvodených od Escherichia coli (Hudson a Davidson, 1984) od Erwinia herbicola (EMBL banka údajov, 1991) Táto oblasť TyrA katalyzuje aromatizáciu pre22 fenátu na 4-hydroxypyrohroznan pri biosyntéze tyrozínu. Obdobná aromatizácia vychádzajúca z 4-deoxy-4-aminoprefenátu a vedúca k 4-aminofenylpyrohroznanu sa veľmi pravdepodobne uskutočňuje pri syntéze prekurzora DMPAPA. Táto reakcia by bola katalyzovaná produktom fázy 2, označeným ako PapC (SEQ ID č.2).Comparison of the Phase 2 product (Table I) with the protein sequences contained in Genpro shows 27% homology with the region exerted in the Escherichia coli-derived prefenate-dehydrogenase activity of Escherichia coli-derived TyrA proteins (Hudson and Davidson, 1984) by Erwinia herbicola (EMBL bank) (1991). A similar aromatization starting from 4-deoxy-4-aminoprephenate and leading to 4-aminophenylpyruvate is very likely to occur in the synthesis of the precursor DMPAPA. This reaction would be catalyzed by the Phase 2 product referred to as PapC (SEQ ID No. 2).

Z porovnania produktu fázy 3 (Tabuľka I) s proteínovými sekvenciami obsiahnutými v banke Genpro vyplýva 24 až 30 % homológia s oblasťou uplatňujúcou sa v rozsahu aktivity chorizmát-mutázy bifunkčných proteínov TyrA a PheA odvodených od Escherichia coli ((Hudson a Davidson, 1984) a proteínu TyrA odvodeného od Erwinia herbicola. Táto oblasť katalyzuje izomerizáciu chorizmátu na prefenát pri biosyntéze tyrozínu a fenylalaninu. Obdobná izomerizácia, ktorá vychádza zo 4-deoxy-4-aminochorizmátu a vedúca k 4-deoxy-4-aminoprefenátu pôsobí veľmi pravdepodobne pri syntéze prekurzora DMPAPA. Táto reakcia by bola katalyzovaná produktom fázy 3, označovaným ako PapB (SEQ ID č.3).Comparison of the Phase 3 product (Table I) with the protein sequences contained in the Genpro flask shows 24-30% homology with the region applicable to the Escherichia coli-derived chorismate mutase activity of the bifunctional TyrA and PheA proteins ((Hudson and Davidson, 1984) and Erwinia herbicola-derived TyrA protein catalyzes isomerization of chorizmate to prefenate in tyrosine and phenylalanine biosynthesis.A similar isomerization, starting from 4-deoxy-4-aminochorismate, leading to 4-deoxy-4-aminoprephenate, is most likely involved in DMP precursor synthesis This reaction would be catalyzed by a Phase 3 product referred to as PapB (SEQ ID No. 3).

V prípade TyrA a PheA sú aktivity chorizmát-mutázy a prefenát-dehydratázy alebo prefenát-dehydrogenázy katalyzované rovnakým proteínom. Pri S. pristinaespiralis sú enzymatické aktivity chorizmát-mutázy a prefenát-dehydrogenázy katalyzované dvoma rôznymi proteínmi a to PapB a PapC.In the case of TyrA and PheA, chorismate mutase and prefenate dehydratase or prefenate dehydrogenase activities are catalyzed by the same protein. In S. pristinaespiralis, the enzymatic activities of chorismate mutase and prefenate dehydrogenase are catalyzed by two different proteins, PapB and PapC.

Sekvenčné homológie preukázané pre proteíny PapB a PapC ukazujú, že sa tieto dva proteíny uplatňujú pri biosyntéze aromatického derivátu DMPAPA a to spoločne s proteínmi PapA a PapM. Rovnako ako v prípade papA musí prerušenie (disruption) génov papB a papC viesť ku konštrukcii kmeňov S. pristinaespiralis, ktoré nie sú schopné produkovať PI, ale sú schopné produkovať v prítomnosti pôvodných prekurzorov nové PI modifikované na úrovni zvyšku DMPAPA.Sequence homologies shown for the PapB and PapC proteins show that these two proteins are involved in the biosynthesis of the aromatic derivative DMPAPA, together with the PapA and PapM proteins. As with papA, disruption of the papB and papC genes must result in the construction of strains of S. pristinaespiralis that are unable to produce PI but are able to produce new PIs modified at the DMPAPA residue level in the presence of the original precursors.

1-2. Sekvenovanie a analýza oblasti pred génom papA1-2. Sequencing and analysis of the region upstream of the papA gene

Táto oblasť sa nachádza medzi génom snbA. ktorý kóduje enzým kyselina 3-hydroxypikolínová-AMP-ligázu, opísaný v PCT/FR93/0923, a génom papA.This region is located between the snbA gene. which encodes the 3-hydroxypicolinic acid-AMP-ligase enzyme described in PCT / FR93 / 0923 and the papA gene.

Klonovanie sa uskutočnili spôsobom opísaným v príkladeCloning was performed as described in the example

1-1. pričom sa vychádzalo z plazmidu pVRC900 a kozmidu pIBV2, opísaných v patente PCT/FR93/0923. fragmenty Xhol-Xhol s 1, 3 kb, Xhol-Xhol s 0,2 kb, Xhol-Xhol s 3,3 kb, HindlII-PstI s 1,1 kb Pstl-PstI s 2,2 kb boli subklonované do vektorov M13mpl8 a M13mpl9. Tieto rozdielne klonovania umožnili traverzovať všetky klonovacie miesta. Jednotlivé inzerty boli sekvenované spôsobom opísaným v príklade 1-1, pričom ako iniciátor syntézy sa použil univerzálny primér alebo komplementárne syntetické oligonukleotidy sekvencie 20 nukleotidov inzertu na sekvenovanie.1-1. starting from plasmid pVRC900 and cosmid pIBV2 described in PCT / FR93 / 0923. 1.3 kb XhoI-XhoI fragments, 0.2 kb XhoI-XhoI, 3.3 kb XhoI-XhoI, 1.1 kb HindIII-PstI with 2.2 kb PstI-PstI were subcloned into the M13mpl8 vectors, and M13mpl9. These different cloning allowed to traverse all cloning sites. Individual inserts were sequenced as described in Example 1-1, using a universal primer or complementary synthetic oligonucleotides of the 20 nucleotide sequence of the insert for sequencing.

Pokrytie medzi rôznymi inzertmi umožnilo stanoviť celkovú nukleotidovú sekvenciu prítomnú medzi génmi snbA a papA (SEQ ID č.4).The coverage between the various inserts made it possible to determine the total nucleotide sequence present between the snbA and papA genes (SEQ ID NO: 4).

Z tejto nukleotidovej sekvencie sa môžu stanoviť otvorené čítacie fázy a identifikovať gény, ktoré sa uplatňujú pri biosyntéze prekurzorov produktov PI z S. pristinaespiralis, ako i polypeptidy, ktoré sú kódované týmito génmi.From this nucleotide sequence, open reading phases can be determined and genes that are involved in the biosynthesis of precursors of PI products from S. pristinaespiralis as well as polypeptides that are encoded by these genes can be identified.

Skúmala sa prítomnosť otvorených čítacích fáz vo vnútri Xhol-PstI s 4,5 kb obsahujúcom nukleotidovú sekvenciu medzi génmi snbA a papA, ako sa to už opisuje v príklade 1-1. Táto metóda umožnila charakterizovať vo vnútri fragmentu Xhol-PstI s 4,5 kb štyri veľmi pravdepodobné otvorené čítacie fázy, ktoré sú uvedené v nasledujúcej tabuľke (tabuľka II). Tieto fázy sú označené ako fázy 1 až 4 podľa ich polohy od miesta Xhol. Pre každú z týchto fáz je tu uvedená jej dĺžka čo do počtu báz a jej poloha vo vnútri fragmentu (pričom miesto Xhol je situované v polohe 1). Pre otvorené čítacie fázy 2 a 3 je takisto uvedený počet aminokyselín kódovaného polypeptidu. Fázy 2, a 4 sú kódované rovnakým reťazcom a fáza 1 je kódovaná komplementárnym reťazcom (obr.5). Fázy 1 a 4 zodpovedajú N-terminálnej oblasti proteínov SnbA a PapA, ktoré boli predtým identifikované a opísané v patente PCT/FR93/0923.The presence of open reading phases within the 4.5 kb XhoI-PstI containing the nucleotide sequence between the snbA and papA genes was investigated as described in Example 1-1. This method made it possible to characterize within the 4.5 kb XhoI-PstI fragment four very likely open reading phases, which are shown in the following table (Table II). These phases are referred to as phases 1-4 according to their position from the XhoI site. For each of these phases, its length in number of bases and its position within the fragment (where the XhoI site is located at position 1) are shown. The number of amino acids of the encoded polypeptide is also indicated for open reading phases 2 and 3. Phases 2 and 4 are encoded by the same strand and phase 1 is encoded by the complementary strand (Fig. 5). Phases 1 and 4 correspond to the N-terminal region of the SnbA and PapA proteins previously identified and described in PCT / FR93 / 0923.

Tabuľka IITable II

číslo fázy alebo/a označenie génu phase number and / or mark gene Poloha location Počet nukleotidov Count nucleotides Počet aminokyselín Number of amino acids 1 (SnbA)(inv) 2 (SnbA) (inv) 1-329 1-329 329 329 - - 2 (PipA) 2 (PipA) 607-1671 607-1671 1065 1065 355 355 3 (SnbF) 3 (SnbF) 1800-2993 1800-2993 1194 1194 398 398 4 (PapA) 4 (PapA) 3018-4496 3018-4496 1479 1479 - -

Z porovnania produktu fázy 2 (Tabuľka II) s proteínovými sekvenciami nachádzajúcimi sa v banke Genpro vyplýva 30 % homológia s ornitín-cyklodeaminázou odvodenou od Agrobakterium tumefasciens ( Schindler a kol 1989). Tento enzým pôsobí pri poslednej etape katabolizmu oktopínu, pričom prevádza L-ornitín na L-prolín mechanizmom cyklodeaminácie. Autori preukázali inkorporáciou označeného lyzínu, že kyselina 4-oxopipekolová a kyselina 3-hydroxypipekolínová, nájdené ako v PIA, tak i v virginiaamycíne SI, sú odvodené od lyzínu (Molinero a kol., 1989, Reed a kol., 1989). Cyklodeaminačné reakcia lyzínu, obdobná s reakciou opísanou pre ornitín by viedla k tvorbe kyseliny pipekolovej. Pri prijatí tejto hypotézy bol produkt fázy 2 označený ako PipA (SEQ ID č.5). Výsledky mutácie v géne pipA. uvedenej v 2-1, ukazujú pôsobenie génu popA pri samotnej syntéze kyseliny pipekolovej, pretože táto mutácia neovplyvňuje biosyntézu kyseliny 3-hydroxypikolinovej, od ktorej je odvodený tiež lyzín a ktorého prekurzorom by mohla byt kyselina pipekolová.Comparison of the Phase 2 product (Table II) with the protein sequences found in the Genpro flask shows 30% homology to ornithine-cyclodeaminase derived from Agrobacterium tumefasciens (Schindler et al 1989). This enzyme acts at the last stage of octopine catabolism, converting L-ornithine to L-proline by a cyclodeamination mechanism. The authors have shown by incorporation of labeled lysine that 4-oxopipecolic acid and 3-hydroxypipecolinic acid found in both PI A and virginiaamycin SI are derived from lysine (Molinero et al., 1989, Reed et al., 1989). A cyclodeamination reaction of lysine, similar to that described for ornithine, would lead to the formation of pipecolic acid. Upon accepting this hypothesis, the Phase 2 product was designated PipA (SEQ ID No. 5). Results of mutation in pipA gene. shown in 2-1, show the action of the popA gene in the pipecolic acid synthesis itself, since this mutation does not affect the biosynthesis of 3-hydroxypicolinic acid, from which lysine is also derived and whose precursor could be pipecolic acid.

Z porovnania produktu fázy 2 (Tabuľka II) s proteínovými sekvenciami nachádzajúcimi sa v banke Genpro vyplýva 30 až 40 % homológia s niekoľkými hydroxylázami typu cytochrómu P450 uplatňujúcimi sa pri biosyntéze sekundárnych metabolitov (Omer a kol., 1990, Tower a kol., 1992). pri biosyntéze prekurzorov pristinamycínu sa predpokladá niekoľko hydroxylácií, najmä na úrovni biosyntézy 3-HPA (hydroxylácia v polohe 3 kyseliny pikollnovej) a kyseliny 4-oxopipekolovej (hydroxylácia v polohe 4 kyseliny pipekolovej). Výsledky mutácie v géne pipA. uvedené v 2-1-3, ukazujú na pôsobenie produktu fázy 3 pri hydroxylácií zvyšku kyseliny pipekolovej produktu PIe. Zodpovedajúci gén bol teda označený ako snbF a zodpovedajúci proteín ako SnbF (SEQ ID č.6).Comparison of the Phase 2 product (Table II) with protein sequences found in the Genpro bank shows 30-40% homology with several cytochrome P450-like hydroxylases involved in the biosynthesis of secondary metabolites (Omer et al., 1990, Tower et al., 1992) . several hydroxylations are contemplated in the biosynthesis of pristinamycin precursors, particularly at the levels of 3-HPA biosynthesis (hydroxylation at the 3-position of picollic acid) and 4-oxopipecolic acid (hydroxylation at the 4-position of pipecolic acid). Results of mutation in pipA gene. shown in 2-1-3 show the action of the Phase 3 product in hydroxylating the pipecolic acid residue of PI e . Thus, the corresponding gene was designated as snbF and the corresponding protein as SnbF (SEQ ID NO: 6).

1-3. Sekvenovanie oblasti za génom snbA1-3. Sequencing downstream of the snbA gene

Táto oblasť sa nachádza medzi génom snbA kódujúcim enzým kyselina 3-hydroxypikolínová-adenylát-ligázu a génom snbR kódujúcim membránový proteín, ktorý je pravdepodobne zodpovedný za transport a rezistenciu k PI, pričom obidva gény sú opísané v patente PCT/FR93/0923. Sekvencie sa realizovali z izolovaného fragmentu kozmidu pIBV2, ako je to opísané v príklade 1-1.This region is located between the snbA gene encoding the 3-hydroxypicolinic-adenylate ligase enzyme and the snbR gene encoding the membrane protein, which is probably responsible for transport and resistance to PI, both of which are described in PCT / FR93 / 0923. Sequences were carried out from the isolated fragment of cosmid pIBV2 as described in Example 1-1.

Fragment HindlI-BglII s 1,6 kb bol subklonovaný do vektorov M13mpl8 a M13mpl9 z kozmidu pIBV2. Inzert bol sekvenovaný spôsobom opísaným v príklade 1-1, pričom ako iniciátor syntézy sa použil univerzálny primér alebo komplementárne syntetické oligonukleotidy sekvencie 20 nukleotidov inzertu na sekvenova26 nie. Z takto získanej nukleotidovej sekvencie (SEQ ID č.7) je možné stanoviť otvorené čítacie fázy a identifikovať gény uplatňujúce sa pri biosyntéze prekurzorov produktu PO odvodeného od S. pristinaespiralis, ako i polypeptidy kódované týmito génmi. Skúmala sa prítomnosť otvorených čítacích fáz vo vnútri fragmentu HindlII-BglII s 1,6 kb zodpovedajúcich koncu génov snbA v oblasti za týmto génom, ako sa to opísalo v príkladeThe 1.6 kb HindIII-BglII fragment was subcloned into the M13mpl8 and M13mpl9 vectors from cosmid pIBV2. The insert was sequenced as described in Example 1-1, using a universal primer or complementary synthetic oligonucleotides of the sequence of 20 nucleotides of the insert at sequence 26 as the initiator of the synthesis. From the nucleotide sequence thus obtained (SEQ ID No. 7), it is possible to determine the open reading phases and to identify the genes involved in the biosynthesis of precursors of the S. pristinaespiralis PO product, as well as the polypeptides encoded by these genes. The presence of open reading phases within the 1.6 kb HindIII-BglII fragment corresponding to the end of the snbA genes in the region downstream of this gene was investigated, as described in the example.

1-1. Bola preukázaná úplná otvorená fáza kódovaná rovnakým reťazcom ako gén snbA (obr.6). Vzhľadom k polohe 1 zodpovedajúcej miestu HindlII. začína táto fáza pri nukleotide 249, t.j. 30 nukleotidov za koncom génu snbA, a končí pri nukleotide 1481. Jej veľkosť je 1233 nukleotidov zodpovedajúcich proteínu so 411 aminokyselinami.1-1. A complete open phase coded with the same strand as the snbA gene was shown (Fig. 6). With respect to position 1 corresponding to the HindIII site. this phase begins at nucleotide 249, i. 30 nucleotides after the snbA gene end, and ends at nucleotide 1481. Its size is 1233 nucleotides corresponding to the 411 amino acid protein.

Z porovnania produktu tejto otvorenej fázy s proteínovými sekvenciami nachádzajúcimi sa v banke Genpro vyplýva 30 až 40 % homológia so skupinou proteínov pravdepodobne sa uplatňujúcich (Thorson a kol., 1993) pri transaminácii medziproduktov biosyntézy rôznych antibiotík (DnrJ, EryCl, TylB, Strs, PrgL). Syntéza prekurzora 3-HPA, ktorý sa zdá byť odvodený od lyzínu iným mechanizmom, ako je cyklodeaminácia (viď príklady 1-2 a 2-1, by mohla vyžadovať transaminačnú etapu schopnú katalyzovania produktom uvedenej fázy 1, označovanej ako HpaA (SEQ ID č.8). Výsledky mutácie v tomto géne, uvedené v 2-2, jednoznačne potvrdzuje pôsobenie tohto génu pri syntéze prekurzora 3-HPA a potvrdzujú vyššie uvedenú hypotézu.Comparison of the product of this open phase with protein sequences found in the Genpro bank shows 30-40% homology with a group of proteins likely to be involved (Thorson et al., 1993) in the transamination of various biosynthesis intermediates of various antibiotics (DnrJ, EryCl, TylB, Strs, PrgL) ). The synthesis of the 3-HPA precursor, which appears to be derived from lysine by a mechanism other than cyclodeamination (see Examples 1-2 and 2-1, could require a transamination stage capable of catalyzing the product of said phase 1, referred to as HpaA (SEQ ID NO. The mutation results in this gene, as shown in 2-2, unequivocally confirm the action of this gene in the synthesis of the precursor 3-HPA and confirm the above hypothesis.

Gény papB. pape, pipA. snbF a hpaA opísané v rozsahu vynálezu sú zoskupené s génmi snbA. papA a papM na chromozomálnej oblasti s asi 10 kb (obr.7) To potvrdzuje prítomnosť zhluku génov uplatňujúcich sa pri biosyntéze PI a jeho prekurzorov. Štúdium oblastí pred a za týmto zhlukom génov by mala umožniť identifikáciu ostatných génov uplatňujúcich sa pri biosyntéze prekurzorov produktu PI, najmä L-fenylglyclnu a kyseliny L-2-aminomaslovej.PapB genes. pape, pipA. The snbF and hpaA described within the scope of the invention are grouped with the snbA genes. papA and papM on the chromosomal region of about 10 kb (Fig. 7) This confirms the presence of a cluster of genes involved in the biosynthesis of PI and its precursors. Studying the regions before and after this cluster of genes should allow the identification of other genes involved in the biosynthesis of precursors of the PI product, in particular L-phenylglycine and L-2-aminobutyric acid.

Príklad 2Example 2

Konštrukcia kmeňov rekombinovaných prerušením identifikovaných génovConstruction of strains recombined by disruption of identified genes

Tento príklad ilustruje , ako je možné preukázať pôsobenie génov opísaných v príklade 1 pri biosyntéze prekurzorov pristinamycínov, ako i konštruovať kmene s. pristinaespiralis schopné produkovať nové pristinamycíny. Tieto kmene sa získajú prerušením génov uplatňujúcich sa pri biosyntéze zvyšku, ktorý sa má substituovať, pričom nové pristinamycíny sú produkované komplementáciou týchto mutantov pôvodnými prekurzormi.This example illustrates how it is possible to demonstrate the action of the genes described in Example 1 in the biosynthesis of pristinamycin precursors, as well as to construct strains s. pristinaespiralis capable of producing new pristinamycins. These strains are obtained by disrupting the genes involved in the biosynthesis of the residue to be substituted, wherein the new pristinamycins are produced by complementing these mutants with the original precursors.

Kmeň SP92::pVRC508 použitý v rozsahu vynálezu na produkciu nových derivátov PI nahradením prekurzora DMPAPA ďalšímiThe strain SP92 :: pVRC508 used within the scope of the invention for the production of new PI derivatives by replacing the DMPAPA precursor with other

I molekulami, je opísaný v patente PCT/FR93/0923. Tento kmeň rezultuje z prerušenia mechanizmom crossing-over génu papA uplatňujúceho sa pri biosyntéze prekurzora DMPAPA a zdanlivo pôsobiaceho pri rannej etape týkajúcej sa transaminácie chorizmátu. Toto prerušenie má polárny charakter, pretože v tomto mutante je velmi redukovaná expresia génu papM (PCT/FR93/0923), situovaného 1,5 kb za génom papA a uplatňujúceho sa pri dvojitej metylácii 4-amino-L-fenylalanínu na DMPAPA. V skutočnosti stanovenie aktivity enzýmu metylácie 4-amino-L-fenylalanínu (PAPA) na DMPAPA, indikuje pre mutant SP92::pVRC508 iba aktivitu, ktorá sa rovná 5 % aktivity divokého kmeňa.I molecules are described in PCT / FR93 / 0923. This strain results from a disruption by the cross-over mechanism of the papA gene involved in the biosynthesis of the DMPAPA precursor and appearing at the early stage of chorismatate transamination. This disruption is polar because the expression of the papM gene (PCT / FR93 / 0923), located 1.5 kb downstream of the papA gene, involved in the double methylation of 4-amino-L-phenylalanine to DMPAPA is greatly reduced in this mutant. In fact, determining the activity of the 4-amino-L-phenylalanine methylation enzyme (PAPA) on DMPAPA, indicates for SP92 :: pVRC508 mutant only activity equal to 5% of wild-type activity.

V rozsahu vynálezu tento kmeň SP92::pVRC508 umožňuje v adekvátnych komplementačných a fermentačných podmienkach produkovať nové pristinamycíny modifikované na úrovni zvyšku DMPAPA, ako to bude uvedené v príklade 3. Mutanty rovnakého fenotypu sa môžu získať prerušením génov papB alebo papC. opísaných v rozsahu vynálezu.Within the scope of the invention, this strain SP92 :: pVRC508 allows, under adequate complementation and fermentation conditions, the production of novel pristinamycins modified at the DMPAPA residue level as shown in Example 3. Mutants of the same phenotype can be obtained by disrupting the papB or papC genes. described within the scope of the invention.

Obdobným spôsobom sa môže získať ďalší typ kmeňa S. pristinaespiralis, prerušený v géne papA a majúci rovnaký fenotyp ako kmeň SP92::pVRS508, prerušením mechanizmom crossing-over génu papA. Táto konštrukcia sa uskutočnila s použitím východiskového fragmentu Dphl-HindlII s 4,6 kb, izolovaného z kozmidu pIBV a obsahujúceho oblasť 3' génu pipA. gény snbF a papA v celku, ako i časť 3’ génu papC. Tento fragment sa klonoval do samovražedného génu pDH5, schopného replikovať sa iba u Escherichia coli, avšak nesúceho rezistenčný značkovač (marquer de resistence) exprimujúci sa u Streptomyces (gén rezistencie na tiostreptón alebo na nohiheptid, tsr). Tento vektor pDH5 bol vyvinutý Wohlebbenom a kol. (1991 Nucleic Acid Res. 19, 727-731). Potom sa uskutočnila delécia Bcll-Bcll s 1,1 kb v géne papA a fragment HindlII-HindlII s 2,2 kb nesúci gén amR (rezistencia na genecitín a apramycín) bol zavedený po doplnení kohezívnych koncov. Rekombinantný vektor sa označil ako pVRC414 a je zobrazený na obr.12. Po transformácii kmeňa produkujúceho pristinamycíny plazmidom pVRC414 sa izolovali a analyzovali transformanty rezistentné na geneticín a citlivé na tiostreptón. Tieto klony rezultujú z dvojitej rekombinácie medzi oblasťami DNA kmeňa S. pristinaespiralis pVRC414 a zodpovedajúcej chromozomálnej oblasti kmeňa S. pristinaespiralis tak, ako je opísaná na obr. 13. Jeden z týchto klonov bol označený ako SP212. Jeho fenotyp je identický s fenotypom kmeňa SP92::pVRC508 čo sa týka neschopnosti produkovať nové antibiotiká v prítomnosti pôvodných prekurzorov. Výhodne má tento typ kmeňa, získaného dvojitým mechanizmom crossing-over, lepšiu stabilitu v porovnaní s kmeňmi získanými jednoduchým mechanizmom crossing-over.In a similar manner, another type of S. pristinaespiralis strain, disrupted in the papA gene and having the same phenotype as the SP92 :: pVRS508 strain, can be obtained by disrupting the crossing mechanism of the papA gene. This construct was performed using a 4.6 kb DphI-HindIII starting fragment isolated from the pIBV cosmid and containing the 3 'region of the pipA gene. the snbF and papA genes as a whole, as well as part 3 'of the papC gene. This fragment was cloned into the suicide gene pDH5, capable of replicating only in Escherichia coli, but carrying a resistance marker (marquer de resistance) expressing in Streptomyces (thiostrepton or thiheptide resistance gene, tsr). This vector pDH5 was developed by Wohlebben et al. (1991 Nucleic Acid Res. 19: 727-731). The 1.1 kb Bcl1-Bcl1 deletion was then performed in the papA gene, and the 2.2 kb HindIII-HindIII fragment carrying the amR gene (genecithin and apramycin resistance) was introduced after the cohesive ends were added. The recombinant vector was designated pVRC414 and is shown in FIG. After transformation of the pristinamycin-producing strain with plasmid pVRC414, geneticin resistant and thiostrepton sensitive transformants were isolated and analyzed. These clones result from double recombination between the DNA regions of the S. pristinaespiralis strain pVRC414 and the corresponding chromosomal region of the S. pristinaespiralis strain as described in FIG. 13. One of these clones was designated SP212. Its phenotype is identical to the phenotype of strain SP92 :: pVRC508 in terms of the inability to produce new antibiotics in the presence of the original precursors. Preferably, this type of strain obtained by a double crossing-over mechanism has better stability compared to strains obtained by a simple crossing-over mechanism.

2-1. Konštrukcia mutantu odvodeného od S. pristinaespiralis SP92 prerušeného v géne pipA2-1. Construction of a mutant derived from S. pristinaespiralis SP92 disrupted in the pipA gene

Tento príklad ilustruje, ako je možné prerušením génu pipA konštruovať kmeň S. pristinaespiralis, ktorý už neprodukuje PI v štandartných fermentačných podmienkach a ktorý je schopný produkovať nové pristinamycíny, modifikované na úrovni zvyšku kyseliny 4-oxopipekolovej produktu PIA, v prípade, že sa do fermentačného prostredia pridajú pôvodné prekurzory.This example illustrates how, by disrupting the pipA gene, it is possible to construct a S. pristinaespiralis strain that no longer produces PI under standard fermentation conditions and which is capable of producing novel pristinamycins modified at the level of the 4-oxopipecolic acid residue of PIA when fed to the fermentation. environment will add the original precursors.

Jeho konštrukcia sa uskutočnila s pomocou samovražedného vektora, ktorý sa replikuje iba v Escherichia coli, pričom týmto vektorom je vektor pUC1318. Tento vektor nenesie značkovač rezistencie exprimujúci sa v Streptomyces. Jeho prítomnosť v genóme Streptomyces sa môže detegovať iba hybridizáciou na kolóniách.It was constructed using a suicide vector replicating only in Escherichia coli, the vector being pUC1318. This vector does not carry a resistance marker expressed in Streptomyces. Its presence in the Streptomyces genome can only be detected by colony hybridization.

2-1-1. Konštrukcia plazmidu pVRC4202-1-1. Construction of plasmid pVRC420

Tento príklad ukazuje, ako je možné konštruovať plazmid nereplikujúci sa v S. pristinaespiralis SP92, ktorý sa môže použiť na prerušenie génu pipA mechanizmom dvojitej homológovej rekombinácie.This example illustrates how a non-replicating plasmid in S. pristinaespiralis SP92 can be constructed that can be used to disrupt the pipA gene by a double homologous recombination mechanism.

Plazmid pVRC420 sa konštruoval na účel realizácie chromozomálneho mutanta SP92 prerušeného v géne pipA, pričom sa vychádza z kozmidu pIBV2, opísaného v patente PCT/FR93/0923. Kozmid pIBV2 sa štiepil reštrikčným enzýmom PstI a po separácii takto generovaných fragmentov elektroforézou na agarovom géli (0,8 %) sa izoloval fragment Pstl-PstI s 2,8 kb obsahujúci začiatok génov snbA a snbF a celý gén pipA a tento fragment sa prečistí systémom Geneclean (BiolOl, La Jolla, Kalifornia). 50 ng vektora pUC1318 linearizovaného digesciou PstI. sa viazalo s 200 ng fragmentu s 2,8 kb, ako je to opísané v príkladePlasmid pVRC420 was constructed to carry out the chromosomal mutant SP92 disrupted in the pipA gene, starting from the cosmid pIBV2 described in PCT / FR93 / 0923. The pIBV2 cosmid was digested with the restriction enzyme PstI, and after separation of the thus generated fragments by agarose gel electrophoresis (0.8%), a 2.8 kb PstI-PstI fragment containing the start of the snbA and snbF genes and the entire pipA gene was isolated and purified. Geneclean (BiolOl, La Jolla, CA). 50 ng of the vector pUC1318 linearized by PstI digestion. was bound with 200 ng of a 2.8 kb fragment as described in the Example

1. Kloň nesúci požadovaný fragment sa izoloval po transformácii kmeňa TG1 a selekcii na prostredí LB+ampicilín 150 gg/ml+X-gal+IPTG. Tento rekombinantný plazmid sa označil ako pVRC415 (obr.8). Kazeta s obsahom génu amR. kódujúca rezistenciu na apramycín alebo na geneticín (Kuhstoss a kol., 1991) sa takto zaviedla na výlučné miesto HindlII plazmidu pVRC415, pričom toto miesto je situované za začiatkom génu pipA, Táto konštrukcia sa uskutočnila nasledujúcim spôsobom. Fragment DNA s 2,5 kb obsahujúci gén amR, promótor PermE (Bibb a kol., 1985), ako i 158 prvých aminokyselín génu rezistencie na erytromycín, ermE sa izoloval dvojitou digesciou SalI-BcrlII z plazmidu odvodeného z plazmidov pIJ4026 (nosný plazmid génu ermE pod kontrolou promótora PermE) a pHP45DamR. Po naplnení kohéznych koncov 5· vystupujúcich zo Sali a BglIIA clone carrying the desired fragment was isolated after transformation of the TG1 strain and selection in LB + ampicillin 150 gg / ml + X-gal + IPTG medium. This recombinant plasmid was designated as pVRC415 (FIG. 8). Am R gene cassette. coding for resistance to apramycin or geneticin (Kuhstoss et al., 1991) was thus introduced at the exclusive HindIII site of plasmid pVRC415, which site is located downstream of the pipA gene. This construction was performed as follows. A 2.5 kb DNA fragment containing the am R gene, the PermE promoter (Bibb et al., 1985) as well as the 158 first amino acids of the erythromycin resistance gene, ermE was isolated by double digestion of SalI-BcrlII from a plasmid derived from plasmids pIJ4026 (carrier plasmid) the ermE gene under the control of the PermE promoter) and pHP45Dam R. After filling the cohesive ends 5 exiting SalI and BglII

Klenowovým enzýmom podľa protokolu opísaného Maniatisom a kol, 1989, sa fragment obsahujúci gén amR klonuje na miesto HindlII plazmidu pVRC415, ktorého vystupujúce kohézne konce 5’ boli takisto naplnené Klenowovým enzýmom, ako sa už opisuje vyššie. Takto získaný rekombinantný plazmid bol nazvaný pVRC420. Je reštrikčná mapa je zobrazená na obr. 9.By the Klenow enzyme according to the protocol described by Maniatis et al., 1989, the fragment containing the am R gene is cloned into the HindIII site of plasmid pVRC415, whose protruding 5 'cohesive ends were also filled with the Klenow enzyme, as described above. The recombinant plasmid thus obtained was named pVRC420. A restriction map is shown in FIG. 9th

2-1-2. Izolácia mutantu SP92pipA::flamR prerušeného v géne pipA homológovou rekombináciou2-1-2. Isolation of the SP92pipA :: flam R mutant disrupted in the pipA gene by homologous recombination

Tento príklad ilustruje, ako sa konštruoval mutant odThis example illustrates how to construct a mutant from

S.pristinaespiralis prerušený v géne pipA.S. pristinaespiralis interrupted in the pipA gene.

Tento mutant sa izoloval transformáciou kmeňa SP92 samovražedným plazmidom pVRC420.This mutant was isolated by transformation of the SP92 strain with the suicide plasmid pVRC420.

Príprava protoplastov, ich transformácia, ako i extrakcia celkovej DNA rekombinantných kmeňov sa uskutočnili spôsobmi opísanými Hopwoodom a kol. (1985).The preparation of protoplasts, their transformation, as well as the extraction of total DNA of the recombinant strains were performed according to the methods described by Hopwood et al. (1985).

Kmeň SP92 sa kultivoval v prostredí YEME (Hopwood a kol., 1985): 34 % sacharóza, 5 mM MgCla, 0,25 % glycín - počas 40hodín pri teplote 30°C. Mycélium sa protoplastovalo v prítomnosti lyzozýmu a 5 x 1 μg pVRC420 sa použilo na transformáciu (metódou používajúcou PEG) protoplastov. Po etape jednej noci, keď sa uskutočnila refenerácia protoplastov na prostredie R2YE (D. Hopwood a kol., 1985), sa rekombinanty podrobili selekcii rozložením 3 ml prostredia SNA (D. Hopwood a kol., 1985) obsahujúceho 1500gg/ml geneticínu.The strain SP92 was cultured in a medium YEME (Hopwood et al., 1985): 34% sucrose, 5 mM MgCl and 0.25% glycine - for 40 hours at 30 ° C. The mycelium was protoplasted in the presence of lysozyme and 5 x 1 µg of pVRC420 was used to transform (using the PEG method) protoplasts. After a one night stage, when the protoplasts were regenerated to R2YE (D. Hopwood et al., 1985), the recombinants were selected by digesting 3 ml of SNA medium (D. Hopwood et al., 1985) containing 1500 g / ml geneticin.

Na 5 uskutočnených transformácií sa izolovalo 100 klonov rezistentných na geneticín. Tieto rekombinanty rezultujú z integrácie uskutočnenej jednoduchou alebo dvojitou homológovou rekombináciou medzi génom pipA neseným chromozómom kmeňa SP92 a časťami génu pipA obsiahnutými vo fragmente s 5,3 kb nesenom samovražedným plazmidom pVRC420. Na účel selekcie rekombinantov získaných dvojitým mechanizmom crossing-over (t.j. neobsahujúcich vo svojom genóme časť pUC1318 plazmidu pVRC420) sa uskutočnili hybridizácie na kolóniách s 90 klonmi, pričom ako sonda sa použil pUC19 označený v (a32P)dCTP, ako to opisuje Maniatis a kol. (1989). Selekciou sa získalo 10 klonov rezistentných na geneticín, avšak nehybridujúcich vektor pUC19. Spóry rekombinantov sa izolovali rozložením a rastom v prostredí HT7+10 μg geneticínu a opätovným rozložením na rovnakom prostredí na získanie izolovaných kolónií. Na overenie integračnej plochy plazmidu pVRC420 sa uskutočnilo niekoľko Southernových prenosov s celkovou DNA niekoľkých rekombinantných klonov, purifikovaných spôsobom opísaným Hopwoodom a kol. (1985), a hybridovaných fragmentom Pstl-PstI s 2,8 kb použitým ako sonda po označení (a-32P)dCTP. Získané výsledky potvrdzujú, že tieto rekombinanty sa získali dvojitým mechanizmom crossing-over medzi vektorom pVCR420 a chromozómom kmeňa SP92, vedúcim k nahradeniu fragmentu Pstl-PstI s 2,8 kb obsahujúcim gén pipA fragmentom Pstl-PstI s 5,3 kb obsahujúcim gén pipA prerušený zavedením génu amR. Jeden z týchto mutantov bol označený ako SP92pipA::namR.100 geneticin resistant clones were isolated for 5 transformations performed. These recombinants result from integration by single or double homologous recombination between the pipA gene carried by the SP92 chromosome and portions of the pipA gene contained in the 5.3 kb fragment carried by the suicide plasmid pVRC420. For the selection of recombinants obtained by the double crossing-over mechanism (ie not containing part of the pUC1318 plasmid pVRC420 in their genome) hybridizations were carried out on colonies of 90 clones using pUC19 labeled in (and 32 P) dCTP as a probe, as described by Maniatis and al. (1989). Selection yielded 10 clones resistant to geneticin but not hybridizing to the pUC19 vector. Spores of the recombinants were isolated by digestion and growth in HT7 + 10 µg geneticin and re-digestion in the same medium to obtain isolated colonies. To verify the integration area of plasmid pVRC420, several Southern blots were performed with total DNA of several recombinant clones, purified as described by Hopwood et al. (1985), and hybridized with a 2.8 kb PstI-PstI fragment used as a probe after labeling (? 32 P) dCTP. The results obtained confirm that these recombinants were obtained by a double crossing-over mechanism between the pVCR420 vector and the chromosome of SP92, resulting in the replacement of the 2.8 kb PstI-PstI fragment containing the pipA gene with the 5.3 kb PstI-PstI fragment containing the pipA gene disrupted introduction of the am R gene. One of these mutants was designated SP92pipA :: nam R.

2-1-3. Produkcia pristinamycínov mutantom SP92pipA::namR 2-1-3. Production of pristinamycins by the SP92pipA :: nam R mutant

Tento príklad ilustruje, ako sa stanoví, že mutant kmeňaThis example illustrates how the mutant strain is determined

S. pristinaespiralis SP92 prerušený v géne pipA integráciou plazmidu pVCR420 jednako už neprodukuje PI v štandartných fermentačných podmienkach a jednak umožňuje vysokú produkciu minoritnej formy zložiek B Streptogramínov, v ktorých je kyselina -oxopipekolová nahradená kyselinou pipekolovou.S. pristinaespiralis SP92 disrupted in the pipA gene by integration of plasmid pVCR420, however, no longer produces PI under standard fermentation conditions and, on the other hand, allows high production of the minor form of Streptogramin components B in which the oxopipecolic acid is replaced by pipecolic acid.

Mutant SP92pipA::DamR, ako i kmeň SP92 ako referenčný kmeň sa kultivovali v produkčnom kvapalnom prostredí. Fermentácia sa uskutočnila nasledujúcim spôsobom: 0,5 ml suspenzie spór vyššie uvedeného kmeňa sa v sterilných podmienkach pridá k 40 ml inokulačného prostredia v Erlenmeyerovej banke s objemom 300 ml. Uvedené inokulačné prostredie tvorí 10 g/1 kukuričného výluhu (Corn Steep), 15 g/1 sacharózy, 10 g/1 síranu amónneho, 1 g/1 hydrogénfosforečnanu draselného, 3 g/1 chloridu sodného, 0,2 g/1 heptahydrátu síranu horečnatého a 1,25 g/1 uhličitanu vápenatého. pH sa nastaví hydroxidom sodného na hodnotu 6,9 a to ešte pred zavedením uhličitanu vápenatého. Obsah Erlenmeyerových baniek sa mieša počas 44 hodín pri teplote 27°C v rotačnej miešačke pri 325 otáčkach za minútu. 2, 5 ml vyššie uvedeného prostredia starého 44 hodín sa sterilné pridá do 30 ml produkčného prostredia v Erlenmeyerovej banke s obsahom 300 ml. Produkčné prostredie tvorí 25 g/1 sójovej múčky, 7,5 g/1 škrobu, 22,5 g/1 glukózy, 3,5 g/1 kŕmnych kvasníc, 0,5 g/1 síranu zinočnatého a 6 g/1 uhličitanu vápenatého. pH sa nastaví na hodnotu 6,0 kyselinou chlorovodíkovou a to ešte pred zavedením uhličitanu vápenatého. Erlenmeyerove banky sa miešajú počas 24, 28 a 32 hodín pri teplote 27°C. Po uplynutí každého z uvedených časových intervalov sa 10 g prostredia zavedie do Erlenmeyerovej banky, do ktorej sa potom pridá 20 ml mobilnej fázy tvorenej 34 % acetonitrilu a 66 % 0,lM roztoku dihydrogénfosforečnanu draselného (ktorého hodnota pH je nastavená na 2,9 koncentrovanou kyselinou fosforečnou) a umožňujúcej extrakciu pristinamycínov. Po premiešaní sa celý podiel odstredí a pristinamycíny, ktoré sú obsiahnuté v supernatante sa stanovia vysokovýkonnou kvapalinovou chromatografiou, pričom sa 150 μΐ centrifugačného supernatantu zavedie na stĺpec Nucleosilu 5-C8 s rozmermi 4,6 x 150 mm a elúcia sa uskutoční elučnou sústavou tvorenou zmesou 40 % acetonitrilu a 60 % 0, IM fosfátového pufra s pH 2,9. Pristinamycíny I sa detegujú pomocou ich absorbancie v ultrafialovom svetle s vlnovou dĺžkou 206 nm.The SP92pipA :: Dam R mutant as well as the SP92 strain as a reference strain were cultured in a production liquid medium. Fermentation was carried out as follows: 0.5 ml of the spore suspension of the above strain was added under sterile conditions to a 40 ml inoculation medium in a 300 ml Erlenmeyer flask. The inoculation medium comprises 10 g / l corn steep, 15 g / l sucrose, 10 g / l ammonium sulfate, 1 g / l potassium hydrogen phosphate, 3 g / l sodium chloride, 0.2 g / l sulfate heptahydrate magnesium and 1.25 g / l calcium carbonate. The pH is adjusted to 6.9 with sodium hydroxide prior to the introduction of the calcium carbonate. The contents of the Erlenmeyer flasks are stirred for 44 hours at 27 ° C in a rotary mixer at 325 rpm. 2.5 ml of the above-mentioned 44-hour medium is sterile added to a 30 ml production medium in an Erlenmeyer flask containing 300 ml. The production environment consists of 25 g / l soybean meal, 7.5 g / l starch, 22.5 g / l glucose, 3.5 g / l feed yeast, 0.5 g / l zinc sulfate and 6 g / l calcium carbonate . The pH was adjusted to 6.0 with hydrochloric acid before the calcium carbonate was introduced. The Erlenmeyer flasks are stirred for 24, 28 and 32 hours at 27 ° C. At the end of each time interval, 10 g of the medium is introduced into an Erlenmeyer flask, to which 20 ml of a mobile phase consisting of 34% acetonitrile and 66% 0.1 M potassium dihydrogen phosphate solution (whose pH is adjusted to 2.9 with concentrated acid) are added. phosphorous) and allowing the extraction of pristinamycins. After mixing, the entire aliquot is centrifuged and the pristinamycins contained in the supernatant are determined by high performance liquid chromatography, where a 150 μΐ centrifugation supernatant is loaded onto a 4.6 x 150 mm Nucleosil 5-C8 column and eluted with a 40% elution system. % acetonitrile and 60% 0.1M phosphate buffer pH 2.9. Pristinamycins I are detected by their absorbance in ultraviolet light with a wavelength of 206 nm.

Získané výsledky ukazujú, že pri vyššie uvedených štandartných fermentačných podmienkach mutantný kmeň SP92pipA:: QamR neprodukoval PI a to ani po 24, 28 a 32 hodinách fermentácie, kým referenčný kmeň SP92 produkoval pri uvedených troch časových etapách štandartné množstvo PI. Obidva uvedené kmene produkovali rovnaké množstvo Pil. Mutantný kmeň SP92pipA:: hamR je takto účinne blokovaný v stupni biosyntézy PI.The results obtained show that under the above standard fermentation conditions, the mutant strain SP92pipA :: Qam R did not produce PI even after 24, 28 and 32 hours of fermentation, while the reference strain SP92 produced a standard amount of PI at the three time stages. Both strains produced the same amount of Pil. The SP92pipA :: ham R mutant strain is thus effectively blocked at the PI biosynthesis step.

Takisto sa uskutočnili komplementárne fermentačné testy, pri ktorých sa po 16 kultivácii pridali k produkčnému prostrediu rôzne prekurzory PI a to oddelene alebo spoločne. Výsledky týchto komplementácií umožnili preukázať, že v prípade, ak sa k fermentačnému prostrediu pridá 100 mg/1 kyseliny pipekolovej a 100 ng./l DMPAPA a to súčasne, potom mutantný kmeň produkuje normálne minoritný derivát PI a síce PIe (ktorého produkcia je nižšia ako 5 % pri kmeni SP92) v množstve ekvivalentnom množstve PI produkovanom referenčným kmeňom. K takejto produkcii nedochádza v prípadoch, keď sú kyselina pipekolová a DMPAPA pridané oddelene. PIe sa líši od PI (čo je hlavná zložka PI) neprítomnosťou ketónovej funkcie v polohe 4 kyseliny pipekolovej. Skutočnosť, že komplementácia mutantného kmeňa SP92pipA:: namR sa môže realizovať súčasným pridaním kyseliny pipekolovej a DMPAPA, ukazuje, že gény papA a pravdepodobne papB a papM boli prerušené polárnym účinkom konštrukcie. V skutočnosti všetky tieto gény sú situované za génom pipA a sú pravdepodobne kontraskriptované s pipA. Prerušenie tohto posledného uvedeného génu spôsobuje teda i prerušenie génov pap a teda i absenciu DMPAPA. Skutočnosť, že komplementácia mutantného kmeňa SP92pipA::DamR kyselinou pipekolovou spôsobí produkciu PIe a nie produkciu PIa vedie k dvom záverom: prvým z týchto záverov je, že konštrukcia cyklu PI sa deje inkorporáciou kyseliny pipekolovej a nie kyseliny 4-oxo-pipekolovej a že na hydroxylácia poskytujúca ketónovú funkciu v polohe 4 sa uskutočňuje až neskoršie. Druhým záverom je, že táto hydroxylácia sa pravdepodobne realizuje enzýmom SnbF, ktorého štruktúrny gén je situovaný priamo za génom pipA. V skutočnosti evidentná polarita prerušenia génu pípa na gény pap implikuje pravdepodobne polárny účinok na gén snbF, ktorý je situovaný medzi génom pipA a génmi pap. následkom čoho je inhibícia hydroxylačnej funkcie zvyšku kyseliny pipekolovej v PI na kyselinu 4-hydroxypipekolovú nájdenú v PIe a PIg (obr.2), ktorá sa potom oxiduje na kyselinu 4-oxo-pipekolovú v PIA.Complementary fermentation assays were also performed in which, after 16 cultures, various PI precursors were added to the production medium separately or together. The results of these complementations made it possible to show that if 100 mg / l pipecolic acid and 100 ng./l DMPAPA were added to the fermentation broth simultaneously, the mutant strain produced normally a minor PI derivative, namely PI e (lower production) as 5% for strain SP92) in an amount equivalent to the amount of PI produced by the reference strain. Such production does not occur when pipecolic acid and DMPAPA are added separately. PI e differs from PI (which is a major component of PI) in the absence of the ketone function at position 4 of pipecolic acid. The fact that the complementation of the SP92pipA :: nam R mutant strain can be accomplished by the simultaneous addition of pipecolic acid and DMPAPA shows that the papA and probably papB and papM genes were disrupted by the polar effect of the construct. In fact, all these genes are located downstream of the pipA gene and are probably counter-transcribed with pipA. Thus, disruption of the latter gene also causes disruption of the pap genes and hence the absence of DMPAPA. The fact that complementation of the SP92pipA :: Dam R mutant with pipecolic acid causes PI e production and not PI production and leads to two conclusions: the first of these is that the construction of the PI cycle is done by incorporating pipecolic acid and not 4-oxo-pipecolic acid and that for the hydroxylation providing the ketone function at the 4-position, it is only later. The second conclusion is that this hydroxylation is likely to be accomplished by the SnbF enzyme, whose structural gene is located directly downstream of the pipA gene. In fact, the apparent polarity of the ppa gene disruption on the pap genes probably implies a polar effect on the snbF gene, which is situated between the pipA gene and the pap genes. as a result, inhibition of the hydroxylating function of the pipecolic acid residue in PI to 4-hydroxypipecolic acid found in PI e and PI g (Fig. 2), which is then oxidized to 4-oxo-pipecolic acid in PI A.

Realizácia takéhoto mutantného kmeňa umožnila konštruovať kmeň S. pristinaespiralis, ktorý je schopný produkovať PI iba v prítomnosti prekurzorov produktu PI, ktorými sú DMPAPA a kyselina pipekolová, z ktorých je tento kmeň schopný produkovať, v množstve ekvivalentnom množstvu produkovanému nemutantným kmeňom, derivát PI, ktorý je normálne minoritným derivátom v pristinamycínovej zmesi. Rovnako tak v prítomnosti pôvodných prekurzorov alebo zmesi pôvodných prekurzorov a prekurzorov normálne, prítomných v PI bude môcť tento kmeň produkovať nové pristinamycíny modifikovanými v jednom alebo druhom alebo v oboch zvyškoch DMPAPA a kyseliny 4-oxopipekolovej.The realization of such a mutant strain made it possible to construct a strain of S. pristinaespiralis which is capable of producing PI only in the presence of precursors of the PI product, DMPAPA and pipecolic acid from which it is capable of producing, in an amount equivalent to that produced by the non-mutant strain. is normally a minor derivative in the pristinamycin mixture. Similarly, in the presence of the original precursors or a mixture of the original precursors and the precursors normally present in PI, this strain will be able to produce novel pristinamycins modified in either or both or both of DMPAPA and 4-oxopipecolic acid residues.

2-2. Konštrukcia mutantného kmeňa S. pristinaespiralis SP92 prerušeného v géne hpaA2-2. Construction of a mutant strain of S. pristinaespiralis SP92 disrupted in the hpaA gene

Tento príklad ilustruje, ako sa dá prerušením génu hpaA konštruovať kmeň S. pristinaespiralis SP92, ktorý neprodukuje PI v normálnych štandartných fermentačných podmienkach a ktorý je schopný produkovať nové pristinamycíny modifikované na úrovni prekurzora 3-HPA v prípade, že sa k fermentačnému prostrediu pridajú pôvodné prekurzory.This example illustrates how, by disrupting the hpaA gene, a S. pristinaespiralis SP92 strain that does not produce PI under normal standard fermentation conditions and which is capable of producing new pristinamycins modified at the level of precursor 3-HPA can be constructed when original precursors are added to the fermentation environment. .

Konštrukcia uvedeného kmeňa sa uskutočnila pomocou plazmidu, ktorý sa nereplikuje u S. pristinaespiralis SP92 a ktorý sa môže použiť na prerušenie génu hpaA dvojitou homológovou rekombináciou.Construction of said strain was carried out using a plasmid that does not replicate in S. pristinaespiralis SP92 and which can be used to disrupt the hpaA gene by double homologous recombination.

2-2-1. Konštrukcia samovražedného plazmidu pVRC4212-2-1. Construction of suicide plasmid pVRC421

Konštrukcia plazmidu pVRC421 sa uskutočnila pomocou samovražedného vektora, ktorý je schopný sa replikovať iba u Escherichia coli, avšak ktorý nesie rezistenčný značkovač exprimujúci sa u Streptomyces, t.j. gén rezistencie na tiostreptón alebo na nosiheptid tsr. Tento vektor pDH5 vyvinul Hillemann a kol. (1991).Construction of the plasmid pVRC421 was performed using a suicide vector that is only able to replicate in Escherichia coli, but which carries a resistance marker expressing in Streptomyces, i. thiostrepton or nosiheptide tsr resistance gene. This vector pDH5 was developed by Hillemann et al. (1991).

Plazmid pVRC421 sa konštruoval na účel realizácie chromozomálneho mutantného kmeňa SP92 prerušeného v géne hpaA z kozmidu pIBV2, opísaného v patente PCT/FR93/0923. Kozmid pIBV2 sa dispergoval reštrikčným enzýmom Sphl a po separácii takto generovaných fragmentov elektrolýzou na agarózovom géli (0,6 %) sa izoloval fragment Sphl-Sphl s 4,8 kb, obsahujúci celý gén hpaA a takmer celý gén snbA. a tento fragment sa purifikoval vyššie opísaným systémom Geneclean. 50 ng vektora pDH5 linearizovaného digesciou Sphl sa ligovalo 200 ng fragmentu s 4, kb, ktorý sa opisuje neskoršie. Kloň, ktorý nesie požadovaný fragment sa izoloval po transformácii kmeňa TG1 a selekcii na prostredie LB+ampicilín 150 gg/ml+I/TG+X-gal. Rekombinantný plazmid sa označil ako pVRC411 (obr. 10). Kazeta, ktorá obsahuje gén amR kódujúci rezistenciu na apramycín alebo na geneticín sa potom zavedie do výlučného miesta Pflml plazmidu pVRC411, pričom toto miesto je situované 610 pb za začiatkom génu hpaA. Táto konštrukcia sa uskutočnila nasledujúcim spôsobom. Fragment DNA s 2,2 kb obsahujúci gén amR sa izoloval po digescii plazmidu pHP45 amR, obsahujúceho gén amR. pomocou HindlII. Po naplnení vystupujúcich kohéznych koncov 5' HindlII Klenowovým enzýmom podľa protokolu opísanom Maniatisom a kol. (1989) sa fragment obsahujúci gén amR klonovaný do miesta Pflml plazmidu pVRC411, ktorého vystupujúce kohézne konce 3' sa uvoľnili enzýmom T4-polymerázou, ako je opísané Maniatisom a kol., (1989). Rekombinantný plazmid, ktorý sa takto získal, sa označil ako pVRC421. Jeho reštrikčná mapa je zobrazená na obr.11.Plasmid pVRC421 was constructed to carry out the chromosomal mutant strain SP92 disrupted in the hpaA gene of cosmid pIBV2, described in PCT / FR93 / 0923. The cosmid pIBV2 was dispersed with the restriction enzyme SphI and after separation of the thus generated fragments by electrolysis on an agarose gel (0.6%), a 4.8 kb Sph1-Sph1 fragment containing the entire hpaA gene and almost the entire snbA gene was isolated. and this fragment was purified by the Geneclean system described above. 50 ng of SphI digested linear vector pDH5 was ligated with 200 ng of the 4 kb fragment described later. The clone carrying the desired fragment was isolated after transformation of the TG1 strain and selection to LB + ampicillin 150 gg / ml + I / TG + X-gal. The recombinant plasmid was designated as pVRC411 (FIG. 10). The cassette containing the am R gene encoding apramycin or geneticin resistance is then inserted into the Pflml exclusive site of plasmid pVRC411, which is located 610 bp downstream of the hpaA gene. This construction was carried out as follows. The 2.2 kb DNA fragment containing the am R gene was isolated after digestion of the plasmid pHP45 am R containing the am R gene. using HindIII. After filling the protruding cohesive ends with 5 'HindIII Klenow enzyme according to the protocol described by Maniatis et al. (1989), a fragment containing the am R gene was cloned into the Pflml site of plasmid pVRC411, whose protruding 3 'cohesive ends were released by the enzyme T4-polymerase as described by Maniatis et al., (1989). The recombinant plasmid thus obtained was designated as pVRC421. Its restriction map is shown in Fig. 11.

2-2-2. Izolácia kmeňa SP92hpaA::úamR prerušeného v géne hpaA homológovou rekombináciou2-2-2. Isolation of strain SP92hpaA :: ham R interrupted in hpaA gene by homologous recombination

Tento príklad ilustruje, ako sa konštruuje mutantný kmeňThis example illustrates how to construct a mutant strain

S. pristinaespiralis prerušený v géne hpaA.S. pristinaespiralis disrupted in hpaA gene.

Tento mutant sa izoloval transformáciou kmeňa SP92 samovražedným plazmidom pVRC421.This mutant was isolated by transformation of the SP92 strain with the suicide plasmid pVRC421.

Príprava protoplastov a ich transformácia sa uskutočnili spôsobmi, ktoré sú uvedené vyššie.The protoplasts were prepared and transformed according to the methods described above.

Kmeň SP92 sa kultivoval na prostredí ΥΕΜΕ (34M % sacharóza, 5 mM MgCl^, 0,25 % glycín) počas 40 hodín pri teplote 30°C. Mycélium sa protoplastovalo v prítomnosti lyzozýmu a 5 x 1 jzg plazmidu pVRC421 sa použilo na transformáciu (metódou používajúcou PEG) protoplastov. Počas noci, keď prebehla regenerácia protoplastov na prostredí R2YE, sa rekombinanty podrobili selekcii rozložením 3 ml prostredia SNA obsahujúceho 1500 gg/ml geneticínu.The SP92 strain was cultured in ΥΕΜΕ (34M% sucrose, 5 mM MgCl 2, 0.25% glycine) for 40 hours at 30 ° C. The mycelium was protoplasted in the presence of lysozyme and 5 x 1 µg of plasmid pVRC421 was used to transform (using PEG method) protoplasts. During the night, when the protoplasts were regenerated in the R2YE medium, the recombinants were selected by digesting 3 ml of SNA medium containing 1500 gg / ml geneticin.

Na 5 realizovaných transformácií sa izolovalo 600 klonov rezistentných na geneticín. Tieto rekombinanty rezultujú z integrácie realizovanej jednoduchou alebo dvojitou homológovou rekombináciou medzi génom hpaA. neseným chromozómom kmeňa SP92, a fragmentom s 6 kb samovražedného plazmidu pVRC421. Na selekciu rekombinantov získaných dvojitým mechanizmom crossing-over (t.j. klony, ktoré už neobsahujú vo svojom genóme časť pDH5 plazmidu pVRC421), sa uvedené klony opätovne zaočkovali na prostredie HT7 obsahujúce 40 Mg/ml tiostreptónu. Selekciou sa získalo 6 klonov rezistentných na geneticín, avšak citlivých na tiostreptón. Spóry rekombinantov sa izolovali rozložením a rastom na prostredí HT7+10 gg/ml geneticínu a opätovným rozložením na rovnakom prostredí, aby sa získali izolované kolónie. Na overenie integračnej polohy plazmidu pVRC421 sa uskutočnili rôzne Southernove prenosy celkovej DNA 6 rekombinantných klonov purifikovaných spôsobom opísaným Hopwoodom a kol. (1985) a hybridovaným fragmentom Sphl-Sphl s 4, 8 kb použitým ako sonda na označenie (a-32P)dCTP. Získané výsledky potvrdzujú, že sa tieto rekombinanty získali dvojitým mechanizmom crossing-over medzi vektorom pVRC421 a chromozómom kmeňa SP92, vedúcim k nahradeniu fragmentu Sphl-Sphl s 4,8 kb obsahujúceho gén hpaA fragmentom Sphl-Sphl s 6 kb obsahujúcim gén hpaA prerušený génom amR. Jeden z týchto mutantov bol označený ako SP92hpaA::DamR.600 geneticin resistant clones were isolated for 5 transformations performed. These recombinants result from integration accomplished by single or double homologous recombination between the hpaA gene. carried by the SP92 chromosome and a 6 kb fragment of the suicide plasmid pVRC421. For the selection of recombinants obtained by the double crossing-over mechanism (ie clones that no longer contain part of the pDH5 plasmid pVRC421 in their genome), said clones were re-seeded in HT7 medium containing 40 Mg / ml thiostrepton. Selection yielded 6 clones resistant to geneticin but sensitive to thiostrepton. Recombinant spores were isolated by digestion and growth on HT7 + 10 gg / ml geneticin and re-digested in the same medium to obtain isolated colonies. To verify the integration position of plasmid pVRC421, various Southern blots of total DNA of 6 recombinant clones were purified as described by Hopwood et al. (1985), and a 4.8 kb hybridized SphI-SphI fragment used as a probe to label (? 32 P) dCTP. The results obtained confirm that these recombinants were obtained by a double crossing-over mechanism between the pVRC421 vector and the chromosome of SP92, resulting in the replacement of the 4.8 kb Sphl-Sphl fragment containing the hpaA gene with the 6 kb Sphl-Sphl fragment containing the hpaA gene disrupted by the am gene. R. One of these mutants was designated SP92hpaA :: Dam R.

2-2-3. Produkcia pristinamycínov mutantom SP92hpaA::flamR 2-2-3. Production of pristinamycins by SP92hpaA :: flam R mutant

Tento príklad ilustruje, ako sa stanoví, že mutant kmeňaThis example illustrates how the mutant strain is determined

S. pristinaespiralis SP 92 prerušený v géne hpaA integráciou plazmidu pVRC421 už neprodukuje PI v štandartných fermentačných podmienkach.S. pristinaespiralis SP 92 disrupted in the hpaA gene by integration of plasmid pVRC421 no longer produces PI under standard fermentation conditions.

Mutantný kmeň SP92hpaA::namR. ako i kmeň SP92 ako referenčný kmeň, sa kultivovali v kvapalnom produkčnom prostredí. Fermentácia sa uskutočnila spôsobom opísaným v príklade 2-1-3, potom sa pristinamycíny extrahovali a stanovili vyššie uvedeným spôsobom. Výsledky ukazujú, že pri realizovaných fermentačných podmienkach mutantný kmeň SP92hpaA::úamR neprodukuje PI a to ani po 24, 28 a 32 hodinách fermentácie, kým referenčný kmeň produkoval v uvedených troch časových etapách štandardné množstvo PI. Oba kmene produkovali rovnaké množstvá Pil. Mutantný kmeň SP92hpaA::úamR je takto účinne blokovaný v stupni biosyntézy PI. Tiež sa uskutočnili komplementárne fermentačné testy, pri ktorých sa pridali po 16 hodinách kultivácie ku kultivačnému produkčnému prostrediu rôzne prekurzory PI a to oddelene alebo spoločne. Keď sa k fermentačnému prostrediu pridá 100 mg/1 kyseliny 3-hydroxypikolínovej, potom mutantný kmeň produkuje Pi v množstve, ktoré je ekvivalentné množstvu PI produkovanom referenčným kmeňom. Skutočnosť, že komplementácia mutantného kmeňa SP92hpaA::flamR sa môže realizovať jedine po pridaní kyseliny 3-hydroxypikolinovej, ukazuje, že gén hpaA sa uplatňuje pri syntéze tohto prekurzora.Mutant strain SP92hpaA :: nam R. as well as strain SP92 as a reference strain, were cultured in a liquid production medium. The fermentation was carried out as described in Example 2-1-3, then the pristinamycins were extracted and determined as above. The results show that under the fermentation conditions realized, the mutant strain SP92hpaA :: amam R does not produce PI even after 24, 28 and 32 hours of fermentation, whereas the reference strain produced a standard amount of PI in the three time stages. Both strains produced equal amounts of Pil. The mutant strain SP92hpaA :: amam R is thus effectively blocked at the PI biosynthesis step. Complementary fermentation tests were also performed in which different PI precursors were added separately or together after 16 hours of culture to the culture production medium. When 100 mg / L of 3-hydroxypicolinic acid is added to the fermentation broth, the mutant strain produces Pi in an amount equivalent to the amount of PI produced by the reference strain. The fact that complementation of the mutant strain SP92hpaA :: flam R can only be accomplished by the addition of 3-hydroxypicolinic acid shows that the hpaA gene is involved in the synthesis of this precursor.

Konštrukcia tohto mutantu umožnila získať kmeň S. pristinaespiralis mutovaný na produkciu PI, ktorý je však v prítomnosti prekurzora 3-HPA schopný produkovať PI v množstve, ktoré je ekvivalentné množstvu produkovanému východiskovým kmeňom. Rovnako ako v predchádzajúcich príkladoch sa dá očakávať, že takýto kmeň v prítomnosti pôvodných prekurzorov bude produkovať nové pristinamycíny modifikované na úrovni zvyšku kyselinyThe construction of this mutant made it possible to obtain a strain of S. pristinaespiralis mutated for PI production, but which, in the presence of the 3-HPA precursor, is capable of producing PI in an amount equivalent to that produced by the parent strain. As in the previous examples, it is expected that such a strain in the presence of the original precursors will produce new pristinamycins modified at the acid residue level

3-hydroxypikolínovej.3-hydroxypicolinic.

Príklad 3Example 3

Produkcia zlúčenín všeobecného vzorca I mutantným kmeňom SP92::pVRC508Production of compounds of formula I by mutant strain SP92 :: pVRC508

Tento príklad ilustruje, ako je mutant kmeňa S. pristinaespiralis SP92 prerušený v géne papA integráciou plazmidu pVRC508 schopný syntetizovať nové streptogramíny v prítomnosti prekurzorov pridaných do produkčného prostredia. Tieto prekurzory môžu byť deriváty aminokyselín a najmä fenylalanínu, av38 šak tiež α-ketokarboxylových kyselín a najmä kyseliny fenylpyrohroznovej.This example illustrates how a mutant strain of S. pristinaespiralis SP92 is disrupted in the papA gene by integration of plasmid pVRC508 capable of synthesizing novel streptogramins in the presence of precursors added to the production environment. These precursors may be derivatives of amino acids and, in particular, phenylalanine, but also α-ketocarboxylic acids and in particular phenylpyruvic acid.

Mutantný kmeň SP92::pVRC508 sa kultivoval v kvapalnom produkčnom prostredí. Fermentácia sa uskutočnila nasledujúcim spôsobom: 0,5 ml suspenzie spór vyššie uvedeného kmeňa sa pridala do 40 ml inokulačného prostredia do Erlenmeyerovej banky vybavenej prepážkou s obsahom 300 ml. Toto inokulačné prostredie tvorí 10 g/1 kukuričného výluhu (Corn Steep), 15 g/1 sacharózy, 10 g/1 síranu amónneho, 1 g/1 hydrogénfosforečnanu draselného, 3 g/1 chloridu sodného, 0,2 g/1 heptahydrátu síranu horečnatého a 1,25 g/1 uhličitanu vápenatého. pH sa upraví na hodnotu 6,9 hydroxidom sodným a to ešte pred pridaním uhličitanu vápenatého. Erlenmeyerove banky sa miešajú počas 44 hodín pri teplote 27CTC v rotačnej miešačke pri rýchlosti otáčania 325 otáčok za minútu. 2,5 ml vyššie uvedenej kultúry starej 44 h sa sterilné pridajú ku 30 ml produkčného prostredia v Erlenmeyerovej banke s objemom 300 ml. Produkčné prostredie tvorí 25 g/1 sójovej múčky, 7,5 g/1 škrobu, 22,5 g/1 glukózy,The SP92 :: pVRC508 mutant strain was cultured in a liquid production medium. Fermentation was carried out as follows: 0.5 ml of the spore suspension of the above strain was added to a 40 ml inoculation medium in an Erlenmeyer flask equipped with a 300 ml septum. This inoculation medium consists of 10 g / l corn steep, 15 g / l sucrose, 10 g / l ammonium sulfate, 1 g / l potassium hydrogen phosphate, 3 g / l sodium chloride, 0.2 g / l sulfate heptahydrate magnesium and 1.25 g / l calcium carbonate. The pH is adjusted to 6.9 with sodium hydroxide before the addition of calcium carbonate. The Erlenmeyer flasks are shaken for 44 hours at 27 C, c in a rotary shaker at a speed of 325 rpm. 2.5 ml of the aforementioned 44 h culture are sterile added to 30 ml of production medium in a 300 ml Erlenmeyer flask. The production environment is 25 g / l soybean meal, 7.5 g / l starch, 22.5 g / l glucose,

3,5 g/1 kŕmnych kvasníc, 0,5 g/1 síranu zinočnatého a 6 g/1 uhličitanu vápenatého. pH sa nastaví na hodnotu 6,0 kyselinou chlorovodíkovou a to ešte pred zavedením uhličitanu vápenatého. Erlenmeyerove banky sa miešajú pri teplote 28°C v rotačnej miešačke pri rýchlosti otáčania 325 otáčok za minútu. Po 16 hodinách sa ku kultivačnému prostrediu pridá 1 ml roztoku jedného z prekurzorov uvedených v nasledujúcej tabulke III (všeobecne 5 alebo 10 g/1). Kultivácia sa potom preruší 8 alebo 24 hodín neskoršie. Zmeria sa objem kultivačného rmutu, potom sa k nemu pridajú 2 objemy mobilnej fázy tvorenej 34 % acetonitrilu a 66 % 0,lM roztoku hydrogénfosforečnanu draselného (s pH 2,9 nastaveným koncentrovanou kyselinou fosforečnou), ktorá umožňuje extrakciu pristinamycínov. Po rozmiešaní sa všetka zmes odstredí a pristinamycíny obsiahnuté v supernataňte sa extrahujú a purifikujú spôsobmi opísanými v príklade 4. Tieto produkty sa takisto stanovia vysokovýkonnou kvapalinovou chromatografiou, pri ktorej sa 150 μΐ vyššie uvedeného centrifugačného supernatantu zavedie na stĺpec produktu Nucleosil3.5 g / l of feed yeast, 0.5 g / l of zinc sulfate and 6 g / l of calcium carbonate. The pH was adjusted to 6.0 with hydrochloric acid before the calcium carbonate was introduced. The Erlenmeyer flasks are stirred at 28 ° C in a rotary mixer at a rotation speed of 325 rpm. After 16 hours, 1 ml of a solution of one of the precursors listed in Table III below (generally 5 or 10 g / l) is added to the culture medium. The culture is then discontinued 8 or 24 hours later. The volume of the culture mash is measured, then 2 volumes of the mobile phase consisting of 34% acetonitrile and 66% 0.1 M potassium hydrogen phosphate solution (pH 2.9 adjusted with concentrated phosphoric acid) are added to allow the extraction of pristinamycins. After mixing, all the mixture is centrifuged and the pristinamycins contained in the supernate are extracted and purified according to the methods described in Example 4. These products are also determined by high performance liquid chromatography in which 150 μΐ of the above centrifugation supernatant is loaded onto a Nucleosil column.

5-C8 s rozmermi 4,6 x 150 mm a elúcia sa uskutočňuje elučnou sústavou tvorenou zmesou 40 % acetonitrilu a 60 % 0,lM fosfátového pufra s pH 2,9. Nové pristinamycíny sa detegujú pomocou ich absorbancie v ultrafialovom žiarení s vlnovou dĺžkou 206 nm a prípadne pomocou ich fluorescenčnej emisie (filter 370 nm, excitácia pri 306 nm).The 5-C8, 4.6 x 150 mm, was eluted with a mixture of 40% acetonitrile and 60% 0.1M phosphate buffer pH 2.9. The novel pristinamycins are detected by their absorbance in ultraviolet radiation at 206 nm and optionally by their fluorescence emission (filter 370 nm, excitation at 306 nm).

