SK32693A3 - Cyclopeptides, a method of preparing them and their use as drugs - Google Patents

Cyclopeptides, a method of preparing them and their use as drugs Download PDF

Info

Publication number
SK32693A3
SK32693A3 SK32693A SK32693A SK32693A3 SK 32693 A3 SK32693 A3 SK 32693A3 SK 32693 A SK32693 A SK 32693A SK 32693 A SK32693 A SK 32693A SK 32693 A3 SK32693 A3 SK 32693A3
Authority
SK
Slovakia
Prior art keywords
arg
phe
asp
gly
lys
Prior art date
Application number
SK32693A
Other languages
Slovak (sk)
Inventor
Gerd Schnorrenberg
Rainer Palluk
Stefan Heinrichs
Original Assignee
Boehringer Ingelheim Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19904032269 external-priority patent/DE4032269A1/en
Priority claimed from DE19904032271 external-priority patent/DE4032271A1/en
Priority claimed from DE19904032268 external-priority patent/DE4032268A1/en
Priority claimed from DE19914117733 external-priority patent/DE4117733A1/en
Application filed by Boehringer Ingelheim Kg filed Critical Boehringer Ingelheim Kg
Publication of SK32693A3 publication Critical patent/SK32693A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/56Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/58Atrial natriuretic factor complex; Atriopeptin; Atrial natriuretic peptide [ANP]; Cardionatrin; Cardiodilatin
    • C07K14/582Atrial natriuretic factor complex; Atriopeptin; Atrial natriuretic peptide [ANP]; Cardionatrin; Cardiodilatin at least 1 amino acid in D-form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/10Antioedematous agents; Diuretics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Diabetes (AREA)
  • Toxicology (AREA)
  • Endocrinology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The invention concerns cyclopeptides of general formula (I), and their salts, in which the amino-acid units An to Kn are as defined in the description. The invention also concerns the preparation and the use of such cyclopeptides. The new compounds are ANP-agonistic.

Description

Oblasť technikyTechnical field

Vynález sa týka nových cy k I opcp l: i ilnv , ktoré sú tvorené zby tkaní! prírodných a nepri rodných aminokyselín, ich výroby a použitia ako liečiv. Peptidy sú ΛΝΡ-agoni s ty. .The invention relates to novel cells which are made up of unnecessary tissues. natural and unnatural amino acids, their production and use as pharmaceuticals. The peptides are ΛΝΡ-agons with those. .

Nové cyklopep t .i.dy predstavujú parciálne sekvencie, parciálne sekvencie d i skon t i nuá I ne medzi sebou spojené, i, modifikované parciálne sekvencie a analógy takzvaných atriálnych na tr iuretických faktorov, ANP alebo at r .i ál.nych na t r :i u re t i okých pcpt.idov.The novel cyclopep t.i.dy represent partial sequences, partial sequences di terminus not interconnected, i, modified partial sequences and analogs of the so-called atrial to triuretic factors, ANP or at least other triauretic factors. re ti okých pcpt.idov.

Doterajší stav technikyBACKGROUND OF THE INVENTION

ANP je syntetizovaný hlavne v svalových bunkách srdečných komôr, tam je tiež ukladaný ako prohormón ti uvoľňovaný mechanickým dráždením zvýšeným napätím steny. Pôsobí, ako relaxans ciev, znižuje krvný tlak, pôsobí d i ureticky a saluLcricky, zvyšuje glomerulárnu filtráciu, redukuje objem plazmy ti zvyšuje hematokri Ľ, znižuje aktivitu plazmového ren i nu a hladinu aldostcrónu v plazme, pôsobí. spmasmoly L icky na hladké svalstvo čreva a bronchoI y t icky. Pôsobenie je sprosti' 4 redkované špecifickými receptormi.ANP is synthesized mainly in muscle cells of the heart chambers, there is also deposited as prohormone by those released by mechanical irritation by increased wall tension. It acts as a blood vessel relaxant, lowers blood pressure, acts both uretically and salutically, increases glomerular filtration, reduces plasma volume, increases hematocrile, decreases plasma renin activity and aldostron levels in the plasma, acts. spmasmoly Bowel smooth muscle and bronchiolytics. The action is readily reduced by specific receptors.

LL

V tomto opise a v nárokoch holi použité skratky podľa doporučen í a IUPAC-IUB .1 o i n t Commission of B iochcmica l Nomenclaturc (Eur.J .B iochcm. 138,9-37, 1984). Boli použité aj ďalšie skratky, ktoré sú ďalej vysvetlené.In this specification and in the claims, the abbreviations used in accordance with the recommendations and IUPAC-IUB.1 of the Commission of Biochcmica l Nomenclaturc (Eur. J. Biochcm. 138,9-37, 1984) are used. Other abbreviations have been used, which are explained below.

Aund AUNDE w -am inoundekanová kyse1 i na w -am inoundecan acid i Abu t Abu t ý - am i nomas 1 ovil kysel i na - - am i nomas 1 verified acid Aoc AOC ω-am inooktánová kysel i na ω-am inoctanoic acid i Apen Apen δ-am inopentánová kysol i na δ-am inopentanoic acid Aca Aca ί - am i nokap rófiová kysol i na ß - am i nokap rófium acid acid Aib Aib « -am i no i zomas 1 ová kyse 1 i ria «-Am i no i zomas 1 y acid Ala Ala a 1 ti n í n and 1 thi n Ala Ala P - či 1 či n í n P - or 1 or n Arg Arg a rg i n í n and rg i n n Asp Asp asparágová kysol i na aspartic acid i Azt AZT 0 II |—N--C—| 0 II | N - C | Bum bang to re.butyloxymetyl to t-butyloxymethyl BOC BOC terc. bu ty 1 oxykčirbony 1 t. but 1 oxycycarbones 1 B tu B tu 3-am i no-1 -ka rboxymety 1 -py rro 1 i d í n- 2- on 3-amino-1-carboxymethyl-pyrrolidin-2-one B z i. B of i. benzy .1. benzy .1. Bz bz benzoy1 benzoy1 Cha ha ey k 1 obe x y 1 a 1 čin í n ey k 1 both x y 1 and 1 is t Cle Cle eyk.l oleuc i n eyk.l oleuc i n CIg CIG 3-am i no- 1 - k či rboxyme ty 1 - hexahyd r oáze p i n 3-Amino-1- or hydroxymethyl-1-hexahydro-pyrazine Ctr Ctr c i t r u 1 i n c i t r u 1 i n Dap Dap 2,3-L-d i am.i noprop i onová kysol i nu 2,3-L-diamino-propionic acid DM F DM F N , N - d i me ty 1 formám i d N, N - d i me ty 1 forms i d DPPA DPPA d i f enyl. fosfory laz i d di-phenyl. phosphorus laz i d DCC DCC d icyk 1ohexy1karbodi im i d d icyk 1ohexylcarbodi im i d DIC DIC d i izopropy]karbodi i m i d d iisopropylcarbodiamine d Gly Gly gl.ye í n gl.ye í n His His b i s t i d i n b i s t i d i n HOB t HOB t 1 - hyd roxybenzo t r i azo 1 1 - hydroxybenzo triazole 1 íle Ile i zo l.eue i n i from l.eue i n Leu Leu 1 euc i n 1 euc i n Lys Lys 1 y s i n 1 y s i n

-on-one

Menoe menty 1oxykarhonyIName names 1 oxycarcarones

Me mety IMe mety I

Met met i on i nMet met i on i n

Mtr 4-metoxy-2,3,6-t r imety IľenyIsuI ľonyIMtr 4-methoxy-2,3,6-trimethylsilylsulfonyl

Nal· 1 - na ľ ty I a Ianí nNal · 1 - nať I and Ianí n

Nie cn3-(αι2)2-α|(Νΐι2)-COOIINo cn 3 - (α 2 ) 2 - α | (Νΐι 2 ) -COOII

Or n oi.-n.it.inOr n oi.-n.it.in

Phe fenylalanínPhe phenylalanine

Pmc pentametyIehrómansuI ľony lPmc pentamethylammonium sulfonate l

Ser serínSer serín

The 3 - am i no-7-ka rboxy-te t ľahyd ro i žoch i no I i n-1 -onThe 3-amino-7-carboxy-thiophene-1-yn-1-one

Thi *\SThi * S

CH2-CH(NH2)-COOHCH 2 -CH (NH 2 ) -COOH

TosTos

TrcPlt

Trt t ľ i ty ITrt three

Tyr tyrozínTyr tyrosine

Val. val í nVal. val í n

Z benzyloxykaľbony1From benzyloxycarbones1

Výraz aminokyselina zahrňuje (pokiaľ nie je výrazne v nasledujúcom texte ináč uvedené) prírodné a nepri rodné aminokyseliny, ako aj ich D- a tiež L-formy. Výraz -aminokyselina zahrňuje tiež a ,ct - d isuhst i tuované aminokyseliny.The term amino acid includes (unless expressly indicated otherwise) natural and unnatural amino acids, as well as their D- and L-forms. The term -amino acid also includes α, α-d is substituted amino acids.

Ak je aminokyselina uvedená bez preľixn ( napr. Orn) , predstavuje L-ľonnu aminokyseliny. D-forma je výrazne označená (D-Orn).If the amino acid is shown without a pre-mix (e.g., Orn), it is an L-ionic amino acid. The D-form is strongly indicated (D-Orn).

Podstata vynálezuSUMMARY OF THE INVENTION

Vyná l ez sa týka eyk 1opept idov všeobeenného vzorca I s ANP agonistiekou účinnosťou ρΛη-Bn-Cn-Dn- En- ľn-Gn-Hn- I n-Kn.....j (I) v ktorom sled členov Bn až Kn je sledom am inokyse1 i nových zvyškov h ANPThe invention relates to the cyclopeptides of the general formula I with ANP agonist activity ρΛη-Bn-Cn-Dn-En-ln-Gn-Hn-I n-Kn ..... j (I) wherein the sequence of members Bn to Kn is a sequence of amine acidic new residues of ANP

-Arg(27)-Phe(8)-Gly(9)-G 1 y(Ί G)-Arg(1 1 )-Met(I2)-Asp(13)-Arg(14) lle(15)- alebo jeho p r i es torovo štruktúrnych a funkčných ekvivalentov An znamená medzeru í ková skupinu, ktorá spája Bn s Kn a ovplyvňuje priestorovú štruktúru týchto molekúl tak, že sa ey k .1 opep t i dy viažu na ANP receptory a ich farmaceutický prijateľné sol i .-Arg (27) -Phe (8) -Gly (9) -G 1 y (Ί G) -Arg (11) -Met (I2) -Asp (13) -Arg (14) lle (15) - or its receptor structure and functional equivalents, An, is a spacer group that associates Bn with Kn and affects the spatial structure of these molecules by binding to the ANP receptors and their pharmaceutically acceptable salts.

Výhodné sú eyk Iopept idy, v ktorých medzeru í ková skupina An v časti ležiacej za členom Bn obsahuje aromatický alebo cykloali fa t i oký zvyšok.Preferred are cyclopeptides in which the spacer group An in the portion downstream of the member Bn contains an aromatic or cycloaliphatic residue.

Väčšina am inokyse1 i nových zvyškov môže byť vo forme I)aleho L. Výhodné sú cyk Iopept idy, v ktorých sú členy alebo väčšina členov Bn , Cn , En , En , Gn , I In , In a Kn v L-ľorme.Most of the amine acid residues may be in the form of I) or L. However, cyclopeptides in which most or all members of Bn, Cn, En, En, Gn, In, In and Kn are in L-form are preferred.

Medze rn.í ková skupina An udržuje α-C-atúiny členov Bn a Kn vo vzdialenosti 5 až 15 Angstromov. (Konformáci a z 2D-NMR merania vo vodnom roztoku, výsledky úko medzné podmienky na simuláciu molekulovej dynamiky).The limit group An maintains α-C-atoms of Bn and Kn members at a distance of 5 to 15 Angstroms. (Conformation and 2D-NMR measurements in aqueous solution, results of limiting conditions to simulate molecular dynamics).

An sa neviaže na ANľ-ľece|i I ory , ovplyvňuje však schopnosť väzby na receptory a tým farmakologickú účinnosť cykoIpept idov všeobecného vzorca I.However, An does not bind to the AN? -Buttons, but it affects the ability to bind to receptors and hence the pharmacological activity of the cyclic peptides of the general formula I.

Za priestorovo štruktúrne a funkčné ekvivalenty aiuinnkyselinových zvyškov ANP sú považované am inokyscI i nové zvyšky prípadne peptidové templaty (ako aj I.,- formy a tiež D-formy) ktoré spôsobujú, že sa cyklopeptidy všeobecného vzorca I viažu na ANP-receptory. Doteraz realizované výskumy ukázali, že napr. sled (Bn až Kn) -Arg-Cha-D-ΛIa-G1y-Arg-1Ie-Asp-Arg-IIevykazuje veľmi dobré hodnoty väzby na receptory a farmakologické účinnosti . Jednotl ivé členy sledu sú nahradí teľné zvyšky podobnej priestorovej štruktúry a/alebo funkcie, čím je schopnosť väzby na receptory viac či menej ovplyvňovaná a v mnohých prípadoch sa farmakologická účinnosť mení v rámci známej ΛΝΡ-agoni s t ickej účinnosti. Zmenami jednotlivých členov je ovplyvniteľný typ, veľkosť a doba farmakologickej účinnosti. Ak sa mení viac ako jeden z členov Bn až Kn, potom sa pod ľa doterajších vedomostí zmena farmakologickej účinnosti. skladá zo zmien, zodpovedajúcich jednotí i vým variáciám. V nasledujúcom zozname sú štrukturálne podobné príklady vzťahu medzí schopnosťou väzby na receptory a sledom členov cyklo pept.idov všeobecného vzorca I. (Opis testu je v d’a I šoiii tex te uvedený pod názvom Väzba na ANP-receptory).Amino acid residues or peptide templates (as well as I, - forms as well as D-forms) which cause the cyclopeptides of formula I to bind to ANP receptors are considered to be spatially structural and functional equivalents of amino acid residues of ANP. Research carried out so far has shown that eg. The sequence (Bn to Kn) -Arg-Cha-D-Ia-Gly-Arg-1e-Asp-Arg-II shows very good receptor binding values and pharmacological activity. The individual members of the sequence are replaced by releasable residues of similar spatial structure and / or function, whereby the ability to bind to receptors is more or less affected, and in many cases the pharmacological activity varies within the known ag-agonist activity. Variations in individual members can affect the type, size and duration of pharmacological activity. If more than one of the members Bn to Kn is altered, then to the knowledge of the art, the pharmacological efficacy is altered. consists of changes corresponding to unity and exchange variations. In the following list, structurally similar examples of the relationship between receptor binding capability and sequence of members of the cyclopeptides of formula (I) are described below under the heading ANP-Receptor Binding.

Zlúčeniny označené *) majú v uvedenom teste väzby - xCompounds marked with *) have - x bonds in the above assay

IC50- hodno tu menšiu ako 5.10 móI , iné zlúčeniny majú menšiu afinitu.IC 50 - here less than 5.10 mol, other compounds have less affinity.

A * ) p βΑ l.a - Phe-Λ ľg - Phe - Ι)-Λ I a-G I y - A ľg- I I e-Asp-A ľg- I I e B * ) pβΛΙa-Phe-Aľg-Phe-D-Λ Ia-GIy-Aľg-I I c-Asp-D-A ľg-I I eA *) p βα 1a - Phe-Λ g - Phe - Ι) - Λ I aG I y - A-g-II e-Asp-A g g-II e B) pβΛΙa-Phe-Ag-Phe-D-Λ Ia-Gly-Alg-I c-Asp-DA-lg-I e

C ΓβΛ1a-Phe-D-Aľg-Phe-D-ΛIa-GIy-Aľg-1 Ie-Asp-D-Aľg-Γ1 eD«) Z - Dap-A rg-C'ha- B- Λ I a-G I y - A ľg - I I e-Asp-Λ ľg-J I e Γ C βΛ1a-Phe-D-ll e-Phe-D-Ala-Gly-ΛIa ALG-1 le-Asp-D-ll e-Γ1 eD ') Z - Dap-and R-B C'ha- Λ I and G I γ -A g g-II e-Asp-Λ g-J I e

E ll-Dap-Aľg-Cha-D-A I a-G I y-Aľg- I I e-Asp-Aľg- I I eE11-Dap-Alg-Cha-D-Al I-G Iy-Alg-Ie-Asp-Alg-Ie

G * ) p β A I a - Phe - A ľg - Phe - D - Λ I a-G I y - A ľg- I I e - Asp - A ľg- I I e -iG *) p β A I a - Phe - A g g - Phe - D - Λ I a-G I y - A g g-I I e - Asp - A g g-I I e -i

II») ι-βΑ I a-Phe-Aľg-Phe-D-Λ I a-G I y-A ľg-I le-Asp-Aľg-I l· βΛ l.a- Phe - D-Λ ľg - Phe - D- Λ I a-G I y - A ľg- I I e-Asp-D-Λ ľg- I I eΚ») -βΛΊ a-Phe-Arg-Cha-B-Ala-G I y-Aľg-I I e-Asp-A.ľg-I le-βΑ I a-Aľg-Cha-D-A I a-G l.y-Aľg-I I e-Asp-Aľg- I le7II »)-βΑ I α-Phe-Alg-Phe-D-a I aG IyA g lg-I le-Asp-g ll-Phe - D-Λ lg - Phe - D- Λ I aG I y - A g g-II e-Asp-D-Λ g g-II e)) -β ΛΊ a-Phe-Arg-Cha-B-Ala-Gly-Ag-I e-Asp-A.g -I le-βΑ I α-Aβ-Cha-DA I αG γ-Aβ-Iβ e-Asp-Aβ-I le7

Ako už bolo uvedené výraz aminokysel i ny zahŕňa aminokysel i riy prírodné a nepri rodné. Nepri rodné aminokyseliny sú výhodne, pokiaľ nie jtí výslovne: uvedený užší význam, vzhľadom na svojuAs already mentioned, the term amino acids includes both natural and unnatural amino acids. The non-native amino acids are preferably, if not explicitly, given the narrower meaning given their

molekulovú molecular hino t nos ť , p r í padne: hino t wear, eventually: d í žk u ved ľa j š i ehe side by side i reťazca, i chain, tie, those ktorých ve of which ľkosť zodpovetlá veľkosti p r í rodných aminokysel the size of natural amino acids í n . í n. Akí) Akí) soli prichádzajú do salts come into úvahy so 1 i s fyz considerations with 1 i with phys : i o 1og i cky : i o 1og i pr i - at - j a te ľným i j a teľnou i anorganickými alebo inorganic or organickými kysel organic acids inami ako other than na p- na p- r í k lad IICI IICI , HBr, ll2SO4, H3PO4 , HBr, II 2 SO 4 , H 3 PO 4 , kyse: 1 i učí ma 1 e í , acid: 1 teaches me nová, kyse1 i na new, acidic i fumarová, fumaric kyse 1 i na e.i t tónová , acid 1 i to e.i t tonal, kyse1 i na v í nna, acid on wine, kysel i na acidic to oe to- oe to-

vá.acid.

Centrá eh i. ra I i ty v nových peptidoch môžu m ti ť konfiguráciu R, S alebo R,S.Centers eh i. the novel peptides may have the R, S or R, S configuration.

Členy Bn,Fn, I n zodpovedajú Arg (27), Arg(ll) prípadne A.ľg (14) ΛΝΡ alebo i eh priestorovo štruktúrnym a funkčným ekvivalentom . Bn, Fn In môžu byť nezávisle na sebe o-aminokyse'1 i nové zvyšky s dvoma bázickými vedľajšími reťazcami alebo výhodne s jedným bázickým vedľajším reťazcom. Bázickým vedľajším reťazcom sa výhodne rozumie a I kyl- alebo ey k l oa l ky I ový vedľajší reťazec, ktorý obsahuje 1 až 4, (výhodne 1 alebo 2) bázické skupiny. Vhodnými bázickými skupinami sú napr í k l.tul -NH-, =NII, -NH2, -IIN-C(NII)-NII?, -C(NII)-ΝΗ2. Výhodne je najmenej jedna z bázických skupín vedľajšieho reťazca dvoj väzbová. Ďalej sú výhodné vedľajšie reťazce, ktorých prvá bázická skupina je spojená s δ-ubi íkovým atómom «-aminokyseliny alebo s atómom uhlíka, ktorý je ešte ďalej umiestnený v peptidovom reťazci.. Výhodné sú alkylové vedľajšie reťazce s 1 až. 6, najmä 3 alebo 4 uhlíkovými atómami a cykloalkylovú vedľajšie reťazce - (CH 2 ) y ~{C/^~ ( Cl 12 ) - , kde x a y nezávisle na sebe sú alebo 2 a (CA) predstavuje cykloa.lkyl s 5 alebo 6 atómami uhlíka. Výhodne: sú bázické skupiny na konci ved ľa j š i eho reťazca .The terms Bn, Fn, I n correspond to Arg (27), Arg (11) or A.Ig (14) ΛΝΡ or ih with spatially structural and functional equivalents. The Bn, Fn In, independently of one another may be new amino acids having two basic side chains or, preferably, one basic side chain. A basic side chain is preferably understood to be an alkyl or eyed side chain which contains 1 to 4 (preferably 1 or 2) basic groups. Suitable basic groups are e.g. Example l.tul -NH-, = NII, -NH2, -IIN -C (NII) -NH? -C (NII) -ΝΗ 2 . Preferably, at least one of the side chain basic groups is a double bond. Further preferred are side chains whose first basic group is linked to a δ-carbon atom of the--amino acid or to a carbon atom which is further located in the peptide chain. 6, especially 3 or 4 carbon atoms and cycloalkyl side chains - (CH 2 ) y - {C 1 - (Cl 1 2 ) -, wherein x and y are independently of each other or 2 and (CA) represents cycloalkyl having 5 or 6 carbon atoms. Preferably, they are basic groups at the end of the side chain.

KThe

Člen Cn zodpovedá, ako už bolo uvedené, Phe(K) ANP alebo jeho štruktúrnym alebo ľunkčným ekvivalentom. Cn môže byť α-am i nokyse l..i nový zvyšok s dvoma lipoľi Inými bočnými reťazcami alebo výhodne jedným I i po ľ i Iným bočným ľcťazcom. Za lipofilný vedľajší reťazec je v tejto polohe považovaný alkylový bočný reťazec s 1 až 7 atómami uhIíka (výhodne s 1 až 4 atómami, uhlíka, najmä s 1 atómom uhlíka). Tieto bočné a I kýlové reťazce môžu obsahovať jednu alebo dve oxyskupiny (-0-), Tioskupiny (-S-) alebo skupiny -C(0)0-. Tieto bočné alkylkové reťazce nesú jeden alebo dva zvyšky. Tieto zvyšky sú nezávisle na sebe ey k .l oa I i ľa t i eké zvyšky (výhodne ey k I oa I k y I ové) , obsahujúce 3 až K), výhodne 4 až 7 atómov ubi íka. Aromatickým zvyškom je výhodne fenyl, naľtyl, substituovaný (napríklad N02, hydroxy, fény I(Cj_4)a IkyIoxy alebo (C|_4)alkoxy ľenyI alebo 5- alebo 6- členný prípadne tiež beiízokondenzovaný aromatický heteroeyk 1 us, ktorý obsahuje 2 atómy N alebo ako jeden člen N a jeden člen kruhu 0 alebo S alebo ako člen kruhu obsahuje N, S alebo O a ostatné členy kruhu tvorí C, výhodne tienyl , furyl , pyrrolyl , imidazolyl , pyrazolyl , pyridyl , pyrazinyl , pirimidinyl, py r i daz i ny I., indolyl, i žoch i no I y I , ch inoly I chromany.l , tiaz.olyl, oxazol y ľ, morľolinyl.The Cn term corresponds, as already mentioned, to Phe (K) ANP or its structural or functional equivalents. Cn can be an alpha-amine acid residue with two lipols with other side chains or preferably one with another side chain. A lipophilic side chain at this position is considered to be an alkyl side chain of 1 to 7 carbon atoms (preferably 1 to 4 carbon atoms, especially 1 carbon atom). These side and I truss chains may contain one or two oxy (-O-), thio (-S-) or -C (O) O- groups. These side alkyl chains carry one or two residues. These radicals are, independently of one another, C 1 to 10 and very light (preferably C 1 to 10) residues, containing 3 to K), preferably 4 to 7 carbon atoms. The aromatic moiety is preferably phenyl, naľtyl, substituted (e.g., N0 2, hydroxy, fans I (Cj_ 4) and IkyIoxy or (C | _ 4) alkoxy, or attributed to the 5-or 6-membered aromatic optionally also beiízokondenzovaný U.S. heteroeyk 1 comprising 2 N atoms or as one N member and one O or S ring member or contains N, S or O and the other ring members are C, preferably thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pirimidinyl, py ridazines I., indolyl, quinolines, quinolines, chromanyl, thiazolyl, oxazolyl, morpholinyl.

Členy Dn a En zodpovedajú Gly (9) prípadne Gly (10) ANP alebo jeho priestorovo štruktúrnym alebo ľunkčným ekvivalent o m .The terms Dn and En correspond to Gly (9) or Gly (10) of ANP or its spatially structural or functional equivalent by m.

Dn a En môžu nezávisle na sebe znamenať Gly alebo zvyšok «-aminokyseliny, ktorá štruktúru natívnej aminokyseliny spolu znamenať ίύ-am inokyseI i nový napodobnil j e pri es torovú (G.l.y) alebo Dn a En môžu zvyšok .-NH(CII2)2_ , ,-C0alebo peptidový temp.lát. V polohách Dn a En sú výhodne vhodné amxnokystí'l i nové zvyšky, ktoré pod ľa štatistickej analýzy i iDn and En may independently represent Gly or a radical '-amino acid, the structure of the native amino acids together represent ίύ-am inokyseI the new mimic of the EC Torr (Gly), or Dn and En may moiety. -NH (CII 2) 2 _ , -CO or peptide template. In the positions Dn and En, preferably amine oxides of new residues which, according to statistical analysis

Chou-a a Fasmana (Biophysical .lomná I , zv . 2b, 1979, 3 b 7 jChou-a Fasman (Biophysical Refl. I, Vol. 2b, 1979, 3b, 7)

-383) sa často nachádzajú v β-konľormáci i. Výhodné sú naprí k- i-383) are often found in β-condensation i. Preferred are e.g.

J ad ain.í nokyse I i ny , k toré sa vyskytujú v zvýšenom počte v po- j loháeh i+1 a i +2, najmä tie s početnosťou (1,06 (tabuľka 1 uvedenej pubIikáeie). IOther adherents that occur in an increased number at positions i + 1 and i +2, in particular those with a frequency of 1.06 (Table 1 of the above-mentioned publication).

Vhodnými peptidovými templátmi sa rozumejú tie, ktoré ina j ú konformáei u β - o táčavos t i .Suitable peptide templates are understood to be those which otherwise conform to β-ω-wicking.

' í

Členy Cn a Kn zodpovedajú, ako už bolo uvedené, Met ;The members Cn and Kn correspond, as already mentioned, to Met;

(12) prípadne íle (15) ΛΝΡ alebo jeho priestorovo štruktúr- · nych a funkčným ekvivalentom. Gn a Kn môžu nezávisle na sebe znamenať a-am inokyseI i nový zvyšok vždy s dvoma lipoľi Inými bočnými reťazcami alebo výhodne s jedným I i poľ i Iným bočným j reťazcom. Lipoľi Iným bočným reťazcom sa v tých to polohách ro- ·!(12) where appropriate, clay (15) ΛΝΡ or its spatially structured and functional equivalent. Gn and Kn can each independently be an α-amine acidic residue with two lipols in each side chain, or preferably in one side chain. Lipolians Another side chain in these positions ro- ·!

zum.ie alkylový bočný reťazec s 1 až 10 atómami uhlíka, výhod- i ne 1 až 6 atómami, ubi íka, najmä reťazec s najmenej troma atómami uhlíka. Tieto alkylové bočné reťazce môžu naviac obsahovať jednu alebo dve oxyskupiny (-0-) alebo tioskupiny (-S-) (ako napríklad v met tónine). Tieto bočné reťazce môžu tiež obsahovať 1 až 2 alkylové zvyšky. .it is an alkyl side chain having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, in particular a chain having at least three carbon atoms. These alkyl side chains may additionally contain one or two oxy (-O-) or thio (-S-) groups (such as in the meth key). These side chains may also contain 1 to 2 alkyl radicals. .

i (i (

Člen lln zodpovedá, ako už bolo uvedené, Asp(13) ΛΝΡ alebo jeho priestorovo štruktúrnym a funkčným ekvivalentom.As mentioned, the term lln corresponds to Asp (13) ΛΝΡ or its spatially structural and functional equivalents.

Člen pôsobí ako medzerník, lln môže ľ) y ť «-aminokyselinový zvyšok, menovite Gly alebo zvyšok, ktorý v bočnom reťazci nene- i sie žiadnu funkčnú skupinu alebo -COOH a/alebo -CONI^· Výhod- * ne je bočným reťazcom alkylový bočný reťazec s 1 až 6 (výhodne 1 - 3) atómami uhlíka, ktorý tiež môže niesť fenylovú skupinu a/alebo HOOCťCI^) j _4 alebo I^N-CO(ΟΙ9.) [ 4- .The member acts as a spacer, and may be an amino acid residue, namely a Gly or a residue that has no functional group in the side chain or -COOH and / or -CONI. Preferably, the side chain is an alkyl group. a side chain of 1 to 6 (preferably 1 to 3) carbon atoms, which may also carry a phenyl group and / or HOOC (C 14) 14 or I 4 N-CO (ΟΙ 9 ) [4-.

οο

An znamená, ako už bolo uvedené, medze, rn í kovu skupinu. Tá to skúp i na môže by ťAn is, as already mentioned, a metal group. It can even buy it

a) a) skúp i na group -Aj-A2-A3--Aj-A 2 -A 3 - b) b) skúpi na group -A4-A^--A 4 -A ^ - ľ) I ') skúp i na group am i nokyse1 i ny am i nokyse1 i ny všeobecného of vzorca of formula ! 1 1 ! 1 1 -Nll- -Nll- (012),,,-01 (R) - (012) ,,, -01 (R) - -co- -what- (III). (III). A1 A 1 môže znamenať can mean Gly alebo Gly or zvyšok Rest (t-am i nokyse 1 i ny (t-am i nokynynynyy

dvoma bočnými reťazcami a.lebo výhodne jedným bočným reťazcom. Tieto bočné reťazce nenesú žiadne funkčné skupiny. Výhodne je takýmto bočným reťazcom rozvetvený alebo nerozvclvcný alkylový bočný reťazec s 1 až 6 atómami uhlíka.two side chains and preferably one side chain. These side chains do not carry any functional groups. Preferably, such a side chain is a branched or unbranched alkyl side chain of 1 to 6 carbon atoms.

A2 je ková len Ľná väzba aleboA2 is a metal bond only or

W -am i nokyse.l i nový zvyšok všeobecného vzorca IIA novel radical of formula (II)

-NH- (CII2)n-CO- (II) kde n znamená číslo od I do 11 (výhodne 1 až 6).-NH- (Cl 2 ) n -CO- (II) wherein n represents a number from I to 11 (preferably 1 to 6).

A3 môže byť α-am i.nokyse I i nový zvyšok s dvoma bočnými I ipofi I nými reťazcami a lebo výhodne jedným I i poľ i Iným bočným reťazcom. Pod I i.poľi lným bočným reťazcom sa rozumie v tejto polohe alkylový bočný reťazec s 1 až 7 atómami uhlíka (výhodne 1 až 4 atómami ubiíka, najmä jedným atómom uhIíka). Tieto alkylové bočné reťazce môžu obsahovať jednu alebo dve oxyskupiny (-0-) alebo -C(0)0-skúp iny. Tieto alkylové bočné reťazce nesú jeden alebo dva zvyšky. Tieto zvyšky sú nezávisle na sebe cykloali ľa t ické alebo aromatické zvyšky. Cyk IoaI i ľa t ický zvyšok (výhodne cykloalkylový zvyšok) obsahuje 3 až 10, výhodne 4 až 7, atómov uhlíka. Aromatický zvyšok je výhodne ľeny], , naftyl, substituovaný (napríklad N09, hydroxy, ľeny I (Cj_4)-a Ikoxy alebo C|_4 alkoxy)ľenyl alebo 5- alebo 0členný prípadne benzokondenzovaný aromatický líc te rocy k 1 us , kde 2 členy kruhu sú N alebo jeden člen je N a jeden je 0 alebo S, alebo jeden člen je N, S alebo 0 a ostatné sú C, výhodne tienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyraz.inyl, pyrimidinyl, py r i daz i ny I , indolyl, izoehinoly.l. , eh i no! y I , eh romány 1, tiazolyl, oxazolyl, mor rol inyl.A 3 can be an α-amino acid residue with two side-chain and, preferably, one side-chain. A common side chain at this position is an alkyl side chain of 1 to 7 carbon atoms (preferably 1 to 4 carbon atoms, especially one carbon atom). These alkyl side chains may contain one or two oxy (-O-) or -C (O) O-groups. These alkyl side chains carry one or two residues. These radicals are independently cycloaliphatic or aromatic radicals. The cyclic radical (preferably a cycloalkyl radical) contains 3 to 10, preferably 4 to 7, carbon atoms. The aromatic radical is preferably ľeny], naphthyl, substituted (e.g., N0 9, hydroxy, ľeny I (Cj_ 4) alpha Ikoxy or C | _ 4 alkoxy) or a 5- or enyl 0členný optionally benzofused aromatic Rocy front of that one of us. wherein the 2 ring members are N or one member is N and one is 0 or S, or one member is N, S or 0 and the other are C, preferably thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl , pyridazinyl I, indolyl, isoquinolyl. , eh i no! y I, eh novels 1, thiazolyl, oxazolyl, mor rol inyl.

A4 môže byť peptidový templát alebo M-aminokysél inový zvyšok obecného vzorca IIA 4 may be a peptide template or an N-amino acid residue of formula II

-NH- (Cll2) ,,-CO(II) kde n je celé číslo od 1 do 11 (výhodne I až 6);-NH- (CII 2) ,, - CO (II) wherein n is an integer from 1 to 11 (preferably to 6);

pod výraz peptidový templát spadajú skupiny ako napríklad Glg, B tu, The a Tre.peptide templates include groups such as Glg, B tu, The and Tre.

zvyšok alebo -C(0)()-skup i ny den alebo dvti zvyškyor -C (O) () - a day or two residues

A^ môže byť kovalentná väzba s dvoma I ipofi Inými bočnými jedným I i poľ i Iným bočným reťazcom. Potí I i poľ i Iným bočným reťazcom stí rozumie v tejto polohe alkylový bočný reťazec s 1 až 7 atómami uhlíka (výhodne 1 až 4 atómami uhlíka, najmä jedným atómom ubi íka). Tento alkylový bočný reťazec môže obsahovať jednu alebo tlve oxyskupiny (-0-), tioskupiny (-S-) Tento alkylový bočný reťazec nesie jeTieto zvyšky sú nezávisle na sebe cykloa.l i fa t ieké alebo aromatické zvyšky. Cy k I oa I i ľa ti cký zvyšok (výhodne cy k .1 oa I ky l.ový zvyšok) obsahuje 3 až K), výhodne 4 až 7, atómov uhlíka. Aromatický zvyšok je výhodne feny1, naftyl, substituovaný (napríklad N()2 , hydroxy, ľeny I (C t 4) - a I koxy alebo Cj 4 a I koxy ) fény.1 alebo 5- alebo 6- členný prípadne benzokondenzovaný aromatický heĽeroeykIus, kde 2 členy kruhu alebo « - am inokyseI i nový reťazcami alebo výhodneA 1 may be a covalent bond with two other side chains of one side or another side chain. Thus, at this position, another side chain is an alkyl side chain having 1 to 7 carbon atoms (preferably 1 to 4 carbon atoms, in particular one carbon atom). The alkyl side chain may contain one or more oxy groups (-O-), thio groups (-S-). This alkyl side chain carries them. These radicals are independently cycloaliphatic or aromatic radicals. The cycloaliphatic moiety (preferably a cycloalkyl radical) contains 3 to 10 carbon atoms, preferably 4 to 7 carbon atoms. The aromatic radical is preferably feny1, naphthyl, substituted (e.g., N () 2, hydroxy, ľeny I (t C 4) - alkoxy, and I, or C 4 alkoxy, and I) fény.1 or a 5- or 6-membered aromatic optionally benzo-fused heĽeroeykIus wherein the 2 ring members or the amine isocyanate by chains or preferably

I pyrcoly.l, imidazolyl, pyľazolyl, pyridyl, d i ny l , py r i daz i nyI , i ndoI y I , i žoch i no I y I , nyl , tiazolyl , oxazolyl , inorľol i ny I .Pyrolyl.1, imidazolyl, pyazolazol, pyridyl, pyridyl, pyridazinyl, indidolyl, isoquinolyl, nyl, thiazolyl, oxazolyl, inorololinyl.

An môže tiež byť aminokyselinový vzorca III -Nll-(Cll2) „,-CH (R)-CO- (III), kde 11 a R je NIIX, ΟΧ , SX , NXY, - Nl I (11) - C (O) - Cl 12 -N(II)-C(O)-CII2-N(ľl)-C(O) -X 1 , -N(II) -C(0) -Cll=( -N (II)-C(0) -O-CI kde sú N alebo jeden člen je N a jeden je O alebo S, alebo jeden člen je N, S alebo O a ostatné sú C, výhodne tienyl, ľuryl, py raz i nyI , py ľ i m i eh i no I y I , eh ronia zvyšok všeobecného m je celé číslo 1 ažAn amino acid may also be of formula III -Nll- (CII 2) ', CH (R) -CO- (III) wherein R 11 is a NIIX, ΟΧ, SX, NXY, - NI I (11) - C ( O) - Cl 12 -N (II) -C (O) -CII 2 -N (1 ') -C (O) -X 1 , -N (II) -C (O) -C 11 = (-N ( II) -C (O) -O-Cl wherein are N or one member is N and one is O or S, or one member is N, S or O and the others are C, preferably thienyl, luryl, pyrazinyl, pyrimidine, the radical of the radical m is an integer of 1 to

X1 i A , o-x1 ,X 1 and A, ox 1 ,

111 - X 1 alebo l?-X 1 ,111 - X 1 or l ? -X 1 ,

X znamená vodík, nesuhst i tuovaný alebo substituovaný benzoy1 ový zvyšok, nesuhst i tuovaný alebo substituovaný cyklohexyl kaľbonyIový zvyšok, nésubslituovaný alebo substituovaný benzyIoxykaľbony1ový zvyšok, 2-,3alebo 4-pyr idy1mety Ioxykarbony Iový alebo tosylový zvyšok,X is hydrogen, unsubstituted or substituted benzoyl, unsubstituted or substituted cyclohexylcarbonyl, unsubstituted or substituted benzyloxycarbonyl, 2-, 3- or 4-pyridylmethoxycarbonyl or tosyl,

Y znamená Cl až C14 -alkylový zvyšok alebo aryl- (Cl až C14 -a IkyIový)zvyšok a χΐ je (a)fenyl, (β) 1, 2 alebo 3 substituenty (substituenty:Y represents a C1-C14-alkyl radical or an aryl- (C1-C14-aalkyl) radical and χΐ is (a) phenyl, (β) 1, 2 or 3 substituents (substituents:

halogén, t r i f Iuórmety I alebo n i t ro subst i tuovaný fenyl, (y)naftyl, (25) benzo/h/t i eny I , (f) pyr idýl alebo (4j) py raz i ny I .halogen, trifluoromethyl I or nitro substituted phenyl, (γ) naphthyl, (25) benzo / h / thienyl, (f) pyridyl or (4j) pyrazines I.