Tabuľka IIITable III

Prekurzorprecursor

Pôvod fenylalanínOrigin of phenylalanine

4-dimetylaminofenylalanín4-dimetylaminofenylalanín

4-metylaminofenylalanín4-metylaminofenylalanín

4-aminofenylalanín4-amino phenylalanine

4-dietylaminofenylalanín4-dietylaminofenylalanín

4-etylaminofenylalanín4-etylaminofenylalanín

4-metyltiofenylalanín4-metyltiofenylalanín

4-metylfenylalanín4-methylphenylalanine

4-metoxyfenylalanín4-methoxyphenylalanine

4-trifluórmetoxyfenylalanín4-trifluórmetoxyfenylalanín

4-metoxyka:rbonylf enylalanín4-methoxycarbonylphenylalanine

4-chlórfenylalanín4-chlorophenylalanine

4-brómfenylalanín4-bromophenylalanine

4-jódfenylalanín4-iodophenylalanine

4-trifluórmetylfenylalanín4-trifluórmetylfenylalanín

4-terc-butylfenylalanín4-tert-butylfenylalanín

4-izopropy.lf enylalanín4-isopropylphenylalanine

3-metylaminofenylalanín3-metylaminofenylalanín

3-metoxyfenylalanín3-methoxyphenylalanine

3-metyltiofenylalanín3-metyltiofenylalanín

3-fluór-4-metylfenylalanín kyselina 4-terc-butylfenylpyrohroznová kyselina 4-metylaminofenylpyrohroznová3-fluoro-4-methylphenylalanine 4-tert-butylphenylpyruvic acid 4-methylaminophenylpyruvic acid

JanssenJanssen

Príklad 33Example 33

Príklad 34-1Example 34-1

Janssen 22.794.96Janssen 22.794.96

Príklad 33Example 33

Príklad 33Example 33

Príklad 33Example 33

J.P.S101-312-4/príklad 33 Janssen 16.975.97 Príklad 34-8 Príklad 33 Janssen 15.728.14 Janssen 22.779.81J.P.S101-312-4 / example 33 Janssen 16.975.97 Example 34-8 Example 33 Janssen 15.728.14 Janssen 22.779.81

Bachem F 1675 P.CR.Inc.12 445-3 Príklad 35-1 Príklad 36-1 Príklad 35-3 J.P.S.101-313-2 Príklad 34-11 Príklad 34-5Bachem F 1675 P.CR.Inc.12 445-3 Example 35-1 Example 36-1 Example 35-3 J.P.S.101-313-2 Example 34-11 Example 34-5

Príklad 33Example 33

Príklad 34-4Example 34-4

Tabuľka II (pokračovanie) Table II (continued) 2-naftylenylalanín 2-naftylenylalanín Bachem F Bachem F ’ 1865 ’1865 4-fluórfenylalanín 4-fluoro-phenylalanine Bachem F Bachem F ’ 1535 ’1535 3-fluórfenylalanín 3-fluorophenylalanine Bachem F Bachem F ’ 2135 ’2135 3-etoxyfenylalanín 3-etoxyfenylalanín Príklad Example 37-1 37-1 2,4-dimetylfenylalanín 2,4-dimethylphenylalanine Príklad Example 33 33 3,4-dimetylfenylalanín 3,4-dimethylphenylalanine Príklad Example 33 33 3-metylfenylalanín 3-methylphenylalanine Príklad Example 33 33 4-fenylfenylalanín 4-fenylfenylalanín Príklad Example 33 33 4-butylfenylalanín 4-butylfenylalanín Príklad Example 36-3 36-3 2-tienyl-3-alanín 2-thienyl-3-alanine Aldrich Aldrich 28.728.8 28.728.8 3-trifluórmetylfenylalanín 3-trifluórmetylfenylalanín Príklad Example 33 33 3-hydroxyfenylalanín 3-dihydroxyphenylalanine Aldrich Aldrich T 9.039.5 T 9.039.5 3-etylaminofenylalanín 3-etylaminofenylalanín Príklad Example 35-6 35-6 4-aminometylfenylalanín 4-aminomethylphenylalanine Príklad Example 33 33 4-alylaminofenylalanín 4-alylaminofenylalanín Príklad Example 38-2 38-2 4-dialylaminofenylalanín 4-dialylaminofenylalanín Príklad Example 38-1 38-1 4-alyletylaminofenylalanín 4-alyletylaminofenylalanín Príklad Example 39-4 39-4 4-etylpropylaminofenylalanín 4-ethylpropylaminophenylalanine Príklad Example 39-6 39-6 4-etylizopropylaminofenylalanín 4-etylizopropylaminofenylalanín Príklad Example 39-1 39-1 4-etylmetylcyklopropylamino- 4-etylmetylcyklopropylamino- fenylalanín phenylalanine Príklad Example 39-8 39-8 4-(1-pyrolidín)fenylalanín 4- (1-pyrrolidinyl) phenylalanine Príklad Example 40-1 40-1 4-0-alyltyrozín 4-0-alyltyrozín Príklad Example 33 33 4-O-etyltyrozIn 4-O-etyltyrozIn Príklad Example 33 33 4-etyltiofenylalanín 4-etyltiofenylalanín Príklad Example 33 33 4-etyltiometylfenylalanín 4-etyltiometylfenylalanín Príklad Example 41-1 41-1 4-0-(2-chlóretyl)tyroz ín 4-O- (2-chloroethyl) tyrosine Príklad Example 42-1 42-1 4-acetylfenylfenylalanín 4-acetylfenylfenylalanín Príklad Example 33 33 4-etylfenylalanín 4-ethyl phenylalaninate Príklad Example 33 33 4-dimetylaminofenylalanín 4-dimetylaminofenylalanín Príklad Example 35-10 35-10

V nasledujúcej tabuľke (tabuľka IV) sú uvedené retenčné časy týkajúce sa nových produktov PI, pričom sa ako referenčná látka používa ΡΙα· Absolútne retenčné časy sa stanovili pri teplote 25°C vo vysokovýkonnom kvapalinovom chromatografickom systéme, ktorý je definovaný nižšie. Tieto retenčné časy sa mierne menia jednak od jedného nástreku do hlavy kolóny k druhému a jednak v závislosti na teplote.The following table (Table IV) shows the retention times for new PI products using ΡΙ α as the reference substance. Absolute retention times were determined at 25 ° C in a high performance liquid chromatography system as defined below. These retention times vary slightly from one injection to the column head to the other and depending on the temperature.

Tabuľka IVTable IV

Prekurzor precursor t (relatívna retenčná doba R ' nových PI (NeoPi) t (relative retention time R ' new PI (NeoPi) NeoPI A drunk A NeoPI H drunk H ďalší neoPI another neoPI 4-metylaminofenylalanín 4-metylaminofenylalanín 0,85 0.85 4-aminofenylalanín 4-amino phenylalanine 0,64 0.64 4-metyltiofenylalanín 4-metyltiofenylalanín 1,93 1.93 2,73 2.73 1,63 1.63 4-metylfenylfenylalanín 4-metylfenylfenylalanín 1,77 1.77 2,65 2.65 4-metoxyfenylalanín 4-methoxyphenylalanine 1,46 1.46 4-metoxykarbonylfenylalanín 4-metoxykarbonylfenylalanín 1,49 1.49 4-chlórfenylalanín 4-chlorophenylalanine 2,04 2.04 4-brómfenylalanín 4-bromophenylalanine 2,16 2.16 4-jódfenylalanín 4-iodophenylalanine 2,42 2.42 4-trifluórmetylfenylalanín 4-trifluórmetylfenylalanín 2,56 2.56 3,74 3.74 4-terc-butylfenylalanín 4-tert-butylfenylalanín 3,34 3.34 4-izopropylfenylalanín 4-izopropylfenylalanín 2,80 2.80 4,35 4.35 3-metylaminofenylalanín 3-metylaminofenylalanín 1,15 1.15 3-metoxyfenylalanín 3-methoxyphenylalanine 1,49 1.49 2,04 2.04 3-fluór-4-metylfenylalanín 3-fluoro-4-methylphenylalanine 2,93 2.93 kyselina 4-terc-butylfenyl- pyrohroznová kyselina 4-metylaminofenyl- 4-tert-Butylphenyl- pyruvic 4-methylaminophenyl- 3,34 3.34 pyrohroznová pyruvic 0,85 0.85 4-etylaminofenylalanín 4-etylaminofenylalanín 0,94 0.94 4-dietylaminofenylalanín 4-dietylaminofenylalanín 0,61 0.61

Tabuľka IV (pokračovanie)Table IV (continued)

4-alylaminofenylalanin 4-alylaminofenylalanin 1,83 1.83 4-dialylaminofenylalanin 4-dialylaminofenylalanin 2,64 2.64 4-alyletyl.aminof enylalanin 4-Allylethyl aminophenylalanine 2,4 2.4 4-etylpropylaminofenylalanin 4-ethylpropylaminophenylalanine 1,06 1.06 4-etylizopropylaminofenyl- 4-etylizopropylaminofenyl- alanín alanine 0,89 0.89 4-etylmetylcyklopropylamino- 4-etylmetylcyklopropylamino- fenylalanin phenylalanine 1,1 1.1 4-(1-pyrolidinyl)fenylalanin 4- (1-pyrrolidinyl) phenylalanine 2,0 2.0 4-O-trifluórmetyltyroz ín 4-O-Trifluoromethyltyrosine 2,42 2.42 4-0-alyltyrozín 4-0-alyltyrozín 2,62 2.62 4-O-ety1tyro z in 4-O-ethyl-tyrosine; 2,2 2.2 4-etyltiofenylalanin 4-etyltiofenylalanin 1,96 1.96 4-metyltiometylfenylalanin 4-metyltiometylfenylalanin 1,98 1.98 4-0-(2-chlóretyl)tyrozín 4-0- (2-chloroethyl) tyrosine 2,45 2.45 4-acetylfenylalanin 4-acetylphenylalanine 1,61 1.61 4-etylfenylalanin 4-ethyl phenylalaninate 1,86 1.86 3-dimetylaminofenylalanin 3-dimetylaminofenylalanin 1,49 1.49 4-metyltiofenylalanin 4-metyltiofenylalanin 1,93 1.93 3-0-etyltyrozín 3-0-etyltyrozín 1,78 1.78

Nový PI s t pre 4-izopropylfenylalanín zodpovedá neoPIE popísanému v príklade 14.The new PI for 4-isopropylphenylalanine corresponds to the neoPI E described in Example 14.

Nový PI s t 1,63 pre 4-metyltiofenylalanin zodpovedá 5r-hydroxy alebo PI opísanému v príklade 5.The new PI with t 1.63 for 4-methylthiophenylalanine corresponds to the 5r-hydroxy or PI described in Example 5.

Mutantný kmeň SP92::pVRC508 sa fermentoval v prítomnostiThe SP92 :: pVRC508 mutant strain was fermented in the presence

4-dimetylaminofenylalanínu. Pri týchto komplementačných podmienkach mutantný kmeň SP92::pVRC508 produkuje množstvo pristinamycínu I , ktoré je ekvivalentné množstvu produkovanému kmeňom SP92.4-dimetylaminofenylalanínu. Under these complementation conditions, the mutant strain SP92 :: pVRC508 produces an amount of pristinamycin I equivalent to that produced by the SP92 strain.

Príklad 4Example 4

Príprava pristinamycínu I (4ζ -metylamino-des(4ζ -dimetylamino)pristinamycín Ia) a 4 ζ -amino-des(4ζ -dimetylamino)pristinamycínu IPreparation of pristinamycin I (4ζ-methylamino-des (4ζ-dimethylamino) pristinamycin I a ) and 4ζ-amino-des (4ζ-dimethylamino) pristinamycin I

4.1: Príprava pristinamycínu I (4ζ -metylamino-des(4 £-dimetylamino)pristinamycín I )4.1: Preparation of pristinamycin I (4ζ-methylamino-des (4 £-dimethylamino) pristinamycin I)

V meradle 60 Erlenmeyerových baniek sa uskutoční kultivácia kmeňa SP92::pVRC508 v produkčnom prostredí, spôsobom opísaným v príklade 3, pričom sa k produkčnému prostrediu po 16 hodinách kultivácie pridá 1 ml vodného roztoku (10 g/1)On a 60-ml Erlenmeyer flask, the strain SP92 :: pVRC508 is cultivated in a production medium as described in Example 3, with 1 ml of an aqueous solution (10 g / l) added to the production medium after 16 hours of culture.

4-metylaminofenylalanínu s konfiguráciou (R,S) syntetizovaného v príklade 34-1. Po 40 hodinách kultivácie sa 1,8 litra produkčného prostredia pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje 2 objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, potom sa stĺpec eluuje postupne elučným gradientom 0 až 10 % metanolu v dichlórmetáne. Frakcia obsahujúca pristinamycín I sa zlúči a odparí. Suchý zvyšok sa vyberie 6 ml zmesi tvorenej 65 %vody a 35 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec produktu Nucleosil 7 μ08 s rozmermi 10 x 250 nm (Macherey Nagel) a stĺpec sa eluuje elučnou sústavou tvorenou zmesou 65 % lOOmM fosfátového pufra s pH 2,9 a 35 % acetonitrilu. Frakcie obsahujúce pristinamycín I sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a odparí. Získa sa 52 mg pristinamycínu IB^H-NMR (400 MHz, CDC13, á v ppm, ref.TMS): 0 71 (dd J16 :6 Hz, 1H, 5 β,), 0.92 (t, J= 7.5 Hz, 3H: CH3 2 γ), cd 1.10m 1.40 (mt, 2K: 3 (¾ a 3 γ2), 1.34 (d, J= 7.5 Hz, 3H: CH317),cá 1.50m 1.85 (mt, 3H: 3 γΙ a CH, 2 β), 2.03 (mt, 1H, 3 β3), 2.22 (mt, 1H, 5 δ2), 2.33 (d šir. , J= 16 Hz, 1H: 5 δ,), 2.40 (d, J= 16 Hz, 1H: 5 β3), 2.82 (mt, 1H: 5 ε.), 2.81 (s, 3H: 4 NCHj vgarakferylu ), 2.90 (dd,4-methylaminophenylalanine having the (R, S) configuration synthesized in Example 34-1. After 40 hours of culture, 1.8 liters of production medium from 60 Erlenmeyer flasks are extracted with 2 volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract was taken up in 20 ml of dichloromethane and loaded onto a silica gel column (30 g) in dichloromethane, then the column was eluted successively with an elution gradient of 0-10% methanol in dichloromethane. The fraction containing pristinamycin I was combined and evaporated. The dry residue is taken up in 6 ml of a mixture of 65% water and 35% acetonitrile and the resulting mixture is loaded onto a 10 × 250 nm Nucleosil 7 µ08 semiprep column (Macherey Nagel) and eluted with a 65% 100 mM phosphate buffer mixture. pH 2.9 and 35% acetonitrile. The fractions containing pristinamycin I are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and evaporated. 52 mg of pristinamycin IB H-NMR (400 MHz, CDC1 3, ppm s, ref.TMS): 0 71 (d J 16: 6 Hz, 1 H, β 5,), 0.92 (t, J = 7.5 Hz, 3H: CH3 2 γ) cd 1.10m 1:40 (mt, 2H: 3 (¾ γ 2 and 3), 1:34 (d, J = 7.5 Hz, 3H: CH3 1 7), ca. 1.50 m 1.85 ( mt, 3H: 3 γ Ι and CH, 2 β), 2.03 (mt, 1 H, 3 β 3 ), 2.22 (mt, 1 H, 5 δ 2 ), 2.33 (broad d, J = 16 Hz, 1H: 5 δ,), 2:40 (d, J = 16 Hz, 1H: 5 β 3), 2.82 (mt, 1H: 5 ε.), 2.81 (s, 3H: 4 vgarakferylu NCH), 2.90 (dd,

J= 12 a 4 Hz, 1H: 4 &), 3.29 (s, 3H: 4 NČHj, od 3.20 3.45 ód 3.60 (2 mts, 1H ksžčý ; CH, 3 δ), 3.40 (t, J= 12 Hz, 1H: 4 βχ), 4.57 (dd, J= 7a 8 Hz, 1H, 3 a), 4.75 (dd šír., J= 13 a 7 Hz, 1H: 5 ej, 4.83 (nit, 1H: 2a), 4.89 (d šír; , J= 10 Hz, 1K: la), 5.24 (dd, J= 12 a 4 Hz, 1H: 4 a); 5.32 (d šír. , J= 6 Hz, 1H: 5 a), 5.39 (d, J= 9 Hz, 1H: 6 a), 5.90 (q šír.. J= 7.5 Hz, 1H: 1β), 6.53 (d, J= 9 Hz, 1H: NH 2), 6.53 (d,J = 12 and 4 Hz, 1H: 4 & 3.29 (s, 3H: 4 NH3, from 3.20 3.45 to 3.60 (2 mts, 1H each), 3.40 (t, J = 12 Hz, 1H : 4 β χ ), 4.57 (dd, J = 7 and 8 Hz, 1H, 3 a), 4.75 (dd, J = 13 and 7 Hz, 1H: 5 ej, 4.83 (nit, 1H: 2a), 4.89 (broad d, J = 10 Hz, 1H: la), 5.24 (dd, J = 12 and 4 Hz, 1H: 4 a), 5:32 (broad d. J = 6 Hz, 1H: 5 a), 5:39 (d, J = 9 Hz, 1H: 6a), 5.90 (q broad, J = 7.5 Hz, 1H: 1β), 6.53 (d, J = 9 Hz, 1H: NH2), 6.53 (d,

J= S Hz, 2H: 4a), 7.03 (d, J= 8 Hz, 2H: 45), cd 7.10 0:7.35 (mt, 5H: K Arcmzticv 6), 7.46 (mt, 2H: ľ Hs a ľ Hj, 7.85 (dd, J = 5.5a 2 Hz, 1H: ľ Hj, 8.44 (d, J= 10 Hz, 1H: NH 1), 8.76 (d, J= 9 Hz, 1H: NH 6), 11.63 (s, 1H: OH).J = 5Hz, 2H: 4a), 7.03 (d, J = 8Hz, 2H: 45), cd 7.10 0: 7.35 (mt, 5H: δ Arcmztic 6), 7.46 (mt, 2H: 1 H s and 1 ') H, 7.85 (dd, J = 5.5 and 2 Hz, 1H: 1 Hj, 8.44 (d, J = 10 Hz, 1H: NH 1), 8.76 (d, J = 9 Hz, 1H: NH 6), 11.63 ( s, 1H: OH).

4.2: Príprava 4ζ -amino-des(4ζ -dimetylamino)pristinamycínu I4.2: Preparation of 4ζ-amino-des (4ζ-dimethylamino) pristinamycin I

V meradle 60 Erlemeyerových baniek sa uskutoční kultivácia kmeňa SP92::pVRC508 v produkčnom prostredí spôsobom opísaným v príklade 3, do ktorého sa po 16 hodinách kultivácie pridá 1 ml vodného roztoku (5 g/1) (S)-4-aminofenylalanínu. Po 40 hodinách kultivácie sa produkčný rmut pochádzajúci z 60 Erlenmeyerových baniek (1,8 litra) extrahuje 2 objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom zlúčia, vysušia nad síranom sodným a a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a zavedie na stĺpec (30 g) silikagélu v dichlórmetáne, potom sa stĺpec eluuje elučným gradientom 0 a ž 10 % metanolu v dichlórmetáne. Frakcia obsahujúca nový derivát pristinamycínu I sa zlúčia a odparia. Suchý zvyšok sa vyberie 6 ml zmesi tvorenej 65 % vody a 35 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7μΟ8 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa potom eluuje elučnou sústavou tvorenou zmesou 65 % lOOmM fosfátového pufra 2,9 a 35 % acetonitrilu. Frakcie obsahujúce nový pristinamycín sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom odparí. Získa sa 5 mg 4 ζ -amino-des(4ζ -dimetylamino) pristinamycínu Ia.The strain SP92 :: pVRC508 was cultivated in a production medium as described in Example 3, to which 60 ml of Erlemeyer flasks were added, after 16 hours of cultivation, 1 ml of an aqueous solution of (5 g / l) (S) -4-aminophenylalanine was added. After 40 hours of cultivation, the production mash originating from 60 Erlenmeyer flasks (1.8 liters) is extracted with 2 volumes of a mixture of 66% 100 mM phosphate buffer with 2.9 and 34% acetonitrile, then centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and loaded onto a column (30 g) of silica gel in dichloromethane, then the column is eluted with an elution gradient of 0 to 10% methanol in dichloromethane. The fractions containing the new derivative of pristinamycin I are pooled and evaporated. The dry residue is taken up in 6 ml of a mixture of 65% water and 35% acetonitrile and loaded onto a 10 x 250 mm Nucleosil 7µΟ8 semipreparative column (Macherey Nagel), which is then eluted with 65% 100 mM phosphate buffer 2 , 9 and 35% acetonitrile. The fractions containing the new pristinamycin are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 5 mg of 4-amino-of ζ (4ζ -dimethylamino) pristinamycin I, and.

1H-NMR (400 MHz, CDCl3, S v ppm, ref.TMS): 0 72 (dd J= et 5.5 Hz, 1H, 5 β.), 0.90 (t, J= 7.5 Hz, 3H: CH3 2 γ), cô l.lOóo 1.40 (mt, 2H: 3 β. 1 H-NMR (400 MHz, CDCl 3 , δ in ppm, ref.TMS): δ 72 (dd J = et 5.5 Hz, 1H, 5 b.), 0.90 (t, J = 7.5 Hz, 3H: CH3 ) 2 γ), l1.10 ° 1.40 (mt, 2H: 3 β.

a 3 γ.), 1.33 (d, J= 7.5 Hz, 3H: CH31 γ),σά 1.50co 1.85 (mt, 3H: 3 γ; a 0¾ 2 β),and γ 3.), 1:33 (d, J = 7.5 Hz, 3H: CH3 1 γ), σά 1.50c 1.85 (mt, 3H: 3 γ, and β 0¾ 2),

2.02 (mt, 1H, 3 β.), 2.19 (mt, 1H, 5 ôj, 2.33 (d šir. , J= 16 Hz, 1H: 5 ôj, 2.42 (d,2.02 (mt, 1H, 3?), 2.19 (mt, 1H, 5? U, 2.33 (d broad, J = 16 Hz, 1H: 5? U, 2.42 (d,

J= 16 Hz, 1H: 5 β.), 2.81 (dt, J= 13 a 4 Hz, 1H: 5 ε,), 2.90 (dd, J= 12 et 4 Hz, 1H: 4 β-), 3.24 (s, 3H: NCH3 4), <±3.20 <±3.40 a 3.54 (2 mís, lHkažôz CHj 3 δ), 3.30 (t, J= 12 Hz, 1K: 4 β,), 3.72 (mf, 2H: ArNH.), 4.54 (dd, J= 7.5 a 7 Hz, 1H, 3 a),J = 16 Hz, 1H: 5 β.), 2.81 (dt, J = 13 and 4 Hz, 1H: 5 ε,), 2.90 (dd, J = 12 and 4 Hz, 1H: 4 β-), 3.24 ( s, 3H: NCH 3 4), <± 3.20 <± 3.40 and 3.54 (2 bowls, 1H, CH3 3 δ), 3.30 (t, J = 12 Hz, 1K: 4 β,), 3.72 (mf, 2H: ArNH ., 4.54 (dd, J = 7.5 and 7 Hz, 1H, 3a),

4.73 (dd šir., J= 13 .8 Hz, 1H: 5 ε.), 4.82 (mt, 1H: 2a), 4.89 (d sir., J= 10 Hz,4.73 (broad dd, J = 13.8 Hz, 1H: 5 ε.), 4.82 (mt, 1H: 2a), 4.89 (broad d, J = 10 Hz,

1K: la), 5.22 (dd, J= 12 a. 4 Hz, 1H: 4 a), 5.32 (d šir. , J= 5.5 Hz, 1H: 5 a), 5.89 (mi, 2H: 6 a a 1(3), 6.51 (d, J= 9.5 Hz, 1H: ΝΉ 2), 6.61 (d, J= 8 Hz, 2H: 4ε), 6.98 (d, J= 8 Hz, 2K: 4δ), <±7.15čb7.35 (mt, 5H: H Aromatický 6), 7.45 (dd, J= 8.5 a 13 Hz, 1K: ľ HJ. 7.48 (dd, J= 8.5 a 4 Hz, 1H: ľ H,), 7.82 (dd, J = 4 a 1.5 Hz, 1H: ľ Hý, 8.43 (d, J= 10 Hz, 1H: ΝΉ 1), 8.76 (d, J= 9.5 Hz, 1H; ΝΉ 6), 11.63 (s, 1H:1K: 1a), 5.22 (dd, J = 12 a. 4 Hz, 1H: 4 a), 5.32 (d broad, J = 5.5 Hz, 1H: 5 a), 5.89 (mi, 2H: 6 a and 1 ( 3), 6.51 (d, J = 9.5Hz, 1H: ΝΉ 2), 6.61 (d, J = 8Hz, 2H: 4ε), 6.98 (d, J = 8Hz, 2K: 4δ), <± 7.15cb7 .35 (mt, 5H: aromatic 6), 7.45 (dd, J = 8.5 and 13 Hz, 1K: 1 H, 7.48 (dd, J = 8.5 and 4 Hz, 1H: 1 H,)), 7.82 (dd, J = 4 and 1.5 Hz, 1H: 1 H, 8.43 (d, J = 10 Hz, 1H: ΝΉ1), 8.76 (d, J = 9.5 Hz, 1H; ΝΉ6), 11.63 (s, 1H:

OH).OH).

Príklad 5Example 5

Príprava 4 ζ -metylamino-des (4 ζ -dimetylamino) pristinamycínu Ia Preparation of 4'-methylamino-des (4'-dimethylamino) pristinamycin I a

V meradle 50 Erlemeyerových baniek sa uskutoční kultivácia kmeňa SP92::pVRC508 v produkčnom prostredí, spôsobom podľa príkladu 3, ku ktorému sa po 16 hodinách kultivácie pridá 1 ml roztoku (10 g/1) (R, S)-4-metyltiofenylalaninu v O,1N hydroxidu sodnom, pričom uvedený (R,S)-4-metyltiofenylalanín sa syntetizoval spôsobom opísaným v príklade 33. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho z 60 Erlemeyerových baniek extrahuje 2 objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, ktorý sa potom eluuje elučným gradientom 0 až 10 % metanolom v dichlórmetáne. Frakcia obsahujúca nový derivát pristinamycínu I sa zlúči a odparí. Získa sa 65 mg suchého zvyšku. Tento zvyšok sa vyberie 6 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie v dvoch podieloch na semipreparatívny stĺpec Nucleosilu 7 juC8 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa potom eluuje elučnou sústavou tvorenou zmesou obsahujúcou 55 % 100 mM fosfátového pufra s pH 2,9 a 45 % acetonitrilu. Frakcie obsahujúce nový pristinamycín sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí.On a 50-ml Erlemeyer flask, the strain SP92 :: pVRC508 is cultured in the production medium, as in Example 3, to which, after 16 hours of culture, 1 ml of (10 g / l) (R, S) -4-methylthiophenylalanine in O 1N sodium hydroxide, wherein said (R, S) -4-methylthiophenylalanine was synthesized as described in Example 33. After 40 hours of cultivation, 1.8 liters of mash produced from 60 Erlemeyer flasks were extracted with 2 volumes of a mixture of 66% 100mM phosphate buffer. pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract was taken up in 20 ml of dichloromethane and the resulting mixture was loaded onto a silica gel column (30 g) in dichloromethane which was then eluted with an elution gradient of 0 to 10% methanol in dichloromethane. The fraction containing the new derivative of pristinamycin I is combined and evaporated. 65 mg of dry residue are obtained. This residue is taken up in 6 ml of a mixture of 60% water and 40% acetonitrile and the mixture is introduced in two aliquots onto a 10 x 250 mm Nucleosil 7 juC8 semiprep column (Macherey Nagel), which is then eluted with a mixture containing 55 % 100 mM phosphate buffer pH 2.9 and 45% acetonitrile. The fractions containing the new pristinamycin are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated.

Získa sa 45 mg 4ζ -metyltio-des(4^ -dimetylamino)pristinamycínu I .45 mg of 4'-methylthio-des (4'-dimethylamino) pristinamycin I are obtained.

A 1H-NMR (400 MHz, CDC13, δ v ppm, ref.TMS): 0.68 (dd,H 1 H-NMR (400 MHz, CDCl 3 , δ in ppm, ref.TMS): 0.68 (dd,

J= 16 a 5.5 Hz, 1H, 5 βύ, 0.93 (t, J= 7.5 Hz, 3H: CH3 2 γ), 1.13 (mt, 1H: 3 β.), cd 1.25ažl.4O (mt, 1H; 3 γ2), 1.33 (d, J= 7.5 Hz, 3H: CH31 γ), cd 1.55b 1.85 (mt, 3H: 3 γ3 a CH2 2 β), 2.02 (mt, 1H, 3 β3), 2.18 (mt, 1H, 5 δ2), 2.38 (d šir. , J= 16.5 Hz, 1H:J = 16 and 5.5 Hz, 1H, 5 βύ, 0.93 (t, J = 7.5 Hz, 3H: CH 3 2 γ), 1.13 (mt, 1H: 3 β.), Cd 1.25-3.4 (mt, 1H; 3 γ 2 ), 1.33 (d, J = 7.5 Hz, 3 H: CH 3 1 γ), cd 1.55b 1.85 (mt, 3 H: 3 γ 3 and CH 2 2 β), 2.02 (mt, 1H, 3 β 3 ), 2.18 (mt, 1H, δ 2 ), 2.38 (broad d, J = 16.5 Hz, 1H:

δ3), 2.46 (s, 3H: SCH3), 2.48 (d, J=16 Hz, 1H, 5 β3), 2.85 (dt, J= 13.5 a 4 Hz, 1H:δ 3), 2:46 (s, 3H, SCH3), 2:48 (d, J = 16 Hz, 1 H, 5 β 3), 2.85 (dt, J = 13.5 and 4 Hz, 1H:

&,), 3.00 (dd, J= 12 a 5 Hz, 1H: 4 β,), 3.23 (s, 3H: NCH3 4), 3.37 (t, J= 12 Hz, 1H:Δ, 3.00 (dd, J = 12 and 5 Hz, 1H: 4β,), 3.23 (s, 3H: NCH 3 4), 3.37 (t, J = 12 Hz, 1H:

β,), 3.37 a 3.58 (2 mts, lHkaždý : CH2 3 Ô), 4.55.(t, J= 7.5 Hz, 1H, 3 a), 4.77 (dd šir. , J= 13.5 a 8 Hz, 1H: 5 ε,), 4.86 (mt, 1H: 2a), 4.89 (dd, J= 10 a 1.5 Hz, 1H: let), 5.30 (d šir., J= 5.5 Hz, 1H: 5 a), 5.32 (dd, J= 12 a 5 Hz, 1H: 4 a), 5.90 (d, J=β,), 3:37, and 3:58 (2 mts, lHkaždý CH 2 3 O), 4.55. (t, J = 7.5 Hz, 1 H, 3 a), 4.77 (broad dd., J = 13.5 and 8 Hz, 1H: 5 ε,), 4.86 (mt, 1H: 2a), 4.89 (dd, J = 10 and 1.5 Hz, 1H: flight), 5.30 (d broad, J = 5.5 Hz, 1H: 5a), 5.32 (dd J = 12 and 5 Hz, 1H: 4 (a), 5.90 (d, J =

9.5 Hz, 1H: 6 a), 5.92 (dq, J= 7.5 a 1.5 Hz, 1Η;1β), 6.55 (d, J= 9.5 Hz, 1H: NH 2),9.5 Hz, 1H: 6 (a), 5.92 (dq, J = 7.5 and 1.5 Hz, 1Η; 1β), 6.55 (d, J = 9.5 Hz, 1H: NH2),

7.13 (d, J= 8 Hz, 2H: 4δ), cd 7.15b7.35 (mt, 5H: H Aromatický 6), 7.19 (d, J= 87.13 (d, J = 8Hz, 2H: 4δ), cd 7.15b7.35 (mt, 5H: aromatic H at position 6), 7.19 (d, J = 8)

Hz, 2H: 4ε), 7.45 (mt, 2H; ľ H4 a ľ Hp, 7.76 (t, J = 5 Hz, 1H: ľ Hp, 8.42 (d, J= 10 Hz, 1H: NH 1), 8.76 (d, J= 9.5 Hz, 1H: NH 6), 11.65 (s, 1H: OH).Hz, 2H: 4ε), 7.45 (mt, 2H; 1 H 4 and 1 H H, 7.76 (t, J = 5 Hz, 1H: 1 H H, 8.42 (d, J = 10 Hz, 1H: NH 1)), 8.76 (d, J = 9.5 Hz, 1H: NH6), 11.65 (s, 1H: OH).

Z frakcií, ktoré opúšťajú vyššie opísaný stĺpec silikagélu obsahujúcich nový derivát pristinamycínu Ih sa izoluje 10 mg 4 ζ -metyltio-des (4 ζ-dimetylamino) pristinamycínu Xh v prípade, že sa uskutoční chromatografia na semipreparatívnom stĺpci silikagélu, ktorá sa opisuje vyššie, s výnimkou, ktorá spočíva v tom, že obsah acetonitrilu v elučnej sústave je 50 %.Fractions leaving the above-described silica gel column containing the new derivative of pristinamycin I, h are isolated 10 mg of 4-methylthio ζ-de (4-ζ-dimethylamino) pristinamycin X h, where, by carrying out semi-preparative chromatography on a silica gel column, which is described above, , with the exception that the acetonitrile content of the eluent is 50%.

XH-NMR (400 MHz, CDCl , δ v ppm, ref.TMS): ,, 3 0.32 (mt, 1H, pp, 0.93 (t, J= 7.5 Hz, 3H; CH3 2 γ), cd 1.20<bl.35 (mt, 2H; 3 β, et 3 γ2), 1.30(d, X H-NMR (400 MHz, CDCl, δ ppm, ref.TMS): ,,: 3 0.32 (mt, 1H, pp, 0.93 (t, J = 7.5 Hz, 3H, CH 3 γ 2), 1.20 cd < bl.35 (mt, 2H, 3 β, γ 2 and 3), 1.30 (d,

J= 7.5 Hz, 3H: CH31 γ). cd 1.35b2.05 (mt, 9H: 3 γ3 - 3 β3 - 0¾ 2 p - CH. 5 δ - CH.J = 7.5 Hz, 3H: CH3 1 γ). cd 1.35b2.05 (mt, 9H: 3 γ 3 - 3 β 3 - 0¾ 2 p - CH. 5 δ - CH.

5γ a. 5 p3), 2.44 (dt, J= 13.5 et 1.5 Hz, 1H: 5 ε,), 2.49 (s, 3H: SCH3), 2.99 (dd, J= 12 a 5 Hz, 1H: 4 &), 3.09 (dd, J= 12.5 a 12 Hz, 1H: 4 p3), 3.54 a 3.64 (2 mts, 1H každ/ : CH2 3 δ), 4.17 (dd, J= 7 a 6 Hz, 1H: 3 a), 4.49 (d šir., J= 13.5 Hz: 1H: 5 ε3), cd4.70cb4.80 (mt, 3H: 2a - 5 a a 4 a), 4.84 (dd, J=10 a 1.5 Hz, 1H: la), 5.51 (d, J= 7 Hz, 1H: 6 a), 5.73 (mt, 1H: 1β), 6.65 (d, J= 9.5 Hz, 1H: NH 2), 7Π0 (d, J= 8 Hz, 2H: 4$), 7.22 (d, J= 8 Hz, 2H; 4ε),od. 7.20<b7.40 (mt, 7H: H Aromatický 6 - ľ H4 a ľ Hs), 7.87 (d, J=4 Hz, 1H: ľ Hp, 8.55 (mf, 1H: NH 6), 8.55 (d, J= 10 Hz, 1H:5γ a. 5 p 3), 2:44 (dt, J = 13.5 et 1.5 Hz, 1H: 5 ε,), 2:49 (s, 3H, SCH3), 2.99 (dd, J = 12 and 5 Hz, 1H: 4 &). 3.09 (dd, J = 12.5 and 12 Hz, 1H: 4 p 3 ), 3.54 and 3.64 (2 mts, 1H each / CH 2 3 δ), 4.17 (dd, J = 7 and 6 Hz, 1H: 3 and ), 4.49 (broad d, J = 13.5 Hz: 1H: 5 ε 3 ), cd4.70cb4.80 (mt, 3H: 2a - 5 a and 4 a), 4.84 (dd, J = 10 and 1.5 Hz, 1H : 1a), 5.51 (d, J = 7Hz, 1H: 6a), 5.73 (mt, 1H: 1β), 6.65 (d, J = 9.5Hz, 1H: NH2), 7Π0 (d, J = 8) Hz, 2H: 4 $), 7.22 (d, J = 8Hz, 2H; 4ε), from. 7.20 <b7.40 (mt, 7H: H aromatic 6 - 1 H 4 and 1 H 5 s ), 7.87 (d, J = 4 Hz, 1H: 1 Hp, 8.55 (mf, 1H: NH 6), 8.55 (d J = 10 Hz, 1H:

NH 1), 11.70 (s, 1H: OH).NH 1), 11.70 (s, 1H: OH).

ΜΜ

Z frakcií, ktoré opúšťajú vyššie opísaný stĺpec silikagélu obsahujúcich nový derivát pristinamycínu I sa izolujú 3 mg 5r-hydroxy-4ζ -metyltio-des(4 £-dimetylamino)pristinamycínu I v prípade, že sa uskutoční vyššie opísaná chromatografia na semipreparatívnom stĺpci, pri ktorej sa udržiava obsah acetonitrilu v elučnej sústave 45 %.3 mg of 5'-hydroxy-4'-methylthio-des (4'-dimethylamino) pristinamycin I were isolated from the fractions leaving the above-described silica gel column containing the novel pristinamycin I derivative by performing the semi-preparative column chromatography described above. maintaining the acetonitrile content of the eluent at 45%.

^H-NMR (400 MHz, CDC13, 5 v ppm, ref.TMS): dá sa pozorovať jednoznačne majoritný izomér: -OH v 5v v axiálnej polohe.1 H-NMR (400 MHz, CDCl 3 , δ in ppm, ref.TMS): unequivocally the major isomer: -OH at 5v in axial position can be observed.

0.37 (d mt, J= 160.37 (d mt, J 16)

Hz, 1H, 5 β..), 0.93 (t, J= 7.5 Hz, 3H: CH3 2 γ), * 1.20* 1.45 (mt, 2H: 3 β. a 3 γ2),Hz, 1H, 5 β ..), 0.93 (t, J = 7.5 Hz, 3 H: CH 3 2 γ), * 1.20 * 1.45 (mt, 2H: 3 β and 3 γ 2 ),

1.31 (d, J= 7.5 Hz, 3H: CH31 γ),* 1.40*1.85 (mt, 5H; 3 - CH. 2 (3 a CH, 5 δ),1.31 (d, J = 7.5 Hz, 3H: CH3 1 γ) * * 1:40 1.85 (mt, 5H, 3 - CH. 2 (CH 3 a, δ 5).

1.98 (mt, 1H, 3 β.), 2.17 (d, J= 16 Hz, 1H: 5 ft), 2.50 (s, 3H: SCHj), 2.77 (dt, J=1.98 (mt, 1H, 3β), 2.17 (d, J = 16Hz, 1H: 5ft), 2.50 (s, 3H: SCH3), 2.77 (dt, J =

13.5 a 2 Hz, 1H: 5 e.), 2.99 (dd, J= 12 a 4 Hz, 1H: 4 &), 3.11 (t, J= 12 Hz, 1H: 4 β.), cd 3.45*3.70 (mt, 2H: CH, 3 δ), 3.73 (mt, 1H: 5 γ v ekvatoriáinej polohe), 4.13 (t, J= 7 Hz, 1H, 3c/T 4.37 (d š*., J= 13.5 Hz, 1H: 5 e,), * 4.75*4.95 (mt, 3H: 2a - 4 cc a 5 a), 4.89 (dd, J= 10 a 1 Hz, 1H; la), 5.70 (d, J= 8 Hz, 1H: 6 a), 5.80 (dq,13.5 and 2 Hz, 1H: 5 e.), 2.99 (dd, J = 12 and 4 Hz, 1H: 4 &amp;), 3.11 (t, J = 12 Hz, 1H: 4 b.), Cd 3.45 * 3.70 ( mt, 2H: CH, 3 δ), 3.73 (mt, 1H: 5 γ at the equatorial position), 4.13 (t, J = 7Hz, 1H, 3c / T 4.37 (dx), J = 13.5 Hz, 1H 4.75 * 4.95 (mt, 3H: 2a - 4 cc and 5a), 4.89 (dd, J = 10 and 1 Hz, 1H; 1a), 5.70 (d, J = 8 Hz, 1H); : 6 (a), 5.80 (dq,

J= 7.5 a 1 Hz, 1H; 1β), 6.37 (d, J= 5 Hz, 1H: NH 4), 6.71 (d, J= 10 Hz, 1H: NH 2),J = 7.5 and 1 Hz, 1H; 1β), 6.37 (d, J = 5Hz, 1H: NH4), 6.71 (d, J = 10Hz, 1H: NH2),

7.10 (d, J= 8 Hz, 2H: 4δ), 7.22(d, J= 8 Hz, 2H: 4 e), cd 7.20dc7.40 (mt, 5H: H Aromatický 6), 7.43 (dd, J= 8.5 a 1.5 Hz, 1H: ľ HJ, 7.47 (dd, J= 8.5 a 4 Hz, 1H; ľ Hj), 7.89 (dd, J = 4 a 1.5 Hz, 1H; ľ H^, 8.55 (d, J= 10 Hz, 1H: NH 1), 9.15 (d, J=7.10 (d, J = 8Hz, 2H: 4δ), 7.22 (d, J = 8Hz, 2H: 4e), cd 7.20dc7.40 (mt, 5H: H aromatic 6), 7.43 (dd, J = 8.5 and 1.5 Hz, 1H: 1 HJ, 7.47 (dd, J = 8.5 and 4 Hz, 1H; 1 H H), 7.89 (dd, J = 4 and 1.5 Hz, 1H; 1 H 4, 8.55 (d, J = 10 Hz, 1H: NH2), 9.15 (d, J =

Hz, 1H: NH 6), 11.70 (s, 1H: OH).Hz, 1H: NH 6), 11.70 (s, 1H: OH).

Príklad 6Example 6

Príprava 4 ζ -metyl-des( 4^ -dimetylamino)pristinamycínu Ia a 4 -metyl-des(4ς -dimetylamino)pristinamycínu Ih Preparation of 4-methyl-ζ of (4 ^ -dimethylamino) pristinamycin I, and a methyl 4-de (dimethylamino 4ς) pristinamycin I h

V meradle 69 Erlenmeyerových baniek sa uskutoční kultivácia kmeňa SP92::pVRC508 v produkčnom prostredí, spôsobom opísaným v príklade 3, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (5 g/1) (R,S-4-metylfenylalánínu v O,1N hydroxide sodnom. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Chlórmetylénové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne a stĺpec sa eluuje elučným gradientom 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce nový derivát pristinamycínu I sa zlúčia a odparia. Získa sa 49 mg suchého zvyšku. Tento zvyšok sa vyberie 6 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie v dvoch podieloch na semipreparatívny stĺpec Nucleosilu Z μ08 s rozmermi 10 x 250 (Macherey Nagel), ktorý sa potom eluuje elučnou sústavou tvorenou zmesou 55 % lOOmM fosfátového pufra s pH 2,9 a 45 % acetonitrilu . Frakcie obsahujúce nový pristinamycín sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 44 mg 4 ζ-metyl-des( 4Z7-dimetylamino)pristinamycínu Ia.On a 69-Erlenmeyer flask, the SP92 :: pVRC508 strain is cultured in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of a solution of (R, S-4-methylphenylalanine in O) is added. After 40 hours of cultivation, 1.8 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then the mixture is centrifuged. The chloromethylene phases are washed with water and then combined, dried over sodium sulphate and evaporated.The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane and the column is eluted with elution. A gradient of 0-10% methanol in dichloromethane The fractions containing the new derivative of pristinamycin I were combined and evaporated to give 49 mg of a dry residue. the residue is taken up in 6 ml of a mixture of 60% water and 40% acetonitrile and the resulting mixture is introduced in two aliquots onto a 10 × 250 Nucleosil Z008 semiprep column (Macherey Nagel), which is then eluted with 55% 100mM phosphate buffer pH 2.9 and 45% acetonitrile. The fractions containing the new pristinamycin are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. To give 44 mg of 4-methyl-ζ of (4Z7-dimethylamino) pristinamycin I, and.

^H-NMR (400 MHz, CDC13, δ v ppm, ref.TMS): 0.52 (dd, .H-NMR (400 MHz, CDC1 3, δ in ppm, ref.TMS): 0.52 (dd,.

J= 16 a 6 Hz, 1H, 5 β.), 0.93 (t, J= 7.5 Hz, 3H: CH3 2 γ), 1.15 (mt, 1H: 3 β.), cdl.20 031.40 (mt, 1H: 3 γ2), 1.35 (d, J= 7.5 Hz, 3H; CH31 γ),αϊ 1.50*1.85 (mt, 3H: 3J = 16 and 6 Hz, 1H, 5 β.), 0.93 (t, J = 7.5 Hz, 3H: CH 3 2 γ), 1.15 (mt, 1H: 3 β.), Cdl. 031.40 (mt, 1H : 3 γ 2 ), 1.35 (d, J = 7.5 Hz, 3 H; CH 3 1 γ), α 1.50 * 1.85 (mt, 3H: 3

CH- 2 β), 2.04 (mt, 1H, 3 β3), 2.18 (mt, 1H, 5 δ2), cd 2.25 *2.45 (mt, 2H: 5 δ3 a 5 β.), 2.36 (s, 3H: ArCH3), 2.83 (dt, J= 13 a: 4 Hz, 1H: 5 ej, 2.99 (dd, J= 13 a 4 Hz,CH-2 β), 2.04 (mt, 1 H, 3 β 3 ), 2.18 (mt, 1 H, 5 δ 2 ), cd 2.25 * 2.45 (mt, 2H: 5 δ 3 and 5 β.), 2.36 (s, 3H: ArCH3), 2.83 (dt, J = 13 and 4 Hz, 1H: 5 ej, 2.99 (dd, J = 13 and 4 Hz,

1H: 4 β,), 3.28 (s, 3H; NCH34), 3.31 a 3.59 (2 mts, 1H teá# CH2 3 Ô), 3.40 (t, J=1H: 4β, 3.28 (s, 3H; NCH 3 4), 3.31 and 3.59 (2 mts, 1H δ # CH 2 3 Ô), 3.40 (t, J =

Hz, 1H: 4 ft), 4.59 (t, J= 7.5 Hz, 1H, 3 a), 4.74 (dd šir. , J= 13 a7 Hz, 1H: 5 zj, 4.85 (mt, 1H: 2a), 4.89 (dšir. , J= 10 Hz, 1H: la), od 5.25* 5.35 (mt, 2H; 5 a a 4 a), cd 5.85*5.95 (mt, 2H; 6 a a. 1β), 6.52 (d, J= 9.5 Hz, 1H: NH 2), 7.14 (AB limit.·, J= 9 Hz, 4H: 4δ a 4ε),od 7.15*7.35 (mt, 5H: H Aromatiký 6), 7.50 (mt,Hz, 1H: 4 ft), 4.59 (t, J = 7.5 Hz, 1H, 3 a), 4.74 (dd broad, J = 13 and 7 Hz, 1H: 5 zs, 4.85 (mt, 1H: 2a), 4.89 (broad, J = 10 Hz, 1H: 1a), from 5.25 * 5.35 (mt, 2H; 5a and 4a), CD 5.85 * 5.95 (mt, 2H; 6a and 1β), 6.52 (d, J) = 9.5 Hz, 1H: NH 2), 7.14 (AB limit., J = 9 Hz, 4H: 4δ and 4ε), from 7.15 * 7.35 (mt, 5H: aromatic H 6), 7.50 (mt,

2H: ľ H, a ľ Hs), 7.81 (dd, J = 4 a 2Hz, 1H: ľ Hj, 8.41 (d, J= 10 Hz, 1H: NH 1),2H: 1 H, 1 'H s ), 7.81 (dd, J = 4 and 2 Hz, 1H: 1 H, 8.41 (d, J = 10 Hz, 1H: NH 1)),

8.74 (d, J= 9 Hz, 1H: NH 6), 11.63 (s, 1H: OH).8.74 (d, J = 9 Hz, 1H: NH6), 11.63 (s, 1H: OH).

Z frakcií, ktoré opúšťajú vyššie opísaný stĺpec silikagélu, obsahujúce nový derivát pristinamycínu IH sa izoluje 21 mg 4ζ-mety1-des(4 -dimetylamino)pristinamycínu IH (hmotnostná spektroskopia: M+H* = 810) v prípade, že sa uskutoční chromatografia na vyššie opísanom semipreparatívnom stĺpci.21 mg of 4ajú-methyl-des (4-dimethylamino) pristinamycin 1 H (mass spectroscopy: M + H + = 810) are isolated from the fractions leaving the above silica gel column containing the new derivative of pristinamycin 1H. chromatography on the semi-preparative column described above.

Príklad 7Example 7

Príprava 4ζ” -metoxy-des(4^ -dimetylamino)pristinamycínu IPreparation of 4'-methoxy-des (4'-dimethylamino) pristinamycin I

V meradle 12 Erlenmeyerových baniek sa uskutoční kultivácia kmeňa SP92::pVRC508 v produkčnom prostredí, spôsobom opísaným v príklade 3, do ktorého sa po 16 hodinách kultivácie pridá l ml roztoku (5 g/1) (R,S)-4-metoxyfenylalanínu v O,1N hydroxide sodnom. Po 40 hodinách kultivácie sa 0,35 litra produkčného rmutu pochádzajúceho z 12 Erlenmeyerových baniek extrahuje dvoma objemami zmesi obsahujúcej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu , potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Chlórmetylénové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne a stĺpec sa potom eluuje elučným gradientom 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce nový derivát pristinamycínu I sa zlúčia a odparia. Získa sa 14 mg suchého zvyšku. Tento suchý zvyšok sa vyberie 3 ml zmesi obsahujúcej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 μΟ8 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa potom eluuje elučnou sústavou tvorenou zmesou 60 % lOOmM fosfátového pufra s pH 2,9 a 40 % acetonitrilu. Frakcie obsahujúce nový pristinamycín sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 12 mg 4 ζ1 -metoxy-des (4 £ -dimetylamino) pristinamycínu Ia .The strain of SP92 :: pVRC508 is cultivated in a production medium as described in Example 3, to which 12 ml of (5 g / l) (R, S) -4-methoxyphenylalanine solution in 0.1N sodium hydroxide. After 40 hours of culture, 0.35 liters of mash produced from 12 Erlenmeyer flasks is extracted with two volumes of a mixture containing 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The chloromethylene phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract was taken up in 20 ml of dichloromethane and the resulting mixture was loaded onto a silica gel column (30 g) in dichloromethane and then eluted with a gradient of 0 to 10% methanol in dichloromethane. The fractions containing the new derivative of pristinamycin I are pooled and evaporated. 14 mg of dry residue are obtained. This dry residue is taken up with 3 ml of a mixture containing 60% water and 40% acetonitrile and loaded onto a 10 x 250 mm Nucleosil 7 μΟ8 semiprep column (Macherey Nagel), which is then eluted with a 60% 100 mM phosphate elution system. buffer pH 2.9 and 40% acetonitrile. The fractions containing the new pristinamycin are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. To give 12 mg of 4-methoxy-1 ζ de (4 £ -dimethylamino) pristinamycin I, and.

XH-NMR (400 MHz, CDC13, d v ppm, ref.TMS): θ 63 (dd, J= 16 a.5.5 Hz, 1H, 5 fô), 0.96 (t, J= 7.5 Hz, 3H: CH3 2 7), 1.17 (mt, 1H: 3 (¾). od ,1.30dol.45 (mt, 1H: 3 72), 1-38 (d, J= 7.5 Hz, 3H: CH3 1 γ),αό 1.55ôo 1.85 (mt, X H-NMR (400 MHz, CDC1 3, ppm doors, ref.TMS): θ 63 (dd, J = 16 Hz A.5.5, 1 H, 5 FO), 0.96 (t, J = 7.5 Hz, 3H: CH 3 2 7), 1.17 (mt, 1H: 3 (¾)), 1.30dol.45 (mt, 1H: 372), 1-38 (d, J = 7.5 Hz, 3H: CH3 1 γ), αό 1.55o 1.85 (mt,

3H; 3 7i a CH2 2 β), 2.05 (mt, 1H, 3 βχ). 2.20 (mt, 1H. 5 62), 2.40 (d širl· , J= 16 Hz, 1H: 5 δχ), 2.47 (d, J= 16 Hz, 1H; 5 βχ), 2.88 (dt, J= 13 a 4 Hz, 1H: 5 63), 2.99 (dd, J= 12.5 a 5 Hz, 1H: 4 fó), 3.30 (s, 3H; NCH3 4), 3.32 a 3.60 (2 mts, 1H teždý CH2 3 δ), 3.40 (t, J= 12.5 Hz, 1H: 4 βχ), 3.80 (s, 3H; OCH3), 4.60 (t, J= 7.5 Hz, 1H, 3 a), 4.80 (dd šir., J= 13 a 8.5 Hz, 1H: 5 εχ), 4.88 (mt, 1H: 2a), 4.92 (d šir. , J- 10 Hz, 1H: la), 5.31 (dd, J= 12.5 a 5 Hz, 1H: 4 a), 5.34 (d Si r , J= 5.5 Hz, 1H: 5 a), 5.90(d, J= 9 Hz, 1H: 6 a). 5.93 (q šir. , J= 7.5 Hz, 1H: lp), 6.54 (d, J= 9 Hz, 1H: NH 2), 6.87 (d, J= 8 Hz, 2H: 4«), 7.16 (d, J= 8 Hz, 2H: 4Ô), cd 7.15 do7.40 (mt, 5H: H Aromatický 6), 7.50 (mt, 2H: ľ H5 a ľ H4), 7.80 (dd, J = 4 a 2.5 Hz, 1H: ľ Hó), 8.43 (d, J= 10 Hz, 1H: NH 1), 8.78 (d, J= 9 Hz, 1H: ΝΉ 6), 11.65 (s, 1H: OH).3H; 7 R 3 and β 2 CH 2), 2.5 (mt, 1H, 3 βχ). 2.20 (mt, 1H, 622), 2.40 (broad, J = 16 Hz, 1H: 5 δχ), 2.47 (d, J = 16 Hz, 1H; 5 βχ), 2.88 (dt, J = 13 and 4 Hz, 1H: δ 63), 2.99 (dd, J = 12.5 and 5 Hz, 1H: 4 fo), 3.30 (s, 3H; NCH 3 4), 3.32 and 3.60 (2 mts, 1H each CH 2 3 δ) 3.40 (t, J = 12.5Hz, 1H: 4βχ), 3.80 (s, 3H; OCH3), 4.60 (t, J = 7.5Hz, 1H, 3a), 4.80 (broad dd, J = 13 and 8.5 Hz, 1H: 5 εχ), 4.88 (mt, 1H: 2a), 4.92 (broad d, J = 10 Hz, 1H: 1a), 5.31 (dd, J = 12.5 and 5 Hz, 1H: 4 a) 5.34 (d Si, J = 5.5 Hz, 1H: 5 a), 5.90 (d, J = 9 Hz, 1H: 6 a). 5.93 (broad broad, J = 7.5 Hz, 1H: 1p), 6.54 (d, J = 9 Hz, 1H: NH2), 6.87 (d, J = 8 Hz, 2H: 4 &apos;), 7.16 (d, J = 8 Hz, 2H: 4Ô), cd 7.15-7.40 (mt, 5H: H aromatic 6), 7.50 (mt, 2H: 1 H 5 and 1 H 4 ), 7.80 (dd, J = 4 and 2.5 Hz) 1 H: 1 H ( 6 ), 8.43 (d, J = 10 Hz, 1H: NH 1), 8.78 (d, J = 9 Hz, 1H:? 6), 11.65 (s, 1H: OH).

Príklad 8Example 8

Príprava 4£ -metoxykarbonyl-des(4ζ -dimetylamino)pristinamycínu IPreparation of 4? -Methoxycarbonyl-des (4ζ-dimethylamino) pristinamycin I

AA

V meradle 60 Erlenmeyerových baniek sa uskutoční kultivácia kmeňa SP92::pVRC508 v produkčnom prostredí, spôsobom opísaným v príklade 3, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (10 g/1) (R,S)-4-metoxykarbonylfenylalanínu, syntetizovaného v príklade 33. Po 24 hodinách kultivácie sa 1, litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi obsahujúcej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Chlórmetylénové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne a stĺpec sa potom eluuje elučným gradientom 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce nový derivát pristinamycínu Ia sa zlúčia a odparia. Získa sa 14 mg suchého zvyšku. Tento suchý zvyšok sa vyberie 3 ml zmesi obsahujúcej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 μ08 s rozmermi 10 x 250 mm (Macherey Nagel), a tento stĺpec sa potom eluuje zmesou 55 % lOOmM fosfátového pufra s pH 2,9 a 45 % acetonitrilu. Frakcie obsahujúce nový pristinamycín sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 9 mg 4ζ -metoxykarbonyl-des(4ζ -di· metylamino)pristinamycínu Ia.On a 60-Erlenmeyer flask, the strain SP92 :: pVRC508 was cultured in the production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of (10 g / l) (R, S) -4-methoxycarbonylphenylalanine solution was added. After 24 hours of culture, 1 liter of mash produced from 60 Erlenmeyer flasks was extracted with two volumes of a mixture containing 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The chloromethylene phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract was taken up in 20 ml of dichloromethane and the resulting mixture was loaded onto a silica gel column (30 g) in dichloromethane and then eluted with a gradient of 0 to 10% methanol in dichloromethane. Fractions containing the novel derivative of pristinamycin I and were pooled and evaporated. 14 mg of dry residue are obtained. This dry residue is taken up with 3 ml of a mixture containing 60% water and 40% acetonitrile and the resulting mixture is loaded onto a 10 × 250 mm Nucleosil 7 μ08 semiprep column (Macherey Nagel), which is then eluted with 55% 100 mM phosphate buffer. pH 2.9 and 45% acetonitrile. The fractions containing the new pristinamycin are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 9 mg 4ζ methoxycarbonyl-de (4ζ · di methylamino) pristinamycin I, and.

^H-NMR (400 MHZ, CDCl3, S v ppm, ref.TMS): 0.70 (dd,H-NMR (400 MHz, CDCl3, in ppm, ref.TMS): 0.70 (dd,

J= 16 a 6 Hz, 1H, 5 (¾). 0.93 (t, J= 7.5 Hz, 3H: CH, 2 γ), 1.08 (mt, 1H: 3 &), cd 1.30 aol.40 (mt, 1H: 3 γΣ), 1.33 (d, J= 7.5 Hz, 3H: CH, 1 γ),ο5 1.55dol.85 (mt, 3H: 3 7la CH, 2 β), 2.02 (mt 1H, 3 ft), 2.13 (mt, 1H, 5 δ2), 2.40 (d šir. , J= 16.5 Hz, 1H; 5 δ,), 2.48 (d, J=16 Hz, 1H, 5 ft), 2.89 (dt, J= 14.5 a 4.5 Hz, 1H: 5 e,), 3.10 (dd, J=J = 16 and 6 Hz, 1H, δ (¾). 0.93 (t, J = 7.5 Hz, 3H: CH, γ 2), 1.8 (mt, 1H: 3 &), CD aol.40 1.30 (mt, 1H: 3 γ Σ), 1:33 (d, J = 7.5 Hz , 3H: CH, 1 γ), ο5 1.55d.85 (mt, 3H: 371 and CH, 2 β), 2.02 (mt 1H, 3 ft), 2.13 (mt, 1H, 5 δ 2 ), 2.40 ( d broad, J = 16.5 Hz, 1H; 5 δ,), 2.48 (d, J = 16 Hz, 1H, 5 ft), 2.89 (dt, J = 14.5 and 4.5 Hz, 1H: 5 e,), 3.10 (dd, J =

13.5 a 6 Hz, 1H: 4 β,), 3.24 (s ,3H: NCH, 4), 3.38 a 3.61 (2 mts, 1H každý ; Cl·^ 3 δ), 3.47 (t, J= 13.5 Hz, 1H: 4 β,), 3.96 (s, 3H: COOCH,), 4.55 (t, J= 7.5 Hz, 1H, 313.5 and 6 Hz, 1H: 4β,), 3.24 (s, 3H: NCH, 4), 3.38 and 3.61 (2 mts, 1H each; Cl · 3 δ), 3.47 (t, J = 13.5 Hz, 1H 4.55 (t, J = 7.5 Hz, 1H, 3H, COOCH3), 4.96 (s, 3H: COOCH3);

a), 4.78 (dd šir. , J= 14.5 . 8 Hz, 1H: 5 ε,), 4.86 (mt, 1H; 2a), 4.89 (d šir. , J= 10 Hz, 1H: let), 5.33 (d šir. , J= 6 Hz, 1H: 5 a), 5.42 (dd, J= 13.5 a 6 Hz, 1H: 4 a), 5.92 (d (J= 9.5 Hz) et mt, 1H težšý ; respectíve 6 a a 1β), 6.52 (d, J= 10 Hz, 1H: NH 2), de 7.15 á 7.35 (mt, 5H: H Aromatický 6), 7.28 (d, J= 8 Hz, 2H; 4δ), 7.43 (dd, J= 9 a 1.5 Hz, 1H; ľ H4), 7.47 (dd, J= 9 a 5 Hz, 1H: ľ Hs), 7.66 (d, J = 5 a 1.5 Hz, 1H: 1' Hj), 7.98 (d, J= 8 Hz, 2H: 4ε), 8.38 (d, J= 10 Hz, 1H: NH 1), 8.76 (d, J= 9.5 Hz, 1H; NH 6), 11.70 (s, 1H: OH).a), 4.78 (broad d, J = 14.5, 8 Hz, 1H: 5 ε,), 4.86 (broad m, 1H; 2a), 4.89 (broad d, J = 10 Hz, 1H: flight), 5.33 ( broad d, J = 6 Hz, 1H: 5 a), 5.42 (dd, J = 13.5 and 6 Hz, 1H: 4 a), 5.92 (d (J = 9.5 Hz) and mt, 1H heavier; respectively 6 aa 1β), 6.52 (d, J = 10Hz, 1H: NH2), from 7.15 to 7.35 (mt, 5H: H aromatic 6), 7.28 (d, J = 8Hz, 2H; 4δ), 7.43 (dd, J = 9 and 1.5 Hz, 1 H, L H 4), 7:47 (dd, J = 9 and 5 Hz, 1H: L H s), 7.66 (d, J = 5 and 1.5 Hz, 1H: 1 'Hj). 7.98 (d, J = 8Hz, 2H: 4ε), 8.38 (d, J = 10Hz, 1H: NH1), 8.76 (d, J = 9.5Hz, 1H; NH6), 11.70 (s, 1H: OH).

Príklad 9Example 9

4ζ -chlór-des(4^ -dimetylamino)pristinamycínu Ia 4'-chloro-des (4'-dimethylamino) pristinamycin I a

V meradle 60 Erlenmeyerových baniek sa uskutoční kultivácia kmeňa SP92::pVRC508 v produkčnom prostredí, spôsobom opísaným v príklade 3, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (10 g/1) (R,S)-4-chlórfenylalanínu v O,1N hydroxide sodnom. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Chlórmetylénové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne a tento stĺpec sa eluuje elučným gradientom 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce nový derivát pristinamycínu Ia sa zlúčia a odparia. Suchý zvyšok sa vyberie 3 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 μϋδ s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa potom eluuje elučnou sústavou tvorenou zmesou 60 % lOOmM fosfátového pufra s pH 2,9 a 40 % acetonitrilu. Frakcie obsahujúce nový pristinamycín sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 1 mg 4 ζ'-chlór-des(4ζ -dimetylamino)pristinamycínu I .On a 60 Erlenmeyer flask, the strain SP92 :: pVRC508 is cultivated in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of (10 g / l) (R, S) -4-chlorophenylalanine solution in 0.1N sodium hydroxide. After 40 hours of cultivation, 1.8 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The chloromethylene phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract was taken up in 20 ml of dichloromethane and the resulting mixture was loaded onto a silica gel column (30 g) in dichloromethane and eluted with a gradient of 0 to 10% methanol in dichloromethane. Fractions containing the novel derivative of pristinamycin I and were pooled and evaporated. The dry residue is taken up in 3 ml of a mixture of 60% water and 40% acetonitrile and the mixture is loaded onto a 10 × 250 mm Nucleosil 7 μϋδ semiprep column (Macherey Nagel), which is then eluted with a 60% 100 mM phosphate buffer mixture. pH 2.9 and 40% acetonitrile. The fractions containing the new pristinamycin are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 1 mg of 4''-chloro-des (4'-dimethylamino) pristinamycin I is obtained.

1H-NMR (400 MHz, CDCla, í v ppm, ref.TMS): 0.93 (t, J= 1 H-NMR (400 MHz, CDCl a, d in ppm, ref.TMS): 0.93 (t, J =

7.5 Hz, 3H: CH3 2 γ), 0.95 (dd. J= 16 a 5 Hz, 1H, 5 &), 1.09 (mt, 1H: 3 β-), ±1.20 <±1.40 (mt, 1H: 3 γ2), 1.35 (d, J= 7.5 Hz, 3H: CH31 γ),od 1.50 ±1.85 (mt, 3K: 3 7la7.5 Hz, 3H: CH3 2 γ), 0.95 (d. J = 16 and 5 Hz, 1 H, 5 &amp;), 1.9 (mt, 1H: 3 β-) 20.1 ± <± 1:40 (mt, 1H: 3 γ 2), 1:35 (d, J = 7.5 Hz, 3H: CH3 1 γ), from 1:50 ± 1.85 (mt, 3H: 3 and 7 liters

CH, 2 β), 2.02 (mt, 1H, 3 β.), 2.17 (mt, 1H, 5 δ2), 2.43 (d šir. , J= 16 Hz, 1H: 5 δ,),CH, 2 β), 2.02 (mt, 1 H, 3 β.), 2.17 (mt, 1 H, 5 δ 2 ), 2.43 (broad d, J = 16 Hz, 1H: 5 δ,),

2.59 (d, J=16 Hz, 1H, 5 β3), 2.90 (dt, J= 13.5 a 4 Hz, 1H: 5 e,), 3.04 (dd, J= 13 a 6 Hz, 1H: 4 β.), 3.21 (s, 3H: 4 NCH3), 3.36 (t, J= 13 Hz, 1H: 4 β,), 3.39 a 3.59 (2 mts, IHkaščz : CH, 3 δ), 4.53 (t, J= 7.5 Hz, 1H, 3 a), 4.76 (dd sir., J= 13.5 a 8 Hz,2.59 (d, J = 16 Hz, 1 H, 5 β 3 ), 2.90 (dt, J = 13.5 and 4 Hz, 1H: 5 e), 3.04 (dd, J = 13 and 6 Hz, 1H: 4 β). ), 3.21 (s, 3H: 4 NCH3), 3:36 (t, J = 13 Hz, 1H: 4 β,), 3:39, and 3:59 (2 mts, IHkaščz: CH 3 δ), 4:53 (t, J = 7.5 Hz, 1H, 3 a), 4.76 (dd sir., J = 13.5 and 8 Hz,

1H: 5 ε.), 4.86 (mt, 1H: 2a), 4.87(d šír., J= 10 Hz, 1H: la), 5.38 (mt, 2H: 5 a a 41H: 5 ε.), 4.86 (mt, 1H: 2a), 4.87 (broad d, J = 10 Hz, 1H: 1a), 5.38 (mt, 2H: 5 and 4)

a), 5.93 (mt, 2H: 6 a a 1β), 6.52 (d, J= 10 Hz, 1H: NH 2), 7.12 (d, J = 8 Hz, 2H:6.52 (d, J = 10Hz, 1H: NH2), 7.12 (d, J = 8Hz, 2H);

4δ), ± 7.15±7.35 (mt, 7H: H Aromati±ý 6 et 4ε), 7.38 (dd, J= 9 a 4.5 Hz, lH:ľ Hs), 7.43 (dšir. , J= 9 Hz, lH:ľ H<), 7.68 (dd, J = 4.5 a 1 Hz, 1H: ľ H^, 8.36 (d,4δ), ± 7.15 ± 7.35 (mt, 7H: aromatic ą 6 et 4ε), 7.38 (dd, J = 9 and 4.5 Hz, 1H: 1 H s ), 7.43 (broad, J = 9 Hz, 1H) 7.68 (dd, J = 4.5 and 1 Hz, 1H: 1 H +, 8.36 (d, 1H);

J= 10 Hz, 1H: NH 1), 8.75 (d, J= 9 Hz, 1H: NH 6), 11.65 (s, 1H: OH).J = 10 Hz, 1H: NH 1), 8.75 (d, J = 9 Hz, 1H: NH 6), 11.65 (s, 1H: OH).

Príklad 10Example 10

Príprava 4ζ -bróm-des(4ζ-dimetylamino)pristinamycínu IA a 4 % -bróm-des (4 ζ -dimetylamino)pristinamycínu IPreparation of 4'-bromo-des (4'-dimethylamino) pristinamycin I A and 4% -bromo-des (4'-dimethylamino) pristinamycin I

V meradle 60 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá l ml roztoku (10 g/1) (R, S)-4-brómfenylalanínu v 0, IN hydroxide sodnom. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Chlórmetylénové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne a tento stĺpec sa potom eluuje elučným gradientom 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce nový derivát pristinamycínu I sa zlúčia a odparia. Suchý zvyšok sa vyberie 6 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa potom dvakrát zavedie na semipreparatívny stĺpec Nucleosilu 7 μ08 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa potom eluuje zmesou tvorenou 60 % lOOmM fosfátového pufra s pH 2,9 a 40 % acetonitrilu. Frakcie obsahujúce nový pristinamycín sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 6 mg 4 ζ -bróm-des(4 £-dimetylamino)pristinamycínu 1^.On a 60-ml Erlenmeyer flask, the strain SP92 :: pVRC508 was cultured in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of (10 g / l) (R, S) -4-bromophenylalanine solution was added. v 0, IN sodium hydroxide. After 40 hours of cultivation, 1.8 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The chloromethylene phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract was taken up in 20 ml of dichloromethane and the resulting mixture was loaded onto a silica gel column (30 g) in dichloromethane and this column was then eluted with a gradient of 0 to 10% methanol in dichloromethane. The fractions containing the new derivative of pristinamycin I are pooled and evaporated. The dry residue is taken up in 6 ml of a mixture of 60% water and 40% acetonitrile and the resulting mixture is then loaded twice onto a 10 × 250 mm Nucleosil 7 μ08 semiprep column (Macherey Nagel), which is then eluted with a 60% 100 mM phosphate buffer mixture. pH 2.9 and 40% acetonitrile. The fractions containing the new pristinamycin are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 6 mg of 4'-bromo-des (4'-dimethylamino) pristinamycin 1 'are obtained.

XH-NMR (400 MHz, CDCl3, S v ppm, ref.TMS): 0.93 (t, J= 7.5 X H-NMR (400 MHz, CDCl3, in ppm, ref.TMS): 0.93 (t, J = 7.5

Hz, 3H: CH3 2 7), 0.95 (dd, J= 16 a 5 Hz, 1H, 5 β.), 1.10 (mt, 1H: 3 β,), 1.35 (d, J=Hz, 3H: CH 3 2 7), 0.95 (dd, J = 16 and 5 Hz, 1H, 5 β.), 1.10 (mt, 1H: 3 β,), 1.35 (d, J =

7.5 Hz, 3H: CH3 i γ), 1.36 (mt, 1H: 3 γ2), cdl.50dol.85 (mt, 3H: 3 γ3 a CH, 2 β),7.5 Hz, 3H: CH 3 i γ), 1.36 (mt, 1H: 3 γ 2 ), cdl.50dol.85 (mt, 3H: 3 γ 3 and CH, 2 β),

2.02 (mt, 1H, 3 β3), 2.18 (mt 1H, 5 δ.), 2.43 (d šir , J= 16 Hz, 1H: 5 δ3), 2.59 (d,2.02 (mt, 1 H, 3 β 3 ), 2.18 (mt 1 H, 5 δ.), 2.43 (broad d, J = 16 Hz, 1H: 5 δ 3 ), 2.59 (d,

J=16 Hz, 1H, 5 β3), 2.90 (dt, J= 13 a 4 Hz, 1H: 5 eý, 3.02 (dd, J= 13 et 5.5 Hz, 1H;J = 16 Hz, 1H, 5? 3 , 2.90 (dt, J = 13 and 4 Hz, 1H: 5 ey, 3.02 (dd, J = 13 and 5.5 Hz, 1H);

&), 3.21 (s, 3H: 4 NCH3), 3.33 (dd, J= 13 - 11 Hz, 1H: 4 β3), 3.39 a 3.59 (2 mís,Λ), 3.21 (s, 3H: 4 NCH 3 ), 3.33 (dd, J = 13-11 Hz, 1H: 4 β 3 ), 3.39 and 3.59 (2 dishes,

1H težôz ·. CHj 3 δ), 4.53 (t, J= 7.5-Hz, 1H, 3 a), 4.76 (dd šir.,, J= 13 a 7 Hz, 1H:1H težúv ·. CH 3 δ), 4.53 (t, J = 7.5 Hz, 1H, 3 a), 4.76 (broad d, J = 13 and 7 Hz, 1H):

ε3), 4.86 (mt, 1H: 2a), 4.89 (d šir., J= 10 Hz, 1H: la), 5.37 (d šir. , J= 5 Hz, 1H:ε 3 ), 4.86 (broad m, 1H: 2a), 4.89 (broad d, J = 10 Hz, 1H: 1a), 5.37 (broad d, J = 5 Hz, 1H:

a), 5.39 (dd, J= 11 a 5.5 Hz, 1H: 4 a), 5.92 (mt, 2H; 6 a a 1β), 6.56 (d, J= 9.5 Hz, 1H: NH 2), 7.08 (d, J = 8 Hz, 2H: 4δ), od 7.l5do7.35 (mt, 5H: H Aromatický 6), 7.40 (mt, 4H: ľ H, - ľ H, a 4ε), 7.70 (d šir. , J = 5 Hz, 1H: ľ Hý, 8.40 (d, J=5.39 (dd, J = 11 and 5.5 Hz, 1H: 4a), 5.92 (mt, 2H; 6a and 1β), 6.56 (d, J = 9.5 Hz, 1H: NH2), 7.08 (d, J = 8 Hz, 2H: 4δ), from 7.15 to 7.35 (mt, 5H: H aromatic 6), 7.40 (mt, 4H: 1 H, - 1 H, and 4ε), 7.70 (broad d, J = 5 Hz, 1H: 1 'H, 8.40 (d, J =

Hz, 1H: NH 1), 8.77 (d, J= 9 Hz, 1H; NH 6), 11.68 (s, 1H: OH).Hz, 1H: NH 1), 8.77 (d, J = 9 Hz, 1H, NH 6), 11.68 (s, 1H: OH).

Z frakcií, ktoré opúšťajú stĺpec silikagélu, ktorý sa opisuje vyššie, a ktoré obsahujú nový derivát pristinamycínu I sa izolujú 3 mg 4 £-bróm-des(4 ξ* -dimetylamino)pristinamycínu Ih (hmotnostná spektroskopia: M+H* = 874) v prípade, že sa uskutoční chromatografia na vyššie opísanom semipreparatívnom stĺpci.3 mg of 4? -Bromo-des (4? -Dimethylamino) pristinamycin I h (mass spectroscopy: M + H + = 874) were isolated from the fractions leaving the silica gel column described above containing the new derivative of pristinamycin I. ) in the case of chromatography on the semi-preparative column described above.

Príklad 11Example 11

Príprava 4^-jód-des(4ζ-dimetylamino)pristinamycínu IA a £ -jód-des(4 ζ -dimetylamino)pristinamycínu Ir Preparation of 4-iodo-des ^ (4ζ-dimethylamino) pristinamycin IA and £ iodo-de (4 ζ -dimethylamino) pristinamycin I, R

V meradle 60 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (10 g/1) (R, S)-4-jódfenylalanínu vOn a 60-ml Erlenmeyer flask, the strain SP92 :: pVRC508 is cultured in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of (10 g / l) (R, S) -4-iodophenylalanine solution is added. in

0,IN hydroxide sodnom. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Chlórmetylénové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne a tento stĺpec sa potom eluuje elučným gradientom 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce nový derivát pristinamycínu Ia sa zlúčia a odparia. Suchý zvyšok sa vyberie 6 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa potom dvakrát zavedie na semipreparatívny stĺpec Nucleosilu 7 μ08 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa potom eluuje zmesou tvorenou 60 % lOOmM fosfátového pufra s pH 2,9 a 40 % acetonitrilu. Frakcie obsahujúce nový pristinamycín sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 12 mg 4 ζ -jód-des(4t; -dimetylamino) pristinamycínu Ia.0, IN sodium hydroxide. After 40 hours of cultivation, 1.8 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The chloromethylene phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract was taken up in 20 ml of dichloromethane and the resulting mixture was loaded onto a silica gel column (30 g) in dichloromethane and this column was then eluted with a gradient of 0 to 10% methanol in dichloromethane. Fractions containing the novel derivative of pristinamycin I and were pooled and evaporated. The dry residue is taken up in 6 ml of a mixture of 60% water and 40% acetonitrile and the resulting mixture is then loaded twice onto a 10 × 250 mm Nucleosil 7 μ08 semiprep column (Macherey Nagel), which is then eluted with a 60% 100 mM phosphate buffer mixture. pH 2.9 and 40% acetonitrile. The fractions containing the new pristinamycin are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. To give 12 mg of 4-iodo-of ζ (4 tons; -dimethylamino) pristinamycin I, and.

XH-NMR (400 MHz, CDCl , S v ppm, ref.TMS): X H-NMR (400 MHz, CDCl, in ppm, ref.TMS):

3 0.93 (t, J= 3 0.93 (t, J =

7.5 Hz, 3H: CH3 2 γ), 0.95 (dd, J= 16a 5.5 Hz, 1H, 5 (¾). 1.10 (mt, 1H: .3 β.), 1.35 (d, J= 7.5 Hz, 3H: CH3 1 γ), 1.38 (mt, 1H: 3 γ2), cd 1.55 ädl.85 (mt, 3H: 3 γ, a CH2 2 β), 2.02 (mt, 1H, 3 β,), 2.17 (mt, 1H, 5 δ2), 2.43 (d šir., J= 16.5 Hz, 1H: 5 ôý, 2.60 (d, J=16 Hz, 1H, 5 β3), 2.89 (dt, J= 14 a 4.5 Hz, 1H: 5 a,), 3.02 (dd, J= 13 a 5.5 Hz,7.5 Hz, 3H: CH 3 2 γ), 0.95 (dd, J = 16 and 5.5 Hz, 1H, 5 (¾). 1.10 (mt, 1H: .3 β.), 1.35 (d, J = 7.5 Hz, 3H) : CH 3 1 γ), 1.38 (mt, 1 H: 3 γ 2 ), cd 1.55 ldl.85 (mt, 3H: 3 γ, and CH 2 2 β), 2.02 (mt, 1 H, 3 β,), 2.17 (mt, 1H, 5 δ 2 ), 2.43 (broad d, J = 16.5 Hz, 1H: 5 δ, 2.60 (d, J = 16 Hz, 1H, 5 β 3 ), 2.89 (dt, J = 14 and 4.5 Hz, 1H: 5 a,), 3.02 (dd, J = 13 and 5.5 Hz,

1H: 4 β.), 3.21 (s, 3H: NCH3 4), 3.31 (dd, J= 13 a 11 Hz, 1H: 4 β3), 3.39 a 3.59 (2 mts, 1H každý : CHj 3 δ), 4.53 (t, J= 7.5 Hz, 1H, 3 a), 4.75 (dd šir. , J= 14 a 8 Hz,1H: 4 β.), 3.21 (s, 3H: NCH 3 4), 3.31 (dd, J = 13 and 11 Hz, 1H: 4 β 3 ), 3.39 and 3.59 (2 mts, 1H each: CH 3 δ) 4.53 (t, J = 7.5Hz, 1H, 3a), 4.75 (broad dd, J = 14 and 8Hz,

1H: 5 eý, 4.83 (mt, 1H: 2a), 4.88 (d šir., J= 10 Hz, 1H: la), 5.37 (d šir.;, J= 5.51H: 5e, 4.83 (mt, 1H: 2a), 4.88 (broad d, J = 10 Hz, 1H: 1a), 5.37 (broad d, J = 5.5)

Hz, 1H: 5 a), 5.39 (dd, J= 11 a 5.5 Hz, 1H: 4 a), 5.92 (mt, 2H: 6 a a 1β), 6.54 (d,Hz, 1H: 5a), 5.39 (dd, J = 11 and 5.5 Hz, 1H: 4a), 5.92 (mt, 2H: 6a and 1β), 6.54 (d,

J= 9.5 Hz, 1H: NH 2), 6.94 (d, J = 7.5 Hz, 2H: 4δ), ad 7.15*7.50 (mt, 5H: H Aromatický 6), 7.36 (dd, J = 9 a 4 Hz, 1H: ľ H5), 7.43 (d šir. , J= 9 Hz, 1H: ľ H4),J = 9.5 Hz, 1H: NH2), 6.94 (d, J = 7.5 Hz, 2H: 4δ), ad 7.15 * 7.50 (mt, 5H: aromatic H at position 6), 7.36 (dd, J = 9 and 4 Hz), 1H: 1 H 5 ), 7.43 (broad d, J = 9 Hz, 1H: 1 H 4 ),

7.62 (d, J= 7.5 Hz, 2H: 4a), 7.68 (d, J = 4 Hz, 1H: ľ Hj), 8.38 (d, J= 10 Hz, 1H: NH 1), 8.76 (d, J= 9 Hz, 1H: NH 6), 11.60 (s, 1H: OH).7.62 (d, J = 7.5Hz, 2H: 4a), 7.68 (d, J = 4Hz, 1H: 1 H), 8.38 (d, J = 10Hz, 1H: NH 1), 8.76 (d, J = 9 Hz, 1H: NH6), 11.60 (s, 1H: OH).

Z frakcií, ktoré opúšťajú vyššie uvedený stĺpec silikagélu a obsahujú nový derivát pristinamycínu I sa izoluje 6 mg 4 ζ-jód-des (4 ζ-dimetylamino)pristinamycínu I (hmotnostná spektroskopia: M+H* = 922) v prípade, že sa uskutoční chromátografia na vyššie opísanom semipreparatívnom stĺpci.6 mg of 4'-iodo-des (4'-dimethylamino) pristinamycin I (mass spectroscopy: M + H + = 922) was isolated from the fractions leaving the above silica gel column containing the new derivative of pristinamycin I, if performed. Chromatography on the semi-preparative column described above.

Príklad 12Example 12

Príprava ζ -trif luórmetyl-des (4 ζ -dimetylamino) pristinamycínu Ia a 4 ξ*-trifluórmetyl-des (4 ζ -dimetylamino) pristinamycínu IPreparation ζ luórmetyl -trifluoromethyl-de (4 ζ -dimethylamino) pristinamycin I, and a ξ * 4 trifluoromethyl-de (4 ζ -dimethylamino) pristinamycin I,

V meradle 60 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVPC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá roztok ( 5 g/1) (S)-4-trifluórmetylfenylalanínu v 0, IN hydroxide sodnom. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, ktorý sa eluuje elučným gradientom 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce nový derivát pristinamycínu I sa zlúčia a odparia. Suchý zvyšok sa vyberie 3 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa potom dvakrát zavedie na semipreparatívny stĺpec Nucleosilu 7 μ08 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa potom eluuje zmesou 55 % lOOmM fosfátového pufra s pH 2,9 a 45 % acetonitrilu. Frakcie obsahujúce nový pristinamycín sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 5 mg 4ζ-trifluórmetyl-des(4^ -dimetylamino)pristinamycínu 1^.On a 60-ml Erlenmeyer flask, the strain SP92 :: pVPC508 was cultured in a production medium to which, after 16 hours of culture, a solution of (5 g / l) (S) -4-trifluoromethylphenylalanine at 0.1N was added. Sodium hydroxide. After 40 hours of cultivation, 1.8 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract was taken up in 20 ml of dichloromethane and the resulting mixture was loaded onto a silica gel column (30 g) in dichloromethane, eluting with a gradient of 0 to 10% methanol in dichloromethane. The fractions containing the new derivative of pristinamycin I are pooled and evaporated. The dry residue is taken up with 3 ml of a mixture of 60% water and 40% acetonitrile and the resulting mixture is then loaded twice onto a 10 × 250 mm Nucleosil 7 µ08 semiprep column (Macherey Nagel), which is then eluted with 55% 100 mM phosphate buffer. pH 2.9 and 45% acetonitrile. The fractions containing the new pristinamycin are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 5 mg of 4'-trifluoromethyl-des (4'-dimethylamino) pristinamycin 1 'is obtained.

^H-NMR (400 MHz, CDC13, S v ppm, ref.TMS): 0.86 (dd,1 H-NMR (400 MHz, CDCl 3 , δ in ppm, ref.TMS): 0.86 (dd,

J= 16 a 5.5 Hz, 1H, 5 β2), 0.91 (t, J= 7.5 Hz, 3H: CH3 2 y), 1.13 (mt, 1H: 3 β.), 1.31 (d, J= 7.5 Hz, 3H: CH31 γ), 1.42 (mt, 1H: 3 γ2), cá 1.55 <±>1.80 (mt, 3H: 3 y, a CH, 2 β), 2.02 (mt, 1H, 3 β3), 2.15 (mt, 1H, 5 δ2), 2.40 (d šir., J= 16.5 Hz, 1H: 5 δ.), 2.55 (d, J=I6 Hz, 1H, 5 , 2.88 (dt, J= 14 a 4 Hz, 1H: 5 ε,), 3.18 (s, 3H: NCH. 4), 3.20 a 3.31 (2 dd, respectíve J= 13 a 6 Hz et J= 13 a 10 Hz„ 1H kažô/ : 4 β. a 4J = 16 and 5.5 Hz, 1H, 5 β 2 ), 0.91 (t, J = 7.5 Hz, 3H: CH 3 2 γ), 1.13 (mt, 1H: 3 β.), 1.31 (d, J = 7.5 Hz , 3H: CH 3 1 γ), 1.42 (mt, 1H: 3 γ 2 ), c 1.55 <±> 1.80 (mt, 3H: 3 y, and CH, 2 β), 2.02 (mt, 1H, 3 β 3 ), 2.15 (mt, 1H, δ 2 ), 2.40 (broad d, J = 16.5 Hz, 1H: 5 δ), 2.55 (d, J = 16 Hz, 1H, 5, 2.88 (dt, J = 14 and 4 Hz, 1H: 5 ε,), 3.18 (s, 3H: NCH. 4), 3.20 and 3.31 (2 dd, respectively J = 13 and 6 Hz and J = 13 and 10 Hz, 1H each): 4 β and 4

β.), 3.42 a 3.60 (2 mts, 1H težčz : CH, 3 δ), 4.50 (t, J= 7.5 Hz, 1H, 3 c), 4.73 (dd šir. , J= 14 a 7.5 Hz, 1H: 5 ε,), 4.83 (mt, 1H: 2a), 4.91 (d šir.J= 10 Hz, IH: lc), 5.40 (d šir., J= 5.5 Hz, 1H: 5 c), 5.55 (dd, J= 10a 6 Hz, 1H: 4 <z), 5.87 (d, J= 9.5 Hz, 1H: 6 a), 5.90 (q šir. , J= 7.5 Hz, 1Η:1β), 6.68 (d, J= 9.5 Hz, 1K: ΝΉ 2), cd 7.15 do7.40 (mt, 9 H: 45 - H Aromatický ó - ľ Hs a ľ H4), 7.52 (d, J= 8 Hz, 2H: 4ε), 7.68 (d, J = 4 a 1.5 Hz, 1H: ľ Hj, 8.43 (d, J= 10 Hz, 1H: ΝΉ 1), 8.76 (d, J= 9;5 Hz, 1H:NH6), 11.70 (s, 1H: OH).β.), 3.42 and 3.60 (2 mts, 1H heavy: CH, 3 δ), 4.50 (t, J = 7.5 Hz, 1H, 3 c), 4.73 (broad d, J = 14 and 7.5 Hz, 1H): 5 ε,), 4.83 (broad m, 1H: 2a), 4.91 (broad d, J = 10 Hz, IH: 1c), 5.40 (broad d, J = 5.5 Hz, 1H: 5 c), 5.55 (dd, J = 10 and 6 Hz, 1H: 4 <z), 5.87 (d, J = 9.5Hz, 1H: 6a), 5.90 (q broad, J = 7.5 Hz, 1Η: 1β), 6.68 (d, J = 9.5 Hz, 1K: ΝΉ 2), cd 7.15 to7.40 (mt, 9 H: 45 - H Aromatic δ - 1 H s and 1 H 4 ), 7.52 (d, J = 8 Hz, 2H: 4ε), 7.68 (d, J = 4 and 1.5 Hz, 1H: 1 H, 8.43 (d, J = 10 Hz, 1H: ΝΉ1)), 8.76 (d, J = 9; 5 Hz, 1H: NH 6), 11.70 (s, 1H: OH).

Z frakcií, ktoré opúšťajú vyššie uvedený stĺpec silikagélu a obsahujú nový derivát pristinamycínu I sa izolujú 4 mg 4 ζ -trifluórmetyl-des (4 ζ -dimetylamino) pristinamycínu Ik (hmotnostná spektroskopia: M+H* = 922) v prípade, že sa uskutoční chromatografia na vyššie opísanom semipreparatívnom stĺpci.4 mg of 4'-trifluoromethyl-des (4'-dimethylamino) pristinamycin I k (mass spectroscopy: M + H + = 922) are recovered from the fractions leaving the above silica gel column containing the new derivative of pristinamycin I, if: carry out the chromatography on the semi-preparative column described above.

Príklad 13Example 13

Príprava 4 ζ-terc-butyl-des(4ζ-dimetylamino)pristinamycínu Ia Preparation of 4'-tert-butyl-des (4'-dimethylamino) pristinamycin I a

V meradle 60 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá roztok ( 5 g/1) (R,S)-4-terc-butylfenylalanínu v 0, IN hydroxide sodnom. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, získaná zmes sa potom odstredí . Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, ktorý sa eluuje gradientom 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce nový derivát pristinamycínu I sa zlúčia a odparia. Suchý zvyšok sa vyberie 7 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa dvakrát zavedie na semipreparatívny stĺpec Nucleosilu 7 μΟ8 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa potom eluuje zmesou 55 % lOOmM fosfátového pufra s pH 2,9 a 45 % acetonitrilu. Frakcie obsahujúce nový pristinamycín sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 30 mg 4 ζ -terc-butyl-des(4^ -dimetylamino)pristinamycínu I .On a 60-ml Erlenmeyer flask, the strain SP92 :: pVRC508 was cultured in a production medium to which, after 16 hours of culture, (5 g / l) (R, S) -4-tert-butylphenylalanine solution was added. v 0, IN sodium hydroxide. After 40 hours of culture, 1.8 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, and the mixture is centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, eluting with a gradient of 0 to 10% methanol in dichloromethane. The fractions containing the new derivative of pristinamycin I are pooled and evaporated. The dry residue is taken up with 7 ml of a mixture of 60% water and 40% acetonitrile and the mixture is loaded twice onto a 10 × 250 mm Nucleosil 7 μΟ8 semiprep column (Macherey Nagel), which is then eluted with 55% 100 mM phosphate buffer pH 2.9 and 45% acetonitrile. The fractions containing the new pristinamycin are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 30 mg of 4'-tert-butyl-des (4'-dimethylamino) pristinamycin I are obtained.

A ^-H-NMR (400 MHz, CDCl3, S v ppm, ref.TMS):A 'H NMR (400 MHz, CDCl3, in ppm, ref.TMS):

0.21 (dd, J= 16 a. 5.5 Hz, IH, 5 β,), 0.91 (t, J= 7.5 Hz, 3H; CH3 2 γ), 1.17 (mt, IH; 3 β,), odl.20dol.40 (mt, IH: 3 γ.), 1.33 (s, 9H: CH. terc-butylu), 1.35 (d, J= 7.5 Hz,0.21 (dd, J = 16 and 5.5 Hz, IH, 5 β,), 0.91 (t, J = 7.5 Hz, 3 H; CH 3 2 γ), 1.17 (mt, IH; 3 β,), od.20dol .40 (mt, 1H: 3?), 1.33 (s, 9H: CH. T-butyl), 1.35 (d, J = 7.5 Hz,

3H; CH3 1 γ),αά. 1.50čol.85 (mt, 3H; 3 γ3 a CH, 2 β), 2.04 (mt, IH, 3 β.), 2.13 (mt,3H; CH 3 1 (γ), αά. 1.50Ch.85 (mt, 3H; 3 γ 3 and CH, 2 β), 2.04 (mt, IH, 3 β.), 2.13 (mt,

IH, 5 δ2), 2.30 (mt, 2H: 5 δχ a 5 ββ, 2.80 (dt, J= 13 et 4 Hz, IH: 5 e,), 3.00 (dd, J= a 4 Hz, IH: 4 β,), 3.29 (s, 3H: NCH3 4), 3.31 a 3.59 (2 mís, IH kjzny . CH, 3 δ), 3.40 (t, J= 12 Hz, IH: 4 β3), 4.57 (t, J= 7.5 Hz, IH, 3 a), 4.74 (dd šír., J= 13 a 7 Hz, IH: 5 εβ, 4.85 (mt, IH: 2a), 4.90 (d šír. , J= 10 Hz, IH: la), 5.21 (d šir., J=IH, 5 δ 2 ), 2.30 (mt, 2H: 5 δ χ and 5 ββ, 2.80 (dt, J = 13 and 4 Hz, IH: 5 e,), 3.00 (dd, J = 4 Hz, IH: 4 β,), 3.29 (s, 3H: NCH 3 4), 3.31 and 3.59 (2 bowls, IH sliding. CH, 3 δ), 3.40 (t, J = 12 Hz, IH: 4 β 3 ), 4.57 ( t, J = 7.5 Hz, IH, 3 a), 4.74 (dd wide, J = 13 and 7 Hz, IH: 5 εβ, 4.85 (mt, IH: 2a), 4.90 (d wide, J = 10 Hz 1H: 1a), 5.21 (broad d, J =

5.5 Hz, IH; 5 a), 5.25 (dd, J= 12 a 4 Hz, IH: 4 a),.5.87(d, J= 9 Hz, IH; 6 a), 5.92 (q šir. , J= 7.5 Hz, IH: 15.5 Hz, 1H; 5 a), 5.25 (dd, J = 12 and 4 Hz, IH: 4 a), 5.87 (d, J = 9 Hz, IH; 6 a), 5.92 (q broad, J = 7.5 Hz, IH: 1

Príklad 14Example 14

Príprava 4 ζ -izopropyl-des(4^ -dimetylamino)pristinamycínu Ia a 4ζ -izopropyl-des(4Z^-dimetylamino)pristinamycínu Ie Preparation of 4-isopropyl-ζ of (4 ^ -dimethylamino) pristinamycin I, and a 4ζ-isopropyl-de (dimethylamino ^ 4Z) pristinamycin I E

V meradle 60 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (R,S)-4-izopropylfenylalanínu (10 g/1) v 0,IN roztoku hydroxidu sodného, pričom uvedený (R, S)-4-izopropylfenylalanín sa syntetizoval spôsobom opísaným v príklade 36-1. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu. Supernatant sa potom dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce nový derivát pristinamycínu I sa zlúčia a odparia. Získa sa 61 mg suchého zvyšku. Tento zvyšok sa vyberie 9 ml zmesi 60 % vody a 40 % acetonitrilu a získaná zmes sa trikrát zavedie na semipreparatívny stĺpec Nucleosilu 7 μ08 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa eluuje elučnou sústavou tvorenou zmesou 55 % lOOmM fosfátového pufra s pH 2,9 a 45 % acetonitrilu. Frakcie obsahujúce nový pristinamycín sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 51 mg 4ζ -izopropyl-des(4ζ -dimetylamino)pristinamycínu Ia 1H-NMR (400 MHz, CDCl3, 6 V ppm, ref.TMS):On a 60-ml Erlenmeyer flask, the strain SP92 :: pVRC508 was cultured in a production medium to which 1 ml of (R, S) -4-isopropylphenylalanine (10 g / l) solution was added after 16 hours of culture. in 0.1 N sodium hydroxide solution, wherein said (R, S) -4-isopropylphenylalanine was synthesized as described in Example 36-1. After 40 hours of culture, 1.8 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile. The supernatant is then extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing the new derivative of pristinamycin I are pooled and evaporated. 61 mg of dry residue are obtained. This residue is taken up in 9 ml of a mixture of 60% water and 40% acetonitrile and the resulting mixture is introduced three times on a 10 × 250 mm Nucleosil 7 µ08 semiprep column (Macherey Nagel), eluting with a 55% 100 mM phosphate buffer mixture. pH 2.9 and 45% acetonitrile. The fractions containing the new pristinamycin are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 51 mg of 4ζ-isopropyl-des (4ζ-dimethylamino) pristinamycin I and 1 H-NMR (400 MHz, CDCl 3 , 6 ppm, ref.TMS) were obtained:

0.31 (dd, J= 16 a 5.5 Hz, 1H, 5 β,), 0.91 (t, J= 7.5 Hz, 3H: CH3 2 γ), cdl.00dol.45 (mt, 2H: 3 (¾ a 3 γ2), 1.25 (d, J= 7.5 Hz, 6H: CH3 izopropyiu.), 1.35 (d, J= 7.5 Hz, 3H: CH31 7), od 1.50*1.85 (mt, 3H: 3 γχ a CH, 2 β), cdl.95do2.20 (mt, 2H, 3 βχ a 5 δ2), 2.30 (mt, 2H: 5 δχ a 5 βχ), 2.80 (dt, J= 13 a 4 Hz, 1H: 5 e,), 2.88 (mt, 1H:0:31 (dd, J = 16 and 5.5 Hz, 1 H, β 5,), 0.91 (t, J = 7.5 Hz, 3H: CH3 2 γ), cdl.00dol.45 (mt, 2H: 3 (3 ¾ γ 2), 1.25 (d, J = 7.5 Hz, 6H: CH3 isopropyl.), 1:35 (d, J = 7.5 Hz, 3H: CH3 1 7), from 1:50 * 1.85 (mt, 3H: 3 γ χ and CH, 2 β), cd1.95do2.20 (mt, 2H, 3 β χ and 5 δ 2 ), 2.30 (mt, 2H: 5 δ χ and 5 β χ ), 2.80 (dt, J = 13 and 4 Hz, 1H: 5 (e), 2.88 (mt, 1H:

CH izopropylu), 2.98 (dd, J= 12a 4 Hz, 1H: 4 β2), 3.30 (s, 3H: NCH3 4), 3.32 a 3.55 (2 mts, 1H kaž^ CH, 3 δ), 3.38 (t, J= 12 Hz, 1H: 4 βχ), 4.55 (t, J= 7.5 Hz,CH isopropyl), 2.98 (dd, J = 12 and 4 Hz, 1H: 4 β 2 ), 3.30 (s, 3H: NCH 3 4), 3.32 and 3.55 (2 mts, 1H each = CH, 3 δ), 3.38 ( t, J = 12 Hz, 1H: 4 β χ ), 4.55 (t, J = 7.5 Hz,

1H, 3 a), 4.72 (dd šir., J= 13 a 7 Hz, 1H: 5 εχ), 4.85 (mt, 1H: 2a), 4.88 (d sir. J=1H, 3 a), 4.72 (broad dd, J = 13 and 7 Hz, 1H: 5 ε χ ), 4.85 (mt, 1H: 2a), 4.88 (broad d, J =

Hz, 1H: la), 5.21 (d šir. , J= 5.5 Hz, 1H: 5 a), 5.25 (dd, J= 12 a 4 Hz, 1H: 4 a),Hz, 1H: 1a), 5.21 (broad d, J = 5.5 Hz, 1H: 5 a), 5.25 (dd, J = 12 and 4 Hz, 1H: 4 a),

5.87(d, J= 9 Hz, 1H: 6 a), 5.90 (q šir. , J= 7.5 Hz, 1H: 1β), 6.50 (d, J= 9.5 Hz, 1H:5.87 (d, J = 9Hz, 1H: 6a), 5.90 (q broad, J = 7.5Hz, 1H: 1β), 6.50 (d, J = 9.5Hz, 1H:

NH 2), ad 7.05do7.35 (mt, 9H: H Aromatidý 6 - 4e a 4δ), 7.50 (mt, 2H: ľ H5 a ľ H4), 7.86 (dd, J = 4 a 1.5 Hz, 1H: ľ HJ, 8.40 (d, J= 10 Hz, 1H: NH 1), 8.72 (d, J= 9 Hz, 1H: NH 6), 11.60 (s, 1H: OH).NH 2), ad 7.05 to 7.35 (mt, 9H: aromatic amide 6-4e and 4δ), 7.50 (mt, 2H: 1 H 5 and 1 H 4 ), 7.86 (dd, J = 4 and 1.5 Hz, 1H 8: 1H, 8.40 (d, J = 10Hz, 1H: NH1), 8.72 (d, J = 9Hz, 1H: NH6), 11.60 (s, 1H: OH).

Z rovnakých frakcií, ktoré opúšťajú vyššie opísaný stĺpec silikagélu a obsahujú nový derivát pristinamycínu Ie sa izoluje 5 mg 4 ζ -izopropyl-des( 4 ζ -dimetylamino)pristinamycínu Ie v prípade, že sa uskutoční chromatografia na vyššie opísanom semipreparatívnom stĺpci.For the same fraction, leaving the above-described silica gel column and containing the new derivative of pristinamycin I E, 5 mg of the ζ 4-isopropyl-de (4 ζ -dimethylamino) pristinamycin I E, where, by carrying out the chromatography described above semi-preparative column.

'‘-H-NMR (400 MHz, CDC13, S v ppm, ref.TMS): 0.20 (mt, 1H, β,), 0.92 (t, J= 7.5 Hz, 3H: CH3 2 γ), od 1.15 *1.40 (mt, 2H: 3 β, et 3 γ2), 1.24(d,1 H-NMR (400 MHz, CDCl 3 , δ in ppm, ref.TMS): 0.20 (mt, 1H, β,), 0.92 (t, J = 7.5 Hz, 3H: CH 3 2 γ), from * 1:40 1.15 (mt, 2H: 3 β, γ 2 and 3), 1.24 (d,

J= 7.5 Hz, 6H: CH3 izopropylu), 1.34 (d, J= 7.5 Hz, 3H: CH31 γ), od 1.35*2.05 (mt, 9H: 3 γχ - 3 βχ - CH2 2 β - CHj 5 δ - CH2 5γ a 5 βχ), 2.45 (dt, J= 13 a 1.5 Hz,J = 7.5 Hz, 6H: CH 3 of isopropyl), 1.34 (d, J = 7.5 Hz, 3H: CH 3 1 γ), from 1.35 * 2.05 (mt, 9H: 3 γ χ - 3 β χ - CH 2 2 β - CHj 5 δ - CH 2 5γ and 5 β χ ), 2.45 (dt, J = 13 and 1.5 Hz,

1H: 5 e,), 2.89 (mt, 1H: ArCH), 3.09 (dd, J= 14 a 7 Hz, 1H: 4 β,), 3.17 (s, 3H:1H: 5 (e,), 2.89 (mt, 1H: ArCH), 3.09 (dd, J = 14 and 7 Hz, 1H: 4β,), 3.17 (s, 3H:

NCH3 4),3.25 (dd, J= 14 a 9 Hz, 1H: 4 β>), 3.32 a. 3.52 (2 mts, 1H težy CH, 3 δ), 4.55 (mt, 2H: 3 a a 5 εβ, 4.80 (mt, 1H: 2a), 4.89 (dd, J=10 a 1.5 Hz, 1H: la), 4.90 (mt, 1H: 5 a), 5.35 (dd, J= 9 a 7 Hz, 1H: 4 a), 5.60 (d, J= 8 Hz, 1H: 6 ct), 5.89 (dq, J= 7.5 a 1.5 Hz, 1H: 1(3), 6.65 (d, J= 9.5 Hz, 1H: NH 2), 7.08 (d, J= 8 Hz, 2H: 46),4 NCH3), 3.25 (dd, J = 14 and 9 Hz, 1H: 4 β>), 3.32 and. 3.52 (2 mts, 1H of CH, 3δ), 4.55 (mt, 2H: 3 and 5 εβ, 4.80 (mt, 1H: 2a), 4.89 (dd, J = 10 and 1.5 Hz, 1H: 1a), 4.90 (mt, 1H: 5a), 5.35 (dd, J = 9 and 7Hz, 1H: 4a), 5.60 (d, J = 8Hz, 1H: 6ct), 5.89 (dq, J = 7.5 and 1.5) Hz, 1H: 1 (3), 6.65 (d, J = 9.5Hz, 1H: NH2), 7.08 (d, J = 8Hz, 2H: 46),

7.14 (d, J= 8 Hz, 2H: 4ε), ca 7.20 <±7.40 (mt, 7H: H Aromatický 6 - ľ H, a ľ Hs), 7.77 (d šír. , J=4 Hz, 1H: ľ Hj), 8.46 (d, J= 10 Hz, 1H: NH 1), 8.48 (d, J= 8 Hz, 1H: NH 6),11.70 (s, 1H: OH).7.14 (d, J = 8Hz, 2H: 4ε), ca 7.20 <± 7.40 (mt, 7H: H aromatic 6 - 1 H, 1 'H s ), 7.77 (d, J = 4 Hz, 1H: 1 H 3), 8.46 (d, J = 10 Hz, 1H: NH 1), 8.48 (d, J = 8 Hz, 1H: NH 6), 11.70 (s, 1H: OH).

Príklad 15Example 15

Príprava 4 ζ-metylamino-des( 4ζ-dimetylamino)pristinamycínu Ia Preparation of 4'-methylamino-des (4'-dimethylamino) pristinamycin I a

V meradle 60 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (10 g/1) (R,S)-3-metylaminofenylalanínu, ktorý sa syntetizoval spôsobom opísaným v príklade 35-3. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, získaná zmes sa potom odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, ktorý sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce nový derivát pristinamycínu I sa zlúčia a odparia. Získa sa 19 mg suchého zvyšku. Tento zvyšok sa vyberie 3 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 μΟ8 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa eluuje použitím elučnej sústavy tvorenej zmesou 55 % lOOmM fosfátového pufra s pH 2,9 a 45 % acetonitrilu. Frakcie obsahujúce nový pristinamycín sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 8 mg 4ζ-metylamino-des(4ζ -dimetylamino)pris60 tinamycínu Ια· ^H-NMR (400 MHz, CDC13, S v ppm, ref.TMS): θ 93On a 60-ml Erlenmeyer flask, the strain SP92 :: pVRC508 was cultured in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of (10 g / l) (R, S) -3-methylaminophenylalanine solution was added. , which was synthesized as described in Example 35-3. After 40 hours of culture, 1.8 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, and the mixture is centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane which is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing the new derivative of pristinamycin I are pooled and evaporated. 19 mg of dry residue are obtained. This residue is taken up with 3 ml of a mixture of 60% water and 40% acetonitrile and loaded onto a 10 x 250 mm Nucleosil 7 μΟ8 semiprep column (Macherey Nagel), which is eluted using a 55% 100 mM phosphate buffer mixture. pH 2.9 and 45% acetonitrile. The fractions containing the new pristinamycin are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 8 mg of 4ζ-methylamino-des (4ζ-dimethylamino) -60-tinamycin is obtained . · Α 1 H-NMR (400 MHz, CDCl 3 , δ in ppm, ref.TMS): θ 93

J= 7.5 Hz, 3H: CH3 2 γ), 1.00 (dd, J= 16 a 6 Hz, 1H, 5 β.), 1.17 (rat, 1H: 3 β.), cd 1.25ôol.40 (nit, 2H: 3 γ2), 1.35 (d, J= 7.5 Hz, 3H: CH31 γ), až 1.55 äzl.80 (mt, 3H: 3 7l a. 0¾ 2 β), 2.03 (mt, 1H, 3 β,), 2.23 (mt, 1H, 5 δ,), 2.39 (d sir. , J= 16 Hz, 1H: 5 Ô.), 2.52 (d, J= 16 Hz, 1H: 5 β,), 2.78 (s, 3H: ArNCH, 4), 2.85 (dt, J= 13 a 4 Hz,J = 7.5 Hz, 3H: CH3 2 γ), 1:00 (dd, J = 16 and 6 Hz, 1 H, β 5.), 1.17 (rat, 1 H: β 3.), CD 1.25ôol.40 (yarn, 2 H 3 γ 2), 1:35 (d, J = 7.5 Hz, 3H: CH3 1 γ), äzl.80 to 1.55 (mt, 3H: 3 and 7 liters. 0¾ β 2), 3.2 (mt, 1H, 3 β,), 2.23 (mt, 1H, 5 δ,), 2.39 (d, J = 16 Hz, 1H: 5 Ô), 2.52 (d, J = 16 Hz, 1H: 5 β,), 2.78 (s, 3H: ArNCH, 4), 2.85 (dt, J = 13 and 4 Hz,

1H: 5 &,), 2.99 (dd, J= 13 a 4.5 Hz, 1H: 4 β2), 3.23 (s, 3H: NCH3 4), 3.25 (t, J= 13 Hz, 1H: 4 β3), 3.38 a 3.58 (2 mts, 1H teščz CH2 3 δ), 4.05 (mf, 1H: ArNH), 4.58 (dd, J= 6.5 a 7.5 Hz, 1H, 3 a), 4.76 (dd šir. , J= 13 a 8 Hz, 1H: 5 ε,), 4.85 (mt, 1H:1H: 5?, 2.99 (dd, J = 13 and 4.5 Hz, 1H: 4? 2 ), 3.23 (s, 3H: NCH 3 4), 3.25 (t, J = 13Hz, 1H: 4? 3 ), 3:38 and 3:58 (2 mts, 1H teščz CH 2 3 δ), 5.4 (mf, 1H: ArNH), 4:58 (dd, J = 6.5 and 7.5 Hz, 1 H, 3 a), 4.76 (broad dd., J = 13 and 8 Hz, 1H: 5 ε,), 4.85 (mt, 1H:

2a), 4.87 (d šir. , J= 10 Hz, 1H: la), 5.35 (dd, J= 13 a 4.5 Hz, 1H: 4 a), 5.38 (d šir. , J= 6 Hz, 1H: 5 a), 5.90 (d, J=9.5 Hz, 1H: 6 a), 5.91 (mt, ΙΗ: 1β), 6.36 (s šir.· , 1H: H 2 aromatický v 4), cd 6.45 ôo 6.55 (mt, 2H: H 4. a H 6 aromatický v. 4), 6.53 (d, J= 10 Hz, 1H: NH 2), 7.12 (t, J= 8 Hz, 1H: H 5 aromatický v. 4), od 7.15037.45 (mt, 5H: H Aromatický 6), 7.35 (mt, 2H: ľ H4 a ľ Hj), 7.75 (t, J = 3 Hz, 1H: ľ Hj), 8.40 (d, J= 10 Hz, 1H: NH 1), 8.78 (d, J= 9.5 Hz,2a), 4.87 (broad d, J = 10 Hz, 1H: 1a), 5.35 (broad d, J = 13 and 4.5 Hz, 1H: 4a), 5.38 (broad d, J = 6 Hz, 1H: 5) a), 5.90 (d, J = 9.5Hz, 1H: 6a), 5.91 (mt, ΙΗ: 1β), 6.36 (broad, 1H: H 2 aromatic at 4), cd 6.45 δo 6.55 (mt, 2H: H 4 and H 6 aromatic v. 4), 6.53 (d, J = 10 Hz, 1H: NH 2), 7.12 (t, J = 8 Hz, 1H: H 5 aromatic v. 4), from 7.15037 .45 (mt, 5H: aromatic 6), 7.35 (mt, 2H: 1 H 4 and 1 H 3), 7.75 (t, J = 3 Hz, 1H: 1 H 3), 8.40 (d, J = 10 Hz, 1H: NH1), 8.78 (d, J = 9.5Hz,

ΙΗ: NH6), 11.60 (s, 1H: OH).Δ: NH 6), 11.60 (s, 1H: OH).

Príklad 16Example 16

Príprava 4 ζ -metoxy-des (4 ζ -dimetylamino) pristinamycínu Ia a 4 ζ -metoxy-des (4 ζ -dimetylamino )pristinamycínu IPreparation of 4-methoxy-ζ de (4 ζ -dimethylamino) pristinamycin I, and the ζ-methoxy and 4-de (4 ζ -dimethylamino) pristinamycin I,

V meradle 60 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (S)-3-metoxyfenylalanínu (5 g/1) v 0, IN roztoku hydroxidu sodného. Po 40 hodinách kultivácie sa 1, 8 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce nový derivát pr istinamycínu Ia sa zlúčia a odparia. Získa sa 41 mg suchého zvyšku. Tento zvyšok sa vyberie 6 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 gC8 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa eluuje elučnou sústavou tvorenou zmesou 55 % lOOmM fosfátového pufra s pH 2,9 a 45 % acetonitrilu. Frakcie obsahujúce nový pristinamycin sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 28 mg 4 ζ -metoxy-des(4 ζ -dimetylamino)pristinamycínu Ia .On a 60-ml Erlenmeyer flask, the strain SP92 :: pVRC508 was cultured in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of a solution of (S) -3-methoxyphenylalanine (5 g / l) in 0 was added. 1N sodium hydroxide solution. After 40 hours of cultivation, 1.8 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture consisting of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing the new derivative istinamycínu I pr and are combined and evaporated. 41 mg of dry residue are obtained. This residue is taken up in 6 ml of a mixture of 60% water and 40% acetonitrile and loaded onto a 10 x 250 mm Nucleosil 7 gC8 semiprep column (Macherey Nagel) eluting with a 55% 100 mM phosphate buffer mixture. pH 2.9 and 45% acetonitrile. The fractions containing the new pristinamycin are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 28 mg of 4-methoxy-ζ de (4 ζ -dimethylamino) pristinamycin I, and.

1H-NMR (400 MHz, CDC1 , S v ppm, ref.TMS): „ , 1 H-NMR (400 MHz, CDCl 3, δ in ppm, ref.TMS):

0.52 (dd,0.52 (dd)

J= 16 a 5.5 Hz, 1H, 5 β.), 0.90 (t, J= 7.5 Hz, 3H: CH3 2 γ), cd 1.10*1.34 (mt, 2H: 3 β, a 3 γ2), 1.34 (d, J= 7.5 Hz, 3H: CH3 1γ), od 1.50*1.80 (mt, 3H: 3 CH, 2 β),J = 16 and 5.5 Hz, 1H, 5 β., 0.90 (t, J = 7.5 Hz, 3H: CH 3 2 γ), cd 1.10 * 1.34 (mt, 2H: 3 β, and 3 γ 2 ), 1.34 (d, J = 7.5 Hz, 3H: CH3 1γ), from 1:50 * 1.80 (mt, 3H: CH 3, β 2),

2.04 (mt, 1H, 3 β,), 2.20 (mt, 1H, 5 δ,), 2.35 (d šir. , J= 16 Hz, 1H: 5 δ), 2.38 (d,2.04 (mt, 1 H, 3 β,), 2.20 (mt, 1 H, 5 δ,), 2.35 (d broad, J = 16 Hz, 1H: 5 δ), 2.38 (d,

J= 16 Hz, 1H: 5 β), 2.83 (dt, J= 13 a 4 Hz, 1H: 5 e,), 2.97 (dd, J= 12 a 4 Hz, 1H: 4 β,), 3.28 (s, 3H: NCH3 4), 3.28 a 3.56 (2 mts, lHIoščz ; CH. 3 δ), 3.40 (t, J= 12 Hz, 1H: 4 β), 3.80 (s, 3H: OCH), 4.58 (t, J= 7.5 Hz, 1H, 3 a), 4.76 (dd šir. , J= 13 a 8 Hz, 1H: 5 ε), 4.85 (mt, 1H: 2a), 4.90 (d šir., J= 10 Hz, 1H: la), 5.27 (dd, J=J = 16 Hz, 1H: 5 b), 2.83 (dt, J = 13 and 4 Hz, 1H: 5 e,), 2.97 (dd, J = 12 and 4 Hz, 1H: 4 b,), 3.28 (s , 3H: NCH3 4), 3:28, and 3:56 (2 mts, lHIoščz, CH. 3 δ), 3:40 (t, J = 12 Hz, 1H: 4 β), 3.80 (s, 3H, OCH), 4:58 (t J = 7.5 Hz, 1H, 3 a), 4.76 (broad d, J = 13 and 8 Hz, 1H: 5 ε), 4.85 (broad m, 1H: 2a), 4.90 (broad d, J = 10 Hz) 1H: 1a) 5.27 (dd, J =

a. 4 Hz, 1H: 4 a), 5.30 (d šir.;, J= 5.5 Hz, 1H: 5 a), 5.89 (d, J= 9.5Hz, 1H: 6 a),a. 4 Hz, 1H: 4 a), 5.30 (broad d, J = 5.5 Hz, 1H: 5 a), 5.89 (broad d, J = 9.5 Hz, 1H: 6 a),

5.91 (q šir., J= 7.5 Hz, 1H: 1β), 6.51 (d, J= 10 Hz, 1H: ΝΉ 2),cä 6.80*6.90 (mt,5.91 (broad q, J = 7.5 Hz, 1H: 1β), 6.51 (d, J = 10 Hz, 1H: ΝΉ 2), c 6.80 * 6.90 (mt,

3H: H 2 - H 4 a H 6 aromatife v 4), .cd 7.15*7.40 (mt, 6H: H 5 aromatika v 4 et H Aromatický 6), 7.45 (dšir. , J= 9 Hz, 1H: ľ H), 7.50 (dd, J= et 4 Hz, lH:ľ H), 7.80 (d šir., J = 4 Hz, 1H: ľ H), 8.40 (d, J= 10 Hz, 1H: NH 1), 8.73 (d, J= 9.5 Hz, 1H: NH 6), 11.62 (s, 1H: OH).3H: H 2 - H 4 and H 6 aromatife v 4), .cd 7.15 * 7.40 (mt, 6H: H 5 aromatics at 4 et H aromatic 6), 7.45 (broad, J = 9 Hz, 1H: 1 H) 7.50 (dd, J = et 4 Hz, 1H: 1 H), 7.80 (broad d, J = 4 Hz, 1H: 1 H), 8.40 (d, J = 10 Hz, 1H: NH 1), 8.73 (d, J = 9.5 Hz, 1H: NH6), 11.62 (s, 1H: OH).

Z frakcií, ktoré opúštajú vyššie opísaný stĺpec silikagélu a obsahujú nový derivát pristinamycínu I sa izoluje 7 mg 4ζ -metoxy-des(4ζ -dimetylamino)pristinamycínu I (hmotnostná spektroskopia: M+H* = 826) v prípade, že sa uskutoční chromatografia na vyššie opísanom semipreparatívnom stĺpci.7 mg of 4ζ-methoxy-des (4ζ-dimethylamino) pristinamycin I (mass spectroscopy: M + H + = 826) are isolated from the fractions leaving the above silica gel column containing the new derivative of pristinamycin I by chromatography on M + H + = 826. the semi-preparative column described above.

Príklad 17Example 17

Príprava 4 C-fluór-4ζ-metyl-des(4£-dimetylamino)pristinamycínu IPreparation 4 C-fluoro-4'-methyl-des (4'-dimethylamino) pristinamycin I

AA

V meradle 60 Erlenmeyerových baniek sa uskutoční, spôso62 bom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (10 g/1) (R,S)-3-fluór-4-metylfenylalanínu v 0,IN roztoku hydroxidu sodného, pričom uvedený (R, S)-3-fluór-4-metylfenylalanín sa syntetizoval spôsobom opísaným v príklade 34-5. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa potom dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce nový derivát pristinamycínu I sa zlúčia a odparia. Získa sa 15 mg suchého zvyšku. Tento zvyšok sa vyberie 3 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 μ08 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa eluuje použitím elučnej sústavy tvorenej zmesou 55 % lOOmM fosfátového pufra s pH 2,9 a 45 % acetonitrilu. Frakcie obsahujúce nový pristinamycín sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 9 mg ζ-fluór4-ζmetyl-des(4ζ -dimetylamino)pristinamycínu I .On a 60-ml Erlenmeyer flask, the SP92 :: pVRC508 strain was cultured in a production medium to which 1 ml of (10 g / l) (R, S) -3- solution was added after 16 hours of culture. fluoro-4-methylphenylalanine in 0.1 N sodium hydroxide solution, wherein said (R, S) -3-fluoro-4-methylphenylalanine was synthesized as described in Example 34-5. After 40 hours of cultivation, 1.8 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is then extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing the new derivative of pristinamycin I are pooled and evaporated. 15 mg of dry residue are obtained. This residue is taken up with 3 ml of a mixture of 60% water and 40% acetonitrile and loaded onto a 10 x 250 mm Nucleosil 7 μ08 semiprep column (Macherey Nagel), which is eluted using a 55% 100 mM phosphate buffer mixture. pH 2.9 and 45% acetonitrile. The fractions containing the new pristinamycin are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 9 mg of ζ-fluoro-4-methyl-des (4ζ-dimethylamino) pristinamycin I is obtained.

^H-NMR (400 MHz, CDCl3, S v ppm, ref.TMS): 0.60 (ddH-NMR (400 MHz, CDCl3, in ppm, ref.TMS): 0.60 (dd

J= 16 a 5.5 Hz, 1H, 5 (¾). 0.91 (t, J= 7.5 Hz, 3H: CH3 2 γ), 1.12 (mt, 1H: 3 β.), od 1.25ÔO1.35 (mt, 1H: 3 γ2), 1.33 (d, J= 7.5 Hz, 3H: CH31 γ), cd 1.50m 1.85 (mt, 3H; 3 γ1 a CHj 2 β), 2.02 (mt, 1H, 3 ft), 2,13 (mt, 1H, 5 Ô2), 2.27 (s, 3H: ArCH3), 2.36 (d šir. , J= 16 Hz, 1H: 5 δ3), 2.45 (d, J= 16 Hz, 1H: 5 β3), 2.85 (dt, J= 13 a 4.5 Hz, 1H:J = 16 and 5.5 Hz, 1H, δ (¾). 0.91 (t, J = 7.5 Hz, 3H: CH3 2 γ), 1.12 (mt, 1H: 3 β.), The 1.25ÔO1.35 (mt, 1H: 3 γ 2), 1:33 (d, J = 7.5 Hz, 3H: CH 3 1 γ), cd 1.50m 1.85 (mt, 3H; 3 γ 1 and CH 2 β), 2.02 (mt, 1H, 3 ft), 2.13 (mt, 1H, 5 Ô 2 ) , 2.27 (s, 3H: ArCH3), 2:36 (broad d. J = 16 Hz, 1H: 5 δ 3), 2:45 (d, J = 16 Hz, 1H: 5 β 3), 2.85 (dt, J = 13 and 4.5 Hz, 1H:

e,), 2.97 (dd, J= 12.5 a 4.5 Hz, 1H: 4 &), 3.23 (s, 3H: NCH3 4), 3.30 a 3.56 (2 mts, 1H každý : CHj 3 δ), 3.37 (t, J= 12.5 Hz, 1H: 4 fr), 4.55 (t, J= 7.5 Hz, 1H, 3 a),e,), 2.97 (dd, J = 12.5 and 4.5 Hz, 1H: 4 &), 3.23 (s, 3H: NCH3 4), 3:30, and 3:56 (2 mts, 1H each: CH 3 δ), 3:37 (t J = 12.5 Hz, 1H: 4 fr), 4.55 (t, J = 7.5 Hz, 1H, 3 a),

4.75 (dd šir. J= 13 a 8 Hz, 1H: 5 ej, 4.83 (mt, 1H: 2a), 4.89 (d šir. , J= 10 Hz,4.75 (broad d, J = 13 and 8 Hz, 1H: 5 ej, 4.83 (broad m, 1H: 2a), 4.89 (broad d, J = 10 Hz,

1H: la), 5.29 (dd, J= 12.5 a 4.5 Hz, 1H: 4 a), 5.32 (d šir., J= 5.5 Hz, 1H: 5 a),1H: 1a), 5.29 (dd, J = 12.5 and 4.5 Hz, 1H: 4a), 5.32 (d broad, J = 5.5 Hz, 1H: 5a),

5.89 (d, J= 9.5 Hz, 1H: 6 a), 5.92 (mt, 1H: 1β), 6.49 (d, J= 10 Hz, 1H: NH 2). 6.90 (mt, 2H: H 2 a H 6 ' aromatika v 4), 7.11 (t, J= 8 Hz, 1H: H 5 aromat&a v 4),cd 7.10óo7.30 (mt, 5H: H Aromatický 6), 7.43 (dd, J= 8.5 a 1 Hz, 1H: ľ H4),5.89 (d, J = 9.5Hz, 1H: 6a), 5.92 (mt, 1H: 1β), 6.49 (d, J = 10Hz, 1H: NH2). 6.90 (mt, 2H: H 2 and H 6 'aromatics at 4), 7.11 (t, J = 8 Hz, 1H: H 5 aromatics &apos;), cd 7.10 ° 7.30 (mt, 5H: H aromatic 6), 7.43 (dd, J = 8.5 and 1 Hz, 1H: 1 H 4 ),

7.49 (dd, J= 8.5 a 4.5 Hz, 1H: ľ Hj), 7.75 (dd, J = 4.5 a 1Hz, 1H: ľ Hj), 8.48 (d, J=7.49 (dd, J = 8.5 and 4.5 Hz, 1H: 1 Hj), 7.75 (dd, J = 4.5 and 1Hz, 1H: 1 Hj), 8.48 (d, J =

Hz, 1H: ΝΉ 1), 8.70 (d, J= 9.5 Hz, 1H: NH 6), 11.60 (s, 1H: OH).Hz, 1H:? 1), 8.70 (d, J = 9.5 Hz, 1H: NH 6), 11.60 (s, 1H: OH).

Príklad 18Example 18

Príprava 4 <ζ -etylamino-des (4ζ -dimetylamino)pristinamycínu IPreparation of 4 &apos; -ethylamino-des (4 &apos; -dimethylamino) pristinamycin I

A.A.

V meradle 50 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (20 g/1) (R,S)-4-etylaminofenylalanín-hydrogénchloridu, syntetizovaného spôsobom opísaným v príklade 33, v 0,IN roztoku hydroxidu sodného. Po 40 hodinách kultivácie sa 1,5 litra produkčného rmutu pochádzajúceho z 50 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce 4 ζ-etylamino-des(4 C -dimetylamino)pristinamycín I sa zlúčia a odparia. Suchý zvyšok sa vyberie 7 ml zmesi tvorenej 65 % vody a 35 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 μ08 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa eluuje použitím elučnej sústavy tvorenej zmesou 60 % 100mM fosfátového pufra s pH 2,9 a 40 % acetonitrilu. Frakcie obsahujúce 4ζ -etylamino-des(4ζ -dimetylamino)pristinamycín Ia sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 10 mg 4 ζ-etylamino-des(4ζ-dimetylamino)pristinamycínu Ia· ^H-NMR (400 MHz, CDCl3, δ v ppm, ref.TMS): 0,72 (dd, J = a 6 Hz, 1H : 1H cdCH, v 5 β); 0,90 (t, J = 7,5 Hz, 3H : CH3 v 2 γ) ; 1,15 (mt.On a 50-ml Erlenmeyer flask, the strain SP92 :: pVRC508 is cultured in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of (20 g / l) (R, S) -4-ethylaminophenylalanine solution is added. hydrogen chloride, synthesized as described in Example 33, in 0.1 N sodium hydroxide solution. After 40 hours of culture, 1.5 liters of mash produced from 50 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing 4ζ-ethylamino-des (4C-dimethylamino) pristinamycin I are combined and evaporated. The dry residue is taken up in 7 ml of a mixture of 65% water and 35% acetonitrile and loaded onto a 10 x 250 mm Nucleosil 7 μ08 semiprep column (Macherey Nagel), which is eluted using a 60% 100 mM phosphate buffer mixture. pH 2.9 and 40% acetonitrile. Fractions containing 4ζ ethylamino-de (dimethylamino 4ζ) pristinamycin IA are combined and extracted with one volume and dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. To give 10 mg of 4-ethylamino-ζ of (4ζ-dimethylamino) pristinamycin I, and · H-NMR (400 MHz, CDCl3, δ in ppm, ref.TMS): 0.72 (dd, J = 6 Hz, and , 1H: 1H cdCH, [delta] b); 0.90 (t, J = 7.5 Hz, 3H: CH3 in 2 γ); 1.15 (mt.

1H : 1H cd CH, v 3 β) ; cd 1,20*1,40 (mt, 1H : 1H cd CH, v 3 γ) ; 1,27 (t, J = 7,5 Hz, 3H : CH3 éthylu); 1,33 (d, J = 7 Hz, 3H : CH3 v 1 γ); od 1,50*1,65 (mt, 1H : druhý. Had CH, v 3 γ) ; 1,60 et 1,74 (2 mts, 1H každý : CH, v 2 β) ; 2,02 (mt,1H: 1H (CH, v3b); cd 1.20 * 1.40 (mt, 1H: 1H cd of CH, at 3 γ); 1.27 (t, J = 7.5 Hz, 3H: CH3 of ethyl); 1.33 (d, J = 7 Hz, 3H: CH3 in 1 γ); from 1.50 * 1.65 (mt, 1H: second. Had CH, at 3 γ); 1.60 and 1.74 (2 mts, 1H each: CH, v2b); 2.02 (mt,

1H : druhý H cd CH, v 3 β); 2,21 et 2,33 (respectíve mt a d šir., J = 16,5 Hz,1H: second H cd CH, at 3β); 2.21 and 2.33 (respectively mt and d broad, J = 16.5 Hz,

1H kažý : CH, v 5 δ) ; 2,40 (d, J = 16 Hz, 1H : druhý H od CH, v 5 β) ; 2,82 (dt,1H each : CH, v5 δ); 2.40 (d, J = 16 Hz, 1H: second H of CH at position 5b); 2.82 (dt,

J = 13 a. 4,5 Hz, 1H : 1H* CH, v 5 ε) ; 2,89 (dd, J = 12 a 4 Hz, 1H : 1H od CH, v 4 β) ; 3,10 (mt, 2H : NCH. etylu); od 3,20ao3,35 (mt, 1H : 1H cd 0¾ v 3 δ); 3,26 (s, 3H : NCHý ; 3,31 (t, J = 12 Hz, 1H : črlý Hen (¾ v 4 β) ; 3,54 (mt, 1H : ôrhý H en CH- v 3 δ) ; 3,67 (mf, 1H : NH) ; 4,56 (dd, J = 6,5 et 7 Hz, 1H : 3J = 13 a. 4.5 Hz, 1H: 1H * CH, at 5 ε); 2.89 (dd, J = 12 and 4 Hz, 1H: 1H of CH at position 4b); 3.10 (mt, 2H: NCH, ethyl); from 3.20 and 3.35 (mt, 1H: 1H cd 0¾ at 3 δ); 3.26 (s, 3H: NCH3; 3.31 (t, J = 12 Hz, 1H: black Hen (3/4 at 4)); 3.54 (mt, 1H: broad H at CH- at 3δ); 3.67 (broad m, 1H: NH) 4.56 (dd, J = 6.5 and 7 Hz, 1H: 3)

a) ; 4,75 (dd šír. , J = 13 a 8 Hz, 1H : entý H od. CH^ v 5 ε) ; 4,84 (mt, 1H : 2 a) ; 4,90 (d šír. . J = 10 Hz, 1H : 1 a) ; 5,24 (dd, J = 12 v 4 Hz, 1H : 4 a) ; 5,32 (d šír. ., J = 6 Hz, 1H : 5 a) ; 5,88 (d, J = 9,5 Hz, 1H : 6 a) ; 5,90 (mt, 1H : 1 β) ; 6,52 (d, J = 8 Hz, 3H : NH v 2 a H Aromatický v 4 ε) ; 7,00 (d, J = 8 Hz, 2H : H Aromatický v 4 δ) ; ad 7,1(& 7,35 (mt, 5H : H Aromatický v 6) ; 7,46 (AB limit·., 2H : ľ H4 a ľ Hý ; 7,84 (dd, J = 4 a 1 Hz, 1H : ľ H^ ; 8,45 (d, J = 10 Hz, 1H : NH v . 1) ; 8,77 (d, J = 9,5 Hz, 1H : NH v 6); 11,65 (s, 1H : OH).a); 4.75 (broad dd, J = 13 and 8 Hz, 1H: ent H from CH3 at 5 ε); 4.84 (mt, 1H: 2a); 4.90 (d broad, J = 10 Hz, 1H: 1 a); 5.24 (dd, J = 12 at 4 Hz, 1H: 4a); 5.32 (broad d, J = 6 Hz, 1H: 5 a); 5.88 (d, J = 9.5 Hz, 1H: 6a); 5.90 (mt, 1H: 1β); 6.52 (d, J = 8 Hz, 3H: NH at 2 and H Aromatic at 4 ε); 7.00 (d, J = 8 Hz, 2H: H aromatic at 4 δ); ad 7.1 (δ 7.35 (mt, 5H: H aromatic at 6); 7.46 (AB limit ·, 2H: 1 H 4 and 1 H 6 ; 7.84 (dd, J = 4 and 1 Hz) 8.45 (d, J = 10 Hz, 1H: NH at position 1); 8.77 (d, J = 9.5 Hz, 1H: NH at position 6); 11.65 (d, J = 9 Hz); s, 1H: OH).

Príklad 19Example 19

Príprava 4 C -dietylamino-des (4 ίζ -dimetylamino)pristinamycínu IPreparation 4 C-Diethylamino-des (4H-dimethylamino) pristinamycin I

V meradle 50 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (20 g/1) (R,S)-4-dietylaminofenylalanínu, syntetizovaného spôsobom opísaným v príklade 33, v O,1N roztoku hydroxidu sodného. Po 40 hodinách kultivácie sa 1,5 litra produkčného rmutu pochádzajúceho z 50 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce 4ζ-dietylamino-des(4ζ -dimetylamino) pristinamycín I sa zlúčia a odparia. Suchý zvyšok sa vyberie 7 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa na dvakrát zavedie na semipreparatívny stĺpec Nucleosilu 7 /zC8 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa potom eluuje použitím elučnej sústavy tvorenej zmesou 60 % lOOmM fosfátového pufra s pH 2,9 a 40 % acetonitrilu. Frakcie obsahujúce 4 C -dietylamino-des(4ζ -dimetylamino) pristinamycín I sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 50 mg 4ζ-dietylamino-des (4 £ -dimetylamino)pristinamycínu I .On a 50-ml Erlenmeyer flask, the strain SP92 :: pVRC508 is cultivated in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of (20 g / l) (R, S) -4-diethylaminophenylalanine solution is added. , synthesized as described in Example 33, in 0.1N sodium hydroxide solution. After 40 hours of culture, 1.5 liters of mash produced from 50 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing 4ζ-diethylamino-des (4ζ-dimethylamino) pristinamycin I are combined and evaporated. The dry residue is taken up in 7 ml of a mixture of 60% water and 40% acetonitrile and the resulting mixture is loaded twice onto a 10 x 250 mm Nucleosil 7 / zC8 semiprep column (Macherey Nagel), which is then eluted using a 60 % 100 mM phosphate buffer at pH 2.9 and 40% acetonitrile. Fractions containing 4C-diethylamino-des (4'-dimethylamino) pristinamycin I are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 50 mg of 4'-diethylamino-des (4'-dimethylamino) pristinamycin I are obtained.

XH-NMR (400 MHz, CDCls, S v ppm, ref.TMS): 0,65 (dd, J = a 6 Hz, 1H : 1H cdC^ v 5 β) ; 0,90 (t, J = 7,5 Hz, 3H :CH3 v 2 γ) ; 1,14 (t, J = 7 Hz, 6H : CH3 etylu ) ; 1,15 (mt, 1H : lH’cd (¾ v . 3 β) ; 1,26 (mt, 1H : 1H côCH, v 3 γ) ; 1,32 (d, J = 6,5 Hz, 3H : CH3 v 1 γ) ; 1,55 (mt, 1H : dmý H d 0¾ v 3 γ) ; 1,63 a 1,75 (2 mts, 1H každý .:¾ v 2 β) ; 2,02 (mt, 1H : ônlý H cd CHj v 3 β) ; 2,22 et 2,31 (respectíve· mt a d šir., J = 16,5 Hz, 1H každý ; X H-NMR (400 MHz, CDCl p, in ppm, ref.TMS): 0.65 (dd, J = 6 Hz and, 1H: 1H of the CDC ^ v β 5); 0.90 (t, J = 7.5 Hz, 3H: CH3 in 2 γ); 1.14 (t, J = 7 Hz, 6H: CH3 of ethyl); 1.15 (mt, 1H: 1H 'cd (3', 3 ')); 1.26 (mt, 1H: 1H: côCH, in 3'); 1.32 (d, J = 6.5 Hz, 3H: CH 3 in 1 γ), 1.55 (mt, 1H: fume H d 0¾ in 3 γ), 1.63 and 1.75 (2 mts, 1H each: ¾ in 2 β), 2.02 (mt 1 H: δn H (CH 3 CH 3 in β), 2.22 and 2.31 (respectively · mt ad broad, J = 16.5 Hz, 1H each) ;

0¾ v 5 δ); 2,37 (d, J = 16 Hz, 1H tdcubý H cd (¾ v. 5 β) ; 2,80 (dt, J = 13 a 4,50¾ in 5 δ); 2.37 (d, J = 16 Hz, 1H td-tubular H cd (¾ v. 5 β); 2.80 (dt, J = 13 and 4.5)

Hz, 1H : 1H od CH, v 5 ε): 2,89 (dd, J = 12,5 et 4 Hz, 1H : 1H od CH, v 4 β) ;Φ. 3,20do3,40 (mt, 6H : NCH, etviu - 1H CH, v 3 δ a drdý H od CH, · v 4 β) ; 3,27 (s, 3H : NCH/ ; 3,55 (mt, 1H : drúý H cd CH, v 3 δ) ; 4,58 (dd, J = 8 a 6 Hz, 1H : 3 a) ; 4,76 (dd šir., J = 13 a 7,5 Hz, 1H : dniý Hod CH, v 5 ε) ; 4,84 (mt, 1H : 2 a); 4,89 (dd, J = 10 a 1 Hz, 1H : 1 a); 5,21 (dd, J = 12,5 a 4 Hz, 1H : 4Hz, 1H: 1H of CH, v4b): 2.89 (dd, J = 12.5 and 4 Hz, 1H: 1H of CH, vbeta); 3.20 to 3.40 (mt, 6H: NCH, et al - 1 H CH, v 3 δ and rough H of CH, v 4 β); 3.27 (s, 3H: NCH3); 3.55 (mt, 1H: dual H at the CH, at 3 DEG); 4.58 (dd, J = 8 and 6 Hz, 1H: 3 a); 76 (broad dd, J = 13 and 7.5 Hz, 1H: day Hod CH, at 5 ε); 4.84 (mt, 1H: 2 a); 4.89 (dd, J = 10 and 1 Hz) 5.21 (dd, J = 12.5 and 4 Hz, 1H: 4)

a) ; 5,28 (d šir.··, J = 6 Hz, 1H : 5 a) ; 5,87 (d, J = 9,5 Hz, 1H : 6 a) ; 5,90 (mt, 1H :a); 5.28 (broad d, J = 6 Hz, 1H: 5 a); 5.87 (d, J = 9.5 Hz, 1H: 6a); 5.90 (mt, IH):

β) ; 6,52 (d, J = 9,5 Hz, 1H : NH v 2) ; 6,60 (d, J = 8 Hz, 2H : H Aromatický v 4 ε) ; 7,02 (d, J = 8 Hz, 2H : H Aromatický v 4 δ) ; od 7,10 do7,35 (mt, 5H : H Aromatický v . 6) ; 7,46 (AB limit., 2H : ľ H, a ľ H/ ; 7,88 (dd, J = 4,5 a 2,5 Hz,β); 6.52 (d, J = 9.5 Hz, 1H: NH at position 2); 6.60 (d, J = 8 Hz, 2H: H aromatic at 4 ε); 7.02 (d, J = 8 Hz, 2H: H aromatic at 4 δ); from 7.10 to 7.35 (mt, 5H: aromatic H at position 6); 7.46 (AB limit, 2H: 1 H, 1 'H); 7.88 (dd, J = 4.5 and 2.5 Hz,

1H : ľ H/ ; 8,43 (d, J = 10 Hz, 1H : NH v 1) ; 8,76 (d, J = 9,5 Hz, 1H : NH v 6) ; 11,62 (s, 1H : OH).1H: 1 H; 8.43 (d, J = 10 Hz, 1H: NH at position 1); 8.76 (d, J = 9.5 Hz, 1H: NH at position 6); 11.62 (s, 1H: OH).

Príklad 20Example 20

Príprava 4 C-dialylamino-des(4 ζ-dimetylamino)pristinamycínu IPreparation 4 C-Dialylamino-des (4'-dimethylamino) pristinamycin I

V meradle 94 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá roztok (20 g/1) (R,S)-4-dialylaminofenylalanínu, syntetizovaného spôsobom opísaným v príklade 38-1, vo vode. Po 40 hodinách kultivácie sa 2,8 litra produkčného rmutu pochá66 dzajúceho z 94 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce 4 ζ -dietylamino-des(4 ζ -dimetylamino)pristinamycín Ia sa zlúčia a odparia. Suchý zvyšok sa vyberie 7 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 pC8 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa eluuje použitím elučnej sústavy tvorenej zmesou 5 2 % lOOmM fosfátového pufra s pH 2,9 a 48% acetonitrilu. Frakcie obsahujúce 4ζ-dialylamino-des(4 ζ-dimetylamino) pristinamycín I sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 15 mg 4ζ-dialylamino -des(4<^ -dimetylamino)pristinamycínu 1^.On a 94-Erlenmeyer flask, the strain SP92 :: pVRC508 is cultured in a production medium to which, after 16 hours of culture, a solution (20 g / l) of (R, S) -4-dialylaminophenylalanine synthesized is added. as described in Example 38-1, in water. After 40 hours of culture, 2.8 liters of mash produced from 94 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing 4 ζ -diethylamino-de (4 ζ -dimethylamino) pristinamycin IA are combined and evaporated and. The dry residue is taken up in 7 ml of a mixture of 60% water and 40% acetonitrile and loaded onto a 10 x 250 mm Nucleosil 7 pC8 semipreparative column (Macherey Nagel), which is eluted using a 5% 2% 100 mM phosphate eluent. buffer pH 2.9 and 48% acetonitrile. The fractions containing 4ζ-dialylamino-des (4ζ-dimethylamino) pristinamycin I are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 15 mg of 4'-dialylamino-des (4'-dimethylamino) pristinamycin 1 'are obtained.