Výhodný je aminokyselinový zvyšok vzorca III, kile m je 1, 2, 3 alebo 4 a R-NIIX, -NXY,Preferred is an amino acid residue of formula III when m is 1, 2, 3 or 4 and R-NIIX, -NXY,

-NH(H)-C(O)-CH2-X1,-NH (H) -C (O) -CH 2 -X 1 ,

-N(II) -C(0) -Cll2-O-X 1 ,-N (II) -C (O) -C 11 2 -OX 1 ,

-N(H)-C(0)-X1 ,-N (H) -C (O) -X 1 ,

-N(II) -C(O)-CII=CH-X1 -N(H) -C(0) -O-CI^-X1 .-N (II) -C (O) -CII = CH-X 1 -N (H) -C (O) -O-Cl-X 1 .

a I eboand I or

Výhodné sú cy k'1 opepf i dy uvedeného všeobecného vzorca , kdePreferred are the cycles of the above formula wherein

Bn, En ti In nezávisle nu sebe sú Arg, D-Arg, Lys, l)-Lys, Orn, D-Orn , homo-Arg, D-honio-A rg, hup, D-Dup alebo 4-ami no-Phe, výhodne Arg, D-Acg, Lys, D-Lys alebo Orn,Bn, En, and In independently of each other are Arg, D-Arg, Lys, l) -Lys, Orn, D-Orn, homo-Arg, D-honio-A rg, hup, D-Dup or 4-amino- Phe, preferably Arg, D-Acg, Lys, D-Lys or Orn,

Cn je Phe, D-Phe, 4-N02-Phe D-Ser(Bzl), Tyr, D-Tyr, D-Tyr, D-Na'l., Thi, D-Thi, Asp(Bzl),Cn is Phe, D-Phe, 4-NO 2 -Phe D-Ser (Bzl), Tyr, D-Tyr, D-Tyr, D-Na'l, Thi, D-Thi, Asp (Bzl),

Cha, D-Cha, Ser(Bzl), Tyr(Bzl), D-Tyr(Bzl), Nal, D-Asp(Bz I ) , His, Π-II i s ,Cha, D-Cha, Ser (Bzl), Tyr (Bzl), D-Tyr (Bzl), Nal, D-Asp (Bz I), His, Π-II,

G.lu(Bz.l) alebo D-Glu(Bzl), Tyr(BzI) alebo (4-N02))-Phe, výhodne: Phe, ChG.lu (Bz.l), or D-Glu (Bzl), Tyr (Bzl) or (4-N0 2)) - Phe, preferably Phe, CH

Tyr, Nal.,Tyr, Nal.,

Dn a En nezávisle na sebe sú Ala, Gly, Pro, Asp alebo Thr alebo ich 0-forma, výhodne je Pro, D-Pro, Ser alebo D-Ser,Dn and En independently of one another are Ala, Gly, Pro, Asp or Thr or their O-form, preferably Pro, D-Pro, Ser or D-Ser,

Ser, Asn, Lys, Dn D-Ala, Gly,Ser, Asn, Lys, D-Ala, Gly,

En je Gly, Asp alebo Asn či leboEn is Gly, Asp or Asn or

Dn a En spolu znamenajú u-am inokyseI i nový zvyšok v.zorea -NH-(Cl·^) 2-5_C0- alebo peptidový lemplál, výhodne Btu, Clg, The alebo Trc alebo i eh D-ľormy, najmä D-Biu,Dn and En together are the AM-inokyseI the new v.zorea radical -NH- (C · ^) _ 2-5 lempl C0- or a peptide, preferably Btu, Clg, and the Trc or the D-EH LORM, in particular D -Biu.

Gn či Kn sú nezávisle πει sebe íle, D-íle, Met, D-Met, Nie, D-N.le, Leu, D-Leu, Val či lebo D-Val , výhodne íle, Met, Nie alebo Leu, lln je IIOOC-(CII2) | _4-CII (NH)-CO-, D-formy tohto zvyšku, Gly, Ala, D-Ala, Asn, D-Asn, Phe či lebo D-Phe, výhodne Asp, Glu alebo Gly,Gn or Kn are independently πει self, D-ε, Met, D-Met, No, DN.le, Leu, D-Leu, Val or D-Val, preferably ε, Met, No or Leu, lln is IIOOC - (CII2) 4-CII (NH) -CO-, D-forms of this residue, Gly, Ala, D-Ala, Asn, D-Asn, Phe or D-Phe, preferably Asp, Glu or Gly,

An znamenáAn means

a) skupinu -AJ-Á2-A3- kdea) -AJ-A2-A3- wherein

A| je A.l či , Gly, Phe, Vči I , 1 l.e alebo jeho D-ľornia, výhodne Gly, Λ 1 či alebo D-Ala,A | is A.I or, Gly, Phe, I, I, 11e or its D-lane, preferably Gly, či1 or D-Ala,

Λ2 je zvyšok ω-aniinokysul i ny vzorca I I , kde n je 2 , 3 a I ebo 5,Λ 2 is the residue of ω-anionic acid of formula II, where n is 2, 3 and I or 5,

Λ3 je Phe, D-Pbe, 4-N()2-Pbe, Cha, D-Cha, Ser(Bzl), D-Ser(Bzl), Tyr, D-Tyr, Tyr(Bzl), D-Tyr(Bzl), Nal, D-Nal, Th i , D-Th i , Asp(Bzl), D-Asp(Bzl),Λ 3 is Phe, D-Pbe, 4-N () 2 -Pbe, Cha, D-Cha, Ser (Bzl), D-Ser (Bzl), Tyr, D-Tyr, Tyr (Bzl), D-Tyr (Bzl), Nal, D-Nal, Thi, D-Thi, Asp (Bzl), D-Asp (Bzl),

II i s alebo D-llis, výhodne Phe, Ty r, Cha, Nal (4-N02)Phe, aleboII is or D-III, preferably Phe, Tyr, Cha, Nal (4-NO 2 ) Phe, or

4 4 5-5 - , kde , where Λ4 Λ 4 je is a zvyšok -am i nokyse1 the remainder -am i nokyse1 i ny vzorca I I , kde n i n of formula I I, wherein n je is a 2, 3 alebo 5, 2, 3 or 5 Λ5 Λ 5 je is a Phe, D-Phe, 4-NO2-ľhe,Phe, D-Phe, 4-NO 2 -h, Cha , l)-Cha , Sc r (Bz 1 ) , Cha, l) -Cha, Sc r (Bz 1), D-S D-S er(Bzl); Tyr, D-Tyr, er (Bzl); Tyr, D-Tyr Ty r(Bzl) , D-Tyr(Bzl) , Ty r (Bzl), D-tyr (Bzl), Nal Nal , D-Nal, ľbi, D-Thi, , D-Nal, Ibi, D-Thi, Asp(Bzl), D-Asp(Bzl), Asp (Bzl), D-Asp (Bzl) II i s II i p , D-llis, Glu (Bzl) ale , D-llis, Glu (Bzl) but :bo D-Glu(Bzl).výhodne : bo D-Glu (Bzl) Phe Phe , Tyr, Cha, Nal alebo , Tyr, Cha, Nal or (4-N09)-Pbe,(4-NO 9 ) -Pbe,

aleboor

c) ani i no k y se I i nový zvyšok vzorca III, kde iu je I , 2, 3 alebo 4 a R má význam definovaný v nároku 8, kile X je vodík, nesubs tituovaný alebo chlórom, metoxy alebo (Cl až C3)alkyloín substituovaný henzoyIový zvyšok, eyklohexyIový- alebo me ty .1.oxy ka rhony I ový zvyšok, nesubs t i tuovaný alebo metoxy, nitro, t r i f Iuórmety I alebo kyano substituovaný bcnzyloxykarbonylový zvyšok, výhodne benzyIoxykarhony1, 4-metoxybenzyíl oxy ka rhony I , 2- alebo 4-t r i ΙΊ uó rme t y I benzy I ka rhony Ί , naj mä benzy 1 oxy ka r bony I., 4 - n i t robenzy I oxy ka r bony .1 a I e bo 2- alebo 4-t r i fΊuórmetyIbenzy1oxykarbonyI , najmä benzyloxykarbonyl , 4 - n i t robenzy I oxy ku rlx iny I alebo 2- uIľImic) an anion of the formula III wherein iu is 1, 2, 3 or 4 and R is as defined in claim 8 when X is hydrogen, unsubstituted or chlorine, methoxy or (C1 to C3) an alkyloin substituted henzoyl radical, an cyclohexyl or methyloxycarbonyl radical, an unsubstituted or methoxy, nitro, trifluoromethyl or cyano substituted benzyloxycarbonyl radical, preferably a benzyloxycarbonyl, 4-methoxybenzyloxy-2-carboxy or 4-trifluoromethylbenzylcarbonyl, in particular benzyloxycarbonyl I., 4-nitrobenzyloxycarbonyl. 1 and / or 2- or 4-trifluoromethylbenzyloxycarbonyl, in particular benzyloxycarbonyl, 4-nitrobenzyloxycarbonyl or 2- µmol

4- tri f I uo rme ty l.benzy I oxy ku rbony I ,4-trifluoromethylbenzyloxycarbonyl I,

Y predstavuje Cl už Cl4-aI kýlový zvyšok u lebo (Cl už Cl 4-a'l.ky I )-fény I ový zvyšok, výhodne benzyl alebo fény I etyl , aY represents a Cl already C1-4-allyl residue or (a C1 C1-4-alkyl) -phenyl radical, preferably benzyl or a phenyl I ethyl, and

X^ predstavuje feny l alebo mono- alebo d i-subst ituovaný fenyl, 2-pyridyl, 2-pyrazinyl, 3-benzo/b/1 ienyI alebo 2-naftyl., naj mä tie, kdeX 1 represents phenyl or mono- or di-substituted phenyl, 2-pyridyl, 2-pyrazinyl, 3-benzo [b] phenyl or 2-naphthyl, in particular where:

znamená skupinu -Λ|-Α23-,means -Λ | -Α 23 -, kde where A1 je And 1 is Gly, Gly, A2 Je A 2 J e Aea, pAlii, Apen, Abut Aea, pAlii, Apen, Abut , Gly alebo znamená ková len tnú , Gly or means only you väzbu bond a and A3 jeAnd 3 is Phe, Phe(4-NO2), TyrPhe, Phe (4-NO 2 ), Tyr alebo Tyr(Bzl) alebo or Tyr (Bzl) or

An znamená skupinu -Α4-Λ3-, kdeAn represents the group -A4-Λ3-, where

A4 j c βΑΙ.α, Aea, Tbc, Aund, B tu alebo D-B tu aA4 is c βΑΙ.α, Aea, Tbc, Aund, B here or D-B here and

A^ znamená koval.entnú väzbu, Phe, D-.Phe, Phe(4-N02), Tyr,A 1 represents a covalent bond, Phe, D-Phe, Phe (4-NO 2 ), Tyr,

Tyr(Bzl) alebo Cha aleboTyr (Bzl) or Cha or

An znamená um i nokyse I i. nový zvyšok vzorca IIIAn means um i nokyse I i. a new residue of formula III

-NH-(Cll2) in-CH (R)-CO-, kde m je I alebo 4 a R je skupina -NHX, kde II je H, Z, Bz, Henoe, (4-No2)Z, Tos, je alebo An je X -Lys-, kile 2-NH- (Cl 2 ) in -CH (R) -CO-, wherein m is I or 4 and R is -NHX, wherein II is H, Z, Bz, Henoe, (4-No 2 ) Z, Tos , is or An is X - Lys -, kile 2

X je jedna z nasledujúcich skupínX is one of the following groups

() -() -

ΟΟ

Výhodné sú cyklopeptidy všeobecného vzorca laPreferred are the cyclopeptides of formula Ia

-Ai -A2-A^-Bn-Cn-I)n-En-ľn-Gn-lln- I 11-K11(la) a ich soli, kde-A 1 -A 2 -N-Bn-Cn-In-En-In-Gn-II-I 11-K11 (Ia) and salts thereof, wherein:

A2 j Aund,A 2 j Aund,

Aca , p-Ala,Aca, p-Ala

Ápen ,Ápen,

Abut aleboAbut or

Gly alebo kovu l e l.n tnú väzba,Gly or metal bond,

A3 je Phe,A 3 is Phe,

Pbe(4N02) ,Pbe (4N0 2 )

Cha ,Cha,

Tyr alebo Tyr(Bzl),Tyr or Tyr (Bzl)

Bn je Arg,Bn is Arg,

Cn j e Phe,Cn j e Phe,

Cha,Cha,

Ty ľ alebo Ty r(Bz1) ,Ty alebo or Ty r (Bz1),

Dn je D-Ala,Dn is D-Ala,

Pro alebo D-Pro,Pro or D-Pro

En je Gly aleboEn is Gly or

Dn a En spolu tvoria β-Ala,Dn and En together form β-Ala,

A hu t,A hu t,

Aoe,AOE

L-Ckg,L-CKG,

L-B tu a l eboL-B here or l or

Fn je Arg alebo Lys.Fn is Arg or Lys.

Gn Gen. je is a íle, Me t , Aib alebo Nie , Ile, Me t, Aib or Not , H n H n je is a Asp alebo Aib, Asp or AIB, I n I n je is a Arg, Arg, Kn Kn je is a í le a í le a A1 A 1 je is a Gly . Gly.

Najmä výhodné sú eykľopept idy a prípadne ieh soli, kde A2 je ; -am inokyse1 i nový zvyšok vzorcaEspecially preferred are the cyclopeptides and optionally one of the salts wherein A 2 is ; and a new residue of the formula

-NH- (CII2)2_4-CO- ,-NH- (Cl 2 ) 2 - 4 -CO-,

A3 je Pbe, Ty r, Cha, Na I alebo 4-NO2-Phe,A 3 is Pbe, Ty r, Cha, Na I or 4-NO 2 -Phe,

Bn, Fn a In nezávisle na sebe sú Arg, I).-Aľg, Lys,Bn, Fn and In, independently of each other, are Arg, III, Alg, Lys,

D-Lys, Orn alebo Ctr,D-Lys, Orn, or Ctr,

Cn je Pbe, Cha, Tyr, Na I alebo Tyr(Bzl),Cn is Pbe, Cha, Tyr, Na I or Tyr (Bzl),

Dn je D-A la, Gly, Pbe alebo D-Pbe,Dn is D-A la, Gly, Pbe, or D-Pbe,

En je Gly alebo A l.l a aleboEn is Gly or A1.1 or or

Dn a En spolu tvoria D-B tu,Dn and En together form D-B here,

Gn a Kn sú nezávisle na sebe íle, met, Nie alebo Leu,Gn and Kn are independently white, met, No or Leu,

Hn je Asp, Glu alebo Gly aH n is Asp, Glu or Gly a

Aj je Gly, A I a alebo D-A la, najmä tie, kdeI is Gly, A I and or D-A Ia, especially those where

- 19A2 j e β-Ala,- 19A 2 is β-Ala,

Apen u lebo Abu C ,Apen or Abu C,

A3 je Phu,And 3 is Phu,

Phe(4-NO2),Phe (4-NO 2 )

Cha alebo Tyr.Cha or Tyr.

Bn je Arg,Bn is Arg,

Cn j e Phe,Cn j e Phe,

Cha,Cha,

Tyr alebo Tyr(Bzl),Tyr or Tyr (Bzl)

Dn je D-Ala,Dn is D-Ala,

En je Gly aleboEn is Gly or

Dn a En spolu tvoria D-Btu,Dn and En together form D-Btu,

Fn je Arg alebo Eys ,Fn is Arg or Eys,

Gn j e 11 e,Gn j e 11 e,

Met alebo Nie,Met or No,

Hn je Asp,Hn is Asp,

In je Arg,In is Arg,

Kn je I I.e a A1 je Gly.Kn is I, Ie, and A 1 e j Gly.

Výhodnými zlúčeninami pod ľa vynálezu sú najmä:Particularly preferred compounds of the invention are:

|-βΑ I a-Arg - Phe-fí-A I a-G I y-Arg- I I e - A s p - A r g - I I e -Aea-Arg-Phe-D-A Ia-GIy-Arg-I le-Asp-Arg-I IeΓβΛΙa-Phe-Arg-Phe-D-A1a-GI y-Arg- I le-Asp-Arg- I le-Aea-Phe-A rg-Phe-D-Λ Ia-GIy-Arg-I le-Asp-Arg-I Ie-βΑ I a- Phe-Arg- Phe-I)-A 1 a-G I y-Arg- I I c-Asp-Arg- 1 Ie-GIy-Phe(4-NO2)-A rg-Phe-D-Λ Ia-G1 y-A rg-I Ie-Asp-A rg-I Ie-GI y . r-βΑ la- Phe-Arg- Pbe-D-Λ I a-G 1 y-Arg-Me t -Asp-Arg- I I e-G I y8 . - βΑl a-Cha-Arg-Cha-D-A I a-G J y - Arg- I le-Asp-Arg- I I e-G I y 9.| -βα Ia-Arg - Phe-phi-AI aG I y-Arg-II e - A sp - A rg-II e -Aea-Arg-Phe-DA Ia-Gly-Arg-I le-Asp-Arg Ie-I βΛΙa Γ-Phe-Arg-Phe-D-A1a-yl GI-Arg-Ile-Asp-Arg-Ile-Phe-Aea-A rg-D-Phe-Gly-Λ I a-Arg-I 1e-Asp-Arg-Ie-βΑ Ia-Phe-Arg-Phe-I) -A 1 aGy-Arg-II c-Asp-Arg-1e-Gly-Phe (4-NO2) -A rg-Phe-D-Ia-Gly y rg-Ie-Asp-Ag-Ie-Gly. r-βα 1α-Phe-Arg-Pbe-D-β I α-γ-Arg-Me-spsp-Arg-II eG I γ8. - βΑl α-Cha-Arg-Cha-DA I aG J y - Arg-Ile-Asp-Arg-II eG I y 9.

pAla-Phe(4-NO2)-Arg-Phe-D-ΛIa-GI y-Arg- I le-Asp-Arg- I le-Gly —pAla-Phe (4-NO2) -Arg-Phe-D-Ia-Gly-Arg-Ile-Asp-Arg-Ile-Gly -

10.10th

rpAla-Pbe(4-NO2)-Arg-Cha-D-ΛIa-GIy-Arg-Ile-Asp-Arg-Ile-Glý . j— p Λ I a-Ty r-Λ rg-Cha- D- A I a-G I y-Λ rg - I I e- Asp-A rg- I le-Gly y Palau-Pbe (4-NO2) -Arg-Cha-D-Ala-Gly ΛIa-Arg-Ile-Asp-Arg-Ile-Gly. j — p Λ a-Tyr-Λrg-Cha- D-AI aG I y-Λrg - II e-Asp-A rg-I le-Gly

12. -pAla-Ty r(BzI)-Arg-Cha-D-Λ Ia-GI y-Arg-I le-Asp-Arg- ΓΙ e-GI y12. -pAla-Tyr (BzI) -Arg-Cha-D-Ia-GI-Arg-Ile-Asp-Arg-Phe-GI

-Aca-Phe-Arg-Pbe-pAla-Arg-I I e-Asp-Arg-I Ie-GIyr-Aca - Phe-Arg-Abu t - Arg -í l e-Asp-Arg- I le-Gly —-Aca-Phe-Arg-Pbe-pAla-Arg-Ie-Asp-Arg-Ie-GIyr-Aca-Phe-Arg-Abu-t-Arg-11e-Asp-Arg-Ile-Gly -

-Apen-Phe-Arg-Phe-D-Λ 1a-G1 y-Arg-1 -Apen-Phe-Arg-Phe-D-Λ 1a-Gl-Arg-1 1 e -Asp-A rg-I 1 e -Asp-A rg-I le-Gly- le-Gly -Abu C -Phe-Arg-Phe-D-Λ 1a-Gly-Arg- 1 -Abu C -Phe-Arg-Phe-D-Λ 1a-Gly-Arg-1 1 e-Asp-A rg-1 1 e-Asp-A rg-1 1 e-Gly- 1 e-Gly- -Gly-Phe-Arg-Phe-D-A 1a-G1 y-Arg-1 1 -Gly-Phe-Arg-Phe-D-A1a-Gly-Arg-11 e-Asp-Arg-11 E-Asp-Arg-11 e-Gly- e-Gly

ρβΑ Ιa-Arg-Phe-D-A Ia-GIy-Λrg-I le-Arg-I le-Gly-Aca- A rg. Phe-D-A Ia-GI y-A rg-I I e-Asp-A rg-I Ie-GIy-Aund-Arg-Phe-D-A Ia-GIy-Λ rg-I I c-Asp-A rg-I Ie-GI yηρβΑ Ιa-Arg-Phe-D-A Ia-Gly-grg-I le-Arg-Ile-Gly-Aca-A rg. Phe-DA Ia-GIyArg-Ie-Asp-Ag-Ie-GIy-Aund-Arg-Phe-DA Ia-GIy-grg-Ic-Asp-Agg-Ie-GI yη

-Aea-Phe - A rg-Phe-Aoe-A rg-I I e-Asp-A rg-I Ie-GIy-βΛI a-Phe-A rg-Phe-D-Λ Ia-GI y-Arg-A i h-Asp-Arg-I Ie-GI y βΑΙa-Phe-A rg-Phe-D-A Ia-GI y-A rg-IΊ e-Λ i h-A rg-I I e-G I y p βΑΙα-Phe -Arg- Phe -L-B Ľ u -Arg- I le-Asp-Arg- I le-Gly-,-Aea-Phe-Ag-Phe-Aoe-Ag-Ile-Asp-Agg-Ie-Gly-βΛI a-Phe-Ag-Phe-D-IΛ-GI-Arg-A h-Asp-Arg-Ie-GI y-Phe-Ag-Phe-DA Ia-GI y-rg-Ie e-h hA rg-IeG I yp βΑΙα-Phe -Arg-Phe -LB U u -Arg-I le-Asp-Arg-I le-Gly-,

25. ι-βΛ I a-Phe-A rg-Phe-D-B t u-A rg-1 le-Asp-Arg-l le-Gly-25.-.beta.-.alpha.-Phe-Arg-Phe-D-Blu-Arg-11 le-Asp-Arg-11 le-Gly-

26. 26th -βΑ1 a-Phe-A rg-Phe-P ro-G1 y-Arg- -βΑ1 α-Phe-r rg-Phe-P ro-G1 γ-Arg- I 1 e-Asp-Arg- 1 1 e-G 1 y-j II-Asp-Arg-11e-G-y-j 27 . 27 Mar: -pAla-Phe-Arg-Phe-D-Pro-Gly-Ar -Pal-Phe-Arg-Phe-D-Pro-Gly-N g - 1 1 e-Asp-Arg - 1 1 e-G 1 y-| g-11e-Asp-Arg-11e-G 1y- | 28 . 28. -Tyr-Arg-Phe-D-Λ1a-G1y-Λrg-1 1 e -Tyr-Arg-Phe-D-a1a-Gly-grg-11e -Asp-Arg-I 1e-G1 y- -Asp-Arg-11e-G1-y- 29. 29th rTyr(Bzl)-Arg-Phe-D-Λ1a-G1y-Λr r Tyr (Bzl) -Arg-Phe-D-a1a-G1y-Λr g - I 1 e-Asp-Arg- I 1 e-G'l y- g - 11e-Asp-Arg- 11e-G'l- 30. 30th -Phe-A rg-Ty r- D-A 1a-G1 y-A rg-I 1 e -Phe-A rg-Tyr-D-A 1a-Gly-A rg-11e -Asp-Arg-1le-Gly- Asp-Arg-Gly-1LE 31 . 31. — Phe-Arg-Ty r(Bzl)- D-Λ 1a-G1y-Λ rg-I 1 e-Asp-A rg-1 1 e-G 1 y - Phe-Arg-Tyr (Bzl) - D-Λ 1a-Gly-grg-11e-Asp-Ag-11e-G 1y 32. 32nd - β Ala - Phe-A rg - Phe - L-C.l.g- Arg - 1 1 - β Ala-Phe-A rg-Phe-L-C.I.g-Arg-1 1 e-Asp-Arg-1le-Gly- E-Asp-Arg-Gly-1LE 33 . 33. pβΛΊa-Phe-Arg-Phe-D-Λ 1a-G1 y-A r pβΛΊa-Phe-Arg-Phe-D-Λ 1a-Gly-A r g-N 1 e-Asp-Arg-I le-Gly- g-N 1 e-Asp-Arg-I le-Gly-

ako aj ich solias well as their salts

Výhodné sú eyk I opept.i dy všeobecného vzorca IbPreference is given to the formula I opeptides of the formula Ib

-A4-A g-Bn- Cn - l)n - En - F n - Gn -11 n - I n - K n a ich soli, kde-A 4 -A g-Bn-Cn-1) n-En-Fn-Gn-11 n-I n-K to their salts, where

A4 je Aund,A4 is Aund,

Aca , β-A 1 a,Aca, β-A 1a,

Clg, Tlie, B Ľ u alebo D-B t. u,Clg, Tlie, Blu or D-B t. u.

A^ je Phe, D-Phe,A ^ is Phe, D-Phe,

Phe(4-NO2),Phe (4-NO 2 )

Cha ,Cha,

Ty r ,Ty r,

Tyr(Bzl) alebo ková len Iná väzba,Tyr (Bzl) or just another bond,

Bn je Arg,Bn is Arg,

D-Arg,D-Arg,

C.tr,C.tr.

Lys alebo ková lentbá väzba,Lys or metal bond

Cn je Phe,Cn is Phe,

Cha,Cha,

Ser(Bz 1) a Iebo Tyr(Me),Ser (Bz 1) and Iebo Tyr (Me)

Dn je D-A I a,Dn is D-A I a,

Gly alebo Az t ,Gly or Az t,

En je Gly,En is Gly,

Fn je Arg alebo Lys ,Fn is Arg or Lys,

Gn j c 1 I e, D-I I e,Gn j c 1 I e, D-I I e,

Met alebo Nie,Met or No,

Hn je Asp, D-Asp,Hn is Asp, D-Asp,

Gly alebo koval en tná väzba, ln je Arg alebo D-Arg aGly or a covalent bond, 1n is Arg or D-Arg and

Kn je íle.Kn is clay.

Výhodné sú najmä eykIopeptidy, prípadne i eh soli, kdeEspecially preferred are the cyclopeptides and possibly the salts thereof, wherein

A4 je -am inoa lkánkyseI i nový zvyšok vzorcaA 4 is a new residue of the formula

-NH-(Cl·^)2_4“C0- alebo ak Aj znamená ková len tnú väzbu,-NH- (C1-4) 2-4 -CO- or if I is a metal bond only,

Clg, Tbc, B tu alebo D-B tu, je Phe, Tyr, Cha, Na I alebo 4-N02Pbe,Clg, Tbc, B here or D-B here, is Phe, Tyr, Cha, Na I or 4-NO 2 Pbe,

Bn, Pn a ln sú nezávisle na sebe Arg, D-Arg, Lys, D-Lys,Bn, Pn and ln are independently Arg, D-Arg, Lys, D-Lys,

Orn aaalebo Ctr,Orn or Ctr,

Cn je Phe, Cha, Tyr, Na I alebo Tyr(Bzl),Cn is Phe, Cha, Tyr, Na I or Tyr (Bzl),

Dn je D-Ala, Gly, Phe alebo D-Phe,D 1 is D-Ala, Gly, Phe or D-Phe,

En je Gly alebo ΛI či aleboEn is Gly or čiI or or

Dn a En sú spolu D-Btu,Dn and En are together D-Btu,

Gn a Kn sú nezávisle na sebe Ile, Met, Nie alebo Leu aGn and Kn are independently Ile, Met, Nie or Leu and

Hn je Asp, Glu alebo Gly, najmä tie, kdeHn is Asp, Glu or Gly, especially those where

A4 je β-Ala,A4 is β-Ala,

Apen aleboApen or

Abut alebo ak A^ je koval entí väzb znamená Clg, Tbc, B tu alebo D-BtuAbut or when A 1 is a covalent bond is Clg, Tbc, B here or D-Btu

A5 je Phe,And 5 is Phe,

Phe(4-N02),Phe (4-N0 2),

Chci alebo Tyr aleboI want or Tyr or

Bn Bn je is a Arg, Arg, Cn Cn Phe, Ch či , Tyr alebo Tyr(Bzl) , Phe, Ch Chi, Tyr or Tyr (Bzl) Dn Dn je is a D-A l.a, D-A l.a, En En je is a Gly alebo Gly or Dn Dn a I and I 2n spolu znamena 2n together Fn Fn je is a Arg alebo Lys, Arg or Lys, Cn Cn je is a íle, Met alebo Nie Ile, Met or Not H n H n je is a Asp , Asp, I n I n je is a Arg a Arg a

Kn je íle.Kn is clay.

Výhodnými zlúčeninami podľa vynálezu sú:Preferred compounds of the invention are:

Ί Ί -Aund-Phe-Arg-Phe-D-A 1a-Gly-Arg- I -Aund-Phe-Arg-Phe-D-A1a-Gly-Arg-I 1e-Asp-Arg-1 1e-Asp-Arg-1 le-Gly- le-Gly 2. Second -Aca-Phe-A rg-Phe-D-Λ 1 a-G 1 y-A rg-I 1 -Aca-Phe-A rg-Phe-D-a 1 a-G 1 y-A rg-I 1 e -As p-A rg-I 1 e -As p-A rg-I 1 e-Gly - e-Gly - 3- 1 3 - 1 -Aca-Phe-A rg-Phe-D-A 1a-G1 y-Lys- I 1 -Aca-Phe-A rg-Phe-D-A 1a-Gl-Lys-I 1 e-Asp-Arg-I1 E-Asp-Arg-I1 e-G l y-| e-G l y -

4. r pA1 a-Phe-A rg-Phe-D-B tu-Λ rg-I Ie-Asp-A rg-I I e-G I y2Κ4. r pA1 a-Phe-A rg-Phe-D-B tu-Λ rg-Ie-Asp-r rg-Ie-G I y2Κ

5. -βA I a-Pbe-Arg-Pbe-D-A I a-G 1 y -Lys-N Ie-Asp-Arg-I I e 6. ,-βΛΊa-Pbe-Aľg-Se ľ(Bz I)- D-Λ Ia-GI y-Lys-N Ie-Asp-A ľg-I I e-5. -βA I-Pbe-Arg-Pbe-DA I aG 1y -Lys-N Ie-Asp-Arg-Ie 6. -βΛΊa-Pbe-Alg-Se 1 (Bz I) -D- Λ Ia-Gly-Lys-N Ie-Asp-A 1g-I I e-

7. 7th -Aca-Pbe-Lys-Phe-D-A'l a-G 1 y-Arg-I le-Asp-Arg-I le- -Aca-Pbe-Lys-Phe-D-A'a-G-y-Arg-Ile-Asp-Arg-Ile- 88 -Aca-Pbe-Lys-Pbe-D-A 1a-G1 y-Lys-I le-Asp-Arg-1 le- -Aca-Pbe-Lys-Pbe-D-A 1a-Gl-Lys-Ile-Asp-Arg-1le- 9 . 9. -Aea-Pbe-A rg-Cba-D-Λ 1 a-G 1 y-A rg- 1 1 e-Asp-A rg-1 1 e- -Aea-Pbe-A rg-Cba-D-a 1 α-G y-A rg-11 e-Asp-A rg-11 e- 10. 10th -Aca-D-Pbe-Arg-Phe-D-A1a-G1y-Arg-J 1e-Asp-Arg-1 1 -Aca-D-Pbe-Arg-Phe-D-A1a-Gly-Arg-J 1e-Asp-Arg-1 1 e- e 11 . 11. -Aca-Cba-A ľg - Phe-D-A l.a-G.1 y-Arg - I 1 e-Asp-A r g- 1 1 e-1 -Aca-Cba-Al-Phe-D-Al-1a-G-1-Arg-11e-Asp-Ag-11e-1 12. 12th npAla-Pbe-Arg-Cba-D-A1a-G1y-Arg-I 1e-Asp-Arg-1 1 e npAla-Pbe-Arg-Cba-D-A1a-Gly-Arg-11e-Asp-Arg-11e - - 13. 13th - p A 1 a - Pbe-A rg-Cba-D-Λ 1 a-G 1 y - A rg - Me t: - Asp- A rg- 1 1 e - p A 1 a - Pbe-A rg-Cba-D-Λ 1 a-G 1 y - A rg - Met: - Asp- A rg-1 1 e - - 1414 - pA 1a-Pbe(4-NO2)-Arg-Pbe-D-Λ 1a-G1y-Λrg-I 1e-Asp- - pA 1a-Pbe (4-NO 2) -Arg-Pbe-D-Λ 1a-Gly-grg-11e-Asp- A r A r ,5. , Fifth - PAla - Pbe - Lys-Cha-D-Λ 1 a-G 1 y-Arg- I 1 e-Asp-Λ r g - I 11: - PAla - Pbe - Lys-Cha-D-a 1 a-G 1 y-Arg-11 e-Asp-Λ g - I 11:

I .I.

17.17th

..

19.19th

20.20th

..

22.22nd

23.23rd

2.4 .2.4.

..

26.26th

-C l.g-Λ rg-CI la - D-Λ Ia-GIy-Λ rg-I I e-Asp-Λ rg- I I e --C1.g-grg-CIa - D-Λaa -Gly-Λrg-Ie-Asp-grg-Ie -

ι-βΑΊ a-Phe (4-NO2)-Arg-Cha-D-Λ 1a-G1 y-Arg-I le-Asp-Arg-1 le- β-α-Phe (4-NO 2) -Arg-Cha-D-Λ 1a-Gly-Arg-Ile-Asp-Arg-1le- r p A la-Ty r (B/. 1 ) - Arg-Cha - D - Λ 1 a-G 1 y-Arg - 1 1 e-Asp-A r g r p A la-Ty r (B /. 1) -Arg-Cha-D-a 1 α-G 1 y-Arg-11 e-Asp-A r g - I le-- - I le-- p P A'l.a-Ty r - A rg-Cha-D-Λ.1 a-G 1 y - A rg- 1 le-Asp-Arg p P A'l.a-Tyr - A rg-Cha-D-Λ 1 a-G 1 y - A rg-1 le-Asp-Arg - 1 le- - 1 le- 11 -The-Arg-Cha - D-Λ l.a-G 1 y-Arg - I 1 e-Asp-A rg - 1 1 e- -The-Arg-Cha - D-. L.a-G 1 y-Arg - 11 e-Asp-A rg - 1 1 e- - P A l.a - Phe-C t r -Cha- D-Λ 1 a-G 1 y-A rg- 1 le-Asp-Arg - P A 1.a - Phe-C 1 -Cha-D-a 1 α-G 1 -Arg-1 le-Asp-Arg - 1 le- - 1 le- -The-Phe-a rg-Cha-D-A 1a-G1y-Λ rg-- 1 1 e-Asp-- A r -The-Phe- and rg-Cha-D-A 1a-Gy-Λ rg-- 1 1 e-Asp-- A r g- 1 I.e g- 1 I.e - - -C 1 g-A rg-Cha-D-A 1a-GI y-A rg-I le-Asp-Arg-I I e- -C 1 g-A g-Cha-D-A 1 a-Gly-A g-I le-Asp-Arg-I e- ^-Aund-Arg-Phe-D-A 1 a-GI y-Arg- I 1 e-Asp-Arg- 1 I e [Beta] -Aund-Arg-Phe-D-A1a-Gly-Arg-11e-Asp-Arg-11e - - -Aund-Phe-Arg-Phe-D-A 1a-G1 y-Arg-I le-Asp-Arg -Aund-Phe-Arg-Phe-D-A1a-G1-Arg-I le-Asp-Arg - I I e- - I I e- - Aeti -Arg- Phe - D-Λ 1 a - G 1 y - Lys - N 1 e-Asp- A rg - 1 1 c - - Aeti -Arg- Phe - D-Λ 1 a - G 1 y - Lys - N 1 e-Asp-A rg - 1 1 c -

i .i.

rAca-Λ rg-Se r ( Bz I ) -1)-Λ I a-G I y - Lys-N I e-Asp-A ľg- I I e28 .rAca-grg-Se r (Bz I) -1) -Ia-Gly-Lys-Nle-Asp-Aleg-Ile28.

i-Aea- Phe - A rg- Phe-D-Λ I a-G I y - l.ys-N Ie-Λ ľg-IΊ e29.i-Aea-Phe - Arg-Phe-D-a a-G γ-l.ys-N Ie-Λ Λ g-Ie29.

pAl.a- Phe-A rg-Phe-D-Λ Ia-GI y- Lys-N I e - A rg- I I e-jpAl.a- Phe-A rg-Phe-D-Ia-Gly-Lys-N Ie - A rg-I e-j

30.30th

-Aca-Arg-Phe-D-Λ I a-G I y - Lys-N I e-Arg - I I e31 .-Aca-Arg-Phe-D-Ia-Gly-Lys-N Ie-Arg-I e31.

i- pAl.a-A rg - Phe - D-Λ I a-GI y-Lys-NIe-Λ rg-1 I ei-pAl.a-A rg - Phe-D-Ia-GI-Lys-NIe-grg-1 I e

32.32nd

,-βΑ I a-Phe-G I y - Se r (Bz I)- D-Λ Ia-GI y-Lys-N I e-Asp-Arg-I le33., -βα I-Phe-Gly-Se (Bz I) -D-Ia-Gly-Lys-Nle-Asp-Arg-Ile33.

i- Aca - Phe-G I y - Ser (Bz I.) - D-A I a-G l y - Lys-N I e-Asp-A rg - 1 1 e -ii-Aca - Phe-G I y-Ser (Bz I.) -D-A I a-G l y-Lys-N I e-Asp-A rg-1 1 e-i

34.34th

-pAl.a-G I y-Ser (Bz 1 ) -D-Λ I a-G I y-Lys-N I e-Asp-Arg- I I e3 -pAl.aG I y-Ser (Bz 1) -D-a I aG I y-Lys-N Ie-Asp-Arg-IIe 3

35.35th

i-Aca-Gl y-Ser (Bz 1 ) -D-Λ Ia-G I y-Lys-N le-Asp-A.rg- I I ei-Aca-Gly-Ser (Bz 1) -D-Ia-Gly-Lys-N le-Asp-A.rg-Ie

36.36th

-pA I a-Ser (Bz I )-D-Λ I a-G ly-Lys-N l e-Asp-Arg- I I e-.-pA I α-Ser (Bz I) -D-β I -Gly-Lys-N 1 e -Ap-Arg-I e e.

37.37th

i- Aca-Ser (Bz I) - D-A 1 a-G I y-Lys-N I e-Asp-Arg- I I e-i .i-Aca-Ser (Bz I) -D-A1a-Gly-Lys-Nle-Asp-Arg-Ile-i.

- B tu-Λ rg - Plic - Ι)-Λ I a -G I y-Λ rg- I I e - Asp - Λ r g - I I c 39 .- B tu-Λ rg - Plic - Ι) - Λ I and -G I y-Λ rg- I - e - Asp - g rg - I c c 39.

- D-B tu-A rg-Phe-D-Λ I a-G 1 y-A rg-I I e-Asp-A rg-I I e40.- D-B tu-A rg-Phe-D-a a-G γ-A rg-I e-Asp-A rg-I e40.

P (J Ala-Arg- Phe-D-ΛΊ a-G I y-Arg- 1 I e-Arg- I I e η .P (J Ala-Arg-Phe-D-ΛΊ a-Gy-Arg-11e-Arg-Ie e.

- Aca - A rg-Phe- D-Λ Ia-GI y-A rg-I Ie-Λ rg-I I e42.Aca-Ag-Phe-D-Ia-Gly-Ag-Ie-Λrg-I e42.

,-pAla - Phe-Arg-Phc-D-A 1 a-G I y-Arg- I I e-Asp-A rg - B tu43., -pAla - Phe-Arg-Phc-D-A1a-Gly-Arg-Ile-Asp-Ag-B tu43.

-Aca- Phe-Arg- Phe - Ι)-Λ I a-G I y-Λ rg- I I e-G I y - A rg - I I c44 .-Aca-Phe-Arg-Phe-Ι-Λ a-G I y-g rg-I e-G y y-A rg-I c44.

..