1H-NMR (400 MHz, CDCl , 5 v ppm, ref.TMS): n =. T 3 U,oo (dd, J = a 6 Hz, 1H : lHcd 0¾ v 5 β) ; 0,93 (t, J = 7,5 Hz, 3H : CH3 v 2 γ) ; 1,18 (mt, 1H : 1H cd CH£ v 3 β) ; 1,25 (mt, 1H : 1H 02(3¾ v 3 γ) ; 1,34 (d, J = 6,5 Hz, 3H : CH3 v 1 γ) ; 1,59 (mt, 1H : drdý H ad (3¾ v. 3 γ) ; 1,68 al,78 (2 mts, 1 H-NMR (400 MHz, CDCl 3, δ in ppm, ref.TMS): n = . T 3 U, oo (dd, J = 6 Hz, 1H: 1Hcd 0¾ at 5 β); 0.93 (t, J = 7.5 Hz, 3H: CH3 at position 2); 1.18 (mt, 1H: 1H of CH 3 at position 3β); 1.25 (mt, 1H: 1H 02 (3¾ in 3 γ); 1.34 (d, J = 6.5 Hz, 3H: CH 3 in 1 γ); 1.59 (mt, 1H: rough H and d ( 3¾ v. 3 γ) 1,68 al, 78 (2 mts,

1H teždý : (3¾ v 2 β) ; 2,04 (mt, 1H : drdý H cd (3¾ v 3 β) ; 2,25 a 2,34 (respecuve mt a d šir. , J = 16,5 Hz, 1H každý : (3¾ v 5 δ) ; 2,40 (d, J = 16 Hz, 1H : drdý Hcd (3¾ v 5 β) ; 2,83 (dt, J = 13 a 4,5 Hz, 1H : 1H 00(3¾ v 5 ε) ; 2,92 (dd, J = 12 a 4 Hz, 1H : 1H ¢6(3¾ v 4 β) ; od 3,20 *3,30 (mt, 1H : 1H od CH2 v 3 δ) ; 3,29 (s, 3H : NCH3) ; 3,33 (t, J = 12 Hz, 1H : *dý: Hcd CH2 v 4 β) ; 3,57 (mt, 1H :drdý Hod 0¾ v. 3 δ) ; 3,93 (AB limit , 4H: NCH2 aiylu) ; 4,60 (dd, J = 8 a 6,5Hz, 1H : 3 a) ; 4,78 (dd šir., J = 13 a 7,5 Hz, 1H : dníý H cd (3¾ v 5 e) ; 4,87 (mt, 1H : 2 a) ; 4,92 (dd, J = 10 a 1 Hz, 1H : 1 a) ; ad: 5,10005,25 (mt, 5H : 4 a a =(3¾ aiyiu); 5,28 (d šir-, J = 6 Hz, 1H : 5 a) ;1H weekly: (3¾ in 2 β); 2.04 (mt, 1H: rough H cd (3¾ in 3 β); 2.25 and 2.34 (respectively mt ad broad, J = 16.5 Hz, 1H each: (3¾ in 5 δ); 2 40 (d, J = 16 Hz, 1H: rough Hcd (3¾ in 5 β); 2.83 (dt, J = 13 and 4.5 Hz, 1H: 1H 00 (3¾ in 5 ε); 2.92 (dd, J = 12 and 4 Hz, 1H: 1H ¢ 6 (3¾ the β 4), of 3.20 * 3.30 (mt, 1H: 1H of the CH2 at 3 δ); 3.29 (s, 3H: NCH3), 3.33 (t, J = 12 Hz, 1H: * Dy Hcd CH2 at 4 β); 3.57 (mt, 1H: H of Drdy 0¾ in. 3 δ); 3.93 ( AB limit, 4H: NCH 2 allyl) 4.60 (dd, J = 8 and 6.5 Hz, 1H: 3 a), 4.78 (dd broad, J = 13 and 7.5 Hz, 1H: day H) cd (3¾ in 5e); 4.87 (mt, 1H: 2a); 4.92 (dd, J = 10 and 1 Hz, 1H: 1a); ad: 5.10005.25 (mt, 5H) 5.28 (broad d, J = 6 Hz, 1H: 5 a);

5,85 (mt, 2H : CH= aiyiu); 5,92 (d, J = 9,5 Hz, 1H : 6 a) ; 5,94 (mt, 1H : 1 β) ;5.85 (mt, 2H: CH-aryl) ; 5.92 (d, J = 9.5 Hz, 1H: 6a); 5.94 (mt, 1H: 1β);

6,54 (d, J = 10 Hz, 1H : NH v 2) ; 6,65 (d, J = 8 Hz, 2H : H Aromatický v 4 ε) ;6.54 (d, J = 10 Hz, 1H: NH at position 2); 6.65 (d, J = 8 Hz, 2H: H aromatic at 4 ε);

7,05 (d, J = 8 Hz, 2H : H Aromatický v 4 δ) ; cd 7,10 *7,35 (mt, 5H :7.05 (d, J = 8 Hz, 2H: H aromatic at 4 δ); CD 7.10 * 7.35 (mt, 5H:

H Aromatický v 6) ; 7,51 (AB limit., 2H : ľ H4 a ľ H5) ; 7,88 (dd, J = 4 a 2 Hz,H Aromatic v 6); 7.51 (AB limit, 2H: 1 H 4 and 1 H 5); 7.88 (dd, J = 4 and 2 Hz,

1H : 1' Hg) ; 8,43 (d, J = 10 Hz, 1H : NH v l) ; 8,77 (d, J = 9,5 Hz, 1H : NH v 6) ; 11,65( s, 1H:OH).1H: 1 (1H); 8.43 (d, J = 10 Hz, 1H: NH at position 1); 8.77 (d, J = 9.5 Hz, 1H: NH at position 6); 11.65 (s, 1H: OH).

Príklad 21Example 21

Príprava 4 ζ -alyletylamino-des (4ζ -dimetylamino) pristinamycínu IPreparation of 4 ζ -alylethylamino-des (4ζ-dimethylamino) pristinamycin I

AA

V meradle 26 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (20 g/1) (R,S)-4-alyletylaminofenylalanín-hydrochloridu, syntetizovaného spôsobom opísaným v príklade 39-4, v O,1N roztoku hydroxidu sodného. Po 40 hodinách kultivácie sa 0,78 litra produkčného rmutu pochádzajúceho z 26 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce 4^-alyletylamino-des(4(^-dimetylamino)pristinamycín I sa zlúčia a odparia. Suchý zvyšok sa vyberie 7 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 μ08 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa eluuje použitím elučnej sústavy tvorenej zmesou 52 % lOOmM fosfátového pufra s pH 2,9 a 48% acetonitrilu. Frakcie obsahujúce 4 ζ> -alyletylamino-des (4 ζ -dimetylamino) pristinamycín I sa zlúčia a extrahujú jedným objemom dichlórmetánu. OrgaA nická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 20 mg 4 ζ-alyletylamino-des (4 -dimetylamino) pristinamycínu ia.On a 26 Erlenmeyer flask, the strain SP92 :: pVRC508 is cultured in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of (20 g / l) (R, S) -4-allylethylaminophenylalanine solution is added. hydrochloride, synthesized as described in Example 39-4, in 0.1N sodium hydroxide solution. After 40 hours of culture, 0.78 liters of mash produced from 26 Erlenmeyer flasks is extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing 4'-allylethylamino-des (4'-dimethylamino) pristinamycin I are pooled and evaporated, the dry residue is taken up in 7 ml of a mixture of 60% water and 40% acetonitrile and loaded onto a 7 μ08 Nucleosil semipreparative column. 10 x 250 mm (Macherey Nagel), eluting with 52% 100 mM phosphate buffer at pH 2.9 and 48% acetonitrile Fractions containing 4 &apos; -alylethylamino-des (4 &apos; -dimethylamino) pristinamycin I combined and extracted with one volume of dichloromethane. the authority nick phase was washed with water, dried over sodium sulphate and then evaporated. 20 mg of 4-ζ alyletylamino-de (4-dimethylamino) pristinamycin iA and.

1H-NMR (400 MHz, CDC1 , S v ppm, ref.TMS): . __ ... _ 3 U,3o (dd, J = 1 H-NMR (400 MHz, CDCl 3, δ in ppm, ref.TMS):? __ _ ... U 3, 3 ° (dd, J =

6 Hz, 1H : 1H caCHj v 5 β); o,91 (t, J = 7,5 Hz, 3H : CH3 v 2 γ); 1,16 (í, J = 7 Hz, 3H ; CH3 etylu) ; 1,16 (mt, 1H : 1H od. CH, v 3 β) ; 1,25 (mt, 1H : 1H cd CH, v 3 γ) ; 1,32 (d, J = 6,5 Hz, 3H ; CH3 v 1 γ) ; 1,54 (mt, 1H ; dniý Hod CHj v 3 γ) ; 1,63 a 1,75 (2 mts, 1H každý : CH, v 2 β) ; 2,02 (mt, 1H :draý H od CH, v 3 β) ; 2,23 a 2,31 (respectíve mt a d sir. , J = 16,5 Hz, 1H fežy :6 Hz, 1H: 1H and CH3 at [beta] ; of, 91 (t, J = 7.5 Hz, 3H: CH3 in 2 γ); 1.16 (d, J = 7 Hz, 3H, CH3 of ethyl); 1.16 (mt, 1H: 1H by CH, at 3b); 1.25 (mt, 1H: 1H of CH at .delta.); 1.32 (d, J = 6.5 Hz, 3H; CH 3 in 1 γ); 1.54 (mt, 1H; days Hod CH3 at 3 γ); 1.63 and 1.75 (2 mts, 1H each: CH, at 2β); 2.02 (mt, 1H: expensive H of CH, at 3β); 2.23 and 2.31 (respectively mt ad sir., J = 16.5 Hz, 1H cutters:

CH, v 5 δ) ; 2,37 (d, J = 16 Hz, 1H : drdý H cd CH, v 5 β) ; 2,80 (dt, J = 13 a 4,5CH, at 5 δ); 2.37 (d, J = 16 Hz, 1H: rough H cd CH, at 5β); 2.80 (dt, J = 13 and 4.5)

Hz, 1H : 1H očCH- v. 5 ε) ; 2,87 (dd, J = 12 a 4 Hz, 1H : 1H od 0¾ v 4 β) ; odHz, 1H: 1H of CH2 -. 5 ε); 2.87 (dd, J = 12 and 4 Hz, 1H: 1H of 0¾ at 4 β); from

3,15 03,30 (mt, 1H; 1H cdCHj v 3 δ); 3,26 (s, 3H : N CH J ; 3,30 (t, J = 12 Hz, 1H : čráý H cd CH- v 4 β) ; 3,36 (mt, 2H : NCHj etylu) ; 3,54 (mt, 1H : čniý K cd CH- v 3 Ô) ; 3,90 (AB limit., 2H ; NCH, al7lu ); 4,57 (dd, J = 8 a 6 Hz, 1H ;3.15 03.30 (mt, 1H; 1H cdCH3 at 3δ); 3.26 (s, 3H: NCH3; 3.30 (t, J = 12 Hz, 1H: clear H at the CH4 at position 4)); 3.36 (mt, 2H: NCH3 of ethyl); 3.54 (mt, 1H: κ K κ cd CH- δ at 3 Ô); 3.90 (AB limit, 2H; NCH, α1 lu l ); 4.57 (dd, J = 8 and 6 Hz, 1H;

a) ; 4,76 (dd' šir., J = 13 a 7,5 Hz, 1H : ôrôý H cd CH, v 5 ε) ; 4,84 (mt, 1H : 2a); 4.76 (broad d, J = 13 and 7.5 Hz, 1H: δ H at the CH, at 5 ε); 4.84 (mt, 1H: 2)

a) ; 4,89 (dd, J = 10 a 1 Hz, 1H : 1 a) ;cd. 5,05 *5,20 (mt, 3H : 4 a a =CHaiyiu) ; 5,27 (d šir J = 6 Hz, 1H : 5 a); 5,83 (mt, 1H : CH= aiylu) ; 5,S8 (d, J = 9,5 Hz, 1H :6a); 5,91 (mt, 1H : 1 β); 6,50 (d, J = 10 Hz, 1H : NH v 2) ; 6,60 (d, J = 8 Hz, 2H : H Aromatický v 4 ε); 7,02 (d, J = 8 Hz, 2H : H Aromatická v 4 δ) ; cd 7,10* 7,35 (mt, 5H : H Aromatický v 6) ; 7,47 (AB limit., 2H : ľ H4 a ľ HJ ;a); 4.89 (dd, J = 10 and 1 Hz, 1H: 1 a); 5.05 * 5.20 (mt, 3H: 4aa = CHayl) ; 5.27 (broad d J = 6 Hz, 1H: 5 a); 5.83 (mt, 1H: CH = alkyl); 5.58 (d, J = 9.5 Hz, 1H: 6a); 5.91 (mt, 1H: 1β); 6.50 (d, J = 10 Hz, 1H: NH at position 2); 6.60 (d, J = 8 Hz, 2H: H aromatic at 4 ε); 7.02 (d, J = 8 Hz, 2H: H aromatic at 4 δ); cd 7.10 * 7.35 (mt, 5H: aromatic H at position 6); 7.47 (AB limit, 2H: 1 H 4 and 1 H 3 ;

7,88 (dd, J = 4 a 2 Hz, 1H : ľ HJ ; 8,41 (d, J = 10 Hz, 1H : NH v 1) ; 8,75 (d, J =7.88 (dd, J = 4 and 2 Hz, 1H: 1 HJ; 8.41 (d, J = 10 Hz, 1H: NH at 1); 8.75 (d, J =

9,5 Hz, 1H : NH v 6) ; 11,62 (s, 1H : OH).9.5 Hz, 1H: NH at 6); 11.62 (s, 1H: OH).

Príklad 22Example 22

Príprava 4 ^ľ-etyl-propylamino-des (4 ζ” -dimetylamino) pristinamycínu IPreparation of 4'-1'-ethyl-propylamino-des (4''-dimethylamino) pristinamycin I

V meradle 60 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (20 g/1) (R,S)-4-etylpropylaminofenylalanín-hydrochloridu, syntetizovaného spôsobom opísaným v príklade 39-6, v O,1N roztoku hydroxidu sodného. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho z 26 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa potom dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gra69 dientu O až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce 4 ζ -etylpropylamino-des (4 ζ -dimetylamino) pristinamycín I sa zlúčia a odparia. Suchý zvyšok sa vyberie 7 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 μΟ8 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa eluuje použitím elučnej sústavy tvorenej zmesou 63 % lOOmM fosfátového pufra s pH 2,9 a 37% acetonitrilu. Frakcie obsahujúce 4ζ -alyletylamino-des(4ζ -dimetylamino) pristinamycín Ia sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 16 mg 4<ζ-etylpropylamino-des (4 ζ -dimetylamino)pristinamycínu Ia· ^H-NMR (400 MHz, CDCl^ 6 v ppm, ref.TMS): 0 67 (dd J = et 6 Hz, 1H : 1H du CH, v 5 β); 0,91 (t, J = 7,5 Hz, 3H : CH3 v 2 γ) ; 0,95 (t, J = 7,5 Hz, 3H : CH3 . prcpyk) ; 1,14 (t, J = 7 Hz, 3H : CH3 etylu ) 1,15 (mt,On a 60-ml Erlenmeyer flask, the strain SP92 :: pVRC508 was cultured in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of (20 g / l) (R, S) -4-ethylpropylaminophenylalanine solution was added. hydrochloride, synthesized as described in Example 39-6, in 0.1N sodium hydroxide solution. After 40 hours of culture, 1.8 liters of mash originating from 26 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is then extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using an eluting gradient of 0-10% methanol in dichloromethane. The fractions containing 4'-ethylpropylamino-des (4'-dimethylamino) pristinamycin I are pooled and evaporated. The dry residue is taken up in 7 ml of a mixture of 60% water and 40% acetonitrile and loaded onto a 10 × 250 mm Nucleosil 7 μΟ8 semiprep column (Macherey Nagel), which is eluted using a 63% 100 mM phosphate buffer mixture. pH 2.9 and 37% acetonitrile. Fractions containing des-4ζ -alyletylamino (4ζ -dimethylamino) pristinamycin IA are combined and extracted with one volume and dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 16 mg of 4 &apos; -ethylpropylamino-des (4 &apos; -dimethylamino) pristinamycin I and &lt; 1 &gt; H-NMR (400 MHz, CDCl3, in ppm, ref. TMS) are obtained: [delta] 1H: 1H du CH, at 5b); 0.91 (t, J = 7.5 Hz, 3H: CH3 in 2 γ); 0.95 (t, J = 7.5 Hz, 3H: CH third prcpyk); 1.14 (t, J = 7 Hz, 3H: CH3 of ethyl) 1.15 (mt,

1H ; 1H cd CH. v 3 β) ; 1,25 (mt, 1H : lHcd CH. v 3 γ) ; 1,33 (d, J = 7 Hz, 3H :1H; 1H cd CH. v 3 β); 1.25 (mt, 1H: 1H of CH3 at position 3); 1.33 (d, J = 7Hz, 3H):

CH3 v 1 γ) ; cd 1,45 ôcl,65 (mt, 3H : arurý H ad CH. v 3 γ v CHj propylu) ; 1,63 a 1,75 (2 mts, 1H každý : CH, v 2 β) ; 2,02 (mt, 1H : druŕý H cd CH2 v 3 β) ;CH 3 in 1 γ); cd 1.45 δ C, 65 (mt, 3H: aruryl H and CH at .delta. in CH3 of propyl); 1.63 and 1.75 (2 mts, 1H each: CH, at 2β); 2.02 (mt, 1H: Drury H of CH2 at 3 β);

2,23 2,33 (respectíve mt a dšir. , J = 16,5 Hz, 1H každý ; CH, v 5 δ) ;2.23 2.33 (respectively mt and broad, J = 16.5 Hz, 1H each; CH, v5 δ);

2,37 (d, J = 16 Hz, 1H : druhý H cd CH, v 5 β) ; 2,80 (dt, J = 13 a 5 Hz, 1H : 1H cd CH, v 5 ε) ; 2,89 (dd, J = 12 a 4 Hz, 1H : 1H cd. CHj v 4 β) ; cd3,10 <±3,25 (mt, 3H : 1H cd CH. v 3 δ et NCH. . propyíu) ; 3,26 (s, 3H : NCHj ; cd 3,25 ± 3,40 (mt, 2H : NCH^ etylu) ; 3,34 (t, J = 12 Hz, 1H : ôniý H cd CH, v 4 β) ;2.37 (d, J = 16 Hz, 1H: second H at the CH, at 5 β); 2.80 (dt, J = 13 and 5 Hz, 1H: 1H at CH, at .delta.); 2.89 (dd, J = 12 and 4 Hz, 1H: 1H cd, CH2 at position 4b); cd3.10 < 3.25 (mt, 3H: 1H cd of CH at .delta. and NCH. of propyl); 3.26 (s, 3H: NCH3; cd 3.25 ± 3.40 (mt, 2H: NCH3 ethyl); 3.34 (t, J = 12 Hz, 1H: onion H at the CH, at 4b) ;

3,54 (mt, 1H : druhý H cdCHj v 3 δ) ; 4,57 (dd, J = 7,5 a 6 Hz, 1H : 3 a) ; 4,76 (dd šir. , J = 13 a 7,5 Hz, 1H : aniý H cd CH, v. 5 e) ; 4,84 (mt, 1H : 2 a) ; 4,89 (dd, J = 10 a 1 Hz, 1H : 1 a) ; 5,21 (dd, J = 12 a 4 Hz, 1H : 4 a) ; 5,28 (d šir. , J =3.54 (mt, 1H: second H cdCH3 at 3δ); 4.57 (dd, J = 7.5 and 6 Hz, 1H: 3a); 4.76 (broad dd, J = 13 and 7.5 Hz, 1H: no H at the CH, v. 5e); 4.84 (mt, 1H: 2a); 4.89 (dd, J = 10 and 1 Hz, 1H: 1 a); 5.21 (dd, J = 12 and 4 Hz, 1H: 4a); 5.28 (broad d, J =

Hz, 1H : 5 a) ; 5,88 (d, J = 9,5 Hz, 1H : 6 a) ; 5,91 (mt, 1H : 1 β) ; 6,48 (d, J = 10 Hz, 1H : NH v 2); 6,60 (d, J = 8 Hz, 2H: H Aromatický v 4 ε); 7,03 (d, J = 8 Hz,Hz, 1H: 5 (a); 5.88 (d, J = 9.5 Hz, 1H: 6a); 5.91 (mt, 1H: 1β); 6.48 (d, J = 10 Hz, 1H: NH at position 2); 6.60 (d, J = 8 Hz, 2H: H aromatic at 4 ε); 7.03 (d, J = 8Hz,

2H : H Aromatický v 4 δ) ; cd 7,10 <±>7,35 (mt, 5H : H Aromatický v 6) ; 7,47 (AB limit., 2H : ľ H4 a 1' Hj ; 7,89 (mt, 1H : ľ Hj ; 8,42 (d, J = 10 Hz, 1H : NH v 1) ; 8,76 (d, J = 9,5 Hz, 1H : NH en 6); 11,62 (s, 1H : OH).2H: H Aromatic at 4 δ); cd 7.10? 7.35 (mt, 5H: H aromatic at 6); 7.47 (AB limit, 2H: 1 H 4 and 1 'H 3; 7.89 (mt, 1H: 1 H 3; 8.42 (d, J = 10 Hz, 1H: NH at 1); 8.76) (d, J = 9.5 Hz, 1H: NH and 6) 11.62 (s, 1H: OH).

Príklad 23Example 23

Príprava 4<ζ -trifluórmetoxy-des(4<ζ -dimetylamino)pristinamycínu IPreparation of 4 &apos; -trifluoromethoxy-des (4 &apos; -dimethylamino) pristinamycin I

AA

V meradle 60 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (R,S)-4-O-trifluórmetyltyrozínu, syntetizovaného spôsobom opísaným v príklade 34-8. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa potom extrahuje dvoma objemami dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia sa. Suchý extrakt sa vyberie 1 ml dichlórmetánu sa zavedie na stĺpec silikagélu (30 g) v ditento stĺpec sa eluuje použitím elučného grametanolu v dichlórmetáne. Frakcie obsahujúce a získaná zmes chlórmetáne, a dientu 0 až 10 ζ-trif luórmetoxy-des (4 ζ-dimetylamino )pristinamycín Ia sa zlúčia a odparia. Zvyšok po odparení sa vyberie 7 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 μ08 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa eluuje použitím elučnej sústavy tvorenej zmesou 60 % lOOmM fosfátového pufra s pH 2,9 a 40 % acetonitrilu. Frakcie obsahujúce 4ζ-trifluórmetoxy-des (4 <ζ-dimetylamino )pristinamycín Ia sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 46,5 mg 4 ζ-trif luórmetoxy-des(4ζ -dimetylamino)pristinamycínu I .On a 60-ml Erlenmeyer flask, the strain SP92 :: pVRC508 was cultured in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of a solution of (R, S) -4-O-trifluoromethyltyrosine synthesized as described in Example 34-8. After 40 hours of cultivation, 1.8 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is then extracted with two volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up with 1 ml of dichloromethane and loaded onto a silica gel column (30 g) and the column is eluted using eluting gram-ethanol in dichloromethane. Fractions and the resulting mixture methylmorpholine, and DIENTE 0-10 ζ-trifluoromethoxy-de (4-ζ-dimethylamino) pristinamycin IA are combined and evaporated and. The evaporation residue is taken up with 7 ml of a mixture of 60% water and 40% acetonitrile and loaded onto a 10 × 250 mm Nucleosil 7 µ08 semiprep column (Macherey Nagel), which is eluted using a 60% 100 mM phosphate eluent. buffer pH 2.9 and 40% acetonitrile. Fractions containing 4ζ-trifluoromethoxy-de (4 <ζ-dimethylamino) pristinamycin IA are combined and extracted with one volume and dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 46.5 mg of 4'-trifluoromethoxy-des (4'-dimethylamino) pristinamycin I are obtained.

LH-NMR (400 MHz, CDC1 , δ v ppm, ref.TMS): 1 H-NMR (400 MHz, CDCl 3, δ in ppm, ref.TMS):

0,77 (dd, J = et 5,5 Hz, 1H : 1H od CH, v 5 β) ; 0,92 (t, J = 7,5 Hz, 3H : CH3 v 2 γ) ; 1,08 (mt, 1H : 1H cdCH, v 3 β) ;od 1,30*1,40 (mt, 1H : 1H odCH,* 3 γ) ; 1,33 (d, J = 7 Hz, 3H ; CH3 v 1 γ) ; ad 1,55 *1,70 (mt, 1H : drdý H od CH, v . 3 γ) ; 1,65 a0.77 (dd, J = et 5.5 Hz, 1H: 1H of CH at position 5b); 0.92 (t, J = 7.5 Hz, 3H: CH3 in 2 γ); 1.08 (mt, 1H: 1H of CH2, at 3 b); from 1.30 * 1.40 (mt, 1H: 1H of CH, * 3 y); 1.33 (d, J = 7 Hz, 3H, CH 3 in the γ 1); ad 1.55 * 1.70 (mt, 1H: rough of H from CH, v. 3?); 1,65 a

1,76 (2 mts, 1H každý : CH, v 2 β) ; 2,02 (mt, 1H :drdý : H od CH, v 3 β) ; 2,11 a 2,40 (respectíve mt a dšir. J = 16,5 Hz, 1H ksždý : CH, v 5 δ) ; 2,54 (d, J = 16 Hz, 1H : ôniý H cd CH, v 5 β); 2,88 (dt, J = 13 et 4 Hz, 1H : 1H od CH, v 5 e) ; 3,08 (dd, J = 12 a 5 Hz, 1H : 1H od. CH, v 4 β); 3,22 (s, 3H : NCR) ; od3,30 *3,45 (mt, 1H : 1H cd CH, v 3 δ); 3,39 (t, J = 12 Hz, 1H : drdý H od CH, v 4 β) ; 3,59 (mt, 1H : ôrdý H odCH, v 3 δ) ; 4,53 (t, J = 7,5 Hz, 1H : 3 a) ; 4,75 (dd šír. , J = 13 a 8 Hz, 1H ? druhý H od CH, v 5 ε) ; 4,85 (mt, 1H : 2 a); 4,89 (dd, J = 10 a 1,5 Hz, 1H : 1 α) ; 5,35 (d sir. , J = 5,5 Hz, 1H : 5 a) ; 5,41 (dd, J = 12 a 5 Hz, 1H : 4 a) ; 5,92 (d, J = 10 Hz, 1H : 6 a) ; 5,93 (mt, 1H : 1 β) ; 6,53 (d, J = 9,5 Hz, 1H : NH v 2); ±7,15 ±7,35 (mt, 5H : H Aromatický v . 6) ; 7,16 (d, J = 8 Hz, 2H : H Aromatický v 4 ε); 7,26 (d, J = 8 Hz, 2H : H Aromati cxý v 4 δ) ; 7,37 (dd, J = 8,5 a 4 Hz, 1H : ľ Hj) ; 7,42 (dd, J = 8,5 a 1,5 Hz, 1H : ľ HJ ; 7,70 (dd, J = 4 a 1,5 Hz, 1H : ľ Hý ; 8,37 (d, J = 10 Hz, 1H : NH v 1); 8,75 (d, J = 10 Hz, 1H :NH v 6) ; 11,66 (s, 1H : OH).1.76 (2 mts, 1H each: CH, v2b); 2.02 (mt, 1H: crude : H of CH, at 3b); 2.11 and 2.40 (respectively mt and broad J = 16.5 Hz, 1H each: CH, v5 δ); 2.54 (d, J = 16 Hz, 1H: onion H to CH, [delta] β); 2.88 (dt, J = 13 and 4 Hz, 1H: 1H of CH at position 5e); 3.08 (dd, J = 12 and 5 Hz, 1H: 1H by CH at position 4b); 3.22 (s, 3H: NCR); from 3.30 * 3.45 (mt, 1H: 1H of CD at CH3 at position 3); 3.39 (t, J = 12 Hz, 1H: rough of H from CH, v4b); 3.59 (mt, 1H: clear H of CH, at 3δ); 4.53 (t, J = 7.5Hz, 1H: 3a); 4.75 (broad dd, J = 13 and 8 Hz, 1H - second H from CH, at 5 ε); 4.85 (mt, 1H: 2a); 4.89 (dd, J = 10 and 1.5 Hz, 1H: 1 α); 5.35 (broad d, J = 5.5 Hz, 1H: 5a); 5.41 (dd, J = 12 and 5 Hz, 1H: 4a); 5.92 (d, J = 10Hz, 1H: 6a); 5.93 (mt, 1H: 1β); 6.53 (d, J = 9.5 Hz, 1H: NH at position 2); ± 7.15 ± 7.35 (mt, 5H: aromatic H at position 6); 7.16 (d, J = 8 Hz, 2H: H aromatic at 4 ε); 7.26 (d, J = 8 Hz, 2H: aromatic H at position 4); 7.37 (dd, J = 8.5 and 4 Hz, 1H: 1 'H'); 7.42 (dd, J = 8.5 and 1.5 Hz, 1H: 1 HJ; 7.70 (dd, J = 4 and 1.5 Hz, 1H: 1 H); 8.37 (d, J = 10 Hz, 1H: NH at 1), 8.75 (d, J = 10 Hz, 1H: NH at 6), 11.66 (s, 1H: OH).

Príklad 24Example 24

Príprava 4 ζ-alyloxy-des(4 ζ-dimetylamino)pristinamycínu IPreparation of 4'-allyloxy-des (4'-dimethylamino) pristinamycin I

V meradle 90 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (20 g/1) (S)-4-O-alyltyrozínu, syntetizovaného spôsobom opísaným v príklade 33, v O,1N roztoku kyseliny chlorovodíkovej. Po 40 hodinách kultivácie sa 2,7 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia sa. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne . Frakcie obsahujúce 4 ζ-alyloxy-des(4 ζ-dimetylamino)pristinamycín I sa zlúčia a odparia. Suchý zvyšok sa vyberie 7 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 μΟ8 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa eluuje použitím elučnej sústavy tvorenej 52 % lOOmM fosfátového pufra s pH 2,9 a 48 % acetonitrilu. Frakcie obsahujúce 4 ζ -alyloxy-des (4 ^-dimetylamino) pristinamycín Ia sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí.In a 90-gauge Erlenmeyer flask, the strain SP92 :: pVRC508 is cultured in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of (20 g / l) (S) -4-O-allyltyrosine solution is added. , synthesized as described in Example 33, in a 0.1N hydrochloric acid solution. After 40 hours of culture, 2.7 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture of 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing 4'-allyloxy-des (4'-dimethylamino) pristinamycin I are pooled and evaporated. The dry residue is taken up in 7 ml of a mixture of 60% water and 40% acetonitrile and loaded onto a 10 × 250 mm Nucleosil 7 μΟ8 semiprep column (Macherey Nagel), which is eluted using a 52% 100 mM phosphate buffer elution system. pH 2.9 and 48% acetonitrile. The fractions containing 4 ζ allyloxy-de (4-dimethylamino ^) pristinamycin IA are combined and extracted with one volume and dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated.

Získa sa 29 mg 4ζ-alyloxy-des(4ζ-dimetylamino)pristinamycínu29 mg of 4ζ-allyloxy-des (4ζ-dimethylamino) pristinamycin are obtained

I .I.

A XH-NMR (400 MHz, CDCl3, 5 v ppm, ref.TMS): 0 63 (dd J 16 a 6 Hz, 1H : 1H očCHj v 5 β) ; 0,91 (t, J = 7,5 Hz, 3H : CH3 v 2 γ) ; 1,13 (mt, X 1 H-NMR (400 MHz, CDCl 3 , δ in ppm, ref.TMS): δ 63 (dd J 16 and 6 Hz, 1H: 1H at position 5 at β); 0.91 (t, J = 7.5 Hz, 3H: CH3 in 2 γ); 1.13 (mt,

1H : lHcd. CH2<±> 3 β); 1,29 (mt, 1H: 1H cd CH2 v 3 γ) ; 1,33 (d, J = 6,5 Hz, 3H :1H: 1Hcd. CH 2 <±>3β); 1.29 (mt, 1H: 1H of the CH2 at 3 γ); 1.33 (d, J = 6.5 Hz, 3H):

CH3 v 1 7) ; 1,57 (mt, 1H : dniý H cd CH, v 3 γ) ; 1,65 a 1,74 (2 mís, 1H :0¾ v 2 β) ; 2,02 (mt, 1H : cniý H cd CH. v 3 β) ; 2,14 et 2,34 (respectíve mt et d šir., J = 16,5 Hz, 1H leščý ; CH2 v 5 δ); 2,43 (d, J = 16 Hz, 1H : čr±ý H cd. CH2 cc 5 β) ; 2,85 (dt, J = 13 a 4 Hz, 1H : 1H cdC^ôo 5 ε) ; 2,95 (dd, J = 12 a 4 Hz, 1H : 1H cd CH2 v 4 β) ; 3,25 (s, 3H : NCHj ; 3,33 (mt, 1H : 1H cdCH, v 3 δ) ; 3,36 (t, J = 12 Hz, 1H : druý H od CH. v 4 β) ; 3,56 (mt, 1H : drúý H cdCH. v 3 Ô) ; 4,51 (AB limit., 2H : OCH. aiylu); 4,56 (t, J = 7,5 Hz, 1H : 3 a) ; 4,75 (dd šir., J = 13 a 8 Hz, 1H :drúý H cd CH. v 5 ε) ; 4,84 (mt, 1H : 2 a) ; 4,88 (dd, J = 10 a 1 Hz, 1H : 1 a) ; 5,27 (dd, J = 12 a 4 Hz, 1H : 4 a) ; 5,32 (d šir., J = CH3 1 in 7); 1.57 (mt, 1H: day H at the CH, at 3 γ); 1.65 and 1.74 (2 dishes, 1H: 0¾ in 2β); 2.02 (mt, 1H: cis H at the position CH at .delta.); 2.14 et 2.34 (respectively, mt and broad d, et., J = 16.5 Hz, 1 H Lescol, CH2 at 5 δ); 2.43 (d, J = 16 Hz, 1H: the other H ±. 5 cc CH2 β); 2.85 (dt, J = 13 and 4 Hz, 1H: 1H of CDCl 3 δ ° 5 ε); 2.95 (dd, J = 12 and 4 Hz, 1H: 1H of the CH2 in 4 β); 3.25 (s, 3H: NCH3; 3.33 (mt, 1H: 1H cdCH, at 3δ); 3.36 (t, J = 12 Hz, 1H: second H from CH at 4b); 3 56 (mt, 1H: dual H at the CDCl3 at position 3); 4.51 (AB limit, 2H: OCH. Allyl); 4.56 (t, J = 7.5 Hz, 1H: 3a); 4.75 (broad dd, J = 13 and 8 Hz, 1H: double H at the CH at 5 ε); 4.84 (mt, 1H: 2a); 4.88 (dd, J = 10 and 1); Hz, 1H: 1 a) 5.27 (dd, J = 12 and 4 Hz, 1H: 4 a) 5.32 (broad d, J =

Hz, 1H :5c): 5,30 a 5,40 (respecúve mt a dd, J = 17 et 1,5 Hz, 1H každý : =0¾ aiylu) ; 5,89 (d, J = 9,5 Hz, 1H : 6 a) ; 5,91 (mt, 1H : 1 β) ; 6,02 (mt, 1H :Hz, 1H: 5c): 5.30 and 5.40 (respectively mt and dd, J = 17 and 1.5 Hz, 1H each: = 0¾ alkyl); 5.89 (d, J = 9.5 Hz, 1H: 6a); 5.91 (mt, 1H: 1β); 6.02 (mt, IH):

CH= aiylu.) ; 6,50 (d, J = 10 Hz, 1H : NH v. 2) ; 6,85 (d, J = 8 Hz, 2H : H Aromatický v 4 ε) ; 7,12 (d, J = 8 Hz, 2H : H Aromati cký v 4 δ) ; cd 7,10do7,35 (mt, 5H : H Aromatický v 6) ; 7,45 (dd, J = 8,5 a 1,5 Hz, 1H : ľ H) ; 7,57 (dd, J =CH = alkyl); 6.50 (d, J = 10 Hz, 1H: NH at position 2); 6.85 (d, J = 8 Hz, 2H: H aromatic at 4 ε); 7.12 (d, J = 8 Hz, 2H: aromatic H at position 4); cd 7.10 to 7.35 (mt, 5H: H aromatic at position 6); 7.45 (dd, J = 8.5 and 1.5 Hz, 1H: 1 H); 7.57 (dd, J =

8,5 a 4Hz, 1H : ľ Η;); 7,77 (dd, J =4 a 1,5 Hz, 1H H'H); 8,41 (d, J = 10 Hz, 1H : NH v 1) ; 8,74 (d, J = 9,5 Hz, 1H : NH v 6); 11,63 (s, 1H : OH).8.5 and 4Hz, 1H: 1 '; 7.77 (dd, J = 4 and 1.5 Hz, 1H H'H); 8.41 (d, J = 10 Hz, 1H: NH at position 1); 8.74 (d, J = 9.5 Hz, 1H: NH at position 6); 11.63 (s, 1H: OH).

Príklad 25Example 25

Príprava 4 ζ-etoxy-des(4 ζ-dimetylamino)pristinamycínu IPreparation of 4'-ethoxy-des (4'-dimethylamino) pristinamycin I

V meradle 90 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (20 g/1) (S)-4-0-etyltyrozíh-hydrochloridu, syntetizovaného príklade 33, v 0,lN roztoku kyseliny chlorovodíkovej. Po 40 hodinách kultivácie sa 2,7 litra produkčného rmutu pochádzajúceho z 90 Erlenmeyerových baniek extrahuje dvoma objemami zmesi obsahujúcej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlór73 metánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia sa. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce 4 £-alyloxy-des(4 -dimetylamino) pristinamycín I sa zlúčia a odparia. Suchý zvyšok sa vyberie 7 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 gC8 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa eluuje použitím elučnej sústavy tvorenej 52 % lOOmM fosfátového pufra s pH 2,9 a 48 % acetonitrilu. Frakcie obsahujúce 4 -etoxy-des(4 £-dimetylamino)pristinamycín IA sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 29 mg 4 ζ’-etoxy-des(4C -dimetylamino)pristinamycínu Ia 1H-NMR (400 MHz, CDCla, S v ppm, ref.TMS):In a 90-gauge Erlenmeyer flask, the strain SP92 :: pVRC508 is cultured in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of (20 g / l) (S) -4-O-ethyltyrosine solution is added. hydrochloride, synthesized Example 33, in a 0.1N hydrochloric acid solution. After 40 hours of cultivation, 2.7 liters of mash produced from 90 Erlenmeyer flasks are extracted with two volumes of a mixture containing 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant was extracted twice with 0.5 volume of dichloromethane / methane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing 4? -Alyloxy-des (4-dimethylamino) pristinamycin I are combined and evaporated. The dry residue is taken up in 7 ml of a mixture of 60% water and 40% acetonitrile and loaded onto a 10 x 250 mm Nucleosil 7 gC8 semipreparative column (Macherey Nagel), which is eluted using a 52% 100 mM phosphate buffer elution system. pH 2.9 and 48% acetonitrile. Fractions containing 4-ethoxy-des (4'-dimethylamino) pristinamycin I A are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 29 mg of 4-ethoxy-ζ'de (4-dimethylamino) pristinamycin IA and 1 H-NMR (400 MHz, CDCl, and, in ppm, ref.TMS):

0,64 (dd, J = a 5,5 Hz, 1H : 1H cd CH2ôd 5 β) ; 0,90 (t, J = 7,5 Hz, 3H : CH3 v 2 γ) ; 1,12 (mt, 1H : 1H cd CH2 v 3 β) ; 1,25 (mt, 1H : 1H cd CH2 v 3 γ) ; 1,33 (d, J = 7 Hz,0.64 (dd, J = and 5.5 Hz, 1H: 1H of CH2 5 β); 0.90 (t, J = 7.5 Hz, 3H: CH3 in 2 γ); 1.12 (mt, 1H: 1H of the CH2 at 3 β); 1.25 (mt, 1H: 1H of the CH2 at 3 γ); 1.33 (d, J = 7Hz,

3H : CH3 v 1 γ) ; 1,42 (t, J = 7 Hz, 3H : CH3 etylu) ; 1,57 (mt, 1H : druh/ Hcd CH, v 3 γ) ; 1,63 a 1,74 (2 mts, 1H težý :0¾ v 2 β) ; 2,02 (mt, 1H : te&ý H cd (3¾ v 3 β) ; 2,16 a 2,35 (respecnve mta d šir. , J = 16,5 Hz, 1H težý :3H: CH 3 in 1 γ); 1.42 (t, J = 7 Hz, 3H: CH3 of ethyl); 1.57 (mt, 1H: species / Hcd CH, at 3 γ); 1.63 and 1.74 (2 mts, 1H same: 0¾ in 2β); 2.02 (mt, 1H: δ H cd (3¾ in 3 β); 2.16 and 2.35 (respectively m and d d, J = 16.5 Hz, 1H also:

0¾ v 5 δ) ; 2,43 (d, J = 16 Hz, 1H : druhý H cd CH2 v 5 β) ; 2,83 (dt, J = 13 a 4 Hz, 1H : 1H cd CYL v 5 e) ; 2,93 (dd, J = 12 a 4 Hz, 1H : 1H od 0¾ v 4 β) ;od 3,15co3,30 (mt, 1H: 1H cd (3¾ 3 δ); 3,24 (s, 3H : NCHý; 3,35 (t, J = 12 Hz, 1H : druhý H ^(3¾ v 4 β) ; 3,55 (mt, 1H r^utý Red 10¾ v 3 Ô) ; 3,95 (AB limit-,0¾ in 5 δ); 2.43 (d, J = 16 Hz, 1H: the other H of the CH2 in 5 β); 2.83 (dt, J = 13 and 4 Hz, 1H: 1H of CYL at position 5e); 2.93 (dd, J = 12 and 4 Hz, 1H: 1H of 0¾ in 4 β), 3.15 and 3.30 (mt, 1H: 1H cd (3 33 δ); 3.24 (s, 3H: 3.36 (t, J = 12 Hz, 1H: second H ^ (3¾ in 4 β); 3.55 (mt, 1H r ^ n Red 10¾ in 3 Ô); 3.95 (AB limit-,

2H : 00¾ etylu); 4,56 (dd, J = 7,5 a 6 Hz, 1H : 3 a) ; 4,75 (dd šir. , J = 13 a 8 Hz, 1H : druhý Hcd. 0¾ v 5 e) ; 4,84 (mt, 1H : 2 a) ; 4,87 (dd, J = 10 a 1 Hz,2H: 00 ety ethyl); 4.56 (dd, J = 7.5 and 6 Hz, 1H: 3a); 4.75 (broad dd, J = 13 and 8 Hz, 1H: second Hcd, 0.5 'at 5 e); 4.84 (mt, 1H: 2a); 4.87 (dd, J = 10 and 1 Hz,

1H : 1 a) ; 5,26 (dd, J = 12 a 4 Hz, 1H : 4 a) ; 5,32 (d šir. , J = 5,5 Hz, 1H : 5 a) ;1H: 1 (a); 5.26 (dd, J = 12 and 4 Hz, 1H: 4a); 5.32 (broad d, J = 5.5 Hz, 1H: 5 a);

5,88 (d, J = 10 Hz,Íri :6a); 5,92 (mt, 1H : 1 β) ; 6,48 (d, J = 10 Hz, 1H : NH v 2) ; 6,83 (d, J = 8 Hz, 2H : H Aromatický v 4 ε); 7,10 (d, J = 8 Hz, 2H : H Aromatický v 4 δ) ; cd 7,10 do7,35 (mt, 5H : H Aromatický v 6) ; 7,44 (dd, J =5.88 (d, J = 10 Hz, 1H: 6a); 5.92 (mt, 1H: 1β); 6.48 (d, J = 10 Hz, 1H: NH at position 2); 6.83 (d, J = 8 Hz, 2H: H aromatic at 4 ε); 7.10 (d, J = 8 Hz, 2H: H aromatic at 4 δ); cd 7.10 to 7.35 (mt, 5H: H aromatic at position 6); 7.44 (dd, J =

8.5 a 1,5 Hz, 1H : ľ Hý ; 7,57 (dd, J = 8,5 a 4,5 Hz, 1H : ľ Hj); 7,77 (dd, J = 4,5 a8.5 and 1.5 Hz, 1H: 1 H; 7.57 (dd, J = 8.5 and 4.5 Hz, 1H: 1 'H'); 7.77 (dd, J = 4.5 and

1.5 Hz, 1H : ľ Hý ; 8,38 (d, J = 10 Hz, 1H : NH v 1) ; 8,75 (d, J = 10 Hz, 1H : NH v 6) ; 11,60 (s, 1H : OH).1.5 Hz, 1H: 1H; 8.38 (d, J = 10 Hz, 1H: NH at position 1); 8.75 (d, J = 10 Hz, 1H: NH at position 6); 11.60 (s, 1H: OH).

Príklad 26Example 26

Príprava 4 ζ-(2-chlóretoxy)-des(4 ζ -dimetylamino)pristinamycínu IPreparation of 4ζ- (2-chloroethoxy) -des (4ζ-dimethylamino) pristinamycin I

AA

V meradle 60 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (20 g/1) (S)-4-0-(2-chlóretyl)tyrozín-hydrochloridu, syntetizovaného spôsobom opísaným v príklade 42-1, vo vode. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi obsahujúcej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu. Supernatant sa potom dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia sa. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce 4 ζ - (2-chlóretoxy) -des (4 £ -dimetylamino)pristinamycín Ia sa zlúčia a odparia. Suchý zvyšok sa vyberie 7 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 /tC8 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa potom eluuje použitím elučnej sústavy tvorenej 60 % lOOmM fosfátového pufra s pH 2,9 a 40 % acetonitrilu. Frakcie obsahujúce 4 <^-( 2-chlóretoxy)-des (4ζ* -dimetylamino)pristinamycín I sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 3,2 mg 4 £ -(2-chlóretoxy)-des(4«^ -dimetylamino)-pristinamycínu Ia.On a 60-ml Erlenmeyer flask, the strain SP92 :: pVRC508 is cultivated in a production medium to which 1 ml of (20 g / l) (S) -4-O- solution is added after 16 hours of culture. 2-chloroethyl) tyrosine hydrochloride, synthesized as described in Example 42-1, in water. After 40 hours of culture, 1.8 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture containing 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile. The supernatant is then extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing 4 ζ - (2-chloroethoxy) -de (4 £ -dimethylamino) pristinamycin IA are combined and evaporated and. The dry residue is taken up in 7 ml of a mixture of 60% water and 40% acetonitrile and loaded onto a 10 x 250 mm Nucleosil 7 / tC8 semipreparative column (Macherey Nagel), which is then eluted using a 60% 100 mM phosphate eluent. buffer pH 2.9 and 40% acetonitrile. The fractions containing 4- (2-chloroethoxy) -des (4'-dimethylamino) pristinamycin I are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. To give 3.2 mg of 4 £ - (2-chloroethoxy) -de (4 '^ -dimethylamino) pristinamycin I, and.

^H-NMR (400 MHZ, CDCl , δ v ppm, ref.TMS): . T 3 υ,οο (,αα, J = a 5,5 Hz, IH : IH od CH, v 5 β) ; 0,91 (t, J = 7,5 Hz, 3H : CH3 v 2 γ) ; 1,13 (mt, IH : IH cd CH, v 3 β) ; 1,28 (mt, IH : IH cd CH, v 3 γ) ; 1,33 (d, J = 7 Hz,@ 1 H-NMR (400 MHz, CDCl3, .delta. In ppm, ref. TMS):. T 3 υ, οο (, α α, J = and 5.5 Hz, IH: IH from CH, at 5 β); 0.91 (t, J = 7.5 Hz, 3H: CH3 in 2 γ); 1.13 (mt, 1H: 1H at position CH, at position 3b); 1.28 (mt, 1H: 1H at position CH, at position 3); 1.33 (d, J = 7Hz,

3H : CH3 v 1 γ) ; 1,57 (mt, IH : dniý H cd CH, v 3 γ) ; 1,66 a 1,76 (2 mts, IH tež# : CH, v 2 β) ; 2,02 (mt, IH ;druhý H cd CH, v 3 β) ; 2,16 a 2,37 (respectíve mt a d šir., J = 16,5 Hz, IH každý : CH, v 5 δ) ; 2,47 (d, J = 16 Hz, IH: drďý H odCH, v 5 β) ; 2,86 (dt, J = 13 a4Hz,lH:lH cdCH, v 5 ε) ;3H: CH 3 in 1 γ); 1.57 (mt, 1H: day H at the CH, at 3 γ); 1.66 and 1.76 (2 mts, IH also #: CH, at 2β); 2.02 (mt, 1H; second H cd CH, at 3β); 2.16 and 2.37 (respectively mt ad broad, J = 16.5 Hz, IH each: CH, at 5δ); 2.47 (d, J = 16 Hz, 1H: rough H of CH, at 5 β); 2.86 (dt, J = 13 and 4 Hz, 1H: 1H cdCH, at 5 ε);

2,95 (dd, J = 12 a 4 Hz, 1H : 1H oäČHjčb 4 β); 3,23 (s, 3H : N CH j ; 3,32 (mt, 1H : 1H cd 0¾ v 3 δ); 3,37 (t, J = 12 Hz, 1H :<±i_hý H od 0¾ v 4 β); 3,57 (mt, 1H : druhý H cd CHj v 3 Ô); 3,82 (t, J = 6 Hz, 2H : CHjCl); 4,19 (AB limit·, 2H : OCH, etylu) ; 4,55 (dd, J = 7,5 a 7 Hz, 1H : 3 a) ; 4,75 (dd šir. , J = 13 a 8 Hz, 1H : druhý H od CH, v ,5 ε) ; 4,84 (mt, 1H : 2 a) ; 4,87 (dšir. J = 10 Hz, 1H : 1 a) ;2.95 (dd, J = 12 and 4 Hz, 1H: 1H and CH3; 4b); 3.23 (s, 3H: NCH3; 3.32 (mt, 1H: 1H cd 0 'at 3 δ); 3.37 (t, J = 12 Hz, 1H: <± 1 H at 0¾ in 4 β) 3.57 (mt, 1H: second 1H of CH3 at position 3); 3.82 (t, J = 6 Hz, 2H: CH2Cl); 4.19 (AB limit, 2H: OCH, ethyl); 4.55 (dd, J = 7.5 and 7 Hz, 1H: 3 a); 4.75 (dd broad, J = 13 and 8 Hz, 1H: second H from CH, v, 5 ε); 4 84 (mt, 1H: 2a); 4.87 (broad J = 10Hz, 1H: 1a);

5,28 (dd, J = 12a 4 Hz, 1H : 4 a) ; 5,32 (d šir., J = 5,5 Hz, 1H : 5 a) ; 5,88 (d, J = 10 Hz, 1H : 6 a) ; 5,90 (mt, 1H : 1 β) ; 6,50 (d, J = 10 Hz, 1H : NH v 2) ; 6,86 (d, J = 8 Hz, 2H : H Aromatický v 4 ε) ; 7,13 (d, J = 8 Hz, 2H : H Aromatický v 4 δ) ; cd. 7,10co7,35 (mt, 5H : H Aromatický v 6) ; 7,45 (AB limit., 2H :1'H4 a ľ Hj) ; 7,75 (dd, J = 4 a 2 Hz, 1H : ľ Hj ;8,38 (d, J = 10 Hz, 1H : NH v 1) ; 8,74 (d, J = 10 Hz, 1H : NH v 6); 11,62 (s, 1H : OH).5.28 (dd, J = 12 and 4 Hz, 1H: 4a); 5.32 (broad d, J = 5.5 Hz, 1H: 5 a); 5.88 (d, J = 10Hz, 1H: 6a); 5.90 (mt, 1H: 1β); 6.50 (d, J = 10 Hz, 1H: NH at position 2); 6.86 (d, J = 8 Hz, 2H: H aromatic at 4 ε); 7.13 (d, J = 8 Hz, 2H: H aromatic at 4 δ); cd. 7.10 and 7.35 (mt, 5H: H of aromatic at position 6); 7.45 (AB limit, 2H: 1'H 4 and 1 'H 3); 7.75 (dd, J = 4 and 2 Hz, 1H: 1 H); 8.38 (d, J = 10 Hz, 1H: NH at 1); 8.74 (d, J = 10 Hz, 1H: NH) [delta] 11.62 (s, 1H: OH).

Príklad 27Example 27

Príprava 4 <ζ -acetyl-des(4ζ-dimetylamino)pristinamycínu Ia Preparation of 4? -Acetyl-des (4'-dimethylamino) pristinamycin I a

V meradle 60 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (20 g/1) (S)-4-acetylfenylalanínu, syntetizovaného spôsobom opísaným v príklade 33, v 0,lN roztoku hydroxidu sodného. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, potom sa získaná zmes odstredí. Supernatant sa potom dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia sa. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce 4 <^-acetyl-des(4ζ -dimetylamino) pristinamycín I sa zlúčia a odparia. Suchý zvyšok sa vyberie 7 ml zmesi 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa potom eluuje použitím elučnej sústavy tvorenej 60 % lOOmM fosfátového pufra s pH 2, 9 a 40 % acetonitrilu. Frakcie obsahujúce 4Z^-acetyl-des(4^76On a 60-ml Erlenmeyer flask, the strain SP92 :: pVRC508 is cultured in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of (20 g / l) (S) -4-acetylphenylalanine synthesized solution is added. as described in Example 33, in a 0.1N sodium hydroxide solution. After 40 hours of cultivation, 1.8 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, then centrifuged. The supernatant is then extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing 4α-acetyl-des (4 acet-dimethylamino) pristinamycin I are pooled and evaporated. The dry residue is taken up in 7 ml of a mixture of 60% water and 40% acetonitrile and loaded onto a 10 x 250 mm Nucleosil 7 semipreparative column (Macherey Nagel), which is then eluted using a 60% 100 mM pH phosphate buffer eluent. 2, 9 and 40% acetonitrile. Fractions containing 4Z, 4-acetyl-des (4, 76)

-dimetylamino )pristinamycín Ia sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 4,2 mg 4 ζ -acetyl-des (4 ζ -dimetylamino) pristinamycínu Ia.(dimethylamino) pristinamycin I and are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. To give 4.2 mg of 4 ζ -acetyl-de (4 ζ -dimethylamino) pristinamycin I, and.

XH-NMR (400 MHZ, CDCl , δ V ppm, ref.TMS): X H-NMR (400 MHz, CDCl, δ in ppm, ref.TMS):

0,73 (dd, J =0.73 (dd, J =

6 Hz, 1H : 1H cd CH. v 5 β) ; 0,93 (t, J = 7,5 Hz, 3H : CH3 v 2 γ) ; 1,12 (mt,6 Hz, 1H: 1H and CH. v 5 β); 0.93 (t, J = 7.5 Hz, 3H: CH3 at 2 γ); 1.12 (mt,

1H : 1H cd. CH. v 3 β) ;cn 1,25 bl,45 (mt, 1H : lHcd CH, v 3 γ) ; 1,33 (d, J = 7 Hz, 3H : CH3 v . 1 7) ; 1,62 (mt, 1H : drbý H cd CH. v 37) ;cd l.óOäo 1,85 (mt, 2H : CH. v 2 β) ; 2,02 (mt, 1H : črŕý H cd. CH. v 3 β) ; 2,20 a 2,42 (respectíve: mts d šir.,J = 16,5 Hz, 1K každý : CH.v 5 δ) ; 2,52 (d, J = 16 Hz, 1H : drbý H cd CH. v 5 β) ; 2,60 (s, 3H : ArCOCHp ; 2,88 (dt, J = 13 a 4,5 Hz, 1H : 1H od CH, v 5 ε) ; 3,13 (dd, J = 13,5 a. 5,5 Hz, 1H : 1H cd CH, v 4 β) ; 3,21 (s, 3H : NCHp ; cd 3,30 b3,50 (mt, 1H :drbý H cd CH. v 4 β) ; cd 3,30b3,50 s 3,63 (2 mts, 1H každý ; CH. v 3 δ) ; 4,53 (t, J = 7,5 Hz, 1H : 3 c) ; 4,75 (dd šir., J = 13 a 8 Hz,1H: 1H cd. CH. cn 1.25 b1, 45 (mt, 1H: 1H HC CH, at 3y); 1.33 (d, J = 7 Hz, 3H: CH3 / 17 ); 1.62 (mt, 1H: scratch H at CH3 at position 37); 2.02 (mt, 1H: clear H cd, CH at position 3β); 2.20 and 2.42 (respectively: mts d broad, J = 16.5 Hz, 1K each: CH at 5 δ); 2.52 (d, J = 16 Hz, 1H: scratch H at CH at .delta.); 2.60 (s, 3H: ArCOCH3; 2.88 (dt, J = 13 and 4.5 Hz, 1H: 1H from CH, at 5 ε); 3.13 (dd, J = 13.5 and 5) .5 Hz, 1H: 1H cd of CH at [beta]; 3.21 (s, 3H: NCH [beta]; cd of 3.30 b3.50 (mt, 1H: scratch of H of CD of CH at 4 [beta]); 30b3.50 s 3.63 (2 mts, 1H each; CH at 3 δ); 4.53 (t, J = 7.5 Hz, 1H: 3 c); 4.75 (broad d, J = 30 Hz); 13 and 8 Hz,

1H : drbý K cd CH. v 5 ε) ; 4,84 (mt, 1H : 2 a) ; 4,88 (dd, J = 10 a 1 Hz, 1H : 11H: rugged K cd CH. v 5 ε); 4.84 (mt, 1H: 2a); 4.88 (dd, J = 10 and 1 Hz, 1H: 1)

a) ; 5,35 (d šir. , J = ó Hz, 1H : 5 a) ; 5,43 (dd, J = 10,5 a 4 Hz, 1H : 4 a) ; 5,90 (d,a); 5.35 (broad d, J = 6 Hz, 1H: 5 a); 5.43 (dd, J = 10.5 and 4 Hz, 1H: 4a); 5.90 (d,

J = 9,5 Hz, 1H : 6 a) ; 5,92 (mt, 1H : 1 β) ; 6,56 (d, J = 9,5 Hz, 1H : NH v 2) ; od 7,10b?,35 (mt, 5H : H Aromatický v . 6) ; 7,28 (d, J = 8 Hz, 2H : H Aromatický v 4 δ) ; 7,38 (dd, J = 8,5 a 2 Hz, 1H : 1' Hý ; 7,42 (dd, J = 8,5 a 4,5 Hz, 1H : ľ Hp ; 7,66 (dd, J = 4,5 s 2 Hz, 1H : ľ EJ ; 7,88 (d, J = 8 Hz, 2H : H Aromatický v . 4 ε) ; 8,38 (d, J = 10 Hz, 1H ; NH v 1) ; 8,74 (d, J = 9,5 Hz, 1H : NH v 6) ; 11,65 (s, 1H : OH).J = 9.5 Hz, 1H: 6 (a); 5.92 (mt, 1H: 1β); 6.56 (d, J = 9.5 Hz, 1H: NH at position 2); from 7.10 [beta], 35 (mt, 5H: H of the aromatic v. 6); 7.28 (d, J = 8 Hz, 2H: H aromatic at 4 δ); 7.38 (dd, J = 8.5 and 2 Hz, 1H: 1 'Hy; 7.42 (dd, J = 8.5 and 4.5 Hz, 1H: 1 Hp; 7.66 (dd, J) = 4.5 s 2 Hz, 1H: 1 EJ; 7.88 (d, J = 8 Hz, 2H: H aromatic v. 4 ε); 8.38 (d, J = 10 Hz, 1H; NH at 1) 8.74 (d, J = 9.5 Hz, 1H: NH at position 6); 11.65 (s, 1H: OH).

Príklad 28Example 28

Príprava 4 Č-dimetylamino-des(4 ζ-dimetylamino)pristinamycínu IPreparation 4 N-dimethylamino-des (4 ζ-dimethylamino) pristinamycin I

V meradle 60 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (20 g/1) (R,S)-3-dimetylaminofenylalanín-hydrochloridu, syntetizovaného príklade 35-10, v O,1N roztoku hydroxidu sodného. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 1 acetonitrilu, a získaná zmes odstredí. Supernatant sa potom dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia sa. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce 4 £-dimetylamino-des( 4 £-dimetylamino)pristinamycín I sa zlúčia a odparia. Suchý zvyšok sa vyberie ml zmesi 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 μ08 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa potom eluuje použitím elučnej sústavy tvorenej 57 % lOOmM fosfátového pufra s pHOn a 60-ml Erlenmeyer flask, the strain SP92 :: pVRC508 is cultured in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of (20 g / l) (R, S) -3-dimethylaminophenylalanine solution is added. hydrochloride, synthesized Example 35-10, in 0.1N sodium hydroxide solution. After 40 hours of culture, 1.8 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34 L of acetonitrile, and centrifuged. The supernatant is then extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing 4? -Dimethylamino-des (4? -Dimethylamino) pristinamycin I are combined and evaporated. The dry residue is taken up in ml of a mixture of 60% water and 40% acetonitrile, and the resulting mixture is loaded onto a 10 × 250 mm Nucleosil 7 μ08 semiprep column (Macherey Nagel), which is then eluted using a 57% 100mM phosphate buffer at pH

2,9 a 43 % acetonitrilu. Frakcie obsahujúce 4£-dimetylamino-des(4ζ-dimetylamino)pristinamycín I sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 1,1 mg £-dimetylamino-des(4 ^-dimetylamino)pristinamycínu Ia.2.9 and 43% acetonitrile. The fractions containing 4β-dimethylamino-des (4ζ-dimethylamino) pristinamycin I are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. To give 1.1 mg of £ -dimethylamino-de (4 ^ -dimethylamino) pristinamycin I, and.

XH-NMR (400 MHZ, CDCl3, δ v ppm, ref.TMS): X H-NMR (400 MHz, CDCl3, δ in ppm, ref.TMS):

0,63 (dd,0.63 (dd,

J = 16 a 5 Hz, IH : IH cd CHj v 5 β) ; 0,91 (t, J = 7,5 Hz, 3H : CH3 v 2 γ) ; 1,13 (mt, IH : IH cd CH, v 3 β) ; od 1,200c 1,35 (mt, IH : lHcd CH. v 3 γ) ; 1,32 (d, J = 6,5 Hz, 3H : CH3 v 1 γ) ; 1,57 (mt, IH : daný H od CH, v 3 γ); 1,63 a 1,76 (2 mts, IH lomy : CH, v 2 β) ; 2,02 (mt, IH : dniý H cdCH, v 3 (3) ; 2,08 a 2,31 (respectíve: mt a. d sir., J = 16,5 Hz, IH každý : CH, v 5 δ) ; 2,35 (d, J = 16J = 16 and 5 Hz, IH: IH cd CH3 at 5 β); 0.91 (t, J = 7.5 Hz, 3H: CH3 in 2 γ); 1.13 (mt, 1H: 1H at position CH, at position 3b); from 1.200 to 1.35 (mt, 1H: 1H of CH3 at position 3); 1.32 (d, J = 6.5 Hz, 3H: CH3 in 1 γ); 1.57 (mt, 1H: given by H from CH, at 3 γ); 1.63 and 1.76 (2 mts, IH fractures: CH, at 2β); 2.02 (mt, IH: day H cdCH, v 3 (3); 2.08 and 2.31 (respectively: mt a. D sir., J = 16.5 Hz, IH each: CH, v 5 δ) 2.35 (d, J = 16);

Hz, IH : drdý H cd CH, v 5 β); 2,81 (dt, J = 13 a 4 Hz, IH : IH cd CH, v 5 ε);Hz, IH: rough H cd CH, at 5 β); 2.81 (dt, J = 13 and 4 Hz, 1H: 1H and CH at 5 ε);

2,90 (s, 6H : N (CH?,) ; 2,97 (dd, J = 12 a 4 Hz, IH : IH cd CH, v 4 β) ; cd 3,20 do 3,30 (mt, IH : IH od CH, v 3 δ) ; 3,28 (s, 3H : NCH,) ; 3,37 (t, J = 12 Hz, IH ; ôniý Hod CH. v 4 β); 3,57 (mt, IH: daiý H cd CH, v 3 δ) ; 4,58 (t, J = 7,5 Hz,2.90 (s, 6H: N (CH3)); 2.97 (dd, J = 12 and 4 Hz, 1H: 1H cd CH, at 4β); cd 3.20-3.30 (mt, IH: IH from CH, at 3 δ), 3.28 (s, 3H: NCH,); 3.37 (t, J = 12 Hz, IH; δni Hod CH. At 4β); 3.57 (mt 1H: other H cd CH, at 3 δ) 4.58 (t, J = 7.5 Hz,

IH : 3 a) ; 4,74 (ddšir. :>J = 13a 8 Hz, IH : dn±ý Hod.CH,v 5 ε) ; 4,86 (mt, IH :2a); 4,89 (d šir., J = 10 Hz, IH : 1 a); 5,27 (dd, J = 12 a4 Hz, IH ; 4 a) ; 5,29 (d šir.., J = 5 Hz, IH : 5 a) ; 5,89 (d, J = 9,5 Hz, IH : 6 a) ; 5,90 (mt, IH : 1 β) ;IH: 3 (a); 4.74 (broad d :> J = 13 and 8 Hz, IH: dn ± Hod hr.CH, at 5 ε); 4.86 (mt, 1H: 2a); 4.89 (broad d, J = 10 Hz, 1H: 1 a); 5.27 (dd, J = 12 and 4 Hz, 1H; 4a); 5.29 (broad d, J = 5 Hz, 1H: 5a); 5.89 (d, J = 9.5 Hz, 1H: 6a); 5.90 (mt, 1H: 1β);

6,50 (d, J = 10 Hz, IH : ΝΉ v 2) ;od 6,50036,70 (mt, 3H : H Aromatický v orto a para k dimetylamino) ; cd 7,15óc7,35 (mt, 5H : H Aromatický v 6) ; 7,20 (t,6.50 (d, J = 10 Hz, 1H: δ at 2); from 6,50036.70 (mt, 3H: H aromatic in ortho and para to dimethylamino); cd 7.15 DEG -7.35 (mt, 5H: H of the aromatic at position 6); 7.20 (t,

J =J =

Príklad 29Example 29

Príprava 4 6 -metyltio-des (4 ζ -dimetylamino)pristinamycínu IPreparation 4 of 6-methylthio-des (4'-dimethylamino) pristinamycin I

V meradle 56 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (20 g/1) (R,S)-3-metyltiofenylalanín-hydrochloridu, syntetizovaného spôsobom opísaným v príkladeOn a scale of 56 Erlenmeyer flasks, the strain SP92 :: pVRC508 is cultured in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of (20 g / l) (R, S) -3-methylthiophenylalanine solution is added. hydrochloride synthesized as described in the Example

34-11, v Q, IN roztoku hydroxidu sodného. Po 40 hodinách kultivácie sa 1,68 litra produkčného rmutu extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, a získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia sa. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce nový derivát pristinamycínu I sa zlúčia a odparia. Suchý zvyšok sa vyberie 7 ml zmesi tvorenej 54 % vody a 46 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 μ08 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa potom eluuje použitím elučnej sústavy tvorenej zmesou 55 % 100mM fosfátového pufra s pH 2,9 a 45 % acetonitrilu.34-11, in Q, 1 N sodium hydroxide solution. After 40 hours of culture, 1.68 liters of mash is extracted with two volumes of a mixture of 66% 100mM phosphate buffer pH 2.9 and 34% acetonitrile, and the mixture is centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing the new derivative of pristinamycin I are pooled and evaporated. The dry residue is taken up in 7 ml of a mixture of 54% water and 46% acetonitrile and loaded onto a 10 × 250 mm Nucleosil 7 µ08 semipreparative column (Macherey Nagel), which is then eluted using a 55% 100 mM phosphate eluent system. buffer pH 2.9 and 45% acetonitrile.

Frakcie obsahujúce nový pristinamycín sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 20 mg 4 £ -metyltio-des (4 ζ -dimetylamino) pristinamycínu I .The fractions containing the new pristinamycin are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 20 mg of 4'-methylthio-des (4'-dimethylamino) pristinamycin I are obtained.

XH-NMR (400 MHz, CDCl , δ v ppm, ref.TMS): X H-NMR (400 MHz, CDCl, δ ppm, ref.TMS):

3 0,5o (dd, 3 0.5o (dd,

J - 16 a 5,5 Hz, 1H : 1H od CHj v 5 β) ; 0,90 (t, J = 7,5 Hz, 3H : CH3 y 2 γ) ; 1,13 (mt, 1H : 1H odCH2 v 3 β) ; 1,28 (mt, 1H : lHcd v 3 γ) ; 1,32 (d, J = 6,5 Hz,J-16 and 5.5 Hz, 1H: 1H of CH3 at [beta]; 0.90 (t, J = 7.5 Hz, 3H: CH3 2 γ s); 1.13 (mt, 1H: 1H of Producer 2 β 3); 1.28 (mt, 1H: 1Hcd at 3y); 1.32 (d, J = 6.5Hz,

3H : CH3 v 1 γ) ; 1,58 (mt, 1H : ôxiý Hod 0¾ v 3 γ) ; 1,62 a 1,74 (2 mts, 1H teždz : CH, v 2 β) ; 2,02 (mt, 1H : ôniý: H od CHj v 3 β) ; 2,25 a 2,35 (respectíve mt a d šir. J = 16,5 Hz, 1H leždý : 0¾ v 5 δ) ; 2,39 (d, J = 16 Hz, 1H : dniý H odC^ v 5 β); 2,43 (s, 3H : SCH^ ; 2,82 (dt, J = 13 a 4 Hz, 1H :3H: CH 3 in 1 γ ); 1.58 (mt, 1H: δ x Hod 0¾ at 3 γ); 1.62 and 1.74 (2 mts, 1H atz: CH, at 2β); 2.02 (mt, 1H: onium: H of CH3 at position 3b); 2.25 and 2.35 (respectively mt ad broad J = 16.5 Hz, 1H lying: 0¾ in 5 δ); 2.39 (d, J = 16 Hz, 1H: day H of C17 at position 5b); 2.43 (s, 3H: SCH2; 2.82 (dt, J = 13 and 4 Hz, 1H):

1Η cgCH2 * 5 ε); 2,98 (dd, J = 12 a 4,5 Hz, 1H : 1H od. 0¾ v 4 β) ; 3,26 (s, 3H : NCH) ; 3,30 (t, J = 12 Hz 1H : 1H odCHj v 3 δ) ; 3,38 (mt, 1H : **ý H cd CH2 v 4 β) ; 3,57 (mt, 1H : drdý Hd CKj v 3 ä) ; 4,56 (t, J = 7,5 Hz, 1H : 3 g) ; 4,74 (dd sir., J = 13 a 8 Hz, 1H : črúý H cd 0¾ v 5 ε) ; 4,84 (mt, 1H : 2 a) ; 4,89 (dd, J = 10 a 1 Hz, 1H : 1 a) ; 5,29 (dd, J = 12 a 4,5 Hz, 1H :4a); 5,32 (d šir. , J = 5,5 Hz, 1K :5c); 5,88 (d, J = 9,5 Hz, 1H : 6 c) ; 5,90 (mt, 1H : 1 β) ; 6,51 (d, J = 10 Hz, 1H : NH v 2) ; 6,99 (d šir. J = 8 Hz, 1H : H Aromatický v para k metyltic) ; 7,10 a 7,15 (respecúve s aar. a d sir. , J = 8 Hz, 1H každý : H Aromatický v orto k oetyltio ) ; cd 7,15* 7,35 (mt, 6H : H Aromatický v . 6 a H Aromatický v v metá k metyltio) ; 7,43 (d šir. , J = 8 Hz, 1H : 1' H) ; 7,52 (dd, J = 8‘ a 4 Hz, 1H : ľ H) ; 7,79 (d šir. J = 4 Kz, 1H : ľ H) ; 8,38 (d, J = 10 Hz, 1H ; NH v 1); 8,73 (d, J = 9,5 Hz, 1H : NH v 6) ; 11,62 (s, 1H : OH).1Η cgCH 2 * 5 ε); 2.98 (dd, J = 12 and 4.5 Hz, 1H: 1H of .alpha. At 4 &apos;); 3.26 (s, 3H: NCH); 3.30 (t, J = 12 Hz 1H: 1H of CH 3 at 3 δ); 3.38 (mt, 1H: the other H ** CH2 at 4 β); 3.57 (mt, 1H: rough Hd CK3 at position 3); 4.56 (t, J = 7.5Hz, 1H: 3g); 4.74 (dd broad, J = 13 and 8 Hz, 1H: blue H at the CD 0¾ at 5 ε); 4.84 (mt, 1H: 2a); 4.89 (dd, J = 10 and 1 Hz, 1H: 1 a); 5.29 (dd, J = 12 and 4.5 Hz, 1H: 4a); 5.32 (broad d, J = 5.5 Hz, 1H: 5c); 5.88 (d, J = 9.5 Hz, 1H: 6c); 5.90 (mt, 1H: 1β); 6.51 (d, J = 10 Hz, 1H: NH at position 2); 6.99 (broad d, J = 8 Hz, 1H: H aromatic in methyl ket); 7.10 and 7.15 (respectively with aar. Ad sir., J = 8 Hz, 1H each: H aromatic ortho to ethylthio); cd 7.15 * 7.35 (mt, 6H: H aromatic v. 6 and H aromatic v in methylthio); 7.43 (broad d, J = 8 Hz, 1H: 1H); 7.52 (dd, J = 8 &apos; and 4 Hz, 1H: 1 H); 7.79 (broad d, J = 4Kz, 1H: 1 H); 8.38 (d, J = 10 Hz, 1H, NH at position 1); 8.73 (d, J = 9.5 Hz, 1H: NH at position 6); 11.62 (s, 1H: OH).

Príklad 30 'Example 30 '

Príprava 4 f -etoxy-des(4ζ -dimetylamino)pristinamycínu IPreparation of 4'-ethoxy-des (4'-dimethylamino) pristinamycin I

V meradle 60 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (20 g/1) (S)-3-0-etyltyrozín-hydrochloridu, syntetizovaného spôsobom opísaným v príklade 37-1. Po 40 hodinách kultivácie sa 1,8 litra produkčného rmutu pochádzajúceho zo 60 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, a získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia sa. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce nový derivát I sa zlúčia a odparia. Získa sa 19 mg suchého zvyšku. Tento zvyšok sa vyberie 3 ml zmesi 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 μϋ8 s rozmermi 10 x 250 mm (MachereyOn a 60-ml Erlenmeyer flask, the strain SP92 :: pVRC508 is cultured in a production medium to which 1 ml (20 g / l) of (S) -3-O-ethyltyrosine solution is added after 16 hours of culture. hydrochloride synthesized as described in Example 37-1. After 40 hours of culture, 1.8 liters of mash produced from 60 Erlenmeyer flasks are extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, and centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing the new derivative I are combined and evaporated. 19 mg of dry residue are obtained. This residue is taken up in 3 ml of a mixture of 60% water and 40% acetonitrile and the resulting mixture is applied to a 10 × 250 mm Nucleosil 7 μϋ8 semiprep column (Macherey).

Nagel), ktorý sa eluuje použitím elučnej sústavy tvorenej zmesou 60 % lOOmM fosfátového pufra s pH 2,9 a 40 % acetonitrilu. Frakcie obsahujúce nový pristinamycín zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 15,8 mg 4 E-O-etoxy-des(4ζ -dimetylamino)pristinamycínu I .Nagel), which is eluted using a mixture of 60% 100 mM phosphate buffer pH 2.9 and 40% acetonitrile. The fractions containing the new pristinamycin were combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 15.8 mg of 4 E-O-ethoxy-des (4'-dimethylamino) pristinamycin I are obtained.

1H-NMR (400 MHz, CDCl , δ v ppm, ref.TMS): 1 H-NMR (400 MHz, CDCl 3, δ in ppm, ref.TMS):

0,55 (cd,0.55 (cd,

J = 16 a 5,5 Hz, 1H : 1K cdCHj v 5 β) ; 0,90 (t, J = 7,5 Hz, 3H : CH3 v 2 γ) ; 1,12 (mt, 1H: 1H cdCH2 v 3 β) ; 1,20 (mt, 1H : 1H cdCH2 v 3 γ) ; 1,31 (d, J = 6,5 Hz,J = 16 and 5.5 Hz, 1H: 1K cdCH3 at 5β); 0.90 (t, J = 7.5 Hz, 3H: CH3 in 2 γ); 1.12 (mt, 1H: 1H of 2 CDCl 3 β); 1.20 (mt, 1H: 1 H CDCl 3 γ 2); 1.31 (d, J = 6.5Hz,

3H : CH3 v 1 7) ; 1,49 (t, J = 7 Hz, 3H : CH3 etylu) ; 1,54 (mt, 1H : drŕý H cd CH, v 3 7) ; 1,63 a 1,73 (2 mts, lHkamý : CHj v 2 β) ; 2,02 (mt, 1H : crdý H cd. 0¾ v 3 β) ; 2,22 et 2,33 (respectíve . mt a d šir., J = 16,5 Hz, 1H I^ščý : CHj v 5 δ) ; 2,46 (d, J = 16 Hz, 1H : drdý H cdCl·^ v 5 β) ; 2,83 (dt, J = 13 d 4 Hz, 1H : 1H cnCH2 v 5 ε) ; 2,95 (dd, J = 12 a 4 Hz, 1H : 1H cdCH, v 4 β) ; 3,22 (mt, 1H : 1H cd CH, v 3 δ) ; 3,27 (s, 3H : NCHj) ; 3,39 (t, J = 12 Hz, 1H : drdý H cd. 0¾ v 4 β) ; 3,53 (mt, 1H : drdý H cd Cl·^ v 3 δ) ; 3,93 a 4,03 (2 mts, 1H každý : 00¾ etylu ) ; 4,56 (dd, J = 7 a 5,5 Hz, 1H : 3 a) ; 4,75 (dd šir. , J = a 8 Hz, 1H : dndý H cd 0¾ v 5 ε) ; 4,82 (mt, 1H : 2 a) ; 4,88 (dd, J = 10 a3H: CH3 in 1 7); 1.49 (t, J = 7 Hz, 3H: CH3 of ethyl); 1.54 (mt, 1H: pure H at the CH, at 37); 1.63 and 1.73 (2 mts, 1Hot: CH3 at 2β); 2.02 (mt, 1H: black H cd, 0 'at 3'); 2.22 and 2.33 (respectively mt ad broad, J = 16.5 Hz, 1H @ 1: CH3 at 5 δ); 2.46 (d, J = 16 Hz, 1H: rough H cdCl · 4 in 5β); 2.83 (dt, J = 13 d 4 Hz, 1H: 1H cnCH 2 at 5 ε); 2.95 (dd, J = 12 and 4 Hz, 1H: 1H cdCH, at 4β); 3.22 (mt, 1H: 1H of CH at position 3δ); 3.27 (s, 3H: NCH3); 3.39 (t, J = 12 Hz, 1H: rough H cd, 0 'at 4'); 3.53 (mt, 1H: rough H at the CDCl3); 3.93 and 4.03 (2 mts, 1H each: 00¾ ethyl); 4.56 (dd, J = 7 and 5.5 Hz, 1H: 3a); 4.75 (broad dd, J = 8 Hz, 1H: dd H cd 0¾ at 5 ε); 4.82 (mt, 1H: 2a); 4.88 (dd, J = 10 and

Hz, 1H : 1 a) ; 5,23 (dd, J = 12 a 4 Hz, 1H : 4 a) ; 5,23 (d šir., J = 5,5 Hz, 1H : 5Hz, 1H: 1 a); 5.23 (dd, J = 12 and 4 Hz, 1H: 4a); 5.23 (broad d, J = 5.5 Hz, 1H: 5)

a) ; 5,87 (d, J = 9,5 Hz, 1H : 6 a) ; 5,92 (mt, 1H : 1 β) ; 6,47 (d, J = 10 Hz, 1H : NH v 2) ; 6,80 (mt, 3H : H Aromatický v orto a para k etoxy ) ; od 7,10 dc7,35 (mt, 6H : H Aromatický v 6 et H Aromatický v meta k etoxy ); 7,43 (dd, J = 8 a 1 Hz, 1H: ľ HJ ; 7,50 (dd,J = 8 a 4 Hz, 1H : ľ Hj); 7,77 (dd, J = 4 a 1 Hz, 1H : ľ Hg) ; 8,38 (d, J = 10 Hz, 1H : NH v 1) ; 8,70 (d, J = 9,5 Hz, 1H : NH v 6); 11,60 (s, 1H: OH).a); 5.87 (d, J = 9.5 Hz, 1H: 6a); 5.92 (mt, 1H: 1β); 6.47 (d, J = 10 Hz, 1H: NH at position 2); 6.80 (mt, 3H: H aromatic in ortho and para to ethoxy); from 7.10 to 7.35 (mt, 6H: H aromatic at 6 et H aromatic at methoxy); 7.43 (dd, J = 8 and 1 Hz, 1H: 1 HJ; 7.50 (dd, J = 8 and 4 Hz, 1H: 1 Hj); 7.77 (dd, J = 4 and 1 Hz); 1H: 1 Hg), 8.38 (d, J = 10 Hz, 1H: NH at position 1), 8.70 (d, J = 9.5 Hz, 1H: NH at position 6), 11.60 (s, 1H: OH).

Príklad 31Example 31

Príprava 4 ζ -etyltio-des(4 ζ-dimetylamino)pristinamýcínu IPreparation of 4'-ethylthio-des (4'-dimethylamino) pristinamycin I

V meradle 2 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (20 g/1) (S)-4-etyltiofenylalanín-hydrochloridu, syntetizovaného spôsobom opísaným v príklade 33, v O,IN roztoku hydroxidu sodného. Po 40 hodinách kultivácie sa 60 ml produkčného rmutu pochádzajúceho z 2 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, a potom sa získaná zmes odstredí. Supernatant sa dvakrát extrahuje 0,5 objemu dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia sa. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce 4 £-etyltio-des( 4 ζ” -dimetylamino) pristinamycínu I sa zlúčia a odparia. Suchý zvyšok sa vyberie 7 ml zmesi tvorenej 60 % vody a 40 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 mC8 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa eluuje použitím elučnej sústavy tvorenej zmesou 52 % lOOmM fosfátového pufra s pH 2,9 a 48 % acetonitrilu. Frakcie obsahujúce 4 C-etyltio-des(4 ζ-dimetylamino)pristinamycín Ia sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 4ζ-etyltio-des(4ζ -dimetylamino)pristinamycín 1H-NMR (400 MHZ,.CDC13, S v ppm, ref.TMS):On a Erlenmeyer flask 2, the strain SP92 :: pVRC508 is cultured in a production medium to which 1 ml (20 g / l) of (S) -4-ethylthiophenylalanine hydrochloride solution is added after 16 hours of culture. , synthesized as described in Example 33, in 0.1N sodium hydroxide solution. After 40 hours of cultivation, 60 ml of the mash produced from 2 Erlenmeyer flasks is extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, and then the mixture is centrifuged. The supernatant is extracted twice with 0.5 volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing 4? -Ethylthio-des (4? -Dimethylamino) pristinamycin I are combined and evaporated. The dry residue is taken up in 7 ml of a mixture of 60% water and 40% acetonitrile and loaded onto a 10 x 250 mm Nucleosil 7 mC8 semipreparative column (Macherey Nagel), which is eluted using a 52% 100 mM phosphate buffer mixture. pH 2.9 and 48% acetonitrile. The fractions containing C 4-ethylthio-de (4-ζ-dimethylamino) pristinamycin IA are combined and extracted with one volume and dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. There was obtained 4ζ-ethylthio-des (4 S-dimethylamino) pristinamycin 1 H-NMR (400 MHz, CDCl 3 , δ in ppm, ref.TMS):

0,68 (dd, J = 16 a 6 (mt, 5H : 1H ± CHj v. 3 β a 1H ± CHj v 3 γ CH3 etylu) · 1,32 (d, J = 7 Hz, 3H : CH3 v 1 γ); odl,45dol,85 (mt, 3H : drdý H cd CHj ν3γ CHjV 2 β) ; 2,02 (mt, 1H H cd CHj v 3 β) ; 2,18 a 2,37 (respectíve mt a d šir· , J = 16,5 Hz, 1H každý :01^.50) ; 2,45 (dšir. ,J = 16Hz,lH: crdý H v 5 β) ; 2,85 (dt,J = 13 MHz, 1H : ÍH^.C^ v 5 ε) ; 2,90 (mt, 2H : ArSCHj etyl); 2,98 (dd, J = 12 a 4 Hz, 1H : 1H cd CHj v 4 β) ; 3,25 (s, 3H : NCHj) ; 3,35 (mt, 1H : 1H v 3 δ) ; 3,39 (t, J = 12 Hz, 1H : dcdý H cd0.68 (dd, J = 16 and 6 (mt, 5H: 1H ± CH3 at 3 β and 1H ± CH3 in 3 γ CH 3 of ethyl) · 1.32 (d, J = 7 Hz, 3H: CH 3 δ, 45dol, 85 (mt, 3H: rough H cd CH 3 ν 3γ CH 3 V 2 β); 2.02 (mt, 1H H cd CH 3 in 3 β); 2.18 and 2.37 ( respectively mt ad broad, J = 16.5 Hz, 1H each: 01 ^ .50), 2.45 (broad, J = 16Hz, 1H: black H at 5 β); 2.85 (dt, J = 13 MHz, 1H: 1H (CH2 Cl2 at position 5); 2.90 (mt, 2H: ArSCH3 ethyl); 2.98 (dd, J = 12 and 4 Hz, 1H: 1H at the CDCl3 at position 4b); 3.25 (s, 3H: NCH3); 3.35 (mt, 1H: 1H at position 3); 3.39 (t, J = 12 Hz, 1H: second H cd)

0¾ v 4 β) ; 3,57 (mt, 1H : drdý H cd CHj v 3 δ) ; 4,55 (t, J = 7,5 Hz, 1H : 3 cc) ; 4,75 (dd šir., J = 13 a 7,5 Hz, 1H : drdýHodCHjV 5 ε); 4,85 (mt, 1H : 2 a) ; 4,89 (dd, J = 10 a l Hz, 1H : 1 a) ;cd 5,25±5,40 (mt, 2H : 5 a a 4 a) ;0¾ in 4 β); 3.57 (mt, 1H: rough H cd of CH3 at 3δ); 4.55 (t, J = 7.5Hz, 1H: 3cc); 4.75 (broad dd, J = 13 and 7.5 Hz, 1H: pure CH3 at 5 ε); 4.85 (mt, 1H: 2a); 4.89 (dd, J = 10 and 1 Hz, 1H: 1 a); cd 5.25 ± 5.40 (mt, 2H: 5 a and 4 a);

5,88 (d, J = 9,5 Hz, 1H : 6 a); 5,91 (mt, 1H : 1 β) ; 6,55 (d, J = 9,5 Hz, 1H ; NH v 2) ; 7,10 (d, J = 8 Hz, 2H : H Aromatický v 4 δ) ; cd 7,10 dď,35 (mt, 7H : H5.88 (d, J = 9.5 Hz, 1H: 6a); 5.91 (mt, 1H: 1β); 6.55 (d, J = 9.5 Hz, 1H; NH at position 2); 7.10 (d, J = 8 Hz, 2H: H aromatic at 4 δ); cd 7.10 d, 35 (mt, 7H: H)

Aromatický v $ 4 ε); 7,44 (AB limit., 2H : ľ H4a ľ Hj) ; 7,74 (mt, 1H : ľAromatic in $ 4 ε); 7.44 (AB limit, 2H: 1 H 4 and 1 H 3); 7.74 (mt, 1H: 1 ')

Hj ; 8,38 (d, J = 10 Hz, 1H : NH v l): 8,75 (d, J = 9,5 Hz, 1H : NH v 6) ; 11,62 (s, 1H : OH).Hj; 8.38 (d, J = 10 Hz, 1H: NH at position 6) : 8.75 (d, J = 9.5 Hz, 1H: NH at position 6); 11.62 (s, 1H: OH).

Príklad 32Example 32

Príprava 4 ζ -etyl-des (4 ζ -dimetylamino) pristinamycínu 1^Preparation of 4'-ethyl-des (4'-dimethylamino) pristinamycin 1β

V meradle 2 Erlenmeyerových baniek sa uskutoční, spôsobom opísaným v príklade 3, kultivácia kmeňa SP92:: pVRC508 v produkčnom prostredí, do ktorého sa po 16 hodinách kultivácie pridá 1 ml roztoku (20 g/1) (R,S)-4-etylfenylalanín, syntetizovaného spôsobom opísaným v príklade 33. Po 40 hodinách kultivácie sa 60 ml produkčného rmutu pochádzajúceho z 2 Erlenmeyerových baniek extrahuje dvoma objemami zmesi tvorenej 66 % lOOmM fosfátového pufra s pH 2,9 a 34 % acetonitrilu, a potom sa získaná zmes odstredí. Supernatant sa extrahuje dvoma objemami dichlórmetánu. Dichlórmetánové fázy sa premyjú vodou a potom sa zlúčia, vysušia nad síranom sodným a odparia sa. Suchý extrakt sa vyberie 20 ml dichlórmetánu a získaná zmes sa zavedie na stĺpec silikagélu (30 g) v dichlórmetáne, a tento stĺpec sa eluuje použitím elučného gradientu 0 až 10 % metanolu v dichlórmetáne. Frakcie obsahujúce 4 C-etyl-des(4 ζ-dimetylamino)pristinamycínu I sa zlúčia a odparia. Suchý zvyšok sa vyberie 7 ml zmesi tvorenej 52 % vody a 48 % acetonitrilu a získaná zmes sa zavedie na semipreparatívny stĺpec Nucleosilu 7 μΟ8 s rozmermi 10 x 250 mm (Macherey Nagel), ktorý sa eluuje použitím elučnej sústavy tvorenej zmesou 52 % lOOmM fosfátového pufra s pH 2,9 a 48 % acetonitrilu. Frakcie obsahujúce 4 ^-etyl-des(4-dimetylamino)pristinamycín IA sa zlúčia a extrahujú jedným objemom dichlórmetánu. Organická fáza sa premyje vodou, vysuší nad síranom sodným a potom sa odparí. Získa sa 0,50 mg 4 ŕ^-etyl-des(4 ζ-dimetylamino)pristinamycín I .On a Erlenmeyer flask 2, the strain SP92 :: pVRC508 is cultured in a production medium as described in Example 3, to which, after 16 hours of culture, 1 ml of (20 g / l) (R, S) -4-ethylphenylalanine solution is added. Synthesized as described in Example 33. After 40 hours of cultivation, 60 ml of the mash produced from 2 Erlenmeyer flasks was extracted with two volumes of a mixture of 66% 100 mM phosphate buffer pH 2.9 and 34% acetonitrile, and then centrifuged. The supernatant was extracted with two volumes of dichloromethane. The dichloromethane phases are washed with water and then combined, dried over sodium sulphate and evaporated. The dry extract is taken up in 20 ml of dichloromethane and the resulting mixture is loaded onto a silica gel column (30 g) in dichloromethane, and this column is eluted using a gradient of 0 to 10% methanol in dichloromethane. The fractions containing 4 C-ethyl des (4 ζ-dimethylamino) pristinamycin I are combined and evaporated. The dry residue is taken up in 7 ml of a mixture of 52% water and 48% acetonitrile and loaded onto a 10 × 250 mm Nucleosil 7 μΟ8 semiprep column (Macherey Nagel), which is eluted using a 52% 100 mM phosphate buffer mixture. pH 2.9 and 48% acetonitrile. Fractions containing 4'-ethyl-des (4-dimethylamino) pristinamycin I A are combined and extracted with one volume of dichloromethane. The organic phase is washed with water, dried over sodium sulphate and then evaporated. 0.50 mg of 4'-ethyl-des (4'-dimethylamino) pristinamycin I is obtained.

XH-NMR (400 MHz, CDC13, S v ppm, ref.TMS): 0,42 (dd, J = 16 a 5,5 Hz, 1H : 1H od CHjdo 5 β) ; 0,92 (ζ J = 7,5 Hz, 3H : CH, v 2 γ) ; od X H-NMR (400 MHz, CDC1 3, in ppm, ref.TMS): 0.42 (dd, J = 16 and 5.5 Hz, 1H: 1H of CHjdo β 5); 0.92 (ζ J = 7.5 Hz, 3H: CH, at 2 γ); from

1,10 dd,40 (mt, 2H : 1H odCH, v 3 β a 1H od CH, v 3 γ) ; 1,23 (t, J = 7,5 Hz,1.10 dd, 40 (mt, 2H: 1H of CH, at 3β and 1H of CH, at 3γ); 1.23 (t, J = 7.5Hz,

3H : CH, etylu j; 1,35 (d, J = 7 Hz, 3H : CH, v 1 γ) ; odl,45 ad,85 (mt, 3H : druhý K cd CH, v 3 γ a CH, v 2 β) ; 2,02 (mt, 1H : drdý H cd CH, v 3 β) ;3H: CH, ethyl j; 1.35 (d, J = 7 Hz, 3H: CH, v @ 1); od, 45 ad, 85 (mt, 3H: second K cd CH, at 3 γ and CH, at 2 β); 2.02 (mt, 1H: rough H at the CH, at 3b);

2,15 a cd 2,25*2,40 (2 mts, 1H teždý : CH, v 5 δ) ; cd 2,25 *2,40 (mt, 1H : druhý H cd CH, v 5 β) ; 2,60 (q, J = 7,5 Hz, 2H : ArCH, etylu) ; 2,83 (dt, J = 13 a 4 Hz, 1H : 1H cd CH, v 5 ε); 2,98 (dd, J = 12 a 4 Hz, 1H : 1H cd CH, v 4 β) ; od 3,25 *3,35 (mt, 1H : 1H cd CH, v 3 δ) ; 3,27 (s, 3H : NCH) ; 3,39 (t, J = 12 Hz, 1H : druhý H od CH, v 4 β) ; 3,59 (mt, 1H : drdý H cd CH, v 3 δ) ; 4,58 (dd, J = 7 a 6,5 Hz, 1H : 3 a) ; 4,75 (dd šir., J = 13 8 Hz, 1H : drdý2.15 and cd 2.25 * 2.40 (2 mts, 1H each: CH, at 5δ); cd 2.25 * 2.40 (mt, 1H: second H cd CH, at 5β); 2.60 (q, J = 7.5 Hz, 2H: ArCH, ethyl) ; 2.83 (dt, J = 13 and 4 Hz, 1H: 1H and CH at 5 ε); 2.98 (dd, J = 12 and 4 Hz, 1H: 1H cd of CH at [beta]); from 3.25 * 3.35 (mt, 1H: 1H of CD at CH3 at position 3); 3.27 (s, 3H: NCH); 3.39 (t, J = 12 Hz, 1H: second H of CH at position 4b); 3.59 (mt, 1H: dirty H at the CH, at 3δ); 4.58 (dd, J = 7 and 6.5 Hz, 1H: 3a); 4.75 (broad dd, J = 138 Hz, 1H: dirty)

H cd CH, v 5 ε) ; 4,87 (mt, 1H : 2 c) ; 4,89 (dd, J = 10 a 1 Hz, 1H : 1 c) ; 5,24 (d šir., J = 5,5 Hz, 1H : 5 o) ; 5,29 (dd, J = 12 a 4 Hz, 1H : 4 c) ; 5,88 (d, J = 10 Hz, 1H : 6 c) ; 5,92 (mt, 1H : 1 β) ; 6,73 (d, J = 10 Hz, 1H : ΝΉ en 2) ; cd 7,10*H cd CH, at 5 ε); 4.87 (mt, 1H: 2 c); 4.89 (dd, J = 10 and 1 Hz, 1H: 1 c); 5.24 (broad d, J = 5.5 Hz, 1H: 50 °); 5.29 (dd, J = 12 and 4 Hz, 1H: 4 c ); 5.88 (d, J = 10Hz, 1H: 6c); 5.92 (mt, 1H: 1β); 6.73 (d, J = 10 Hz, 1H: trans 2); cd 7,10 *

7,35 (mt, 9H : H Aromatícý v 6 - 4 ε a 4 δ) ; 7,44 (dd, J = 8,5 a 1,5 Hz, 1H : ľ HJ ; 7,50 (dd, J = 8,5 a 4,5 Hz, 1H : ľ H) ; 7,80 (dd, J = 4,5 a 1,5 Hz, 1H : ľ Hg) ; 8,38 (d, J = 10 Hz, 1H : NH v 1); 8,75 (d, J = 10 Hz, 1H : NH v 6) ; 11,66 (s, 1H : OH).7.35 (mt, 9H: H aromatic at 6 - 4 ε and 4 δ); 7.44 (dd, J = 8.5 and 1.5 Hz, 1H: 1 HJ; 7.50 (dd, J = 8.5 and 4.5 Hz, 1H: 1 H); 7.80 (dd J = 4.5 and 1.5 Hz, 1H: 1 Hg) 8.38 (d, J = 10 Hz, 1H: NH at 1), 8.75 (d, J = 10 Hz, 1H: NH) 11.66 (s, 1H: OH).

Z rovnakých frakcií, ktoré opúšťajú vyššie opísaný stĺpec silikagélu a obsahujú takisto derivát pristinamycínu Ih sa izoluje 0,3 mg 4 ^-etyl-des(4 ^-dimetylamino)pristinamycínu IH v prípade, že sa uskutoční chromatografia na semipreparatívnom stĺpci, ktorý sa opisuje vyššie.0.3 mg of 4'-ethyl-des (4'-dimethylamino) pristinamycin 1H is isolated from the same fractions leaving the silica gel column described above and also containing the derivative of pristinamycin I h , if chromatographed on a semi-preparative column which is described above.

^H-NMR (400 MHZ, CDCl3, 5 V ppm, ref.TMS):1 H-NMR (400 MHz, CDCl 3 , 5 V ppm, ref.TMS):

0,04 (mt, 1H : 1H od0.04 (mt, 1H: 1H of the title compound);

CH, v 5 β); 0,92 (t, J = 7,5 Hz, 3H: CH, v 2 γ); cd 1,10 *1,40 (mt, 2H : 1H od CH, v 5 δ 1H CH, *5 γ) ; 1,18 (t, J = 7,5 Hz, 3H : CH, etylul; 1,30 (d, J = 6p Hz, 3H : CH, v i γ); od 1,45 04,85 (mt, 7H : drdý H cd CH, v 5 γ druhý h oä CH, v5 δ - lH^d. CH, v 3 β - CH, v 3 γ a CH, v 2 β) ; 1,81 (d , J = 13 Hz, 1H: ôcdý H CH, v .5 β) ; 2,02·(mt, 1H : drdý H cdCH, v 3 β) ; 2,40 (dt, J = 13 Λ 4 Hz, 1H : 1H cd CH,* 5 ε) ; 2,65 (q, J = 7,5 Hz, 2H :CH, v 5 β); 0.92 (t, J = 7.5 Hz, 3H: CH at 2 γ); cd 1.10 * 1.40 (mt, 2H: 1H of CH at .delta. 1.18 (t, J = 7.5 Hz, 3H: CH, ethyl, 1.30 (d, J = 6? Hz, 3H: CH, vi γ), of 1.45 04,85 (mt, 7H: rough H cd CH, v 5 γ second h oä CH, v 5 δ - 1H ^ d CH, v 3 β - CH, v 3 γ and CH, v 2 β) 1,81 (d, J = 13 Hz 2 H (2H, CD 3, β), 2.02 (dt, J = 13 Λ 4 Hz, 1H: 1 cd CH, * 5 ε) 2.65 (q, J = 7.5Hz, 2H)

Ar CH, etylu) ; 2,97 et 3,09 (respectíve dd a t, J = 12 a 5 Hz et J = 12 Hz, 1H ležý ; CH, v 4 β) ; 3,50 a 3,60 (2 mts, 1H težiý : CH, v 3 Ô) ; 4,13 (dd,J = 8a 5 Hz, 1H ; 3 a) ; 4,49 (d šir., J = 13 Hz, 1H ; drdý H od CH, v 5 ε) ; 4,70 (mt, 2H; 5 a a 4 a) ; 4,77 (mt 1H : 2 a) ; 4,83 (dd, J = 10 a 1 Hz, 1H :Ar (CH, ethyl); 2.97 and 3.09 (respectively dd and t, J = 12 and 5 Hz and J = 12 Hz, 1H lying; CH, at 4β); 3.50 and 3.60 (2 mts, 1H heavy: CH, at 3 '); 4.13 (dd, J = 8 and 5 Hz, 1H, 3a); 4.49 (broad d, J = 13 Hz, 1H; rough H from CH, at 5 ε); 4.70 (mt, 2H; 5a and 4a); 4.77 (mt 1H: 2a); 4.83 (dd, J = 10 and 1 Hz, 1H):

a) ; 5,50 (d, J = 7 Hz, 1H : 6 a) ; 5,74 (mt, 1H : 1 β) ; 6,09 (d, J = 4 Hz, 1H :a); 5.50 (d, J = 7Hz, 1H: 6a); 5.74 (mt, 1H: 1β); 6.09 (d, J = 4Hz, 1H)

NH v 4) ; 6,72 (mf, 1H: NH v 2); 7,07 (d, J = 8 Hz, 2H: H Aromatídý v .4 ε) ; 7,15 (d, J = 8 Hz, 2H : H Aromatídý v 4 Ô) ; od 7,15 *7,35 (mt, 5H : 'NH in 4); 6.72 (broad m, 1H: NH at position 2); 7.07 (d, J = 8 Hz, 2H: aromatic H at .delta.); 7.15 (d, J = 8 Hz, 2H: aromatic H at position 4 &apos;); from 7.15 * 7.35 (mt, 5H: -)

H Aromatický v . 6) ; 7,40 (dd, J = 8 a 1 Hz, 1H : ľ HJ ; 7,45 (dd, J = 8 a 4 Hz, 1H : ľ Hs); 7,92 (dd, J =4 a 1 Hz, 1H: ľ Hg) ; 8,40 (mf, 1H : NH v 6) ; 8,50 (d, J = 10 Hz, 1H : NH v 1); 11,72 (s, 1H : OH).H Aromatic v. 6); 7.40 (dd, J = 8 and 1 Hz, 1H: 1 HJ; 7.45 (dd, J = 8 and 4 Hz, 1H: 1 H 5); 7.92 (dd, J = 4 and 1 Hz, 1H: 1H (g), 8.40 (broad m, 1H: NH at position 6), 8.50 (d, J = 10 Hz, 1H: NH at position 1), 11.72 (s, 1H: OH).

Príklad 33Example 33

Príprava už opísaných derivátov fenylalanínu a kyseliny fenylpyrohroznovejPreparation of the phenylalanine and phenylpyruvic acid derivatives described above

Fenylalanín a deriváty 4-metoxyfenylalanín, 4-brómfenylalanín,Phenylalanine and 4-methoxyphenylalanine, 4-bromophenylalanine derivatives,

4-chlórfenylalanín, 4-jódfenylalanín, 4-trifluórmetylfenylalanín, 4-aminofenylalanín, 3-metoxyfenylalanín sú komerčne dostupné zlúčeniny.4-chlorophenylalanine, 4-iodophenylalanine, 4-trifluoromethylphenylalanine, 4-aminophenylalanine, 3-methoxyphenylalanine are commercially available compounds.

Nasledujúce deriváty fenylalanínu sa môžu pripraviť spôsobmi opísanými v literatúre.The following phenylalanine derivatives can be prepared by methods described in the literature.

(R,S)-4-dimetylaminofenylalanín:(R, S) -4-dimetylaminofenylalanín:

D.F.Elliot, A.T.Fuller, C.R.Harrington, J.Chem., 1948, 85-89, (R,S)-dietylaminofenylalanín:D.F. Elliot, A.T.Fuller, C.R. Harrington, J.Chem., 1948, 85-89, (R, S) -diethylaminophenylalanine:

Moldarev B.L., Pushkareva Z.V., Zhur. Obshchei Khim., 31, 1560-1469 (1961)Moldarev B.L., Pushkareva Z.V., Zhur. Obshchei Khim., 31, 1560-1469 (1961).

C.A.1961, 22226f, J.A.Stock, J.Chem.Soc, 1959, 90-97, (R,S)-4-etylaminofenylalanín:C.A.1961, 22226f, J.A.Stock, J. Chem. Soc., 1959, 90-97, (R, S) -4-ethylaminophenylalanine:

F.Bergel, J.A.Stock, J.Chem.Soc, 1959, 90-97, (R,S)-4-fenylalanín:F. Bergel, J. A.Stock, J. Chem. Soc., 1959, 90-97, (R, S) -4-phenylalanine:

J.V.Braun, J.Nelles, Berichte, 66B, 1933, 1464-1470, (R,S)-4-metylfenylalanín:J.V.Braun, J.Nelles, Berichte, 66B, 1933, 1464-1470, (R, S) -4-methylphenylalanine:

R.R.Herr, T.Enjoki, J.P.Dailey, J.Am.Chem.Soc.,1957, 79,R. R. Herr, T. Enjoki, J. P. Dailey, J. Am. Chem. Soc., 1957, 79,

4229-4231, (R,S)-4-metyltiofenylalanín a (R,S)-4-etyltiofenylalanín: R.L.Colescott, R.R.Herr, J.P.Dailey, J.Am.Chem.Soc. 1957, 79, 4232-4235, (R,S)-4-metoxykarbonylfenylalanín:4229-4231, (R, S) -4-methylthiophenylalanine and (R, S) -4-ethylthiophenylalanine: R.L.Colescott, R.R.Herr, J.P.Dailey, J.Am.Chem.Soc. 1957, 79, 4232-4235, (R, S) -4-methoxycarbonylphenylalanine:

H.Cleland, J.Org.Chem., 1969, 34, 747, (R,S)-2,4-dimetylfenylalanín:H.Cleland, J. Org. Chem., 1969, 34, 747, (R, S) -2,4-dimethylphenylalanine:

R.R.Herr, T.Enjoki, J.P.Dailey, J.Am.Chem.Soc.,1957, 79,R. R. Herr, T. Enjoki, J. P. Dailey, J. Am. Chem. Soc., 1957, 79,

4229-4231, (R,S)-3,4-dimetylfenylalanín:4229-4231, (R, S) -3,4-Dimethylphenylalanine:

R.R.Herr, T.Enjoki, J.P.Dailey, J.Am.Chem.Soc.,1957, 79,R. R. Herr, T. Enjoki, J. P. Dailey, J. Am. Chem. Soc., 1957, 79,

4229-4231, (R,S)-3-trifluórmetylfenylalanín-hydrochlorid:4229-4231, (R, S) -3-Trifluoromethylphenylalanine hydrochloride:

R.Filler a H.Novar, J.Org.Chem.,1960, 25, 733-736, (S)-4-aminometylfenylalanín:R. Filler and H.Novar, J. Org. Chem., 1960, 25, 733-736, (S) -4-aminomethylphenylalanine:

G.E.Stokker, W.F.Hoffman a C.F.Homnick, J.Org.Chem.,1993, 58, 5015-5017, (R,S)-3-metylfenylalanín:G.E.Stokker, W.F.Hoffman and C.F. Homnick, J. Org. Chem., 1993, 58, 5015-5017, (R, S) -3-methylphenylalanine:

J.H.Burckhalter, V.C.Stephens, J.A.C.S., 1951, 73, 56-58, (R,S)-4-acetylfenylalanín:J. H. Burckhalter, V.C.Stephens, J.A.C.S., 1951, 73, 56-58, (R, S) -4-acetylphenylalanine:

J.I.Degaw akol., J.Med.Chem., 1969, 11, 225-227, (S)-4-O-alyltyrozín:J.I.Degaw et al., J. Med. Chem., 1969, 11, 225-227, (S) -4-O-allyltyrosine:

A.Loffet, H.Zang, Int.J.Pept.Protein Res., 1993, 42, 346, (S)-4-O-etyltyrozín:A.Loffet, H.Zang, Int.J.Pept. Protein Res., 1993, 42, 346, (S) -4-O-ethyltyrosine:

Y.Sasaki akol., Chem.Pharm.Bull., 1982, 30, 4435, (R,S)-4-etylfenylalanín:Y.Sasaki et al., Chem. Pharm. Bull., 1982, 30, 4435, (R, S) -4-ethylphenylalanine:

A.Zhuze akol., Coll.Czech.Chem.Commun., 1965, 62, 26-48,A.Zhuze et al., Coll.Czech.Chem.Commun., 1965, 62, 26-48,

Kyselina 4-terc.butylfenylpyrohroznová sa môže pripraviť podľa R.Breslow, J.W.Canary, MVarney, S.T.Waddell a D.Yang, J.Am.Chem.Soc., 1990, 112, 5212-5219.4-tert-Butylphenylpyruvic acid can be prepared according to R.Breslow, J.W.Canary, MVarney, S.T.Waddell and D.Yang, J.Am.Chem.Soc., 1990, 112, 5212-5219.

Ostatné deriváty fenylalanínu sa pripravia spôsobmi opísanými v príkladoch 34 až 42. V týchto príkladoch sa flash chromatografia uskutočňuje pri strednom tlaku dusíka 50 kPa s použitím silikagélu s granulometriou 40 až 53 μια. podľa Sti11a a kol., J.Org.chem., 43, 2923 (1978).Other phenylalanine derivatives were prepared according to the methods described in Examples 34-42. In these examples, flash chromatography was performed at a mean nitrogen pressure of 50 kPa using silica gel with a granulometry of 40-53 μια. according to St11a et al., J. Org. Chem., 43, 2923 (1978).

Príklad 34Example 34

Príprava derivátov fenylalanínu a derivátu kyseliny fenylpyrohroznovej spôsobom APreparation of phenylalanine and phenylpyruvic acid derivatives by Method

V tomto príklade sa postupuje podľa nasledujúcej reakčnej schémy:This example follows the following reaction scheme:

34-3: Metyl-4-metylamino-2-acetamidocinamát34-3: Methyl 4-methylamino-2-acetamidocinamate

Do trojhrdlovej banky sa pod dusíkovou atmosférou zavedie 5,75 g metyl-2-acetylamidoakrylátu, 0,185 g octanu paládnatého, 0,81 tetrabutylamóniumchloridu a 6,03 hydrogénuhličitanu sodného, potom sa k tejto zmesi pridá 6,5 g 4-jód-N-metylani87 línu v roztoku v 200 ml dimetylformamidu. Táto zmes sa zohrieva počas 16 hodín a 30 minút na teplotu 82°C, potom sa naleje do 1000 ml destilovanej vody. Takto získaná zmes sa vyberie 250 ml dichlórmetánu, potom sa organická fáza dekantuje a vodná fáza sa dvakrát premyje 250 ml dichlórmetánu. Organické fázy sa zlúčia, vysušia nad síranom sodným, sfiltrujú a zahustia pri zníženom tlaku (50 kPa) pri teplote 70°C, pričom sa získa hnedý olej, ktorý sa prečistí flash chromatografiou s použitím najprv zmesi etylacetátu a cyklohexánu a potom iba čistého etylacetátu.5.75 g of methyl 2-acetylamidoacrylate, 0.185 g of palladium acetate, 0.81 tetrabutylammonium chloride and 6.03 of sodium bicarbonate are introduced into a three-necked flask under a nitrogen atmosphere, then 6.5 g of 4-iodo-N- are added. methylamine in solution in 200 ml of dimethylformamide. The mixture is heated at 82 ° C for 16 hours and 30 minutes, then poured into 1000 ml of distilled water. The mixture thus obtained is taken up in 250 ml of dichloromethane, then the organic phase is decanted and the aqueous phase is washed twice with 250 ml of dichloromethane. The organic phases are combined, dried over sodium sulphate, filtered and concentrated under reduced pressure (50 kPa) at 70 ° C to give a brown oil which is purified by flash chromatography using first a mixture of ethyl acetate and cyclohexane and then only pure ethyl acetate.

Takto sa získa 4 g metyl-4-metylamino-2-acetamidocinamátu vo forme pevného žltého produktu (silikagél Merck 5719, Rf = 0,48), ktorý sa použije ďalej ako taký.There was thus obtained 4 g of methyl 4-methylamino-2-acetamidocinamate as a yellow solid (Merck silica gel 5719, Rf = 0.48) which was used as such.

N-Metyl-p-jód-anilín sa môže pripraviť podľa:N-Methyl-p-iodo-aniline can be prepared according to:

S.Krishnamurthy, Tetrahedron Letters, 33, 3315-3318, 1982.Krishnamurthy, Tetrahedron Letters, 33, 3315-3318 (1982).

34-34: Kyselina 4-metylaminofenylpyrohroznová34-34: 4-Methylaminophenylpyruvic acid

Do banky s okrúhlym dnom sa zavedie 2,4 g metyl-4-metylamino-2-acetamidocinamátu a 32 ml 12N kyseliny chlorovodíkovej. Táto zmes sa zohrieva počas 3 hodín na teplotu varu pod spätným chladičom, potom sa ochladí a dvakrát premyje 20 ml dietyléteru. Vodná fáza sa ochladí na teplotu -10°C a získaná zrazenina sa odfiltruje a potom premyje minimálnym množstvom chladnej kyseliny chlorovodíkovej. Získaný pevný produkt sa vysuší v exikátore pri zníženom tlaku, a získa sa 1,1 g kyseliny 4-metylaminofenylpyrohroznovej vo forme pevného svetlobéžového produktu, topiaceho sa pri teplote 210°C.2.4 g of methyl 4-methylamino-2-acetamidocinamate and 32 ml of 12N hydrochloric acid are introduced into a round-bottomed flask. The mixture was heated at reflux for 3 hours, then cooled and washed twice with 20 ml of diethyl ether. The aqueous phase is cooled to -10 ° C and the precipitate obtained is filtered off and then washed with a minimal amount of cold hydrochloric acid. The solid obtained is dried in a desiccator under reduced pressure to give 1.1 g of 4-methylaminophenylpyruvic acid as a pale beige solid, melting at 210 ° C.

34-5: (R,S)-3-fluór-4-metylfenylalanín-hydrochlorid34-5: (R, S) -3-Fluoro-4-methyl-phenylalanine hydrochloride

Postupuje sa rovnako ako v príklade 34-1 s výnimkou spočívajúcou v tom, že sa z 1,6 g metyl-N-acetyl-(3-fluór-4-metyl)fenylalaninátu získa 0,6 g (R,S)-3-fluór-4-metylfenyl88 alanínu vo forme bielych kryštálov, ktoré sa topia pri teplote vyššej ako 260°C.The procedure of Example 34-1 is followed except that 0.6 g of (R, S) -3 is obtained from 1.6 g of methyl N-acetyl- (3-fluoro-4-methyl) phenylalaninate. -fluoro-4-methylphenyl88 alanine in the form of white crystals melting above 260 ° C.

34-6: Mety1-N-acetyl-(3-fluór-4-metyl)fenylalaninát34-6: Methyl N-acetyl- (3-fluoro-4-methyl) phenylalaninate

Postupuje sa rovnako ako v príklade 34-2 s výnimkou spočívajúcou v tom, že sa z 1,9 g metyl-(3-fluór-4-metyl )-2-acetamidocinamátu, 0,2 g 10 % paládia na uhlí v 230 ml etanolu získa 1,6 g metyl-N-acetyl-(3-fluór-4-metyl)fenylalaninátu vo forme bezfarebného oleja (silikagél Merck 5719, Rf=0,46, elučná sústava dichlórmetán/etylacetát v objemovom pomere 50:50). 34-7: Met.yl-(3-fluór-4-metyl)-2-acetamidocinamátThe procedure of Example 34-2 is followed except that from 1.9 g of methyl (3-fluoro-4-methyl) -2-acetamidocinamate, 0.2 g of 10% palladium on carbon in 230 ml. ethanol gave 1.6 g of methyl N-acetyl- (3-fluoro-4-methyl) phenylalaninate as a colorless oil (Merck silica gel 5719, Rf = 0.46, 50:50 dichloromethane / ethyl acetate). 34-7: Methyl (3-fluoro-4-methyl) -2-acetamidocinamate

Postupuje sa rovnako ako v príklade 34-3 s výnimkou spočívajúcou v tom, že sa z 3,6 g metyl-2-acetamidoakrylátu, 0, 12 octanu paládnatého, 5,2 g tetrabutylamóniumchloridu, 3,8 g hydrogénuhličitanu sodného a 4 g 2-fluór-4-brómtoluénu v roztoku v 120 ml dimetylformamidu (bezvodého) získa 2,6 g metyl-(3-fluór-4-metyl)-2-acetamidocinamátu vo forme bieleho pevného produktu, ktorý sa topí pri teplote 163°C.The procedure of Example 34-3 is followed except that from 3.6 g of methyl 2-acetamido acrylate, 0.12 g of palladium acetate, 5.2 g of tetrabutylammonium chloride, 3.8 g of sodium bicarbonate and 4 g of 2 of fluoro-4-bromotoluene in solution in 120 ml of dimethylformamide (anhydrous) gives 2.6 g of methyl (3-fluoro-4-methyl) -2-acetamidocinamate as a white solid, melting at 163 ° C.

34-8: (R,S)-4-Trifluórmetoxyfenylalanín-hydrochlorid alebo (R,S)-O-trifluórmetyltyrozín-hydrochlorid34-8: (R, S) -4-Trifluoromethoxyphenylalanine hydrochloride or (R, S) -O-trifluoromethyltyrosine hydrochloride

Postupuje sa rovnako ako v príklade 34-1 s výnimkou spočívajúcou v tom, že sa z 3 g metyl-N-acetyl-(4-trifluórmetoxy) fenylalaninátu a 30 ml 12N kyseliny chlorovodíkovej získaThe procedure is as in Example 34-1, except that 3 g of methyl N-acetyl- (4-trifluoromethoxy) phenylalaninate and 30 ml of 12N hydrochloric acid are obtained.

1,5 g (R,S)-4-trifluórmetoxyfenylalanín-hydrochloridu vo forme bielych kryštálov,ktoré sa topia pri teplote 260°C.1.5 g of (R, S) -4-trifluoromethoxyphenylalanine hydrochloride as white crystals, melting at 260 ° C.

34-9: (R,S)-Metyl-N-acetyl-(4-trifluórmetoxy)fenylalaninát34-9: (R, S) -Methyl-N-acetyl- (4-trifluoromethoxy) phenylalaninate

Postupuje sa rovnako ako v príklade 34-2 s výnimkou spočívajúcou v tom, že sa z 3,1 g metyl-(4-trifluórmetoxy)-2-acet amidocinamátu, 0,3 g 10 % paládia na uhlí a v 50 ml etanolu získajú 3 g metyl-N-acetyl-(4-trifluórmetoxy)fenylalaninátu vo forme bieleho pevného produktu, ktorý sa topí pri teplote 80°C.The procedure is as in Example 34-2, except that from 3.1 g of methyl (4-trifluoromethoxy) -2-acet amidocinamate, 0.3 g of 10% palladium on carbon and 50 ml of ethanol, 3 g are obtained. g of methyl N-acetyl- (4-trifluoromethoxy) phenylalaninate as a white solid, melting at 80 ° C.

34-10: Mety1-(4-tri fluórmetoxy)-2-acetamidoc inamát34-10: Methyl 1- (4-trifluoromethoxy) -2-acetamidocinamate

Postupuje sa rovnako ako v príklade 34-3 s výnimkou spočívajúcou v tom, že sa z 4,3 g metyl-2-acetamidoakrylátu, o, 14 octanu paládnatého, 6,1 g tetrabutylamóniumchloridu, 4,6 g hydrogénuhličitanu sodného a 5 g 4-trifluórmetoxybrómbenzénu v roztoku v 150 ml bezvodého dimetylformamidu sa získa 3,1 g metyl-(4-trifluórmetoxy)-2-acetamidocinamátu vo forme pevného bieleho produktu, ktorý sa topí pri teplote 135°C.The procedure is as in Example 34-3 except that 4.3 g of methyl 2-acetamidoacrylate, 0.44 palladium acetate, 6.1 g tetrabutylammonium chloride, 4.6 g sodium bicarbonate and 5 g 4 are used. of trifluoromethoxybromobenzene in solution in 150 ml of anhydrous dimethylformamide gave 3.1 g of methyl (4-trifluoromethoxy) -2-acetamidocinamate as a white solid, melting at 135 ° C.

34-11: (R,S)-3-metyltiofenylalanín-hydrochlorid34-11: (R, S) -3-Methylthiophenylalanine hydrochloride

Postupuje sa rovnako ako v príklade 34-1 s výnimkou spočívajúcou v tom, že sa z 3,3 g metyl-N-acetyl-3-metyltiofenylalaninátu a 40 ml 12N kyseliny chlorovodíkovej získa 1,38 g (R,S)-3-met.yltiofenylalanínu vo forme bielych kryštálov, ktoré sa topia pri teplote 190°C.The procedure of Example 34-1 is followed except that 1.38 g of (R, S) -3- is obtained from 3.3 g of methyl N-acetyl-3-methylthiophenylalaninate and 40 ml of 12N hydrochloric acid. methyl thiophenylalanine as white crystals, melting at 190 ° C.

34-12: Metyl-N-acetyl-3-metyltiofenylalaninát34-12: Methyl N-acetyl-3-methylthiophenylalaninate

Do banky s okrúhlym dnom sa sa zavedie 3,72 g metyl-3-metyltio-2-acetamidocinamátu v roztoku v 100 ml metanolu a 30 ml tetrahydrofuránu a k získanej zmesi sa pridá 1,4 g horčíka. Po 20 minútach sa reakčná zmes ochladí na ľade, potom sa k nej opäť pridá 1,4 g horčíka, reakčná zmes sa mieša pri laboratórnej teplote počas 18 hodín, potom sa naleje do 1,4 litra destilovanej vody a 300 ml dichlórmetánu a zmes sa sfiltruje použitím pomocného filtračného ClarcelR. pH vodnej fázy sa nastaví na hodnotu 6 pridaním 12N kyseliny chlorovodíkovej a vodná fáza sa potom dekantuje a premyje 100 ml dichlórmetánu. Organické fázy sa zlúčia a, vysušia na d síranom horečnatým, sfiltrujú a potom sa zahustia do sucha pri zníženom tlaku. Získa sa 3,42 g metyl-N-acetyl-3-metyltiofenylalaninátu vo forme bezfarebného oleja (silikagél Merck, R£=0,5, elučné činidlo : etylacetát).3.72 g of methyl 3-methylthio-2-acetamidocinamate in solution in 100 ml of methanol and 30 ml of tetrahydrofuran are introduced into a round-bottomed flask and 1.4 g of magnesium are added. After 20 minutes, the reaction mixture is cooled on ice, 1.4 g of magnesium are added thereto, the reaction mixture is stirred at room temperature for 18 hours, then poured into 1.4 liters of distilled water and 300 ml of dichloromethane and the mixture is stirred at room temperature. filter using Clarcel R filter aid. The aqueous phase is adjusted to pH 6 by addition of 12N hydrochloric acid and the aqueous phase is then decanted and washed with 100 ml of dichloromethane. The organic phases are combined and dried over magnesium sulphate, filtered and then concentrated to dryness under reduced pressure. To give 3.42 g of methyl N-acetyl-3-metyltiofenylalaninátu as a colorless oil (Merck, R £ = 0.5, eluent: ethyl acetate).

34-13: Metyl-3-metyltio-2-acetamidocinamátu34-13: Methyl 3-methylthio-2-acetamidocinamate

Postupuje sa rovnako ako v príklade 34-3 s výnimkou spočívajúcou v tom, že sa z 5,6 g metyl-2-acetamidoakrylátu, 0, 18 g octanu paládnatého, 8,2 g tetrabutylamóniumchloridu, 5, 86 g hydrogénuhličitanu sodného a 6,5 g 3-jód-l-metylbenzénu v roztoku v 160 ml bezvodého dimetylformamidu sa získa 4,8 g metyl-(3-metyltio)-2-acetamidocinamátu vo forme bieleho pevného produktu, ktorý sa topí pri teplote 139°C.The procedure is as in Example 34-3 except that from 5.6 g of methyl 2-acetamido acrylate, 0.18 g of palladium acetate, 8.2 g of tetrabutylammonium chloride, 5.86 g of sodium bicarbonate, 5 g of 3-iodo-1-methylbenzene in solution in 160 ml of anhydrous dimethylformamide gave 4.8 g of methyl (3-methylthio) -2-acetamidocinamate as a white solid, melting at 139 ° C.

34-14: 3-Jód-l-metyltiobenzén34-14: 3-Iodo-1-methylthiobenzene

Do trojhrdlej banky sa za miešania zavedie 20 ml destilovanej vody a 20 ml 12N kyseliny chlorovodíkovej, potom sa k tejto zmesi pridá 10 ml 3-metyltioanilínu. Zmes sa mierne zohreje kvôli zabezpečeniu rozpustenia pevného podielu a potom sa ochladí na teplotu 5°C. Potom sa pozvoľne pridá 5,86 g dusitanu sodného v roztoku v 15 ml vody a teplota reakčnej zmesi sa udržiava medzi 5 a 8°C. 20 minút po skončení pridávania sa v priebehu 10 minút pridá 13,57 g jodidu draselného v roztoku v 15 ml vody a zmes sa potom mieša pi laboratórnej teplote 15 hodín. Vytvorený olej sa oddelí od vodnej fázy dekantáciou, potom sa k nemu pridá vodný roztok sírnatanu sodného. Vodná fáza sa dekantuje a produkt sa extrahuje 100 ml dichlórmetánu. Organická fáza sa premyje 100 ml vody, pH vodnej fázy sa upraví na hodnotu 9, koncentrovaným roztokom hydroxidu sodného a potom sa dekantuje. Organická fáza sa dvakrát premyje 100 ml vody, dekantuje , vysuší nad síranom horečnatým, sfiltruje a potom sa zahustí do sucha pri zníženom tlaku (50 kPa) pri teplote 40°C. Výsledný produkt sa prečistí flash chromatografiou (elučné činidlo: cyklohexán), pričom sa získa 13 g20 ml of distilled water and 20 ml of 12N hydrochloric acid are introduced into the three-necked flask with stirring, followed by the addition of 10 ml of 3-methylthioaniline. The mixture is gently warmed to ensure the solids dissolve and then cooled to 5 ° C. 5.86 g of sodium nitrite in solution in 15 ml of water are then slowly added and the temperature of the reaction mixture is maintained between 5 and 8 ° C. 20 minutes after the addition, 13.57 g of potassium iodide in solution in 15 ml of water are added over 10 minutes and the mixture is then stirred at room temperature for 15 hours. The oil formed is separated from the aqueous phase by decantation, then an aqueous solution of sodium sulphite is added. The aqueous phase is decanted and the product is extracted with 100 ml of dichloromethane. The organic phase is washed with 100 ml of water, the pH of the aqueous phase is adjusted to 9 with concentrated sodium hydroxide solution and then decanted. The organic phase is washed twice with 100 ml of water, decanted, dried over magnesium sulphate, filtered and then concentrated to dryness under reduced pressure (50 kPa) at 40 ° C. The resulting product was purified by flash chromatography (eluent: cyclohexane) to give 13 g

3-jód-l-metyltiobenzénu vo forme žltej kvapaliny (silikagél Merck 5719, Rf=0,8, elučné činidlo: cyklohexán).3-iodo-1-methylthiobenzene as a yellow liquid (Merck silica gel 5719, Rf = 0.8, eluent: cyclohexane).

Príklad 35Example 35

Príprava derivátov fenylalanínu spôsobom BPreparation of Phenylalanine Derivatives by Method B

35-1: (R,S)-4-terc-Butylfenylalanín35-1: (R, S) -4-tert-Butylphenylalanine

Do trojhrdlovej banky s nasadeným chladičom sa zavedie 25 g dietyl-4-(terc-butyl)benzylacetamidomalonanu a 250 ml 37 % kyseliny chlorovodíkovej. Zmes sa mieša a zohrieva na teplotu varu pod spätným chladičom až do chvíle, keď sa už neuvoľňuje plyn. Po ochladení reakčnej zmesi sa vylúčená zrazenina odfiltruje a potom sa rekryštalizuje z acetonitrilu, a získa sa 25,6 g (R,S)-4-terc-butylfenylalanín-hydrochloridu vo forme bieleho pevného produktu, ktorý sa topí pri teplote 234°C (viď takisto Journal of the Takeda Research Laboratories, zv.43, č.3/4, december 1984, str. 53-76).25 g of diethyl 4- (tert-butyl) benzylacetamidomalonate and 250 ml of 37% hydrochloric acid are introduced into a three-necked flask fitted with a condenser. The mixture was stirred and heated to reflux until no more gas was released. After cooling the reaction mixture, the precipitate formed is filtered off and then recrystallized from acetonitrile to give 25.6 g of (R, S) -4-tert-butylphenylalanine hydrochloride as a white solid, melting at 234 ° C ( see also Journal of the Takeda Research Laboratories, Vol. 43, No.3 / 4, December 1984, pp. 53-76).

35-2: Dietyl-4-(terc-butyl)benzylacetamidomalonan35-2: Diethyl 4- (tert-butyl) benzylacetamidomalonan

Do trojhrdlovej banky s nasadeným chladičom sa zavedie pod dusíkovou atmosférou 25 g 4-terc-butylbenzylbromidu, 50 ml bezvodého toluénu a 3,1 g hydridu sodného vo forme 80 % suspenzie v oleji a potom 21,8 g dietylacetamidomalonanu. Reakčná zmes sa potom zohrieva na teplotu 110°C 17 hodín. Po ochladení sa pozvoľne pridá 15 ml absolútneho etanolu, ďalej ml 50 % alkoholu a nakoniec 50 ml vody. Organická fáza sa dekantuje a vodná fáza sa premyje trikrát vždy 50 ml diétyléteru. Organické fázy sa zlúčia, premyjú vodou a potom sa vysušia nad síranom sodným. Po filtrácii a zahustení pri zníženom tlaku sa produkt nechá vykryštalizovať z petroléteru, Získa sa 25 g dietyl-4-(terc-butyl)benzylacetamidomalonanu vo forme bieleho pevného produktu, ktorý sa topí pri teplote 80°C.25 g of 4-tert-butylbenzyl bromide, 50 ml of anhydrous toluene and 3.1 g of sodium hydride as an 80% suspension in oil and then 21.8 g of diethyl acetamidomalonate are introduced into a three-necked flask fitted with a condenser. The reaction mixture was then heated at 110 ° C for 17 hours. After cooling, 15 ml of absolute ethanol is added slowly, followed by ml of 50% alcohol and finally 50 ml of water. The organic phase is decanted and the aqueous phase is washed three times with 50 ml of diethyl ether each time. The organic phases are combined, washed with water and then dried over sodium sulphate. After filtration and concentration under reduced pressure, the product is crystallized from petroleum ether to give 25 g of diethyl 4- (tert-butyl) benzylacetamidomalonate as a white solid, melting at 80 ° C.

35-3: (R,S)-3-Metylaminofenylalanín-dihydrochlorid35-3: (R, S) -3-Methylaminophenylalanine dihydrochloride

Postupuje sa rovnako ako v príklade 35-1 s výnimkou spočívajúcou v tom, že sa z 1,17 g dietyl-3-metylaminobenzylacetamidomalonanu a 20 ml 12N kyseliny chlorovodíkovej získa 1, 03 g pevného svetlobéžového produktu. Tento produkt sa rozpustí v 20 ml absolútneho etanolu a k roztoku sa pridá 0,4 g živočíšneho uhlia, roztok sa sfiltruje s použitím pomocného filtračného prostriedku ClarcelR a zahustí sa pri zníženom tlaku (50 kPa). rovnaká operácia sa uskutoční opäť s 1 g živočíšneho uhlia a získaný pevný podiel sa rozotrie v 20 ml éteru. Po filtrácii a vysušení pri zníženom tlaku (2,7 kPa) pri teplote 50°C sa získa 0,65 g (R,S)-3-metylaminofenylalanín-dihydrochloridu vo forme bieleho prášku, ktorý sa topí pri teplote 135°C (za rozkladu).The procedure of Example 35-1 was followed except that from 1.07 g of diethyl 3-methylaminobenzylacetamidomalonate and 20 ml of 12N hydrochloric acid, 1.0 g of a light beige solid was obtained. Dissolve this product in 20 ml of absolute ethanol and add 0.4 g of charcoal to the solution, filter the solution using Clarcel R filter aid and concentrate under reduced pressure (50 kPa). the same operation is carried out again with 1 g of charcoal and the solid obtained is triturated in 20 ml of ether. After filtration and drying under reduced pressure (2.7 kPa) at 50 ° C, 0.65 g of (R, S) -3-methylaminophenylalanine dihydrochloride is obtained in the form of a white powder, melting at 135 ° C. dec).

35-4: Dietyl-3-metylaminobenzylacetamidomalonan35-4: Diethyl-3-methylaminobenzylacetamidomalonan

Do trojhrdlej banky sa v atmosfére dusíka zavedie 3, 11 ml acetanhydridu. Potom sa v priebehu 3 minút a pri teplote 0°C pridá 1,51 ml kyseliny mravčej a zmes sa zohrieva na teplotu 50°C počas dvoch hodín. Reakčná zmes sa potom nechá vychladnúť na laboratórnu teplotu počas miešania, v priebehu hodín a 20 minút, potom sa k nej pridajú 4 ml tetrahydrofuránu (bezvodého) v atmosfére dusíka. Reakčná zmes sa potom ochladí na teplotu 20°C. V priebehu 10 minút sa pridá roztok g dietyl-3-aminobenzylacetamidomalonanu v zmesi 15 ml bezvodého tetrahydrofuránu a 15 ml bezvodého dichlórmetánu. Pokračuje sa v miešaní počas jednej hodiny a 10 minút pri teplote -20°C a potom ešte 16 hodín pri teplote 20°C. reakčná zmes sa zahustí do sucha pri zníženom tlaku (50 kPa) pri teplote 30°C, potom sa odparí spoločne s 30 ml bezvodého toluénu. Získa sa pevný biely produkt, ktorý sa rozpustí v zmesi 10 ml bezvodého tetrahydrofuránu a 20 ml bezvodého 1,2-dichlóretánu a získaný roztok sa zavedie v atmosfére dusíka do trojhrdlovej banky.To a 3-necked flask was charged with 3.11 mL acetic anhydride under a nitrogen atmosphere. Then, 1.51 ml of formic acid is added over 3 minutes at 0 ° C and the mixture is heated at 50 ° C for two hours. The reaction mixture is then allowed to cool to room temperature with stirring, over hours and 20 minutes, then 4 ml of tetrahydrofuran (anhydrous) are added under a nitrogen atmosphere. The reaction mixture was then cooled to 20 ° C. A solution of diethyl 3-aminobenzylacetamidomalonanane in a mixture of 15 ml of anhydrous tetrahydrofuran and 15 ml of anhydrous dichloromethane is added over 10 minutes. Stirring is continued for one hour and 10 minutes at -20 ° C and then for 16 hours at 20 ° C. the reaction mixture is concentrated to dryness under reduced pressure (50 kPa) at 30 ° C, then co-evaporated with 30 ml of anhydrous toluene. A white solid is obtained which is dissolved in a mixture of 10 ml of anhydrous tetrahydrofuran and 20 ml of anhydrous 1,2-dichloroethane and the solution obtained is introduced into a three-necked flask under a nitrogen atmosphere.

Reakčná zmes sa ochladí na teplotu -5°C, potom sa k nej počas 10 minút pridá komplex borán-dimetylsulfid (2M roztok v tetrahydrofuráne. Reakčná zmes sa potom nechá ohriať na laboratórnu teplotu, potom sa 3 hodiny zohrieva na teplotu varu pod spätným chladičom a potom ešte 15 hodín ponechá pri laboratórnej teplote. Reakčná zmes sa ochladí na teplotu 0°C a potom sa v priebehu 25 minút pridá 10 ml metanolu. Reakčná zmes sa potom mieša 45 minút pri teplote 0°C a potom ešte 30 minút pri laboratórnej teplote. Zmes sa ochladí na 0°C, potom sa zmesou prebubláva plynný chlorovodík až kým sa dosiahne hodnota pH 2. Zmes sa potom zohrieva na teplotu varu pod spätným chladičom jednu hodinu a potom sa zahustí do sucha pri zníženom tlaku a teplote 30°C. Získa sa 5 g produktu, ktorý sa vyberie 30 ml vodného roztoku hydrogénuhličitanu sodného a 30 ml dichlórmetánu. Organická fáza sa dekantuje a vodná fáza sa premyje 20 ml vody. Organické fázy sa zlúčia, vysušia nad síranom horečnatým, sfiltrujú sa a potom sa zahustia do sucha pri zníženom tlaku (2,6 kPa), Získa sa 3,43 g žltého oleja, ktorý sa prečistí flash chromatografiou s použitím elučnej sústavy tvorenej zmesou v objemovom pomere 50:50. Takto sa ženom tlaku (2,7 kPa) pri dietyl-3-metylaminobenzylacetamidomalonanu vo forme svetlobéžového pevného produktu, ktorý sa topí pri teplote 122°C.The reaction mixture was cooled to -5 ° C and then borane-dimethylsulfide complex (2M solution in tetrahydrofuran) was added over 10 minutes. The reaction mixture was then allowed to warm to room temperature and then refluxed for 3 hours. The reaction mixture is cooled to 0 ° C and then 10 ml of methanol are added over 25 minutes and the reaction mixture is stirred at 0 ° C for 45 minutes and then at room temperature for 30 minutes. The mixture is cooled to 0 ° C, then hydrogen chloride gas is bubbled through the mixture until a pH of 2 is reached. The mixture is then heated at reflux for one hour and then concentrated to dryness under reduced pressure at 30 ° C. 5 g of product are obtained, which is taken up in 30 ml of aqueous sodium hydrogen carbonate solution and 30 ml of dichloromethane, the organic phase is decanted and the aqueous phase is washed with 20 ml of water. The phases are combined, dried over magnesium sulphate, filtered and then concentrated to dryness under reduced pressure (2.6 kPa) to give 3.43 g of a yellow oil which is purified by flash chromatography using a mixture of v / v mixture 50:50. Thus, the woman was pressurized (2.7 kPa) at diethyl 3-methylaminobenzylacetamidomalonate as a light beige solid, melting at 122 ° C.

etylacetátu a cyklohexánu získa po vysušení pri zníteplote 20^0 1,18 gethyl acetate and cyclohexane, after drying at 20 [deg.] C, 1.18 g

35-5: Dietyl-3-aminobenzylacetamidomalonan35-5: Diethyl-3-aminobenzylacetamidomalonate

Dietyl-3-aminobenzylacetamidomalonan sa môže pripraviť spôsobom opísaným v: Z.S.Osdene, D.N.Ward, W.H.Chapman a H.Rakoff, J.Am.Chem.Soc., 81, 1959, 3100-3102.Diethyl-3-aminobenzylacetamidomalonan may be prepared as described in: S. S. Odden, D. N. Ward, W. H. Chapman, and H. Rakoff, J. Am. Chem. Soc., 81, 1959, 3100-3102.

35-6: (R,s)-3-Etylaminofenylalanín-dihydrochlorid35-6: (R, s) -3-Ethylaminophenylalanine dihydrochloride

Postupuje sa rovnako ako v príklade 34-1 s výnimkou spočívajúcou v tom, že sa z 2 g (R,S)-etyl-N-acetyl-3-etylaminofenylalaninátu a 30 ml 12N kyseliny chlorovodíkovej získa 1,7 g (R,S)-3-etylaminofenylalanín-dihydrochloridu vo forme svetlobéžového pevného produktu, ktorý je hygroskopický a obsahuje 10 % mol. (R,S)-3-dietylaminofenylalanín-dihydrochloridu.The procedure of Example 34-1 is followed except that 1.7 g of (R, S) is obtained from 2 g of (R, S) -ethyl N-acetyl-3-ethylaminophenylalaninate and 30 ml of 12N hydrochloric acid. -3-ethylaminophenylalanine dihydrochloride in the form of a light beige solid, which is hygroscopic and contains 10 mol. (R, S) -3-dietylaminofenylalanín dihydrochloride.

35-7: (R,S)-Etyl-N-acetyl-3-etylaminofenylalaninát35-7: (R, S) -Ethyl-N-acetyl-3-ethylaminophenylalaninate

Do banky s okrúhlym dnom sa v atmosfére dusíka zavedú 3 g (R,S)-etyl-N-acetyl-3-aminofenylalaninátu, 40 ml etanolu a 14 g Raneyovho niklu, ktorý sa predbežne premyje destilovanou vodou a etanolom. Reakčná zmes sa zohrieva na teplotu varu pod spätným chladičom 19 hodín, potom sa ochladí, sfiltruje cez filtračný prostriedok ClarcelR a potom sa zahustí do sucha pri zníženom tlaku (50 kPa). Získa sa 3,07 g bezfarebného oleja, ktorý po prečistení flash chromatografiou s použitím elučného činidla tvoreného etylacetátom. Získa sa 2,1 g (R,S)-etyl-N-acetyl-3-etylaminofenylalaninátu vo forme bezfarebného oleja (silikagél Merck 5719, Rf = 0,6, etylacetát) obsahujúceho 10 % (R,S)-etyl-N-acetyl-3-dietylaminofenylalaninátu.3 g of (R, S) -ethyl-N-acetyl-3-aminophenylalaninate, 40 ml of ethanol and 14 g of Raney nickel are pre-washed with distilled water and ethanol into a round-bottomed flask under a nitrogen atmosphere. The reaction mixture is heated at reflux for 19 hours, then cooled, filtered through a Clarcel R filter and then concentrated to dryness under reduced pressure (50 kPa). 3.07 g of a colorless oil are obtained which, after purification by flash chromatography, eluting with ethyl acetate. 2.1 g of (R, S) -ethyl N-acetyl-3-ethylaminophenylalaninate are obtained in the form of a colorless oil (Merck silica gel 5719, Rf = 0.6, ethyl acetate) containing 10% of (R, S) -ethyl-N acetyl-3-dietylaminofenylalaninátu.

35-8: (R,S)-Etyl-N-acetyl-3-aminofenylalaninát g zmesi (R,S)-etyl-N-acetyl-3-nitrofenylalaninátu (75 % mol./mol) a dietyl-3-nitrobenzylacetamidomalonanu (25 % mol./mol) sa zavedie v atmosfére dusíka do autoklávu. Pridá sa 2,5 g 10 0 paládia na uhlí a potom ešte 200 ml dichlórmetánu. Zmes sa vystaví tlaku vodíka 0,9 MPa za miešania, pri teplote 18°C počas 4 hodín, po prechode na atmosférický tlak sa reakčná zmes sfiltruje cez filtračný prostriedok ClarcelR, premyje sa dichlórmetánom a potom sa zahustí do sucha pri zníženom tlaku (50 kPa), pričom sa získa pevný produkt, ktorý sa rekryštalizuje z 450 ml destilovanej vody, ktorá sa predtým zohrievala na teplotu varu pod spätným chladičom v prítomnosti 4 g živočíšneho uhlia 3S. Po sfiltrovaní za te95 pla cez filtračný prostriedok ClarcelR sa uskutoční kryštalizácia produktu pri teplote 4°C a kryštály sa odfiltrujú a potom sa vysušia. Získa sa 9,9 g (R,S)-etyl-N-acetyl-3-aminofenylalaninátu vo forme svetlobéžového pevného produktu, ktorý sa topí pri teplote 1O6°C a obsahuje 5 % dietyl-3-aminobenzylacetamidomalonanu.35-8: (R, S) -Ethyl-N-acetyl-3-aminophenylalaninate g of a mixture of (R, S) -ethyl-N-acetyl-3-nitrophenylalaninate (75 mol% / mol) and diethyl 3-nitrobenzylacetamidomalonate (25 mol / mol) was introduced into the autoclave under a nitrogen atmosphere. 2.5 g of palladium on carbon are added, followed by 200 ml of dichloromethane. The mixture is subjected to a hydrogen pressure of 10 bar with stirring at 18 ° C for 4 hours, after transition to atmospheric pressure, the reaction mixture is filtered through a Clarcel R filter, washed with dichloromethane and then concentrated to dryness under reduced pressure (50 ml). kPa) to give a solid product which is recrystallized from 450 ml of distilled water, which was previously heated to reflux in the presence of 4 g of 3S charcoal. After filtering at 95 ° C over a Clarcel R filter, the product is crystallized at 4 ° C and the crystals are filtered off and then dried. 9.9 g of (R, S) -ethyl N-acetyl-3-aminophenylalaninate are obtained in the form of a pale beige solid which melts at 10 DEG C. and contains 5% of diethyl 3-aminobenzylacetamidomalonate.