..

j-Aca- Phe-A rg-Ty r (Me) - D-Al a-G I y-Λ rg- II e-Asp-A rg- I I e-j-Aca-Phe-A g-Tyr (Me) -D-Al a-G yy-fg-II e-Asp-A g-I I e-

-Aca- Phe-Arg- Phe-D-Λ 1a-G1y-Arg-D-1 1 c-Asp - A rg- 1 1 c-j -Aca- Phe-Arg- Phe-D-Λ 1a-Gl-Arg-D-11c-Asp-Ag-11c-j -Aca-Phe-A rg-Phe-D-A 1a-G1 y-A rg-I 1 e-D-Asp-A rg-II e- -Aca-Phe-A-g-Phe-D-A 1a-Gl-y-A-g-II-D-Asp-A-g-II e-

47.47th

..

-Aca-Phe-D-A rg-Phe-D-A Ia-G1y-Λ rg-I 11 -Aca-Phe-D-A Rg-Phe-D-A Ia-G1y-Fl-I 11 j-Asp-A rg-I 1 c - j-Asp-A rg-1 1 - ‘ j f ‘J F -Aca-D-Phe-A rg-Phe-D-A 1a-G1 y-A rg-I 11 -Aca-D-Phe-A rg-Phe-D-A 1a-G1 y-A rg-I 11 ;-Asp-Arg-1 1 e- -Asp-Arg-11 e- i and

a ich soli.and salts thereof.

Výhodné sú eyklopeptidy všeobecného vzurea soli, kdePreferred are the cyclopeptides of the general salt form, wherein

An je H-Lys,An is H-Lys,

Z-Lys,Z-Lys,

Bz-Lys,Bz-Lys,

Henoe-Lys, (4-N02)Z-Lys,Henna-Lys, (4-N0 2) Z-Lys,

Bz- D-Lys,Bz-D-Lys,

Tos-Lys,Tos-Lys,

H-Dap ti I eho Z-Dap,H-Dap ti I eho Z-Dap,

Bn je Arg,Bn is Arg,

Lys,,Lys ,,

Phe alebo Orn,Phe or Orn,

Cn j e Phe,Cn j e Phe,

Cha alebo Sei(Bzl),Cha or Sei (Bzl)

Dn je D-Ala,Dn is D-Ala,

En je Gly aleboEn is Gly or

Dn a En tvoria spolu L-Clg alebo D-Clg,Dn and En together form L-Clg or D-Clg,

Fn je Arg alebo Lys ,Fn is Arg or Lys,

Gn je íle alebo Nie,Gn is White or No,

I a ichI and theirs

Hn je Asp,Hn is Asp,

In je Arg aIn is Arg and

K n j e íle.K n j es.

Výhodné sú najmä cyk.l opep t i dy , prípadne ich soli,Particular preference is given to cyclic opiates or their salts,

An je am inoa lkaIkyseI i nový zvyšok vzorca -NH-(CH2)r)-CH(R)-CO-, kde n je 1 alebo 4, R je NHX alebo NXY,N is am inoa lkaIkyseI and a new radical of formula -NH- (CH 2) R) CH (R) -CO-, wherein n is 1 or 4, R is NHX or NXY.

X je benzyloxykarbonyI, 4-ni ťrobenzy1oxykarbonyI , 2- alebo 4-t r i ľ 1uórmetyIbenzyIoxykarbonyI , eyk.l.ohexy I oxykarbony I alebo me ty I oxy ka rbony I a Y je benzyl alebo ľenyletyl,X is benzyloxycarbonyl, 4-nitrobenzyloxycarbonyl, 2- or 4-trifluoromethylbenzyloxycarbonyl, cyclohexylcarbonyl I or methoxycarbonyl I and Y is benzyl or phenylethyl,

Bn, Fn a In sú nezávisle na sebe Arg, D-Arg, lys, D-Lys, Orn a Iebo Ctr, kdeBn, Fn and In are independently Arg, D-Arg, lys, D-Lys, Orn, and / or Ctr, wherein

Cn Cn je is a Phe , Phe, Cha, Tyr, Cha, Tyr, Na 1, Tyr(Bzl) alebo 4-N02-Phc,Na 1, Tyr (Bzl) or 4-NO 2 -Phc, D n D n je is a D-A I i D-A I i a, Gly, Phe and, Gly, Phe ; alebo D-Phe, ; or D-Phe, En En je is a Gly, Gly, Ala alebo Ala or Phe alebo Phe or Dn Dn a and En tvor i a spo 1 u En creates a spo 1 u D-Btu, L-Clg alebo D-Clg, D-Btu, L-Clg, or D-Clg, Gn Gen. a ! and! K n s ú K n s ú nezávi s 1 e does not matter with 1 e na sebe Íle, Me t, Nie a 1ebo Leu a wearing Me, Me, Ne, and Leu and H n H n je is a Asp , Asp, Glu alebo Glu or G l.y , G l.y, naj mä naj mä t i e , t i e, kde where An An je is a I I-Ly: I I-Ly: s , with , Z-Ly: Z-Ly: S, WITH,

Bz-Lys,Bz-Lys,

Menoc-Lys, (4-N02)Z-Lys, Bz- D-Lys, Bz-D-Lys,Menocal-Lys, (4-N0 2) Z-Lys, D-Lys BZ-, Bz-D-Lys,

Tos-Lys,Tos-Lys,

II

- 35 ΙΊ-Dap alebo Z-Dap,- 35 ΙΊ-Dap or Z-Dap,

Bn je Arg, Lys, Orn alebo Phe,Bn is Arg, Lys, Orn, or Phe,

Cn je Phe,Cn is Phe,

Cha alebo Ser(Bzl),Cha or Ser (Bzl)

Dn je D-Ala,Dn is D-Ala,

En je Gly aleboEn is Gly or

Dn a En tvor i ti spoluDn and En create them together

L-C.lg alebo D-Clg,L-C.Ig or D-Clg,

Fn Fn Arg Arg alebo or Lys , Lys, Gn Gen. I le I le a 1 e Ix> and 1 e Ix> N.l e , N.l e, 1 1 H n H n jtJ JTJ Asp, Asp, 1 n 1 n j ľ j ľ Arg Arg a and

Kn je íleKn is clay

Výhodným i z l účen í nnami podTa vynáI ezu sú:Advantageous also according to the invention are:

1. H - Lys-Arg-Phe-D-Ala-G 1 y-Lys-NIe - Asp-Arg- I le-1. H-Lys-Arg-Phe-D-Ala-Gly-Lys-NIe-Asp-Arg-Ile-

2. Second Z -Lys-A rg-Phe-D-Ala-G1 y-Lys-Nie-Asp-Arg-1le1 Z-Lys-Arg-Phe-D-Ala-Gly-Lys-Non-Asp-Arg-1le1 3. Third Z-Lys-Arg-Ser(Bzl)-D-Ala-Gly-Lys-Nle-Asp-Arg-Ile- Z-Lys-Arg-Ser (Bzl) -D-Ala-Gly-Lys-Nle-Asp-Arg-Ile- 4. 4th Bz-Lys-Arg-Phe-D-Ala-Gly-Lys-N1e-Asp-Arg-Ile- Bz-Lys-Arg-Phe-D-Ala-Gly-Lys-N1E-Asp-Arg-Ile- 5 . 5. Z-Lys-A.rg- Phe-D-Ala-Gly-Arg- 1 le-Asp-Arg- I 1 e-i 1____ Z-Lys-A.rg-Phe-D-Ala-Gly-Arg-11e-Asp-Arg-11e-i 1____ 6. 6th Z-Lys-Arg-Cha-D-Ala-G l.y- Arg - I le-Asp-Arg- 1 1 e- Z-Lys-Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-11e-

. Menne - Lys - A rg - Phe - Ι)-Λ I a-G I y-Λ rg- I I e -Asp-A rg- I 1 e 8 . Menne - Lys-A rg-Cha-D-A l.a-G.I y - A ľg - I I e-Asp-A rg- I I e9 . II - Lys - Lys - Cha - D - Λ 1 a-G I y - A rg- I I e-Asp-A rg- I I e-. Menne - Lys - r rg - Phe - Ι - a a - G y y - a rg - I e - Asp - r rg - I e e 8. Menne-Lys-A-g-Cha-D-A-a-G.I-A-g-Ile-Asp-A-g-Ile9. II-Lys-Lys-Cha-D-Λ 1 a-G Iy-A rg-I e-Asp-A rg-I I e-

10. Z-Lys-Lys-Cha-D-Λ 1a-G1y-Λ rg-1 1e-Asp-A rg-1 1 e1 10. Z-Lys-Lys-Cha-D-Λ 1a-Gly-Λ rg-11e-Asp-r rg-11e 11. Z-Lys-Phe-Phe-D-A 1a-G1y-Arg-I 1 e-Asp-Arg-I le1 11. Z-Lys-Phe-Phe-D-A1a-Gly-Arg-11e-Asp-Arg-11e1 12. (4-N02 ) Z-Lys-Λ rg-Cha-D-Λ 1 a-G 1 y-Λ rg-1 le-Asp-Arg-I lc-i 1_12. (4-N0 2) Z-Lys-Λ rg-Cha-D-1 and G Λ 1 Λ y-rg-1 le-Asp-Arg-I, c-i 1_ 13. Z-Lys-Orn-Cha-D-A 1a-G íy-Λ ľg-1 1 e-Asp-Arg- Lle- 13. Z-Lys-Orn-Cha-D-A1a-Gly-Il-11e-Asp-Arg-Lle- 14. H - Lys - A rg - Phe - D- A l.a-G.I y - Lys-N .1 e - Asp-A rg - I 1 e- 14. H-Lys-A rg-Phe-D-A1-a-G.I-Lys-N. 1 e-Asp-A rg-1 e- 1 5 . II - Lys-Λ rg-Se r (Bz 1 ) - D-Λ 1 a-G 1 y - Lys - N 1 c - Asp - A rg 1 1 5. II - Lys-grg-Se r (Bz 1) - D-Λ 1 a-G 1 y - Lys - N 1 c - Asp - A rg 1 -lle- -lle- 16. Bz-Lys-A ľg-Phe-D-Λ 1a-G1 y-Lys-N1e-Asp-Arg-1 1 e- 16. Bz-Lys-A1'-Phe-D-11a-Gly-Lys-N1e-Asp-Arg-11e- 17. Bz-Lys-Arg-Ser(Bz1)-D-Λ 1a-G1 y-Lys-N1e-Asp-Arg-I 1 e1 17. Bz-Lys-Arg-Ser (Bz1) -D-11a-G1-Lys-N1e-Asp-Arg-I 1 e1

18 . 18. Bz - D - Lys-A rg-Se r(Bz1)- D-Λ 1 ;i - C! 1 y -1 .y s - N 1 c - Bz-D-Lys-A rg-Se r (Bz1) -D-1; i-Cl! 1 y -1 .y s - N 1 c - Asp-Ar Asp-N g-' g- ' c - c - 19. 19th Tos-Lys-Λ ľg-Phe-D-Λ 1a-G1 y-Λ ľg-1 1 c-Asp-Λ c Tos-Lys-ΛΛg-Phe-D-Λ 1a-G1 y-Λg-11c-Asp-Λc g-llc- g-llc- 20. 20th H-Lys-Arg-Phe-L-C1 g-Arg-I le-Asp-Aľg-1 Ie1 H-Lys-Arg-Phe-L-C1g-Arg-Ile-Asp-Alg-1 Ie1 21 . 21. Z-Lys-A ľg-Phe-L-C1 g-A ľg-I 1e-Asp Aľg-1 1 c1 Z-Lys-A1g-Phe-L-C1g-A1g-11e-Asp A1g-11c1 22. 22nd Z-Lys-Arg-Cha-L-C1 g-A rg-Ile-Asp-Arg-I 1e1 Z-Lys-Arg-Cha-L-C1g-Arg-Ile-Asp-Arg-1e1 23. 23rd Z-Lys-Arg-Cha-D-C1 g-Arg-I 1e-Asp-Arg-1 1 c- Z-Lys-Arg-Cha-D-C1g-Arg-11e-Asp-Arg-11c- 24 . 24. H-Dap-Arg-Cha-D-A 1 a-G.I y-Arg - I le-Asp-Arg- H-Dap-Arg-Cha-D-A1a-G.I-Arg-Ile-Asp-Arg- I 1 e-| I 1 e- | 25 . 25. Z-Dap-Arg-Cha-D-AJa-G1 y-A rg-IIe-Asp-A rg- Z-Dap-Arg-Cha-D-AJa-G1-A-g-IIe-Asp-A-g- 1 1 e-| 1 1 e- |

ako a j i ch so I i.how and how so.

Výhodné sú cy k l.opep ľ i dy všeobecného vzorca I soli, kdePreferred are the cyclopeptides of the formula I salts wherein

An má vyššie uvedený význam,An is as defined above,

Bn je Arg,Bn is Arg,

Lys,Lys,

Phe a lebo Orn ,Phe or Orn,

Cn je Phe,Cn is Phe,

Cha alebo Ser(Bzl) ,Cha or Ser (Bzl)

Dn je D-Ala,Dn is D-Ala,

En je Gly laeboEn is Gly laebo

Dn a En sú spolu L-Clg alebo n-cig,Dn and En are together L-Clg or n-cig,

Fn je Arg alebo Lys ,Fn is Arg or Lys,

Gn j e I I e a l ebo Nie,Gn j e I e e or No,

Hn.je Asp,Hn is Asp,

In je Arg aIn is Arg and

K n j' e íle.K n j 'e ile.

a ichand theirs

Výhodné sú najmä cykIopepĽ idy, prípadne ich soli, kdeParticularly preferred are cyclopeptides or salts thereof, wherein

An je aminoa1kánkyseI i nový zvyšok vzorca -NH- (CII2)nCH(R)-CO- , kde n je 1 alebo 4,An is an aminoalkyl acid radical of the formula -NH- (Cl 2 ) n CH (R) -CO-, wherein n is 1 or 4,

R je - Nl l ( H ) - C (0) - CI 12 - X 1 -N (II )-C(0) -Cll2-O-X 1 -N (II)-C(0)-X 1 -N (II)-C(0)-CII=CH-X 1 -N(II) -C(0) -0-CII2-Xl , kde X'znamená a) fény I , h) I alebo 2 suhstituentam.í substituovaný f'eriy I , e) I- alebo 2-naftyl, d) 3-benzo/b/Ľ ienyI , e) 2-pyridyl alebo f) 2-pyrazinyl,R is - Nl l (H) - C (0) - Cl 1 2 - X 1 -N (II) -C (0) OX -Cll2-1-N (II) -C (0) -X 1 -N (II) -C (O) -CII = CH-X 1 -N (II) -C (O) -O-Cl 2 -X 1 , wherein X 'is a) Phenyl I, h) I or 2 substituents; substituted (I), (e) I- or 2-naphthyl, (d) 3-benzo [b] phenyl, (e) 2-pyridyl or (f) 2-pyrazinyl,

Bn, Fn a In nezávisle na sebe sú Arg, D-Arg, Lys, D-Lys,Bn, Fn and In independently of each other are Arg, D-Arg, Lys, D-Lys,

Orn a Iebo Ct r,Orn and Iebo Ct r,

Cn je Phe, Cha, Tyr, Na I , Ty r(Bzl) alebo 4-N07-Phe,Cn is Phe, Cha, Tyr, Na I, Tyr (Bzl) or 4-NO7-Phe,

Dn je D-Ala, Gly, Phe alebo D-Pbe,Dn is D-Ala, Gly, Phe, or D-Pbe,

En je Gly, AI a alebo Phe aleboEn is Gly, Al and or Phe or

Dn a En sú spolu dokopy D-Btu, L-Clg alebo D-Clg,Dn and En together are D-Btu, L-Clg or D-Clg,

Gn a Kn nezávisle na sebe sú Íle, Met, Nie alebo Leu a Hn je Asp, Glu alebo Gly, najmä tie, kdeGn and Kn independently of each other are Ile, Met, Nie or Leu and Hn is Asp, Glu or Gly, especially those where

An znamená -Nll-(Cll2) 4-CII (R)-CO-, kde R má vyššie definovaný význam a -Bn-Cn-Dn-E-Fn-Gn-H-Jn-Kn- znamená reťazec -Arg-Cba-D-Λ Ia-GI y-Arg-1 I e-Asp-Λrg-I leako je ilustrované v príkladochN is -Nll- (CII 2) 4 -CH (R) -CO-, wherein R is as defined above and Bn-Cn-Dn-e-Fn-Gn-m-H-chain is -Arg- To N- The Cba-D-Ia-Gly-Arg-Ile-Asp-Irg-I leak is illustrated in the examples

Zlúčeniny pod ľa vynálezu su ΛΝΡ-agoni s ty. Ako priľodzený ΛΝΡ vykazujúThe compounds of the present invention are β-agons with thi. As natural ΛΝΡ exhibit

- špecif ickú a afin i tnú väzbu na ANP-receptory- specific and affinity binding to ANP receptors

- d.iurctické a salureťickc vlastnosti- d. uric and saluric properties

- účinnosť pri znižovaní krvného tlaku- effectiveness in lowering blood pressure

- zvyšovanie hematok r i tu- increasing hematos r i tu

- zvyšovanie hladiny cyklického GMP (GMP: pravdcpodohná intraee l.u l.á rna sprostredkujúca látka (second messenger) , ktorý jc možné po podaní ANP zistiť v plazme vo zvýšenom množstve)- Increased levels of cyclic GMP (GMP: likely intra-human second messenger that can be detected in plasma in increased amounts after ANP administration)

- zvýšená g Iome ru 1 á rna f i I t rac i a- increased gomeomeric strength

- účinnosť spôsobujúca reIaxáci u e iev- efficacy causing reaxiation of vessels

- broncho1 y t ieká účinnosť- broncho y is efficacy

- spasmofyt ická účinnosť na hladké svalstvo, najmä na črevá.- spasmophytic activity on smooth muscles, especially the intestines.

Uvedené vlastnosti zlúčenín pod ľa vynálezu holi jednotlivo testované nasledujúcimi spôsobmi :Said properties of the compounds of the invention were individually tested in the following ways:

- Väzba na ANP-reeeptury- Binding to ANP-reeeptures

Väzba na ANP-reeepto ry zo zona-gIomeruI osa buniek.hovädzích nadol» I ičiek sa stanoví metódou podľa Burgissera a spol . (Biochem. Bi.ophys. Res. Coinmun. 133,1201, (1985)) , modifikovanou podľa Burgissera (2. Vorld Congresse on B i o I og i ca I ly Act.ive Atrial Peptides, máj 16-21, New York Am. Soľ. llypertens., abstr. B181, str. 209 (1987)) s obchodne dostupným kilom fy AN AV A, Vangen, Švajčiarsko.Binding to ANP-repertoires from zona-geromer The bovine downstream cell line was determined by the method of Burgisser et al. (Biochem. Bi.ophys. Res. Coinmun. 133, 1201, (1985)), modified according to Burgisser (2nd World Congress on Biology and Active Atrial Peptides, May 16-21, New York) Am Salt llypertens., Abstract B181, p 209 (1987)) with a commercial kilometer of AN AV A, Vangen, Switzerland.

- Znižovanie krvného tlaku, d i urelická/saI uťer ieká účinnosť, vzostup hema tok r i tu , vzostup cyklo ...GMP- Reducing blood pressure, diuretic / saline wipes efficiency, rise in haem flux r i tu, rise in ... GMP

Pokusy sa uskutočňujú na na rkol i žuvaných (Nemhulal^) spontánne hype r tenz í vnych potkanoch (Ivariovas). Tracea sa kanyluje. Krvný tlak sa registruje z A.earotis cez prenášač tlaku (Statham) na zapisovači (Valannabe Mu I t i eorde r);. Srdečná frakvencia sa vypučí la z počtu pulzov v časovevej jednotke. Aplikácia substancie sa vykonáva kanylouThe experiments were carried out on chewed (Nemhulal ®) spontaneously hypertensive rats (Ivariovas). Tracea cannula. Blood pressure is registered from A.earotis via a pressure transducer (Statham) on a recorder (Valannabe Mu I ti eorde r) ; . The cardiac fraction is swollen 1a from the number of pulses in time-unit. Application of the substance is performed by cannula

V . j ugu.l.a r i s . Mechúr sa kanyluje malým brušným rezom a odoberá sa moč. Objem moču sa stanoví gravimelr ieky. Sodík a draslík chlór sa stanovuje e I ek t ro 1'i I t ráe i ou . z arteriálnej krvi. Cyklický GMP z sa iner.ia fotometrický,IN . j ugu.l.a r i s. The bladder is cannulated with a small abdominal incision and urine is collected. The urine volume is determined by gravimellers. Sodium and potassium chlorine are determined by electrolysis. from arterial blood. Cyclic GMP is inverted and photometric,

Menia t ok r i. t ar te rá.l ne j Hamburg).Changes t ok r i. t ar te rl.l ne j Hamburg).

sa me r i a krvi obchodne dostupnou rad ioskúškou ( I BL,is measured by blood commercially available series of IOS (I BL,

- Vplyv na glomerulárnu filtráciu- Effect on glomerular filtration

Gl ome ru I á r na filtračná rýchlosť sa iiicria na narkotizovaných psoch stanovením clearence inuI inu štandardným spôsobom pod ľa ľúbia spol . , (Kl iii.Vsehr.33, 729 (1955)).The filter rate glider is indexed on narcotized dogs by determining the inulin clearance by a standard method according to the wishes of the company. 33 (729, 1955).

-Relaxácia ciev-Relaxation of blood vessels

Pôsobenie na relaxáciu ciev analogicky k ANP sa stanoví moil i f i k ovanou metódou potí ľa ľa i stína a spol . (Eur..J . Pliarmaeo 1.. 102, 169(1984)). Králičia hrudná aorta sa kont rabuje supramax.iinál.nou koncentráciou serotori i nu . 15 minút po podaní testovanej substancie sa merajú seroton inom spôsobené kontrakcie v porovnaní s kontrolou vykonávanou s rozpúšťadlom. Z viacerých dávok sa stanoví graficky EC^p.The effect on vascular relaxation analogous to ANP is determined by the moiety method of discomfort and shadow et al. (Eur. J. Pliarmaeo 1, 102, 169 (1984)). Rabbit thoracic aorta is reduced by supramaxial concentration of serotorin. 15 minutes after administration of the test substance, seroton-induced other contractions are measured compared to the control performed with the solvent. EC pl is plotted from several doses.

- Broncho l.y t i cká účinnosť- Broncho l

Podľa metódy Konzetťa a Rósslera (Areh.exper.Path. Pharmaeol. 195, 71 (1940)) sa skúša ari lagon i zác i a h i s tam i nových bronebospazmov po i.v. podaní testovanej substancie.According to the method of Konzette and Rossler (Areh.exper.Path. Pharmaeol. 195, 71 (1940)), aryan lagon and hence of new bronebospasms after i.v. administration of the test substance.

- Spasmo!y t ická účinnosť na kurčacom rek te- Spasmographic activity on chicken chickens

Podľa metódy Curr.i.e-a a spol. (Science, 221/4605, 71 (1983)) sa stanoví spasmoI y t ická účinnosť proti karbaehoIovým kontrakciám na kurčacom rekte.According to the Curr.i.e-a et al. (Science, 221/4605, 71 (1983)), the spasmolytic activity against carbohydrate contractions on the chicken rectum was determined.

Aplikácia zlúčenín podľa vynálezu sa môže uskutočňovať intravenózne, subkulánnc, i n tramuskuI úrnc, inlraperi loneálne, intranasá lne, inhaláciou, transdermáI ne, výhodne ión toľorézou alebo z literatúry známym enhance om a orálne. U zvierat rôznych druhov ležia dávky, ktoré vyvolávajú výrazný pokles krvného tlaku (>2<) mm llg) a/alebo diurczu (t- 300 %) prípadne salurézu (+ 300 %) , ako aj vzostup hematokritu (+ 3 %) a cyklického GMP (+ 200 %) medzi 1/ug/kg a 50 mg/kg. Dávky na b ronchoI y t ické pôsobenie na morčatách sa pohybujú v rovnakom rozsahu. Väzba uči receptory z buniek zóna g lome rul osa z hovädzích nádob 1 i či ak mól./1 sa dosahuje s IC med z i . 1010 a 1 . 105 Administration of the compounds of the invention may be carried out intravenously, subculture, intramuscularly, intraperitoneally, intranasally, by inhalation, transdermally, preferably by ionization or by literature known to enhance and orally. In animals of different species, there are doses that cause a significant decrease in blood pressure (> 2 <) mm lg) and / or diuresis (t-300%) or saluresis (+ 300%), as well as an increase in hematocrit (+ 3%) and cyclic GMP (+ 200%) between 1 µg / kg and 50 mg / kg. The dosages for bonachytic action in guinea pigs are in the same range. Binding teaches cell receptors zone g loma roux axis from bovine vessels 1 i if mol / l is achieved with IC med. 10 10 and 1. 10 5

Relaxačné pôsobenie na cievy aorty sa dosahuje s ECc^j medzi 1.10'^ t ráči c na spasmoI y t ické pôsobenie v rovnakých množstvách.The relaxing action on the aortic vessels is achieved with an ECc of between 10 &lt; -1 &gt; and the spasmographic effect in equal amounts.

na prstencoch kráI i če j a 1 . 1 04 móI/I . Koneenna kurčacic rektiim súon the rings of the king 1. 1 0 4 mol / l. Koneenna chicken recti are

Pretože ľcceptorová väzba jednotlivých zlúčenín pod ľa vynálezu ako aj ANP v polene i i dobre kôre I uje s biologickými účinkami, je potvrdená identita mechanizmu účinku medzi prirodzenými. peptidmi a tu opísanými zlúčeninami. Preto je tiež možné očakávať od zlúčenín podľa vynálezu aj ďalšie v lastnosti opísané pri biologických vlastnostiach prirodzených peptidov, ktoré tu nie sú jednotlivo opísané.Since the β-receptor binding of the individual compounds of the invention as well as ANP both in the field and in the cortex well with biological effects, the identity of the mechanism of action among the natural is confirmed. peptides and compounds described herein. Therefore, it is also possible to expect from the compounds of the invention other features described for the biological properties of natural peptides that are not individually described herein.

Mohutnosť pôsobeni a zlúčenín podľa vynálezu je porovnateľná s pôsobením ANP. Podstatnou výhodou zlúčenín podľa vynálezu je ich výrazne menšia molekulová veľkosť. Zo stavu techniky nebolo možné odvodiť, že zlúčeniny s tak výrazne menšou veľkosťou molekuly budú mať také uspokojivé hodnoty účinnosti. Syntéza zlúčenín pod ľa vynálezu je podstatne jed noduehšia, a preto lacnejšia ako syntéza ANP alebo derivátov ANP s väčšou molekulovou hmotnosťou, ktoré sú podobné ANP.The potency of the actions and compounds of the invention is comparable to that of ANP. An essential advantage of the compounds of the invention is their significantly smaller molecular size. It was not possible to deduce from the prior art that compounds with such a considerably smaller molecule size would have such satisfactory activity values. The synthesis of the compounds of the invention is substantially simpler and therefore cheaper than the synthesis of ANP or ANP derivatives of higher molecular weight that are similar to ANP.

B.i.ovyuž.i Ceľnosť zlúčenín podľa vynálezu (najmä pri t ransile rmá I ne j apl ikáci i) je podstatne väčšia ako pri ANP a ANP-podobných derivátoch. Zlúčeniny podľa vynálezu na rozdiel od ANP neobsahujú žiadne d.isultidovč mostíky, čím je ich metabol ická stabi I i ta voči ANP a ANP-podobným derivátom lepš :i a .The performance of the compounds according to the invention (especially in the case of tans of administration i) is considerably greater than that of ANP and ANP-like derivatives. The compounds of the invention, unlike ANP, contain no disultide bridges, which makes their metabolic stability against ANP and ANP-like derivatives better.

Nasledujúce zlúčeniny sú mimoriadne výhodné , pretože ich hodnota väzby ANP-receptorov (opis testu pozri vyššie väzba na ANP-receptory) IC^p je menšia ako 5.10”^ mól.The following compounds are particularly advantageous because their ANP-receptor binding value (see assay for binding to ANP-receptors above) IC 50 is less than 5.10 µM.

iand

-Aund-Phe-Arg-Phe-D-A 1a-G1 y-A rg-I le-Asp-Arg-I le-Gly- -Aund-Phe-Arg-Phe-D-A1a-Gly-Arg-Ile-Asp-Arg-Ile-Gly- -Aca-Phe-Arg-Phe-D-AIa-G1 y-A rg-I -Aca-Phe-Arg-Phe-D-Al-Gly-Arg-I le-Asp-Arg-Ile-Gly- le-Asp-Arg-Ile-Gly- -Aca-Phe-A rg-Phe-D-A 1a-G1 y-Lys-1 -Aca-Phe-Ar-Phe-D-A 1a-Gl-Lys-1 1 e-Asp-A rg-1 1 c-G 1 y — 1 e-Asp-A rg-11 c-G 1 y -

βΑΊa-Phe-A rg-Phe-D-B tu-A ľg-I le-Asp-Arg-1 Ie-GIy-βΑΙ a-Phe-A ľg-Phe- D-Λ Ia-GI y-A ľg-I le-Asp-Arg-I le-Gly-Phe(4-N02)-A rg-Phe- D-Λ 1a-GI y-A rg-I I e-Asp-A rg-I le-Gly- β Ala - Phe - A rg - Phe - D - Λ I a-G I y - A rg - Me ť - Asp - A ľg- ΓΙ e-G I y -iβΑΊa-Phe-rg-Phe-DB tu-ľg-Ile-Asp-Arg-11e-GIy-βΑΙ a-Phe-ľg-Phe-D-Λaa-GI γg-Ile-Asp -Arg-Ile-Gly-Phe (4-NO 2) -Arg-Phe-D-Λ 1a-GlyArg-Ie-Asp-Ag-Ile-Gly-β Ala-Phe-Ag - Phe - D - Λ I aG I y - A rg - Me ť - Asp - A g g- ΓΙ eG I y -i

-βΑ la-Cha-Arg-Cha-D-A I a-G I y-Arg- I le-Asp-Arg- I I e-G I y-i βΑ1 a-Phe(4-N02)-A rg-Phe- D-Λ I a-G I y-A rg-I I e-Asp-A rg-I le-Gly-βα 1a-Cha-Arg-Cha-DA Ia-Arg-Ile-Asp-Arg-II eG I yi βΑ1 α-Phe (4-NO 2) -Arg-Phe-D-Λ I aG I ? -gg-Ile-Asp-Agg-Ile-Gly

-46r-BAla-Phe (4-Ν02)-Arg-Cha-D-Ala- Gly-Arg-1 le-Asp-Arg-Ile-Glyi-BAla-Tyr-Arg-Cha-D-Ala-Gly-Arg-I le-Asp-Arg-I le-GlypflAla-Tyr (Bzl) -Arg-Cha-D-Al a-Gly-Arg--I le-Asp-Arg-I le-Glyp-Apen-Phe-Arg-Phe-D-Ala-Gly-Arg-I le-Asp-Arg-I le-Gly-46r-BAla-Phe (4 -02) -Arg-Cha-D-Ala-Gly-Arg-11 le-Asp-Arg-Ile-Glyi-BAla-Tyr-Arg-Cha-D-Ala-Gly-Arg Ile-Asp-Arg-Ile-GlypflAla-Tyr (Bzl) -Arg-Cha-D-Al and -Gly-Arg-Ile-Asp-Arg-Ile-Glyp-Apen-Phe-Arg- Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-Gly

Abut-Phe-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-GlyAbut-Phe-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-Gly

-Gly-Phe-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-I le-Gly-, |~QA1 a-Phe-Arg-Phe-D-Btu-Arg-I le-Asp-Arg-I le-Gly|~βΑ1 a -Phe-Arg-Phe-Pro-Gly-Arg-1 le-Asp-Arg-Ile-Glyj-BAla-Phe-Arg-Phe-D-Pro-Gly-Arg-Ile-Asp--Arg-Ile-Gly-Tyr-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-Gly nTy r(Bzl)-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-GlypPhe-Arg-Tyr-D-Ala-Gly-Arg-Ile-Gly-Phe-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-Gly-, -QA1-Phe-Arg-Phe-D-Btu-Arg-Ile-Asp -Arg-I le-Gly | ~ βΑ1 and -Phe-Arg-Phe-Pro-Gly-Arg-1 le-Asp-Arg-Ile-Glyj-BAla-Phe-Arg-Phe-D-Pro-Gly-Arg Ile-Asp-Arg-Ile-Gly-Tyr-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-Gly-Tyr (Bzl) -Arg-Phe-D-Ala-Gly Arg-Ile-Asp-Arg-Ile-Arg-GlypPhe-Tyr-D-Ala-Gly-Arg-Ile

-Asp-Arg-Ile-GlyAsp-Arg-Ile-Gly

-47• Phe-Arg-Tyr (Bz 1)- D-A la-Gly-Arg-I le-Asp-Arg -I le-Gly· ]-47 • Phe-Arg-Tyr (Bz 1) - D-Aa-Gly-Arg-Ile-Asp-Arg-Ile-Gly ·]

-BAla-Phe-Arg-Phe-L-Clg-Arg-I le-Asp-Arg-I le-Gly-.-Bala-Phe-Arg-Phe-L-Clg-Arg-Ile-Asp-Arg-Ile-Gly-.

i-BAla-Phe-Arg-Phe-D-Ala-Gly-Arg-Nle-Asp-Arg-I le-Gly r-BA 1 a-A rg-Phe-D-A la-Gly-Arg-I le-Asp-Arg-Ile f-Aca-Arg-Phe-D-Al a-Gly-Arg-I le-Asp-Arg - I lepBAla-Phe-Arg-Phe-D-Ala-Gly-Arg-I le-Asp-Arg-Ι ler- Aea- Phe-A r g-Phe-D-Al a-Gly-Arg-I le-Asp-Arg-íle-.i-BAla-Phe-Arg-Phe-D-Ala-Gly-Arg-Nle-Asp-Arg-Ile-Glyr-BA 1 aArg-Phe-DA la-Gly-Arg-Ile-Asp-Arg -Ile f-Aca-Arg-Phe-D-Al and -Gly-Arg-Ile-Asp-Arg-I lepBAla-Phe-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg- Er ll-Aea-Phe-Arg-Phe-D-Al and -Gly-Arg-Ile-Asp-Arg-Ile.

-BAla-Phe-Arg-Phe-D-Ala-Gly-Lys-Nle-Asp-Arg-Ile-BALE-Phe-Arg-Phe-D-Ala-Gly-Lys-Nle-Asp-Arg-Ile

-BAla-Phe-Arg-Se r(Bzl)-D-Ala-Gly-Lys-Nle-Asp-Arg-Ile-.-Bala-Phe-Arg-Ser (Bzl) -D-Ala-Gly-Lys-Nle-Asp-Arg-Ile-.

-Aea-Phe-Lys-Phe-D-A la-G ly-Arg - Ile-Asp-Arg-Ile-.-Aea-Phe-Lys-Phe-D-A1a-Gly-Arg-Ile-Asp-Arg-Ile-.

pAea-Phe-Lys-Phe-D-Ala-Gly-Lys-Ile-Asp-Arg-IleAca-Phe-Arg-Cha-D-Ala-Gly-Arg-I le-Asp-Arg-11 e-.pAea-Phe-Lys-Phe-D-Ala-Gly-Lys-Ile-Asp-Arg-IleAca-Phe-Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-11e-.

-43,-Aca-D-Phe-Arg-Phe-D-Al a-Gly-Arg - Ile-Asp-Arg-Ile-, .-Aca-Cha-Arg-Phe-D-Ala-Gly-Arg-I le-Asp-Arg-Ile-, r-βΑ 1 a-Phe-Arg-Cha-D-A 1 a-Gly-Arg-1 le-Asp-Arg-Ile-i i-BAla-Phe-Arg-Cha-D-Ala-Gly-Arg-Met-Asp-Arg-I le-43, -Aca-D-Phe-Arg-Phe-D-Al and -Gly-Arg -Ile-Asp-Arg-Ile-, -Aca-Cha-Arg-Phe-D-Ala-Gly-Arg- Ile-Asp-Arg-Ile-, r-βΑ 1 α-Phe-Arg-Cha-DA 1 α-Gly-Arg-1 le-Asp-Arg-Ile-i-BAla-Phe-Arg-Cha- D-Ala-Gly-Arg-Met-Asp-Arg-Ile

J.J.

j-βΑla-Phe(4-N02)-Arg-Phe-D-Ala-Gly-Arg-I1e-Asp-Arg-Ile j-βΑΙ a - Phe-Lys-Ch a-D-A1 a-Gly-Arg-1 le-Asp-Arg-íle-.j-βαla-Phe (4-NO 2) -Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile j-βΑΙ a - Phe-Lys-Ch and D-A1 and -Gly-Arg-1 le-Asp-Arg-Ile.

j-GAla-Phe(4-NO2)-Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-IlepGAla-Tyr(Bzl)-Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-, j~BA 1 a-Ty r-Arg-Cha-D-Al a-Gly-Arg-Ile-Asp-Arg-IlerfiAla-Phe-Ctr-Cha-D-AlaJ-GALA-Phe (4-NO2) -Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-Tyr-IlepGAla (Bzl) -Arg-Cha-D-Ala-Gly-Arg-Ile- Asp-Arg-Ile, j ~ BA1-and four-Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-Phe Fiala r-Ctr-Cha-D-Ala

-Gly-Arg-Ile-Asp-Arg-Ile j-Thc-Phe-Arg-Cha-D-Ala-Gly-Arg-I le-Asp-Arg-I le3-Gly-Arg-Ile-Asp-Arg-Ile-Thc-Phe-Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile3

Aund-Arg-Phe-D-Ala-Gly-Arg-I le-Asp-Arg-Ile-iAund-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-i

-49-Aund-Phe-Arg-Phe-D-Ala-Gly-Arg- Ile-Asp-Arg-Ile-, r-Aca-Arg-Phe-D-Ala-Gly-Lys-Nle-Asp-Arg-I le-, pAca-Arg-Ser(Bzl) -D-Ala-Gly-Lys-Nle-Asp-Arg-I le-, pBtu-Arg-Phe-D-Ala-Gly-Arg-I le-Asp-Arg-I le-i r-D-Btu-Arg-Phe-D-Al a-Gly-Arg-I le-Asp-Arg-IlepAca-Phe-Arg-Phe-D-Ala-Gly-Arg-Ι le-Gly-Arg-1 le-i pAca-Phe-Arg-Tyr (Me) -D-Al a-Gly-A rg-I le-Asp-Arg-I le-,-49-Aund-Phe-Arg-Ph-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-, -Aca-Arg-Phe-D-Ala-Gly-Lys-Nle-Asp-Arg- Ile-, pAca-Arg-Ser (Bzl) -D-Ala-Gly-Lys-Nle-Asp-Arg-Ile-, pBtu-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp- Arg-Ile-D-Btu-Arg-Phe-D-Al and -Gly-Arg-Ile-Asp-Arg-IlepAca-Phe-Arg-Phe-D-Ala-Gly-Arg-Ile-Gly -Arg-1 le-iAca-Phe-Arg-Tyr (Me) -D-Al and -Gly-Arg-Ile-Asp-Arg-Ile-,

-Aca-Phe-Arg-Phe-D-Ala-Gly-Arg-D-Ile-Asp-Arg-Ile «-Aca-Phe-Arg-Phe-D-Ala-Gly-Arg-Ile-D-Asp-Arg-IlepAca-Phe-D-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-IlepAcá-D-Phe-Arg-Phe-D-Ala-Gly-Arg-I le-Asp-Arg-Ile-, i-BAla-Phe-D-Arg-Phe-D-Ala-Gly-Arg-l le-Asp-Arg-Ilei-BAla-Phe-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-D-Arg-Ile-Aca-Phe-Arg-Ph-D-Ala-Gly-Arg-D-Ile-Asp-Arg-Ile -Aca-Phe-Arg-Phe-D-Ala-Gly-Arg-Ile-D-Asp- Arg-IlepAca-Phe-D-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-IlepAcá-D-Phe-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg -Ile-, i-BAa-Phe-D-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-Ilei-BAla-Phe-Arg-Phe-D-Ala-Gly-Arg-Ile -Asp-Arg-D-Ile

-50Η - Lvs -Λ r g-Phe-D-Λ1 a -G1y-Lys-N1e-A s p-Λ r g -11 e-50Η - Lvs -Λr g-Phe-D-Λ1 and -G1y-Lys-N1e-A with p-Λ r g -11 e

Z-Lys-Arg-Phe-D-Al a-Gly-Lys-Nle-Asp-Arg-1 le-iZ-Lys-Arg-Phe-D-Al and Gly-Lys-Nle-Asp-Arg-1 le-i

Z-Lys-Arg-Ser (Bzl)-D-Ala-Gly-Lys-Nle-Asp-Arg-Ile-iZ-Lys-Arg-Ser (Bzl) -D-Ala-Gly-Lys-Nle-Asp-Arg-Ile-i

Bz-Lys-Arg-Phe-D-Ala-Gly-Lys-Nle-Asp-Arg-IleZ-L s-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-IleBz-Lys-Arg-Ph-D-Ala-Gly-Lys-Nle-Asp-Arg-Ile-L-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile

Z-Lys-Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-IleMenoc-Lys-Arg-Phe-D-Ala-Gly-Arg-I le-Asp-Arg-1 le-iZ-Lys-Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-Men-Lys-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-1le-i

Menoc-Lys-Arg-Cha-D-A1a-Gly-Arg-1 le-Asp-Arg-1 le-iMenoc-Lys-Arg-Cha-D-A1a-Gly-Arg-1-le-Asp-Arg-1-le

H-Lys-Lys-Cha-D-Ala-Gly-Arg- I le-Asp-Arg - Ile-iH-Lys-Lys-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-i

Z-Lys-Lys-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-, (4-NO )ZLys-Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-IleZ-Lys-Lys-Cha-D-Ala-Gly-Arg-Arg-Ile-Asp-Arg-Ile-, (4-NO) ZLys-Arg-Cha-D-Ala-Gly-Arg-Arg-Ile-Asp-Arg- Ile

-51H-Lys-At.g-Ser (Bzl) -D-Ala-Gly-Lys-Nle-Asp-Arg-IleBz-Lys-Arg-Phe-D-Ala-51H-Lys-At. G-Ser (Bzl) -D-Ala-Gly-Lys-Nle-Asp-Arg-IleBz-Lys-Arg-Phe-D-Ala

-Gly-Lys-Nle-Asp-Arg-IleGly-Lys-Nle-Asp-Arg-Ile

B z-Lys-Arg-Ser (Bzl)-D-Ala-Gly-Lys-Nle-Asp-Arg-Ile-.B from -Lys-Arg-Ser (Bzl) -D-Ala-Gly-Lys-Nle-Asp-Arg-Ile-.

Bz-D-Lys-Arg-Ser(Bzl)-D-Ala-Gly-Lys-Nle-Asp-Arg-Ile-.Bz-D-Lys-Arg-Ser (Bzl) -D-Ala-Gly-Lys-Nle-Asp-Arg-Ile.

I___JI___J

T o s - Lys-Arg-Phe-D-Ala-G ly-Arg-Ile-As p-Arg-I leH-Lys-Arg-Phe-L-Clg-Arg-1le-Asp-Arg-Ιle-Lys-Arg-Phe-D-Ala-Gly-Arg-Ile-As p-Arg-IleH-Lys-Arg-Phe-L-Clg-Arg-1le-Asp-Arg-Ile-

Z-Lys-Arg-Cha-D-Clg-Arg-I le-Asp-Arg-1 le-.Z-Lys-Arg-Cha-D-Clg-Arg-Ile-Asp-Arg-11le-.

Z-Dap-Arg-Cha-D-Ala-Gly-Arg-I le-Asp-Arg-Ι le-.Z-Dap-Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-Phle-.

(4-NO2)Z-L^s-Arg-Cha-D-Ala-Gly-Arg-Met-Asp-Arg-Ile (4-NC>2) Z-Lys-Orn-Cha-D-Al a-G ly-Arg-1 le-Asp-Arg-1 le—(4-NO 2) p ^ ZL-Arg-Cha-D-Ala-Gly-Arg-Met-Asp-Arg-Ile (4-NC> 2) Z-Lys-Orn-Cha-D-Al and G Ly Arg-1-le-Asp-Arg-1-le

-53s-Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile--53s-Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-

I íI í

j ij i

Vzhľadom na spektrum účinnosti môžu byť zlúčeniny podľa vynálezu použité ako ant i bypeľľenzíny, ako bypotenzíva, ako diuretika, na zlepšenie prekrvenia (vazodi I a l ačná účinnosť) , napríklad pri. vaskulárnej i nsu f i c i enc i i a na I iečenie srdečne j insuí i c ienci e, koronárne j insnľ i c ienei e, ccrebrovaskulárnej insuťi c ienei e, obličkovej insuľ i e ienei e, pri; akútnom zlyhaní obličiek a pri edémoch akéhokoľvek pôvodu, napr. mozgovom edéme, tiež pri cirhóze pečene, d’a I e j ako spasmo I y t i kčt na všetky orgány z hladkých svalov, najmä žaIúdočno-črevný trakt, vrátane močového mechúra či orgánov od vádza j úe i eh moč a akí) b r o n c b o I y t i k á .With respect to the spectrum of activity, the compounds of the invention can be used as antiphelicenzines, as by-potents, as diuretics, for improving blood flow (vasodi I and lactivity), e.g. vascular insufficiency for the treatment of cardiac insufficiency, coronary heart disease, crebrovascular insufficiency, renal insufficiency, pri; acute renal failure and edema of any origin, e.g. cerebral edema, also in cirrhosis of the liver, as a spasm, it counts on all smooth muscle organs, especially the gastrointestinal tract, including the bladder or urinary organs and the urinary tract .

Ďalej je možné ich použiť na diagnostiku obrazu choroby a na skúšanie orgánového systému. Môžu byť použi té ako pomocné látky na výrobu ti čistenie (aľinitná chromá ľograf i a) protilátok, prípadne pri receptonových preparáciách ako aj pri imunologických testoch (napríklad RIA, ELI SA) a testoch väzby na receptory (napríklad rad ioreeeptorová skúška) ako špecifické a selektívne ligandy.Furthermore, they can be used for diagnosing the disease image and for testing the organ system. They can be used as adjuvants for the production of thi purification (aluminum chromatography) of the antibodies, optionally in receptor preparations as well as in immunoassays (eg RIA, ELI SA) and receptor binding assays (eg series ioreeeptor assay) as specific and selective ligands.

Vynález sa tiež týka použitia zlúčenín všeobecného vzorca 1 ako liečiva čí ľa rmaeeu t i ckýcb prípravkov, ktoré obsahujú tieto zlúčeniny. Výhodné je použitie pre ľudí.The invention also relates to the use of the compounds of the formula I as medicaments or pharmaceutical preparations containing them. It is preferred to use for humans.

Na pči ren te rá I ne ap I. i káe i e sa zo z I účeii í n potí ľa vyučí I ezu a prípadne z ďalších obvyklých substancií uľahčujúcich rozpustenie, emulgátorov alebo ďalších pomocných látok pripravia roztoky, suspenzie alebo emulzie. Ako rozpúšťadlá prichádzajú do úvahy napríklad voda, fyziologický roztok kuchynskej soli alebo alkoholy, napríklad etanol, p ropand i o I· alebo glycerín, roztoky cukrov ako roztoky glukózy či lebo muríni tu alebo tiež zmesi rôznych rozpúšťadiel.For the preparation and treatment of the problem, efficacy is obtained from the process and, optionally, from other conventional dissolution aids, emulsifiers or other excipients, solutions, suspensions or emulsions are prepared. Suitable solvents are, for example, water, physiological saline solution or alcohols, for example ethanol, petroleum or glycerol, sugar solutions such as glucose solutions or murines here, or else mixtures of different solvents.

iand

Okrem toho zlúčeniny môžu byť aplikované implani á tmi, napríklad z polylaktidu, po I yg I yko I i du alebo po I yhyd roxyinasl.ovej kyseliny. Ďalšie možnosti apl ikácie sú i n tranasá 1 na aplikácia, inhalacnti aplikácia ( p i ezo- -p r í s l ro j , dávkovací aerosól., práškový inhalátor), t randermáI na aplikácia (náplasťové prípravky, krémy, masti, gély, pasívne náplasti, pričom účinnosť môže byť zvýšená enhanccerem pene t ráčiou a/alebo elektrickým poľom (i ontoforézou)) , orálna aplikácia (tabletky, kapsule, dražé atď.).In addition, the compounds can be applied by implants, for example from polylactide, polyglycolide or polyhydroxy linoleic acid. Other application options are inhalation application, inhalation application (in the preparation, dosing aerosol, powder inhaler), tandem application (patch preparations, creams, ointments, gels, passive patches). efficacy may be enhanced by enhanccerem foam (and / or electric field (including ontophoresis)), oral administration (tablets, capsules, dragees, etc.).

Do rozsahu vynálezu spadá tiež použitie zlúčenín všeobecného vzorca I ako komponentov a medziproduktov vo vyššie uvedených biochemických, bi oteelin i ekýeb a imunologických spôsoboch (vyrobil protilátok, afinitná ch ronia log ra ľ i u , RIA, ELISA, rad ioreceptorová skúška).The invention also encompasses the use of the compounds of formula I as components and intermediates in the aforementioned biochemical, bioteelines and immunoassays (produced by antibodies, affinity chronology, RIA, ELISA, radioneptor assay).

Zlúčeniny podľa vynálezu môžu byť vyrobené všeobecne známymi metódami v chémii peptidov. Tieto metódy sú opísané v Houben-Veyl , Methoden der organischen Chemie, d i e I 15/2. Výhodne sa vyrábajú syntézou peptidov v tuhej l'áze (napr í k I ad G.Barany, R.B. Merriľield v The Pept ides-AnaIysi s, Biology, zv.2, 2-2X4 (19X0), Academic Press, New York alebo R.C. Sbeppard, Int. J. Pept. Res. 21, 1IX (19X3) alebo inými známymi metódami. Ako chrániace skupiny am i mtky.se 1 i ny sa použ i va j ú tie skupiny, ktoré sú opísané v Houben Vey I, Methoden der organischen Chemie diel 15/1. Výhodne sa používajú uretánové chrániace skupiny ako napríklad f IuorenyImetoxykarbonyI - alebo terc . bu toxyka r bonyl ová skupina. Aby sa zabránilo vedľajším reakciám sú obyčajne prípadne prítomné skupiny v bočných reťazcoch aminokyselín naviac skupinami (pozri napríklad chránené vhodnými ch rán iaci m i Houben-Veyl dial 15/1 aleboThe compounds of the invention can be produced by generally known methods in peptide chemistry. These methods are described in Houben-Veyl, Methoden der organischen Chemie, et al. They are preferably produced by solid-phase peptide synthesis (e.g., G.Barany, RB Merriield in The Peptides-Anaysys, Biology, Vol. 2, 2-2X4 (19X0), Academic Press, New York or RC). Sbeppard, Int. J. Pept Res., 21, 1IX (19X3) or by other known methods, the protecting groups used are those described in Houben Vey I, Methoden. Preferably, urethane protecting groups such as fluorenylmethoxycarbonyl or tert-butoxycarbonyl are preferably used in order to avoid side reactions, whereupon groups in the amino acid side chains are additionally optionally present (see, for example, protected by suitable groups). houben-Veyl dial 15/1 or

T.V.Greene, Protective Groups in Organic Synthesis). Požíva sa Arg(N02) , Arg(di-Z), Arg(Pmc), Arg(Ml.r), Tyr(tBu), Tyr(Bzl), Ty r (2,6 - d i-C I - Bz I ) , Ser(tBu), Se.r(Bzl), Asp(tBu), Asp(Bzl), Glu(tBu), Glu(Bzl), His(Trt), llis(Bum), Lys(Boc), llomo-Arg(M t ľ) , llomo(Arg( ľmc) ,TVGreene, Protective Groups in Organic Synthesis). Arg (NO 2 ), Arg (di-Z), Arg (Pmc), Arg (M-1r), Tyr (tBu), Tyr (Bzl), Tyr (2,6-d iC I-Bz I) are used. ), Ser (tBu), Se.r (Bzl), Asp (tBu), Asp (Bzl), Glu (tBu), Glu (Bzl), His (Trt), Llis (Bum), Lys (Boc), llomo -Arg (M t '), llomo (Arg (' mc '),

Lys (Z), Z_Lys, Oľn(Boc),Lys (Z), Z_Lys, Al (Boc),

Honio-A ľg (N09 ) .Honio-A '(NO 9 ).

Na syntézu zlúčenín všeobecného vzorca I syntézou v tuhej fáze sú vhodné známe živice na báze pol ys tyrénu,po Iyakry1 am idu a polyéteru. Na syntézu eyklopept.itlov je žiadúce použiť také zakotvené skupiny, ktoré pri odštiepení poskytujú peptidkarboxyIové kyseliny. Výhodné je použiť také zakotvené skupiny, ktorých odštiepenie prebieha za takých miernych podmienok, že prípadne uvedené chrániace skupiny bočného reťazca ostanú. Používajúc I'moe-s Ľ ra tég i u sú takými zakotvenými skupinami: 2~metoxy-4-aIkoxybenzyI-a Ikoholová skupinti (M . Merg.l.er a spol . , Proccdings of the 10 th American Pept ide Symposium 1987, St.l.ouis, str. 2.59 GG. R : Marshal.l vyd. Escoiii , Laiden (1988), Hyd roxyk.ro tonoy I am i dome ty Iskúpi nti (II.Kunz, B.Dombo, Angew.Chem. I n t.Ed.Eng1 . 27, 711 (1988)) alebo t r i a 1 koxy benzhy d ry 1 - a I koho I - skúp i na (ll.Rink, P. Si ehe r, Pept ideš 1988, str. 139, G.Juríg, E.Bayer Eds., V.deGruyter, Ber I í n 1989).For the synthesis of the compounds of the formula I by solid-phase synthesis, known resins based on polysyrene, polyacrylamide and polyether are suitable. For the synthesis of cyclopeptides, it is desirable to use anchored groups which, upon cleavage, give the peptide carboxylic acids. It is preferable to use anchored groups whose cleavage takes place under such mild conditions that the side chain protecting groups, if any, remain. Using I'moe-rase, such anchored groups are: 2-methoxy-4-alkoxybenzyl-alcohol groups (M. Merg.l.er et al., Proccdings of the 10 th American Peptide Symposium 1987, St. I.is, page 2.59 GG R: Marshal.l ed. Escoiii, Laiden (1988), Hydroxy.I ton i dome ty Iskoupi nti (II.Kunz, B.Dombo, Angew.Chem. I 27, 711 (1988)) or tri-1-benzoyl-1-carboxylic acid (II.Rink, P. Si eher, Pept ide 1988, p. 139). G. Jurig, E. Bayer Eds., V. Deryter, Berlin 1989).

Odštiepenie am i no-eh rán iace j skupiny sa uskutočňuje v prípade Bos-skupiny kyselinou t r i f Iuóroctovou v dichlórmetáne alebo v prípade Emoc-skupiny výhodne organickou bázou, najmä amíny ako je napr. pi peridí n alebo morfolín v DME alebu N-metyIpyrol i doňu. Bežné koncentrácie sú 20 až 50 % bázy v rozpúšťadle, reakčný čas je 10 až 120 minút. Štiepenie sa uskutočňuje výhodne v dvoch krokoch, pričom prvý reakčný čas je asi 3 minúty. Živica sa potom krátko premyje rozpúšťadlom. Vykonúi sa ďalšie odštiepenie 20 % p i pe r í d í rnim v DME, potom sa roztok odsaje ti živica sa dôkladne premyje rozpúšťadlom. Výhodnými rozpúšťadlami na tieto premývacie stupne sú DME, NMP, dichlórmetán, t r i.ch.l órmetán, metanol, etanol, izopropanol, voda a tetrahydrofurán. Po úplnom odstránení p i pe ľ i d í nu sa pripojí Fmoc-aminokyseI i na potrebná na ďalšia kopuláciu. Tento cyklus sa opakuje tak dlho už vznikne požadovaný na živicu naviazaný pepl.id.Cleavage of the amino-protecting group is carried out in the case of the Bos group with trifluoroacetic acid in dichloromethane or, in the case of the Emoc group, preferably with an organic base, in particular amines such as e.g. or per morpholine in DME or N-methylpyrrole. Typical concentrations are 20 to 50% base in solvent, reaction time 10 to 120 minutes. The cleavage is preferably carried out in two steps, the first reaction time being about 3 minutes. The resin is then washed briefly with solvent. A further cleavage of 20% by weight in DME is carried out, then the solution is filtered off with suction and the resin is thoroughly washed with solvent. Preferred solvents for these wash steps are DME, NMP, dichloromethane, trichloromethane, methanol, ethanol, isopropanol, water and tetrahydrofuran. Upon complete removal of the peptide, the Fmoc-amino acid required for further coupling was added. This cycle is repeated until the desired resin-bound pepl.id is formed.

Na kopuláciu môžu by Ľ použité metódy známe v chémii pept.idov (viď llouben Vey I., Methoden der organ i.schenn Chemi e, diel 15/2). Výhodne sa poouživajú karbod i i m idy ako di.cyklohexyl.ka rhod i i m i d , d i i zopropy 1 karbod i i m i d , e ty I -(3-d i me ty I am i nopropy.l ) karbod i imid alebo 0-henzot r iazoI - 1-y I te t ráme ty I u rutí iumhexaf 1uórofosfát alebo tetraf Iuórohorát (R.Knorr a spol., THL, 1927 (198*1)) alebo henzo i r i azo I - I - y I - < >x y - t r i s- (d i me tylám i no) - f os Tort i umhexal I uórof osi á t (B.Castro a spol . , ΊΊΙL 1975, 1219). Prídavkom I - hydroxyhenzot r iazoI u (IIOBt) aleboMethods known in peptide chemistry may be used for coupling (see art. Vey I., Methoden der organ I.schenn Chemie, vol. 15/2). Preference is given to using carbodiimides such as di-cyclohexylcarbodiimide, diisopropylcarbodiimide, ethyl 1- (3-dimethylaminopropyl) carbodiimide or O-thiazol-1-yl. y I te t frames for mercury iumhexafluorophosphate or tetrafluorohorate (R.Korror et al., THL, 1927 (198 * 1)) or henzoic acid I - I - y I -> xy - three s- ( di melamine (no) - f os Tort i umhexal Iorofos (t) (B. Castro et al., 1975, 1219). Addition of I - hydroxyhenzothiazole (IIOBt) or

3-hyd roxy-4-t»xo-3,4-d i hyd rohenzof. r i az i nu (HOOht.) sa môže podporiť racemizáci a, prípadne zvýšiť reakčná rýchlosť. Aminokyseliny Asn a Gin sa výhodne kopulujú vo forme svojich N-chranených p-n i trofenyI es Letov. Kopulácia sa obyčajne uskutočňuje 2- až 5-násobným prebytkom N-chránenej aminokyseliny a kopulačná reakcia sa uskutočňuje v rozpúšťadle ako je dich.l.órme tán , dimetylformamid, N-me ty I py r ro I i don (NMP) alebo ich zmesi . Priebeh k.opu.lačnej reakcie sa sleduje Kaiserovým testom (E. Kti i ser a kol . , Anál . B i ochem. 34, 5*15 (1*170) alebo3-Hydroxy-4-dioxo-3,4-dihydroxybenzof. The racemization can be promoted and the reaction rate increased if necessary. The amino acids Asn and Gln are preferably coupled in the form of their N-protected p-nitrophenyl esters. The coupling is usually carried out with a 2- to 5-fold excess of the N-protected amino acid and the coupling reaction is carried out in a solvent such as dichloromethane, dimethylformamide, N-methylpyrrolidone (NMP) or mixtures thereof. . The progress of the killing reaction is monitored by the Kaiser test (E. Ktier et al., Anal. B &apos; 34, 5 * 15 (1 * 170) or

TNBS-testom. V prípade neúplnej acylácie sa kopulácia opakuje až je úplná. Syntéza v tuhej fáze môže byť uskutočnená tak manuálne, ako a j pomocou syntetizátora pept idov.TNBS test. In the case of incomplete acylation, the coupling is repeated until complete. Solid phase synthesis can be performed as manually as a j using a peptide synthesizer.

ry.l az i d (DPPA) hodná syntézary.l to i d (DPPA) a good synthesis

Takto syntetizované peptidy sa nakoniec cyklizujú vhodnými , v I i teratúre opísanými spôsobmi . Ako cyk I i začne činidlá môžu byť použité činidlá používané na kopuláciu aminokyselín ako je pentafIuórfenyI ester/DMAP aíeho d i fény I fosfoNa syntézu zlúčenín obecného vzorca I jé výna tuhej laze potila ľmoc-s t ra tég i e používajúc pritom zakotvené 2-meloxybenzy1oxybezyIcsLetové skupiny. Na tvorbu sekvencii sú vhodné DCC/IIOBt-, DIC/HOBt- alebo TBTU-spôsoby. Po vytvorení sekvencii na živici sa obvyklým odštiepi N-termi nú l na Fmoc-skupi na, živica sa po odstránení pi per i.d.í nu dôkladne; premyje d i ch I o rníc l anom a potom sa spracuje 1 % roztokom kyseliny t r i ľ Iuóroctovej, aby došlo k odštiepeniu pep t i.du . Ch rán i ace skupiny bočného reťazca peptidu zostávajú pritom zachované. Po oddest i I ovaň í rozpúšťadla sa peptidy nechajú reagovať s cyklizačným č i n i d I nm, výhodne s d i fény If osf o ry I az i.dom , na zodpovedajúce cyklopeptidy. Potom sa ešte odstránia uvedené chrániace skupiny bočného reťazca vhodným odšt iepujúci m činidlom. Výhodné sú zmesi kyseliny trifluóroctovej/scavengeru. Ako scavenger sa použije substancia ako napríklad a n i zo 1 , t i oari i ζι > I , krezol, t inkreznl , e ľ.ánd.itiol, voda alebo podobné látky ako aj zmesi týchto látok.The peptides thus synthesized are finally cyclized by suitable methods described in the terra- ria. As the cycling reagents, reagents used for coupling amino acids such as pentafluorophenyl ester / DMAP and its diophenium phospho for the synthesis of compounds of formula I can be used for the synthesis of solid lazilyl-thrombocytes using the anchored 2-methoxybenzyl ethoxybenzenes. DCC / IIOBt-, DIC / HOBt- or TBTU methods are suitable for the generation of sequences. After the sequences have been formed on the resin, the N-terminal amino acid on the Fmoc group is conventionally cleaved, and the resin is thoroughly removed after pi-i.d. The reaction mixture was washed with diatomaceous earth and then treated with a 1% trifluoroacetic acid solution to cleave the peptide. Protecting the side chain groups of the peptide is retained. After the solvent has been distilled off, the peptides are reacted with a cyclization reaction, preferably a dihydrophase and i.dom, to the corresponding cyclopeptides. Thereafter, said side chain protecting groups are removed with a suitable cleaving agent. Trifluoroacetic acid / scavenger mixtures are preferred. The scavenger used is a substance such as, for example, α 1 of thiariol, cresol, incineration, n-thiol, water or the like, as well as mixtures thereof.

Peptidy sa potom spracujú bežným i spôsobmi v chémi i peptidov a p reč istia.The peptides are then processed by conventional methods in peptide chemistry and purified.

Čistenie získaných surových produktov sa vykonáva polnocou gólovej ch ronia tograf i e napríklad na Scpliadcxe G25 (MR 1400) alebo G15 (MR 1400) 1 % alebo 5 % kysel inou octovou.Purification of the crude products obtained is carried out at midnight by gonograph chromatography on, for example, Scpliadd G25 (MR 1400) or G15 (MR 1400) 1% or 5% acetic acid.

V prípade potreby sa vykoná ďalšie čistenie pomocou preparatívnej RP-HPLC s metanol- alebo aceton i t r i I-voda gradientami s prídavkom 1 až 2 % kyseliny trifluóroctovej.If necessary, further purification is carried out by preparative RP-HPLC with methanol- or acetonitrile-water gradients with the addition of 1 to 2% trifluoroacetic acid.

Na čistenie môžu tiež byť použité kat iónvýmcnné živice na báze Sephadexu alebo polystyrénu.Sephadex or polystyrene based cation exchange resins can also be used for purification.

Čistenie sa výhodne vykonáva IIPIC s reverznou fázou s použitím gradientov voda/aceton i t r H s prídavkom 0,1 až 0,2 % kyse l i ny t r i f Iuóroctove j. tThe purification is preferably carried out by reverse phase IIPIC using water / acetone gradient with an addition of 0.1 to 0.2% trifluoroacetic acid. T

Čistota zlúčenín všeobecného vzorca I sa skúša pomocou RP-HPLC. Vykonáva stí analýza aminokyselín na i ónovýmennej živici. (LKB) a pomocou plynového chromátograľu na ch i rá I noín stĺpci dodatočná kontrola raccmizáci e. Odtiaľ sa snímajú ^3C-NMR spektrá (Bruker 400 Mllz) a FAB-hmotové spektrá (Finnigan MAT 90). Stanovenie sekvencii sa vykonáva sekvenľovaní m v plynnej fáze po tryptickom štiepení.The purity of the compounds of formula I is tested by RP-HPLC. It also performs amino acid analysis on the ion exchange resin. (LKB), and by means of a gas chromatograph on a clear column no. Additional raccation control e. From this, ^ 3 C-NMR spectra (Bruker 400 Mllz) and FAB-mass spectra (Finnigan MAT 90) were recorded. Sequence determination is performed by sequencing m in the gas phase after tryptic cleavage.

Nasledujúce príklady ob jasňu jú syntézu zlúčenín pod ľa vynálezu bez toho, aby vynález akokoľvek obmedzova1 i.The following examples illustrate the synthesis of the compounds of the invention without, however, limiting the invention in any way.

Príklady u s k u t oč n en i a v y n álezuExamples of findings

Príklad 1Example 1

-βΑla-Phe-Λ rg-Phe-D-A I a-G I y-A rg-I I e-Asp-Λ rg-I I e-GlySyntéza peptidov sa uskutočňuje na syntetizátore peptidov ACT200 firmy Advanced ChemTech s použitím Fmoc-s traLégie s použitím mod i ľ i kovaného riadiaceho programu. 50 ml trepacŕ reaktor sči naplní 1 g 2-me toxybenzy l.és te rove j živice firmy Baehem, Švajčiarsko, ktorá bokí privedená do cyklu 0,5 mmól Fmoc-gIycinu. Použijú sa rias I ed u j úce deriváty am i nokysel. in: Fmoc- I l e-011, Pmoc-Arg (M t r)-OH , Iľmoe-Asp ( tBu)-011, Fmoc-Gl y-011, Fmoc-D-Λ l.a-OII Fmoc-Phe-OII a Fmoc-βΛ I a-OH . KopuI.úc.i a sa vykonáva vždy 3 ekv i va l en tam i Fmoc am i nokyse I i ny , 1-hydroxybenzotriazolu a d icyk IohexyIkarbodi i m idu (čas kopulácie 40 minút). Po vykonaní TNBS-testu sá pri neúplnej acy1 ác i i. opakuje kopulácia s použitím rovnakých reagentov a prebytku. Pri neúplnej acyIáci i sa naštartuje ďalší cyklus syntézy. Odštiepenie chrániac í eh skupín sa vy koral vždy 20 % piper.idinom v DMF (jedenkrát 3 minúty, jedenkrát 15 minút).-βαla-Phe-grg-Phe-DA I aG IγArg-Ie-Asp--rg-Ile-GlySynthesis of peptides is performed on an ACT200 peptide synthesizer from Advanced ChemTech using Fmoc-tragedy using mod a controlled management program. A 50 ml shaking reactor was charged with 1 g of 2-methoxybenzyl ether resin from Baehem, Switzerland which was fed to a 0.5 mmole Fmoc-glycine cycle. Algae derivatives and amino acids are used. in: Fmoc-Ile-011, Pmoc-Arg (M tr) -OH, Ilmoe-Asp (tBu) -011, Fmoc-Gly-011, Fmoc-D-pha-OII Fmoc-Phe-OII and Fmoc-βΛ I and -OH. The coupling was carried out in each case with 3 equivalents of Fmoc amino-aminocyanine, 1-hydroxybenzotriazole and dicyclohexylcarbodiamide (coupling time 40 minutes). After the TNBS test is performed, it is incomplete in acylation. repeats the coupling using the same reagents and excess. In the case of incomplete acylation, the next cycle of the synthesis is started. The cleavage of the protecting groups was carried out with 20% piperidine in DMF (3 minutes, 15 minutes).

Medzi reakciami sa vždy živica premyje lOkrát. DMF. Po vytvorení sekvencie 11 - βΑ I a - Phe - Λ ry, (M t r) - ľlie - D - Λ I a - (.ϊ I y - Λ rg ( M t ΟΙ le-Asp ( tBu) - Arg (M L r) - I I e-G I y- na polymérnom nosiči sa živica dôkladne premyje premyje d i eh I órmeľanom a potom 5krát vždy 20 ml 1 % roztoku kyseliny Ľ r i f Iuóroct ovej v d i eh I órmeľane pri teplote miestnosti maximálne po 10 minút (až do intenzívneho lilavého zafarbenia živice). Roztoky sa spoja aodparia vovákuu. Zvyšok sa rozotrie s éterom, éter sa dekantuje, pepti d sa suší v prúde dusíka a vyberie sa do 130 ml DMF, ktorý má hodnotu pil nastavenú na asi 8,5 t r i e ty I am í nom , roztok sa ochladí na -20 a pridá sa 0,2 g (0,75 imiió I ) d i fény I ľosfo0, rylazidu. Zmes sa nechá stáť 48 hod í n pri -20 pri 4 . Hodnota pH sa udržuje t r i e ty I am ínom na 8,5. Potom sa DMF odstráni vo vákuu, zvyšok sa dvakrát rozotrie s éterom, éter sa dekantuje a zvyšok sa vysuší v prúde dusíka. Chrániace skupiny bočného reťazca sa odstraňujú kyselinou t r.i.f 1 uóroc tovou/an i zo I om (90/10) 24 hodín pri teplote miestnosti. Roztok sa odparí vo vákuu, zvyšok stí digeruje s éterom sa prečistí cez Dynama x C.'l 8 , hod í nBetween reactions, the resin is always washed 10 times. DMF. After the formation of the sequence 11 - βΑ I α - Phe - ,ry, (M tr) - β - I - D - a I a - (ϊ I y - Λ rg (M ΟΙ ΟΙ le-Asp (tBu) - Arg (ML r The resin is washed thoroughly with di-chloroformate and then 5 times with 20 ml of a 1% solution of trifluoroacetic acid in methanol at room temperature for a maximum of 10 minutes (until intense lilac color). The residue is triturated with ether, the ether is decanted, the peptide is dried under a stream of nitrogen and taken up in 130 ml of DMF, which has a pI value of about 8.5 with three thirds of amine. The solution is cooled to -20 and 0.2 g (0.75 mmol) of di-phenylphosphoroyl azide is added and the mixture is allowed to stand for 48 hours at -20 at 4. The pH is maintained for three weeks. The DMF is then removed in vacuo, the residue is triturated twice with ether, the ether is decanted and the residue is dried under a stream of nitrogen. The amino acid chain was removed with t.i.fluoroacetic acid (90/10) for 24 hours at room temperature. Evaporate the solution in vacuo, digest the residue with ether and purify through Dynamo x C. 18 hours.

Su rovy /um-stlpec (10 x 2,14 cm) s použi tím gradientov A: voda/aceton.i t r i I/kyse I i na t r i f I uó roe tová 95/5/0,2 a B: detto 20/80/0,2 od 10 % A na 80 % B za li minút, prietok 20 ml, retenčný čas 6,01 minút. Po vysušení vymrazcníiii sa získa amorfný bezfarebný prášok. FAB-MS (M-t-H)x — 1360,5.Straight / µm column (10 x 2.14 cm) using gradients A: water / acetone / acetic acid to trifluoroacetic 95/5 / 0.2 and B: detto 20/80 / 0.2 from 10% A to 80% B in minutes, flow rate 20 ml, retention time 6.01 minutes. After freeze-drying, an amorphous colorless powder is obtained. FAB-MS (M-t-H) - 1360.5.

a sus i pep t i dand sus i pep t i d

Príklad 2Example 2

-Aund-Phe-Arg-Phe-D-Λ Ia-GIy-Arg-I I e-Asp- Arg-I le-GlyS použitím Finoc-Aund-Oh namiesto Fmoc-βΛ 1 a-OII sa získa surový peptid postipom opísaným v príklade 1, ktorý sa prečistí v opísaných podmienok pre ch ronia tog ra ľ i u (5% až 80 % B za II m i. n ú Ľ , r e tenčný čas 7,45 m i n u t) .-Aund-Phe-Arg-Phe-D-Ia-Gly-Arg-Ile-Asp-Arg-Ile-GlyS using Finoc-Aund-Oh instead of Fmoc-β-1 α-OII the crude peptide is obtained by postipip described in Example 1, which is purified under the conditions described for chromium togalate (5% to 80% B per 1 ml, retention time 7.45 minutes).

FAB-MS (M+H)+ = 1473,2.FAB-MS (M + H) &lt; + &gt; = 1473.2.

Príklad 3Example 3

-Aca-Phe-Arg-Phe-D-Ala-Gly-Arg-I I c-Asp-Arg-I le-GlyS použitím Fmos-Aca-OH namiesto Fmoe-βΛIa-Oh sa síska surový peptid postupom podľa príkladu 1, ktorý sa prečistí v podmienkach uvedených pre ch ronia tograf i u (5 % na 80 % B za 11 minút, retenčný čas 6,00 minút). FAB-MS (M+H)+ = 1403,1.-Aca-Phe-Arg-Phe-D-Ala-Gly-Arg-Ic-Asp-Arg-Ile-GlyS using Fmos-Aca-OH instead of Fmoe-βΛIa-OH, the crude peptide is truncated according to the procedure of Example 1, which was purified under the conditions indicated for chromatography (5% to 80% B in 11 minutes, retention time 6.00 minutes). FAB-MS (M + H) &lt; + &gt; = 1403.1.

Príklad 4 p Aca-Phe-A rg-Phe-D-Λ Ia-GI y-Lys- I I e-Asp-A rg-I I e-G I yS použitím Fmoc-Lys (BOC)-OH a Fmoc-Aca-01-1 namiesto Fmoc-βΑ Ι a-OII sa získa surový peptid postupom podľa príkladu 1, ktorý sa prečistí ch ronia l og ra f’i ou v opísaných podmienkach (5 % na 80 % B za 11 minút, retenčný čas 5,80 minút).Example 4 p Aca-Phe-Ag-Phe-D-Ia-Gly-Lys-IIe-Asp-Ag-IeGIyS using Fmoc-Lys (BOC) -OH and Fmoc-Aca-01 -1 instead of Fmoc-βα-α-OII, the crude peptide was obtained according to the procedure of Example 1, which was purified by chromatography on the conditions described (5% to 80% B in 11 minutes, retention time 5.80) min).

FAB-MS (M+ll)+ = 1374,9.FAB-MS (M + 11) + = 1374.9.

Príklad 5Example 5

-βΑΙa-Phe-A rg-Phe-D-B tu A rg-I I e-Asp-A rg-I Ie-GIyS použitím Fnioc-D-B tu-OII namiesto Fmoc-D-A I a-OII sa získa surový peptid postupom opísaným v príklade 1, ktorý sa prečistí chromátograf. i ou v opísaných podmienkach (5 % na 80 %-βαΙa-Phe-rg-Phe-DB tu rgg-Ile-Asp-rg-Ie-GIyS using Fnioc-DB tu-OII instead of Fmoc-DA I and -OII the crude peptide is obtained as described in of Example 1, which purified the chromatograph. in the described conditions (5% to 80%

B za 11 minút, retenčný čas 6,05 minút).B in 11 minutes, retention time 6.05 minutes).

FAB-MS (M+H)+ = 1372,7.FAB-MS (M + H) &lt; + &gt; = 1372.7.

Príklad 6Example 6

-(4-NO2)-Phe-Λ rg-Phe-D-Λ Ia-GIy-Λ rg-I I e-Asp-Arg-I Ie-GIyS použitím Pmoc-Phe (4N02)-011 a bez Fmoc-βΛ I a-011 sa postupom podlá príkladu 1 získa surový peplid, ktorý sa prečistí eh ronia tograf i ou v opísaných potím i erikách (5 % na 8(1 % B za 11 minút, retenčný čas 6,45 minút).- (4-NO2) -Phe-grg-Phe-D-Ia-Gly-Λrg-Ile-Asp-Arg-Ie-GIyS using Pmoc-Phe (4NO2) -011 and without Fmoc-βΛ 1a-011, a crude peptide was obtained according to the procedure of Example 1 and purified by chromatography in the above-described potions (5% to 8 (1% B in 11 minutes, retention time 6.45 minutes)).

FAB-MS (M+ll) + = 1334,9.FAB-MS (M + 11) + = 1334.9.

Príklad 7Example 7

-βΑΙ a -Phe-A rg-Phe-D-Λ Ia-GIy-Λ rg-Me ť -Asp-Λ rg-I le-GlyPrí.davne sa použije Pmoc-Me t-011 a postupom opísaným v príklade 1 stí získa surový peptid, ktorý sa prečistí chromátograficky v opísaných podmienkach (5 % na 80 % B za 11 minút, retenčný čas 6,10 minút).-βαΙ and -Phe-rrg-Phe-D-Λaa -Gly-grg-Me sp -Asp-grg-lle-Gly Alternatively, Pmoc-Me t-011 was also used and the procedure described in Example 1 was followed. to give the crude peptide, which is purified by chromatography as described (5% to 80% B in 11 minutes, retention time 6.10 minutes).

FAB-MS (M+ll)+ = 1378,8.FAB-MS (M + 11) + = 1378.8.

Príklad 8Example 8

- βΑΙ a-Cha-A rg-Cha- D - Λ 1 a-G I y - A rg - I I e-Asp - A rg- I le-GlyS použitím Fmoe-Cha-OH namiesto Pinoe-Phe-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa prečistí chromátograficky v opísaných podmienkach (5 % na 80 % B za 11 minút, retenčný čas 7,75 minút).- βαΙα-Cha-rrg-Cha- D - a1αG γ -Arg-II e-Asp-rr-Ile-GlyS using Fmoe-Cha-OH instead of Pinoe-Phe-011 with the procedure described in Example 1 gives the crude peptide, which is purified by chromatography as described (5% to 80% B in 11 minutes, retention time 7.75 minutes).

FAB-MS (M+ll)+ = 1373,0.FAB-MS (M + 11) + = 1373.0.

Príklad 9 rpAla-Phe(4-NO2)-Arg-Phe-D-ΛIa-G1y-Arg- I le-Asp-Arg- I le-Gly-,Example 9 y Palau-Phe (4-NO2) -Arg-Phe-D-ΛIa-G1y-Arg-Ile-Asp-Arg-Ile-Gly,

S použitím Fmoc-Phe(4-NO2) sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa prečistí ehromatografi.cky v opísaných podmienkach (5 % na BO % B za 11 minút, retenčný čas 6,50 minút).Using Fmoc-Phe (4-NO2), a crude peptide was obtained as described in Example 1 and purified by chromatography as described (5% on BO% B in 11 minutes, retention time 6.50 minutes).

FAB-MS (M+H)+ = 1406,2.FAB-MS (M + H) &lt; + &gt; = 1406.2.

Príklad 10 p βΑ I a -Phe(4-N02)-Arg-Cha-D-Λ Ia-G1 y-A rg-I I e-Asp-A rg-I le-GlyS použitím Fmoe-Cha-OH a Fmoc - Phe (4 - N02)-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa prečistí chromatograficky v opísaných podmienkach (5 % na BO % B za 11 minút, retenčný čas 7,40 minút).Example 10 p-Bα-Phe (4-NO 2) -Arg-Cha-D-Λaa-Gly-γ-γ-Asp-r-γ-I le-GlyS using Fmoe-Cha-OH and Fmoc - Phe (4-NO2) -011 gave the crude peptide as described in Example 1 and purified by chromatography under the conditions described (5% on BO% B in 11 minutes, retention time 7.40 minutes).