35-9: (R,S)-Etyl-N-acetyl-3-nitrofenylalaninát a dietyl-3-nitrobenzylacetamidomalonan35-9: (R, S) -Ethyl-N-acetyl-3-nitrophenylalaninate and diethyl 3-nitrobenzylacetamidomalonate

Do trojhrdlovej s nasadeným chladičom sa zavedie v atmosfére dusíka 600 ml absolútneho etanolu a potom 7,9 g sodíka. Po úplnom rozpustení sa pridá 74,5 g dietylacetamidomalonanu a potom 60 g 4-nitrobenzylchloridu v 200 ml bezvodého etanolu. Reakčná zmes sa potom zohrieva na teplotu varu pod spätným chladičom 16 hodín a 30 minút. Po ochladení sa reakčná zmes zahustí pri zníženom tlaku (50 kPa) a potom sa vyberie zmesou 500 ml dichlórmetánu a 500 ml vody. pH sa nastaví na hodnotu 7 pridaním 0,5N kyseliny sírovej, potom sa organická fáza dekantuje a vodná fáza sa premyje dvakrát 200 ml dichlórmetánu. Organické fázy sa zlúčia, premyjú 200 ml nasýteného vodného roztoku hydrogénuhličitanu sodného, dekantujú a potom vysušia nad síranom horečnatým. Po filtrácii a zahustení pri zníženom tlaku (50 kPa) sa produkt rekryštalizuje zo 600 ml etanolu zohrievaného pod spätným chladičom na teplotu varu, pričom po kryštalizácii pri teplote okolia, filtrácii a vysušení sa získa 70,4 dietyl-3-nitrobenzylacetamidomalonanu vo forme bielych kryštálov, ktoré sa topia pri teplote 156°c. Materské roztoky sa zahustia a potom sa prečistia flash chromátografiou (elučné činidlo: etylacetát), pričom sa získa 25,6 g zmesi etyl-N-acetyl-3-nitrofenylalaninátu (70 % mol./mol) a dietyl-3-nitrobenzylacetamidomalonanu (25 % mol./mol) vo forme svetlobéžového pevného produktu, ktorý sa použije ako taký v nasledujúcom reakčnom stupni.600 ml of absolute ethanol and then 7.9 g of sodium are introduced into a three-necked condenser with nitrogen. After complete dissolution, 74.5 g of diethyl acetamidomalonate and then 60 g of 4-nitrobenzyl chloride in 200 ml of anhydrous ethanol are added. The reaction mixture was then heated to reflux for 16 hours and 30 minutes. After cooling, the reaction mixture is concentrated under reduced pressure (50 kPa) and then taken up in a mixture of 500 ml of dichloromethane and 500 ml of water. The pH is adjusted to 7 by addition of 0.5 N sulfuric acid, then the organic phase is decanted and the aqueous phase is washed twice with 200 ml of dichloromethane. The organic phases are combined, washed with 200 ml of saturated aqueous sodium bicarbonate solution, decanted and then dried over magnesium sulphate. After filtration and concentration under reduced pressure (50 kPa), the product is recrystallized from 600 ml of refluxing ethanol to give, after crystallization at ambient temperature, filtration and drying, 70.4 of diethyl 3-nitrobenzylacetamidomalonate as white crystals. , melting at 156 ° C. The mother liquors were concentrated and then purified by flash chromatography (eluent: ethyl acetate) to give 25.6 g of a mixture of ethyl N-acetyl-3-nitrophenylalaninate (70 mol% / mol) and diethyl 3-nitrobenzylacetamidomalonate (25 g). % mol / mol) as a pale beige solid which is used as such in the next step.

35-10: (R,S)-3-dimetylaminofenylalanín-dihydrochlorid35-10: (R, S) -3-Dimethylaminophenylalanine dihydrochloride

Postupuje sa rovnako ako v príklade 34-1 s výnimkou spočívajúcou v tom, že sa z 0,72 g (R,S)-etyl-N-acetyl-3-dimetylaminofenylalaninátu a 8,6 ml 10N kyseliny chlorovodíkovej získa po odparení pevný produkt, ktorý sa rozotrie s 50 ml acetónu, zmes sa sfiltruje a vysuší pri zníženom tlaku (2,7 kPa) pri teplote 40°C. Získa sa 0,68 g (93 %) (R,S)-3-dimetylaminofenylalanínu vo forme bieleho pevného produktu, ktorý sa topí pri teplote blízkej 120°C (za rozkladu).The procedure was as in Example 34-1 except that from the product (0.72 g of (R, S) -ethyl-N-acetyl-3-dimethylaminophenylalaninate and 8.6 ml of 10N hydrochloric acid) a solid product was obtained. This is triturated with 50 ml of acetone, filtered and dried under reduced pressure (2.7 kPa) at 40 ° C. 0.68 g (93%) of (R, S) -3-dimethylaminophenylalanine is obtained in the form of a white solid which melts at a temperature in the region of 120 DEG C. (with decomposition).

35-11: (R,S)-Etyl-N-acetyl-3-dimetylaminofenylalaninát35-11: (R, S) -Ethyl-N-acetyl-3-dimethylaminophenylalaninate

Do trojhrdlovej banky sa v atmosfére dusíka zavedú 4 g (R,S)-etyl-N-acetyl-3-aminofenylalaninátu, pripraveného spôsobom opísaným v príklade 35-8, v 15 ml dimetylformamidu, potom sa k tejto zmesi pridá 5,5 ml trietylamínu a potom ešte 2, 5 ml metyljodidu a 4 ml dichlórmetánu, pričom sa udržiava teplota blízka 30°C pomocou ľadu. Zmes sa potom zohrieva na teplotu 35°C 18 hodín. Potom sa pozvoľna pridá 1 ml metyljodidu v roztoku v 1 ml dimetylformamidu, pričom sa udržiava teplota blízka 30°C, potom sa pridá 2,2 ml trietylamínu a zmes sa zohrieva 5 hodín na teplotu 35°C. Zmes sa nechá vychladnúť na laboratórnu teplotu, potom sa extrahuje 100 ml etylacetátu a 150 ml destilovanej vody. Vodná fáza sa dekantuje a potom sa opäť premyje dvakrát 70 ml etylacetátu. Organické fázy sa zlúčia, premyjú dvakrát 80 ml destilovanej vody a potom 50 ml nasýteného roztoku chloridu sodného v destilovanej vode. Organická fáza sa dekantuje, vysuší nad síranom horečnatým, sfiltruje a potom sa zahustí do sucha pri zníženom tlaku, pričom sa získa 2,4 g produktu, ktorý sa prečistí flash chromatografiou s požitím elučnej sústavy tvorenej zmesou dichlórmetánu a metanolu v objemovom pomere 90:10. Takto sa získa 0,72 g (16 %) (R,S)-etyl-N-acetyl-3-dimetylaminofenylalaninátu vo forme žltých kryštálov.4 g of (R, S) -ethyl-N-acetyl-3-aminophenylalaninate, prepared as described in Example 35-8, in 15 ml of dimethylformamide are introduced into a three-necked flask under a nitrogen atmosphere, followed by 5.5 ml of this mixture. triethylamine followed by 2.5 ml of methyl iodide and 4 ml of dichloromethane while maintaining a temperature close to 30 [deg.] C. with ice. The mixture was then heated to 35 ° C for 18 hours. 1 ml of methyl iodide in solution in 1 ml of dimethylformamide is then slowly added, keeping the temperature close to 30 ° C, then 2.2 ml of triethylamine are added and the mixture is heated at 35 ° C for 5 hours. The mixture is allowed to cool to room temperature, then extracted with 100 ml of ethyl acetate and 150 ml of distilled water. The aqueous phase is decanted and then washed twice more with 70 ml of ethyl acetate. The organic phases are combined, washed twice with 80 ml of distilled water and then with 50 ml of a saturated solution of sodium chloride in distilled water. The organic phase is decanted, dried over magnesium sulphate, filtered and then concentrated to dryness under reduced pressure to give 2.4 g of product which is purified by flash chromatography, eluting with a dichloromethane / methanol (90:10 by volume) mixture. . There was thus obtained (R, S) -ethyl N-acetyl-3-dimethylaminophenylalaninate (0.72 g, 16%) as yellow crystals.

Príklad 36Example 36

Príprava derivátov fenylalanínu spôsobom CPreparation of Phenylalanine Derivatives by Method C

36-1: (R,S)-4-Izopropylfenylalanín36-1: (R, S) -4-Isopropylphenylalanine

Do trojhrdlovej banky sa zavedie 7 g červeného fosforu a 8 g 4-(izopropylbenzylidén)-2-metyl-5-oxazolu v 45 ml anhydridu kyseliny octovej, potom sa k tejto zmesi pozvoľna pridá 35 ml kyseliny jodovodíkovej s koncentráciou 57 %. Po ukončení pridávania sa zmes zohrieva 3 hodiny a 30 minút na teplotu varu pod spätným chladičom, potom sa ponechá tri dni pri laboratórnej teplote. Reakčná zmes sa sfiltruje, oddelený pevná časť sa dvakrát premyje 10 ml kyseliny octovej a filtrát sa zahustí do sucha pri zníženom tlaku. Získaný zvyšok sa vyberie 100 ml destilovanej vody, zahustí do sucha pri zníženom tlaku, pričom sa získa pevný produkt, ktorý sa vyberie 50 ml destilovanej vody a potom sa trikrát extrahuje vždy 50 ml diétyléteru po pridaní 0,5 g siričitanu sodného. Éter sa dekantuje a vodná fáza sa vystaví účinku zníženého tlaku, aby sa odstránili stopy dietyléteru. k vodnej fáze sa pridajú 2 g živočíšneho uhlia, zmes sa zohreje na teplotu 40 až 50°C, sfiltruje na filtračnom prostriedku ClarcelR a premyje minimálnym množstvom vody. pH sa nastaví na hodnotu 5 pridaním 32 % vodného roztoku hydroxidu amónneho pri teplote 4°C. Získaná zrazenina sa sfiltruje za chladu, dvakrát sa premyje 10 ml vody, 10 ml etanolu a potom dvakrát 10 ml éteru, pričom sa po vysušení pri zníženom tlaku pri teplote 20°C získa 3,97 g (R,S)-4-izopropylfenylalanín vo forme bieleho pevného produktu, ktorý sa topí pri teplote vyššej ako 260°C (viď taktiež článok: Takeda Research zv. 43, č.3/4, december 1984, str.53-76).7 g of red phosphorus and 8 g of 4- (isopropylbenzylidene) -2-methyl-5-oxazole in 45 ml of acetic anhydride are introduced into a three-necked flask, then 35 ml of 57% hydroiodic acid are slowly added to this mixture. After the addition was complete, the mixture was heated at reflux for 3 hours 30 minutes, then left at room temperature for three days. The reaction mixture is filtered, the separated solid is washed twice with 10 ml of acetic acid and the filtrate is concentrated to dryness under reduced pressure. The residue is taken up in 100 ml of distilled water, concentrated to dryness under reduced pressure to give a solid which is taken up in 50 ml of distilled water and then extracted three times with 50 ml of diethyl ether each time after addition of 0.5 g of sodium sulfite. The ether is decanted and the aqueous phase is subjected to reduced pressure to remove traces of diethyl ether. 2 g of charcoal are added to the aqueous phase, the mixture is heated to 40-50 ° C, filtered on a Clarcel R filter and washed with a minimum of water. The pH is adjusted to 5 by adding 32% aqueous ammonium hydroxide solution at 4 ° C. The precipitate obtained is filtered in the cold, washed twice with 10 ml of water, with 10 ml of ethanol and then twice with 10 ml of ether, and after drying under reduced pressure at 20 DEG C., 3.97 g of (R, S) -4-isopropylphenylalanine is obtained. in the form of a white solid which melts above 260 ° C (see also Takeda Research Vol. 43, No. 3/4, December 1984, pp. 53-76).

36-2: 4-(Izopropylbenzilidén)-2-metyl-5-oxazolón36-2: 4- (Isopropylbenzilidene) -2-methyl-5-oxazolone

Do banky s okrúhlym dnom vybavenej chladičom sa zavedie 18.52 g N-acetylglycínu, 10,6 g octanu sodného, 20 ml18.52 g of N-acetylglycine, 10.6 g of sodium acetate, 20 ml are introduced into a round-bottomed flask equipped with a condenser.

4-izopropylbenzaldehydu a 57 ml anhydridu kyseliny octovej. Zmes sa rozmieša počas 30 minút, potom sa mieša počas jednej hodiny pri teplote 11O°C a potom ešte 15 hodín pri laboratórnej teplote. Reakčná zmes sa potom naleje do 600 ml vody a 400 ml petroléteru, ktorý sa predbežne zohrial na teplotu 50°C. Organická fáza sa dekantuje a vodná fáza sa dvakrát premyje 150 ml petroléteru. Organické fázy sa zlúčia, vysušia nad síranom horečnatým, sfiltrujú sa a zahustia pri zníženom tlaku až na objem 100 ml a získania zrazeniny. Táto zrazenina sa odfiltruje, premyje sa dvakrát 50 ml pentánu, pričom sa získaOf 4-isopropylbenzaldehyde and 57 ml of acetic anhydride. The mixture was stirred for 30 minutes, then stirred for one hour at 110 ° C and then for 15 hours at room temperature. The reaction mixture was then poured into 600 ml of water and 400 ml of petroleum ether, which had been preheated to 50 ° C. The organic phase is decanted and the aqueous phase is washed twice with 150 ml of petroleum ether. The organic phases are combined, dried over magnesium sulphate, filtered and concentrated under reduced pressure to a volume of 100 ml to obtain a precipitate. The precipitate was filtered off, washed twice with 50 ml of pentane to give

8,2 g 4-(.izopropylbenzilidén)-2-metyl-5-oxazolónu vo forme žltého pevného produktu, ktorý sa topí pri teplote 77°C.8.2 g of 4- (isopropylbenzilidene) -2-methyl-5-oxazolone as a yellow solid, melting at 77 ° C.

36-3: (R,S)-4-Butylfenylalanín36-3: (R, S) -4-Butylphenylalanine

Postupuje sa rovnako ako v príklade 36-1 s výnimkou spočívajúcou v tom, že sa z 1,49 g červeného fosforu, 1,8 gThe procedure was as in Example 36-1 except that 1.49 g of red phosphorus, 1.8 g

4-(butylbenzilidén)-2-metyl-5-oxazolónu v 9,23 ml anhydridu kyseliny octovej a 7,39 ml 57 % kyseliny jodovodíkovej získa 0,35 g (R,S)-4-butylfenylalanínu vo forme svetlobéžového pevného produktu, ktorý sa topí pri teplote vyššej ako 260°C.4- (butylbenzilidene) -2-methyl-5-oxazolone in 9.23 ml of acetic anhydride and 7.39 ml of 57% hydroiodic acid gives 0.35 g of (R, S) -4-butylphenylalanine as a light beige solid, which melts above 260 ° C.

36-4: 4-(Butylbenzilidén)-2-metyl-5-oxazolón36-4: 4- (Butylbenzilidene) -2-methyl-5-oxazolone

Postupuje sa rovnako ako v príklade 36-2 s výnimkou spočívajúcou v tom, že sa z 8,43 g N-acetylglycínu, 4,92 g octanu sodného, 9,8 g 4-butylbenzaldehydu a 26 ml anhydridu kyseliny octovej získa 1,89 g 4-(butylbenzilidén)-2-metyl-5-oxazolónu vo forme pevného žltého produktu, ktorý sa topí pri teplote 74°C.The procedure of Example 36-2 is followed except that 1.89 g of 8.43 g of N-acetylglycine, 4.92 g of sodium acetate, 9.8 g of 4-butylbenzaldehyde and 26 ml of acetic anhydride are obtained. g of 4- (butylbenzilidene) -2-methyl-5-oxazolone as a yellow solid, melting at 74 ° C.

Príklad 37Example 37

Príprava derivátu fenylalanínu spôsobom DPreparation of a phenylalanine derivative by Method D

37-1: (R,S)-3-Etoxyfenylalanín-hydrochlorid (alebo (R,S)-3-O-etyltyrozín-hydrochlorid)37-1: (R, S) -3-Ethoxyphenylalanine hydrochloride (or (R, S) -3-O-ethyltyrosine hydrochloride)

Do banky s okrúhlym dnom sa zavedie 1 g (R,S)-terc-butoxykarbonyl-3-etoxyfenylalanínu v roztoku v 3,6 ml dioxánu nasýteného plynným chlorovodíkom a získaná zmes sa mieša počas 5 hodín pri laboratórnej teplote. Vylúčená zrazenina sa odfiltruje, premyje dioxánom a potom éterom a nakoniec sa vysuší pri zníženom tlaku (2,7 kPa, pričom sa získa 0,65 g (R,S)-3-etoxyfenylalanín-hydrochloridu vo forme pevného bieleho produktu, ktorý sa topí pri teplote 200°C.1 g of (R, S) -tert-butoxycarbonyl-3-ethoxyphenylalanine in solution in 3.6 ml of dioxane saturated with hydrogen chloride gas are introduced into a round-bottomed flask and the resulting mixture is stirred for 5 hours at room temperature. The precipitate formed is filtered off, washed with dioxane and then with ether and then dried under reduced pressure (2.7 kPa) to give 0.65 g of (R, S) -3-ethoxyphenylalanine hydrochloride as a white solid, m.p. at 200 ° C.

37-2: (R,S)-N-terc-butoxykarbonyl-3-etoxyfenylalanín37-2: (R, S) -N- tert -Butoxycarbonyl-3-ethoxyphenylalanine

Do banky s okrúhlym dnom sa zavedie 1,33 g (R,S)-etyl-N-terc-butoxykarbonyl-3-etoxyfenylalaninátu v roztoku 8 ml metanolu, potom sa do banky pridá ešte 8 ml IN roztoku hydroxidu sodného. Po 18 hodinách miešania pri laboratórnej teplote sa zmes odparí pri zníženom tlaku, potom sa okyslí IN kyselinou chlorovodíkovou. Produkt sa dvakrát extrahuje 10 ml etylacetátu, organickej fázy sa zlúčia, dvakrát sa premyjú 10 ml vody, vysušia, sfiltrujú a potom sa zahustia do sucha pri zníženom tlaku, pričom sa získa 1 g (R,S)-N-terc-butoxykarbonyl-3-etoxyfenylalanínu vo forme žltého oleja (silikagél Merck 5719, Rf = 0,7, elučná sústava: toluén, metylalkohol a dietylamín v objemovom pomere 80:10:10.1.33 g of (R, S) -ethyl-N-tert-butoxycarbonyl-3-ethoxyphenylalaninate in a solution of 8 ml of methanol are introduced into a round-bottomed flask, then 8 ml of 1N sodium hydroxide solution are added to the flask. After stirring at room temperature for 18 hours, the mixture was evaporated under reduced pressure, then acidified with 1N hydrochloric acid. The product is extracted twice with 10 ml of ethyl acetate, the organic phases are combined, washed twice with 10 ml of water, dried, filtered and then concentrated to dryness under reduced pressure to give 1 g of (R, S) -N-tert-butoxycarbonyl- 3-Ethoxyphenylalanine as a yellow oil (Merck silica gel 5719, Rf = 0.7, eluent: toluene, methanol, and diethylamine in an 80:10:10 by volume ratio).

37-3: (R,S)-Etyl-N-terc-butoxykarbonyl-3-etoxyfenylalaninát37-3: (R, S) -Ethyl-N-tert-butoxycarbonyl-3-ethoxyphenylalaninate

Do banky s okrúhlym dnom sa pod atmosférou dusíka zavedieIt is introduced into a round-bottomed flask under a nitrogen atmosphere

1,5 g (R,S)-N-terc-butoxykarbonyl-3-tyrozínu v roztoku v 7,5 ml dimetylformanidu (bezvodého), potom sa do banky pridá 0,508 g 50 % hydridu sodného v oleji. Po 2 hodinovom miešaní pri laboratórnej teplote sa pridá 0,86 ml jódmetánu, potom sa zmes1.5 g of (R, S) -N-tert-butoxycarbonyl-3-tyrosine in solution in 7.5 ml of dimethylformanide (anhydrous), then 0.508 g of 50% sodium hydride in oil are added to the flask. After stirring at room temperature for 2 hours, iodomethane (0.86 ml) was added followed by stirring

100 mieša počas 4 hodín pri laboratórnej teplote. Zmes sa sfiltruje, výsledný pevný podiel sa premyje trikrát 10 ml vody a dvakrát 10 ml petroléteru, pričom sa získa po vysušení pri zníženom tlaku (2,7 kPa) pri teplote 30°C 1,33 g (R,S)-etyl-N-terc-butoxykarbonyl-3-etoxyfenylalaninátu vo forme pevného bieleho produktu.Stir 100 for 4 hours at room temperature. The mixture is filtered, and the resulting solid is washed three times with 10 ml of water and twice with 10 ml of petroleum ether to give, after drying under reduced pressure (2.7 kPa) at 30 ° C, 1.33 g of (R, S) -ethyl- N-tert-butoxycarbonyl-3-ethoxyphenylalaninate as a white solid.

37-4: (R,S)-N-terc-Butoxykarbonyl-3-tyrozín37-4: (R, S) -N-tert-Butoxycarbonyl-3-tyrosine

Do trojhrdlovej banky sa za miešania zavedie 18 g (R,S)-3-tyrozínu v roztoku v 180 ml dioxánu, potom sa do banky pridá 99 ml IN roztoku hydroxidu sodného a potom ešte 26 g diterc-butylkarbonátu v roztoku v 160 ml dioxánu. Po 36 hodinách miešania sa reakčná zmes zahustí pri zníženom tlaku pri vyberie sa 100 ml destilovanej vody, okyslí sa chlorovodíkovou až po dosiahnutie hodnoty pH a potom sa extrahuje dvakrát 200 ml etylacetátu. Organická fáza sa vysuší nad síranom horečnatým, sfiltruje a potom sa zahustí do sucha pri zníženom tlaku pri teplote 30°C, pričom sa získa 30 g (R,S)-N-terc-butoxykarbonyl-3-tyrozínu vo forme pevného bieleho produktu (silikagél Merck 5719, Rf = 0,25, elučná sústava: zmes toluénu a dimetylamínu v objemovom pomere 80:10) teplote 30°C, IN kyselinou18 g of (R, S) -3-tyrosine in solution in 180 ml of dioxane are introduced into the three-necked flask with stirring, then 99 ml of 1N sodium hydroxide solution are added to the flask, followed by 26 g of di-tert-butyl carbonate in solution in 160 ml of dioxane. . After stirring for 36 hours, the reaction mixture is concentrated under reduced pressure, taken up in 100 ml of distilled water, acidified with hydrochloric acid to pH, and then extracted twice with 200 ml of ethyl acetate. The organic phase is dried over magnesium sulphate, filtered and then concentrated to dryness under reduced pressure at 30 ° C to give 30 g of (R, S) -N-tert-butoxycarbonyl-3-tyrosine as a white solid ( Merck silica gel 5719, Rf = 0.25, eluent: toluene / dimethylamine (80/10 by volume) at 30 ° C, IN acid

Príklad 38Example 38

Príprava derivátov fenylalanínu spôsobom EPreparation of Phenylalanine Derivatives by Method E

38-1: (R,S)-4-dialylaminofenylalanín-dihydrochlorid38-1: (R, S) -4-Dialylaminophenylalanine dihydrochloride

Postupuje sa rovnako ako v príklade 35-1 s výnimkou spočívajúcou v tom, že sa z 5,8 g dietyl-dialylaminobenzylacetamidomalonanu a 48 ml 10N kyseliny chlorovodíkovej získa po odparení pevný produkt, ktorý sa rozotrie v 50 ml acetónu, sfiltruje sa a. opäť sa rozotrie v 10 ml dichlórmetánu, sfiltruje sa a potom sa premyje trikrát 10 ml diétyléteru. Po vysušení pri zníženom tlaku (2,7 kPa) pri teplote 40°C sa získa 4,41 gThe procedure is as in Example 35-1 except that 5.8 g of diethyl dialylaminobenzylacetamidomalononate and 48 ml of 10N hydrochloric acid are obtained after evaporation, which is triturated in 50 ml of acetone, filtered and. it is again triturated in 10 ml of dichloromethane, filtered and then washed three times with 10 ml of diethyl ether. After drying under reduced pressure (2.7 kPa) at 40 ° C, 4.41 g is obtained

101 (R,S)-4-dialylaminofenylalanín-dihydrochloridu vo forme pevného bieleho krehkého produktu, ktorý sa topí pri teplote blízkej 135°C (za rozkladu).101 (R, S) -4-Dialylaminophenylalanine dihydrochloride as a white solid, crisp, melting at near 135 ° C (dec.).

38-2: (R,S)-4-Alylaminofenylalanín-dihydrochlorid38-2: (R, S) -4-Allylaminophenylalanine dihydrochloride

Postupuje sa rovnako ako v príklade 35-1 s výnimkou spočívajúcou v tom, že sa z 3,27 g dietyl-4-alylaminobenzylacetamidomalonanu a 30 ml 10N kyseliny chlorovodíkovej sa získa po odparení pevný produkt, ktorý sa rozotrie v 50 ml acetónu, sfiltruje sa a potom sa vysuší pri zníženom tlaku (2,7 kPa) pri teplote 40°C. Získa sa 2,3 g (R,S)-4-alylaminofenylalanín-dihydrochloridu vo forme pevného bieleho produktu, ktorý sa topí pri teplote blízkej 134°C (za rozkladu).The procedure of Example 35-1 is followed except that 3.27 g of diethyl 4-allylaminobenzylacetamidomalononate and 30 ml of 10N hydrochloric acid are obtained after evaporation which is triturated in 50 ml of acetone, filtered and then dried under reduced pressure (2.7 kPa) at 40 ° C. 2.3 g of (R, S) -4-allylaminophenylalanine dihydrochloride are obtained in the form of a white solid which melts at 134 DEG C. (decomposition).

38-3: Dietyl-4-dialylaminobenzylacetamidomalonát a dietyl-4-alylaminobenzylacetamidomalonan38-3: Diethyl 4-dialylaminobenzylacetamidomalonate and diethyl 4-allylaminobenzylacetamidomalonate

Do trojhrdlovej banky vybavenej prikvapkávacím lievikom a udržiavanou pod atmosférou dusíka sa zavedie 10 g dietyl-4-aminobenzylacetamidomalonanu v roztoku v 150 ml dimetylformamidu. Potom sa pozvoľne pridá pri laboratórnej teplote 6,57 ml alylbromidu a potom ešte 10,76 ml trietylamínu počas miešania. Po 19 hodinách miešania sa opäť pridá 1,31 ml alylbromidu a 2,15 ml trietylamínu a zmes sa mieša 26 hodín. Reakčná zmes sa potom naleje do 1,5 1 destilovanej vody a extrahuje sa 1 litrom etylacetátu. Vodná fáza sa dekantuje, dvakrát premyje 500 ml etylacetátu. Organické fázy sa zlúčia, premyjú 500 ml destilovanej vody a potom 500 ml nasýteného roztoku chloridu sodného, dekantujú sa, vysušia nad síranom horečnatým, sfiltrujú sa a potom sa zahustia do sucha, pričom sa získa hnedý olej, ktorý sa prečistí flash chromatografiou s použitím elučnej sústavy tvorenej zmesou dichlórmetánu a etylacetátu v objemovom pomere 90:10, pričom sa získa 6,66 g dietyl-4-dialylaminobenzylacetamidomalonátu vo forme béžového pevného produktu, ktorý sa topí pri 94 až 96°C (Rf = 0,6, etylacetát/cyklohexán v objemovom pomere 50:50 a 3,49 g dietyl-4-alylaminobenzylacetamidomalonanu vo forme pevného bé102 žového produktu topiaceho sa pri teplote 104 až 106°C (Rf = o, 45, etylacetát/cyklohexán v objemovom pomere 50:50).In a three-necked flask equipped with an addition funnel and kept under a nitrogen atmosphere, 10 g of diethyl 4-aminobenzylacetamidomalonate in solution in 150 ml of dimethylformamide was introduced. 6.57 ml of allyl bromide are then slowly added at room temperature, followed by 10.76 ml of triethylamine while stirring. After stirring for 19 hours, 1.31 ml of allyl bromide and 2.15 ml of triethylamine were added again and the mixture was stirred for 26 hours. The reaction mixture was then poured into 1.5 L of distilled water and extracted with 1 L of ethyl acetate. The aqueous phase is decanted, washed twice with 500 ml of ethyl acetate. The organic phases are combined, washed with 500 ml of distilled water and then with 500 ml of saturated sodium chloride solution, decanted, dried over magnesium sulphate, filtered and then concentrated to dryness to give a brown oil which is purified by flash chromatography using elution. 90:10 mixture of dichloromethane and ethyl acetate to give 6.66 g of diethyl 4-dialylaminobenzylacetamidomalonate as a beige solid, melting at 94-96 ° C (Rf = 0.6, ethyl acetate / cyclohexane) 50:50 v / v and 3.49 g of diethyl 4-allylaminobenzylacetamidomalonate as a white solid, m.p. 104 DEG-106 DEG C. (Rf = 0.45, ethyl acetate / cyclohexane, 50:50 v / v).

Dietyl-4-alylaminobenzylacetamidomalonan sa môže pripraviť podľa: J.B.Burckhalter, V.C.Stephens, J.Am.Chem.Soc. 56, 1951, 73.Diethyl 4-allylaminobenzylacetamidomalonan may be prepared according to: J. Burckhalter, V.C.Stephens, J.Am.Chem.Soc. 56, 1951, 73.

Príklad 39Example 39

Príprava derivátov fenylalanínu spôsobom FPreparation of Phenylalanine Derivatives by Method F

RR

39-1. (R,S)-4-Etylizopropylfenylalanín-dihydrochlorid39-1. (R, S) -4-Etylizopropylfenylalanín dihydrochloride

Postupuje sa rovnako ako v príklade 35-1 s výnimkou spočívajúcou v tom, že sa z 2,9 g dietyl-4-etylizopropylbenzylacetamidomalonanu a 24,6 ml 10N kyseliny chlorovodíkovej získa odparením pevný produkt, ktorý sa rozotrie v 20 ml acetónu, sfiltruje sa a potom vysuší pri zníženom tlaku (2,7 kPa) priThe procedure is as in Example 35-1 except that from 2.9 g of diethyl 4-ethylisopropylbenzylacetamidomalonate and 24.6 ml of 10N hydrochloric acid, a solid is obtained by evaporation which is triturated in 20 ml of acetone, filtered. and then dried under reduced pressure (2.7 kPa) at

103 teplote 40°C. Získajú sa 2 g (R,S)-4-etylizopropylaminofenylalanín-dihydrochloridu vo forme bieleho pevného produktu, ktorí topí pri teplote blízkej 147°C (za rozkladu).103 at 40 ° C. 2 g of (R, S) -4-ethylisopropylaminophenylalanine dihydrochloride are obtained in the form of a white solid which melts at a temperature in the region of 147 DEG C. (with decomposition).

39-2: Dietyl-4-etylizopropylaminobenzylacetamidomalonan39-2: Diethyl-4-ethylisopropylaminobenzylacetamidomalonan

Do trojhrdlovej banky udržiavanej pod atmosférou dusíka sa zavedie 15 g dietyl-4-etylaminobenzylacetamidomalonanu v 70 ml tetrahydrofuránu, potom sa k obsahu banky pridá 6,4 ml 2-jódpropánu a potom 8,4 ml 1,5-diazabicyklo[4,3, 0]non-5-énu a zmes sa potom zohrieva počas 24 hodín na teplotu 60°C. Potom sa pridá 2,13 ml 2-jódpropánu a potom ešte 8,4 ml 1,5-diazabicyklo[ 4,3,0]non-5-énu, potom sa reakčná zmes zohrieva počas ďalších 24 hodín pri teplote 60°C. Zmes sa potom ochladí na laboratórnu teplotu a extrahuje sa 50 ml dichlórmetánu a 50 ml destilovanej vody. Vodná fáza sa dekantuje a potom opäť dvakrát premyje 30 ml dichlórmetánu. Organické fázy sa spoja, premyjú 60 ml destilovanej vody a potom 50 ml nasýteného roztoku chloridu sodného v destilovanej vody, organická fáza sa dekantuje, vysuší nad síranom horečnatým, sfiltruje a potom sa zahustí do sucha pri zníženom tlaku, pričom sa získa 16,3 g produktu, ktorý sa prečistí chromatograficky (flash chromatografiou s použitím elučnej sústavy tvorenej zmesou dichlórmetánu a metanolu v objemovom pomere 90:10). Takto sa získa 4,59 g produktu, ktorý sa rekryštalizuje z 45 ml cyklohexánu, pričom sa získa 3,44 g dietyl-4-etylizopropylaminobenzylacetamidomalonanu vo forme bielych kryštálov topiacich pri teplote 80eC.15 g of diethyl 4-ethylaminobenzylacetamidomalononate in 70 ml of tetrahydrofuran was introduced into a three-necked flask, kept under nitrogen, then 6.4 ml of 2-iodopropane was added to the contents of the flask, followed by 8.4 ml of 1,5-diazabicyclo [4.3, Of O-non-5-ene and the mixture is then heated at 60 ° C for 24 hours. Then 2.13 ml of 2-iodopropane and then 8.4 ml of 1,5-diazabicyclo [4.3.0] non-5-ene are added, followed by heating at 60 ° C for a further 24 hours. The mixture was then cooled to room temperature and extracted with 50 mL of dichloromethane and 50 mL of distilled water. The aqueous phase is decanted and then washed twice more with 30 ml of dichloromethane. The organic phases are combined, washed with 60 ml of distilled water and then with 50 ml of a saturated solution of sodium chloride in distilled water, the organic phase is decanted, dried over magnesium sulphate, filtered and then concentrated to dryness under reduced pressure to give 16.3 g. product, which is purified by chromatography (flash chromatography eluting with a dichloromethane / methanol (90:10 by volume) mixture). This gives 4.59 g of product, which is recrystallized from 45 ml of cyclohexane to give 3.44 g of diethyl 4-etylizopropylaminobenzylacetamidomalonanu as white crystals melting at 80 e C.

39-3: Dietyl-4-etylaminobenzylacetymidomalonan39-3: Diethyl-4-ethylaminobenzylacetymidomalonan

Dietyl-4-etylaminobenzylacetymidomalonan sa môže pripraviť spôsobom opísaným v príklade 35-7 s výnimkou spočívajúcou v tom, že sa z 22 g dietyl-4-aminobenzylacetamidomalonanu, 500 ml etanolu a 70 g Raneyova niklu získa 23,8 g dietyl-4-etylaminobenzylacetymidomalonanu vo forme bieleho krehkého produktu topiaceho pri teplote 136°C.Diethyl 4-ethylaminobenzylacetymidomalonan can be prepared as described in Example 35-7 except that 23.8 g diethyl-4-ethylaminobenzylacetymidomalonate is obtained from 22 g diethyl 4-aminobenzylacetamidomalonan, 500 ml ethanol and 70 g Raney nickel. as a white, brittle product melting at 136 ° C.

104104

9-4: (R,S)-4-Alyletylaminofenylalanín-hydrochlorid9-4: (R, S) -4-Allylethylaminophenylalanine hydrochloride

Postupuje sa rovnako ako v príklade 35-1 s výnimkou spočívajúcou v tom, že sa z 4,54 g dietyl-4-alyletylbenzylacetamidomalonanu a 37,9 ml 10N kyseliny chlorovodíkovej získa po odparení pevný produkt, ktorý sa vysuší pri zníženom tlaku (2,7 kPa) pri teplote 40°C. Získa sa 3,67 g (R,S)-4-alyletylaminofenylalanínu vo forme hnedého pevného produktu, ktorý topí pri teplote blízkej 130°C (za rozkladu).The procedure of Example 35-1 is followed except that from 4.54 g of diethyl 4-allylethylbenzylacetamidomalonate and 37.9 ml of 10N hydrochloric acid, a solid is obtained after evaporation which is dried under reduced pressure (2, 3). 7 kPa) at 40 ° C. 3.67 g of (R, S) -4-allylethylaminophenylalanine are obtained in the form of a brown solid which melts at a temperature in the region of 130 DEG C. (with decomposition).

39-5: Dietyl-4-alyletylaminobenzylacetamidomalonan39-5: Diethyl-4-allylethylaminobenzylacetamidomalonan

Postupuje sa rovnako ako v príklade 39-2 s výnimkou spočívajúcou v tom, že sa z 8 g dietyl-4-etylaminobenzylacetamidomalonanu, 4 ml alylbromidu, 5,82 ml 1,5-diazabicyklo[4,3,0]non-5-énu v 50 ml tetrahydrofuránu získa po prečistení flash chromatografiou s použitím elučnej sústavy tvorenej zmesou dichlórmetánu a etylacetátu v objemovom pomere 90:10 5,6 g pevného produktu, ktorý sa rekryštalizuje z 35 ml cyklohexánu. Takto sa získa 5,43 g dietyl-4-alyletylaminobenzylacetamidomalonanu vo forme bieleho pevného produktu topiaceho pri teplote 86°C.The procedure is as in Example 39-2 except that from 8 g of diethyl 4-ethylaminobenzylacetamidomalonan, 4 ml of allyl bromide, 5.82 ml of 1,5-diazabicyclo [4.3.0] non-5- Purification by flash chromatography, eluting with a dichloromethane / ethyl acetate mixture (90:10; v / v) gave 5.6 g of a solid which was recrystallized from 35 ml of cyclohexane. 5.43 g of diethyl 4-allylethylaminobenzylacetamidomalononate are thus obtained in the form of a white solid melting at 86 ° C.

39-6: (R,S)-4-Etylpropylaminofenylalanín-dihydrochlorid39-6: (R, S) -4-Ethylpropylaminophenylalanine dihydrochloride

Postupuje sa rovnako ako v príklade 35-1 v výnimkou spočívajúcou v tom, že sa z 2,5 g dietyl-4-etylpropylaminobenzylacetamidomalonanu a 21 ml 10N kyseliny chlorovodíkovej sa získa po odparení pevný produkt, ktorý sa vysuší pri zníženom tlaku (2,7 kPa) pri teplote 40°C a získajú sa 2 g (97 š) (R,S) -4-etylpropylaminofenylalanín-dihydrochloridu vo forme pevného bieleho produktu topiaceho sa pri teplote blízkej 147°C (za rozkladu).The procedure is as in Example 35-1 except that 2.5 g of diethyl 4-ethyl-propylamino-benzylacetamidomalonate and 21 ml of 10N hydrochloric acid are obtained after evaporation to give a solid which is dried under reduced pressure (2.7 g). kPa) at 40 ° C to give 2 g (97%) of (R, S) -4-ethylpropylaminophenylalanine dihydrochloride as a white solid melting at a temperature near 147 ° C (dec.).

39-7: Dietyl-4-etylpropylaminobenzylacetamidomalonan39-7: Diethyl-4-ethylpropylaminobenzylacetamidomalonan

Postupuje sa rovnako ako v príklade 39-2 s výnimkou spočívajúcou v tom, že sa z 10 g diéty1-4-etylaminobenzylacetami105 domalonanu, 5,6 ml 1-jódpropánu, 7,2 ml 1,5-diazabicyklo[4,3, 0]non-énu v 70 ml tetrahydrofuránu získa po 36 hodinách reakcie a potom po chromatografickom prečistení flash chromatografiou s použitím elučnej sústavy tvorenej zmesou dichlórmetánu a metanolu v objemovom pomere 97:3, 2,8 g pevného produktu, ktorý sa rekryštalizuje z 26 ml cyklohexánu. Takto sa získaThe procedure was as in Example 39-2 except that from 10 g of diethyl-4-ethylaminobenzylacetam105 domalonate, 5.6 ml of 1-iodopropane, 7.2 ml of 1,5-diazabicyclo [4.3.0.0] of non-ene in 70 ml of tetrahydrofuran, after 36 hours of reaction and then after flash chromatography using a 97: 3 mixture of dichloromethane and methanol, 2.8 g of solid product, which is recrystallized from 26 ml of cyclohexane. . This is obtained

2,9 g dietyl-4-etylpropylaminobenzylacetamidomalonanu vo forme pevného bieleho produktu, topiaceho pri teplote 84 až 86°C.2.9 g of diethyl 4-ethylpropylaminobenzylacetamidomalonate as a white solid, melting at 84-86 ° C.

39-8:39-8:

(R,S)-4-Etylmetylcyklopropylaminofenylalanín-dihydrochlorid(R, S) -4-Etylmetylcyklopropylaminofenylalanín dihydrochloride

Postupuje sa rovnako ako v príklade 35-1 s výnimkou spočívajúcou v tom, že z 3 g dietyl-4-etylmetylcykIopropylaminobenzylacetamidomalonanu a 25 ml 10N kyseliny chlorovodíkovej po 3 dňoch reakcie a potom po odparení sa získa pevný produkt, ktorý sa rozotrie v 40 ml acetónu, odfiltruje, vysuší pri zníženom tlaku (2,7 kPa) pri teplote 40°C. Získa sa 2,24 g (R,S)~ -4-etylmetylcyklopropylaminofenylalanín-dihydrochloridu vo forme pevného bieleho produktu, topiaceho pri teplote blízkej 140°C (za rozkladu).The procedure of Example 35-1 is followed except that 3 g of diethyl 4-ethylmethylcyclopropylaminobenzylacetamidomalonate and 25 ml of 10N hydrochloric acid are obtained after 3 days of reaction and then evaporated to give a solid which is triturated in 40 ml of acetone. , filtered, dried under reduced pressure (2.7 kPa) at 40 ° C. 2.24 g of (R, S) -4-ethylmethylcyclopropylaminophenylalanine dihydrochloride are obtained in the form of a white solid, melting at a temperature in the region of 140 DEG C. (with decomposition).

39-9: Dietyl-4-etylmetylcyklopropylaminobenzylacetamidomalonan39-9: Diethyl-4-ethylmethylcyclopropylaminobenzylacetamidomalonan

Postupuje sa rovnako ako v príklade 39-2 s výnimkou spočívajúcou v tom, že z 8 g dietyl-4-etylaminobenzylacetamidomalonanu, 2,6 ml brómmetylcyklopropánu, 2,97 ml 1,5-diazabicyklo [4,3,0]non-5-énu v 50 ml tetrahydrofuránu po 3 dňoch reakcie a po chromatografickom prečistení flash chromatografiou s použitím elučnej sústavy tvorenej zmesou dichlórmetánu a etylacetátu v objemovom pomere 90:10 3,3 g dietyl-4-etylmetylcyklopropylaminobenzylacetamidomalonanu vo forme pevného bieleho produktu, ktorý sa topí pri teplote 112 až 114°C.The procedure was as in Example 39-2 except that from 8 g of diethyl 4-ethylaminobenzylacetamidomalonan, 2.6 ml of bromomethylcyclopropane, 2.97 ml of 1,5-diazabicyclo [4.3.0] non-5 -enene in 50 ml of tetrahydrofuran after 3 days of reaction and after flash chromatography using a 90:10 mixture of dichloromethane and ethyl acetate, 3.3 g of diethyl 4-ethylmethylcyclopropylaminobenzylacetamidomalonane as a white solid, m.p. 112-114 ° C.

106106

Príklad 40Example 40

Príprava derivátov fenylalanínu spôsobom GPreparation of Phenylalanine Derivatives by Method G

40-1: (R, S) -4- (Pyrolidinyl) fenylalanín-dihydrochlorid40-1: (R, S) -4- (Pyrrolidinyl) phenylalanine dihydrochloride

Postupuje sa rovnako ako v príklade 35-1 s výnimkou spočívajúcou v tom, že sa z 1,5 g dietyl-4-(1-pyrolidinyl)benzylacetamidomalonanu a 40 ml 5N kyseliny chlorovodíkovej sa po odparení získa pevný produkt, ktorý sa rozotrie v 15 ml acetónu, odfiltruje a vysuší pri zníženom tlaku (2,7 kPa) pri teplote 40°C. Získa sa 0,6 g (R,S )-4-(pyrolidinyl)fenylalanín-dihydrochloridu vo forme krehkého bieleho produktu.The procedure of Example 35-1 is followed except that 1.5 g of diethyl 4- (1-pyrrolidinyl) benzylacetamidomalonate and 40 ml of 5N hydrochloric acid are obtained after evaporation to give a solid which is triturated in 15 g. ml of acetone, filtered and dried under reduced pressure (2.7 kPa) at 40 ° C. 0.6 g of (R, S) -4- (pyrrolidinyl) phenylalanine dihydrochloride is obtained as a brittle white product.

40-2: Diet.yl-4-(1-pyrolidinyl)benzylacetamidomalonan40-2: Diethyl-4- (1-pyrrolidinyl) benzylacetamidomalonan

Do autoklávu sa zavedú 4 g dietyl-4-(l-pyrolyl)-benzylacetamidomalonanu v roztoku v 100 ml metanolu a 1 g 10 % paládia na uhlí. Po trojnásobnom prepláchnutí dusíkom sa produkt hydrogenuje pri tlaku 1,4 MPa a pri teplote 19°C. Po 25 hodinách miešania sa hydrogenácia preruší, hydrogenačný katalyzátor sa odstráni filtráciou cez filtračný prostriedok ClarcelR, premyje sa dichlórmetánom a filtrát sa zahustí pri zníženom tlaku, pričom sa získa 3,85 g pevného produktu, ktorý sa rozotrie v zmesi 50 ml heptánu a 10 ml dietyléteru. Pevný podiel4 g of diethyl 4- (1-pyrrolyl) -benzylacetamidomalonan in solution in 100 ml of methanol and 1 g of 10% palladium on carbon are introduced into the autoclave. After purging with nitrogen three times, the product is hydrogenated at 1.4 MPa at 19 ° C. After stirring for 25 hours, the hydrogenation was discontinued, the hydrogenation catalyst was removed by filtration through Clarcel R , washed with dichloromethane, and the filtrate was concentrated under reduced pressure to give 3.85 g of a solid which was triturated in 50 ml of heptane and 10 ml. ml diethyl ether. Solid proportion

107 sa odfiltruje, vysušia prečistí flash chromatografiou s použitím elučnej sústavy tvorenej zmesou dichlórmetánu a acetónu v objemovom pomere 90:10, pričom sa získa 1,6 g dietyl-4-(1-pyrolidinyl)benzylacetamidomalonanu vo forme pevného bieleho produktu, ktorý sa topí pri teplote 132°C.107 was filtered, dried and purified by flash chromatography, eluting with dichloromethane / acetone (90:10) to give 1.6 g of diethyl 4- (1-pyrrolidinyl) benzylacetamidomalonate as a white solid, m.p. at 132 ° C.

40-3: Dietyl-4-(1-pyrolyl)benzylacetamidomalonan40-3: Diethyl 4- (1-pyrrolyl) benzylacetamidomalonan

Do trojhrdlovej banky udržiavanej pod atmosférou dusíka sa zavedie 4,6 g dietyl-4-aminobenzylacetamidomalonanu v 104 ml kyseliny octovej. Pridá sa 7,02 g octanu sodného a potom 1,87 ml 2,5-dimetoxytetrahydrofuránu. Reakčná zmes sa zohreje na teplotu 65°C a na tejto teplote sa udržiava počas jednej hodiny a 15 minút, potom sa extrahuje 100 ml dichlórmetánu a 100 ml destilovanej vody. Vodná fáza sa dekantuje a potom sa premyje 100 ml dichlórmetánu. Organické fázy sa zlúčia, premyjú 1.00 ml vody a potom 100 ml nasýteného vodného roztoku chloridu sodného, dekantujú sa a potom sa vysušia nad síranom horečnatým, potom sa sfiltrujú a odparia do sucha pri zníženom tlaku (50 kPa), pričom sa získa 6,2 g pevného produktu, ktorý sa prečistí flash chromatografiou s použitím elučnej sústavy tvorenej zmesou dichlórmetánu a acetónu v objemovom pomere 75: 25. Získa sa takto 3,57 g dietyl-4-(1-pyrolyl)benzylacetamidomalonanu vo forme béžového pevného produktu, ktorý sa topí pri teplote 110°C.4.6 g of diethyl 4-aminobenzylacetamidomalonan in 104 ml of acetic acid are introduced into a three-necked flask maintained under nitrogen. 7.02 g of sodium acetate are added, followed by 1.87 ml of 2,5-dimethoxytetrahydrofuran. The reaction mixture is heated to 65 ° C and maintained at this temperature for one hour and 15 minutes, then extracted with 100 ml of dichloromethane and 100 ml of distilled water. The aqueous phase is decanted and then washed with 100 ml of dichloromethane. The organic phases are combined, washed with 1.00 ml of water and then with 100 ml of saturated aqueous sodium chloride solution, decanted and then dried over magnesium sulphate, then filtered and evaporated to dryness under reduced pressure (50 kPa) to give 6.2 g. The solid was purified by flash chromatography using a 75/25 mixture of dichloromethane and acetone to give 3.57 g of diethyl 4- (1-pyrrolyl) benzylacetamidomalonate as a beige solid which was purified by flash chromatography. melting at 110 ° C.

Príklad derivátov fenylalanínu spôsobom HExample of phenylalanine derivatives by method H

41-1: (R,S)-4-EtyltiometyIfenylalanín41-1: (R, S) -4-Ethylthiomethylphenylalanine

Do trojhrdlovej banky udržiavanej pod atmosférou dusíka sa zavedie 300 ml bezvodého metanolu, potom sa pridá počas miešania 1,72 g metoxidu sodného a potom ešte 5,55 ml etylmerkaptánu. Rozpúšťadlo sa zahustí pri zníženom tlaku pri teplote 40°C, pričom sa získa 8,5 g sodnej soli etylmerkaptánu, ktorá sa uvedie do roztoku rozpustením v 100 ml bezvodého tetrahydrofuránu. Pri laboratórnej teplote sa pridá 3,6 g (R,S)-4108300 ml of anhydrous methanol are introduced into a three-necked flask, kept under a nitrogen atmosphere, then 1.72 g of sodium methoxide are added while stirring, followed by 5.55 ml of ethyl mercaptan. The solvent was concentrated under reduced pressure at 40 ° C to give 8.5 g of ethyl mercaptan sodium which was dissolved in 100 ml of anhydrous tetrahydrofuran. 3.6 g of (R, S) -4108 are added at room temperature

-chlórmetylfenylalanín, potom sa zmes zohrieva počas 10 hodín na teplotu varu pod spätným chladičom. Rozpúšťadlo sa odparí pri zníženom tlaku pri teplote 40°C a zvyšok sa vyberie 100 ml destilovanej vody. Získaný kalný roztok sa okyslí 5 ml kyseliny octovej. Vylúčená zrazenina sa odfiltruje, premyje destilovanou vodou a potom sa vysuší pri zníženom tlaku pri teplote 60°C, pričom sa získa 3,6 g pevného produktu, ktorý sa prečistí flash chromátografiou s použitím elučnej sústavy vytvorenej zmesou etylacetátu, kyseliny octovej a vody v objemovom pomere 60:12:10. Takto sa získa 256 mg (R,S)-4-etyltiometylfenylalanínu vo forme bieleho pevného produktu, ktorý sa topí pri teplote 251°C.-chloromethylphenylalanine, then the mixture is heated at reflux for 10 hours. The solvent was evaporated under reduced pressure at 40 ° C and the residue was taken up in 100 ml of distilled water. The cloudy solution obtained is acidified with 5 ml of acetic acid. The precipitate formed is filtered off, washed with distilled water and then dried under reduced pressure at 60 ° C to give 3.6 g of a solid which is purified by flash chromatography, eluting with a mixture of ethyl acetate, acetic acid and water by volume. ratio 60:12:10. There was thus obtained (R, S) -4-ethylthiomethylphenylalanine (256 mg) as a white solid which melted at 251 ° C.

(R,S)-4-chlórmetylfenylalanín sa môže získať analogicky ako (S)-4-chlórmetylfenylalanín podľa: R.Gonzalez-Muniz,(R, S) -4-chloromethylphenylalanine can be obtained analogously to (S) -4-chloromethylphenylalanine according to: R.Gonzalez-Muniz,

F.Cornille, F.Bergeron, D.Ficheux, J.Pothier, C.Duriex a B.Rogues, Int.J.Pept.Protein.Res., 1991, 37 (41), 331-340.F.Cornille, F.Bergeron, D. Ficheux, J.Pothier, C. Duriex and B. Rogues, Int.J.Pept.Protein.Res., 1991, 37 (41), 331-340.

Príklad 42Example 42

Príprava derivátov fenylalanínu spôsobom IPreparation of Phenylalanine Derivatives by Method I

42-1: (S)-4-0-(2-Chlóretyl)tyrozín-hydrochlorid42-1: (S) -4-O- (2-Chloroethyl) tyrosine hydrochloride

Do banky s okrúhlym dnom sa zavedie 5 g (s)-N-terc-butoxykarbonyl-4-0-(2-chlóretyl)tyrozín v roztoku v 50 ml dioxánu nasýteného kyselinou chlorovodíkovou. Po 28 hodinovom miešaní sa zmes zahustí do sucha pri zníženom tlaku. Získaný zvyšok sa vyberie 50 ml éteru, mieša sa a potom sfiltruje. Pevný podiel sa dvakrát premyje 25 ml dietyléteru, vysuší sa pri zníženom tlaku, pričom sa získa 1,58 g (S)-4-0-(2-chlóretyl)tyrozínu vo forme pevného bieleho produktu, ktorý sa topí pri teplote 260°C.5 g of (s) -N-tert-butoxycarbonyl-4-O- (2-chloroethyl) tyrosine in solution in 50 ml of dioxane saturated with hydrochloric acid are introduced into a round-bottomed flask. After stirring for 28 hours, the mixture was concentrated to dryness under reduced pressure. The residue is taken up in 50 ml of ether, stirred and then filtered. The solid is washed twice with 25 ml of diethyl ether, dried under reduced pressure to give 1.58 g of (S) -4-O- (2-chloroethyl) tyrosine as a white solid, m.p. .

109109

42-2: (S)-N-terc-Butoxykarbonyl-4-Ο-(2-chlóretyl)tyrozín42-2: (S) -N-tert-Butoxycarbonyl-4- [2- (2-chloroethyl) tyrosine

Do trojhrdlovej banky sa pod atmosférou dusíka zavediel4 g (S)-N-terc-butoxykarbonyltyrozínu v roztoku v 140 ml dimetylformamidu. Pridá sa 4,8 g 50 % hydridu sodného v oleji, pričom toto pridanie sa uskutočňuje pozvoľna pomocou špachtle. Po 2 hodinách pri laboratórnej teplote 16,87 g l-tozyl-2-chlóretanolu. Po dvojhodinovom miešaní sa pridá 2, 4 g 50 % hydridu sodného v oleji a 8,4 ml ďalšieho podielu l-tozyl-2-chlóretanolu. Rovnaká operácia sa uskutoční po 24 h a v miešaní sa pokračuje počas ďalších 24 hodín. Reakcia sa preruší pridaním 100 ml destilovanej vody a reakčná zmes sa zahustí do sucha pri zníženom tlaku. Získaný zvyšok sa vyberie 100 ml destilovanej vody, zmes sa extrahuje trikrát 100 ml etylacetátu. Vodná fáza sa dekantuje, okyslí 50 ml IN kyseliny chlorovodíkovej až po dosiahnutie pH 3a produkt sa extrahuje trikrát 100 ml etylacetátu. Organické fázy sa zlúčia, dvakrát premyjú 50 ml vody, dekantujú, vysušia nad síranom horečnatým, sfiltrujú a potom zahustia do sucha pri zníženom tlaku, pričom sa získa 13,51 g (S)-N-terc-butoxykarbonyl-4-0-(2-chlóretyl)tyrozínu vo forme hnedého oleja (Rf=0,5, zmes toluénu, metanolu a dietylamínu v objemovom pomere 70:20:10), ktorá sa použije ako taký v nasledujúcom reakčnom stupni.4 g of (S) -N-tert-butoxycarbonyltyrosine in solution in 140 ml of dimethylformamide were introduced into a three-necked flask under a nitrogen atmosphere. 4.8 g of 50% sodium hydride in oil are added slowly by means of a spatula. After 2 hours at room temperature, 16.87 g of 1-tosyl-2-chloroethanol. After stirring for 2 hours, 2.4 g of 50% sodium hydride in oil and 8.4 ml of an additional portion of 1-tosyl-2-chloroethanol were added. The same operation is performed after 24 h and stirring is continued for another 24 hours. The reaction is quenched by the addition of 100 ml of distilled water and the reaction mixture is concentrated to dryness under reduced pressure. The residue is taken up in 100 ml of distilled water and extracted three times with 100 ml of ethyl acetate. The aqueous phase is decanted, acidified with 50 ml of 1N hydrochloric acid until pH = 3 and the product is extracted three times with 100 ml of ethyl acetate. The organic phases are combined, washed twice with 50 ml of water, decanted, dried over magnesium sulphate, filtered and then concentrated to dryness under reduced pressure to give 13.51 g of (S) -N-tert-butoxycarbonyl-4-O- ( 2-chloroethyl) tyrosine as a brown oil (Rf = 0.5, 70:20:10 toluene / methanol / diethylamine) which was used as such in the next step.

110110

Tabuľka VTable V

Mikroorgani zmy Microorganisms Antibiotiká antibiotics Huby mushrooms Micromonosoora so. Micromonosoora so. Vernamycíny vernamycin STREPTOMYCES STREPTOMYCES S.alborectus S.alborectus Virginiamycíny virginiamycin S.conganensis (ATCC13528) S.diastaticus S..conganensis (ATCC13528) S.diastaticus F1370 A, B Plauracíny, F1370 A Plauracíny. Streptogramíny streptogramins S. crraminof asciens S. crraminof asciens Streptogramíny streptogramins S.crriseus ÍNRRL2426) S.crriseus ÍNRRL2426) Viridogriséin (Etamycín) Viridogriséin (Etamycin) S. crriseovir idus S. crriseovir idus Griseoviridln Griseoviridln S.crriseoviridus ÍFERMP3562) S.crriseoviridus ÍFERMP3562) Néoviridogriséiny Néoviridogriséiny S.íavendulae S.íavendulae Etamycíny etamycin S.lo'idensis ÍATCC114151 S.mitakaensis ÍATCC152971 S.olivaceus ÍATCC12019) S.lo'idensis IATCC114151 S.mitakaensis IATCC152971 S.olivaceus IATCC12019) Vernamycíny Mikamycíny Synergistíny (PA114 A,B) Ostréogrycíny vernamycin Micamycins Synergistins (PA114 A, B) Osteogrycins S.ostréoariseus (ATCC27455) S.ostréoariseus (ATCC27455) S. pristinaespiralis (ATCC254861 S. pristinaespiralis (ATCC254861) Pristinamycíny pristinamycin S.virainiae ÍÄTCC13161) S.virainiae (ÄTCC13161) Virginiamycíny (Staphylomycíny) Virginiamycins (Staphylomycins) ACTINOMYCETES actinomycetes A.auranticolor (ATCC31011) A.Auranticolor (ATCC31011) Plauracíny Plauracíny A.azureus (ATCC31157) A.azureus (ATCC31157) Plauracíny Plauracíny A.daahestanicus A.daahestanicus Etamycín etamycin A.phi1ippinens i s A.phiippinens i s A-2315 A, B, C A-2315 A, B, C Actinoplanes sd. ÍATCC33002) Actinoplanes sd. ÍATCC33002) A15104 A15104 Actinoplanes sd. Actinoplanes sd. A17002 A, B, C, F A17002 A, B, C, F Actinomadura flava Actinomadura flava Madumycíny Madumycíny

111111

Použité skratky:Abbreviations used:

DNA kyselina deoxyribonukleováDNA deoxyribonucleic acid

AMP adenozin-5'-monofosfát dCTP deoxycytozín-5'-trifosfátAMP adenosine-5'-monophosphate dCTP deoxycytosine-5'-triphosphate

DMPAPA 4-dimetylamino-L-fenylalanínDMPAPA 4-dimethylamino-L-phenylalanine

HT7 Hickey-Tresnerovo pevné kultivačné prostredieHT7 Hickey-Tresner solid culture medium

3-HPA kyselina 3-hydroxypikolinová3-HPA 3-hydroxypicolinic acid

IPTG izopropyl-B-D-tiogalaktopyranozid kb kilobázaIPTG isopropyl-β-D-thiogalactopyranoside kb kilobase

LB kultivačné prostredie Luria (obohatené rastové prostredie pre Escherichia coliLB Luria culture medium (enriched growth medium for Escherichia coli

MMPAPA 4-metylamino-L-fenylalnínMMPAPA 4-methylamino-L-phenylalanine

PAPA 4-amino-L-fenylalanínPAPA 4-amino-L-phenylalanine

PEG polyetylénglykolPEG polyethylene glycol

PI pristinamycín IPI pristinamycin I

Píl pristinamycín II pb pár bázSaw pristinamycin II pb base pair

SAM S-adenozylmetionínSAM S-adenosylmethionine

TE puf or lOmM Tris-HCl, lmM EDTA, pH 7,5TE buffer or 10 mM Tris-HCl, 1 mM EDTA, pH 7.5

Tris amino-2-hydroxymetyl-2-propán-l, 3-diolTris amino-2-hydroxymethyl-2-propane-1,3-diol

X-gal 5-bróm-4-chlór-3-indolyl-B-D-galaktozidX-gal 5-bromo-4-chloro-3-indolyl-β-D-galactoside

YEME kultivačné médium na báze kvasničného extraktu a sladového extraktu (obohatené rastové prostredie pre Streptomyces).YEME culture medium based on yeast extract and malt extract (enriched growth medium for Streptomyces).

Bibliografia:Bibliography:

- Bibb M. J., Findlay P. R. a Johnson M. W. (1984) Gene, 30 : 157-166.- Bibb M. J., Findlay P. R. and Johnson M. W. (1984) Gene, 30: 157-166.

- Bibb M. J., Janssen G. R., a WardJ. M. (1985) Gene, 38 :215-226.- Bibb M. J., Janssen G. R., and WardJ. M. (1985) Gene 38: 215-226.

- Cocito C. G. (1979) MicrobioL Rev., 43 : 145-198.- Cocito C. G. (1979) Microbiol Rev., 43: 145-198.

- Cocito C. G. (1983) In Antibiotics, 6 : (Ed. F. E. Hahn), 296-332.- Cocito C.G. (1983) In Antibiotics, 6: (Ed. F. E. Hahn), 296-332.

- Dessen P. C., Fondrat C., Valencien C. a Mugnier C. (1990) Comp. Appl. in Biosciences, 6 : 355-356.- Dessen P. C., Fondrat C., Valencien C. and Mugnier C. (1990) Comp. Appl. in Biosciences, 6: 355-356.

- Di Giambattista M., Chinali G. a Cocito C. G. (1989) J. Antim. Chemother., 24 : 485-507.- Di Giambattista M., Chinali G. and Cocito C. G. (1989) J. Antim. Chemother., 24: 485-507.

- Gibson TJ. (1984) Ph.D. thesis, Cambridge University, England.- Gibson TJ. (1984) Ph.D. thesis, Cambridge University, England.

- Hillemann D., Piilher A. a Wohlleben W. (1991) NucL Acids Res., 19 : 727-731.Hillemann D., Piilher A. and Wohlleben W. (1991) NucL Acids Res., 19: 727-731.

112112

- Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M. a Scrempf H. (1985) A laboratory manual., The John Innes Fondation, Norwich, England.Hopwood, D. A., Bibb, M. J., Chater, K. F., Kieser, T., Bruton, C. J., Kieser, H. M., Lydiate, D. J., Smith, C. P., Ward, J. M., and Scrempf, H. (1985).

- Hudson G. S. a Davidson B. E. (1984) J. MoL Biol., 180 : 1023-1051.Hudson G. S. and Davidson B. E. (1984) J. MoL Biol., 180: 1023-1051.

- Kuhstoss S., Richardson M. A., a Rao R. N. (1991) Gene 97 : 143-146.Kuhstoss S., Richardson M.A., and Rao R. N. (1991) Gene 97: 143-146.

- Maniatis T., Fritsh E. F. a Sambrook J. (1989) Molecular cioning : a laboratory manual. Cold Spring Harbor, N. Y.,- Maniatis T., Fritsh E. F. and Sambrook J. (1989) Molecular cioning: a laboratory manual. Cold Spring Harbor, N.Y.,

- Messing J., Crea R. a Seeburg P. H. (1981) Nucleic Acids Res., 9 : 309.Messing J., Crea R. and Seeburg P. H. (1981) Nucleic Acids Res., 9: 309.

- Molinero A. A., Kingston D, G. I., a Reed J. W. (1989) J. Nat. Prod., 52 : 99108.Molinero A.A., Kingston D, G.I., and Reed J.W. (1989) J. Nat. Prod., 52: 99108.

- Omer C. A.. Lenstra R., Litle P. J., Dean J., Tepperman J. M., Leto K. J., Romesser J. A., a O'Keefe D. P. (1990) J. Bact. 172 : 3335-3345.Omer C. A. Lenstra R., Litle P. J., Dean J., Tepperman J. M., Leto K. J., Romesser J. A., and O'Keefe D. P. (1990) J. Bact. 172: 3335-3345.

- Reed J. W., Purvis M. B., Kingston D. G. I., Biot A., a Gosselé F. (1989) J. Org. Chem. 54 : 1161-1165.- Reed J.W., Purvis M.B., Kingston D.G. I, Biot A., and Gosselé F. (1989) J. Org. Chem. 54: 1161-1165.

- Staden R. a McLachlan A. D. (1982) Nucleic Acids Res., 10 : 141-156.Staden R. and McLachlan A. D. (1982) Nucleic Acids Res., 10: 141-156.

- Schindler U., Sans N., a Schróder J. (1989) J. Bact. 171 : 847-854.Schindler, U., Sans, N., and Schroder, J. (1989) J. Bact. 171: 847-854.

- Thorson J. S.; Lo S. F„ a Liu H-W. (1993) J. Am. Chem. Soc. 115 : 6993-6994.- Thorson J.S .; Lo S.F. and Liu H-W. (1993) J. Am. Chem. Soc. 115: 6993-6994.

- Videau D. (1982) Path. Biol., 30 : 529-534.- Videau, D. (1982) Path. Biol., 30: 529-534.