FAB-MS (M+H)+ = 1412,0.FAB-MS (M + H) &lt; + &gt; = 1412.0.

Príklad 11 ,-βΑ l.u-Ty r-Arg-Cha-D-Ala-G 1 y-A ľg-I I e-Asp-Λ rg- I le-Gly-,Example 11, -βα-γ-Arg-Cha-D-Ala-Gly-Al-Ig-Ile-Asp-Ig-Ile-Gly-

S použitím Fmoc-Tyr ( tBu)-011 a Fmoc-Cha-OH stí postupom opísaným v príklade 1 získa surový peptid, ktorý sa prečistí chromá tog.raf. i cky v opísaných podmienkach (5 % na BO % B za minút, retenčný čas 6,40 minút).Using Fmoc-Tyr (tBu) -011 and Fmoc-Cha-OH, following the procedure described in Example 1, a crude peptide was obtained which was purified by chromatography. Under the conditions described (5% on BO% B per minute, retention time 6.40 minutes).

FAB-MS (M+H)+ = 1383,2.FAB-MS (M + H) &lt; + &gt; = 1383.2.

Príklad 1.2 ι-βΛ l a-Ty r (Bz l ) -Arg-Cha-P-A l a-G l y-Arg- I I e-Asp-Arg- I I c-G l yS použi tím Fmoc-Ty r (Bz I )-ΟΙ 1 a Fmoe-Cha-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa prečistí chromatograf'i eky v opísaných podmienkach (5 % na HO % B za minút, retenčný čas 8,50 minút).Example 1.2 ι-β-1 α-Tyr (Bz 1) -Arg-Cha-PA 1 α-Gγ-Arg-II e-Asp-Arg-II cG lγS using Fmoc-Tyr (Bz I) -ΟΙ 1 and Fmoe-Cha-OII as described in Example 1 gave the crude peptide, which was purified by chromatography under the conditions described (5% to HO% B per minute, retention time 8.50 minutes).

FAB-MS (M+H)+ = 1473,2.FAB-MS (M + H) &lt; + &gt; = 1473.2.

Príklad 13Example 13

í.·s. ·

-Aea-Phe-Arg-Phe-βΛ1a-Λ rg-I 1e-Asp-A rg-I Ie-GIyS použitím Fmoe-Aca-OII a ľmoc-βΛ I a-OII sa postupom opi- ' saným v príklade 1 získti surový peptid, ktorý sa prečistí chromátografieky v opísaných podmienkach (20 % na 80 % B za minút, retenčný čas 4,60 minút). ;-Aea-Phe-Arg-Phe-β-1a-Ig-Ie-Asp-Ag-Ie-GlyS using Fmoe-Aca-OII and Li-β-I and-OII were obtained by the procedure described in Example 1 crude peptide which was purified by chromatography under the conditions described (20% to 80% B per minute, retention time 4.60 minutes). ;

FAB-MS (M+H)+ = 1345,9 íFAB-MS (M + H) &lt; + &gt; = 1345.9

Príklad 14 r-Aea- Phe-Arg - Phe-A hu t -Arg- 1 I e- Asp- Á rg - I I e - G I y -.EXAMPLE 14 r-Aea-Phe-Arg-Phe-Ahu-Arg-11e-Asp-Arg-11e-Gly-.

J---- t fJ ---- t f

S použitím Fmoc-Aea-OII namiesto Fmoe-βΛ I a-OII j a Finoc-Abu t-011 sa postupom opísaným v príklade 1 získa surový , peptid, ktorý sa prečistí ch ronia tograf i eky v opísaných pod- i mienkach (20 % na 80 % B za 10 minút, retenčný čas 4,85 mi- t n ú t ) . íUsing Fmoc-Aea-OII instead of Fmoe-β-I a-OII and Finoc-Abu t-011, the crude peptide was purified as described in Example 1 and purified by chromatography as described (20%). to 80% B in 10 minutes, retention time 4.85 minutes). s

FAB-MS (M+H)+ = 1373,8. !FAB-MS (M + H) &lt; + &gt; = 1373.8. !

ί iί i

II

Príklad 15Example 15

-Apen-Phe-Arg-Phe-D-Λ I a-G I y-Arg-I I c-Asp-A rg-I I e-G IyS použitím Fiiioc-Apen-OII namiesto Fmoc-βΛ I a-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa prečistí chromatograficky v opísaných podmienkach (20 % iia 80 % B za 10 minút, retcnčný čas 4,50 minút).-Apen-Phe-Arg-Phe-D-Pha-Arg-Pha-Arg-Pha-Asp-Arg-Phe-Arg-III using Fiiioc-Apen-OII instead of Fmoc-βΛI a-OII with the procedure described in Example 1 gives the crude peptide which is purified by chromatography under the conditions described (20% and 80% B in 10 minutes, retention time 4.50 minutes).

FAB-MS (M+H)+ = 1388,8.FAB-MS (M + H) &lt; + &gt; = 1388.8.

Príklad 16Example 16

-A hu t: - Phe - Arg - Phe - D - Λ I a-G l.y-Λ rg - I I e - Asp - A rg- I 1 e - G I y S použitím Fmoe-Ahu t-OH namiesto Fmoc-βΛ I a-OII sa postupom opísaným v príklade 1 pripraví surový peptid, ktorý sa prečistí. chromátograficky v opísaných podmienkach (20 % na 80 % B zči 10 minút, retcnčný čas 4,35 minút).-A hu t: - Phe - Arg - Phe - D - aI aG ly-Λrg - IIe - Asp - rrg-Ie - GI y Using Fmoe-Ahu t-OH instead of Fmoc-βΛ I and The crude peptide was purified according to the procedure described in Example 1. chromatographically under the conditions described (20% to 80% B for 10 minutes, retention time 4.35 minutes).

FAB-MS (M+H)+ = 1374,8.FAB-MS (M + H) &lt; + &gt; = 1374.8.

Príklad 17 <-G l.y - Phe - A rg - Phe - D - A I a-G I y - A rg- 1 Ie-Asp-A rg- 1 I e-G I y ηExample 17 <-Gl.y-Phe-Ag-Phe-D-Al-a-G-y-A-g-1e-Asp-A-g-1e-G I y

S použitím Fmoc-G l.y-OH namiesto Fiiioc-βΛ I a-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa prečistí chromátografieky v opísaných podmienkach (20 % na 80 % B za 10 minút, retcnčný čas 4,45 minút).Using Fmoc-G ly-OH instead of Fiiioc-β-I and -OII, the crude peptide was purified as described in Example 1 and purified by chromatography under the conditions described (20% to 80% B in 10 minutes, retention time 4.45 minutes). ).

FAB-MS (M+H)+ = 1346,8.FAB-MS (M + H) &lt; + &gt; = 1346.8.

II

Príklad 18.Example 18.

-pAla-Arg-Phe-D-Λ Ia-GIy-Arg-I Ie-Asp-Arg-I Ie-GIyS použitím v príklade I opísaných Fmoe-am inokyseI í n sa získa surový peptid, ktorý sa prečistí ch ronia tograf i cky v opísaných podmienkach (20 % na 80 % B za 10 mínu t, retenčný čas 3,25 m i nút) .[alpha] -Ala-Arg-Phe-D-Ia-Gly-Arg-Ie-Asp-Arg-Ile-GlyyS using the Fmoe-am inocyanine described in Example I gave a crude peptide which was purified by chromatography. Under the conditions described (20% to 80% B in 10 min t, retention time 3.25 min).

FAB-MS (M+H)+ =1213,8.FAB-MS (M + H) &lt; + &gt; = 1213.8.

Príklad 19Example 19

-Aca-A rg-Phe-D-ΛIa-GIy-Λ rg-I Ie-Asp-A rg-I Ie-GIyS použitím Fmoe-Aea-OII namiesto Fmoe-βΑ I a-ΟΙΊ sa postupom opísaným v príklade 1 získči surový peptid, ktorý sa prečistí ch romá togra f: i cky v opísaných podmienkach (20 % na 80 % B za 10 minút, retenčný čas 3,45 minút).-Aca-Ag-Phe-D-Ia-Gly-Ig-Ie-Asp-Ag-Ie-GIyS using Fmoe-Aea-OII instead of Fmoe-βΑ I a-ΟΙΊ is obtained by the procedure described in Example 1 the crude peptide which was purified by chromatography under the conditions described (20% to 80% B in 10 minutes, retention time 3.45 minutes).

FAB-MS (M+ll)+ = 1255,8.FAB-MS (M + 11) + = 1255.8.

Príklad 20 p Aund-A rg - Phe-D-A I a-G 1 y-Λ rg- I I e-Asp-Arg-I le-GlyS použitím Fiiioc-Aurid-OII namiesto Fmoe-βΑ I a-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa prečistí chromatograf icky v opísaných podmienkach (20 % nti % B za 10 minút, retenčný čas 5,15 minút).Example 20 A Aund-rrg-Phe-DA I aGlγ-Λrg-II e-Asp-Arg-Ile-GlyS using Fiiioc-Aurid-OII instead of Fmoe-βΑ I a-011 with the procedure described in Example 1 to give the crude peptide, which is purified by chromatography under the conditions described (20% nti% B in 10 minutes, retention time 5.15 minutes).

FAB-MS (M+ll)+ = 1325,8.FAB-MS (M + 11) + = 1325.8.

- 66 Príklad 21 r- Aca - Pbe - A ľg - Pbe-Aoc-A ľg- 1 le-Asp-Arg-I Ie-GI yS použitím í'moe-Aea-OII namiesto a Fmoe-Aoe-OII síi postupom opísaným v príklade I l'moe- β Λ I a-OH p r i praví surový peptid, ktorý sa prečistí ch ronia togra ľ i eky v opísaných podmienkach (5 % na 80 % B za 11 minút, retenčný čas 7,10 minút) .66 Example 21 r-Aca-Pbe-A'g-Pbe-Aoc-A'g-11e-Asp-Arg-Ie-GlyS using Ilee-Aea-OII instead and Fmoe-Aoe-OII network as described above. in Example I, l'moe-β-Ia-OH, said crude peptide, which was purified by chromium toggle under the conditions described (5% to 80% B in 11 minutes, retention time 7.10 minutes).

FAB-MS (M+H)+ = 1416,2.FAB-MS (M + H) &lt; + &gt; = 1416.2.

Príklad 22Example 22

- βΑ I a-Phe-A rg-Pbe-D-A Ia-GI y-A rg-Λ i b-Asp-A rg-I I e-G IyS prídavným použitím Fmoe-Aib-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa prečistí chromatograf i eky v opísaných podmienkach (5 % na 80 % B za 11 minút, retenčný čas 5,70 minút).- βα Ia-Phe-rg-Pbe-DA Ia-Gly γg-βb-Asp-rgg-IeG IyS additionally using Fmoe-Aib-OII, as described in Example 1, yields a crude peptide which Purify the chromatographs under the conditions described (5% to 80% B in 11 minutes, retention time 5.70 minutes).

FAB-MS (M+ll) + =1217,8.FAB-MS (M + 11) + = 1217.8.

Príklad 23 i- β Al. a - Pbe-Aľg - Pbe-D-Λ I a-G I y-Aľg - l l.e - A i b-A rg- I I e-G I y-.Example 23 i-β Al. a - Pbe-Alg - Pbe-D-Ia-G I y-Alg - 11e - A i b-A rg-I e-G I y-.

S použitím Fmoc-A i b-Oľl namiesto Fmoe-Asp/tBu-OII sa postupom opísaným v príklade I pripraví surový peptid, ktorý sa prečistí ehromatograľ ieky v opísaných podmienkach (35 % na % za 13,5 minút, retenčný čas 3,70 minút).Using Fmoc-A and b-Ol1 instead of Fmoe-Asp / tBu-OII, the crude peptide was prepared as described in Example I and purified by chromatography under the conditions described (35% per% in 13.5 minutes, retention time 3, 70 minutes).

FAB-MS (M+ll)+ = 1330,9.FAB-MS (M + 11) + = 1330.9.

Príklad 24Example 24

-βΑI u-Phe-Λ rg-Phe- L-B Ľm-Λ ľg-I Ie-Asp-Arg-I le-GlyS použitím ľmoe-L-Btm-OII nami es Vo ľmoc-D-AIa-OH sa postupom opísaným v príklade I pripraví surový peplid, klorý sa prečistí chromátograficky v opísaných podmienkach (5 % na 80 % B za II minút, retenčný čas 5,90 minút).-βαI-Phe-grg-Phe-LB mm-ΛΛg-Ie-Asp-Arg-Ile-GlyS using momoe-L-Btm-OII us in Vmoc-D-Ala-OH with the procedure described in Example I prepared a crude peptide, which was purified by chromatography under the conditions described (5% to 80% B in II minutes, retention time 5.90 minutes).

FAB-MS (M+H)+ = 1372,7.FAB-MS (M + H) &lt; + &gt; = 1372.7.

Príklad 25 pβΑΙa-Phe-Arg-Phe- D-B tm-A rg-1 I e-Asp-A rg- 1 le-GlyS použitím Fmoc-D-Btm-OII namiesto Fmoe-D-Λ 1 a-OII sa postupom opísaným v príklade 1 získti surový peptid, ktorý sa prečistí chromatograficky v opísaných podmienkach (5 % na 80 % B za 11 minút, retenčný čas 6,05 minút).EXAMPLE 25 [beta] -α-Phe-Arg-Phe-DB [gamma] -Arg-11e-Asp-Agg-11e-GlyS using Fmoc-D-Btm-OII instead of Fmoe-D-Λ 1 a-OII with the procedure described in Example 1, a crude peptide is obtained, which is purified by chromatography under the conditions described (5% to 80% B in 11 minutes, retention time 6.05 minutes).

FAB-MS (M+H)+ = 1372,7.FAB-MS (M + H) &lt; + &gt; = 1372.7.

Príklad 24 i-βΑΙ. a - Phe-A rg - Phe - P ro-G I y-Λ rg - I I e-Asp-A rg - 1 le-Gly-,Example 24 i-βΑΙ. and - Phe-A rg - Phe-P r-G I y-f rg - I e-Asp-A rg - 1 le-Gly-,

S použitím Fmoc-Pro-OH namiesto Fmoc-D-Λ I a-OII sa postupom opísaným v príklade 1 pripraví surový peptid, ktorý sa prečistí ehromatograficky v opísaných podmicnkach (5 % na % za 11 minúť, retenčný čas 6,15 minút).Using Fmoc-Pro-OH instead of Fmoc-D-a I-OII, the crude peptide was prepared as described in Example 1 and purified by ehromatography in the described conditions (5% to% in 11 minutes, retention time 6.15 minutes). .

FAB-MS (M+H)+ = 1386,8.FAB-MS (M + H) &lt; + &gt; = 1386.8.

II

-βΛI a-Phe-Λ rg-Phe-D-P ro-GIy-Λ ľg-I I e-Asp-A ľg-I Ie-GIy- 68 Príklad 27-βΛI α-Phe-Ig-Phe-D-Poly-Gly-Ig-Ile-Asp-Al-Ig-Ile-Gly-68 Example 27

S použitím Fmoc-D-Pro-OH namiesto Fmoc-D-A I a-OII sa postupom opísaným v príklade sa prečistí eh ronia togra f'i eky 80 % B za 11 minút, retenčný FAB-MS (M+ll)+ = 1386,8.Using Fmoc-D-Pro-OH instead of Fmoc-DA I a-OII, the procedure described in the example was purified to 80% B of fluorophore to 11 minutes, retention FAB-MS (M + 11) + = 1386 , the eighth

Príklad 28Example 28

-Ty r-A rg-Phe- D-Λ Ia-GI y-A rg-I I e-Asp-A rg-I le-Gly1 pripraví surový’ pept i d, ktorý v opísaných podmienkach (5 % na čas 6,35 m i nú t) .-Ty rAg-Phe-D-Ia-GlyArg-Ile-Asp-Ag-Ile-Gly1 prepares the crude peptide id, which under the conditions described (5% for a time of 6.35 min. ).

S prídavným použitím Fmoe-Ty r ( tBu)-011 a bez Fmoc-βΛ I a-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa prečistí eh ronia tograf i eky v opísaných podmienkach (5 % na 80 % B za II minút, retenčný čas 5,40 minút). FAB-MS (M+!l)+ = 1306,0.With the additional use of Fmoe-Ty r (tBu) -011 and without Fmoc-β-I and-011, the crude peptide is purified as described in Example 1 and purified by chromatography under the conditions described (5% to 80% B in II minutes, retention time 5.40 minutes). FAB-MS (M + 1) + = 1306.0.

Príklad 29Example 29

Ty r(BzI)-A rg-Phe-D-Λ Ia-GI y-A rg-I Ic-Asp-Arg-I I e-G I yTyr (BzI) -Arg-Phe-D-Ia-Gly-Arg-I Ic-Asp-Arg-Ile-Gly

S prídavným použitím Fmoe-Ty r (Bz l )-011 a bez Fmoe-βΑΙ a-OII sa postupom opísaným v príklade 1 pripraví surový peptid, ktorý sa prečistí ch ronia tog raf i eky v opísaných podmienkach (5 % na 80 % B za 11 minút, retenčný čas 6,10 m i n ú t) .With the additional use of Fmoe-Tyr (Bz1) -011 and without Fmoe-βΑΙa-OII, the crude peptide was prepared as described in Example 1 and purified by chromatography of the reagents under the conditions described (5% to 80% B). 11 min, retention time 6.10 min t).

FAB-MS (M+H)+ = 1395,9.FAB-MS (M + H) &lt; + &gt; = 1395.9.

Príklad 30Example 30

- Phe-A rg-Ty r -D-Λ Ia-GI y-A rg-1 I e - Asp - A rg- I I e -(ϊ I y S prídavným použitím Fmoc-Ty r ( l'Bu)-OH a bez Fmoe-βΛΊ a-OII sa postupom opísaným v príklade I pripraví surový peptid, ktorý sa prečistí chromatograficky v opísaných podmienkach (5 % na 80 % B za 11 minúť, retenčný čas 6,55 minút) .- Phe-A rg-Ty r -D-Λ Ia-Gly A rg-11e - Asp - A rg-IIe - (ϊ I y With additional use of Fmoc-Tyr (1'Bu) -OH and without The crude peptide was purified by chromatography as described in Example I (5% to 80% B in 11 minutes, retention time 6.55 minutes) as described in Example I.

FAB-MS (M+H)+ = 1 305,9.FAB-MS (M + H) &lt; + &gt; = 1 305.9.

Príklad 31Example 31

-Phe-A rg-Tyr(BzI)- D-A Ia-GIy-Λ rg-I 1 e-Asp-A rg-1 I e-G IyS prídavným použitím Fmoc-Tyr(BzI)-OH a bez Fmoc-βΑΙ a-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa prečistí ch ronia tograf i eky v opísaných podmienkach (5 % na 80 % B za 11 minút, retenčný čas 7,10 minút). FAB-MS (M+H)+ = 1395,9.-Phe-A rg-Tyr (BzI) -Da Ia-GIy--rg-11e-Asp-A rg-11eG IyS additionally using Fmoc-Tyr (BzI) -OH and without Fmoc-βΑΙ a-OII The crude peptide was purified according to the procedure described in Example 1 and purified by chromatography under the conditions described (5% to 80% B in 11 minutes, retention time 7.10 minutes). FAB-MS (M + H) &lt; + &gt; = 1395.9.

Príklad 32 i-βΑΙ a - Phe - A rg - Phe - L-C I g-A rg - I I e-Asp- A rg - I I e -G I y ->Example 32 i-βΑΙa - Phe - A rg - Phe - L-C I g-A rg - I e-Asp- A g - I e -G I y ->

S použitím Fnioe-L-CIg-OH namiesto Fmoc-D-Λ I a-OII sa' postupom opísaným v príklade 1 pripraví surový peptid, ktorý sa prečistí chromatograficky v opísaných podmienkach (5 % na % B za 11 minút, retenčný čas 6,90 minút).Using Fnioe-L-CIg-OH instead of Fmoc-D-III and -OII, the crude peptide was prepared as described in Example 1 and purified by chromatography under the conditions described (5% to% B in 11 min, retention time 6). , 90 minutes).

FAB-MS (M+H)+ = 1400,8.FAB-MS (M + H) &lt; + &gt; = 1400.8.

Príklad 33 i-βΑ 1 a - Phe-Λ rg - Phe-D-Λ I a-G I y-Arg-N I e-Asp-A rg - I I e-G 1 yS prídavným použitím Fmoc-NIe-OII sa postupom opísaným v príklade 1 pripraví surový peptid, ktorý sa prečistí chromátograf.i cky v opísaných podmienkach (5 % na BO % B za minút, retenčný čas 6,40 minút).EXAMPLE 33 i-βΑ 1 α-Phe-grg-Phe-D-aGaγ-Arg-N-e-Asp-rrg-II eG 1γS additionally using Fmoc-NIe-OII with the procedure described in Example 1 prepares the crude peptide, which is purified by chromatography as described (5% on BO% B per minute, retention time 6.40 minutes).

FAB-MS (M+H)+ = 1360,4.FAB-MS (M + H) &lt; + &gt; = 1360.4.

Príklad 34 r β Ala-Phe - A i:g-Cha-D-Λ I a-G I y - A rg-Me t-Asp-A rg- I le-.EXAMPLE 34 [beta] -Ala-Phe-A1: g-Cha-D-[alpha] -Gly-Arg-Me-Asp-A-g-Ile-.

Syntéza peptidov sči uskutočňuje nči syntetizátore peptidov ACT200 firmy Advanced GhcmTech s použitím Fmoc-s tralég i e s použitím modifikovaného riadiaceho programu. 50 ml trepac.í. reaktor sa naplní 1 g 2-metoxybenzyI eš te rove j živice firmy Baehem, Švajčiarsko, ktorá ho I a privedená do cyklu 0,5 mmól Fmoc-i z i Ieucínu. Boli použité nasledujúce deriváty aminokyselín: Fmoe-Λ rg (M Ľ r )-011, Fmoc-Me t-011,Peptide synthesis is accomplished using Advanced GhcmTech ACT200 peptide synthesizers using Fmoc-s tralgis using a modified control program. 50 ml shaker. The reactor was charged with 1 g of 2-methoxybenzyl ether resin from Baehem, Switzerland, which was fed into a 0.5 mmole Fmoc-1 / iucine cycle. The following amino acid derivatives were used: Fmoe-(rg (M r r) -011, Fmoc-Me t-011,

Fmoc-Asp ( tBu) - OH , Fmoc-G I y - OH , Fmoe- D-Λ I a-011 Fmoe-Cha-OH a Fmoc-βΑ I a-OII, Fmoc-βΑ I a-011. Kopulácia sa vykonáva 3 ekvivalentami Fmoc-aminokyseI iny, 1 - hyd roxy henz.o t r i azo I u a dicyklohexyIkarhodi i m idu (doba kopulácie 40 minút). Po vykonaní TNBS-testu sa pri neúplnej aeyláeii opakuje kopuláciu s použitím rovnakých reagentov či prebytku. Pri neúplnej acy 1 ác i j sa naštartuje ďalší cyklus syntézy. Odštiepenie Fmoc-chrán iacíeh skupín sa vykonúi 20 % p i pe r i d i nom v DMF (jedenkrát 3 minúty, jedenkrát 15 minút) . Medzi reakciami sa živica premýva lOkrát DMF. Po vytvorení sekvencie H^AI.a-Phe-Arg(Mtr)-ChaD-Ala-Gl y-A rg (M t r ) - Me t - Asp ( t Bu) - A rg (M t r) - IΊ e- nči pol ymé r nom nosiči sa ž i v i cči dôkladne premyje d i ch I órmelanom či potomFmoc-Asp (tBu) -OH, Fmoc-Gly-OH, Fmoe-D-Ia-011 Fmoe-Cha-OH and Fmoc-βΑ I a-OII, Fmoc-βΑ I a-011. Coupling is carried out with 3 equivalents of Fmoc-amino acid, 1-hydroxydenzoyltriazole and dicyclohexylcarbonide (coupling time 40 minutes). Following the TNBS assay, coupling with the same reagents or excess is repeated in the case of incomplete aeylase. In the case of incomplete acylation, the next synthesis cycle is started. Cleavage of the Fmoc-protecting groups is performed with 20% buffer in DMF (once for 3 minutes, once for 15 minutes). Between the reactions, the resin was washed 10 times with DMF. After forming the sequence H 1 Al.a-Phe-Arg (Mtr) -ChaD-Ala-Gly-Yγg (M tr) -Met-Asp (t Bu) -Arg (M tr) -Effective Polymme The carrier is rinsed thoroughly with dichloromethane or thereafter

5krát vždy 20 ml. 1 % roztoku kyseliny Ľ ľ i ľ I uó roe tove j v tlichlórmetanc pri teplote miestnosti maximálne po 10 rniiiúl (až do intenzívneho Hlavého zafarbenia živice). Roztoky sa spoja a oddes ti I u j ú vo vákuu. Zvyšok sa rozotrie s éterom, éter sa dekantuje, peptid sa suší v prúde dusíka a vyberie sa do 1.30 ml DMF, pil sa nastaví na asi 8,5 t r i e ty I am í ηοηι, roztok sa ochladí na -20 a pridá sa 0,2 g (0,75 mmól) d i ľeny I ľosľo-20 nom °C, hod í n na 8,5. ľotom rozotrie s e téry laz í du. Zmes sa nechá stád 48 hodín pr pri 4 Hodnota pil sa udržuje trietylam sa DMF odstráni vo vákuu, zvyšok sa dvakrá rom, éter sa zleje a zvyšok sa vysuší v prúde dusíka. Chrániace skupiny bočného reťazca su odštiepia kyselinou trifluóroctovou/anizolom (90/10) za 24 hod í n. Roztok sa zahustí vo vákuu, zvyšok sa di.geruje s éterom a suší. Surový peptid sa prečistí cez Dynamax Cl8, /um-stípee (10 x 2,15 cm) s použitím gradientov Λ: voda/aceton í t r i l/kysel i na tri ľluóroctová 95/5/0,2 a B: detto 20/80/0,2 od 10 % B na 80 % B za 11 minút, prietok 20 ml, retenčriý čas 7,80 minúť. Po vysušení vymrazením sa získa amorfný bezfarebný prášok. FAB-MS (M+H)+ = 1327,9.5 times 20 ml each. Of a 1% solution of the acid at room temperature for a maximum of 10 microns (up to the intense main color of the resin). The solutions were combined and stripped under vacuum. The residue is triturated with ether, the ether is decanted, the peptide is dried under a stream of nitrogen and taken up in 1.30 ml of DMF, the pH is adjusted to about 8.5 times and the solution is cooled to -20 and 0, 2 g (0.75 mmol) of diene I-20 [deg.] C., suitable for 8.5. smear with e ery lazid du. The mixture is left to flock for 48 hours at 4. The pH is maintained with triethylamine, DMF is removed in vacuo, the residue is doubled, the ether is decanted and the residue is dried under a stream of nitrogen. The side chain protecting groups are cleaved with trifluoroacetic acid / anisole (90/10) in 24 hours. The solution is concentrated in vacuo, the residue is partitioned with ether and dried. The crude peptide was purified over a Dynamax C18, µm-column (10 x 2.15 cm) using Λ: water / acetone / tril / acid gradients to three fluoroacetic 95/5 / 0.2 and B: detto 20/80 / 0.2 from 10% B to 80% B in 11 minutes, 20 ml flow rate, retention time 7.80 minutes. After freeze-drying, an amorphous colorless powder is obtained. FAB-MS (M + H) &lt; + &gt; = 1327.9.

Príklad 35 βAla-Arg- Phe-D- A I a-Gly- Arg- Π e-Asp-A rg - I I eExample 35 βAla-Arg-Phe-D-A1 and -Gly-Arg-Π e-Asp-A rg-I I e

S použitím Fmoe- I I e-Oľl namiesto Fmoe-Met-OH a bez Fmoc-Cha-OH sa postupom opísaným v príklade I získa surový pept.id, ktorý sa čistí eh roma tograť i eky v opísaných podmienkach (20 % na 80 % B za 10 minút, retenčriý čas 3,25 minút) FAB-MS (M+H)+ = 1156,7.Using Fmoe-II e-Ol1 in place of Fmoe-Met-OH and without Fmoc-Cha-OH, the crude peptide was purified by the procedure described in Example I which was purified by eh roma migrations under the conditions described (20% to 80%). B over 10 min, retention time 3.25 min) FAB-MS (M + H) + = 1156.7.

Príklad 36 pAca-Arg - Phe-D-Λ Ia-G1 y-Arg-I Ie-Asp-I le-iExample 36 pAca-Arg-Phe-D-Ia-Gly-Arg-Ie-Asp-Ile-i

S použitím Fmoc-Ača-OII namiesto Fmoc-|JA I a-011 a Fmoc-Ile-OH namiesto Fmoe-Met-OH a bez Fmoc-Cha-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí ehromatograficky v opísaných podmienkach (20 % na X0 % B za 10 minút, retenčný čas 3,70 minút)Using Fmoc-Aca-OII instead of Fmoc-IA-a-011 and Fmoc-Ile-OH instead of Fmoe-Met-OH and without Fmoc-Cha-OII, the crude peptide was obtained as described in Example 1 and purified by ehromatography in conditions described (20% to X0% B in 10 minutes, retention time 3.70 minutes)

FAB-MS (M+íl)+ = 119X.X.FAB-MS (M + 1) + = 119X.X.

Príklad 37 pAund-Arg-Phe-D-Λ I a-G I y-Arg- I I e-Asp -Arg- I I e-iExample 37 pAund-Arg-Phe-D-Ia-Gly-Arg-Ile-Asp -Arg-Ile-i

S použitím Fmoc-Aund-011 namiesto Fmoc-βΛ I a-011 a Fmoe-Ile-OH namiesto Fmoe-Me t-OH a bez Fmoc-Cha-OII sa postupom opísaným v príklade 1 získa surový pep t i d, ktorý sa čistí chromatograficky v opísaných podmienkach (20 % na X0 % B za 10 minút, retenčný čas 5,55 minút)Using Fmoc-Aund-011 instead of Fmoc-β-I a-011 and Fmoe-Ile-OH instead of Fmoe-Me t-OH and without Fmoc-Cha-OII, a crude peptide was obtained as described in Example 1, which was purified by chromatography under the conditions described (20% to X0% B in 10 minutes, retention time 5.55 minutes)

FAB-MS (M+H)+ = 1268,9.FAB-MS (M + H) &lt; + &gt; = 1268.9.

Príklad 3X ,— Aca- Phe - A rg - Phe - D-Λ I a-G I y - A rg - 1 I e - Asp - A rg - I I e -iExample 3X, -Aca-Phe-Ag-Phe-D-Ia-Gy-Agg-11e-Asp-Agg-Ie-i

S použitím Fmoc-Aca-OH namiesto Fmoc-βΛ I a-011 a Fmoe-I.le-OH namiesto Fmoe-Me t-OH a bez Fmoc-Cha-OII sa postupom opísaným v príklade 1 získa surový peplid, ktorý sa čistí chromatograficky v opísaných podmienkach (20 % na X0 % B za 10 minút, retenčný čas 4,90 minút)Using Fmoc-Aca-OH instead of Fmoc-β-I a-011 and Fmoe-I.le-OH instead of Fmoe-Me t-OH and without Fmoc-Cha-OII, the crude peptide was purified as described in Example 1 and purified chromatographically under the conditions described (20% to X0% B in 10 minutes, retention time 4.90 minutes)

FAB-MS (M+ll)+ = 126X,9.FAB-MS (M + 11) &lt; + &gt; = 126X, 9.

Príklad 39 .- β Al a ~ Phe - A rg - Phe - D - Λ I a-G I y - A rg- I 1 e - Asp - A rg- I 1 eS použitím Fmoe-1 I e-OII namiesto Fmoe-Cha-OH sa postupom opísaným v pri klade peptid, ktorý sa čistí ch ronia tog.ra ľ i eky v kach (20 % na 80 % B za 10 minút, retenčný FAB-MS (M+H)+ = 1304,0.Example 39 .beta.alpha.-Phe-A rg-Phe-D-Λ I aG I y-A rg-I e-Asp-A rg-I e e using Fmoe-1 I e-OII instead of Fmoe-Cha -OH, following the procedure described in the example for peptide purification of quartz crystals (20% to 80% B in 10 minutes, retention FAB-MS (M + H) + = 1304.0).

Fmoe-Met-OH a bez 1 p r i p rav í surový opísaných podmienčas 4,50 minút)Fmoe-Met-OH and without the raw materials described above (4.50 minutes)

Príklad 40Example 40

P βΑΙα - Phe - A rg- Phé - D-Λ I a-G I y - Lys - N I e-Asp-A rg- 1 I e-.P βΑΙα - Phe - A rg-Phe - D-Λ a-G γ-Lys-N I e-Asp-A rg-11 e-.

S použitím Fmoe-Lys(BOC)-OH a Fmoc-N I e-OII namiesto Fmoc-Met-OII a bez Fmoe-Cha-OH sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí ch ronia tograf i eky v opísaných podmienkach (5 % na 80 % B za 11 minút, retenčný čas ň,10 minút)Using Fmoe-Lys (BOC) -OH and Fmoc-N I e-OII instead of Fmoc-Met-OII and without Fmoe-Cha-OH, the crude peptide was purified as described in Example 1 to be purified by chromatography. conditions described (5% to 80% B in 11 minutes, retention time h, 10 minutes)

FAB-MS (M+H)+ = 1275,0.FAB-MS (M + H) &lt; + &gt; = 1275.0.

Príklad 41 ι-βΑ1^- Phe-Arg-Se r (Bz I ) -I)-A I a-G I y- Lys-N 1 e-Asp-Arg- I I e-iEXAMPLE 41 [beta] - [beta] -1-Phe-Arg-Ser (Bz I) -I) -A [alpha] -Gly-Lys-N1e-Asp-Arg-Ie-i

S prídavným použitím Fmoe-Lys (BOC)-011 a Fmoe - Se r (Bz I ) -OH namiesto Fmoe-Cha-OII a bez Ftttot-N l e-OII sá postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatograf icky v opísaných podmienkach (5 % na 80 % B zči 10 minút, retenčný čas 6,20 minút)With the additional use of Fmoe-Lys (BOC) -011 and Fmoe-Se r (Bz I) -OH instead of Fmoe-Cha-OII and without Ftttot-N 1 e-OII, the crude peptide is purified as described in Example 1 and purified chromatographically under the conditions described (5% to 80% B for 10 minutes, retention time 6.20 minutes)

FAB-MS (M+ll) + = 1.305,0.FAB-MS (M + 11) + = 1.305.0.

Pr.i klad 42 pAca-Phe-Lys - Phe - D-Λ l.a-G I y-Arg- I I e-Asp-Λ rg-I I e —,EXAMPLE 42 pAca-Phe-Lys-Phe-D-Ph.a-Gly-Arg-Ile-Asp-Flu-Ile -,

S použitím ľmoc-Aca-OII namiesto Fmoc-βΛ I a-OII a Finoc-I l.e-OII nam iesto Fmoc-Met-OH a Fmoe-Lys (BOC)-011 bez Fmoc-Cha-OH sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí eh ronia tograf i eky v opísaných podmienkach (5 % na 80 % B za 11 minút, retenčný čas.6,60 minút) FAB-MS (M+H)+ =1318,2.Using Ilmoc-Aca-OII instead of Fmoc-βΛ I a-OII and Finoc-I le-OII instead of Fmoc-Met-OH and Fmoe-Lys (BOC) -011 without Fmoc-Cha-OH, following the procedure described in Example 1 to give the crude peptide, which is purified by chromatography under the conditions described (5% to 80% B in 11 minutes, retention time 6.60 minutes) FAB-MS (M + H) + = 1318.2.

Príklad 43 i-Aca - Phe - Lys - Phe-D-Λ Ia-G1 y- Ly s - 1 I e - Asp - A rg - 1 I e —Example 43 i-Aca-Phe-Lys-Phe-D-Ia-G1y-Ly s-1 Ie-Asp-Ag-1 Ie-

S prídavným použitím Fmoe-Lys (BOC)-011 a Fmoe-Aea-Oľl namiesto Fmoe-βΑ I a-OII a Fmoe-Ile-OII namiesto Fmoe-Me t-OH a bez Fmoc-Cha-OH sa postupom opísaným v príklade I získa surový peptid, ktorý sa čistí chromatograľ ieky v opísaných podmienkach (5 % rút 80 % B za 11 minút, retenčný čas 6,40 minút) FAB-MS (M+H)+ = 1290,2.With the additional use of Fmoe-Lys (BOC) -011 and Fmoe-Aea-Ol-1 instead of Fmoe-βΑ I a-OII and Fmoe-Ile-OII instead of Fmoe-Me t-OH and without Fmoc-Cha-OH with the procedure described in the example I gives the crude peptide, which is purified by chromatography under the conditions described (5% ruthenium 80% B in 11 minutes, retention time 6.40 minutes) FAB-MS (M + H) + = 1290.2.

Príklad 44 j-Aca-Phe-Λ rg-Cha-I)-A 1 a-G I y - Λ rg-I le-Asp-Arg-I le-| tEXAMPLE 44 j-Aca-Phe-Ig-Cha-III-A1a-Gly-Ig-Ile-Asp-Arg-Ile- | T

S použitím Fmoc-Aca-OH namiesto Fmoc-βΛ I a-011 a Fmoe.-I le-OII namiesto Fmoe-Met-OH sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí ehromatograficky v opísaných podmienkach (5 % na 80 % B za 11 minút, retenčný čas 7,35 minút)Using Fmoc-Aca-OH instead of Fmoc-β-I a-011 and Fmoe.-I le-OII instead of Fmoe-Met-OH, a crude peptide was obtained as described in Example 1, which was purified ehromatographically under the conditions described (5% on 80% B in 11 minutes, retention time 7.35 minutes)

PAB-HS i··!·!!,, v, f 2PAB-HS i ··! · !! ,, v, f 2

Príklad 45 ,-Aca- D - Phe-Arg-Phe-D-ΛIa-GIy-Λ rg-I I e-Asp-A rg- I I e-.Example 45, -Aca-D-Phe-Arg-Phe-D-Ia-Gly-Ig-Ie-Asp-Ag-Ie-.

S použitím Fiiioc-Aea-OII u a m i es t o Fmoc - βΛ I a - 011 a Fmoc- II e-011 namiesto ľmoc-Me ť-OII a ľmoe-D-Phe - 011 a bez Fmoe-Cha-OII sa postupom opísaným v príklade I získa surový peptid, ktorý sa čistí chromálograľ ieky v opísaných podmienkach (5 % na 80 % B za 11 minút, retcnčný čas 6,35 minút) FAB-MS (M+ll)+ = 1 346,2.Using Fiiioc-Aea-OII es to Fmoc-β-I and-011 and Fmoc-II e-011 instead of Moc-Me M-OII and Imoe-D-Phe-011 and without Fmoe-Cha-OII with the procedure described in Example I yields a crude peptide that is purified by chromatography under the conditions described (5% to 80% B in 11 minutes, retention time 6.35 minutes) FAB-MS (M + 11) + = 1346.2.

Príklad 46 ,-Aea - Cha - A rg - Phe - D- Λ I a-G 1 y - A rg- I I c - Asp - A rg- I I c — .Example 46, -Aea-Cha-Ag-Phe-D-Ia-Gly-Agg-Ic-Asp-Agg-Ic-.

S použitím Fiiioc-Aea-OII namiesto ľmoe - βΛ I a-OII a Fmoc-I lc-011 namiesto Fmoc-Me t-011 a sa postupom op í saným v príklade 1 získa surový peptid, ktorý sa čistí chromatograf.ieky v opísaných podmienkach (5 % na 80 % B za 11 minút, retenčný čas 7,35 minút)Using Fiiioc-Aea-OII instead of β-I α-OII and Fmoc-I 1c-011 instead of Fmoc-Me t-011 and following the procedure described in Example 1, a crude peptide is obtained which is purified by chromatography in the described conditions (5% to 80% B in 11 minutes, retention time 7.35 minutes)

FAB-MS (M+ll)+ = 1352,0.FAB-MS (M + 11) + = 1352.0.

Príklad 47 |— βΑΊ,α-Phe-A rg-Cha-D-Λ I a-G I y-A rg- I le-Asp-Arg- I Iľ-iExample 47 | - βΑΊ, α-Phe-rg-Cha-D-a a-G γ-γ-γ-γ-Asp-Arg-III-I

S použitím Fmoc- I 1 c-011 namiesto Fmoc-Mct-0H sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatograíiou za opísaných podmienok (5 % na 80 % B zti 11 min, retenčný čas 5,90 min).Using Fmoc-11c-011 instead of Fmoc-Mct-0H, following the procedure described in Example 1, a crude peptide was obtained which was purified by chromatography under the conditions described (5% to 80% B for 11 min, retention time 5.90 min) .

FAB-MS (M + li)+ = 1309,5FAB-MS (M + 1) + = 1309.5

Príklad 4« — βΑ I a-(4N02)Phe-Λ rg-Phe-D-Λ Ia-GIy-Λ rg-I I e-Asp-Λ rg-I I e- Za prídavného použitia Fmoe-(4-N02) Phe-011 a Finoc-I le-011 namiesto Fmoe-Met-OII ti bez Fmoe-Cha-011 sa postupom opísaným v príklade 1 získa požadovaný surový peptid, ktorý sa čistí eh roma t og raf i <m zri opísaných podmienok (5 % na 80 % B za 10 min, retenčný čas 6,85 min).Example 4 '- βα Ia- (4NO2) Phe-Ig-Phe-D-Ia-Gly-Ig-Ie-Asp-Ig-Ie- With additional use of Fmoe- (4-NO2) ) Phe-011 and Finoc-I le-011 instead of Fmoe-Met-OII ti without Fmoe-Cha-011 yield the desired crude peptide according to the procedure described in Example 1, which is purified according to the conditions described above ( 5% to 80% B in 10 min, retention time 6.85 min).

FAB-MS (M+ll)+ = 1348,9FAB-MS (M + 11) + = 1348.9

Príklad 49 — βΑ la-Phe-Lys-Cha-Ι)-Λ I a-G I y-Arg-I 1 e-Asp-Λ ľg-I 1 e- Za prídavného použitia Fmoe-Lys (BOC)-OII a Fmoe-Ile-OH namiesto Fmoe-Met-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí ehromalografiou za opísaných podmienok (5 % na 80 % B za 10 min, retenčný čas 6,75 min) FAB-MS (M+H)+ = 1281,9Example 49 - βα 1α-Phe-Lys-Cha-Λ I and Gly-Arg-11e-Asp-Ig-11e- With the additional use of Fmoe-Lys (BOC) -OII and Fmoe- Ile-OH instead of Fmoe-Met-OII gave the crude peptide as described in Example 1, which was purified by ehromalography under the conditions described (5% to 80% B in 10 min, retention time 6.75 min) FAB-MS (M + H) + = 1281.9

Príklad 50Example 50

- C.1 g-Λ rg-Cha- D- A 1 a-G I y-A rg- I I e-Asp-Arg-I I e —- C.1 g-grg-Cha- D-A1a-Gly-Agg-Ie-Asp-Arg-Ie -

Za použitia Fmoc-C 1 g-()ll namiesil) Fmoc- Ala-OII a l'mocI le-OH namiesto Fmoc-Me t-011 a bez Fmoc-Phe-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatografiou za opísaných podmienok (5 % na 80 % B za II nrin, retenčný čas 7,35 min).Using Fmoc-C 1 g - (III) mixed Fmoc-Ala-OII and 1'mocI le-OH instead of Fmoc-Me t-011 and without Fmoc-Phe-OII, the crude peptide was obtained as described in Example 1, which Purify by chromatography under the conditions described (5% to 80% B in II nrin, retention time 7.35 min).

FAB-MS (M+H)+ = 1259,8FAB-MS (M + H) &lt; + &gt; = 1259.8

Príklad 51 r pAla-(4N02)Phe-Arg-Cha-D-AIa-GIy-Arg- I le-Asp-Arg- I I c Za použitia Fmoc-(4-NO2) Phe-OII namiesto Fmoc-Phe-OH a Finoc- 1 le-OII namiesto Fmoc-Me t -011 sa postupom op í sanýni v príklade 1 získa surový peptid, ktorý sa čistí chromatografiou za opísaných podmienok (5 % na 80 % B za 10 min, retenčný čas 6,45 min).EXAMPLE 51 βAla- (4NO 2) Phe-Arg-Cha-D-Al-Gly-Arg-Ile-Asp-Arg-IIc Using Fmoc- (4-NO 2) Phe-OII instead of Fmoc-Phe-OH and Finoc-1 le-OII instead of Fmoc-Me t -011 gave the crude peptide following the procedure described in Example 1, which was purified by chromatography under the conditions described (5% to 80% B in 10 min, retention time 6.45 min) .

FAB-MS (M+II)+ = 1354,7FAB-MS (M + H) &lt; + &gt; = 1354.7

Príklad 52Example 52

- p A la-Ty r (bz I ) - Arg-Cha -1)-Λ I a-G I y-Arg- I 1 c-Asp-Arg- I I e —- p A la-Tyr (bz I) -Arg-Cha-1-Ia-Gy-Arg-Ic-Asp-Arg-Ie -

Za použitia Fmoc-Tyr(bzI)-OH namiesto Fmoc-Phe-OII a Fmoc-I le-OII namiesto Fmoc-Me Ľ-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí ch ronia tog ra78 f iou za opísaných podmienok (5 % na 80 % B za 10 min, retenčný čas 8,20 min).Using Fmoc-Tyr (bzI) -OH instead of Fmoc-Phe-OII and Fmoc-I le-OII instead of Fmoc-Me 1-011 gave the crude peptide as described in Example 1, which was purified by purification by chromatography to obtain a crude peptide. conditions (5% to 80% B in 10 min, retention time 8.20 min).

FAB-MS (M+H)+ = 1415,9FAB-MS (M + H) &lt; + &gt; = 1415.9

Príklad 53Example 53

- pAla-Ty r-Arg-Cha-D-A'l a-G I y-Aľg-I le-Asp-Arg-1 le —- pAla-Tyr-Arg-Cha-D-A'a-Gly-Al-Ig-Ile-Asp-Arg-11le -

Za použitia Fmoc-Ty r - / Ľ Bu / - 011 Fmoc-Ile-OH namiesto Fmoe-Met-OH sa príklade 1 zí.skti surový peptid, ktorý f iou zči opísaných podmienok (5 % retenčný čas 6,45 min).Using Fmoc-Tyr - (BuBu) - 011 Fmoc-Ile-OH instead of Fmoe-Met-OH, Example 1 was obtained to obtain the crude peptide which was in the described conditions (5% retention time 6.45 min).

FAB-MS (M+H)+ - 1325,8 namiesto I'moe-Phe-OII a postupom opísaným v sa čistí eh ronia l og rana 80 % B za 10 min.FAB-MS (M + H) + - 1325.8 in place of I'moe-Phe-OII and purification of ethanol and 80% B in 10 min as described.

Príklad 54Example 54

The-Arg-Cha-D-Λ I a-G I y-Arg- I I e-Asp-Arg- I I e—The-Arg-Cha-D-Ia-G-y-Arg-Ie-Asp-Arg-Ie e—

Za použitia Finoe-THc-OII namiesto Fmoc-βΛ I a-011 a Fiiioľ-Il.e-OH namiesto Fmoe-Met-011 a bez Fmoc-Phe-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromátogra- fiou za opísaných podmienok (5 % na 80 % B za 10 min, retenčný čas 6,45 min).Using Finoe-THc-OII instead of Fmoc-β-Ia-011 and FIIiol-II.e-OH instead of Fmoe-Met-011 and without Fmoc-Phe-OII, the crude peptide was obtained as described in Example 1, which was purified by chromatography - fou under the conditions described (5% to 80% B in 10 min, retention time 6.45 min).

FAB-MS (M+ll)+ = 1279,7FAB-MS (M + 11) + = 1279.7

Príklad 55 Γ-β A la - Phe - C ť r - Cha - D - Λ I a-G I y - A ľg -1 le-Asp-Arg-I I e—Example 55 Γ -β A 1a - Phe - T r - Cha - D - a I aG I y - ľ g -1 le-Asp-Arg-I e -

Za prídavného použitia miesto Fmoc-Met-OH sa postupom surový peptid:, ktorý sa čist i podmienok (5 % na 80 % B za 10 FAB-MS (M+ll)+ = 1310,6With additional use instead of Fmoc-Met-OH, the crude peptide was purified by the procedure (5% to 80% B in 10 FAB-MS (M + 11) + = 1310.6).

Fmoe-C t r-011 a l'moe-I I e - 011 na-, opísaným v príklade I pripraví ch ronia t og ra ľ i ou za opísaných min, retenčný čas 7,00 min).The Fmoe-C t-011 and l'moe-I e e-011 na, described in Example I, were prepared by chromatography on the described minutes (retention time 7.00 min).

Príklad 56Example 56

--The-Phe-Λ rg-Cha-D-Λ I a-G I y-A rg-I I e-Asp-A rg-I I e—- The-Phe--rg-Cha-D-a a-G y y-r rg-I e e-Asp-r rg-I e e—

Za použitia Fmoc-The-OII Fmoe-I I e-011 namiesto Fmoe-Me t-011 príklade T získa surový peptid, k f.iou za opísaných podmienok (5 retenčný čas 7,60 min).Using Fmoc-The-OII Fmoe-Ile e-011 instead of Fmoe-Me t-011 Example T, the crude peptide was obtained, f.iou under the conditions described (5 retention time 7.60 min).

FAB-MS (M+H)+ = 1426,7 namiesto Fmoc-βΑI a-OH a sa postupom torý sa čistí % na .80 % op i sariýin v chromá tograB za 10 min,FAB-MS (M + H) + = 1426.7 in place of Fmoc-βΑI α-OH and purified as follows to% 80% opiate in chromagraB in 10 min,

Príklad 57 — Clg-Arg-Cha-D-Ala-GIy-Arg-1 Ie-Asp-Arg-I I e—Example 57 - Clg-Arg-Cha-D-Ala-Gl-Arg-11e-Asp-Arg-11e-

Za použitia Finoe-C l.g-OII namiesto Fmoe-βΛ I a-OII a Fmoe-Ile-OII namiesto Fmoc-Met-OH a bez Fmoe - Phe-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistíUsing Finoe-C18-OII instead of Fmoe-βΛ I a-OII and Fmoe-Ile-OII instead of Fmoc-Met-OH and without Fmoe-Phe-011, the crude peptide was purified as described in Example 1 and purified

- 80 chromatograf i ou opísaných podmienok (5 % na 80 % 1$ za 10 min, retenčný čas 8,90 min). FAB-MS (M+H)+ = 1406,780 chromatography conditions described (5% to 80% $ 10 in 10 min, retention time 8.90 min). FAB-MS (M + H) &lt; + &gt; = 1406.7

Príklad 58 —Acéi-A rg - Phe-D-Λ Ia-GI y-Lys-N Ie-Asp-A rg- I I c—Example 58-Acéi-Arg-Phe-D-Pha-Gly-Lys-N Ie-Asp-Arg-Ic

Zíi prídavného použitia Fmoc-Lys (BOC)-011 a Fmoc-Aca-OII namiesto Fmoc-βΛ I a-0H a Finoc-N I e-011 namiesto Fmoc - Me t - 011 a bez Fmoc-Cha-OH sa postupom opísaným v príklade I získa surový pept.itt, ktorý sa čistí eh roma togra ľ i oli za opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 5,45 min). FAB-MS (M+ll)+ =1170,6Additional use of Fmoc-Lys (BOC) -011 and Fmoc-Aca-OII in place of Fmoc-β-I a-0H and Finoc-N I e-011 instead of Fmoc-Me t-011 and without Fmoc-Cha-OH with the procedure described in Example I, the crude peptide was purified, which was purified by ethanol chromatography under the conditions described (5% to 80% B in 11 min, retention time 5.45 min). FAB-MS (M + 11) + = 1170.6

Príklad 59Example 59

--Aca-A rg-Se r(BzI)-D-Ala-Gly-Lys-N I e-Asp-A rg-I I e—-Aca-A g-Se r (BzI) -D-Ala-Gly-Lys-N Ie-Asp-A g-Ie e-

Za použi t i aFor use

Fmoc-Aca-011 nam i cs to ľmoc- βΛ I a-OII,Fmoc-Aca-011 nam i cs to lmoc- βΛ I a-OII,

Fmoc-N.l e-OII namiesto Fmoc-Me t-OH ti Fmoc-Ser (Bz I )-011 namiestoFmoc-N.l e-OII instead of Fmoc-Me t-OH ti Fmoc-Ser (Bz I) -011 instead

Fmoc-Cha-OH sa peptid:, ktorý postupom opísaným v príklade I získa surový sa éislí eh roma tog ra ľ.i ou za opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 5,70 min). FAB-MS (M+ll)+ = 1200,5Fmoc-Cha-OH was the peptide obtained by the procedure described in Example I and was purified by flash chromatography under the conditions described (5% to 80% B in 11 min, retention time 5.70 min). FAB-MS (M + 11) &lt; + &gt; = 1200.5

-. 8 I-. 8 I

Príklad 60Example 60

- Aca-Phe-Arg-Phe-D-A Ia-GI y-Lys-N1 e-Arg-I le—- Aca-Phe-Arg-Phe-D-A Ia-Gly-Lys-N1 e-Arg-I le-

Za prídavného použitia Fmoe-Lys (BOC)-OH ľmoc-Aca-OII namiesto Fmoe-βΛ 1 a-OII a Fmoc-N I e-011 namiesto Fmoc-Me t-011 a bez Fmoe-Cha-OH ti ľmoe-Asp ( tBu)-011 sa postupom opísaným v prí klade 1 získa surový peptid, ktorý sa čistí chromátografj.ou za opísaných podmienok (5 % na 80 % B zti 11 .min, retenčný čas 7,10 min).With the additional use of Fmoe-Lys (BOC) -OH Li-Aca-OII instead of Fmoe-β-1 α-OII and Fmoc-N I e-011 instead of Fmoc-Me t-011 and without Fmoe-Cha-OH thimoe-Asp (tBu) -011 gave the crude peptide as described in Example 1, which was purified by chromatography under the conditions described (5% to 80% B for 11 min, retention time 7.10 min).

FAB-MS (M+ll)+ = 1089,5FAB-MS (M + 11) &lt; + &gt; = 1089.5

Príklad 61Example 61

--βΑΙ. a-Phe-A rg-Phe-D-Λ 1 a-G I y-Lys-N i e-A rg-I I e—--βΑΙ. α-Phe-rr-Phe-D-a 1 α-Gly-Lys-Nle-A rg-Ile

Za použitia Fmoc-Lys (BOC)-011 a Fmoc-N I e-011 namiesto Fmoc-Me t-OII bez Fmoc-Cha-Oll ti Fmoe-Asp ( tBu)-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sri čistí chromatografiou za opísaných podmienok (5 % na 80 % B za II min, retenčný čas 6,90 min).Using Fmoc-Lys (BOC) -011 and Fmoc-N11e-011 instead of Fmoc-Me t-OII without Fmoc-Cha-Olli Fmoe-Asp (tBu) -011, the crude peptide was obtained as described in Example 1, which was purified by chromatography under the conditions described (5% to 80% B in II min, retention time 6.90 min).

FAB-MS (M+ll)+ = 1160,6FAB-MS (M + 11) + = 1160.6

Príklad 62Example 62

--Aca-A rg-Phe-D-Λ Ia-GI y-Lys- N 1 e-A rg-I I e—- Ac-A-g-Phe-D-Ia-Gly-Lys-N 1 e-A-g-I I e -

Zti použitia Fmoc-Lys (BOC)-011 a Fmoe-Aca-OH namiesto Fmoe-βΑ Ι a-OII a Fmoe-N.l e-011 namiesto Fmoe-Met-OII ti bez postupom opísaným v príklade I získa surový sa čistí ehromatografiou za opísaných na 80 % B za 11 min, retenčný čas 5,95 min)Using Fmoc-Lys (BOC) -011 and Fmoe-Aca-OH instead of Fmoe-βα-α-OII and Fmoe-Nl e-011 instead of Fmoe-Met-OII, the crude is purified by ehromatography without the procedure described in Example I. described at 80% B in 11 min, retention time 5.95 min)

FAB-MS (M+H)+ = 1055,7 rmoc-cna-un sa peptií, ktorý podmienok (5 %FAB-MS (M + H) + = 1055.7 rmoc-cna-un with peptides which conditions (5%

Príklad 63Example 63

-- βΛ.l.a-Arg - Phe-D-A I a-G I y - Lys - N I e - A rg- I I e—- βΛ.l.a-Arg - Phe-D-A I a-G I y - Lys - N I e - A rg-I I e—

Za použitia Fmoe-Lys(BOC)-OH a Fmoe-N I e-OII namiesto Fmoc-Meť-OH a bez Fmoe-Cba-OH a Fmoe-Asp(lBu)-OH sa postupom opísaným v príklade 1 získa surový peptid. , ktorý sa čistí chromatografiou za opísaných podmienok (5 % na 80 % B za II min, retenčný čas 5,90 min).Using Fmoe-Lys (BOC) -OH and Fmoe-N I e-OII instead of Fmoc-Me-OH and without Fmoe-Cba-OH and Fmoe-Asp (1Bu) -OH, the crude peptide was obtained as described in Example 1. Purification by chromatography under the conditions described (5% to 80% B in II min, retention time 5.90 min).

FAB-MS (M+H)+ =1013,6FAB-MS (M + H) &lt; + &gt; = 1013.6

Príklad 64Example 64

-- βΑ l.a - Pbe-G I y-Se r (Bz I ) - D-Λ I a-G I y - Lys-N I e-Asp-Arg- I I e—- βΑ l.a - Pbe-G I y-Se r (Bz I) - D-I a-G I y - Lys-N I e-Asp-Arg-I e -

Zíi použitia Fmoe-Lys (BOC)-OH a Fmoe-Se r (Bz I )-011 n Fmoc-Nl.e-OH namiesto Fmoc-Me ľ-OH a bez Fmoe-Cba-OH sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatograf iou za opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 6,85 min).Using Fmoe-Lys (BOC) -OH and Fmoe-Se r (Bz I) -011 n Fmoc-Nl.e-OH instead of Fmoc-Me 1 -OH and without Fmoe-Cba-OH was obtained as described in Example 1 crude peptide which was purified by chromatography under the conditions described (5% to 80% B in 11 min, retention time 6.85 min).

FAB-MS (M+H)+ = 1206,4FAB-MS (M + H) &lt; + &gt; = 1206.4

Príklad 65 — Aea - Phe-G I y - Phe-I)-A 1 a-G I y - Lys-N I e-Asp-A rg- I I e—Example 65 - Aea - Phe-Gly-Phe-I-A 1 a-Gly-Lys-N-e-Asp-A-g-I e -

Za použitia Fmoc-Aca-OH namiesto Fmoe-βΛ I a-OII a ľmoc-Nl.e-OH namiesto Fmoe-Met-OII a Fmoe-Lys (BOC)-OH a bez Fmoe-Cha-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatograľi on za opísaných podmienok (5 % na 80 % B za II min, rčlcnčný čas 7,40 min). FAB-MS (M+H)+ = 1248,5Using Fmoc-Aca-OH instead of Fmoe-β-Ia-OII and ilmoc-Nl.e-OH instead of Fmoe-Met-OII and Fmoe-Lys (BOC) -OH and without Fmoe-Cha-OII, following the procedure described in the example 1 gives the crude peptide, which is purified by chromatography under the conditions described (5% to 80% B in 1 min, rt 7.40 min). FAB-MS (M + H) &lt; + &gt; = 1248.5

Príklad 66 — βΑΊ a-GI y-Se r(B zI)-D-Λ I a-G I y -Lys-N I e-Asp-A rg- I I cExample 66 - βαΊα-Gly-Se (B zI) -D-a-α-Gly-Lys-N-e-Asp-A-g-II

Zéi použitia Fiiioc-Lys (BOC)-011 a ľmoe-Se r ( Bz I )-OH namiesto Fmoc-Phc-011 a Fmoc-N le-011 namiesto Fmoe-Met-OH a bez Fmoe-Cha-OH sa postupom opísaným v príklade 1 získa surový peptid:, ktorý sa čistí chromátografiou za opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 5,80 min).Using Fiiioc-Lys (BOC) -011 and Imoe-Se r (Bz I) -OH instead of Fmoc-Phc-011 and Fmoc-N le-011 instead of Fmoe-Met-OH and without Fmoe-Cha-OH with the procedure described Example 1 yields the crude peptide: which is purified by chromatography under the conditions described (5% to 80% B in 11 min, retention time 5.80 min).

FAB-MS (M+H)+ = 1059,4FAB-MS (M + H) &lt; + &gt; = 1059.4

Príklad 67 p-Aca-Gly-Se r(BzI)-D-Λ 1a-GI y -Lys-N Ie-Asp-A rg- I I e—|EXAMPLE 67 [beta] -Aca-Gly-Ser (BzI) -D-11a-Gly-Lys-N Ie-Asp-Ag-Ile] |

Za použitia Fmoc-Aca-OH namiesto Fiiioc - βΛ I a-Olí ,Using Fmoc-Aca-OH instead of Fiiioc - βΛ I α-Oli,

Fmoc-Ser(Bzl)-OH namiesto Fmoc-Cha-OH a Fmoc-N le-011 namiesto Fmoc-Met-OH sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatograľ iou za opísaných podmienok ‘ (5 % na 80 % B za 11 min, retenčný čas 6,20 min).Fmoc-Ser (Bzl) -OH instead of Fmoc-Cha-OH and Fmoc-N le-011 instead of Fmoc-Met-OH gave the crude peptide as described in Example 1, which was purified by chromatography under the conditions described (5% on 80% B in 11 min, retention time 6.20 min).

FAB-MS (M+H)+ = 1101,5FAB-MS (M + H) &lt; + &gt; = 1101.5

Príklad 68Example 68

--βΑΊ a-Se r(BzI)- D-Λ Ia-GI y-Lys-N Ie-Asp-A rg-I I e—- βαΊ α-Se r (BzI) - D-Λ Ia-GI-Lys-N Ie-Asp-A rg-I I e—

Za použitia Fmoc-Se ľ (Bz I )-OH namiesto Fmoc-Clia-OII a Fmoc-I I e-011 namiesto Fmoc-Mc ť-011 a prídavku Fmoc-Lys (BOC)-011 sa postupom opísaným v príklade I získa surový peptid, ktorý sa čistí cli romatog ra f i ou za opísaných podmienok (5 % na 80 % B Zít 11 min, retenčný čas 6,05 min).Using Fmoc-Se ((Bz I) -OH instead of Fmoc-Clia-OII and Fmoc-Ie e-011 instead of Fmoc-Mc ť-011 and addition of Fmoc-Lys (BOC) -011 was obtained as described in Example I Crude peptide which was purified by chromatography under the conditions described (5% to 80% B for 11 min, retention time 6.05 min).

FAB-MS (M+ll)+ = 1002,6FAB-MS (M + 11) + = 1002.6

Príklad 69Example 69

--Aca-Se r(Bz1)- D-A Ia-GI y-Lys-N I e-Asp-A rg-I I e— :i-Aca-Se r (Bz1) -D-Aa-Gly-Lys-N-e-Asp-A-g-I-e: i

Zri použitiu Finoc-Aea-OH namiesto Fmoe-βΛ I a-OII, Finoe-Il.e-OII ntimi.esto Fmoe-Met-011 a Fmoe-Ser(BzI)-OH namiesto Fmoc-Cha20H a Fmoc-Lys(BOC)-OH sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatografiou za opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 6,60 min).Zri use Finoc-Aea-OH in place of Fmoc-a-βΛ I, OH, II.e FINO-OH-ntimi.esto Fmoc-Met-011 and Ser-Fmoc (Bzl) -OH instead of Fmoc-Cha 2 0H, and Fmoc-Lys (BOC) -OH gave the crude peptide as described in Example 1, which was purified by chromatography under the conditions described (5% to 80% B in 11 min, retention time 6.60 min).

FAB-MS (M+H)+ = 1044,5FAB-MS (M + H) &lt; + &gt; = 1044.5

Príklad 70Example 70

--B t u-A rg-Phe-D-Ala-Gly-Λrg-I I e-Asp-A ľg- I I e—--Bu -Arg-Phe-D-Ala-Gly-grg-Ie-Asp-A'g-Ie e-

Zn použitia Finoc-B tu-OII - I l.e-OII namiesto Fmoc-Me t-OH opísaným v príklade 1 získa ehromatografiou za opísaných min, retenčný čas 5,34 min). FAB-MS (M+H)+ = 1225,6 namiesto Fmoc-βΛ I a-OII a ľmoca bez Fmoc-Cha-011 sa postupom surový peptid, ktorý sa čistí podmienok (5 % na 80 % B za 11Using the Finoc-B tu-OII-III.e-OII instead of the Fmoc-Me t-OH described in Example 1, it is obtained by ehromatography at the described min, retention time 5.34 min). FAB-MS (M + H) + = 1225.6 instead of Fmoc-β-I and -OII and Fmoc-Cha-011 non-Fmoc-procedure, the crude peptide was purified by conditions (5% to 80% B in 11

Príklad 71Example 71

-D-Btu-Aľg-Phe-D-Ala-Gly-Arg-I Ie-Asp-Arg-I I e—-D-Btu-Alg-Phe-D-Ala-Gly-Arg-Ie-Asp-Arg-Ie-

Za použitia ľmoc-D-B t u-011 namiesto ľmoc-|1A I a-OII a ľmoc-I .1 e-OII namiesto Fmoc-Met-0!l a bez ľmoc-Cba-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatografiou za opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 5,15 min).Using il-DB-u-011 instead of Il-1A I a-OII and Il-1 I-e e OII instead of Fmoc-Met-OII without il-Cba-OII, the crude peptide was obtained as described in Example 1. Purification by chromatography under the conditions described (5% to 80% B in 11 min, retention time 5.15 min).

FAB-MS (M+ll) + = 1225,6FAB-MS (M + 11) + = 1225.6

Príklad 72Example 72

-- pÁ.la-A rg - Phe - D-Λ I a-G I y-Λ rg- I 1 e - A rg - I I e - —- pA.la-A rg - Phe - D-Λ I a-G I y-g rg- I 1 e - A rg - I I e - -

Za použitia ľmoc-II e-011 namiesto ľmoc-Me t-011 a bez Finoc-Cha-OH a ľmoc-Asp ( tBu)-OH sa postupom opi suným v príklade 1 získa surový peptid, ktorý sa čistí chromatograf.íou za opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 6,15 min).Using il-II e-011 instead of il-Me t-011 and without Finoc-Cha-OH and il-Asp (tBu) -OH as described in Example 1, a crude peptide was obtained which was purified by chromatography as described above. conditions (5% to 80% B in 11 min, retention time 6.15 min).

FAB-MS (M+H)+ = 1041,5FAB-MS (M + H) &lt; + &gt; = 1041.5

Príklad 73Example 73

--Aea-A rg-Phe-D-Λ Ia-GI y-A rg-I I e-A rg-I I e—- Aea-A rg-Phe-D-Ia-Gly-A rg-I e-A rg-I I e—

Za použitia Fmoc-Aca-OH namiesto Fmoc-fiA.I a-OII ti Fmoc-Ile-OII namiesto Fmoc-Met-OH a bez Fmoe-Cha-0H a ľmoc-Asp (tBu) sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí ch roma tog ra C i ou za opísaných podiiiienúk (5 % na 80 % B za 10 min, retenčný čas ó 10 min).Using Fmoc-Aca-OH instead of Fmoc-AA.I α-OII ti Fmoc-Ile-OII instead of Fmoc-Met-OH and without Fmoe-Cha-OH and Li-Asp (tBu), crude was obtained as described in Example 1 a peptide that is purified by chromatography on the described sub-fractions (5% to 80% B in 10 min, retention time 10 10 min).

FAB-MS (M+H)+ = 1083,9FAB-MS (M + H) &lt; + &gt; = 1083.9

Príklad 74Example 74

- -Aca-Phe-Λrg-Phe-D-Λ Ia-G1y-Λrg-I le-Gly-Arg-l I e—-Aca-Phe-grg-Phe-D-Λ Ia-Gly-grg-I le-Gly-Arg-11e -

Za použitia ľmoe-Aca-OII -Il.e-OH nam i es to Fmoc-Met-OH stí 1 získa surový peptid, ktorý sa Silných podmienok (5 % na 80 % B mín) .Using lmoe-Aca-OII-III.e-OH instead of Fmoc-Met-OH Sti 1, the crude peptide was obtained which was subjected to Strong conditions (5% to 80% B min).

FAB-MS (M+H)+ = 1331,2FAB-MS (M + H) &lt; + &gt; = 1331.2

Príklad 75 namiesto Fmoc-βΛ I a-OII, Fmoepostupom opísaným v príklade čistí ch ronia tograf i ou za op í za II min, reienčný čas 5,80 — -Acíi - Phe-Λ rg-Ty r (OMe) - D-Λ I a-G I y - A rg - I I c - Asp- A rg- I I e—EXAMPLE 75 Instead of Fmoc-β-Ia-OII, by the procedure described in the example, it purifies the chromium by opiography in II min, the reference time 5.80 - Acci - Phe-gg-Tyr (OMe) - D- Λ I aG I y - A rg - II c - Asp - A rg - II e -

Za použi t i a Fmoe-Tyr(OMe)-OH a Fmoc-Aca-OH namiesto Fmoc-βΛ I a-OII ti Fmoc-I I e-OH namiesto Fmoc-Me t-Olí a bez Fmoc-Cha-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí ch ronia tog raf i ou za opísaných podmienok (5 % na 80 % B za 1.1 min, retenčný čas 6,85 min). FAB-MS (M+ll)+ = 1376,2Using Fmoe-Tyr (OMe) -OH and Fmoc-Aca-OH instead of Fmoc-βΛ I and -OII ti Fmoc-Ie e-OH instead of Fmoc-Me t-Oli and without Fmoc-Cha-OII, follow the procedure described in Example 1, a crude peptide is obtained which is purified by chromatography by chromatography under the conditions described (5% to 80% B in 1.1 min, retention time 6.85 min). FAB-MS (M + 11) + = 1376.2

Príklad 76Example 76

-- Aca - Phe-Λ rg - Phe - l)-A I a-G I y-A rg -1) - I le-Asp-Arg-I I e—- Aca - Phe---rg - Phe-1) -A Ia-G I y -Arg -1) -I le-Asp-Arg-Ie e-

Za použitia Fmoc-Aca-OH namiesto Fmoc-βΛ I a-OII a Fmoe-D-IIe-OH namiesto Fmoc-Met-OH a bez Fmoc-Cha-OH sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatografiou za opísaných podmienok (5 % na 80 % B za 11 in.i.n, retenčný čas 7,10 min).Using Fmoc-Aca-OH instead of Fmoc-β-Ia-OII and Fmoe-D-IIe-OH instead of Fmoc-Met-OH and without Fmoc-Cha-OH, the crude peptide was obtained as described in Example 1, which was purified by chromatography under the conditions described (5% to 80% B at 11 in.in, retention time 7.10 min).

FAB-MS (M+H)+ = 1346,0FAB-MS (M + H) &lt; + &gt; = 1346.0

Príklad 77Example 77

- - Aca-Phe-A rg-Phe-D-A l.a-G I y-A rg-I Ie-D-Asp-Arg-I le— ____- - Aca-Phe-A-g-Phe-D-A-1a-Gly-A-g-Ie-D-Asp-Arg-Ile-____

Za použitiu Fmoc-D-Asp ( tBu) namiesto Fmoc-Asp ( tBu)-OH , Fmoc-Aca-OII namiesto Fmoc-βΑ I a-OII a I-'nioc-I le-OII namiesto Fiiiiic-Met-OII a bez Fmoc-Cha-OH sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatografiou za opísaných podmienok (5 % na 80 % B za 1 1 min, retenený čtisUsing Fmoc-D-Asp (tBu) instead of Fmoc-Asp (tBu) -OH, Fmoc-Aca-OII instead of Fmoc-βΑ I α-OII and I-'nioc-I le-OII instead of Fiiiiic-Met-OII and without Fmoc-Cha-OH, the crude peptide was obtained as described in Example 1 and purified by chromatography under the conditions described (5% to 80% B in 1 min, retention).

6,60 m i n) .6.60 m (n).

FAB-MS (M+H)+ = 1345,0FAB-MS (M + H) &lt; + &gt; = 1345.0

Príklad 78Example 78

- -Aca-Phe-D-A rg-Phe- D-Λ I a-G I y-A rg-1 le-Asp-Arg-I I e—-Aca-Phe-D-Ar-Phe-D-Pha-Phy-Ar-1 le-Asp-Arg-Ie

Za použitia Fmoc-D-Arg (M t r)-Oll a Fmoc-Aca-OII namiesto Fmoc-β Al a-OH a Fmoc-I l.e-011 namiesto Fmoc-Me ť-Oll a bez Fmiie-Cha-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí ch ronia t og ra f i ou za opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 6,65 min). FAB-MS (M+H)+ = 1346,0Using Fmoc-D-Arg (M tr) -Oll and Fmoc-Aca-OII instead of Fmoc-βAa-OH and Fmoc-Ile-011 in place of Fmoc-Me-Oll and without Fmie-Cha-OII, follow the procedure as described in Example 1 yields the crude peptide which is purified by chromatography over the conditions described (5% to 80% B in 11 min, retention time 6.65 min). FAB-MS (M + H) &lt; + &gt; = 1346.0

Príklad 79Example 79

- -Aca-D-Phe-A rg-Phe-D-Λ Ia-GI y-A rg-I le-Asp-Arg-I I e—-Aca-D-Phe-Arg-Phe-D-Ia-Gly-Arg-Ile-Asp-Arg-Ie-

Za použitia Fmoc-D-Phe-OH a Fmoc-Aca-OH namiesto Fmoc-pAIa-OH či Fmoc-I le-OII namiesto Fmoc-Me t-OII a bez Fmoc-Gha-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý za sa čistí Ľhroiiiatogľuľiuii % B za 11 min, retenčný čas FAB-MS (M+ll) + - 1346,0 *>I»í sanýeh 6,55 min).Using Fmoc-D-Phe-OH and Fmoc-Aca-OH instead of Fmoc-pAIa-OH or Fmoc-I le-OII instead of Fmoc-Me t-OII and without Fmoc-Gha-OII, crude was obtained as described in Example 1 peptide which is purified by chromatography on% B in 11 min, retention time FAB-MS (M + 11) + - 1346.0% (6.55 min).

podmienok (5 % na «SOconditions (5% per «SO

Príklad 80Example 80

- -Phe-Arg-Phe-D-Λ 1a-GI y-A rg-I I e-Asp-A rg-I I e—-Phe-Arg-Phe-D-Λ 1a-Gly-A-g-Ie-Asp-A-g-Ie

Za použitia Fmoe-I I e-011 namiesto Fmoe-Met-OII a bez Fmoe-Cha-OH a Fmoe-Aea-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí ehromaĽografiou za opísaných podmienok (5 % na 80 % B za 11 min, retenčný časUsing Fmoe-Ie e-011 instead of Fmoe-Met-OII and without Fmoe-Cha-OH and Fmoe-Aea-OII, the crude peptide was purified as described in Example 1 and purified by ehromaography under the conditions described (5% to 80%). % B in 11 min, retention time

6,55 min).6.55 min).

FAB-MS (M+ll)+ = 1232,5FAB-MS (M + 11) + = 1232.5

Príklad 81Example 81

- -Λ I a - Phe - A rg - Phe - D - Λ I a - G I y - A rg- I I c - Asp - D - A rg - I I e—- -Λ I a - Phe - A rg - Phe - D - Λ I a - G I y - A rg - I c - Asp - D - A rg - I I e—

Za použitia Fmoe-D-Arg (M t r) - 011 a Fmoe-Ile-OH namiesto Fmoe-Met-OII a bez Fmoe-Cha-OH sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromaLografiou za opísaných podmienok (5 % na 80 % B za I I mi n, retenčný časUsing Fmoe-D-Arg (M tr) -011 and Fmoe-Ile-OH instead of Fmoe-Met-OII and without Fmoe-Cha-OH, the crude peptide was obtained as described in Example 1 and purified by chromatography under the conditions described ( 5% to 80% B per second, retention time

6,15 min).6.15 min).

FAB-MS (M+H)+ = 1303,7FAB-MS (M + H) &lt; + &gt; = 1303.7

Príklad 82Example 82

--β Al a-Plie - D-A rg-Phe - D-Λ I a-G I y-A rg-I I e-Asp-D-Arg-I le—- β-α-Plie - D-A-g-Phe - D-a-a-G-y-A-g-Ile-Asp-D-Arg-Ile-

i.i.

Za použitia Fmoe-D-A rg ( M t r)-011 a Fmoe-I le-OH namiesto Fmoc-Met-OII a bez Fmoe-Cha-OH sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí eh ronia tog ra ľ i ou za opísaných podmienok (5 % na 80 % B za 1 1 min, retenčný čas ň , 0 5 m i n ) .Using Fmoe-DA rg (M tr) -011 and Fmoe-I le-OH instead of Fmoc-Met-OII and without Fmoe-Cha-OH, the crude peptide was purified according to the procedure described in Example 1 and purified by fluorine togalal. under the conditions described (5% to 80% B in 1 min, retention time, 0.5 min).

FAB-MS (M+ll)+ = 1346,0FAB-MS (M + 11) + = 1346.0

Príklad 83Example 83

- -Arg-Phe-D-ΛIa-GIy-Arg-I Ie-Asp-Arg-I I e—-Arg-Phe-D-Ia-Gly-Arg-Ie-Asp-Arg-Ie-

Za použitia Fmoc-lle-OII namiesto Fmoc-Met-OII a bez Finoc-C'ha-OII a Fmoe-βΛ I a-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatografiou za opísaných podmienok (5 % na 80 % B za I1 min, retenčný časUsing Fmoc-lle-OII instead of Fmoc-Met-OII and without Finoc-C'ha-OII and Fmoe-β-I a-OII, the crude peptide was purified as described in Example 1 and purified by chromatography under the conditions described (5% to 80% B in 1 min, retention time

5,45 m in).5.45 m in).

FAB-MS (M+ll)+ = 1085,5FAB-MS (M + 11) + = 1085.5

Príklad 84Example 84

- -βΑI a-Phe-D-Arg-Phe-D-Λ Ia-GIy-Λ rg-I I e-Asp-A rg- I I e—-β-AI-Phe-D-Arg-Phe-D-Ia-Gly-Ig-Ie-Asp-Ag-Ie

Zči použitia Fmoe-I)-A rg ( M t: r )-OH namiesto Fmoe-Λ rg ( M t r)-OH a Fmoe-I le-OH namiesto Fmoc-Met-OII a bež Fmoe-Cha-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatografiou za opísaných podmienok (5 % na 80 % B za 11 m i n, retenčný čas 6,40 min).Using Fmoe-I) -Arg (M t: r) -OH instead of Fmoe-g rg (M tr) -OH and Fmoe-I le-OH instead of Fmoc-Met-OII and run Fmoe-Cha-OII with the procedure as described in Example 1 yields a crude peptide which is purified by chromatography under the conditions described (5% to 80% B in 11 min, retention time 6.40 min).

FAB-MS (M+H)+ = 1303,7FAB-MS (M + H) &lt; + &gt; = 1303.7

Príklad X5Example X5

- -βΛ l.a-Phe-Arg-Cha-Az t-G I y-Arg-1 le-Asp-Arg-l I e—- [beta] - [alpha] -Phe-Arg-Cha-Az t-Gly-Arg-11 le-Asp-Arg-11e -

Za použitia Fmoc-Azt-OH namiesto Fmoc-D-A I a-OII a Fmoe-Ile-OII namiesto Fmoe-Me t-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromá log raľ i ou za opísaných podmienok (5 % na X0 % B za 10 min, retenčný čas 7,20 m in).Using Fmoc-Azt-OH instead of Fmoc-DA I a-OII and Fmoe-Ile-OII instead of Fmoe-Me t-011, the crude peptide was obtained as described in Example 1, which was purified by chromatography under the conditions described ( 5% to X0% B in 10 min, retention time 7.20 m in).