Zoznam sekvenciíSequence list

Informácia pre SEQ ID č.l:Information for SEQ ID No. 1:

charakteristiky sekvencie: dĺžka: 2888 párov báz typ: nukleová kyselina počet reťazcov: dvojreťazec konfigurácia: lineárna typ molekuly: DNAc hypotetická nie antimediátorová: nie pôvod: organizmus Streptomyces pristinaespiralis popis sekvencie: SEQ ID č.l:sequence characteristics: length: 2888 base pairs type: nucleic acid number of chains: double-stranded configuration: linear molecule type: DNAc hypothetical not antisense: not origin: organism Streptomyces pristinaespiralis sequence description: SEQ ID NO: 1:

20 30 40 50 6020 30 40 50 60

CTGCAGTTCC CCGGGGCCAC CGTGCTCAGC TCCTCACCCG AACGGTTCCT GCGCATCGGCCTGCAGTTCC CCGGGGCCAC CGTGCTCAGC TCCTCACCCG AACGGTTCCT GCGCATCGGC

80 90 100 Π0 12080 90 100 Π0 120

GCGGACGGCT GGGCGGAGTC CAAACCCATC AAGGGCACCC GCCCCCGCGG CGCCGGCCCCGCGGACGGCT GGGCGGAGTC CAAACCCATC AAGGGCACCC GCCCCCGCGG CGCCGGCCCC

130 140 150 160 170 180130 140 150 160 170 180

GCCCAGGACG CCGCCGTCAA GGCCTCCCTC GCCGCGGCCG AGAAGGACCG CAGGGAGAACGCCCAGGACG CCGCCGTCAA GGCCTCCCTC GCCGCGGCCG AGAAGGACCG CAGGGAGAAC

113113

190 CTGATGATCG 190 CTGATGATCG 200 TCGACCTGGT 200 TCGACCTGGT 210 CCGCAACGAC 210 CCGCAACGAC 220 CTCGGCCAGG 220 CTCGGCCAGG 230 TCTGCGACAT 230 TCTGCGACAT 240 CGGCTCCGTC 240 CGGCTCCGTC 250 CACGTACCGG 250 CACGTACCGG 260 GCCTGTTCGA 260 GCCTGTTCGA 270 GGTGGAGACC 270 GGTGGAGACC 280 TACGCCACCG 280 TACGCCACCG 290 TCCACCAGCT 290 TCCACCAGCT 300 CGTCAGCACG 300 CGTCAGCACG 310 GTCCGCGGCC 310 GTCCGCGGCC 320 GCCTGGGGGC 320 GCCTGGGGGC 330 CGACGTCTCC 330 CGACGTCTCC 340 CGCCCCCGCG 340 CGCCCCCGCG 350 CGGTACGGGC 350 CGGTACGGGC 360 CGCCTTCCCC 360 CGCCTTCCCC 370 370 380 380 390 GCCCAAGGTC 390 GCCCAAGGTC 400 CGCACCATGC 400 CGCACCATGC 410 AGTTCATCGA 410 AGTTCATCGA 420 CCGGCTCGAG 420 CCGGCTCGAG 430 AAGGGCCCGC 430 AAGGGCCCGC 440 GCGGCGTGTA 440 GCGGCGTGTA 450 CTCGGGCGCG 450 CTCGGGCGCG 460 CTGGGCTACT 460 CTGGGCTACT 470 TCGCCCTCAG 470 TCGCCCTCAG 480 CGGCGCGGCC 480 CGGCGCGGCC 490 GACCTCAGGA 490 GACCTCAGGA 500 TCGTCATCCG 500 TCGTCATCCG 510 CACCATCGTC 510 CACCATCGTC 520 GCCACCGAGG 520 GCCACCGAGG 530 AGGCCGCCAC 530 AGGCCGCCAC 540 CATCGGCGTG 540 CATCGGCGTG 550 GGCGGCGCCG 550 GGCGGCGCCG 560 TCGTCGCCCT 560 TCGTCGCCCT 570 GTCCGACCCC 570 GTCCGACCCC 580 GACGACGAGG 580 GACGACGAGG 590 TCCGCGAAAT 590 TCCGCGAAAT 600 GCTCCTCAAG 600 GCTCCTCAAG 610 GCGCAGACCA 610 GCGCAGACCA 620 CCCTCGCCGC 620 CCCTCGCCGC 630 CCTGCGCCAG 630 CCTGCGCCAG 640 GCACACGCGG 640 GCACACGCGG 650 GCGCCACCGC 650 GCGCCACCGC 660 CTCGGACCGT 660 CTCGGACCGT 670 GAACTCCTGG 670 GAACTCCTGG 630 CCGGCAGCCT 630 CCGGCAGCCT 690 GCGGTGACCC 690 GCGGTGACCC 700 ACCCACCGCC 700 ACCCACCGCC 710 CCACCCCGGC 710 CCACCCCGGC 720 CACCGCAACC 720 CACCGCAACC 730 CCGGCTCACC 730 CCGGCTCACC 740 CCCGGGGCGG 740 CCCGGGGCGG 750 CCGCGCGCGG 750 CCGCGCGCGG 760 TGGCGCCCGG 760 TGGCGCCCGG 770 CGGCCGACCC 770 CGGCCGACCC 780 GGCGACGGGT 780 GGCGACGGGT 790 CCGCTCGCGG 790 CCGCTCGCGG 800 ACCGuGTGAC 800 ACCGuGTGAC 810 GGACCCGGCG 810 GGACCCGGCG 820 GCGuGGCCGG 820 GCGuGGCCGG 830 CGGCGGGCCG 830 CGGCGGGCCG 840 GGACGTGGGC 840 GGACGTGGGC 850 CGGGACGTGG 850 CGGGACGTGG 860 GCCCGGCGTC 860 GCCCGGCGTC 870 CCCGGCGACC 870 CCCGGCGACC 880 GGCACGGCGG 880 GGCACGGCGG 890 CGGGCCCGGA 890 CGGGCCCGGA 900 CGTGGGCCCG 900 CGTGGGCCCG 910 GCGTGCCCGG 910 GCGTGCCCGG 920 CGACCGGCAC 920 CGACCGGCAC 930 GGTGGCGGGG 930 GGTGGCGGGG 940 940 950 GACGGTCAGT 950 GACGGTCAGT 960 GCAGGGCGGT 960 GCAGGGCGGT 970 GAACATCCGC 970 GAACATCCGC 980 GCGCACAGCC 980 GCGCACAGCC 990 GTTCCAGCTC 990 GTTCCAGCTC 1000 CGCGCCGTGC 1000 CGCGCCGTGC 1010 TCGCCCAGCA 1010 TCGCCCAGCA 1020 CACCGCGCAG 1020 CACCGCGCAG 1030 TTCGGCGAAC 1030 TTCGGCGAAC 1040 AGGGCGGCGA 1040 AGGGCGGCGA 1050 ACGTCTCCTC 1050 ACGTCTCCTC 1060 GTCGCCCCTC 1060 GTCGCCCCTC 1070 TCGACGGCCT 1070 TCGACGGCCT 1080 GCCCCAGCCG 1080 GCCCCAGCCG 1090 CACCAGGCCG 1090 CACCAGGCCG 1100 CGGCCCAGCG 1100 CGGCCCAGCG 1110 CCTGCCGCGC 1110 CCTGCCGCGC 1120 GGCCGGCGCG 1120 GGCCGGCGCG 1130 CCGGGGTTGG 1130 CCGGGGTTGG 1140 CGGCCTGGAT 1140 CGGCCTGGAT 1150 GTCGAAATAC 1150 GTCGAAATAC 11 60 ACCTCCGGGG 11 60 ACCTCCGGGG 1170 TCCCGCCGGC 1170 TCCCGCCGGC 1180 GATCCGGGCC 1180 GATCCGGGCC 1190 AGCAGCGCCA 1190 AGCAGCGCCA 1200 GCATCGCCAG 1200 GCATCGCCAG 1210 ATGCGGCGGC 1210 ATGCGGCGGC 1220 GGGGCACTGT 1220 GGGGCACTGT 1230 CCCGCAGCGC 1230 CCCGCAGCGC 1240 CCCCACGTCC 1240 CCCCACGTCC 1250 ACCGACAGCT 1250 ACCGACAGCT 1260 CACCCAGGCC 1260 CACCCAGGCC 1270 CAGCCCGAAG 1270 CAGCCCGAAG 1230 GCCAGCACCG 1230 GCCAGCACCG 1290 CGGCATGCGT 1290 CGGCATGCGT 1300 GGCGGCCTGC 1300 GGCGGCCTGC 1310 TGCGCGGCGG 1310 TGCGCGGCGG 1320 TCAGCTCGTC 1320 TCAGCTCGTC 1330 GTGCCGCCGC 1330 GTGCCGCCGC 1340 GCCGGCATCT 1340 GCCGGCATCT 1350 CCACCACCCG 1350 CCACCACCCG 1360 GGCCCCCCAC 1360 GGCCCCCCAC 1370 CCGGCCACCA 1370 CCGGCCACCA 1380 GCTCCACCAG 1380 GCTCCACCAG 1390 GGCCCGCACA 1390 GGCCCGCACA 1400 CCGGGCCCGT 1400 CCGGGCCCGT 1410 CGGTGACCAC 1410 CGGTGACCAC 1420 CACCGCCGCC 1420 CACCGCCGCC 1430 ACCGGCCGCC 1430 ACCGGCCGCC 1440 CCTGAAGACC 1440 CCTGAAGACC 1450 CAGCGAGGGG 1450 CAGCGAGGGG 1460 GCGAACATCG 1460 GCGAACATCG 1470 GGTTCAGCCC 1470 GGTTCAGCCC 1480 CACCGCCTGC 1480 CACCGCCTGC 1490 AGCCCCGGCG 1490 AGCCCCGGCG 1500 CCGCCTCACG 1500 CCGCCTCACG 1510 CAGCCGCCCG 1510 CAGCCGCCCG 1520 GCGATCCGGC 1520 GCGATCCGGC 1530 TCTTGACCGA 1530 TCTTGACCGA 1540 CAAGGTGTCC 1540 CAAGGTGTCC 1550 GCGAGCACCG 1550 GCGAGCACCG 1560 CACCGGGCCG 1560 CACCGGGCCG 1570 CATCACCCCC 1570 CATCACCCCC 1580 GCCAGCACCT 1580 GCCAGCACCT 1590 CCACCGCCTC 1590 CCACCGCCTC 1600 CCACGCCACC 1600 CCACGCCACC 1610 GGCTCCGGCA 1610 GGCTCCGGCA 1620 CCGCCAGCAC 1620 CCGCCAGCAC

114114

1630 CACCACGTCC 1630 CACCACGTCC 1640 GCCGCCGCCA 1640 GCCGCCGCCA 1650 GCGCCGCGAC 1650 GCGCCGCGAC 1660 CGCCTCCGGC 1660 CGCCTCCGGC 1670 CCCGGCCGCC 1670 CCCGGCCGCC 1680 GCACATCACC 1680 GCACATCACC 1690 1690 1700 1700 1710 1710 1720 1720 1730 1730 1740 1740 GGCCACCACC GGCCACCACC CGCACCCCGT CGCACCCCGT CCGCCGCACC CCGCCGCACC GGCCCCGGCC GGCCCCGGCC ACGTCCAGCC ACGTCCAGCC AGGTCACCGC AGGTCACCGC 1750 CACCCCCGAA 1750 CACCCCCGAA 1760 CGCACCAGCC 1760 CGCACCAGCC 1770 AGTGGCTGAA 1770 AGTGGCTGAA 1780 CATGCGGCCC 1780 CATGCGGCCC 1790 ACCGCACCGG 1790 ACCGCACCGG 1800 CCCCGCCCAC 1800 CCCCGCCCAC 1810 CACCACACAA 1810 CACCACACAA 1820 CGCCCGAACA 1820 CGCCCGAACA 1830 CCGAACCACC 1830 CCGAACCACC 1840 CCTCATCCGC 1840 CCTCATCCGC 1850 GTTCCCGATC 1850 GTTCCCGATC 1860 CCCCCGGTAC 1860 CCCCCGGTAC 1370 GGAGGAAGAA 1370 GGAGGAAGAA 1880 CCATGACCCC 1880 CCATGACCCC 1890 GCCCGCCATC 1890 GCCCGCCATC 1900 CCCGCCGCCC 1900 CCCGCCGCCC 1910 CGCCCGCCAC 1910 CGCCCGCCAC 1920 ČGGGCCCGCC 1920 ČGGGCCCGCC 1 930 CCCGCCACGG 1 930 CCCGCCACGG 1940 ACCCCCTCGA 1940 ACCCCCTCGA 1950 CGCGCTGCGC 1950 CGCGCTGCGC 1960 GCCCGCCTGG 1960 GCCCGCCTGG 1 970 ACGCCGCGGA 1,970 ACGCCGCGGA 1980 CGCCGCCCTG 1980 CGCCGCCCTG 1990 CTGGACGCCG 1990 CTGGACGCCG 2000 TCCGCACACG 2000 TCCGCACACG 2010 CCTGGACATC 2010 CCTGGACATC 2020 TGCCTGCGCA 2020 TGCCTGCGCA 2030 TCGGCGAGTA 2030 TCGGCGAGTA 2040 CAAGCGCCTC 2040 CAAGCGCCTC 2050 CACCAGGTGC 2050 CACCAGGTGC 2060 CGATGATGCA 2060 CGATGATGCA 2070 GCCCCACCGG 2070 GCCCCACCGG 2080 ATCGCCCAGG 2080 ATCGCCCAGG 2090 TCCACGCCAA 2090 TCCACGCCAA 2100 CGCCGCCCGC 2100 CGCCGCCCGC 2110 TACGCCGCCG 2110 TACGCCGCCG 2120 ACCACGGCAT 2120 ACCACGGCAT 2130 CGACCCCGCC 2130 CGACCCCGCC 2140 TTCCTGCGCA 2140 TTCCTGCGCA 2150 CCCTGTACGA 2150 CCCTGTACGA 2160 CACGATCATC 2160 CACGATCATC 21 70 ACCGAGACCT 21 70 ACCGAGACCT 2180 GCCGCCTCGA 2180 GCCGCCTCGA 2190 GGACGAGTGG 2190 GGACGAGTGG 2200 ATCGCCTCCG 2200 ATCGCCTCCG 2210 GCGGCGCCCC 2210 GCGGCGCCCC 2220 CGTCCCCACG 2220 CGTCCCCACG 2230 CCCGTGCACG 2230 CCCGTGCACG 2240 CGTCCGCGTC 2240 CGTCCGCGTC 2250 CGCGCGGGGG 2250 CGCGCGGGGG 2260 GCCGTGTCGT 2260 GCCGTGTCGT 2270 GACCGCCGCC 2270 GACCGCCGCC 2280 GCACCCACCC 2280 GCACCCACCC 2290 TCGCCCAGGC 2290 TCGCCCAGGC 2300 GCTGGACGAG 2300 GCTGGACGAG 2310 GCCACCGGGC 2310 GCCACCGGGC 2320 AGCTGACCGG 2320 AGCTGACCGG 2330 CGCCGGGATC 2330 CGCCGGGATC 2340 ACCGCCGACG 2340 ACCGCCGACG 2350 CCGCCCGGGC 2350 CCGCCCGGGC 2360 CGACACCCGG 2360 CGACACCCGG 2370 CTGCTGGCCG 2370 CTGCTGGCCG 2380 CCCACGCCTG 2380 CCCACGCCTG 2390 CCAGGTCGCC 2390 CCAGGTCGCC 2400 CCGGGGGACC 2400 CCGGGGGACC 2410 TCGACACCTG 2410 TCGACACCTG 2420 CCTGGCCGGC 2420 CCTGGCCGGC 2430 CCGGTGCCGC 2430 CCGGTGCCGC 2440 CCCGGTTCTG 2440 CCCGGTTCTG 2450 GCACTACGTC 2450 GCACTACGTC 2460 CGGCGCCGTC 2460 CGGCGCCGTC 2470 TGACCCGCGA 2470 TGACCCGCGA 2480 ACCCGCCGAA 2480 ACCCGCCGAA 2490 CGCATCGTCG 2490 CGCATCGTCG 2500 GCCACGCCTA 2500 GCCACGCCTA 2510 CTTCATGGGC 2510 CTTCATGGGC 2520 CACCGCTTCG 2520 CACCGCTTCG 2530 ACCTGGCCCC 2530 ACCTGGCCCC 2540 CGGCGTCTTC 2540 CGGCGTCTTC 2550 GTCCCCAAAC 2550 GTCCCCAAAC 2560 CCGAGACCGA 2560 CCGAGACCGA 2570 GGAGATCACC 2570 GGAGATCACC 2530 CGGGACGCCA 2530 CGGGACGCCA 2590 TCGCCCGCCT 2590 TCGCCCGCCT 2600 GGAGGCCCTC 2600 GGAGGCCCTC 2610 GTCCGCCGCG 2610 GTCCGCCGCG 2620 GCACCACCGC 2620 GCACCACCGC 2630 ACCCCTGGTC 2630 ACCCCTGGTC 2640 GTCGACCTGT 2640 GTCGACCTGT 2650 GCGCCGGACC 2650 GCGCCGGACC 2660 GGGCACCATG 2660 GGGCACCATG 2670 GCCGTCACCC 2670 GCCGTCACCC 2680 TGGCCCGCCA 2680 TGGCCCGCCA 2690 CGTACCGGCC 2690 CGTACCGGCC 2700 GCCCGCGTCC 2700 GCCCGCGTCC 2710 TGGGCATCGA 2710 TGGGCATCGA 2720 ACTCTCCCAG 2720 ACTCTCCCAG 2730 GCCGCCGCCC 2730 GCCGCCGCCC 2740 GCGCCGCCCG 2740 GCGCCGCCCG 2750 GCGCAACGCC 2750 GCGCAACGCC 2760 CGCGGCACCG 2760 CGCGGCACCG 2770 GCGCCCGCAT 2770 GCGCCCGCAT 2780 CGTGCAGGGC 2780 CGTGCAGGGC 2790 GACGCCCGCG 2790 GACGCCCGCG 2800 ACGCCTTCCC 2800 ACGCCTTCCC 2810 CGAACTGAGC 2810 CGAACTGAGC 2820 GGCACCGTCG 2820 GGCACCGTCG 2830 ACCTCGTCGT 2830 ACCTCGTCGT 2840 CACCAACCCG 2840 CACCAACCCG 2850 CCCTACATCC 2850 CCCTACATCC 2860 CCATCGGACT 2860 CCATCGGACT 2870 GCGCACCTCC 2870 GCGCACCTCC 2880 GCACCCGAAG 2880 GCACCCGAAG

TGCTCGAGTGCTCGAG

115115

Informácia pre SEQ ID č.2:Information for SEQ ID No. 2:

charakteristiky sekvencie: dĺžka: 888 párov báz typ: nukleová kyselina počet reťazcov: dvojreťazec konfigurácia: lineárna typ molekuly: DNAc hypotetická nie antimediátorová: nie pôvod: organizmus Streptomyces pristinaespiralis popis sekvencie: SEQ ID č.2:sequence characteristics: length: 888 base pairs type: nucleic acid number of chains: double-stranded configuration: linear molecule type: DNAc hypothetical not antisense: not origin: organism Streptomyces pristinaespiralis sequence description: SEQ ID No 2:

ATG ATG AGG AGG GGT GGT GGT GGT TCG TCG GTG GTG TTC TTC GGG GGG CGT CGT TGT TGT GTG GTG GTG GTG GTG GTG GGC GGC GGG GGG GCC GCC GGT GGT G^ú? G ^ u? 54 54 Met Met Arg Arg Gly Gly Gly Gly Ser Ser Val wall Phe Phe Gly Gly Arg Arg Cys Cys Val wall Val wall Val wall Gly Gly Gly Gly Ala Ala Gly Gly Ala Ala ia ia GTG GTG GGC GGC CGC. CGC. ATG ATG AGs. AGs. CAC CAC TGG TGG CTG CTG GTG GTG CGT CGT TCG TCG GGG GGG GTG GTG GCG GCG GTG GTG ACC ACC m/-/- X m / - / - X 108 108 Val wall Gly Gly Arg Arg Met Met Phe Phe Ser Ser His His Trp Trp Leu Leu Val wall Arg Arg Ser Ser Gly Gly Val wall Ala Ala Val wall Thr Thr Trp Trp 36 36 CTG CTG GAC GAC GTG GTG GCC GCC GGG GGG GCC GCC GGT GGT GCG GCG GCG GCG GAC GAC GGG GGG GTG GTG CGG CGG GTG GTG GTG GTG GCC GCC GGT GGT GAT GAT 1 62 1 62 Leu Leu Asp Asp Val wall Ala Ala Gly Gly Ala Ala Gly Gly Ala Ala Ala Ala Asp Asp Gly Gly Val wall Arg Arg Val wall Val wall Ala Ala Gly Gly Asp Asp 54 54 GTG GTG CGG CGG CGG CGG CCG CCG GGG GGG CCG CCG GAG GAG GCG GCG GTC GTC GCG GCG GCG GCG CTG CTG GCG GCG GCG GCG GCG GCG GAC GAC GTG GTG GTG GTG 21 6 21 6 Val wall Arg Arg Arg Arg Pro for Gly Gly Pro for Glu Glu Ala Ala Val wall Ala Ala Ala Ala Leu Leu Ala Ala Ala Ala Ala Ala Asp Asp Val wall Val wall 72 72 GTG GTG CTG CTG GCG GCG GTG GTG CCG CCG GAG GAG CCG CCG GTG GTG GCG GCG TGG TGG GAG GAG GCG GCG GTG GTG GAG GAG GTG GTG CTG CTG GCG GCG GGG GGG 270 270 Val wall Leu Leu Ala Ala Val wall Pro for Glu Glu Pro for Val wall Ala Ala Trp Trp Glu Glu Ala Ala Val wall Glu Glu Val wall Leu Leu Ala Ala Gly Gly 90 90 GTG GTG ATG ATG CGG CGG CCC CCC GGT GGT GCG GCG GTG GTG CTC CTC GCG GCG GAC GAC ACC ACC TTG TTG TCG TCG GTC GTC AAG AAG AGC AGC CGG CGG ATC ATC 324 324 Val wall Met Met Arg Arg Pro for Gly Gly Ala Ala Val wall Leu Leu Ala Ala Asp Asp Thr Thr Leu Leu Ser Ser Val wall Lys Lys Ser Ser Arg Arg íle Ile 108 108 GCC GCC GGG GGG CGG CGG CTG CTG CGT CGT GAG GAG GCG GCG GCG GCG CCG CCG GGG GGG CTG CTG CAG CAG GCG GCG GTG GTG GGG GGG CTG CTG AAC AAC CCG CCG 378 378 Ala Ala Gly Gly Arg Arg Leu Leu Arg Arg Glu Glu Ala Ala Ala Ala Pro for Giy Gly Leu Leu Gin gin Ala Ala Val wall Gly Gly Leu Leu Asn same time Pro for 126 126

ATG Met ATG Met TTC Phe TTC Phe GCC Ala GCC Ala CCC Pro CCC for TCG Ser TCG Ser CTG Leu CTG Leu GGT Gly GGT Gly CTT Leu CTT Leu CAG Gin CAG gin GGG Gly GGG Gly CGG Arg CGG Arg CCG Pro CCG for GTG Val GTG wall GCG GCG Ala Ala GCG GCG Ala Ala GTG Val GTG wall GTG Val GTG wall GTC Val GTC wall 432 1 44 432 1 44 ACC Thr ACC Thr GAC Asp GAC Asp GGG Gly GGG Gly CCC Pro CCC for GGT Gly GGT Gly GTG Val GTG wall CGG Arg CGG Arg GCC Ala GCC Ala CTG Leu CTG Leu GTG Val GTG wall GAG Glu GAG Glu CTG Leu CTG Leu GTG Val GTG wall GCC GGG Ala Gly GCC GGG Ala Gly TGG Trp TGG Trp GGG Gly GGG Gly GCC Ala GCC Ala 486 1 62 486 1 62 CGG Arg CGG Arg GTG Val GTG wall GTG Val GTG wall GAG Glu GAG Glu ATG Met ATG Met CCG Pro CCG for GCG Ala GCG Ala CGG Arg CGG Arg CGG Arg CGG Arg CAC His CAC His GAC Asp GAC Asp GAG Glu GAG Glu CTG Leu CTG Leu ACC GCC Thr Ala ACC GCC Thr Ala GCG Ala GCG Ala CAG Gin CAG gin CAG Gin CAG gin 540 1 80 540 1 80 GCC Ala GCC Ala GCC Ala GCC Ala ACG Thr ACG Thr CAT His CAT His GCC Ala GCC Ala GCG Ala GCG Ala GTG Val GTG wall CTG Leu CTG Leu GCC Ala GCC Ala TTC Phe TTC Phe GGG Gly GGG Gly CTG Leu CTG Leu GGC Gly GGC Gly CTG GGT Leu Gly CTG GGT Leu Gly GAG Glu GAG Glu CTG Leu CTG Leu TCG Ser TCG Ser 594 198 594 198 GTG Val GTG wall GAC Asp GAC Asp GTG Val GTG wall GGG Gly GGG Gly GCG Ala GCG Ala CTG Leu CTG Leu CGG Arg CGG Arg GAC Asp GAC Asp AGT Ser AGT Ser GCC Ala GCC Ala CCG Pro CCG for CCG Pro CCG for CCG Pro CCG for CAT CTG His Leu CAT CTG His Leu GCG Ala GCG Ala ATG Met ATG Met CTG Leu CTG Leu 648 216 648 216

GCG CTG CTG GCC CGG ATC GCC GGC GGG ACG CCG GAG GTG TAT TTC GAC ATC CAG 702 Ala Leu Leu Ala Arg íle Ala Gly Gly Thr Pro Glu Val Tyr Phe Asp íle Gin 234GCG CTG CTG GCC CGG ATC GCC GGC GGG ACG CCG GAG GTG TAT TTC GAC ATC CAG 702 Ala Leu Leu Ala Arg Ala Ala Gly Gly Thr Pro Glu Val Tyr Phe Asp Gin 234

116116

GCC GCC GCC GCC AAC AAC CCC CCC GGC GGC GCG GCG CGG CGG GCC GCC GCG GCG CGG CGG CAG CAG GCG GCG CTG CTG GGC GGC CGC CGC GGC GGC CTG CTG GTG GTG 756 756 Ala Ala Ala Ala Asn same time Pro for Gly Gly Ala Ala Pro for Ala Ala Ala Ala Arg Arg Gin gin Ala Ala Leu Leu Gly Gly Arg Arg Gly Gly Leu Leu Val wall 252 252 CGG CGG CTG CTG GGG GGG CAG CAG GCC GCC GTC GTC GAG GAG AGG AGG GGC GGC GAC GAC GAG GAG GAG GAG ACG ACG TTC TTC GCC GCC GCC GCC CTG CTG TTC TTC 810 810 Arg Arg Leu Leu Gly Gly Gin gin Ala Ala Val wall Glu Glu Arg Arg Gly Gly Asp Asp Glu Glu Glu Glu Thr Thr Phe Phe Ala Ala Ala Ala Leu Leu Phe Phe 270 270 GCC GCC GAA GAA CTG CTG CGC CGC GGT GGT GTG GTG CTG CTG GGC GGC GAG GAG CAC CAC GGC GGC GCG GCG GAG GAG CTG CTG GAA GAA CGG CGG CTG CTG TGC TGC 864 864 Ala Ala Glu Glu Leu Leu Arg Arg Gly Gly Val wall Leu Leu Gly Gly Glu Glu HÚS HÚS Gly Gly Ala Ala Glu Glu Leu Leu Glu Glu Arg Arg Leu Leu Cvs Cvs 283 283 GCG GCG CGG CGG ATG ATG rpqiQ rpqiQ ACC ACC GGC GGC CTG CTG CAC CAC 888 888 Ala Ala Arg Arg Mer Mer Phe Phe Thr Thr Ala Ala Leu Leu His His 296 296

Informácia pre SEQ ID č. 3:SEQ ID NO. 3:

charakteristiky sekvencie: dĺžka: 387 párov báz typ: nukleová kyselina počet reťazcov: dvojreťazec konfigurácia: lineárna typ molekuly: DNAc hypotetická: nie antimediátorová: nie pôvod: organizmus Streptomyces pristinaespiralis popis sekvencie: SEQ ID č.3:sequence characteristics: length: 387 base pairs type: nucleic acid number of chains: double-stranded configuration: linear molecule type: DNAc hypothetical: no antisense: no origin: organism Streptomyces pristinaespiralis sequence description: SEQ ID No 3:

ATG ATG ACC ACC CCG CCG CCC CCC GCC GCC ATC ATC CCC CCC GCC GCC GCC GCC CCG CCG CCC CCC GCC GCC ACC ACC GGG GGG CCC CCC GCC GCC CCC CCC GCC GCC 54 54 Met Met Thr Thr Pro for Pro for Ala Ala íle Ile Pro for Ala Ala Ala Ala Pro for Pro for Ala Ala Thr Thr Gly Gly Pro for Ala Ala Ala Ala Ala Ala 18 18 ACC ACC GAC GAC CCC CCC CTC CTC GAC GAC GCG GCG CTG CTG CGC CGC GCC GCC CGC CGC CTG CTG GAC GAC GCC GCC GCG GCG GAC GAC GCC GCC GCC GCC CTG CTG 108 108 Thr Thr Asp Asp Pro for Leu Leu Asp Asp Ala Ala Leu Leu Arg Arg Ala Ala Arg Arg Leu Leu Asp Asp Ala Ala Ala Ala Asp Asp Ala Ala Ala Ala Leu Leu 36 36 CTG CTG GAC GAC GCC GCC GTC GTC CGC CGC ACA ACA CGC CGC CTG CTG GAC GAC ATC ATC TGC TGC CTG CTG CGC CGC ATC ATC GGC GGC GAG GAG TAC TAC AAG AAG 162 162 Leu Leu Asp Asp Ala Ala Val wall Arg Arg Thr Thr Arg Arg Leu Leu Asp Asp íle Ile Cys Cys Leu Leu Arg Arg íle Ile Gly Gly Glu Glu Ty r Ty r Lys Lys 54 54 CGC CGC CTC CTC CAC CAC CAG CAG GTG GTG CCG CCG ATG ATG ATG ATG CAG CAG CCC CCC CAC CAC CGG CGG ATC ATC GCC GCC CAG CAG GTC GTC CAC CAC GCC GCC 216 216 Arg Arg Leu Leu His His Gin gin Val wall Pro for Met Met Met Met Gin gin Pro for His His Arg Arg íle Ile Ala Ala Gin gin Val wall His His Ala Ala 72 72

AAC AAC GCC GCC GCC GCC CGC CGC TAC TAC GCC GCC GCC GCC GAC GAC CAC CAC GGC GGC ATC ATC GAC GAC CCC CCC GCC GCC TTC TTC CTG CTG CGC CGC ACC ACC 270 270 Asn same time Ala Ala Ala Ala Arg Arg Tyr Tyr Ala Ala Ala Ala Asp Asp His His Gly Gly íle Ile Asp Asp Pro for Ala Ala Phe Phe Leu Leu Arg Arg Thr Thr 90 90 CTG CTG TAC TAC GAC GAC ACG ACG ATC ATC ATC ATC ACC ACC GAG GAG ACC ACC TGC TGC CGC CGC CTC CTC GAG GAG GAC GAC GAG GAG TGG TGG ATC ATC GCC GCC 324 324 Leu Leu Tyr Tyr Asp Asp Thr Thr íle Ile íle Ile Thr Thr Glu Glu Thr Thr Cys Cys Arg Arg Leu Leu Glu Glu Asp Asp Glu Glu Trp Trp íle Ile Ala Ala 108 108 TCC TCC GGC GGC GGC GGC GCC GCC CCC CCC GTC GTC CCC CCC ACG ACG CCC CCC GTG GTG CAC CAC GCG GCG TCC TCC GCG GCG TCC TCC GCG GCG CGG CGG GGG GGG 378 378 Ser Ser Gly Gly Gly Gly Ala Ala Pro for Val wall Pro for Thr Thr Pro for Val wall His His Ala Ala Ser Ser Ala Ala Ser Ser Ala Ala Arg Arg Gly Gly 126 126

GCC GTG TCG Ala Val SerGCC GTG TCG Ala Val Ser

387387

129129

117117

Informácia pre SEQ ID č.4:Information for SEQ ID No. 4:

charakteristiky sekvencie: dĺžka: 4496 párov báz typ: nukleová kyselina počet reťazcov: dvojreťazec konfigurácia: lineárna typ molekuly: DNAc hypotetická: nie antimediátorová: nie pôvod: organizmus Streptomyces pristinaespiralis popis sekvencie: SEQ ID č.4:sequence characteristics: length: 4496 base pairs type: nucleic acid number of chains: double-stranded configuration: linear molecule type: DNAc hypothetical: no antisense: no origin: organism Streptomyces pristinaespiralis sequence description: SEQ ID No 4:

10 CTCGAGCAGG 10 CTCGAGCAGG 20 TGCCCCACCT 20 TGCCCCACCT 30 CGGCGGCACG 30 CGGCGGCACG 40 GTGCGCGGGC 40 GTGCGCGGGC 50 AGCGCGAACA 50 AGCGCGAACA 60 CCGGCAGCGC 60 CCGGCAGCGC 70 GCCCAGACGG 70 GCCCAGACGG 80 AACAGGGCGA 80 AACAGGGCGA 90 AGCACACCGC 90 AGCACACCGC 100 GACGAACTCG 100 GACGAACTCG 110 GGCGTGTTCG 110 GGCGTGTTCG 1 20 GCAGCTGCAC 1 20 GCAGCTGCAC 1 30 CAGCACCCGC 1 30 CAGCACCCGC 1 40 TCGCCGGCGC 1 40 TCGCCGGCGC 150 CGATCCCGCG 150 CGATCCCGCG 1 60 CGCCGGGAAC 1 60 CGCCGGGAAC 170 CCCGCCGCCA 170 CCCGCCGCCA 180 GCCGGTCGCA 180 GCCGGTCGCA 1 90 CCAGCGGTCC 1 90 CCAGCGGTCC 200 AGGGCACGGT 200 AGGGCACGGT 210 AGGTGACACG 210 AGGTGACACG 220 GGAGGACCCG 220 GGAGGACCCG 230 TCCGCGGCGA 230 TCCGCGGCGA 240 CCAGCGCCTC 240 CCAGCGCCTC 250 CCGCTCGCCG 250 CCGCTCGCCG 260 TACTGCTCCG 260 TACTGCTCCG 270 CCCAGCGGCC 270 CCCAGCGGCC 280 CAGCAGCATG 280 CAGCAGCATG 290 CCCAGCGGCT 290 CCCAGCGGCT 300 CGCCCCGCCA 300 CGCCCCGCCA 310 GTAGCCGGCC 310 GTAGCCGGCC 320 GCCCGGTACT 320 GCCCGGTACT 330 TCGCGGCCAC 330 TCGCGGCCAC 340 ATCCTCGGGC 340 ATCCTCGGGC 350 CAGGGAACGC 350 CAGGGAACGC 360 ATCCGTccag360 ATCCGT ccag 370 370 380 380 390 390 400 400 410 410 420 420 CATCGTTGGT CATCGTTGGT CCTTTCCGGC CCTTTCCGGC TTCGTCCTCG TTCGTCCTCG CGTCGCGCCC CGTCGCGCCC agtgtcggca agtgtcggca GCGCCGTTGA GCGCCGTTGA 430 CACGCCGCTG 430 CACGCCGCTG 440 atgcgccgcg 440 atgcgccgcg 450 CCCGCGCGCC 450 CCCGCGCGCC 460 GCCGCTCCGT 460 GCCGCTCCGT 470 CAGGAGCCGA 470 CAGGAGCCGA 480 TCAGGGCGGC 480 TCAGGGCGGC 490 GTCAGCCGGG 490 GTCAGCCGGG 500 ccggacagga 500 ccggacagga 510 TGCCGCCCAC 510 TGCCGCCCAC 520 GGGGCCCGGC 520 GGGGCCCGGC 530 ACACCGGGCC 530 ACACCGGGCC 540 GCGGCGACAG 540 GCGGCGACAG 550 CGGGCCGGCG 550 CGGGCCGGCG 560 ACCGGCAGGC 560 ACCGGCAGGC 570 CGACACCACG 570 CGACACCACG 580 CACGGACGAG 580 CACGGACGAG 590 AAGAAACAAC 590 AAGAAACAAC 600 ÁCAAGGGGAG 600 ÁCAAGGGGAG 610 CACCCGATGG 610 CACCCGATGG 620 AGACCTGGGT 620 AGACCTGGGT 630 CCTGGGCCGG 630 CCTGGGCCGG 640 CGCGACGTCG 640 CGCGACGTCG 650 CCGAGGTGGT 650 CCGAGGTGGT 660 GGCCGCCGTC 660 GGCCGCCGTC 670 GGCCGCGACG 670 GGCCGCGACG 680 AACTCATGCG 680 AACTCATGCG 690 CCGCATCATC 690 CCGCATCATC 700 GACCGCCTCA 700 GACCGCCTCA 710 CCGGCGGACT 710 CCGGCGGACT 720 GGCCGAGATC 720 GGCCGAGATC 730 GGCCGCGGCG 730 GGCCGCGGCG 740 AGCGGCACCT 740 AGCGGCACCT 750 GTCCCCGCTG 750 GTCCCCGCTG 760 CGCGGCGGAC 760 CGCGGCGGAC 770 TGGAACGCAG 770 TGGAACGCAG 780 CGAACCCGTG 780 CGAACCCGTG 790 CCCGGCATCT 790 CCCGGCATCT 800 GGGAATGGAT 800 GGGAATGGAT 810 GCCGCACCGC 810 GCCGCACCGC 820 GAACCCGGCG 820 GAACCCGGCG 830 ACCACATCAC 830 ACCACATCAC 840 CCTCAAGACC 840 CCTCAAGACC 850 GTCGGCTACA 850 GTCGGCTACA 860 CCCCCGCCAA 860 CCCCCGCCAA 870 CCCCGGCCGC 870 CCCCGGCCGC 880 TTCGGCCTGC 880 TTCGGCCTGC 890 CGACCATCCT 890 CGACCATCCT 900 GGGCACCGTC 900 GGGCACCGTC 910 GCCCGCTACG 910 GCCCGCTACG 920 ACGACACCAC 920 ACGACACCAC 930 CGGCGCCCTG 930 CGGCGCCCTG 940 ACCGCCCTGA 940 ACCGCCCTGA 950 TGGACGGCGT 950 TGGACGGCGT 960 GCTGCTCACC 960 GCTGCTCACC

118118

970 970 980 980 990 990 GCCCTGCGCA GCCCTGCGCA CCGGCGCCGC CCGGCGCCGC CTCCGCCGTC CTCCGCCGTC 1030 1030 1040 1040 1050 1050 CACACCCTGG CACACCCTGG GACTGATCGG GACTGATCGG CACCGGCGCC CACCGGCGCC 1090 1090 1100 1100 1110 1110 CTGGTACTGC CTGGTACTGC CCCTGCAACG CCCTGCAACG GGCCCTGGTG GGCCCTGGTG 1150 1150 1160 1160 1170 1170 GCGCCGCGTT GCGCCGCGTT CACCGGCGTC CACCGGCGTC 1 210 1 210 1220 1220 1230 1230 G^-CGGCGAGvj G ^ -CGGCGAGvj CCGACGTCAT CCGACGTCAT CTCCACCGCC CTCCACCGCC 1270 1270 1230 1230 1290 1290 CTGCCCGACA CTGCCCGACA CCGGCGTCCG CCGGCGTCCG CGAGCACCTG CGAGCACCTG 1330 1330 1340 1340 1350 1350 GG>_AAGACGG GG> _AAGACGG AACTGCCGCT AACTGCCGCT CGGCCTGCTC CGGCCTGCTC

1000 1000 1010 1010 1020 1020 GCCTCCCGCC GCCTCCCGCC TGCTGGCCCG TGCTGGCCCG CCCCGACAGC CCCCGACAGC 1060 1060 1070 1070 1080 1080 CAGGCCGTCA CAGGCCGTCA CCCAACTGCA CCCAACTGCA CGCCCTGTCC CGCCCTGTCC 1 1 20 1 1 20 1 1 30 1 1 30 1 1 40 1 1 40 TGGGACACCG TGGGACACCG ACCCCGCCCA ACCCCGCCCA CCGGGAAAGC CCGGGAAAGC 1180 1180 1190 1190 1200 1200 AGCGTCGAGA AGCGTCGAGA TCGCCGAGCC TCGCCGAGCC CGCCCGGATC CGCCCGGATC 1240 1240 1250 1250 1260 1260 ACGTCGGTAG ACGTCGGTAG CCGTCGGCCA CCGTCGGCCA GGGCCCGGTC GGGCCCGGTC 1300 1300 1310 1310 1320 1320 CACATCAACG CACATCAACG GGACCTCGTC GGACCTCGTC 1 360 1 360 1370 1370 1380 1380 GAGCGGGCGT GAGCGGGCGT TCGTCACCGC TCGTCACCGC CGACCACCCC CGACCACCCC

1 390 1 390 1 400 1 400 1410 1410 1 420 1 420 1430 1430 GAGCAG^jCGC GAGCAG ^ jCGC TGCGCGAGGG TGCGCGAGGG CGAGTGCCAG CGAGTGCCAG CAACTCTCCG CAACTCTCCG CCGACCGGCT CCGACCGGCT 1450 1450 1460 1460 1470 1470 1 480 1 480 1490 1490 CTGGCCCACC CTGGCCCACC TGTGCGGCGA TGTGCGGCGA CCCGGGGGCC CCCGGGGGCC GCCGCCGGCC GCCGCCGGCC GGCAGGACAC GGCAGGACAC 1510 1510 1520 1520 1530 1530 1540 1540 1550 1550 TTCGACTCCA TTCGACTCCA CCGGCTTCGC CCGGCTTCGC CTTCGAGGAC CTTCGAGGAC GCCCTGGCGA GCCCTGGCGA TGGAAGTGTT TGGAAGTGTT 1570 1570 1580 1580 1590 1590 1600 1600 1610 1610 GCCGCCGAAC GCCGCCGAAC GGGACCTGGG GGGACCTGGG CATCCGGGTG CATCCGGGTG GGCATCGAAC GGCATCGAAC ACCACCCCGG ACCACCCCGG 1 630 1 630 1 640 1 640 1650 1650 1660 1660 1670 1670 GACCCCTACG GACCCCTACG CCCTCCAGCC CCCTCCAGCC CCTGCCCCTG CCTGCCCCTG CCCCTGGCCG CCCCTGGCCG CCCCCGCCCA CCCCCGCCCA 1690 1690 1700 1700 1710 1710 1720 1720 1730 1730 CCTTTTTTCG CCTTTTTTCG GGACCCCCGG GGACCCCCGG TCTTTTTCGA TCTTTTTCGA GACCCCCGCC GACCCCCGCC CGGCCGGCCC CGGCCGGCCC 1750 1750 1760 1760 1770 1770 1780 1780 1790 1790 CCGCCGGCCC CCGCCGGCCC CCATGCCCGG CCATGCCCGG CCGGGCCGGG CCGGGCCGGG GCACCCACGA GCACCCACGA CGCCCTCGCG CGCCCTCGCG 1810 1810 1820 1820 1830 1830 1840 1840 1850 1850 TGCCCCCCAC TGCCCCCCAC CCCCCGGCCC CCCCCGGCCC ACCACCGACG ACCACCGACG ACGGCGGCCG ACGGCGGCCG TGAACTGCTC TGAACTGCTC 1870 1870 1880 1880 1890 1890 1900 1900 1910 1910 GCGAGATGCG GCGAGATGCG CCACCACCAC CCACCACCAC CCCGTCCACG CCCGTCCACG AGGACGAATA AGGACGAATA CGGTGCCTTC CGGTGCCTTC 1930 1930 1940 1940 1950 1950 1960 1960 1970 1970 GGCACGCCGA GGCACGCCGA CGTCCTCACC CGTCCTCACC GTCGCCTCCG GTCGCCTCCG ACCCCGGCGT ACCCCGGCGT CTACTCCTCC CTACTCCTCC 1990 1990 2000 2000 2010 2010 2020 2020 2030 2030 GGCTACGGCC GGCTACGGCC CGGCTCCCAG CGGCTCCCAG GCGTTGAGCG GCGTTGAGCG AACAGATCCT AACAGATCCT GTCGGTCATC GTCGGTCATC 2050 2050 2060 2060 2070 2070 2080 2080 2090 2090 TGCACCGCAC TGCACCGCAC CCTGCGCCGC CCTGCGCCGC CTGGTCAGCC CTGGTCAGCC AGGCCTTCAC AGGCCTTCAC CCCCCGCACC CCCCCGCACC 2110 2110 2120 2120 2130 2130 2140 2140 2150 2150 TCGAACCACG TCGAACCACG CGTCACCGAA CGTCACCGAA CTGGCCGGGC 'AACTGCTCGA CTGGCCGGGC 'AACTGCTCGA CGCCGTCGAC CGCCGTCGAC 2170 2170 2180 2180 2190 2190 2200 2200 2210 2210 TCGACCTCGT TCGACCTCGT CGCCGACTTC CGCCGACTTC GCCTACCCGC GCCTACCCGC TGCCCGTGAT TGCCCGTGAT CGTGATCGCC CGTGATCGCC 2230 2230 2240 2240 22S0 22S0 2260 2260 2270 2270 GCGTGCCGCC GCGTGCCGCC CGCCGACCGC CGCCGACCGC ACCCTGTTCC ACCCTGTTCC GCTCCTGGTC GCTCCTGGTC CGACCGGATG CGACCGGATG 2290 2290 2300 2300 2310 2310 2320 2320 2330 2330 AGGTCGCCGA AGGTCGCCGA C.CCGGCGGAC C.CCGGCGGAC ATGCAGTTCG ATGCAGTTCG GCGACGACGC GCGACGACGC CGACGAGGAC CGACGAGGAC 2350 2350 2360 2360 2370 2370 2380 2380 2390 2390 TCGTCAAAGA TCGTCAAAGA ACCCATGCGC ACCCATGCGC GCCATGCACG GCCATGCACG •CCTACCTCCA • CCTACCTCCA CGACCACGTC CGACCACGTC

14401440

CGGCCCGCAGCGGCCCGCAG

15001500

CCTGAGGGTCCCTGAGGGTC

15601560

CCTCGAGGGGCCTCGAGGGG

16201620

16801680

CTGACCCCCCCTGACCCCCC

17401740

GGCCCTCCTCGGCCCTCCTC

18001800

18601860

19201920

19801980

20402040

21002100

21602160

22202220

22802280

23402340

24002400

1919

2410 GCGCCCGCCC 2410 GCGCCCGCCC 2420 CGCGAACGAC 2420 CGCGAACGAC 2430 CTGATCTCCG 2430 CTGATCTCCG 2440 CACTCGTCGC 2440 CACTCGTCGC 2450 CGCCCGCGTG 2450 CGCCCGCGTG 2460 GAGGGCGAAC 2460 GAGGGCGAAC 2470 GACTCACCGA 2470 GACTCACCGA 2480 CGAGCAGATC 2480 CGAGCAGATC 2490 GTCGAATTCG 2490 GTCGAATTCG 2500 GGGCGCTGCT 2500 GGGCGCTGCT 2510 GCTGATGGCC 2510 GCTGATGGCC 2520 GGCCACGTCT 2520 GGCCACGTCT 2530 CCACCTCCAT 2530 CCACCTCCAT 2540 GCTGCTCGGC 2540 GCTGCTCGGC 2550 AACACCGTGC 2550 AACACCGTGC 2560 TGTGCCTGAA 2560 TGTGCCTGAA 2570 GGACCACCCC 2570 GGACCACCCC 2530 CGGGCCGAGG 2530 CGGGCCGAGG 2590 CCGCCGCCCG 2590 CCGCCGCCCG 2600 CGCCGACCGG 2600 CGCCGACCGG 2610 TCCCTGATCC 2610 TCCCTGATCC 2620 CCGCCCTGAT 2620 CCGCCCTGAT 2630 CGAAGAAGTA 2630 CGAAGAAGTA 2640 CTGCGGCTGC 2640 CTGCGGCTGC 2650 GGCCGCCGAT 2650 GGCCGCCGAT 2660 CACCGTCATG 2660 CACCGTCATG 2670 GGCCGCGTCA 2670 GGCCGCGTCA 2680 CCACCAAGGA 2680 CCACCAAGGA 2690 CACCGTCCTC 2690 CACCGTCCTC 2700 GCCGGCACCA 2700 GCCGGCACCA 2710 CCATCCCCGC 2710 CCATCCCCGC 2720 CGGACGCATG 2720 CGGACGCATG 2730 GTCGTGCCCT 2730 GTCGTGCCCT 2740 CCCTGCTGTC 2740 CCCTGCTGTC 2750 CGCCAACCAC 2750 CGCCAACCAC 2760 GACGAACAGG 2760 GACGAACAGG 2770 TCTTCACCGA 2770 TCTTCACCGA 2780 CCCCGACCAC 2780 CCCCGACCAC 2790 CTCGACCTCG 2790 CTCGACCTCG 2800 CCCGCGAAGG 2800 CCCGCGAAGG 2810 CCGCCAGATC 2810 CCGCCAGATC 2320 GCCTTCGGCC 2320 GCCTTCGGCC 2830 ACGGCATCCA 2830 ACGGCATCCA 2840 CTACTGCCTG 2840 CTACTGCCTG 2850 GGCGCCCCGC 2850 GGCGCCCCGC 2860 TCGCCCGCCT 2860 TCGCCCGCCT 2870 GGAGGGCCGC 2870 GGAGGGCCGC 2830 ATCGCCCTGG 2830 ATCGCCCTGG 2390 AAGCCCTCTT 2390 AAGCCCTCTT 2900 CGACCGATTC 2900 CGACCGATTC 2910 CCCGACTTCT 2910 CCCGACTTCT 2920 CGCCCACCGA 2920 CGCCCACCGA 2930 CGGCGCAAAA 2930 CGGCGCAAAA 2940 CTGCGCTACC 2940 CTGCGCTACC 2950 ACCGv-GACGG 2950 ACCGv-GACGG 2960 actgttcggc 2960 actgttcggc 2970 GTCAAGAACC 2970 GTCAAGAACC 2980 TGCCGCTGAC 2980 TGCCGCTGAC 2990 CGTACGGCGC 2990 CGTACGGCGC 3000 GGCTGACACA 3000 GGCTGACACA 3010 GACAAGGGGG 3010 GACAAGGGGG 3020 CCACCTGGTG 3020 CCACCTGGTG 3030 CGCACCGTGC 3030 CGCACCGTGC 3040 GAACCCTGCT 3040 GAACCCTGCT 3050 GATCGACAAC 3050 GATCGACAAC 3060 TACGACTCGT 3060 TACGACTCGT 3070 TCACCTACAA 3070 TCACCTACAA 3080 CCTCTTCCAG 3080 CCTCTTCCAG 3090 ATGCTGGCCG 3090 ATGCTGGCCG 3100 AGGTGAACGG 3100 AGGTGAACGG 3110 CGCCGCTCCG 3110 CGCCGCTCCG 3120 CTCGTCGTCC 3120 CTCGTCGTCC 3130 GCAACGACGA 3130 GCAACGACGA 3140 CACCCGCACC 3140 CACCCGCACC 3150 TGGCAGGCCC 3150 TGGCAGGCCC 3160 TGGCGCCGGG 3160 TGGCGCCGGG 3170 CGACTTCGAC 3170 CGACTTCGAC 3180 AACGTCGTCG 3180 AACGTCGTCG 3190 TCTCACCCGG 3190 TCTCACCCGG 3200 CCCCGGCCAC 3200 CCCCGGCCAC 3210 CCCGCCACCG 3210 CCCGCCACCG 3220 ACACCGACCT 3220 ACACCGACCT 3230 GGGCCTCAGC 3230 GGGCCTCAGC 3240 CGCCGGGTGA 3240 CGCCGGGTGA 3250 TCACCGAATG 3250 TCACCGAATG 3260 GGACCTGCCG 3260 GGACCTGCCG 3270 CTGCTCGGGG 3270 CTGCTCGGGG 3280 TGTGCCTGGG 3280 TGTGCCTGGG 3290 CCACCAGGCC 3290 CCACCAGGCC 3300 CTGTGCCTGC 3300 CTGTGCCTGC 3310 TCGCCGGCGC 3310 TCGCCGGCGC 3320 CGCCGTCGTC 3320 CGCCGTCGTC 3330 CACGCACCCG 3330 CACGCACCCG 3340 AACCCTTTCA 3340 AACCCTTTCA 3350 CGGCCGCACC 3350 CGGCCGCACC 3360 AGCGACATCC 3360 AGCGACATCC 3370 GCCACGACGG 3370 GCCACGACGG 3380 GCAGGGCCTG 3380 GCAGGGCCTG 3390 TTCGCGAACA 3390 TTCGCGAACA 3400 TCCCCTCCCC 3400 TCCCCTCCCC 3410 GCTGACCGTG 3410 GCTGACCGTG 3420 GTCCGCTACC 3420 GTCCGCTACC 3430 ACTCGCTGAC 3430 ACTCGCTGAC 3440 CGTCCGGCAA 3440 CGTCCGGCAA 3450 CTGCCCGCCG 3450 CTGCCCGCCG 3460 ACCTGCGCGC 3460 ACCTGCGCGC 3470 CACCGCCCAC 3470 CACCGCCCAC 3480 ACCGCCGACG 3480 ACCGCCGACG 3490 ggcagctgat 3490 ggcagctgat 3500 GGCCGTCGCC 3500 GGCCGTCGCC 3510 CACCGCCACC 3510 CACCGCCACC 3520 TGCCCCGCTT 3520 TGCCCCGCTT 3530 CGGCGTGCAG 3530 CGGCGTGCAG 3540 TTCCACCCCG 3540 TTCCACCCCG 3550 AATCGATCAG 3550 AATCGATCAG 3560 CAGCGAACAC 3560 CAGCGAACAC 3570 GGCCACCGGA 3570 GGCCACCGGA 3580 TGCTCGCCAA 3580 TGCTCGCCAA 3590 CTTCCGCGAC 3590 CTTCCGCGAC 3600 CTGTCCCTGC 3600 CTGTCCCTGC 3610 GCGCGGCCGG 3610 GCGCGGCCGG 3620 CCACCGCCCC 3620 CCACCGCCCC 3630 CCGCACACCG 3630 CCGCACACCG 3640 AACGCATACC 3640 AACGCATACC 3650 CGCACCCGCA 3650 CGCACCCGCA 3660 CCCGCCCCCG 3660 CCCGCCCCCG 3670 CCCCCGCCCC 3670 CCCCCGCCCC 3680 CGCACCGGCA 3680 CGCACCGGCA 3690 CCGCCCGCGT 3690 CCGCCCGCGT 3700 CCGCGCCGGT 3700 CCGCGCCGGT 3710 GGGGGAGTAC 3710 GGGGGAGTAC 3720 CGGCTGCATG 3720 CGGCTGCATG 3730 TGCGCGAGGT 3730 TGCGCGAGGT 3740 CGCCTGCGTG 3740 CGCCTGCGTG 3750 CCCGACGCGG 3750 CCCGACGCGG 3760 ACGCCGCGTT 3760 ACGCCGCGTT 3770 CACCGCCCTG 3770 CACCGCCCTG 3780 TTCGCCGACG 3780 TTCGCCGACG 3790 CCCCGGCCCG 3790 CCCCGGCCCG 3800 gttctggctc 3800 gttctggctc 3810 GACAGCAGCC 3810 GACAGCAGCC 3820 GCGTCGAGCC 3820 GCGTCGAGCC 3830 GGGCCTCGCC 3830 GGGCCTCGCC 3840 CGCTTCACCT 3840 CGCTTCACCT

120120

3850 TCCTCGGCGC 3850 TCCTCGGCGC 3860 CCCCGCCGGC 3860 CCCCGCCGGC 3870 CCGCTCGGCG 3870 CCGCTCGGCG 3880 AACAGATCAC 3880 AACAGATCAC 3890 CTACGACGTC 3890 CTACGACGTC 3900 G.-CGACCGGG 3900 G-CGACCGGG 3910 CCGTGCGCGT 3910 CCGTGCGCGT 3920 CAAGGACGGT 3920 CAAGGACGGT 3930 TCAGGCGGCG 3930 TCAGGCGGCG 3940 AGACCCGCCG 3940 AGACCCGCCG 3950 GCCCGGCACG 3950 GCCCGGCACG 3960 CTCTTCGACC 3960 CTCTTCGACC 3970 ACCTGGAACA 3970 ACCTGGAACA 3980 CGAACTGGCC 3980 CGAACTGGCC 3990 GCCCGCGCCC 3990 GCCCGCGCCC 4000 TGCCCGCCAC 4000 TGCCCGCCAC 4010 CGGCCTGCCC 4010 CGGCCTGCCC 4020 TTCGAGTTCA 4020 TTCGAGTTCA 4030 ACCTCGGCTA 4030 ACCTCGGCTA 4040 CGTCGGCTAC 4040 CGTCGGCTAC 4050 CTCGGCTACG 4050 CTCGGCTACG 4060 AGACCAAG\jC 4060 AGACCAAG \ jC 4070 CGACAGCGGC 4070 CGACAGCGGC 4080 GG\_GAG\jACG 4080 GG \ _GAG \ JACGAL 4090 CCCACCGCGG 4090 CCCACCGCGG 4100 CGAACTGCCC 4100 CGAACTGCCC 4110 GACGGCGCCT 4110 GACGGCGCCT 41 20 TCATGTTCGC 40 20 TCATGTTCGC 4130 CGACCGGATG 4130 CGACCGGATG 4140 CTCGCCCTCG 4140 CTCGCCCTCG 4150 ACCACGAACA 4150 ACCACGAACA 4160 GGGGCGGGCC 4160 GGGGCGGGCC 4170 TGGCTCCTGG 4170 TGGCTCCTGG 4180 CACTGAGCAG 4180 CACTGAGCAG 4190 CACCCGACGG 4190 CACCCGACGG 4200 CCCGCCACCG 4200 CCCGCCACCG 4210 CACCCGCCGC 4210 CACCCGCCGC 4220 CGAACGCTGG 4220 CGAACGCTGG 4230 CTCACCGACG 4230 CTCACCGACG 4240 CCGCCCGGAC 4240 CCGCCCGGAC 4250 CCTCGCCACC 4250 CCTCGCCACC 42SG ACCGCCCCCC 42SG ACCGCCCCCC 4270 GCCCGCCCTT 4270 GCCCGCCCTT 4280 CACCCTGCTG 4280 CACCCTGCTG 4290 CCCGACGACC 4290 CCCGACGACC 4300 AACTGCCCGC 4300 AACTGCCCGC 4310 CCTGGACGTC 4310 CCTGGACGTC 4320 CACTACCGCC 4320 CACTACCGCC 4330 ACAGCCTGCC 4330 ACAGCCTGCC 4340 CCGCTACCGG 4340 CCGCTACCGG 4350 GAACTGGTCG 4350 GAACTGGTCG 4360 AGGAATGCCG 4360 AGGAATGCCG 4370 CCGCCTGATC 4370 CCGCCTGATC 4380 ACCGACGGCG 4380 ACCGACGGCG 4390 4390 4400 4400 4410 4410 4420 4420 4430 4430 4440 4440 AGACCTACGA AGACCTACGA GGTGTGCCTG GGTGTGCCTG ACGAACATGC ACGAACATGC TCCGGGTGCC TCCGGGTGCC CGGCCGGATC CGGCCGGATC GACGCGCTCA GACGCGCTCA 4450 CCGCCTACCG 4450 CCGCCTACCG 4460 CGCCCTGCGC 4460 CGCCCTGCGC 4470 ACCGTCAGCC 4470 ACCGTCAGCC 4480 CCGCCCCCTA 4480 CCGCCCCCTA 4490 CGCCGCCTAC 4490 CGCCGCCTAC CTGCAG CTGCAG

Informácia pre SEQ ID č.5:Information for SEQ ID No. 5:

charakteristiky sekvencie: dĺžka: 1065 párov báz typ: nukleová kyselina počet reťazcov: dvojreťazec konfigurácia: lineárna typ molekuly: DNAc hypotetická: nie antimediátorová: nie pôvod: organizmus Streptomyces pristinaespiralis popis sekvencie: SEQ ID č.5:sequence characteristics: length: 1065 base pairs type: nucleic acid number of chains: double-stranded configuration: linear molecule type: DNAc hypothetical: no antisense: no origin: Streptomyces pristinaespiralis organism sequence description: SEQ ID No 5:

ATG ATG GAG GAG ACC ACC TGG TGG GTC GTC CTG CTG GGC GGC CGG CGG CGC CGC GAC GAC GTC GTC GCC GCC GAG GAG GTG GTG GTG GTG GCC GCC GCC GCC GTC GTC 5 4 5 4 Met Met Glu Glu Thr Thr Trp Trp Val wall Leu Leu Gly Gly Arg Arg Arg Arg Asp Asp Val wall Ala Ala Glu Glu val wall Val wall Ala Ala Ala Ala Val wall 1 3 1 3 GGC GGC CGC CGC GAC GAC GAA GAA CTC CTC ATG ATG CGC CGC CGC CGC ATC ATC ATC ATC GAC GAC CGC CGC CTC CTC ACC ACC GGC GGC GGA GGA CTG CTG GCC GCC 108 108 Gly Gly Arg Arg Asp Asp Glu Glu Leu Leu Met Met Arg Arg Arg Arg íle Ile íle Ile Asp Asp Arg Arg Leu Leu Thr Thr Gly Gly Gly Gly Leu Leu Ala Ala 36 36 GAG GAG ATC ATC GGC GGC CGC CGC GGC GGC GAG GAG CGG CGG CAC CAC CTG CTG TCC TCC CCG CCG CTG CTG CGC CGC GGC GGC GGA GGA CTG CTG GAA GAA CGC CGC 162 162 Glu Glu íle Ile Gly Gly Arg Arg Gly Gly Glu Glu Arg Arg His His Leu Leu Ser Ser Pro for Leu Leu Arg Arg Gly Gly Gly Gly Leu Leu Glu Glu Arg Arg 54 54 AGC AGC GAA GAA CCC CCC GTG GTG CCC CCC GGC GGC ATC ATC TGG TGG GAA GAA TGG TGG ATG ATG CCG CCG CAC CAC CGC CGC GAA GAA CCC CCC GGC GGC GAC GAC 216 216 Ser Ser Glu Glu Pro for Val wall Pro for Gly Gly íle Ile Trp Trp Glu Glu Trp Trp Met Met Pro for His His Arg Arg Glu Glu Pro for Gly Gly Aso Aso 72 72

121121

CAC CAC ATC ATC ACC ACC CTC CTC AAG AAG ACC ACC GTC GTC GGC GGC TAC TAC AGC AGC CCC CCC GCC GCC AAC AAC CCC CCC GGC GGC CGC CGC TTC TTC GGC GGC 270 270 His His íle Ile Thr Thr Leu Leu Lys Lys Thr Thr Val wall Gly Gly Tyr Tyr Ser Ser Pro for Ala Ala Asn same time Pro for Gly Gly Arg Arg Phe Phe Gly Gly 90 90 CTG CTG CCG CCG ACC ACC ATC ATC CTG CTG GGC GGC ACC ACC GTC GTC GCC GCC CGC CGC TAC TAC GAC GAC GAC GAC ACC ACC ACC ACC GGC GGC GCC GCC CTG CTG 324 324 Leu Leu Pro for Thr Thr íle Ile Leu Leu Gly Gly Thr Thr val wall Ala Ala Arg Arg Tyr Tyr Asp Asp Asp Asp Thr Thr Thr Thr Gly Gly Ala Ala Leu Leu 103 103 ACC ACC GCC GCC CTG CTG ATG ATG GAC GAC GGC GGC GTG GTG CTG CTG CTC CTC ACC ACC GCC GCC CTG CTG CGC CGC ACC ACC GGC GGC GCC GCC GCC GCC TCC TCC 373 373 ?Jjr ? JJR Ala Ala Leu Leu Met Met Asp Asp Gly Gly Val wall Leu Leu Leu Leu Thr Thr Ala Ala Leu Leu Arg Arg Thr Thr Gly Gly Ala Ala Ala Ala Ser Ser 125 125 GCC GCC GTC GTC GCC GCC TCC TCC CCC CCC CTG CTG CTG CTG GCC GCC CGC CGC CCC CCC GAC GAC AGC AGC CAC CAC ACC ACC CTG CTG GGA GGA CTG CTG ATC ATC 432 432 A 2. a. A 2. a. Val wall Ala Ala Ser Ser Arg Arg Leu Leu Leu Leu Ala Ala Arg Arg Pro for Asp Asp Ser Ser His His Thr Thr Leu Leu Gly Gly Leu Leu íle Ile 144 144 G^C G ^ C ACC ACC GGC GGC GCC GCC CAG CAG GCC GCC GTC GTC ACC ACC CAA CAA CTG CTG CAC CAC GCC GCC CTG CTG TCC TCC CTG CTG GTA GTA CTG CTG CCC CCC 436 436 Gly Gly Thr Thr Gly Gly Ala Ala Gin gin Ala Ala val wall Thr Thr Gin gin Leu Leu His His Ala Ala Leu Leu Ser Ser Leu Leu Val wall Leu Leu Pro for 1 62 1 62 CTG CTG CAA CAA CGvj CGvj GGC GGC CTG CTG GTG GTG TGG TGG GAC GAC ACC ACC GAC GAC CCC CCC GCC GCC CAC CAC CGG CGG GAA GAA AGC AGC TTC TTC GCC GCC 540 540 Leu Leu Gin gin Arg Arg Ala Ala Leu Leu val wall Trp Trp Asp Asp Thr Thr Asp Asp Pro for Ala Ala His His Arg Arg Glu Glu Ser Ser Phe Phe Ala Ala 180 180 CGG CGG CGG CGG GCC GCC GCG GCG TTC TTC ACC ACC GGC GGC GTC GTC AGC AGC GTC GTC GAG GAG ATC ATC GCC GCC GAG GAG CCC CCC GCC GCC CGG CGG ATC ATC 594 594 Arg Arg Arg Arg Ala Ala Ala Ala Phe Phe Thr Thr Gly Gly Val wall Ser Ser Val wall Glu Glu íle Ile Ala Ala Glu Glu Pro for Ala Ala Arg Arg íle Ile 198 198 GCC GCC GCC GCC GAG GAG GCC GCC GAC GAC GTC GTC ATC ATC TCC TCC ACC ACC GCC GCC ACC ACC TCG TCG GTA GTA GCC GCC GTC GTC GGC GGC CAG CAG GGC GGC 643 643 Ala Ala Ala Ala Glu Glu Ala Ala Asp Asp Val wall íle Ile Ser Ser Thr Thr Ala Ala Thr Thr Ser Ser Val wall Ala Ala Val wall Gly Gly Gin gin Gly Gly 21 6 21 6 CCG CCG GTC GTC CTG CTG CCC CCC GAC GAC ACC ACC GGC GGC GTC GTC CGC CGC GAG GAG CAC CAC CTG CTG CAC CAC ATC ATC AAC AAC GCC GCC GTC GTC GGC GGC 702 702 Pro for Val wall Leu Leu Pro for Asp Asp Thr Thr Gly Gly Val wall Arg Arg Glu Glu His His Leu Leu His His íle Ile Asn same time Ala Ala Val wall Gly Gly 234 234 GCG GCG GAC GAC CTC CTC GTC GTC GGC GGC AAG AAG ACG ACG GAA GAA CTG CTG CCG CCG CTC CTC GGC GGC CTG CTG CTC CTC GAG GAG CGG CGG GCG GCG TTC TTC 756 756 Ala Ala Asp Asp Leu Leu Val wall Gly Gly Lys Lys Thr Thr Glu Glu Leu Leu Pro for Leu Leu Gly Gly Leu Leu Leu Leu Glu Glu Arg Arg Ala Ala Phe Phe 2S2 2S2 GTC GTC ACC ACC GCC GCC GAC GAC CAC CAC CCC CCC GAG GAG CAG CAG GCG GCG CTG CTG CGC CGC GAG GAG GGC GGC GAG GAG TGC TGC CAG CAG CAA CAA CTC CTC 810 810 Val wall Thr Thr Ala Ala Asp Asp His His Pro for Glu Glu Gin gin Ala Ala Leu Leu Arg Arg Glu Glu Gly Gly Glu Glu Cys Cys Gin gin Gin gin Leu Leu 270 270 TCC TCC GCC GCC GAC GAC CGG CGG CTC CTC GGC GGC CCG CCG CAG CAG CTG CTG GCC GCC CAC CAC CTG CTG TGC TGC GCC GCC GAC GAC CCG CCG GCG GCG GCC GCC 864 864 Ser Ser Ala Ala Asp Asp Arg Arg Leu Leu Gly Gly Pro for Gin gin Leu Leu Ala Ala His His Leu Leu Cys Cys Ala Ala Asp Asp Pro for Ala Ala Ala Ala 288 288 GCG GCG GCC GCC GGC GGC CGG CGG CAG CAG GAC GAC ACC ACC CTG CTG AGC AGC GTC GTC TTC TTC GAC GAC TCC TCC ACC ACC GGC GGC TTC TTC GCC GCC TTC TTC 918 918 Ala Ala Ala Ala Gly Gly Arg Arg Gin gin Asp Asp Thr Thr Leu Leu Ser Ser Val wall Phe Phe Asp Asp Ser Ser Thr Thr Gly Gly Phe Phe Ala Ala Phe Phe 306 306 GAG GAG GAC GAC GCC GCC CTG CTG GCG GCG ATG ATG GAA GAA GTG GTG TTC TTC CTC CTC GAG GAG GCC GCC GCC GCC GCC GCC GAA GAA CGG CGG GAC GAC CTG CTG 972 972 Glu Glu Asp Asp Ala Ala Leu Leu Ala Ala Met Met Glu Glu Val wall Phe Phe Leu Leu Glu Glu Ala Ala Ala Ala Ala Ala Glu Glu Arg Arg Asp Asp Leu Leu 324 324 GGC GGC ATC ATC CGG CGG GTG GTG GGC GGC ATC ATC GAA GAA CAC CAC CAC CAC CCC CCC GGC GGC GAC GAC GCC GCC CTG CTG GAC GAC CCC CCC TAC TAC GCC GCC 1026 1026 Gly Gly íle Ile Arg Arg Val wall Gly Gly íle Ile Glu Glu His His His His Pro for Gly Gly Asp Asp Ala Ala Leu Leu Asp Asp Pro for Tyr Tyr Ala Ala 342 342 CTG CTG CAG CAG CCC CCC CTG CTG CCC CCC CTG CTG CCC CCC CTG CTG GCC GCC GCC GCC CCC CCC GCC GCC CAC CAC 1065 1065 Leu Leu Gin gin Pro for Leu Leu Pro for Leu Leu Pro for Leu Leu Ala Ala Ala Ala Pro for Ala Ala His His 355 355

122122

Informácia pre SEQ ID č.6:Information for SEQ ID No. 6:

charakteristiky sekvencie: dĺžka: 1194 párov báz typ: nukleová kyselina počet reťazcov: dvojreťazec konfigurácia: lineárna typ molekuly: DNAc hypotetická: nie antimediátorová: nie pôvod: organizmus Streptomyces pristinaespiralis popis sekvencie: SEQ ID č.6:sequence characteristics: length: 1194 base pairs type: nucleic acid number of chains: double-stranded configuration: linear molecule type: DNAc hypothetical: no antisense: no origin: organism Streptomyces pristinaespiralis sequence description: SEQ ID No 6:

ATG ATG CCC CCC CCC CCC ACC ACC CCC CCC CGG CGG CCC CCC ACC ACC ACC ACC GAC GAC GAC GAC GGC GGC GGC GGC CGT CGT GAA GAA CTG CTG CTC CTC GCC GCC 54 54 Met Met Pro for Pro for Thr Thr Pro for Arg Arg Pro for Thr Thr Thr Thr Asp Asp Asp Asp Gly Gly Gly Gly Arg Arg Glu Glu Leu Leu Leu Leu Ala Ala 18 18 TGG TGG CTG CTG CGC CGC GAG GAG ATG ATG CGC CGC CAC CAC CAC CAC CAC CAC CCC CCC GTC GTC CAC CAC GAG GAG GAC GAC GAA GAA TAC TAC GGT GGT GCC GCC 108 108 Trp Trp Leu Leu Arg Arg Glu Glu Met Met Arg Arg His His His His His His Pro for Val wall His His Glu Glu Asp Asp Glu Glu Tyr Tyr Gly Gly Ala Ala 36 36 TTC TTC CAC CAC GTC GTC TTC TTC CGG CGG CAC CAC GCC GCC GAC GAC GTC GTC CTC CTC ACC ACC GTC GTC GCC GCC TCC TCC GAC GAC CCC CCC GGC GGC GTC GTC 1 62 1 62 Phe Phe His His Val wall Phe Phe Arg Arg HiS HiS Ala Ala Asp Asp Val wall Leu Leu Thr Thr Val wall Ala Ala Ser Ser Asp Asp Pro for Gly Gly Val wall 54 54 TAC TAC TCC TCC TCC TCC CAG CAG CTC CTC AGC AGC CGG CGG CTA CTA CGG CGG CCC CCC GGC GGC TCC TCC CAG CAG GCG GCG TTG TTG AGC AGC GAA GAA CAG CAG 216 216 Ty r Ty r Ser Ser Ser Ser Gin gin Leu Leu Ser Ser Arg Arg Leu Leu Arg Arg Pro for Gly Gly Ser Ser Gin gin Ala Ala Leu Leu Ser Ser Glu Glu Gin gin 72 72 ATC ATC CTG CTG TCG TCG GTC GTC ATC ATC GAC GAC CCG CCG CCG CCG ATG ATG CAC CAC CGC CGC ACC ACC CTG CTG CGC CGC CGC CGC CTG CTG GTC GTC AGC AGC 270 270 íle Ile Leu Leu Ser Ser Val wall íle Ile Asp Asp Pro for Pro for Met Met His His Arg Arg Thr Thr Leu Leu Arg Arg Arg Arg Leu Leu Val wall Ser Ser 90 90 CAG CAG GCC GCC TTC TTC ACC ACC CCC CCC CGC CGC ACC ACC GTC GTC GCC GCC GAC GAC CTC CTC GAA GAA CCA CCA CGC CGC GTC GTC ACC ACC GAA GAA CTG CTG 324 324 Gin gin Ala Ala Phe Phe Thr Thr Pro for Arg Arg Thr Thr Val wall Ala Ala Asp Asp Leu Leu Glu Glu Pro for Arg Arg Val wall Thr Thr Glu Glu Leu Leu 108 108 GCC GCC GGG GGG CAA CAA CTG CTG CTC CTC GAC GAC GCC GCC GTC GTC GAC GAC GGC GGC GAC GAC ACG ACG TTC TTC GAC GAC CTC CTC GTC GTC GCC GCC GAC GAC 378 378 Ala Ala Gly Gly Gin gin Leu Leu Leu Leu Asp Asp Ala Ala Val wall Asp Asp Gly Gly Asp Asp Thr Thr Phe Phe Asp Asp Leu Leu Val wall Ala Ala Asp Asp 1 26 1 26 TTC TTC GCC GCC TAC TAC CCG CCG CTG CTG CCC CCC GTG GTG ATC ATC GTG GTG ATC ATC GCC GCC GAA GAA CTC CTC CTC CTC GGC GGC GTG GTG CCG CCG CCC CCC 432 432 Phe Phe Ala Ala Tyr Tyr Pro for Leu Leu Pro for Val wall íle Ile Val wall íle Ile Ala Ala Glu Glu Leu Leu Leu Leu Gly Gly Val wall Pro for Pro for 144 144 GCC GCC GAC GAC CGC CGC ACC ACC CTG CTG TTC TTC CGC CGC TCC TCC TGG TGG TCC TCC GAC GAC CGG CGG ATG ATG CTG CTG CAG CAG ATG ATG CAG CAG GTC GTC 486 486 Ala Ala Asp Asp Arg Arg 'Thiz* 'Thiz * Leu Leu Phe Phe Arg Arg Ser Ser Trp Trp Ser Ser Asp Asp Arg Arg Met Met Leu Leu Gin gin Met Met Gin gin Val wall 1 62 1 62 GCC GCC GAC GAC CCG CCG GCG GCG GAC GAC ATG ATG CAG CAG TTC TTC GGC GGC GAC GAC GAC GAC GCC GCC GAC GAC GAG GAG GAC GAC TAC TAC CAA CAA CGC CGC 540 540 Ala Ala Asp Asp Pro for Ala Ala Asp Asp Met Met Gin gin Phe Phe Gly Gly Asp Asp Asp Asp Ala Ala Asp Asp Glu Glu Asp Asp Tyr Tyr Gin gin Arg Arg ISO ISO CTC CTC GTC GTC AAA AAA GAA GAA CCC CCC ATG ATG CGC CGC GCC GCC ATG ATG CAC CAC GCC GCC TAC TAC CTC CTC CAC CAC GAC GAC CAC CAC GTC GTC ACC ACC 594 594 Leu Leu Val wall Lys Lys Glu Glu Pro for Met Met Arg Arg Ala Ala Met Met His His Ala Ala Tyr Tyr Leu Leu His His Asp Asp His His Val wall Thr Thr 1 98 1 98 GAC GAC CGC CGC CGC CGC GCC GCC CGC CGC CCC CCC GCG GCG AAC AAC GAC GAC CTG CTG ATC ATC TCC TCC GCA GCA CTC CTC GTC GTC GCC GCC GCC GCC CGC CGC 648 648 Asp Asp Arg Arg Arg Arg Ala Ala Arg Arg Pro for Ala Ala Asn same time Asp Asp Leu Leu íle Ile Ser Ser Ala Ala Leu Leu Val wall Ala Ala Ala Ala Arg Arg 216 216 GTG GTG GAG GAG GGC GGC GAA GAA CGA CGA CTC CTC ACC ACC GAC GAC GAG GAG CAG CAG ATC ATC GTC GTC GAA GAA TTC TTC GGG GGG GCG GCG CTG CTG CTG CTG 702 702 Val wall Glu Glu Gly Gly Glu Glu Arg Arg Leu Leu Thr Thr Asp Asp Glu Glu Gin gin íle Ile val wall Glu Glu Phe Phe Gly Gly Ala Ala Leu Leu Leu Leu '234 '234 CTG CTG ATG ATG GCC GCC GGC GGC CAC CAC GTC GTC TCC TCC ACC ACC TCC TCC ATG ATG CTG CTG CTC CTC GGC GGC AAC AAC ACC ACC GTG GTG CTG CTG TGC TGC 756 756 Leu Leu Met Met Ala Ala Gly Gly His His Val wall Ser Ser Thr Thr Ser Ser Met Met Leu Leu Leu Leu Gly Gly Asn same time Thr Thr Val wall Leu Leu Cvs Cvs 252 252