FAB-MS (M+IQ+ = 1321,7FAB-MS (M + 10 &lt; + &gt; = 1321.7)

Príklad X6Example X6

- -βΑ I a-Arg-Chci-D-Λ I a-G 1 y-Arg- I I e-Asp-Arg - I I e—- -βΑ I α-Arg-I-D-a I α-G 1 γ-Arg-I e-Asp-Arg - I e e -

Za použitia Fmoc-I I c-011 namiesto Fmoc-Met-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí eh ronia tog raľ i ou zri opísaných pôdni i enok (5 % na X0 % B za 10 min, retenčný čas 6,35 min).Using Fmoc-III c-011 instead of Fmoc-Met-011, the crude peptide was purified according to the procedure described in Example 1, and purified by fluorophilia from the described soils (5% to X0% B in 10 min, retention time 6.35 min).

FAB-MS (M+H)+ = 1162,5FAB-MS (M + H) &lt; + &gt; = 1162.5

Príklad X7Example X7

--Arg-Cha-D-AIa-GIy-Arg-I Ie-Asp-Arg-I I e— ‘ ;Arg-Cha-D-Al-Gly-Arg-Ie-Asp-Arg-Ie-‘;

Za použitia Fmoe-Ile-OH namiesto Fmoe-Me t-011 a bez íUsing Fmoe-Ile-OH instead of Fmoe-Me t-011 and without

Fmoc-βΛΙ a-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý síi čistí eh ronia t og raľ i ou za opísaných podmienok (5 % na X0 % B za 10 min, retenčný čas 6,10 min).Fmoc-β-α-011 was prepared as described in Example 1 to give the crude peptide which was purified by chromatography under conditions described (5% to X0% B in 10 min, retention time 6.10 min).

FAB-MS (M+H)+ = 1091,5 ' iFAB-MS (M + H) &lt; + &gt; = 1091.5 &lt; -1 &gt;.

í y ií y i

Príklad 8« r -Phe-Arg-Cha-D-AIa-GIy-Arg- I le-Asp-Arg-1 le—Example 8-Phe-Arg-Cha-D-Al-Gly-Arg-Ile-Asp-Arg-11e

Za použi Ľia I'moe- 1 le-OII namiesto Fmoe-Me Ľ-Oll a bez Fmoc-βΑ Ι a-OII sa postupom opísaným v príklade 1 získa surový pepti t, ktorý sa čistí eh ronia togra ľ i iiu za opísaných podmienok (5 % na 80 % B za 10 min, retenčný čas 8,25 min).Using Li Ie-1-le-OII instead of Fmoe-Me L-Oll and without Fmoc-βα-α-OII, a crude peptide was obtained by the procedure described in Example 1, which was purified by digestion under the conditions described. (5% to 80% B in 10 min, retention time 8.25 min).

FAB-MS (M+ll)+ = 1238,8FAB-MS (M + 11) + = 1238.8

Príklad 89Example 89

II - Lys - A rg - Phe - Ι)-Λ I a-G 1 y - l.ys - N I e-Asp-A rg- I I e—II-Lys-A-g-Phe-Ι) -Λ I a-G-y-l-y-N-e-Asp-A-g-I e -

Syn téza peptidu sa uskutočňuje na synteztítore peptidov ACT 200 firmy Advanced ChemTeeh za použitia Fmoc-s trategi e za použitia modifikovaného riadiaceho programu do 50 ml trepaei.eho reaktoru sa umiestni 1 g 2-me toxyhenzy I es te rove j živice firmy Baclien, Švajčiarsko, k tórií bola .uvedená do cyklu 0,5 mmol Fmoe-i zo.l eueí nu . Boli použité niísledujúce deriviíty aminokyselín : ľmoe-A ľg (M t r )-ΟΙ I, Fmoc-Asp ( t Bu)-ΟΙ I , Fmoe-NIe-OH, Fmoe-Lys (BOC)-Oll, Fmoe-G I y-OII, ľmoe-D-A I a-OII, Fmoc-Phe-0H a BOC-Lys (Fmoe)-OH . Kopulčícic sa vykonávajú za použi tia vždy 3 ekvivalentov Fmoe-aminokyseI iny, 1 - hydroxybenzot r iazo].u a d i.eyk I ohexy 1 ka rhod i i m i du (doba kopulčícic 40 minút). Po vykonaní TNBS-testu sa pri neúplnej aey I čie i i kopúl lícia opakuje za použitia rovnakých reagencií a prebytkov. Pri úplnej aey 1 čie i i sa naštartuje dá I š í cyklus syntézy. Odštiepenie Fmoc-ch nín i ae i eh skupín sa uskutočňuje 20 % piper.id.í.noin v DMF (raz 3 minúty, raz 15 minút).The peptide synthesis was performed on an Advanced ChemTeeh ACT 200 peptide synthesizer using Fmoc-s trategi e using a modified control program in a 50 ml shaker reactor. 1 g of 2-methoxyhexyl ester resins from Baclien, Switzerland were placed. The thorium was fed to a cycle of 0.5 mmol of Fmol-1 euine. The following amino acid derivatives were used: momoe-A ľg (M tr) -ΟΙ I, Fmoc-Asp (t Bu)-, I, Fmoe-NIe-OH, Fmoe-Lys (BOC) -O11, Fmoe-G γ- OII, Imoe-DA I and -OII, Fmoc-Phe-OH and BOC-Lys (Fmoe) -OH. The couplings were carried out using 3 equivalents each of Fm-amino acid, 1-hydroxybenzotriazole and other alkali metal (coupler time 40 minutes). After the TNBS test was performed, the incomplete aberration or dome of the cheek was repeated using the same reagents and excess. When complete, the next synthesis cycle is started. The cleavage of the Fmoc-amino and eh groups is performed with 20% piperidinoin in DMF (once 3 minutes, once 15 minutes).

Medzi jednotlivými reakciami sa Živica p-remyje vždy 10-krát DMF. Po výstavbe I ineárnej sekvencie BOC-Lys-Arg ( M t r ) - Phe - D- A l.a-G I y - Lys (BOC) - N I e - As p (t Bu ) - A rg (M t r) - I I e- na polymérnom nosiči sa živica dôkladne premyje d i ch I órmetánom a potom sa spracuje 5-krát vždy 20 ml 1 % roztoku kysel iny tr i f1uóoetovej v dichlórmetáne pri teplote.· miestnosti maximálne po 10 minút (až do intenzívneho l i I ci sfarbenia živice) . Roztoky stí spoja a zahustia vo vákuu. Zvyšok sa rozotrie s éterom, éter sa odekantuje, peptid sa suší v prúde dusíka a vyberie sa do 130 ml DMF, hodnota pil sa nastaví na asi 8,5 triety laniínnm, roztok sa ochladí na -20 C a pridá sa 0,2 g (0,75 mmol) dίfény I fosfory 1azidu. Neehii sa stál’ 48 hodín pri. -20 °C a 48 hodín pri 4 °C. Hodnota pH sa udržuje t r i.e ty lani í nom na 8,5. Potom sa odstráni vo vákuu, zvyšok sa rozotrie dvakrát s éterom, éter sa oddekanluje a zvyšok sa suší. v prúde dusíka. Chrániace skupiny bočného reťazca sa odštepujú zmesou kyseliny t r i f Iuóroclovej/ani zo I u (90/10) počas 24 hodín pri teplote miestnosti. Roztok sa zahustí vo vákuu, zvyšok sa rozotrie s éterom a vysuší. Surový peptid sa čistí cez 3 /um stĺpec Dynamaxu 08 (10 x 2,14 cm) za použitia jedného z gradientov A: voda/aeeton i t r i I/kysel i na t r.i f l.uó.roe tová 95/5/0,2 a B: d t to 20/80/0,2 od 5 % B rm 80 % B zá 11 minút, prietok 20 ml, retenčný čas 5,25 minúť. Po sušení vymrazovaním sa získa amorfný bezfarebný prášok.Between individual reactions, the resin was p-washed 10 times with DMF. After construction of the I sequence sequence BOC-Lys-Arg (M tr) -Phe-D-Ala-Gly-Lys (BOC) -NI e-As p (t Bu) -Arg (M tr) -II e- on the polymer support, the resin is washed thoroughly with dichloromethane and then treated 5 times with 20 ml of a 1% solution of trifluoroacetic acid in dichloromethane at room temperature for a maximum of 10 minutes (until the resin is intensely colored) . The combined solutions are concentrated and concentrated in vacuo. The residue is triturated with ether, the ether is decanted off, the peptide is dried under a stream of nitrogen and taken up in 130 ml of DMF, the pH is adjusted to about 8.5 with triethylamine, the solution is cooled to -20 DEG C. and 0.2 g is added. (0.75 mmol) diphenyl I phosphorus azide. Neehii stood for 48 hours at. -20 ° C and 48 hours at 4 ° C. The pH is maintained at 8.5 with thylanine at 8.5. It is then removed in vacuo, the residue is triturated twice with ether, the ether is decanted off and the residue is dried. in a stream of nitrogen. The side chain protecting groups are cleaved with a mixture of trifluoroacetic acid / i (90/10) for 24 hours at room temperature. The solution was concentrated in vacuo, the residue was triturated with ether and dried. The crude peptide is purified through a 3 µm Dynamax 08 column (10 x 2.14 cm) using one of the A: water / acetonitrile / acidic gradients 95/5/0, 2 and B: dt to 20/80 / 0.2 from 5% B rm 80% B in 11 min, flow 20 ml, retention time 5.25 min. After freeze-drying, an amorphous colorless powder is obtained.

FAB-MS (M+H)+ - 1186,0FAB-MS (M + H) &lt; + &gt; - 1186.0

Príklad 90Example 90

Z- Lys-Arg - Phe - D-A I a-G l.y- Lys-N I e-Asp-Arg- I I eZči použitia Z-Lys ( Fmoc)-OH namies to BOC-Lys ( Fmoc) -011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí, chromatografiou za opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 6,60 miri).Z-Lys-Arg-Phe-DA I aG ly-Lys-N I-Asp-Arg-II Using Z-Lys (Fmoc) -OH, substitute BOC-Lys (Fmoc) -011 for the procedure described in Example 1 yields the crude peptide which is purified by chromatography under the conditions described (5% to 80% B in 11 min, retention time 6.60 miri).

FAB-MS (M+H)+ = 1320,0FAB-MS (M + H) &lt; + &gt; = 1320.0

Príklad 91Example 91

Z- Lys-Λ rg-Ser (Bz I ) - Ι)-Λ I a-G I y- Lys - N I e - Asp-A rg - I I e—Z- Lys-grg-Ser (Bz I) - Ι) -Λ I a-G γ-Lys - N Ie - Asp-A rg - I ee -

Za použitia Z-Lys ( Fiiioc)-ΟΙ I namiesto BOL-Lys ( l-'moc)-OH u Fmoc-Ser(Bz1)-OH namiesto Fmoe-Phe-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí eh ronia tograf.i.ou za opísaných podmienok (5 % na 90 % B za 1 1 min, retenčný čas 6,95 min).Using Z-Lys (Fiiioc) -ΟΙ I instead of BOL-Lys (1'-moc) -OH in Fmoc-Ser (Bz1) -OH instead of Fmoe-Phe-011, the crude peptide was obtained as described in Example 1, which was Purified by chromatography under the conditions described (5% to 90% B in 1 min, retention time 6.95 min).

FAB-MS (M+H)-t- = 1350,0FAB-MS (M + H) &lt; + &gt; = 1350.0

Príklad 92Example 92

Bz-Lys- A rg-Phe- D-A Ia-GI y-Lys-Nle-Asp-Arg-I I e—Bz-Lys-Arg-Phe-D-Ala-Gly-Lys-Nle-Asp-Arg-Ile

Za použ i t i a Bz-Lys(Fmoe)-OH nam i es to BOC-Lys(Fmoe)-OH sa postupom opísaným v príklade I získa surový peptid, ktorý sa čistí eh ronia ť og ra ľ i ou za opísaných podmienok (5 % na 80 % B za 11 min, retcnčný čas 6,00 min).Using Bz-Lys (Fmoe) -OH instead of BOC-Lys (Fmoe) -OH, the crude peptide was purified by the procedure described in Example I and purified by fluorination under the conditions described (5%). to 80% B in 11 min, retention time 6.00 min).

FAB-MS (M+ll) + = 1290,0FAB-MS (M + 11) + = 1290.0

Príklad 93Example 93

Z-Lys-Arg-Phe-D-A Ia-GIy-Arg-I Ie-Asp-Arg-I I e—Z-Lys-Arg-Phe-D-Ia-Gly-Arg-Ie-Asp-Arg-Ie -

Za použi tia Z-Lys(Fmoe)-OH namiesto BOC-Lys ( Fmoc )-011 a hez Fmoe-NIe-OH a Fiiioc-Lys (ROC)-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí eh ronia tog rafiou zti opísaných podmienok (5 % na 80 % B za II min, retenčný čas 6,65 min). FAB-MS (M+H)+ = 1348,0Using Z-Lys (Fmoe) -OH instead of BOC-Lys (Fmoc) -011 and pretty Fmoe-NIe-OH and Fiiioc-Lys (ROC) -011, a crude peptide was obtained as described in Example 1, which was purified by eh ronia tog by refining the conditions described (5% to 80% B in II min, retention time 6.65 min). FAB-MS (M + H) &lt; + &gt; = 1348.0

Príklad 94Example 94

H-Lys-A rg-Cha-D-Λ 1 a-G I y-A rg-I I e-Asp-Arg-I I e—H-Lys-Arg-Cha-D-11a-Gly-Arg-Ie-Asp-Arg-Ie

Za použitia Fmoc-Cha-OH namiesto Fmoc-Phe-OII a Fmoc-Il.e-OH namiesto Fmoc-N 1 e-OII a bez Fmoc-Lys (BOC)-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čisti chromatografiou za opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 6,00 min).Using Fmoc-Cha-OH instead of Fmoc-Phe-OII and Fmoc-II.e-OH instead of Fmoc-N1 e-OII and without Fmoc-Lys (BOC) -011, the crude peptide was obtained as described in Example 1, which Purify by chromatography under the conditions described (5% to 80% B in 11 min, retention time 6.00 min).

FAB-MS (M+ll) + = 1219,7FAB-MS (M + 11) + = 1219.7

Príklad 95Example 95

Z-Lys-Arg-Cha-D-A l.a-G i y-Arg-I le-Asp-Arg-I le—Z-Lys-Arg-Cha-D-A1a-Gly-Arg-Ile-Asp-Arg-Ile-

Za použitia Z-Lys ( Fmoc)-011 namiesto BOC-Lys ( Fmoc)-OH , Fmoc-Cha-OH namiesto Fmoe-Phe-OII a ľ'moe-I le-011 namiesto Fmoe-Nl.e-011 a bez Fmoc-Lys (BOC)-OH sa postupom opísaným v príklade 1 pripraví surový peptid, ktorý sa čistí chromatografiou za opísaných podmienok (5 % nti 80 % B za 11 min, retenčný čas 6,35 min).Using Z-Lys (Fmoc) -011 in place of BOC-Lys (Fmoc) -OH, Fmoc-Cha-OH in place of Fmoe-Phe-OII and 1'moe-I le-011 instead of Fmoe-Nl.e-011 and without Fmoc-Lys (BOC) -OH was prepared as described in Example 1 to give the crude peptide, which was purified by chromatography under the conditions described (5% nti 80% B in 11 min, retention time 6.35 min).

FAB-MS (M+H)+ = 1353,7FAB-MS (M + H) &lt; + &gt; = 1353.7

Príklad 96Example 96

Menoe-Lys-A rg-Phe-D-Λ Ia-GIy-Arg-I le-Asp-Arg-I I e—Menoe-Lys-Arg-Phe-D-Ia-Gly-Arg-Ile-Asp-Arg-Ie e—

Zči použitia Menoe-Lys ( ľmoc)-011 namiesto BOC-Lys ( Fmoc)-OH tt iWhere to use Menoe-Lys (lmoc) -011 instead of BOC-Lys (Fmoc) -OH tt i

a Fmoe-I le-OII namiesto Fmoe-N I e-011 a bez. Fmoe-l.ys (BOC)-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí ch roma tog ra ľ i ou za opísaných podmienok (5 % na 80 % B za 11 m i π, re tenčný čas 8,20 min).and Fmoe-I le-OII instead of Fmoe-N I e-011 and without. Fmoe-l.ys (BOC) -011 gave the crude peptide as described in Example 1, which was purified by roma to the described conditions (5% to 80% B in 11 mi π, retention time 8). 20 min).

FAB-MS (M+H)+ = 1395,8FAB-MS (M + H) &lt; + &gt; = 1395.8

Príklad 97Example 97

Menoc-Lys-A rg-Cha-D-Λ I a-G I y-A rg-I I e-Asp-Λ rg-1 I e—Menoc-Lys-A-g-Cha-D-Ia-G-y-A-g-Ie-Asp-F-1-e

Za použ i t i a Menoc-Lys ( Fmoe)-011 namiesto BOC-Lyš(Fmoe)-OH, Fmoc-Cha-OH namiesto Fmoe-Phe-OH ti Fmoe-Ile-OII namiesto Fmoe-N! e-ΟΗ a bez Fmoe-Lyš ( BOC)-011 sa postupom opísaným v príklade 1 získči surový peptid, ktorý sa čistí chromá tograf.iou zéi opísaných podmienok (20 % na . 80 % B za II min, retenčný čas 7,00 min).Using Menoc-Lys (Fmoe) -011 instead of BOC-Lys (Fmoe) -OH, Fmoc-Cha-OH instead of Fmoe-Phe-OH instead of Fmoe-Ile-OII instead of Fmoe-N! e-ΟΗ and without Fmoe-Lys (BOC) -011, the crude peptide was purified by the procedure described in Example 1 and purified by chromatography (20% to 80% B in II min, retention time 7.00). min).

FAB-MS (M+ll)+ = 1402,0FAB-MS (M + 11) + = 1402.0

Príklad 98Example 98

II - Lys - Lys - Cha - D - Λ I a - G I y - Λ r g - I I e - As p - A rg - 1 I e—II - Lys - Lys - Cha - D - Λ I a - G I y - Λ r g - I I e - As p - A rg - 1 I e—

Za použitia Fmoe-I le-OII namiesto Fmoc-N 1 e-OII a Fmoc-Cha-OH namiesto Fmoe-Phe-ΟΠ sa postupom opísaným v príklade,1 získa surový peptid, ktorý sa čistí chromátograf i ou zči opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 6,40 min).Using Fmoe-I le-OII instead of Fmoc-N 1 e-OII and Fmoc-Cha-OH instead of Fmoe-Phe-ΟΠ, the crude peptide was obtained as described in Example 1, which was purified by chromatography by the conditions described (5). % to 80% B in 11 min, retention time 6.40 min).

FAB-MS (M+H)+ = 1191,8FAB-MS (M + H) &lt; + &gt; = 1191.8

Príklad 99Example 99

Z-Lys-Lys-Cha-D-Λ Ia-GIy-Arg-I I e-Asp-Arg-I I eZ-Lys-Lys-Cha-D-Ia-Gly-Arg-Ie-Asp-Arg-Ie

Za použitia Z-Lys(Fmoe)-OH namiesto BOC-Lys ( ľmoe.)-ΟΙ I a Fmoc-Ile-OH namiesto ľmoe-NI e-OII sa postupom opísaným v príklade 1 získti surový peplid, ktorý sa čistí chromá ťograf iou z ti opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 7,75 min).Using Z-Lys (Fmoe) -OH instead of BOC-Lys (lmoe) -11 and Fmoc-Ile-OH instead of lmoe-NI e-OII, a crude peptide was obtained as described in Example 1, which was purified by chromatography from the conditions described above (5% to 80% B in 11 min, retention time 7.75 min).

FAB-MS (M+H)-t- = 1326,0FAB-MS (M + H) &lt; + &gt; = 1326.0

Príklad 100Example 100

Z-Lys-Phe-Phe-D-Λ Ia-GI y-Arg-I Ί e-Asp-Arg-I I c—Z-Lys-Phe-Phe-D-Ia-Gly-Arg-Ie-Asp-Arg-Ic

Za použitia Z-Lys ( Fiiioc)-OH namiesto BOC-Lys ( Fmoe)-011 a Fmoe-I le-011 namiesto Fmoc-N le-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí ehromatograf iou za opísaných podmienok (5 % na 80 % B za II min, retenčný čas 8,40 m i h) .Using Z-Lys (Fiiioc) -OH instead of BOC-Lys (Fmoe) -011 and Fmoe-I le-011 instead of Fmoc-N le-011 the crude peptide was obtained as described in Example 1 and purified by ehromatography as described above. conditions (5% to 80% B in II min, retention time 8.40 mih).

FAB-MS (M+ll)+ = 1339,0FAB-MS (M + 11) + = 1339.0

Príklad 101 (4-N02)Z-Lys-A rg-Cha-D-Λ Ia-GI y-A rg-I Ie-Asp-Arg-I I e—EXAMPLE 101 (4-N0 2) Z-Lys-A rg-D-Cha-Λ I a-yA GI RG-I le-Asp-Arg-I I e

Za použitia (4-N02) Z-Lys ( Fmoe)-011 namiesto BOC-Lys (Fmoc)-OH, Fmoe-11 e-OH namiesto Fmoc-N I e-Oíl ti Fmoc-Cha-OH namiesto Fmoc-Phe-Olí sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí ch roma togra ľ i ou za opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 8,45 min). FAB-MS (M+H)+ = 1398,9Using (4-NO 2 ) Z-Lys (Fmoe) -011 instead of BOC-Lys (Fmoc) -OH, Fmoe-11 e-OH instead of Fmoc-N I e-Oil ti Fmoc-Cha-OH instead of Fmoc-Phe After the procedure described in Example 1, a crude peptide was obtained which was purified by chromatography under the conditions described (5% to 80% B in 11 min, retention time 8.45 min). FAB-MS (M + H) &lt; + &gt; = 1398.9

Príklad 102Example 102

Z-Lys-Orn-Cha-D-A Ia-GIy-Λrg-I le-Asp-Arg-I I c—Z-Lys-Orn-Cha-D-Al-Gly-Ir-Asp-Arg-Arg

-Nie-OH a príklade 1-No-OH and Example 1

Za použitia Z-Lys ( Fmoe)-011 namiesto HOC-Lys ( Fmoe)-011, Fmoc-Cha-OH namiesto ľmoe-Phe-OII a Fmoe- I lc-011 namiesto Fmocnav i ae Fiuoc-Orn (BOC)-011 sa postupom opísaným v získa surový peptid, ktorý sa čistí chromalografiou za opísaných podmienok (5 % na 80 % B za 11 min, reteričný čas 7,80 min).Using Z-Lys (Fmoe) -011 instead of HOC-Lys (Fmoe) -011, Fmoc-Cha-OH instead of lmoe-Phe-OII and Fmoe-Ic-011 instead of Fmocnav and Fiuoc-Orn (BOC) -011 was obtained by the procedure described in the crude peptide, which was purified by chromalography under the conditions described (5% to 80% B in 11 min, retention time 7.80 min).

FAB-MS (M+H)+ = 1311,8FAB-MS (M + H) &lt; + &gt; = 1311.8

Príklad 103Example 103

H-Lys-A rg-Se r(Bz1)-D-Ala-Gly-Lys-N I e-Asp-Λ rg-I I e—H-Lys-Arg-Se (Bz1) -D-Ala-Gly-Lys-N-e-Asp-f-l-e

Za použitia Fmoe-Se r (Bz I )-OH namiesto Fmoe-Phe-011 sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatografiou za opísaných podmienok (5 % na 80 % B za 11 in i n, retenčriý čas 5,55 min).Using Fmoe-Se r (Bz I) -OH instead of Fmoe-Phe-011, the crude peptide was purified as described in Example 1 and purified by chromatography under the conditions described (5% to 80% B in 11 in in, retention time 5). , 55 min).

FAB-MS (M+H)-t- =1216,0FAB-MS (M + H) &lt; + &gt; = 1216.0

Príklad 104Example 104

Bz-Lys tA rg-Phe- D-Λ Ia-GI y-Lys-NIe-Asp-A rg-I I e—Bz-Lys tArg-Phe-D-Ia-Gly-Lys-Nle-Asp-A-g-Ile -

Za použ i t i a Bz- Lys ( Fmoe) -011 nám i es to BOC- Lys ( Fmoe) -OH sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatografiou za opísaných podmienok (5 % na 80 % B za 11 min, retenčriý čas 6,40 min).Using Bz-Lys (Fmoe) -011 instead of BOC-Lys (Fmoe) -OH, the crude peptide was obtained as described in Example 1 and purified by chromatography under the conditions described (5% to 80% B in 11 min). , retention time 6.40 min).

FAB-MS (M+H)+ = 1290,0FAB-MS (M + H) &lt; + &gt; = 1290.0

Príklad 106Example 106

Bz - Ly s - A rg - Se r - ( Bz I ) -l)-Ala-Gly- Lys -N I e-Asp-A rg-I I e—Bz - Ly s - A rg - Se r - (Bz I) -1) -Ala-Gly-Lys -NI e-Asp-A rg-I e -

Za použ i t i ti Bz- Lys ( Fmoe) -011 nam i es to BOC- Lys ( Fmoe) -011 a Fmoe-Ser(BzI)-OH namiesto Fmoe-Phe sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí ehromatograf.i.ou za opísaných podmienok (5 % na 80 % B za 1 1 min, retenčný čas 6,35 min).Using three Bz-Lys (Fmoe) -011 instead of BOC-Lys (Fmoe) -011 and Fmoe-Ser (BzI) -OH instead of Fmoe-Phe, the crude peptide is purified as described in Example 1 and purified. by chromatography as described (5% to 80% B in 1 min, retention time 6.35 min).

FAB-MS (M+H)+ = 1319,7FAB-MS (M + H) &lt; + &gt; = 1319.7

Príklad 107Example 107

Tos- Lys - Arg - Phe-D-A.l a-G I y-Arg- I le-Asp-Arg-I I e—Tos-Lys-Arg-Phe-D-A.IIa-Gly-Arg-Ile-Asp-Arg-Ie-

Za použ i t i a Tos-Lys(Fmoe)-OH nam i es to BOC-Lys(ľmoe)-OH a Fmoe-I .le-OII namiesto Fmoe-N I e-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatugraf.iou za opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 6,90 min).Using Tos-Lys (Fmoe) -OH instead of BOC-Lys (lmoe) -OH and Fmoe-I.1le-OII instead of Fmoe-N I e-OII, the crude peptide was obtained as described in Example 1, which Purify by chromatography under the conditions described (5% to 80% B in 11 min, retention time 6.90 min).

FAB-MS (M+H)+ = 1367,7FAB-MS (M + H) &lt; + &gt; = 1367.7

Príklad 108Example 108

II- Lys- A rg - Phe-C I g- A rg - I le-Asp-Arg-I I e—II-Lys-Arg-Phe-Cg-Arg-Ile-Asp-Arg-Ie-

Za použitia Fmoc-Clg-OII namiesto Fmoc-Gly-OH a namiesto Fmoe-D-A I a-OII a Fmoe- I le-OII, namiesto Fmoe-N I e-OII sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatografiou zči opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 4,85 min).Using Fmoc-Clg-OII instead of Fmoc-Gly-OH and instead of Fmoe-DA I a-OII and Fmoe-I le-OII, instead of Fmoe-N I e-OII, the crude peptide was obtained according to the procedure described in Example 1. Purified by chromatography under the conditions described (5% to 80% B in 11 min, retention time 4.85 min).

FAB-MS (M+H)+ = 1253,8FAB-MS (M + H) &lt; + &gt; = 1253.8

Príklad 109Example 109

Z-Lys-A rg-Phe-C I g-A ľg-I Ie-Asp-A rg-I !eZ-Lys-A g-Phe-Cg-A g-I g-Asp-A g-Ile

Za použi tia Z-Lys-( Fmoe) -OH namiesto BOC-Lys(Fmoc)-OII, Fmoc-Clg-OH namiesto Fmoe-Gly-OH a Fmoc-I)-A I a-OII a Fmoc - I le-0H nam i esto Fmoc-NIe-OII ti bez Fmoc-Lys (BOC)-OH sa pos tupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromatografiou za opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 6,85 min).Using Z-Lys- (Fmoe) -OH instead of BOC-Lys (Fmoc) -OII, Fmoc-Clg-OH instead of Fmoe-Gly-OH and Fmoc-I) -AI α-OII and Fmoc-I le-0H instead of Fmoc-NIe-OII ti without Fmoc-Lys (BOC) -OH, following the procedure described in Example 1, a crude peptide is obtained which is purified by chromatography under the conditions described (5% to 80% B in 11 min, retention time 6). , 85 min).

FAB-MS (M+II)+ = 1387,8FAB-MS (M + H) &lt; + &gt; = 1387.8

Príklad 110Example 110

Z- Lys - A rg-Cha-C l.g-Arg- I I e-Asp - A rg- I I e—Z-Lys-A rg-Cha-Cg-Arg-Ie-Asp-A rg-Ie

Za použitia Z-Lys(Fmoe)-OH namiesto BOC-Lys(Fmoc)-OH, Fmoe-Cha-OH namiesto Fmoc-Phe-OII a Fmoe-1 le-OII namiesto Fmoe-Nle-OII ti Fmoe-C l.g-OII namiesto Fmoe-Gly-OII ti namiesto ľmoe-D-A.la-Oľl ti bez Fmoe-Lys (BOC)-OH sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí ch ronia Ľografi.ou za opísaných podmienok (5 % na 80 % B za 11 min, retenčný čas 8,70 min).Using Z-Lys (Fmoe) -OH instead of BOC-Lys (Fmoc) -OH, Fmoe-Cha-OH instead of Fmoc-Phe-OII and Fmoe-1 le-OII instead of Fmoe-Nle-OII ti Fmoe-Cg- OII instead of Fmoe-Gly-OII ti instead of lmoe-DA.la-Oll1 without Fmoe-Lys (BOC) -OH as described in Example 1 gave crude peptide which was purified by chromatography under the conditions described (5%). to 80% B in 11 min, retention time 8.70 min).

FAB-MS (M+li)+ = 13 94,0FAB-MS (M + 1) + = 13 94.0

Príklad 111Example 111

Z-Lys-A rg-Cha-D-CI g-A rg-I Ie-Asp-Arg-I I e—Z-Lys-Arg-Cha-D-CIg-Arg-Ie-Asp-Arg-Ie-

Za použ i t i a Z- Lys ( Fmoe) -OH nam i es to BOC- Lys ( Fmoe) -Oll , . Finoc-Cha-OH namiesto Fmoe-Phe-OII, Fmoe-C lg-011 namiesto Fmoe-Gly-OII a Finoe-D-AI a-OII a Fmoe-I le-OII namiesto Fmoc-NIe-OII aUsing Z-Lys (Fmoe) -OH instead of BOC-Lys (Fmoe) -Ol1. Finoc-Cha-OH instead of Fmoe-Phe-OII, Fmoe-Cg-011 instead of Fmoe-Gly-OII and Finoe-D-AI a-OII and Fmoe-I le-OII instead of Fmoc-NIe-OII and

00 bez Fmoc-Lys(BOC)-OH su postupom opísaným v príklade I získa surový peptid, ktorý sa čisti chromatograľ iou za opísaných podmienok (5 % na 80 % B za 10 min, retenčný čas 9,80 min). FAB-MS (M+ll)+ = 1393,900 without Fmoc-Lys (BOC) -OH followed by the procedure described in Example I gave the crude peptide, which was purified by chromatography under the conditions described (5% to 80% B in 10 min, retention time 9.80 min). FAB-MS (M + 11) + = 1393.9

Príklad 112Example 112

H - Dap- A rg-Cha-D-A.l a-G 1 y-Λ rg- I I e - Asp - A rg - I I e—H-Dap-A rg-Cha-D-A.l a-G-y-fg-I e-Asp-A rg-I I e-

Za použitia BOC-Dap(Fmoe)-011 namiesto BOC-Lys(Fmoe)-OH a Fmoc-Ile-OH namiesto Fmoe-NIe-OH a bez Fmoe - Lys (BOC)-011 stí postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí ch roma tograf i ou zči opísaných podmienok (5 % na 80 % B za 10 mín, retenčný čas 6,85 min).Using BOC-Dap (Fmoe) -011 instead of BOC-Lys (Fmoe) -OH and Fmoc-Ile-OH instead of Fmoe-NIe-OH and without Fmoe-Lys (BOC) -011 was obtained as described in Example 1 to obtain the crude peptide which was purified by chromatography using the conditions described (5% to 80% B in 10 min, retention time 6.85 min).

FAB-MS (M+H)+ = 1177,5FAB-MS (M + H) &lt; + &gt; = 1177.5

Príklad 113Example 113

Z - Dap - A rg-Cha - D-A l.a-G I y-A rg- J I e-Asp-A r g- I I e—Z-Dap-A-g-Cha-D-A-a-G-y-A-g-J-e-Asp-A-g-I-e

Za použitia Z-Dap(Fmoc)-OH namiesto BOC-Lys(Fmoc)-OH, Fmoc-Cha-OH namiesto Fmoe-Phe-OII a Fmoe-I I c - 011 namiesto Fmoe-Nle-OH a bez Fmoc-Lys(BOC)-OH sa postupom opísaným v príklade 1 získa surový peptid, ktorý sa čistí chromátograf i ou za opísaných podmienok (5 % na 80 % B za 10 min, retenčný čas 8,10 min).Using Z-Dap (Fmoc) -OH instead of BOC-Lys (Fmoc) -OH, Fmoc-Cha-OH instead of Fmoe-Phe-OII and Fmoe-I I c-011 instead of Fmoe-Nle-OH and without Fmoc-Lys (BOC) -OH gave the crude peptide as described in Example 1, which was purified by chromatography under the conditions described (5% to 80% B in 10 min, retention time 8.10 min).

FAB-MS (M+H)+ = 1311,6FAB-MS (M + H) &lt; + &gt; = 1311.6

Analogicky sa pri p ľaví (4-N02)Z-Lys-Arg-Cha-D-A 1a-GI y-Arg-Mc t-Asp-Arg-I I e—Analogously, the right Lavi (4-N0 2) Z-Lys-Arg-Cha-DA 1-yl GI-Arg-Me t-Asp-Arg-I I e

Čistí sa ch ronia togra f i ou za opísaných podmienok (10 % na 90 % B za 10 min, retenčný čas 7,4 min).Purify by chromatography using the conditions described (10% to 90% B in 10 min, retention time 7.4 min).

FAB-MS (M+H)+ = 1417,0 (4-N02)Z-Lys-Orn-Cha-D-A 1a-G1y-Arg-I 1 e-Asp-A rg-I 1 e—FAB-MS (M + H) + = 1417.0 (4-N0 2) Z-Lys-Orn-Cha-DA 1-G1y-Arg-I-1 E-Asp-I and R 1 e

Čistí sa ch ronia tog raf i ou za opísaných podmienok (10 % na 90 % B za 10 min, retenčný čas 7,8 min).Purify by chromatography under the conditions described (10% to 90% B in 10 min, retention time 7.8 min).

FAB-MS (M+IQ + = 1356,6FAB-MS (M + 10 &lt; + &gt; = 1356.6)

Príklad 114Example 114

2-Pyr idyIace ty I -Lys-Arg-Cha-P-A1a-GIy-Λ rg- 1 Ie-Asp-Arg-I I c—2-Pyridylation-Lys-Arg-Cha-P-A1a-Gly-fluor-1e-Asp-Arg-Ic

Syntéza peptidu sa uskutočňuje na syntezátore peptidov ACT 200 firmy Advanced ChemTech za použitia Fmoc-s trategi e za použitia modi f i kovaného riadiaceho programu do 50 ml t.repac.ieho reaktoru sa umiestni 1 g 2-metoxyhenzyI esťcrove j živice firmy Bachen, Švajčiarsko, ktorá bola uvedená do cyklu 0,5 mmol. Fmoc-i zo I euc í nu . Boli použité následujúce deriváty aminokyselín : Finoc-Arg(M t r)-OH , Fmoc-Asp(tBu)-OH, Fmoc-lle-OH, Fnioc-GI y-011, Fmoc-D-A 1 a-OII, Fmoe-Cha-OII a 2-pyridylace-tyl-Lys(Fmoc)-OH. Kopulácie sa vykonávajú za použitia vždy 3 ekvivalentov Fmoe-aminokyseI iny, 1 - hydroxybenzot r iazol.u a d ieyk 1ohexyIkarhod i i m idu (doba kopulácie 40 minút). PoPeptide synthesis is performed on an Advanced ChemTech ACT 200 peptide synthesizer using Fmoc-s trategi e using a modified control program in a 50 ml thaw reactor to place 1 g of 2-methoxyhenzyl ester resin from Bachen, Switzerland, which was charged to a cycle of 0.5 mmol. Fmoc-i from eucine. The following amino acid derivatives were used: Finoc-Arg (M tr) -OH, Fmoc-Asp (tBu) -OH, Fmoc-11le-OH, Fnioc-Gly-011, Fmoc-DA 1 α-OII, Fmoe-Cha- OII and 2-pyridylation-tyl-Lys (Fmoc) -OH. The couplings were carried out using 3 equivalents each of F-amino amino acid, 1-hydroxybenzotriazole and dicalohexylcarboxylic acid (coupling time 40 minutes). After

II

102 % roztoku kysoliny l ep I o 1 e m i es Ľnosl i vykonaní TNBS-testu sa pri neúplnej aeyIáei i kopulácia opakuje za použitia rovnakých reagencii a prebytkov. Pri úplnej aey I áe i i sa naštartuje tľa I š í cyklus syntézy. Odštiepenie Fmoe-chrániaci eh skupín sa uskutočňuje 20 % piper.i.tl.í nom v DMF (raz 3 minúty, raz 15 minút).The TNBS test was repeated in the case of incomplete coupling and repeated using the same reagents and excess. When complete, the larger synthesis cycle is started. The cleavage of the Fmoe-protecting groups is carried out with 20% piperidine in DMF (once 3 minutes, once 15 minutes).