123123

CTG CTG AAG AAG GAC GAC CAC CAC CCC CCC CGG CGG GCC GCC GAG GAG GCC GCC GCC GCC GCC GCC CGC CGC GCC GCC GAC GAC CGG CGG TCC TCC CTG CTG ATC ATC 810 810 Leu Leu Lys Lys Asp Asp His His Pro for Arg Arg Ala Ala Glu Glu Aia Aia Ala Ala Ala Ala Arg Arg Ala Ala Asp Asp Arg Arg Ser Ser Leu Leu íle Ile 270 270 CCC CCC GCC GCC CTG CTG »/*,/*· Λ _ -w »/ *, / * · Λ _ -w GAA GAA GAA GAA GTA GTA CTG CTG CGkj CGkj CTG CTG CGG CGG CCG CCG CCG CCG ATC ATC ACC ACC GTC GTC ATG ATG GCC GCC 364 364 ?rs ? rs Ala Ala Leu Leu lis Press Giu Giu Giu Giu Val wall Leu Leu Arg Arg Leu Leu Arg Arg Pro for Pro for íle Ile Thr Thr Val wall Met Met Ala Ala 233 233 CGC CGC GTC GTC ACC ACC ACC ACC AAG AAG GAC GAC ACC ACC GTC GTC CTC CTC GCC GCC ACC ACC ACC ACC ATC ATC CCC CCC GCC GCC GuA GUA CG<_ CG <_ 913 913 Arg Arg Val wall Thr Thr Lys Lys Asp Asp Thr Thr Val wall Leu Leu Ala Ala Giy Gly Thr Thr Thr Thr íle Ile Pro for Ala Ala Gly Gly Arg Arg 306 306 ATG ATG GTC GTC GTG GTG CCC CCC m s* r* m s * r * CTG CTG CTG CTG i'r* i'r * GCC GCC AAC AAC CAC CAC GAC GAC GAA GAA CAG CAG GTC GTC TTC TTC ACC ACC GAC GAC 972 972 Mec mec Val wall Val wall Pro for Ser Ser Leu Leu Leu Leu Ser Ser Ala Ala Asn same time Hls HLS Asp Asp Glu Glu Gin gin Val wall Phe Phe *T*U _ *HERE _ Asp Asp 324 324 ccc ccc GAC GAC CAC CAC 'T'/— 'T' / - GAC GAC CTC CTC GCC GCC CGC CGC GAA GAA GGC GGC CGC CGC CAG CAG ATC ATC GCC GCC TTC TTC GGC GGC CAC CAC GGC GGC 1025 1025 Pro for Asp Asp UUS USU Leu Leu Asp Asp Leu Leu Ala Ala Arg Arg Glu Glu Gly Gly Arg Arg Gin gin íle Ile Aua AUA Phe Phe Gly Gly Hl s Hl s Gly Gly 342 342 ATC ATC CAC CAC TAC TAC «— « J'— «- «J'— CTG CTG GGC GGC GCC GCC CCG CCG CTC CTC GCC GCC CGC CGC CTG CTG GAG GAG GGC GGC CGC CGC ATC ATC GCC GCC CTG CTG 1080 1080 íle Ile Hl s Hl s Tyr Tyr Cys Cys Leu Leu Giy Gly Ala Ala Pro for Leu Leu Ala Ala Arg Arg Leu Leu Glu Glu Gly Gly Arg Arg íle Ile Ala Ala Leu Leu 360 360 GAA GAA GCC GCC CTC CTC GAC GAC CGA CGA ccc ccc GAC GAC ŕTľpQ ŕTľpQ TCG TCG CCC CCC ACC ACC GAC GAC GGC GGC GCA GCA AAA AAA CTG CTG i 1 34 i 1 34 Glu Glu Ala Ala Leu Leu Phe Phe Asp Asp nr g nr g Phe Phe Pro for Asp Asp Phe Phe Ser Ser Pro for Thr Thr Asp Asp Gly Gly Ala Ala Lys Lys Leu Leu 373 373 CGC CGC TAC TAC CAC CAC U «J v- U «J v- GAC GAC GGA GGA CTG CTG TTC TTC GGC GGC GTC GTC AAG AAG AAC AAC CTG CTG CCG CCG CTG CTG ACC ACC GTA GTA CGG CGG 1 1 33 1 1 33 Arg Arg Tyr Tyr His His Arg Arg Asp Asp Giy Gly Leu Leu Phe Phe Gly Gly Val wall Lys Lys Asn same time Leu Leu Pro for Leu Leu Thr Thr Val wall Arg Arg 395 395 CGC CGC GGC GGC i 1 94 i 1 94 Arg Arg Giy Gly 393 393

Informácia pre SEQ ID č.7:Information for SEQ ID No. 7:

charakteristiky sekvencie: dĺžka: 1561 párov báz typ: nukleová kyselina počet reťazcov: dvojreťazec konfigurácia: lineárna typ molekuly: DNAc hypotetická: nie antimediátorová: nie pôvod: organizmus Streptomyces pristinaespiralis popis sekvencie: SEQ ID č.7:sequence characteristics: length: 1561 base pairs type: nucleic acid number of chains: double-stranded configuration: linear molecule type: DNAc hypothetical: no antisense: no origin: Streptomyces pristinaespiralis organism sequence description: SEQ ID No 7:

10 10 20 20 30 30 40 40 50 50 60 60 AAGCTTCCCG AAGCTTCCCG ACCGGGTGGA ACCGGGTGGA GGTCGTCGAC GGTCGTCGAC GCGTTCCCGC GCGTTCCCGC TGACCGGCCT TGACCGGCCT CAACAAGGTC CAACAAGGTC 70 70 80 80 90 90 100 100 110 110 120 120 GACAAGAAGG GACAAGAAGG CCCTGGCGGC CCCTGGCGGC CGACATCGCC CGACATCGCC GCCAAGACCG GCCAAGACCG CCCCCACCCG CCCCCACCCG CCCCACCACC CCCCACCACC 130 130 140 140 150 150 160 160 170 170 180 180 GCCGGCCACG GCCGGCCACG GCCCGACCAC GCCCGACCAC GGACGGCGAT GGACGGCGAT ACGGCCGGTG ACGGCCGGTG GGGGTGGGTC GGGGTGGGTC CGCGGGCGGG CGCGGGCGGG 190 190 200 200 210 210 220 220 230 230 240 240 GTGACGGCCG GTGACGGCCG CCGGTGGCGkj CCGGTGGCGkj GCGGGAGGAG GCGGGAGGAG GCGGCGTGAG GCGGCGTGAG CGGGCCCGGG CGGGCCCGGG CCCGAGGGCG CCCGAGGGCG

124124

250 GCTACCGGGT 250 GCTACCGGGT 260 GCCGTTCGCG 260 GCCGTTCGCG 270 CGACGCGGTT 270 CGACGCGGTT 280 CGGTGGTGGG 280 CGGTGGTGGG 290 CGAGGCGGAC 290 CGAGGCGGAC 300 CTGGCGGCGC 300 CTGGCGGCGC 310 TGGGCGAACT 310 TGGGCGAACT 320 GGTCCGCTCG 320 GGTCCGCTCG 330 GGCCGGTCGC 330 GGCCGGTCGC 340 TGACGTCGGG 340 TGACGTCGGG 350 GGTGTGGCGG 350 GGTGTGGCGG 360 GAGCGGTTCG 360 GAGCGGTTCG 370 AGGAACAGTT 370 AGGAACAGTT 380 CGCCCGCCTG 380 CGCCCGCCTG 390 ACCGGCGCCC 390 ACCGGCGCCC 400 GGCACGCGCT 400 GGCACGCGCT 410 CAGTGTCACC 410 CAGTGTCACC 420 AGCGGCACCG 420 AGCGGCACCG 430 TCGCGCTGGA 430 TCGCGCTGGA 440 ACTGGCGGTG 440 ACTGGCGGTG 450 CGGATGCTGG 450 CGGATGCTGG 460 ACCTGGCGCC 460 ACCTGGCGCC 470 GGGCGACGAG 470 GGGCGACGAG 480 GTGATCGCCA 480 GTGATCGCCA 490 CCCCGCAGAC 490 CCCCGCAGAC 500 GTTCCAGGCG 500 GTTCCAGGCG 510 ACGGTGCAGC 510 ACGGTGCAGC 520 CGCTGCTCGA 520 CGCTGCTCGA 530 CCACGACGTG 530 CCACGACGTG 540 CGGCTGCGGT 540 CGGCTGCGGT 550 TCTGCGACAT 550 TCTGCGACAT 560 CGACCCGGAC 560 CGACCCGGAC 570 ACCCTCAACC 570 ACCCTCAACC 580 TCGACCCGGC 580 TCGACCCGGC 590 GGTGCTGGAG 590 GGTGCTGGAG 600 ACGCTGATCA 600 ACGCTGATCA 610 CCGACCGCAC 610 CCGACCGCAC 620 CCGGGCGATC 620 CCGGGCGATC 630 CTGCTCGTCC 630 CTGCTCGTCC 640 ACTACGGCGG 640 ACTACGGCGG 650 CAACCCGGCC 650 CAACCCGGCC 660 GACATGGACC 660 GACATGGACC 670 GCATCATGGC 670 GCATCATGGC 680 CCTGGCCCGC 680 CCTGGCCCGC 690 AAGCGCGGCA 690 AAGCGCGGCA 700 TCATCGTCGT 700 TCATCGTCGT 710 CGAGGACAGC 710 CGAGGACAGC 720 GCGCACGCGC 720 GCGCACGCGC 730 TGGGCGCCGT 730 TGGGCGCCGT 740 GTACCGGGGG 740 GTACCGGGGG 750 CGGCGGCCGG 750 CGGCGGCCGG 760 GGGCACTGGC 760 GGGCACTGGC 770 GGACATCGGC 770 GGACATCGGC 780 TGCTTCACTT 780 TGCTTCACTT 790 TCCACTCCAC 790 TCCACTCCAC 800 GAAGAACATC 800 GAAGAACATC 810 ACCACCCTCG 810 ACCACCCTCG 820 GCGAGGGCGG 820 GCGAGGGCGG 830 CATGATCACC 830 CATGATCACC 840 CTGTCGCGTG 840 CTGTCGCGTG 850 ACGAGTGGGC 850 ACGAGTGGGC 860 CCAGCGGGTG 860 CCAGCGGGTG 870 GGACGTATCC 870 GGACGTATCC 880 GCGACAACGA 880 GCGACAACGA 890 GGCCGACGGC 890 GGCCGACGGC 900 GTGTACGCGG 900 GTGTACGCGG 910 CGCTGCCGGA 910 CGCTGCCGGA 920 CTCCGCGCGG 920 CTCCGCGCGG 930 GCGGGTGCTC 930 GCGGGTGCTC 940 CGGCGCTGCT 940 CGGCGCTGCT 950 GCCGTGGATG 950 GCCGTGGATG 960 AAGTTCGCGG 960 AAGTTCGCGG 970 AGGGTGTGTA 970 AGGGTGTGTA 980 CGGTCACCGG 980 CGGTCACCGG 990 GCGGTCGGGG 990 GCGGTCGGGG 1000 TCCGCGGGGC 1000 TCCGCGGGGC 1010 GGGCACGAAC 1010 GGGCACGAAC 1020 GCGACGATGT 1020 GCGACGATGT 1030 CGGAGGCGGC 1030 CGGAGGCGGC 1040 GGCGGCGGTG 1040 GGCGGCGGTG 1050 GGCGTGGTGC 1050 GGCGTGGTGC 1060 AACTGGCGTC 1060 AACTGGCGTC 1070 GCTGGAGCGG 1070 GCTGGAGCGG 1080 TTCGTGGCCC 1080 TTCGTGGCCC 1090 GGCGCCGGAG 1090 GGCGCCGGAG 1100 CATCGCGCAG 1100 CATCGCGCAG 1110 CGGCTGGACG 1110 CGGCTGGACG 1120 AGGCCGTGGC 1120 AGGCCGTGGC 1130 CTCGGTGGCC 1130 CTCGGTGGCC 1140 GGCACCCGGC 1140 GGCACCCGGC 1150 TGCACCGGGC 1150 TGCACCGGGC 1160 GGCGGCGGAC 1160 GGCGGCGGAC 1170 AGTCTGCACG 1170 AGTCTGCACG 1180 CCTACCACCT 1180 CCTACCACCT 1190 GTACACGTTC 1190 GTACACGTTC 1200 TTCCTCACCG 1200 TTCCTCACCG 1210 GCGGCCGGCA 1210 GCGGCCGGCA 1220 GGTGCGGGAG 1220 GGTGCGGGAG 1230 CGGTTCGTGC 1230 CGGTTCGTGC 1240 GCGCCCTGGA 1240 GCGCCCTGGA 1250 CCGGCTGGGT 1250 CCGGCTGGGT 1260 GTGGAGGTCC 1260 GTGGAGGTCC 1270 AGTTGCGGTA 1270 AGTTGCGGTA 1280 CTTCCCGCTC 1280 CTTCCCGCTC 1290 CATCTGTCGC 1290 CATCTGTCGC 1300 CCGAGTGGCG 1300 CCGAGTGGCG 1310 GCTGCGCGGC 1310 GCTGCGCGGC 1320 CACGGGCCGG 1320 CACGGGCCGG 1330 GCGAGTGTCC 1330 GCGAGTGTCC 1340 GACGGCCGAA 1340 GACGGCCGAA 1350 CGGGTCTGGT 1350 CGGGTCTGGT 1360 TCGAGGAGCA 1360 TCGAGGAGCA 1370 CATGAACCTG 1370 CATGAACCTG 1 380 CCGTGCCATC 1,380 CCGTGCCATC 1390 CCGGTCTGAG 1390 CCGGTCTGAG 1400 TGACGGCCAG 1400 TGACGGCCAG 1410 GTCGACTACA 1410 GTCGACTACA 1420 TGGTCGAGGC 1420 TGGTCGAGGC 1430 GGTCACCCGC 1430 GGTCACCCGC 1440 GCCCTGCACG 1440 GCCCTGCACG 1450 AGGCCCACGG 1450 AGGCCCACGG 1460 CACGGGGACG 1460 CACGGGGACG 1470 CGGGTGGCGG 1470 CGGGTGGCGG 1480 CCGGGCACCT 1480 CCGGGCACCT 1490 GTGACACCGT 1490 GTGACACCGT 1500 CCGCATCCGG 1500 CCGCATCCGG 1510 CCGGTGGTTT 1510 CCGGTGGTTT 1520 TCCAAGACCG 1520 TCCAAGACCG 1530 AGGGAGAGGC 1530 AGGGAGAGGC 1540 AGGCGTATGC 1540 AGGCGTATGC 1550 CGTTCATCGA 1550 CGTTCATCGA 1560 AGTGAAGATC 1560 AGTGAAGATC

125125

Informácia pre SEQ ID č.8:Information for SEQ ID No. 8:

charakteristiky sekvencie: dĺžka: 1233 párov báz typ: nukleová kyselina počet reťazcov: dvojreťazec konfigurácia: lineárna typ molekuly: DNAc hypotetická: nie antimediátorová: nie pôvod: organizmus Streptomyces pristinaespiralis popis sekvencie: SEQ ID č.8:sequence characteristics: length: 1233 base pairs type: nucleic acid number of chains: double-stranded configuration: linear molecule type: DNAc hypothetical: no antisense: no origin: organism Streptomyces pristinaespiralis sequence description: SEQ ID No 8:

GTG GTG CCG CCG TTC TTC GCG GCG CGA CGA CGC CGC GGT GGT TCG TCG GTG GTG GTG GTG GGC GGC GAG GAG GCG GCG GAC GAC CTG CTG GCG GCG GCG GCG CTG CTG 54 54 Val wall Pro for Phe Phe Ala Ala Arg Arg Arg Arg Gly Gly Ser Ser Val wall Val wall Gly Gly Glu Glu Ala Ala Asp Asp Leu Leu Ala Ala Ala Ala Leu Leu 13 13 GGC GGC GAA GAA CTG CTG GTC GTC CGC CGC TCG TCG GGC GGC CGG CGG TCG TCG CTG CTG ACG ACG TCG TCG GGG GGG GTG GTG TGG TGG CGG CGG GAG GAG CGG CGG 108 108 Gly Gly Glu. Glu. Leu Leu Val wall Arg Arg Ser Ser Gly Gly Arg Arg Ser Ser Leu Leu Thr Thr Ser Ser Gly Gly Val wall Trp Trp Arg Arg Glu Glu Arg Arg 36 36 TTC TTC GAG GAG GAA GAA 'GAG 'GAG TTC TTC GCC GCC CGC CGC CTG CTG ACC ACC GGC GGC GCC GCC CGG CGG CAC CAC GCG GCG CTC CTC AGT AGT GTC GTC ACC ACC 162 162 Phe Phe Glu Glu Glu Glu Gin gin Phe Phe Ala Ala i r-r. i r-r. Leu Leu Thr Thr Gly Gly Ala Ala Arg Arg His His Ala Ala Leu Leu Ser Ser Val. Val. Thr Thr 54 54 AGC AGC GGC GGC ACC ACC GTC GTC GCG GCG CTG CTG GAA GAA CTG CTG GCG GCG GTG GTG CGG CGG ATG ATG CTG CTG GAC GAC CTG CTG GCG GCG CCG CCG GGC GGC 216 216 Ser Ser Gly Gly Thr Thr Val wall Ala Ala Leu Leu Glu Glu Leu Leu Ala Ala Val wall Arg Arg Met Met Leu Leu Asp Asp Leu Leu Ala Ala Pro for Gly Gly 72 72 GAC GAC GAG GAG GTG GTG ATC ATC GCC GCC ACC ACC CCG CCG QG QG ACG ACG TTC TTC CAG CAG GCG GCG ACG ACG GTG GTG CAG CAG CCG CCG CTG CTG CTC CTC 270 270 Asp Asp Glu Glu val wall íle Ile Ala Ala Thr Thr Pro for Gin gin Thr Thr Phe Phe Gin gin Ala Ala Thr Thr Val wall Gin gin Pro for Leu Leu Leu Leu 90 90 GAC GAC CAC CAC GAC GAC GTG GTG CGG CGG CTG CTG CGG CGG TGC TGC GAC GAC ATC ATC GAC GAC CCG CCG GAC GAC ACC ACC CTC CTC AAC AAC CTC CTC 324 324 Asp Asp His His Asp Asp Val wall Arg Arg Leu Leu Arg Arg Phe Phe Cys Cys Asp Asp íle Ile Asp Asp Pro for Asp Asp Thr Thr Leu Leu Asn same time Leu Leu 108 108 GAC GAC CCG CCG GCG GCG GTG GTG CTG CTG GAG GAG ACG ACG CTG CTG ATC ATC ACC ACC GAC GAC CGC CGC ACC ACC CGG CGG GCG GCG ATC ATC CTG CTG CTC CTC 373 373 Asp Asp Pro for Ala Ala Val wall Leu Leu Glu Glu Thr Thr Leu Leu íle Ile Thr Thr Asp Asp Arg Arg Thr Thr Arg Arg Ala Ala íle Ile Leu Leu Leu Leu 126 126 GTC GTC CAC CAC TAC TAC GGC GGC GGC GGC AAC AAC CCG CCG GCC GCC GAC GAC ATG ATG GAC GAC CGC CGC ATC ATC ATG ATG GCC GCC CTG CTG GCC GCC CGC CGC 432 432 Val wall His His Tyr Tyr Gly Gly Gly Gly Asn. Temporarily. Pro for Ala Ala Asp Asp Met Met Asp Asp Arg Arg íle Ile Met Met Ala Ala Leu Leu Ala Ala Arg Arg 144 144 AAG AAG CGC CGC GGC GGC ATC ATC ATC ATC GTC GTC GTC GTC GAG GAG GAC GAC AGC AGC GCG GCG CAC CAC GCG GCG CTG CTG GGC GGC GCC GCC GTG GTG TAC TAC 486 486 Lys Lys Arg Arg Gly Gly íle Ile íle Ile Val wall Val wall Glu Glu Asp Asp Ser Ser Ala Ala His His Ala Ala Leu Leu Gly Gly Ala Ala Val wall Tyr Tyr 162 162 CGG CGG GGG GGG CGG CGG CGG CGG CCG CCG GGG GGG GCA GCA CTG CTG GCG GCG GAC GAC ATC ATC GGC GGC TGC TGC TTC TTC ACT ACT TTC TTC CAC CAC TCC TCC 540 540 Arg Arg Gly Gly Arg Arg Arg Arg Pro for Gly Gly Ala Ala Leu Leu Ala Ala Asp Asp íle Ile Gly Gly Cys Cys Phe Phe Thr Thr Phe Phe His His Ser Ser 180 180 ACG ACG AAG AAG AAC AAC ATC ATC ACC ACC ACC ACC CTC CTC GGC GGC GAG GAG GGC GGC GGC GGC ATG ATG ATC ATC ACC ACC CTG CTG TCG TCG CGT CGT GAC GAC 594 594 Thr Thr Lys Lys Asn same time íle Ile Thr Thr Thr Thr Leu Leu Gly Gly Glu Glu Gly Gly Gly Gly Met Met íle Ile Thr Thr Leu Leu Ser Ser Arg Arg Asp Asp 198 198 GAG GAG TGG TGG GCC GCC CAG CAG CGG CGG GTG GTG GGA GGA CGT CGT ATC ATC CGC CGC GAC GAC AAC AAC GAG GAG GCC GCC GAC GAC GGC GGC GTG GTG TAC TAC 648 648 Glu Glu Trp Trp Ala Ala Gin gin Arg Arg Val wall Gly Gly Arg Arg íle Ile Arg Arg Asp Asp Asn same time Glu Glu Ala Ala Asp Asp Gly Gly val wall Tyr Tyr 216 216 GCG GCG GCG GCG CTG CTG CCG CCG GAC GAC TCC TCC GCG GCG CGG CGG GCG GCG GGT GGT GCT GCT CČG CCG GCG GCG CTG CTG CTG CTG CCG CCG TGG TGG ATG ATG 702 702 Ala Ala Ala Ala Leu Leu Pro for Asp Asp Ser Ser Ala Ala Arg Arg Ala Ala Gly Gly Ala Ala Pro for Ala Ala Leu Leu Leu Leu Pro for Trp Trp Met Met 234 234

126126

AAG AAG OWTlQ OWTlQ GCG GCG GAG GAG GGT GGT GTG GTG TAC TAC GGT GGT CAC CAC CGG CGG GCG GCG GTC GTC GGG GGG GTC GTC CGC CGC GGG GGG GCG GCG GGC GGC 756 756 Lys Lys Phe Phe Ala Ala Glu Glu Gly Gly Val wall Tyr Tyr Gly Gly His His Arg Arg Ala Ala Val wall Gly Gly val wall Arg Arg Gly Gly Ala Ala Gly Gly 252 252 ACG ACG AAC AAC GCG GCG ACG ACG ATG ATG TCG TCG GAG GAG GCG GCG GCG GCG GCG GCG GCG GCG GTG GTG GGC GGC GTG GTG GTG GTG CAA CAA CTG CTG GCG GCG 810 810 Thr Thr Asn same time Ala Ala Thr Thr Met Met Ser Ser Glu Glu Ala Ala Ala Ala Ala Ala Ala Ala Val wall Gly Gly Val wall Val wall Gin gin Leu Leu Ala Ala 270 270 TCG TCG CCG CCG GAG GAG CGG CGG TTC TTC GTG GTG GCC GCC CGG CGG CGC CGC CGG CGG AGC AGC ATC ATC GCG GCG CAG CAG CGG CGG CTG CTG GAC GAC GAG GAG 864 864 Ser Ser Leu Leu Glu Glu Arg Arg Phe Phe Val wall Ala Ala Arg Arg Arg Arg Arg Arg Ser Ser íle Ile Ala Ala Gin gin Arg Arg Leu Leu Asp Asp Glu Glu 288 288 GCC GCC GTG GTG GCC GCC TCG TCG GTG GTG GCC GCC GuC GUC ACC ACC CGG CGG CTG CTG CAC CAC CGG CGG GCG GCG GCG GCG GCG GCG GAC GAC AGT AGT CTG CTG 918 918 Ala Ala Val wall Ala Ala Ser Ser Val wall Ala Ala Gly Gly Thr Thr Arg Arg Leu Leu His His Arg Arg Ala Ala Ala Ala Ala Ala Asp Asp Ser Ser Leu Leu 306 306 CAC CAC GCC GCC TAC TAC CAC CAC CTG CTG TAC TAC ACG ACG TTC TTC TTC TTC CTC CTC ACC ACC GGC GGC GGC GGC CGG CGG CAG CAG GTG GTG CGG CGG GAG GAG 972 972 His His Ala Ala Ty r Ty r His His Leu Leu Tyr Tyr Thr Thr Phe Phe Phe Phe Leu Leu Thr Thr Gly Gly Gly Gly Arg Arg Gin gin Val wall Arg Arg Glu Glu 324 324 CG\j CG \ j GTG GTG CGC CGC GCC GCC CTG CTG GAC GAC CGG CGG CTG CTG GGT GGT GTG GTG GAG GAG GTC GTC CAG CAG TTG TTG CGG CGG TAC TAC TTC TTC 1026 1026 Arg Arg Phe Phe Val wall Arg Arg Ala Ala Leu Leu Asp Asp Arg Arg Leu Leu Gly Gly Val wall Glu Glu Val wall Gin gin Leu Leu Arg Arg Tyr Tyr Phe Phe 342 342 CCG CCG CTC CTC CAT CAT CTG CTG TCG TCG CCC CCC GAG GAG TGG TGG CGG CGG CTG CTG CGC CGC GGC GGC CAC CAC GGG GGG CCG CCG GGC GGC GAG GAG TGT TGT 1080 1080 Pro for Leu Leu His His Leu Leu Ser Ser Pro for Glu Glu Trp Trp Arg Arg Leu Leu Arg Arg Gly Gly His His Gly Gly Pro for Gly Gly Glu Glu Cys Cys 360 360 CCG CCG ACG ACG GCC GCC GAA GAA CGG CGG GTC GTC TGG TGG TTC TTC GAG GAG GAG GAG CAC CAC ATG ATG AAC AAC CTG CTG CCG CCG TGC TGC CAT CAT CCC CCC 1 1 34 1 1 34 Pro for Thr Thr Ala Ala Glu Glu Arg Arg Val wall Trp Trp Phe· Phe · Glu Glu Glu Glu His His Met Met Asn same time Leu Leu Pro for Cys Cys His His Pro for 378 378 GGT GGT CTG CTG AGT AGT GAC GAC GGC GGC CAG CAG GTC GTC GAC GAC TAC TAC ATG ATG GTC GTC GAG GAG GCG GCG GTC GTC ACC ACC CGC CGC GCC GCC CTG CTG 1188 1188 Glv GLV Leu Leu Ser Ser Asp Asp Gly Gly Gin gin Val wall Asp Asp Tyr Tyr Met Met Val wall Glu Glu Ala Ala Val wall Thr Thr Arg Arg Ala Ala Leu Leu 396 396 CAC CAC GAG GAG GCC GCC CAC CAC GGC GGC ACG ACG GGG GGG ACG ACG CGG CGG GTG GTG GCG GCG GCC GCC GGG GGG CAC CAC CTG CTG 1233 1233 His His Glu Glu Ala Ala His His Gly Gly Thr Thr Gly Gly Thr Thr Arg Arg Val wall Ala Ala Ala Ala Gly Gly His His Leu Leu 411 411

127127

Claims (29)

PATENTOVÉ NÁROKYPATENT CLAIMS 1. Zlúčenina všeobecného vzorca I v ktoromA compound of formula I wherein: Ί>ϊ (I) na druhom znamenajú atóm vodíka alebo alebo hydroxylovú skupinu,Ί> ϊ (I) denotes a hydrogen atom or a hydroxyl group, CHOH alebo CH aCHOH or CH a R2 a R4 nezávisle jeden metylovú skupinu,R 2 and R 4 independently is a methyl group, R3 znamená atóm vodíka X znamená skupinu CO, R1 znamená pričom R3 is hydrogen X is CO, R 1 is wherein - pre deriváty metá:- for meta derivatives: A, C, D a E znamenajú atóm vodíka a B môže znamenat:A, C, D and E are hydrogen and B can be: - atóm halogénu a výhodne atóm fluóru,- a halogen atom and preferably a fluorine atom, 128128 - monoalkyiamíno skupinu alebo dialkylamíno skupinu, v ktorých alkylový zvyšok výhodne znamená metylovú skupinu alebo etylovú skupinua monoalkylamino group or a dialkylamino group, in which the alkyl radical is preferably a methyl group or an ethyl group - éterovú skupinu- an ether group - tioéterovú skupinua thioether group - alkylovú skupinu s 1 až 3 atómami uhlíka aleboan alkyl group having 1 to 3 carbon atoms, or - trihalogénmetylovú skupinu, výhodne trifluórmetylovú skupinu,- a trihalomethyl group, preferably a trifluoromethyl group, - pre deriváty para:- for para derivatives: A, B, D a E znamenajú atóm vodíka aA, B, D and E are hydrogen and C môže znamenať:C can mean: - atóm halogénu,- halogen atom, - skupinu NR1R2, v ktorej R1a R2 nezávisle ne sebe znamenajú- NR 1 R 2 in which R 1 and R 2 are independently of one another - atóm vodíka,- a hydrogen atom, - priamu alebo rozvetvenú alkylovú skupinu s 1 až 4 atómami uhlíka, pričom v prípade, že jeden zo substituentov R1 alebo R2 znamená metylovú skupinu, potom druhý obligatórne znamená etylovú skupinu,- a straight or branched (C 1 -C 4) alkyl group, where one of the substituents R 1 or R 2 is a methyl group, the other obligatory is an ethyl group, - alkylcykloalkylmetylovú skupinu, v ktorej cykloalkylový zvyšok obsahuje 3 alebo 4 atómy uhlíka,- an alkylcycloalkylmethyl group in which the cycloalkyl radical contains 3 or 4 carbon atoms, - prípadne substituovanú cykloalkylovú skupinu obsahujúcu 3 alebo 4 uhlíkové atómy,- an optionally substituted cycloalkyl group containing 3 or 4 carbon atoms, - priamu alebo rozvetvenú alkenylovú skupinu obsahujúcu 1 až 4 atómy uhlíka, pričom v prípade, že jeden zo substituentov R1 alebo R2 znamená alkenylovú skupinu, potom druhý z týchto substituentov je odlišný od metylovej skupiny alebo cykloalkylovej skupiny obsahujúcej 3 až 6 atómov uhlíka,straight or branched (C 1 -C 4) alkenyl, where in the case where one of R 1 or R 2 is an alkenyl group, the other is different from a methyl or cycloalkyl group containing 3 to 6 carbon atoms, - substituovanú alebo nesubstituovanú N-pyrolidinylovú skupinu,- substituted or unsubstituted N-pyrrolidinyl, - éterovú skupinu- an ether group - tioéterovú skupinua thioether group - acylovú skupinu alebo alkoxykarbonylovú skupinuan acyl group or an alkoxycarbonyl group - lineárnu alebo rozvetvenú alkylovú skupinu s 1 až 6 atómami uhlíka, výhodne metylovú skupinu, izopropylovú skupinu a terc-butylovú skupinu,- a linear or branched alkyl group having 1 to 6 carbon atoms, preferably a methyl group, an isopropyl group and a tert-butyl group, - alkyltiometylovú skupinuan alkylthiomethyl group 129129 - arylovú skupinu a výhodne fénylovú skupinu aleboan aryl group and preferably a phenyl group; or - trihalogénmetylovú skupinu a výhodne trifluórmetylovú skupinu,- trihalomethyl and preferably trifluoromethyl, - pre disubstituované deriváty meta-para:- for disubstituted meta-para derivatives: A, D a E znamenajú atóm vodíka aA, D and E are hydrogen and B môže znamenať:B may mean: - atóm halogénu a výhodne atóm fluóru,- a halogen atom and preferably a fluorine atom, - monoalkylamino skupinu alebo dialkylamino skupinu, v ktorej alkylový zvyšok výhodne znamená metylovú skupinu alebo etylovú skupinu,- a monoalkylamino group or a dialkylamino group, in which the alkyl radical preferably represents a methyl group or an ethyl group, - éterovú skupinu- an ether group - tioéterovú skupinua thioether group - alkylovú skupinu s 1 až 3 atómami uhlíka aan alkyl group having 1 to 3 carbon atoms, and C môže znamenať:C can mean: - atóm halogénu a výhodne atóm fluóru,- a halogen atom and preferably a fluorine atom, - amino skupinu, monoalkylamino skupinu alebo dialkylamino skupinu, v ktorých alkylový zvyšok výhodne znamená metylovú skupinu s podmienkou, že B je odlišný od atómu brómu alebo atómu chlóru, alebo substituovanú alebo nesubstituovanú alylovú skupinu,- an amino group, a monoalkylamino group or a dialkylamino group, in which the alkyl radical preferably represents a methyl group, with the proviso that B is different from a bromine or chlorine atom, or a substituted or unsubstituted allyl group, - éterovú skupinu- an ether group - tioéterovú skupinua thioether group - alkylovú skupinu s 1 až 6 atómami uhlíka aleboan alkyl group having 1 to 6 carbon atoms, or - trihalogénmetylovú skupinu, výhodne trifluórmetylovú skupinu, aa trihalomethyl group, preferably a trifluoromethyl group, and - pre disubstituované deriváty orto-para:- for disubstituted ortho-para derivatives: B, E a D znamenajú atóm vodíka a A a C znamenajú metylovú skupinu.B, E and D are hydrogen and A and C are methyl. 2. Zlúčenina podľa nároku 1 všeobecného vzorca I zvolená z množiny zahŕňajúcejA compound according to claim 1 of formula I selected from the group consisting of 4ζ-ιηβίγ1ϋο-<ΐ65(4ζ-<ΗπιβΐγΙαπιίηο)ρη5ΐίη3ΐηγςίη IA 4ζ^βΐγ1ύο-άε5(4ζ-άΪΓη6ΐγ1αιηίηο)ρη5ΐιηαι·ηγοίη IH 5y-hydroxy^-metyltio-<tes^-dinwtyl amino)pristinamycín Ih 4ζ-η7εΐγΜε3(4ζ^ίπιείγΐ3ηΊΐηο)ρη3ΐίη3Γηγείη IA 4ζ-πιεΐγΜε3(4ζ^ΐπιείγ^ίηο) pristinamycín IH 4ζ-ηιείοχν^ε3(4ζ^ίηιεΐγΐ3ΐηίηο)ρπ3ΐίη3ΐηγείη IA 4ζ-ιηβίγ1ϋο- <ΐ65 (4ζ- <ΗπιβΐγΙαπιίηο) ρη5ΐίη3ΐηγςίη IA ^ βΐγ1ύο 4ζ-άε5 (4ζ-άΪΓη6ΐγ1αιηίηο) ρη5ΐιηαι ηγοίη · I H 5y-hydroxy -metyltio- ^ <^ tes -dinwtyl -amino) pristinamycin Ih 4ζ-η7εΐγΜε3 ( 4ζ ^ ίπιείγΐ3ηΊΐηο) ρη3ΐίη3Γηγείη IA-4ζ πιεΐγΜε3 (4ζ ΐπιείγ ^ ^ ίηο) pristinamycin I H-4ζ ηιείοχν ε3 ^ (^ ίηιεΐγΐ3ΐηίηο 4ζ) ρπ3ΐίη3ΐηγείη IA 130 ^-metoxykarbonyl-des(4í-dimetylamino)pristinamycín IA 4ζ-εΗ10Γ-άε8(4ζ-άίΓηείγΐ3ΐηίηο)ρη8ίιη3Γηγοίη IA 4ζ-ϋΓ0πι^65(4ζ^ίΓηβίγ1αιηίηο)ρη8ηΐΉπιγοίη IA 4ζ-0Γ0πι-άε8(4ζ-άίΓηεΐνΐ3Γηίηο)ρπ8ϋηΗΓηγείη IH 4ζ-]ό^-άε8(4ζ^ίηιεΐγΐ3ΐηίηο)ρι·ί8ΐίη3Γηγείη IA 4C-jód-des^-dimetylamino)pnstinamycín IH 4ζ-ίηί1υόπηεΐγΜε8(4ζ^ίΐ'ηείγΐ3Γηίηο)ρπ8ΐίη3ΐηγείη IA 4ζ-ύΠυόπηείγΜε8(4ζ-ύίΓηεΐ7ΐ3η·ηηο)ρΐΊ8ηη3η'ΐγείη IH 4ζ-ίεΓΌ-Ι}ΐιΐγ1-άε8(4ζ-ύίιτιείγΐ3η'υηο)ρπ8ΐιη3ηιγα'η IA 4ζ-ιζορΐΌργ1-όε8(4ζ-άίηιεΐγΐ3ΐτιιηο)ρπ8ΐιη3Γηνείη IA 4ζ-izopΓopyl-des(4ζdimetylamino)pristinamycín Ie 4s-rnetylamino-des^-dirnetylarnino)pnstinamycín IA 4E-metoxy-des^-dimetylarnino)pristinainycín IA 4£-metoxy-des(4£-dimetylamino)pristinarnycín IH 4E-fluór^metyl-des^-dimetylamino)pristinamycín IA 4ζ-3πυηο-4ε8(4ζ^ίΓηείγΐ3ΐηιηο)ρη8ΐιη3ΐηγείη IA 4ζ-εΐγΐ3ΐηίηο^ε8(4ζ^ίπιείγΐ3ΐηίηο)ρπ8ΐίη3Γηγείη IA 4ζ^ϊε1γΐ3ϊηίηο^ε8(4ζ^ίπιείγΐ3πιίηο)ρη8ΐίη3ΐηγείη IA 4ζ-3ΐγΐ3πιίηο^ε8(4ζ·^ΐπιείγΐ3πιίηο)ρπ8ΐίη3ΐηγα'η IA 4ζ^ΐ3ΐγΐ3πιίηο^ε8(4ζ^ίπιείγΐ3πύηο)ρη8ίίη3ΐηγΕίη IA 4ζ-α1γ1εΐγΐ3ΐηίηο^ε8(4ζ^ίιηείγΐ3ΐηίηο)ρη8Ρη3ΐηγάη IA 4ζ-εΐν1ρΐΌργ1αιηιηο^ε8(4ζ-4ίιηεΐγΐ3Γηιηο)ρη8ύη3Γηγα'η IA 4ζ-εΐγ1ίζορΓοργΐ3ηιίηο^ε8(4ζ^ίπιεΙγΐ3πιίηο)ρη8ΐίη3ΐηγ(:ίη IA 4ζ-εΐγΐΓηεΐγ1εγ1<1ορΓοργΐ3πιίηο^ε8(4ζ^ίπιείγΐ3ηιίηο)ρη8ίίη3Γηγείη IA 4ζ-( 1 -pyrolidinyl)-des^-dimetylamino)pristinamycín IA 130 ^ methoxycarbonyl-de (4 R-dimethylamino) pristinamycin IA-4ζ-εΗ10Γ άε8 (4ζ-άίΓηείγΐ3ΐηίηο) ρη8ίιη3Γηγοίη IA-4ζ ϋΓ0πι 65 ^ (^ ίΓηβίγ1αιηίηο 4ζ) ρη8ηΐΉπιγοίη IA-4ζ-0Γ0πι άε8 (4ζ-άίΓηεΐνΐ3Γηίηο) ρπ8ϋηΗΓηγείη I 4ζ- H] ό ^ -άε8 (4ζ ίηιεΐγΐ3ΐηίηο ^) · ρι ί8ΐίη3Γηγείη IA-iodo-4C of N-dimethylamino) pnstinamycín I H-4ζ ίηί1υόπηεΐγΜε8 (4ζ ^ ίΐ'ηείγΐ3Γηίηο) ρπ8ΐίη3ΐηγείη IA-4ζ ύΠυόπηείγΜε8 (4ζ -ύίΓηεΐ7ΐ3η · ηηο) ρΐΊ8ηη3η'ΐγείη 4ζ-I H-ίεΓΌ Ι} ΐιΐγ1-άε8 (4ζ-ύίιτιείγΐ3η'υηο) ρπ8ΐιη3ηιγα'η IA-4ζ-ιζορΐΌργ1 όε8 (4ζ-άίηιεΐγΐ3ΐτιιηο) ρπ8ΐιη3Γηνείη 4ζ-I and des-izopΓopyl ( 4ζdimetylamino) pristinamycin le-4s-rnetylamino of -dirnetylarnino ^) I pnstinamycín and 4E-methoxy-des-dimethylamino ^) I pristinainycín A £ 4-methoxy-de (4-dimethylamino £) pristinarnycín I 4E-fluoro H ^ me of ethyl-N-Dimethylamino) pristinamycin I A-4ζ-3πυηο 4ε8 (4ζ ^ ίΓηείγΐ3ΐηιηο) ρη8ΐιη3ΐηγείη IA-4ζ εΐγΐ3ΐηίηο ε8 ^ (^ ίπιείγΐ3ΐηίηο 4ζ) ρπ8ΐίη3Γηγείη IA 4ζ ^ ^ ϊε1γΐ3ϊηίηο ε8 (4ζ ^ ίπιείγΐ3πιίηο) ρη8ΐίη3ΐηγείη IA 4ζ -3ΐγΐ3πιίηο ε8 ^ (^ · 4ζ ΐπιείγΐ3πιίηο) ρπ8ΐίη3ΐηγα'η IA 4ζ ^ ^ ΐ3ΐγΐ3πιίηο ε8 (4ζ ^ ίπιείγΐ3πύηο) ρη8ίίη3ΐηγΕίη IA-4ζ α1γ1εΐγΐ3ΐηίηο ε8 ^ (^ ίιηείγΐ3ΐηίηο 4ζ) ρη8Ρη3ΐηγάη 4ζ-I A ^ εΐν1ρΐΌργ1αιηιηο ε8 (4ζ-4ίιηεΐγΐ3Γηιηο ) ρη8ύη3Γηγα'η IA-4ζ εΐγ1ίζορΓοργΐ3ηιίηο ε8 ^ (^ ίπιεΙγΐ3πιίηο 4ζ) ρη8ΐίη3ΐηγ (: ίη IA-4ζ εΐγΐΓηεΐγ1εγ1 <1ορΓοργΐ3πιίηο ε8 ^ (^ ίπιείγΐ3ηιίηο 4ζ) ρη8ίίη3Γηγείη IA 4ζ- (1-pyrrolidinyl) des ^ -dimethylamino) pristinamycin I A 4ζ-ίήΑιιόπηείοχγ^ε8(4ζ^ϊπιεΐγΐ3ΐηίηο)ρΓί5ύη3πιγάη IA 4ζ-3ΐν1οχγ^ε8(4ζ^ίπιείγΐ3ηιίηο)ρη8ΐίη3πιγ<:ίη IA 4ζ-είοχγ-άε8(4ζ-4ίιηείγΐ3ΐηίηο)ρη8ΐιη3Γηνείη IA 4ζ-εΐγ1ίίο^ε8(4ζ^ίπιεΐγΐ3ΐηίηο)ρΓί8ΐίιΐ3ΐηγείη IA 4ζ-πιεΐγ1ΐιοπιεΐγΜε8(4ζ^ίπιεΐνΐ3ΐτιίηο)ρη8ΐιιΐ3Γηγείη IA 4C-(2-chlóretoxy)-des^-dimetylamino)pnstinamycín IA 4ζ-3εεΐγ1-όε8(4ζ-άϊιτιεΐγΐ3Γηιηο)ρη8ΐιη3ϊηγάη IA 4ζ-ίήΑιιόπηείοχγ ^ ε8 (4ζ ^ ϊπιεΐγΐ3ΐηίηο) ρΓί5ύη3πιγάη IA 4ζ-3ΐν1οχγ ^ ε8 (4ζ ^ ίπιείγΐ3ηιίηο) ρη8ΐίη3πιγ <: ίη IA 4ζ-είοχγ-άε8 (4ζ-4ίιηείγΐ3ΐηίηο) ρη8ΐιη3Γηνείη IA 4ζ-εΐγ1ίίο ^ ε8 (4ζ ^ ίπιεΐγΐ3ΐηίηο) ρΓί8ΐίιΐ3ΐηγείη IA-4ζ πιεΐγ1ΐιοπιεΐγΜε8 (4ζ ^ ίπιεΐνΐ3ΐτιίηο) ρη8ΐιιΐ3Γηγείη IA 4C- (2-chloroethoxy) des ^ -dimethylamino) pnstinamycín IA-4ζ-3εεΐγ1 όε8 (4ζ-άϊιτιεΐγΐ3Γηιηο) ρη8ΐιη3ϊηγάη IA 131131 4Č-etyl-des(4č-dimetylamino)pristinamycm IA 4C-etyl-des^-dimetylarnino)pnstinainycín I» 4e-dimetylamino-des^-dimetylammo)pristinaniycín IA 4e-metyltio-des(4£-dimetylamino)pristmamycm IA 4e-etoxy-des(4£-dimetylamino)pristinamycín IA 4? -Ethyl-des (4? -Dimethylamino) pristinamycin I ? 4C-ethyl-des-4-dimethylamino) -pininacinin? 4? -Dimethylamino-des-4-dimethylamino) pristinaniycin I ? 4? -Methylthio-des (4? -Dimethylamino) pristamamycin I A 4e-ethoxy-de (4 £ -dimethylamino) pristinamycin I A 3. Spôsobu prípravy streptogramínov, vyznačujúci sa tým, že sa použije kmeň mikroorganizmu produkujúci streptogramíny, majúce aspoň jednu genetickú modifikáciu ovplyvňujúcu biosyntézu prekurzora skupiny B, že sa uvedený mutantný kmeň kultivuje na adekvátnom kultivačnom prostredí komplementovanom aspoň jedným pôvodným prekurzorom, odlišným od prekurzora, ktorého biosyntéza je modifikovaná a že sa izolujú uvedené streptogramíny.3. A method for the preparation of streptogramins, characterized in that a strain of a microorganism producing streptogramins having at least one genetic modification affecting the biosynthesis of a Group B precursor is used, said mutant strain is cultivated on an adequate culture medium complemented by at least one parent precursor different from the precursor. the biosynthesis is modified and that said streptogramins are isolated. 4. Spôsob podľa nároku 3, vyznačujúci sa tým, že mutantný kmeň má aspoň jednu genetickú modifikáciu lokalizovanú na úrovni génov uplatňujúcich sa pri biosyntéze prekurzorov streptogramínov skupiny B.The method of claim 3, wherein the mutant strain has at least one genetic modification located at the level of the genes involved in the biosynthesis of Group B streptogramin precursors. 5. Spôsob podľa nároku 4, vyznačujúci sa tým, že gén alebo gény, ktorých expresia je modifikovaná, sú zvolené z množiny génov uplatňujúcich sa pri biosyntéze kyseliny L-2-aminomaslovej, 4-dimetylamino-L-fenylalaninu (DMPAPA), kyseliny L-pipekolovej, L-fenylglycínu alebo/a kyseliny 3-hydroxypikolínovej.Method according to claim 4, characterized in that the gene or genes whose expression is modified are selected from the group of genes involved in the biosynthesis of L-2-aminobutyric acid, 4-dimethylamino-L-phenylalanine (DMPAPA), L-acid. -pipecolic, L-phenylglycine and / or 3-hydroxypicolinic acid. 6. Spôsob podľa nároku 4 alebo 5, vyznačujúci sa tým, že ide o aspoň jeden gén zvolený z množiny zahŕňajúcej gény papA. papM. papC (SEQ ID č.2), papB (SEQ ID č. 3), PÍPA (SEQ ID č.5), snbF (SEQ ID č.6) a hpaA (SEQ ID Č. 8) .Method according to claim 4 or 5, characterized in that it is at least one gene selected from the group comprising papA genes. papM. papC (SEQ ID NO: 2), papB (SEQ ID NO: 3), PIPA (SEQ ID NO: 5), snbF (SEQ ID NO: 6) and hpaA (SEQ ID NO: 8). 7. Spôsob podľa niektorého z nárokov 3 až 6, v y z n ačujúci sa tým, že vedená genetická modifikácia robí aspoň jeden z génov uplatňujúcich sa pri biosyntéze prekurzorov streptogramínov skupiny B čiastočne alebo úplne neschopnými kódovať prírodný enzým.The method according to any one of claims 3 to 6, characterized in that the genetic modification conducted makes at least one of the genes involved in the biosynthesis of Group B streptogramin precursors partially or wholly incapable of encoding the natural enzyme. 132132 8. Spôsob podľa nároku 3 až 7, vyznačujúci sa tým, že genetická modifikácia spočíva v prerušení jedného z génov uplatňujúcich sa pri biosyntéze prekurzorov streptogramínov skupiny B.The method according to claims 3 to 7, characterized in that the genetic modification consists in disrupting one of the genes involved in the biosynthesis of group B streptogramin precursors. 9. Spôsob podľa niektorého z predchádzajúcich nárokov, vyznačujúcisa tým, že použitý mutantný kmeň je odvodený od kmeňa S. pristinaespiralis a výhodne od kmeňa S. pristinaespiralis SP92.Method according to any one of the preceding claims, characterized in that the mutant strain used is derived from a S. pristinaespiralis strain and preferably from a S. pristinaespiralis SP92 strain. 10. Spôsob podľa nároku 9, vyznačujúci sa t ý m, že výhodne ide o kmeň SP92:pVRC508.Method according to claim 9, characterized in that it is preferably strain SP92: pVRC508. 11. Spôsob podľa nároku 9, vyznačujúci sa t ý m, že výhodne ide o kmeň SP212.Method according to claim 9, characterized in that it is preferably an SP212 strain. 12. Spôsob podľa nároku 9, vyznačujúci sa t ý m, že výhodne ide o kmeň SP92pipA::namR.Method according to claim 9, characterized in that it is preferably the strain SP92pipA :: nam R. 13. Spôsob podľa nároku 9, vyznačujúci sa t ý m, že výhodne ide o kmeň SPhpaA::HamR.Method according to claim 9, characterized in that it is preferably a strain SPhpaA :: Ham R. 14. Spôsob podľa niektorého z predchádzajúcich nárokov, vyznačujúcisa tým, že pôvodný prekurzor, zavedený do kultivačného prostredia, je zvolený z množiny zahŕňajúcej deriváty alebo analógy aminokyselín a a-ketokarboxylových kyselín.Method according to any one of the preceding claims, characterized in that the original precursor introduced into the culture medium is selected from the group consisting of derivatives or analogs of amino acids and α-ketocarboxylic acids. 15. Spôsob podľa niektorého z predchádzajúcich nárokov, vyznačujúcisa tým, že pôvodný prekurzor sa výhodne zvolí tak, že je príbuzný s prekurzorom, ktorého biosyntéza je modifikovaná.Method according to any one of the preceding claims, characterized in that the original precursor is preferably selected to be related to a precursor whose biosynthesis is modified. 16. Spôsob podľa nároku 14 alebo 15, vyznaču júci sa t ý m, že pôvodným prekurzorom je výhodne derivát fenylalaninu v prípade, že sa gén, ktorého expresia je modifikovaná, týka biosyntézy DMPAPA.16. The method according to claim 14 or 15, wherein the precursor is preferably a phenylalanine derivative when the gene whose expression is modified relates to DMPAPA biosynthesis. 133133 17. Spôsob podľa niektorého z predchádzajúcich nárokov, vyznačujúci sa tým, že je použiteľný na prípravu pristinamycínu IB.Process according to any one of the preceding claims, characterized in that it is useful for preparing pristinamycin IB. 18. Nukleotidová sekvencia, vyznačujúca sa tým, že je zvolená z množiny zahŕňajúcej:18. A nucleotide sequence selected from the group consisting of: a) celok alebo časť génov pape (SEQ ID č.2), papB (SEQ ID č.3), pipA (SEQ ID č.5), snbF (SEQ ID č.6) a hpaA (SEQ ID Č. 8 ) ,a) all or part of the pape genes (SEQ ID No. 2), papB (SEQ ID No. 3), pipA (SEQ ID No. 5), snbF (SEQ ID No. 6) and hpaA (SEQ ID No. 8) . b) sekvencie hybridizujúce s celkom alebo časťou génov a) a(b) sequences hybridizing to all or part of the genes of (a); and c) sekvencie odvodené od sekvencií a) a b) v dôsledku degenerácie genetického kódu.c) sequences derived from sequences a) and b) due to the degeneracy of the genetic code. 19. Nukleotidová sekvencia podľa nároku 18, v y z n a čujú c a s a tým, že je zvolená z množiny zahŕňajúcej gény pape (SEQ ID Č.2), papB (SEQ ID Č.3), pipA (SEQ ID Č.5), snbF (SEQ ID č.6) a hpaA (SEQ ID Č.8).The nucleotide sequence of claim 18, characterized in that it is selected from the group consisting of pape (SEQ ID NO. 2), papB (SEQ ID NO. 3), pipA (SEQ ID NO. 5), snbF (SEQ. 6) and hpaA (SEQ ID NO. 8). 20. Rekombinantná DNA vyznačujúca sa tým, že obsahuje gén zvolený z množiny zahŕňajúcej gény papC (SEQ ID Č.2), papB (SEQ ID č.3), pipA (SEQ ID č.5), snbF (SEQ ID č.6) a hpaA (SEQ ID č.8).20. A recombinant DNA comprising a gene selected from the group consisting of papC (SEQ ID NO. 2), papB (SEQ ID NO. 3), pipA (SEQ ID NO. 5), snbF (SEQ ID NO. 6) genes. ) and hpaA (SEQ ID NO. 8). 21. Vektor, vyznačujúci sa tým, že zahŕňa nukleotidovú sekvenciu podľa nároku 18 alebo 19 alebo rekombinantnú DNA podľa nároku 20.21. A vector comprising the nucleotide sequence of claim 18 or 19 or the recombinant DNA of claim 20. 22. Použitie sekvencie podľa nároku 18 alebo 19 alebo/a vektoru podľa nároku 21 na prípravu metabolitov.Use of a sequence according to claim 18 or 19 and / or a vector according to claim 21 for the preparation of metabolites. 23. Polypeptid, ako výsledok expresie sekvencie podľa nároku 18 alebo 19.A polypeptide as a result of the expression of the sequence of claim 18 or 19. 24. Mutantný kmeň S. pristinaespiralis, vyznačujúci sa tým, že má aspoň jednu genetickú modifikáciu na úrovni jedného z jeho génov papC (SEQ ID č.2), papB (SEQ ID č.3), pipA (SEQ ID č.5), snbF (SEQ ID č.6) alebo/a hpaA (SEQ ID Č.8).24. A mutant S. pristinaespiralis strain having at least one genetic modification at the level of one of its genes papC (SEQ ID No. 2), papB (SEQ ID No. 3), pipA (SEQ ID No. 5). , snbF (SEQ ID NO. 6), and / or hpaA (SEQ ID NO. 8). 134134 25. Mutantný kmeň podľa nároku 24, vyznačujúci sa t ý m, že ide o kmeň SP92pipA::namR.25. The mutant strain of claim 24, wherein said mutant strain is SP92pipA :: nam R. 26. Mutantný kmeň podľa nároku 24, vyznačujúci sa t ý m, že ide o kmeň SP92hpaA::úamR.26. The mutant strain of claim 24, wherein said mutant strain is SP92hpaA :: amam R. 27. Mutantný kmeň S. pristinaespiralis, vyznačujúci sa tým, že má genetickú modifikáciu spočívajúcu v prerušení génu papA dvojitou homológovou rekombináciou, ako je SP212.27. A mutant S. pristinaespiralis strain having genetic modification consisting in disrupting the papA gene by double homologous recombination, such as SP212. 28. Zlúčenina z množiny zahŕňajúcej 4-trifluórmetoxyfenylalanín, 3-metylaminofenylalnín, 3-metyltiofenylalanín, 3-fluór-4-metylfenylalanín, kyselinu 4-metylaminofenylpyrohroznovú, 3-etoxyfenylalanín, 4-alylaminofenylalanín, 4-dialylaminofenylalanín, 4-alyletylaminofenylalanín, 4-etylpropylaminofenylalanín, 4-etylizopropylaminofenylalanín, 4-etylmetylcyklopropylaminofenylalanín, 4-(1-pyrolidinyl)-fenylalanín, 4-etyltiometylfenylalanín, 4-O-(2-chlóretyl)-tyrozín, 3-dimetylaminofenylalanín a 3-etylaminofenylalanín.28. A compound from the group consisting of 4-trifluoromethoxyphenylalanine, 3-methylaminophenylalanine, 4-methylaminophenylalanine, 4-methylaminophenylalanine, 4-methylaminophenylalanine, 4-methylaminophenylalanine, 4-trifluoromethoxyphenylalanine, 4-trifluoromethoxyphenylalanine, 4-methylaminophenylalanine, 4-methylaminophenylalanine. 4-ethylisopropylaminophenylalanine, 4-ethylmethylcyclopropylaminophenylalanine, 4- (1-pyrrolidinyl) phenylalanine, 4-ethylthiomethylphenylalanine, 4-O- (2-chloroethyl) tyrosine, 3-dimethylaminophenylalanine and 3-ethylaminophenylalanine. 29. Farmaceutická kompozícia, vyznačujúca sa tým, že obsahuje aspoň jednu zlúčeninu podľa nároku 1 alebo 2, v prípadnej kombinácii so streptogramínom skupiny A.A pharmaceutical composition comprising at least one compound according to claim 1 or 2, optionally in combination with group A streptogramin.
SK5-97A 1994-07-08 1995-07-04 Streptogramines and method for preparing same by mutasynthesis SK597A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9408478A FR2722210B1 (en) 1994-07-08 1994-07-08 NOVEL STREPTOGRAMINS AND PROCESS FOR THE PREPARATION OF STREPTOGRAMINS BY MUTASYNTHESIS
PCT/FR1995/000889 WO1996001901A1 (en) 1994-07-08 1995-07-04 Streptogramines and method for preparing same by mutasynthesis

Publications (1)

Publication Number Publication Date
SK597A3 true SK597A3 (en) 1997-08-06

Family

ID=9465182

Family Applications (1)

Application Number Title Priority Date Filing Date
SK5-97A SK597A3 (en) 1994-07-08 1995-07-04 Streptogramines and method for preparing same by mutasynthesis

Country Status (33)

Country Link
US (2) US6352839B1 (en)
EP (2) EP0770132B1 (en)
JP (1) JPH10502532A (en)
KR (2) KR100379100B1 (en)
CN (1) CN1152338A (en)
AP (1) AP562A (en)
AT (1) ATE480626T1 (en)
AU (1) AU712397B2 (en)
BR (1) BR9508714A (en)
CA (1) CA2193130C (en)
CO (1) CO4410252A1 (en)
CZ (1) CZ5297A3 (en)
DE (1) DE69536102D1 (en)
DK (1) DK0770132T3 (en)
DZ (1) DZ1910A1 (en)
ES (1) ES2352324T3 (en)
FR (1) FR2722210B1 (en)
HU (1) HU220964B1 (en)
IL (1) IL114489A0 (en)
MA (1) MA23610A1 (en)
MX (1) MX9700257A (en)
NO (1) NO970047D0 (en)
NZ (1) NZ289153A (en)
PE (1) PE28596A1 (en)
PL (1) PL318193A1 (en)
PT (1) PT770132E (en)
RU (1) RU2205183C2 (en)
SK (1) SK597A3 (en)
TN (1) TNSN95077A1 (en)
TR (1) TR199500830A2 (en)
UY (1) UY23996A1 (en)
WO (1) WO1996001901A1 (en)
ZA (1) ZA955688B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524812B1 (en) 1993-10-07 2003-02-25 Regents Of The University Of Minnesota Genes encoding resistance to DNA alkylating agents
US6495348B1 (en) 1993-10-07 2002-12-17 Regents Of The University Of Minnesota Mitomycin biosynthetic gene cluster
JP2000502256A (en) 1995-12-19 2000-02-29 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Metabolic engineering of polyhydroxyalkanoate monomer synthase
FR2775288B1 (en) * 1998-02-26 2000-03-31 Rhone Poulenc Rorer Sa STREPTOGRAMIN DERIVATIVES, THEIR PREPARATION AND THE COMPOSITIONS CONTAINING THEM
EP2261339B1 (en) * 1998-05-01 2017-03-22 GlaxoSmithKline Biologicals SA Neisseria meningitidis antigens and compositions
DE60006130D1 (en) * 1999-07-27 2003-11-27 Aventis Pharma Sa STREPTOGRAMINE DERIVATIVES, THEIR PRODUCTION AND THE PREPARATIONS THEREOF
FR2796949B1 (en) * 1999-07-27 2001-09-21 Aventis Pharma Sa STREPTOGRAMIN DERIVATIVES, THEIR PREPARATION AND THE COMPOSITIONS CONTAINING THEM
FR2796950B1 (en) * 1999-07-27 2001-09-21 Aventis Pharma Sa STREPTOGRAMIN DERIVATIVES, THEIR PREPARATION AND THE COMPOSITIONS CONTAINING THEM
AU783603B2 (en) * 1999-09-29 2005-11-10 Meiji Seika Kaisha Ltd. Transformant producing secondary metabolite modified with functional group and novel biosynthesis genes
US6902925B2 (en) * 2001-03-22 2005-06-07 Gakkou Houjin Kitasato Gakuen Selection media for beauveriolide I or beauveriolide III and process for selectively producing these substances
FR2825717B1 (en) 2001-06-08 2005-02-18 Rhodia Chimie Sa STEREOSELECTIVE PREPARATION OF CYCLIC AMINO ACIDS
FR2841563B1 (en) * 2002-06-28 2006-09-01 Aventis Pharma Sa NEW VARIANTS OF THE PAPP POLYPEPTIDE OF BACTERIA GENUS STREPTOMYCES
AU2006243052B2 (en) * 2005-05-04 2010-07-08 Tmo Renewables Limited Thermophilic microorganisms with inactivated lactate dehydrogenase gene (LDH) for ethanol production
US7470664B2 (en) * 2005-07-20 2008-12-30 Merck & Co., Inc. HCV NS3 protease inhibitors
US20080317670A1 (en) * 2005-12-14 2008-12-25 Ambrx, Inc. Compositions Containing, Methods Involving, and Uses of Non-Natural Amino Acids and Polypeptides
WO2007092475A2 (en) 2006-02-06 2007-08-16 Franklin And Marshall College Site-specific incorporation of fluorinated amino acids into proteins
US7548705B2 (en) * 2007-04-03 2009-06-16 Xerox Corporation Systems and methods for marking test patches for calibrating and/or visually confirming color accuracy of a marking device
JP6539212B2 (en) * 2013-12-26 2019-07-03 株式会社カネカ Process for producing optically active cyclic imino acid
CN112442507B (en) * 2019-09-05 2022-09-30 武汉合生科技有限公司 Biosynthetic gene cluster of maduramicin compound and application thereof
CN112970782A (en) * 2019-12-16 2021-06-18 德强生物股份有限公司 Pesticide preparation obtained by fermenting streptomyces lavipediti and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156734A (en) 1976-02-13 1979-05-29 Merck & Co., Inc. Antihypertensive compositions containing an aryl-substituted alanine azo and an arylhydrazino-propionic acid
US4082736A (en) * 1976-04-26 1978-04-04 Syntex (U.S.A.) Inc. Novel immunological adjuvant compounds and methods of preparation thereof
DE3322402A1 (en) 1983-06-22 1985-01-03 Jagenberg Ag DEVICE FOR FOLDING AND CLOSING THE HEAD OF A CARDBOARD SHEET OR COVERED FROM A INSIDE WITH A THERMOPLASTIC PLASTIC LAYER. A FOLDING BOX MADE FROM A CUT IN A FOLDING AND WELDING STATION
FR2549062B1 (en) * 1983-07-13 1985-10-25 Rhone Poulenc Sante NOVEL SYNERGISTIN DERIVATIVES, THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THE SAME
FR2689518B1 (en) * 1992-04-01 1995-04-07 Rhone Poulenc Rorer Sa Microorganisms, preparation process and use.
FR2696189B1 (en) * 1992-09-25 1994-11-10 Rhone Poulenc Rorer Sa Polypeptides involved in the biosynthesis of streptogramins, nucleotide sequences coding for these polypeptides and their use.

Also Published As

Publication number Publication date
MX9700257A (en) 1997-05-31
MA23610A1 (en) 1996-04-01
ATE480626T1 (en) 2010-09-15
NO970047L (en) 1997-01-07
TNSN95077A1 (en) 1996-02-06
US20020142947A1 (en) 2002-10-03
CN1152338A (en) 1997-06-18
US6833382B2 (en) 2004-12-21
AU712397B2 (en) 1999-11-04
ES2352324T3 (en) 2011-02-17
UY23996A1 (en) 1995-09-08
FR2722210B1 (en) 1996-08-14
IL114489A0 (en) 1995-11-27
CA2193130A1 (en) 1996-01-25
WO1996001901A1 (en) 1996-01-25
DE69536102D1 (en) 2010-10-21
PE28596A1 (en) 1996-07-06
DZ1910A1 (en) 2002-02-17
ZA955688B (en) 1996-02-26
CA2193130C (en) 2010-10-19
KR100420238B1 (en) 2004-02-26
HUT77341A (en) 1998-03-30
TR199500830A2 (en) 1996-06-21
JPH10502532A (en) 1998-03-10
PL318193A1 (en) 1997-05-26
AP562A (en) 1996-11-20
PT770132E (en) 2010-12-09
EP2248901A1 (en) 2010-11-10
BR9508714A (en) 1998-06-02
NZ289153A (en) 1999-02-25
NO970047D0 (en) 1997-01-07
KR100379100B1 (en) 2003-10-08
EP0770132A1 (en) 1997-05-02
CO4410252A1 (en) 1997-01-09
RU2205183C2 (en) 2003-05-27
EP0770132B1 (en) 2010-09-08
CZ5297A3 (en) 1997-05-14
DK0770132T3 (en) 2011-01-10
AU2891295A (en) 1996-02-09
AP9500752A0 (en) 1995-07-31
HU220964B1 (en) 2002-07-29
US6352839B1 (en) 2002-03-05
FR2722210A1 (en) 1996-01-12

Similar Documents

Publication Publication Date Title
SK597A3 (en) Streptogramines and method for preparing same by mutasynthesis
Lanz et al. Enhanced solubilization of class B radical S-adenosylmethionine methylases by improved cobalamin uptake in Escherichia coli
Shapiro Regulation of secondary metabolism in actinomycetes
US20040101963A1 (en) Production of the lantibiotic cinnamycin with genes isolated from streptomyces cinnamoneus
FI117674B (en) Polypeptides Related to Streptogramin Biosynthesis, Nucleotide Sequences Encoding These Polypeptides, and Their Use
AU2002251356A1 (en) Production of the lantibiotic cinnamycin with genes isolated from streptomyces cinnamoneus
US20100279980A1 (en) Moenomycin biosynthesis-related compositions and methods of use thereof
AU652766B2 (en) Cloning of the biosynthetic pathway genes for chlortetracycline production from streptomyces aureofaciens and their expression in streptomyces lividans
Chen et al. Mechanism of expression of the overlapping genes of Bacillus subtilis aspartokinase II.
US5589385A (en) Cloning of the biosynthetic pathway for chlortetracycline and tetracycline formation and cosmids useful therein
KR100193208B1 (en) Cosmids containing gene colonies encoding the biosynthetic pathways of tetracycline and chlortetracycline and methods for increasing the yield of these proteins using the same
Buggy et al. Nucleotide sequence and characterization of the Rhodobacter capsulatus hvrB gene: HvrB is an activator of S-adenosyl-L-homocysteine hydrolase expression and is a member of the LysR family
US20080268501A1 (en) Methods and materials relating to gene expression
US5360742A (en) Eukaryotic plasmid vector encoding enzymes for cysteine production
KR100532356B1 (en) Amino acid sequences of Carbamoyltransferase from Streptomyces sp. and gene sequences of it thereof
US6077699A (en) Polypeptides involved in the biosynthesis of streptogramins, nucleotide sequences coding for these polypeptides and their use
US7090999B2 (en) Polypeptides involved in the biosynthesis of streptogramins, nucleotide sequences coding for these polypeptides and their use
Smith Genetic and biochemical studies of thiostrepton biosynthesis in Streptomyces laurentii
Murata The trpF nucleotide sequence and its promoter analysis in Pseudomonas aeruginosa
Mao Molecular and genetic analysis of mitomycin C biosynthesis in Streptomyces lavendulae
Cohen Regulation of Amino Acids Biosynthesis in Prokaryotes
Maneewannakul Functional analyses of F plasmid transfer genes and development of a T7 RNA polymerase dependent plasmid transfer system
Holmes Nucleotide analysis of two actinomycete aminoglycoside resistance determinants
JERALD Genetic and Biochemical Characterization of the red Gene Cluster of Strep tom y ces coelicolor A3 (2)