Medzi jednotlivými reakciami sa živica premyje vžtly 10-krát DMF. Po výstavbe lineárnej sekvencie 2-pyritlylacetyl-Lys-Arg(M t r)-Cha-D-Λ Ia-GI y-Arg(M t r)- I I e-Asp(tBu)-A rg(M t r)- I I e na polymérnom nosiči sa živica dôkladne premyje d i eh I órmetánom a potom sa spracuje 5-k rát vždy 20 ml t r i fluóoclove j v d i ch Iórmetáne pri maximálne po 10 minút (až do intenzívneho I i la sfarbenia živice). Roztoky sa prečistia ti odparia vo vákuu. Zvyšok sa rozotrie s éterom, éter sa oddckant uj e, peptid sa suší v prúde dusíka a vyberie sa do 130 ml DMF, hodnota pH sa nastaví na asi 8,5 t r i e ty I am ínom, roztok sa ochladí na -20 °C a pridá sa 0,2 g (0,75 mmol) d i fény 1 fosforyIazidu. Nechá sa stád 48 hodín pri. -20 °C a 48 hod í n pri 4 *’C. Hodnota pil sa udržuje tr i e ty l am ínom na 8,5. Potom sa odstráni DMF vo vákuu, zvyšok sa rozotrie dvakrát s éterom, éter sa oddckantuje a zvyšok sa suší v prúde dusíka. Chráň iaee skupiny bočného reťazca sa odštepujú zmesou kyseliny L r i ľ Iuóroctovej/ani zo I u (90/10) počas 24 hodín pri teplote miestnosti. Roztok sa zahustí vo vákuu, zvyšok sa digeruje s éterom a vysuší. Surový peptid sa čistí cez 3 /um stĺpec Dynainaxu 018 (10 x 2,14 cm) za použitia jedného z gradientov A: voda/aeeton i t r i I/kyseI i na t r.i.f luó roc tovťi 95/5/0,2 a B: dtto 20/80/0,2 z 10 % B na 90 % B za 11 minút, prietok 10 m I/m i n, retenčný čas 8,2 minút. Po sušení vymrazovaním sa získa amorfný bezfarebný prášok.Between each reaction, the resin was washed with DMF 10 times. After the construction of the linear sequence of 2-pyritlylacetyl-Lys-Arg (M tr) -Cha-D-Ia-Gly-Arg (M tr) -IIe-Asp (tBu) -Arg (M tr) -IIe na The resin is thoroughly washed with dichloromethane and then treated 5 times with 20 ml of three fluoroacetate in methylene chloride for a maximum of 10 minutes (until the resin is intensely colored). The solutions are purified and evaporated in vacuo. The residue is triturated with ether, the ether is separated off, the peptide is dried under a stream of nitrogen and taken up in 130 ml of DMF, the pH is adjusted to about 8.5 with triethylamine, the solution is cooled to -20 ° C and 0.2 g (0.75 mmol) of phosphoryl azide diphenyl 1 is added. Leave herds for 48 hours at. -20 ° C and 48 hours at 4 ° C. The pH value is maintained at 8.5 with amine. DMF was then removed in vacuo, the residue was triturated twice with ether, decanted off and dried under a stream of nitrogen. The side chain protecting groups and cleavages were cleaved with a mixture of L-trifluoroacetic acid / l (90/10) for 24 hours at room temperature. The solution is concentrated in vacuo, the residue is digested with ether and dried. The crude peptide was purified through a 3 µm Dynainax 018 column (10 x 2.14 cm) using one of the gradients A: water / acetonitrile / acid on trifluoroacetyl 95/5 / 0.2 and B: dtto 20/80 / 0.2 from 10% B to 90% B in 11 minutes, flow rate 10mL / min, retention time 8.2 minutes. After freeze-drying, an amorphous colorless powder is obtained.

FAB-MS (M+ll) + = 1338,6FAB-MS (M + 11) + = 1338.6

Príklady 115 až 124Examples 115 to 124

X-Lys-Arg-Cha-D-AIa-Gly-Arg-I le-Asp-Arg-I I e—X-Lys-Arg-Cha-D-Al-Gly-Arg-Ile-Asp-Arg-Ile

0303

Za ρουζ i -Lys(Fmoe)-OH sa pept.i.t, ktorý sa (10 % na 90 % tabuľka).For λου-Lys (Fmoe) -OH, the pept.i.t is (10% to 90% table).

tia X - Lys ( Fmoe)-011 namiesto 2-py r i dy I ace. t y I postupom opísaným v príklade 1 získa surový čistí ch roma log raf i ou za opísaných podmienok B za 11 min, retenčný čas viď. následujúca í'.·.', i'·.?thia X-Lys (Fmoe) -011 instead of 2-pyridyl. The procedure was as described in Example 1 to obtain a crude purification of the crude oil under the conditions described B in 11 min. followed by í '. ·.', i '·.?

Pri k l.ad retenčný FAB-MS (M+ll) čas (min)Pri k l.ad retention FAB-MS (M + 11) time (min)

9,59.5

9,99.9

8,78.7

1338,61,338.6

1393 , 71393, 7

1403 , 61403, 6

1.3 2 5 , 31.3 2 5

1382 , 81382, 8

1385,8 i1385,8 i

ís

I ίI ί

r ir i

l il i

i.i.

i íi í

I !I!

iand

I 04I 04

Pr.íklad č.Example #

120120

121121

122 C1-O°^r o122 C 1 -O °

123123

124124

(1) : OdchýIka od ie Cenený čas(1): Deviation from ie Valued time

7,67.6

8,18.1

7,5 čistenia pod ľa pri kladu 17.5 cleaning according to example 1

B na 90 % B za 10 m pľ i e tok I0 m I/m i n.B to 90% B in 10 m at flow I0 m I / m i n.

FAB-MS (M+ll)FAB-MS (M + II)

1415.7 (1417,7) 1 Br1415.7 (1417.7) 1 Br

1398.81398.8

13881388

14041404

1422 »· í1422 »

I.I.

i íi í

0505

Gél (pre transdermálne podanie, najmä spojené s i on t a> ľo rézou ) % účinnej substancie všeobecného vzorca I v citraťovom pu f re pi l 4 , 1 (zloženie viď ďalej)Gel (for transdermal administration, in particular associated with it) of the active substance of the formula I in citrate buffer 4, 1 (composition see below)

0,25 % agaróza0.25% agarose

Zloženie c i ť rá tového pufru pil 4,1Composition of citrate buffer pH 4.1

Roztok I:Solution I:

10,5 g moriohydrátu kyseI iny c i trónovej 100,0 ml hydroxidu sodného 1 inó I / I do 500,0 ml des t i I ovanú voda10.5 g of tin (III) citric acid morohydrate 100.0 ml of 1N sodium hydroxide to 500.0 ml of distilled water

Roztok lI:Solution II:

100,0 m I kysse.liria ch I orovod í ková 0,1 mó I / 1 do 250,0 ml roztok I100.0 ml of hydrochloric acid 0.1 mol / l to 250.0 ml of solution I

Vyšš i e Higher uvedený roztok sa zahreje said solution is heated asi na 60 (,C zaabout 60 (, C for miešania a mixing and po rozpustení vše after dissolution everything Ľkých čas t Time t í c agarózy sa nechá The agarose is left vyehl adnú ť vyehl adnú ť na teplotu miestnosti. to room temperature. Roztok pre Solution for i n j eke i e i n j eke i e 10,5 g 10,5 g Nall2P04.2H20Nall 2 P0 4 .2H 2 0 95,5 g 95,5 g Nall2P04.12H2ONaH 2 P0 4 .12H 2 O > P ti ľ > P ti ľ e r pH 7,4 e r pH 7.4 22,0 g 22,0 g NaCI NaCl do 5000 iii.l up to 5000 iii.l des t i 1 ovanú voda distilled water

Tento tlmivý roztok sa spracováva v au tok láve 30 minút pri. 121 °C a 98,0665 kPa.This buffer is treated in a lava flow for 30 minutes at. 121 ° C and 98.0665 kPa.

f ·.·f ·. ·

J·..· J ..

ís

KThe

r.'.r. '.

i ·'i · '

0606

K tomuto roztoku sa pridá 1,5 g všeobecného vzorca I a vzniknutý roztok sa úe i nne j suhs turie i e s te r i 1 ne ľ i I t ruj e.To this solution is added 1.5 g of the formula (I) and the resulting solution is efficiently dried by filtration.

V uvedených príkladoch na prípravky je možné napríklad použiť zlúčeninu vzorca (4-N02)Z-Lys-Λ rg-Cha-D-A I a-G I y-A rg-I I e-Asp-A rg-I I e— alebo inú z vyššie uvedených zlúčenín.In the examples the compositions may be used as the compound of formula (4-N0 2) Z-Lys-Cha-rg Λ DA-I and G I yA RG-I I e-Asp, and R-I, I, E or other of the above of said compounds.

107107

1> Λ T E N T 0 V ľ·1> Λ T E N T 0

Claims (1)

NÁROKY 1. Cy k 1 opep t i dy všeobcenného vzorua I s ANI’ ugon i s Ľ i ekou účinnosťou p- A n - B n - C n - D n - E n - í'n - Gn - II n - I n - K n—j ( I ) kde sled členov Bn až Kn predstavuje sled am inokyseI i nových zvyškov h ANP1. Cy k 1 opepids of the general pattern I with ANI 'ugon with a low efficiency p- A n - B n - C n - D n - E n - i'n - Gn - II n - I n - K n-j (I) wherein the sequence of members Bn to Kn represents the sequence and inocyanate residues of h ANP -Arg(27)-Phe(B)-Gly(9)-Gly(10)-Arg(I1)-Me l (12)-Asp(I3)-Arg(14)I.le(15)~ alebo jeho priestorové štruktúrne a funkčné ekvivalenty a An znamená medzeru í ková skupinu, ktorá spája Bn s Kn a ovplyvňuje priestorovú štruktúru tých to molekúl tak,· že sa cyklopeptidy viažu na ANP receptory a i eh farmaceutický prijateľné sol i.-Arg (27) -Phe (B) -Gly (9) -Gly (10) -Arg (I1) -Me 1 (12) -Asp (I3) -Arg (14) I.le (15) - or its spatial structural and functional equivalents, and An is a spacer group that associates Bn with Kn and affects the spatial structure of these molecules by binding cyclopeptides to ANP receptors and even a pharmaceutically acceptable salt. 2. Cyk I opep v i dy podľa nároku 1, kde medze rri í ková skupina v časti ležiacej za členom Bn obsahuje aromatický či lebo cyk I oči I i f a t ieký zvyšok .The cyclic ophthalmology of claim 1, wherein the spacer group in the portion downstream of the member Bn comprises an aromatic or cyclic moiety and a heavy residue. 3. Cyklopeptidy pod ľči nároku I alebo 2, kde členyCyclopeptides according to claim 1 or 2, wherein the members Bn , Cn , En , Fn , Gn , Hn , I n či Kn sú v L-forme.Bn, Cn, En, Fn, Gn, Hn, I n or Kn are in L-form. tT 4. Cyklopept.i d pod ľ či nároku 1 až 3, kde Bn je a-aminokyse1 i nový zvyšok s jedným alebo d voiii i bočnými reťazcami, kde bočný reťazec (e) alebo jeden z oboch bočných re ťčizeov obsahuje(ú) jednu, dve, tri alebo štyri bázické skupiny.A cyclopeptide according to claims 1 to 3, wherein Bn is an α-amino acid residue with one or more side chains, wherein the side chain (s) or one of the two side chains comprises one, two, three or four basic groups. 10Κ10Κ Cn je a-am inokyseI i nový zvyšok s jedným alebo dvoma prípadne -0-, -S- alebo -C(0)0- obsahujúcimi a I kýlovým i bočnými reťazcami., p.r.ičom bočný (é) reťaze (e) nesie(ú) alebo jeden z nich nesie zvyšok alebo dva zvyšky, pričom každý zvyšok znamená cykloalkyl s 3 až 10 atómami uhlíka, fenyl, naľtyl, substituovaný napríklad hydroxy, ľenyI (C j 4)aIkyIoxy, (C j_4)a Ikoxy, N02 , fenyl alebo 5- alebo 6- členný aromatický he te rocy k I lis , kde 2 členy predstavujú N alebo jeden člen N a jeden je 0 alebo S alebo jeden člen je N, S alebo 0 a ostatné sú C, výhodne tienyl, fu ryl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl , py raz i ny I , p i r i m i.d i ny 1 , py r i daz i ny I , i ndo lyl, i žoch i nolyl, ch.inolyl, ch romány I , tiazolyl, oxazolyl, morľo I i ny I .Cn is an alpha-amine acid residue with one or two optionally -O-, -S- or -C (O) O- containing and I truss and side chains, wherein the side chain (s) bear (s). ) and one of which bears a radical or two radicals wherein each radical is cycloalkyl of 3 to 10 carbon atoms, phenyl, naľtyl, substituted for example by hydroxy, attributed to the (C j 4) alkyloxy, (C j 4) and Ikoxy, N0 2, phenyl or a 5- or 6-membered aromatic heteroaryl wherein 2 members represent N or one N member and one is 0 or S or one member is N, S or O and the others are C, preferably thienyl, phenyl , pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl I, pirimidinyl 1, pyridazinyl I, indolyl, iinolyl, quinolyl, ch novels I, thiazolyl, oxazolyl, morphine I i ny I. Dn a En každý nezávisle na druhom znumenú Gly alebo « - am i nok y se I. i nový zvyšok, ktorý napodobňuje priestorovú štruktúru natívnej aminokyseliny Gly ti leboDn and En each independently of the other denoted by Gly or «- amino y is a new residue that mimics the spatial structure of the native amino acid Gly t or Dn a En spolu znamenajú 6d -am i nokysel i nový zvyšok -Nll (Cll9 ) | j -C0aleho peptidový templát,Dn and En together are 6d -AM and nokysel and new rest -Nll (CII 9) | j -C0ale's peptide template, Fn je α-am.i nokysel. i nový zvyšok s jedným alebo dvomi bočnými reťazcami , kde bočný (é) reťazec (e) ti lebo jeden z oboch bočných reťazcov ohsahuje(ú) jednu, dve, tri alebo štyri bázické skupiny,Fn is α-am.i nonacid. i a new residue with one or two side chains, wherein the side chain (s) t or one of the two side chains comprises one, two, three or four basic groups, Gn je «-am inokyseI i nový zvyšok s jedným alebo dvomi llpof.i Inými bočnými reťazcami ,Gn is a new residue with one or two lipids. I I n j t: a-am i nokyse I i nový zvyšok, ktorý je v bočnom (ýcli) reťazci (och) neobsahuje žiadnu funkčnú skupinu alebo -COOII alebo -C0NH2 obsahuje ako funkčnú skupinu.The α-amino acid residue in the side chain (s) contains no functional group, or -COOII or -COOH 2 contains as a functional group. In je a-am inokysel i nový zvyšok s jedným alebo dvomi bočnýmiIn is an α-am amino acid and a new residue with one or two side I 0 9 reťazcami, kde bočný (é) reťazee(e) alebo jeden z bočných reťazcov obsahuj e(ú) jednu, dve, tr i alebo štyri bázické skupiny,Wherein the side chain (s) or one of the side chains comprises one, two, three or four basic groups, Kn je a-aminokyse1 i nový zvyšok s jedným alebo dvomi llpofilnými bočnými reťazcami.Kn is an α-amino acid residue with one or two 11pophilic side chains. 5. Cyk I opept i d podľa nároku 4, kileA cyclic opeptide according to claim 4, kilo Bn, Fn a In nezávisle na sebe znamenajú «-aminokyselinový zvyšok s bočným reťazcom, kde bočný reťazec obsahuje jednu alebo dve bázické skupiny,Bn, Fn, and In independently represent a side chain amino acid residue, wherein the side chain comprises one or two basic groups, Cn je α-amínokyseI i nový zvyšok s bočným reťazcom,Cn is an α-amino acid side chain residue, Dn a En majú nezávisle na sebe význam definovaný v nároku 4 aleboDn and En are independently as defined in claim 4 or Dn a En spolu tvor i au? -am i nokyse I i nový zvyšokDn and En together create au? -am i nokyse I i new rest -NH-(Cll2) 2_ j-CO- alebo peptidový Ľciiipláť,-NH- (CII 2) 2 _ j-CO- or a peptide Ľciiipláť. Gn a Kn nezáv is l e na sebe znamenajú a-am inokyse1 i nový zvyšok s llpofilným bočným reťazcom, kile bočný reťazec je (Cj-Cg)alkyl,ktorý môže tiež obsahovať jeden alebo dva -S- alebo -G- v reťazci,Gn and Kn are not independent of each other .alpha.-amine inyl acidic residue with an 11pophilic side chain, while the side chain is (C1-C6) alkyl, which may also contain one or two -S- or -G- in the chain, Hn je Gly alebo α-am i.nokyse I i nový zvyšok, ktorého bočný reťazec je (Cj-C(-) a I ky I , fény I - (Cj-C(-)-a I ky I , II^N-CO-(CH2) [ _4 alebo H00C- (Cll2) , _4- ,Hn is a Gly or α-am i.noacid residue whose side chain is (C1-C ( -) and I-I, phases I - (C1-C ( -) - and I-I, II ^ N) -CO- (CH2) [_ 4 or H00C- (CII 2), _ 4 -, 6. Cyklopeplid podľa nároku 5, kdeThe cyclopeplid of claim 5, wherein Bn, Fn a In nezávisle na sebe znamenajú Arg, D-Arg, Lys, D-Lys, Orn, D-Orn, homo-Arg, D-homo-Arg, Dap, D-Dap alebo 4-am.i no-Phe , výhodne Arg, D-Arg, Lys, D-Lys alebo Orn,Bn, Fn and In are independently Arg, D-Arg, Lys, D-Lys, Orn, D-Orn, homo-Arg, D-homo-Arg, Dap, D-Dap, or 4-amino. Phe, preferably Arg, D-Arg, Lys, D-Lys or Orn, K)K) Cn znameá Phe, D-Phe, 4-NO2-Phe, Cha, D-Cha, Ser(Bzl) , D-Ser (Bzl), D-Ser(Bzl), Tyr, D-Tyr, Tyi(Bzl), l)- 'ľy r ( Bz I ) , Na I , D-Nal, Thi, I)-Th i , Asp(Bzl), D-Asp(hzl), His, D-llis, G I u(Bz I ) alebo D-G.l.11 (Bzl) , výhodne Phe, Cha, Tyr, Na I , Ty r (Bzl) alebo (4-N02)-Phe,Cn means Phe, D-Phe, 4-NO 2 -Phe, Cha, D-Cha, Ser (Bzl), D-Ser (Bzl), D-Ser (Bzl), Tyr, D-Tyr, Tyi (Bzl). (l) - l 'r (Bz I), Na I, D-Nal, Thi, I) - Thi, Asp (Bzl), D-Asp (hzl), His, D-llis, GI (Bz I) ) or DG.1.11 (Bzl), preferably Phe, Cha, Tyr, Na I, Tyr (Bzl) or (4-NO 2 ) -Phe, Dn a En nezávisle na sebe znamenaj ú Ala, Gly, ľni, Ser, Asn, Lys, Asp alebo Thr alebo ich D-formy, výhodne je l)n , D-Ala,. Gly, Pro, D-Pro, Ser alebo D-Scr,Dn and En are each independently Ala, Gly, lin, Ser, Asn, Lys, Asp, or Thr or their D-forms, preferably 1) n, D-Ala. Gly, Pro, D-Pro, Ser, or D-Scr, En je Gly, Asp alebo Asn aleboEn is Gly, Asp or Asn or Dn a En spolu znamenajú ω - ani i nokyse I i nový zvyšok vzorca -NH - (Cll2)2_ í;-CO- alebo peptľídový templáť, vybodne Bťu, Clg, The alebo Tre alebo i eh D-formy, najmä D-B tu,Dn and En together are ω - i nokyse or I, and a new radical of formula --NH - (CII 2) 2 _ I, -CO- or peptľídový template done without Btu, Clg, and the Tre eh or the D-form, in particular DB here, Cn a ;Kn nezávisle na sebe znamenajú Íle, D-I I e, MeĽ, D-Met, Nie, D-NIc, Leu, D-Leu, Val alebo D-Vyl, výhodne Ilc, Met, Nie alebo Leu, lln znamená IIOOC- (Cll2) j 4-CII (NH-)-CO- , jeho D-f o rmy , G I y , Ala, D-Ala, Asn, D-Asn, Phe aleho D-Phe, výhodne Asp, Glu aleho Gly.Cn and Kn are independently E1, D1e, Me, D-Met, Nle, D-NIc, Leu, D-Leu, Val or D-Vy1, preferably Ilc, Met, No or Leu; - (Cl 12 ) 14 -CII (NH -) - CO-, its D-forms, Gly, Ala, D-Ala, Asn, D-Asn, Phe or D-Phe, preferably Asp, Glu or Gly. 7. Cyklopeptid podľa jedného z nárokov I až 6, kileA cyclopeptide according to any one of claims 1 to 6 kilo An jeAn je a) skupina -A^-A^A^-, kdea) -A 1 -A 1 A 1 -, wherein A| je Gly alebo zvyšok a-am i nokyse I. i ny , ktorej bočný reťazec (ce) nenesú žiadne funkčné skupiny,A | is a Gly or an α-amine residue of an i-nynyl whose side chain (s) bear no functional groups, 1 I1 I Λ2 znamená ková len tnú väzbu alebo zvyšok o»-am inokyseI iny vzorca II kdeZnamená 2 represents a metal bond or an α-amino acid residue of formula II wherein -NH - (CII2)n-COn je ce I é číslo od 1 do 11, (II)-NH- (CII 2 ) n -COn is a number from 1 to 11, (II) An znamená α-am.i nokyse I i nový zvyšok s jedným alebo dvoma poprípade -0-, -S- alebo -C(0)0- obsahujúcimi alkylovými bočnými. reťazcami , kde bočný reťazcc(ce) alebo jeden z obidvoch bočných reťazcov nesie jeden alebo dva zvyšky, kile každý z uvedených zvyškov je vždy cykloalkyl s 3 až. 10 atómami uhlíka, fenyl, naftyl, suhst i tuovaný (napríklad hydroxy, fény 1 (Cj _4)a l.ky.l.oxy , (Cj _4)a.l koxy , N02)-fenyI alebo 5alebo 6-členný aromat ický lieterocyk I us , kile 2 členy kruhu súAn is an alpha-amino acid residue with one or two optionally -O-, -S- or -C (O) O- containing alkyl side groups. wherein the side chain (s) or one of the two side chains bears one or two residues, each of said residues being in each case a cycloalkyl having from 3 to 3 carbon atoms. 10 carbon atoms, phenyl, naphthyl, and suhst monosubstituted with (e.g., hydroxy, fans 1 (C 4 _) and l.ky.l.oxy, (C _ 4) alkoxyl, N0 2) -phenyl or 5alebo 6-membered aromatic ical lieterocycle I, kile 2 ring members are N alebo jeden člen je N a jeden 0 alebo S, alebo jeden člen je N, S alebo O, či ostatné členy sú C, výhodne t i enyl , f u ryl , pyrrol.yi, imidazol.yl, pyrazolyl, pyridyl, pyrazinyl, pyrirni d iny1 , pyridazinyl, indolyl, izochinilyl, chinolyl, ch romány I , tiazolyl , oxazolyl , morfol inyI , aleboN or one member is N and one is O or S, or one member is N, S or O, or the other members are C, preferably thienyl, phenyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidine d iny1, pyridazinyl, indolyl, isoquinilyl, quinolyl, ch novels I, thiazolyl, oxazolyl, morpholinyl, or b) skupinu -A4- A^-, kdeb) -A 4 -A 4 -, wherein A4 znamená pep t i ílový temp lá t a I eho to-am i nokyse I i nový zvyšok vzorca í IA 4 denotes a thio-to-amine-cyanocyanate-I thietylacrylate residue NII- (CII2)n-C0(II) kde n je celé číslo 1 až 11NII- (CII 2 ) n -CO (II) wherein n is an integer from 1 to 11 I 2 znamení! kovalentnú väzbu alebo «-am i nokyse I i nový zvyšok s jedným alebo dvoma poprípade -O- , -S- alebo -C(0)0 obsahujúcimi a 1. ky .1 ovým i bočnými reťazcami, kde bočný reťazec(e) alebo, jeden z oboch bočných reťazcov nes i e(ú) jeden alebo dva zvyšky, pričom každý zo zvyškov znamená cykloalkyl s .3 až 10 atómami. ubi í k a , fenyl , naf’tyl , substi tuovaný (napríklad hydroxy, f eny I. (Cj _ 4) a I ky I oxy , (C j _ 4) a l.koxy , N02)-fenyl. alebo 5aiebo 6-členný aromatický be te rocy k I us , kile 2 členy kruhu sú N alebo jeden člen je N a jeden 0 alebo S, alebo jeden člen je N, S alebo 0, a ostatné členy sú C, výhodne t ienyl, fu ryl, pyrrol.y! , ímídazoly l , pyrazolyl , pyr.i m i d iny I , pyridazinyl, indolyl, pyr.idyl , py raz inyl , i zoehi n i 1 y I , eh i no I y I , chromanyl , t iazoI y 1 , oxazolyl , morfo I inyl , aleboI 2 signs! a covalent bond or an γ-amino acid residue with one or two optionally -O-, -S-, or -C (O) 0 containing both alkyl and side chains, wherein the side chain (s) or , one of the two side chains carries one or two radicals, each of which is a C 3 -C 10 cycloalkyl. The cabinet ubi, phenyl, naf'tyl group, a substituted (e.g., hydroxy, phenyl-I (C 4 _) and I, I, alkyl oxy, (C j _ 4) and l.koxy, N0 2) phenyl. or a 5-membered or 6-membered aromatic compound of formula 1, wherein the 2 ring members are N or one member is N and one is O or S, or one member is N, S or O, and the other members are C, preferably thienyl, fu ryl, pyrrol.y! , imidazoles 1, pyrazolyl, pyrimidinyl I, pyridazinyl, indolyl, pyrimidyl, pyrazinyl, isoquinolin-1-yl, chromanyl, thiazolyl, oxazolyl, morpholinyl or c) am i nokyseI i nový zvyšok vzorca III -NH- (CH2)in-CH(R) -CO (III), kde. m je celé číslo od 1 do 11 a R znamená NIIX, OX , SX , NXY , -Nll (II)-C(0)-Cll2-X1 ,c) am i nokyseI and a new radical of formula III -NH- (CH 2) and CH (R) -CO- (III) wherein. m is an integer from 1 to 11 and R is NIIX, OX, SX, NXY, -Nll (II) -C (O) -Cll 2 -X 1 , -N (II)-C(O)-Cll2-O-X 1 ,-N (II) -C (O) -C 11 2 -OX 1 , -N (II) -C(0) -X1 ,-N (II) -C (O) -X 1 , -N(II)-C(0)-CH=CH-X 1 alebo -N(II) -C(0) -O-CI^-X1 , kde X znamená vodík, nesubst i tuovaný alebo substituovaný benzoyIový zvyšok,nesubst i tuovaný alebo substituovaný eyk.l ohexy I oxykarbony I ový zvyšok , nesubst i tuovaný alebo substi tuovaný benzyIoxykarhonyIový zvyšok, 2-, 3-, alebo 4-pyr idyImety IoxykarbonyIový zvyšok alebo losy Iový zvyšok,-N (II) -C (0) -CH = CH-X1 or -N (II) -C (0) -O-C 1 -X, wherein X is hydrogen, an unsubstituted or substituted radical benzoyIový, unsubstituted or substituted cyclohexylcarbonyl, unsubstituted or substituted benzyloxycarbonyl, 2-, 3-, or 4-pyridylmethoxycarbonyl or moiety, X znamená Cl už 04 -alkylový zvyšok alebo aryl-(Cl íiž C14-aľkyl) zvyšok aX is Cl is an O 4 -alkyl radical or an aryl- (C 1 -C 14 -alkyl) radical a I 3I 3 X1 znamená («) ľeny I , (β) 1, 2 alebo 3 substituenty zo skupiny halogén, ť r i ľluórmely I alebo nilľo subsiiiuovaný ľenyl, (^f) naľtyl, (δ) benzo/b/-t i eny I , (6) pyridy I alebo (Ί) py raz inyl.X 1 represents ()) women I, (β) 1, 2 or 3 substituents selected from the group consisting of halogen, trifluoromethyl I, or low-substituted phenyl, (R) naphthyl, (δ) benzo / b / thienyl I, ( 6) Pyrides I or (Ί) pyrazinyl. 8. Cyklopeplid pod ľa nároku 7, kde Λιι znamenáCyclopeplid according to claim 7, wherein Λιι represents a) - A i - A2 - Λ3 - , kde Aj znamená n-ainínokysel i nový zvyšok s jedným (C,_) alkylovým hoéným reťazcom,a) - A 1 - A 2 - Λ 3 -, where A 1 represents a n-amino acid and a new radical with one (C 1-6) alkyl chain, A2 j e tu-am i nokyse I i nový zvyšok vzorca II, kde n je celé číslo od 1 do 6,A 2 is a thiaminoacid I and a new radical of formula II wherein n is an integer from 1 to 6, Αβ je a - am inokyse1 i nový zvyšok reťazcom alebo Αβ is an α-am inocyanate residue or S WITH j edným one bočným side skupinu -A4A^- kde A\j je zvyšok u> vzorca II, kde n je celé číslo 1 aža group -A 4 A 4 - wherein A 1 is a radical u> of formula II, wherein n is an integer from 1 to 2; - tllll i 6 - tllll i 6 n 0 k y s e 1 i n 0 k y s e 1 i i ny other Ac; je α-aminokysel i nový zvyšok reťazcom, ac; is both the α-amino acid and the new residue chain, s with j edným one bočným side am inokyse1 i nový zvyšok vzorca III, an amine acid residue of formula III, k tie to those m je 1 , m is 1, 2, 3 2, 3
alebo 4 a R je -NHX, -NHY,or 4 and R is -NHX, -NHY, -NH(II)-C(0)-ΟΙ2-Χ’ ,-NH (II) -C (O) -ΟΙ 2 -Χ ', -N(II) -C(0) -Cl^-O-X1 ,-N (II) -C (O) -Cl 2 -OX 1 , -N(H)-C(0)-X1 -N (H) -C (O) -X 1 - N (I I) -C (0) - Cl l=CH - X1 alebo -N (II)-C (O)-O-CH2-X 1 .- N (II) -C (O) - Cl 1 = CH-X 1 or -N (II) -C (O) -O-CH 2 -X 1 . 9. Cy k l.opep t i d podľa nároku 8, kde An znamená íi ) skupinu - A j - Λ 2 - A 3 - kdeA compound according to claim 8, wherein An is (i) a group - A j - Λ 2 - A 3 - wherein A| znamená Ala, Gly, Phe, Val, íle, Leu u lebo Nie alebo ich D-formu, výhodne Gly, Ala alebo D-Ala,A | means Ala, Gly, Phe, Val, Ile, Leu or No or their D-form, preferably Gly, Ala or D-Ala, A2 znamená oj - am i noky se I i nový zvyšok vzorca I I , kde n je 2, 3 alebo 5,A 2 is o-amine with a new radical of formula II wherein n is 2, 3 or 5, I 1 4I 1 4 A3 znamená A3 stands for Phe, Phe, D-Phe, D-Phe, , 4-N02 , 4-NO 2 -Phe, Phe, Cha, l)-Cha, Se r ( Bz 1 ) , Cha, l) -Cha, Se r (Bz 1), D-Ser(Bzl), D-Ser (Bzl); , Ty, , You, D-Tyr D-Tyr , Tyr(Bzl), D-ľyr(Bzl) , Tyr (Bzl), D-Lyr (Bzl) Nal , Nal, D-Na 1 , D-Na 1, , T h i , , T h i, D-Th i D-Th i , Asp(Bzl), D-Asp(Bzl) , Asp-Bzl, D-Asp-Bzl alebo or I I i s a 1 e ho (4-N07)Phe,II isa 1 e ho (4-NO 7 ) Phe, D-ll is, 1 D-11 is, 1 výhodne Phe, Tyr, Cha, Na preferably Phe, Tyr, Cha, Na
b) skupinu — A 4 — A 3 — , k d eb) - A 4 - A 3 - group, k d e Λ4 je zvyšok -ainiiiukyscl i ny vzorca I I , kde n je 2 , 3 a I ebo 5 , l'iΛ4 is a radical of an amino acid of formula I, wherein n is 2, 3 and I or 5, 1'i I·:· I: je Phe, D-Phe, is Phe, D-Phe, l)-Sei l) -Sei (Bzl ) (Bzl) , Tyr , Tyr Nal , Nal, D-Na 1 D-Na 1 , Thi , Thi II i s , II i s, D-ll i s D-11 i s , G 1 u , G 1 u Phe , Phe, Tyr, Tyr, Cha , Cha,
4-N09-Phc, Cha,D-Cha, Ser(Bzl), D-Tyr, Tyr(Bzl), D-Tyr(Bzl), , D-Thi, Asp(Bzl), I)-Asp(Bzl), (Bzl) alebo D-GI u(BzI),výhodne4-NO 9 -Phc, Cha, D-Cha, Ser (Bzl), D-Tyr, Tyr (Bzl), D-Tyr (Bzl), D-Thi, Asp (Bzl), I-Asp (Bzl) , (Bzl) or D-GI (BzI), preferably Nal alebo (4-NO2)-Phe, aleboNal or (4-NO2) Phe, or c) ani i nokyse I i nový zvyšok vzorcu III, kde m je 1, 2, 3 a lebo · a R má význam definovaný v nároku 8, kde X je vodík, nesubst ituovaný alebo chlórom, metoxy alebo (Cl až C3)a 1 kýlom substituovaný benzoylový zvyšok, cyk I oliexy I ový- alebo (c) an even acidic radical of formula III wherein m is 1, 2, 3 and because R is as defined in claim 8 wherein X is hydrogen, unsubstituted or chlorine, methoxy or (C1 to C3); and A 1-kyl-substituted benzoyl residue, a cyclooxyxy- or ( mety IoxykarbonyIový zvyšok, nesubsti tuovaný alebo metoxy, ia methyloxycarbonyl residue, unsubstituted or methoxy, i n.itro, t r i f 1uórmety I alebo kyanoskupinou substituovaný i benzyloxykarbonyIový zvyšok, výhodne benzyIoxykarbony I , jnitro, trifluoromethyl I or a cyano-substituted benzyloxycarbonyl radical, preferably benzyloxycarbonyl I, e.g. 4-metoxybenzyI oxyka rbony 1 , 2- alebo 4-t r ifluórmety IbenzyI - ί karbonyl, najmä benzyboxykarbonyI , 4 - n i trobenzy1oxykarbonyI 1 alebo 2- alebo 4-t r i f Iuórmety IbenzyIoxykarbony I , t 4-methoxybenzyl oxyka rbon 1, 2 or 4-trifluoromethyl ifluórmety IbenzyI - ί carbonyl, in particular benzyboxykarbonyI, 4 - trobenzy1oxykarbonyI add 1 or 2 or 4-trifluoromethyl-Iuórmety IbenzyIoxykarbony I, t Y znamená Cl až C14-alkylový zvyšok alebo (Cl až C14-alkyl)fenylový zvyšok, výhodne benzyl alebo fenyletyl, aY represents a C1-C14-alkyl radical or a (C1-C14-alkyl) phenyl radical, preferably benzyl or phenylethyl, and j ij i I iI i 1 5 χϊ znamená fenyl alebo mono- alebo d i-subst i luovaný fenyl, 2-pyridyl, 2-pyrazinyl, 3 - henzo/l»/t i eny I alebo 2-naf tyl.15 χϊ denotes phenyl or mono- or di-substituted phenyl, 2-pyridyl, 2-pyrazinyl, 3-benzo [d] thienyl or 2-naphthyl. 10. Cykl opep t i d pod ľa nriároku 1 až 9, kde10. The cycle of opep td d according to claim 1 to 9, wherein An znamení! skupinu -Aj-A-^-A^-, kileAn sign! -A 1 -A 1 -A 1 -A 1 -, kile Aj je Gly, Gly, A2 J ľ A 2 J l Aca , Aca, βΛ1 a, Apen, βΛ1 a, Apen, A hu ť , Gly a 1 e b< > z name ná koval e n t n ú Oh yeah, Gly a 1 e b <> z name w e n t n ú dl dl väzbu bond a and A3 J*11 A 3 J * 11 Phe , Phe, Phe(4-NO2),Phe (4-NO 2 ) Tyr alebo Ty r(Bzl) alebo Tyr or Ty r (Bzl) or
An znamená skupinu -Λ^-Λ^-, kdeAn represents a group -Λ ^ -Λ ^ -, where A 4 je βΑΙ.a, Aea, The, Aund, B tu alebo D-B tu aA 4 is βΑΙ.a, Aea, The, Aund, B here or DB here and A$ je kovaléntná väzba, Phe, D-.Phe, Phe(4-N0?), Tyr,A $ is a covalent bond, Phe, D-Phe, Phe (4-NO?), Tyr, Tyr(Bzl) alebo Cha aleboTyr (Bzl) or Cha or An je am inokyseI i nový zvyšok vzorca I 1 IAn is an amino acid residue of formula (I) -NH - (CII2) n,-CH (R)-CO-, kde m je I alebo 4 a R je skupina-NH - (CII2) n, -CH (R) -CO-, wherein m is I or 4 and R is a group -NHX, kde X je II, Z., Bz, Menoe, (4-No-?)Z alebo Tos ~ alebo A n je X -Lys-, k tie-NHX, where X is II, Z., Bz, Name, (4-No -?) Z or Tos- or A n is X -Lys-, k those X je jedna z nasledujúcich skupínX is one of the following groups - 116 -- 116 - ΟΟ 1 71 7 Bn je Arg, D-Arg, Lys, Orn alebo Cl'ľ,Bn is Arg, D-Arg, Lys, Orn, or Cl'1, Cn je Cha, Phe, Ser(Bzl), Tyr, ľyr(Bzl) alebo 'ľyi(Me), Dn je D-Ala, Pro alebo D-Pio,Cn is Cha, Phe, Ser (Bzl), Tyr, Lyr (Bzl) or 'Lyl (Me), Dn is D-Ala, Pro or D-Pio, En je Gly, a I e boEn is Gly, and I e bo Dn a En spolu tvoria L-Clg, D-Clg alebo D-Btu,Dn and En together form L-Clg, D-Clg or D-Btu, Fn je Arg alebo Lys,Fn is Arg or Lys, Gn je íle, D-íle, Nie alebo Met,Gn is white, D-white, No or Met, Hn je Asp, D-Asp alebo Gly,Hn is Asp, D-Asp or Gly, In je Arg alebo D-Arg aIn is Arg or D-Arg and Kn je íle.Kn is clay. 11. Cyklopeptíd pod ľa nároku 10 , kdeThe cyclopeptide of claim 10, wherein An je -G I y-βΑ I a-Phe-,An is -G I y-βΑ I and-Phe-, -G I y-βΑI α-Ty r(BzI) - ,-G I γ-βΑI α-Tyr (BzI) -, -βΑI a-Phe,-βΑI and-Phe, -βΑ la-Plie (4-NO2) - Lys- ,-βα la-Plie (4-NO 2 ) -Lys- -(4-N02)Z-Lys-,- (4-N0 2) Z-Lys, LysLys Bn je Arg, Lys,Ctr alebo Orn, Cn je Cha alebo Phe,Bn is Arg, Lys, Ctr or Orn, Cn is Cha or Phe, Dn je D-λ la.Dn is D-λ la. En je Gly,En is Gly, Fn je Arg,Fn is Arg, Gn je íle alebo Met,Gn is clay or Met, Hn je Asp,Hn is Asp, In je Arg aIn is Arg and K n j e 1.1 e .K n j e 1.1 e. -1 1812. Gyklopeptid podie nároku 'A cyclopeptide according to claim 1 BA1a-Phe-Arg-Phe-D-Ala-Gly-Arg-Ile-Asp-Arg-Ιle-Gly pBAla-Tyr(Bzl)-Arg-Cha-D-Ala-Gly-Arg-I le-Asp-Arg-Ιle-Glyr-BAla-Phe-Arg-Cha-D-Ala-Gly-Arg-I le-Asp-Arg-íle rBAla-Phe-Lys-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-Iler-BAl a-Phe( 4-N02) -Arg-Cha-D-Ala-Gly-Arg-1 le-Asp-Arg-Ι le r-BAl a-Phe-Ctr-Cha-D-Al a-Gly-Arg-I le-Asp-Arg-1 le3 (4 -NC>2) Z-Lys-Arg-Cha-D-Ala-Gly-Arg-I le-Asp-Arg-IleX-Lys-Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-Ilekde (4~NO2)Z-Lys-Arg-Cha-D-Ala-Gly-Arg-Met-Asp-Arg -1 le-.BA1a-Phe-Arg-Ph-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-Gly pBAla-Tyr (Bzl) -Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg -Ιle-GlyR-Bala-Phe-Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-Ile-Phe r, BAla-Lys-Cha-D-Ala-Gly-Arg-Ile-Asp Arg-Iler-BAa α-Phe (4-NO 2) -Arg-Cha-D-Ala-Gly-Arg-11 le-Asp-Arg-Phle-BAl α-Phe-Ctr-Cha-D-Al and -Gly-Arg-Ile-Asp-Arg-1le 3 (4 -NC> 2) Z-Lys-Arg-Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-IleX-Lys-Arg -Cha-D-Ala-Gly-Arg-Ile-Asp-Arg-Ilede (4-NO 2 ) Z-Lys-Arg-Cha-D-Ala-Gly-Arg-Met-Asp-Arg-1e-. (4 -NC>2) Z-Lys-Orn-Cha-D-Al a-G ly-Arg-I le-Asp-Arg -íle1 1 9 a jeho farmaeeut ieky p r i j ateľné soli(4 -NC> 2 ) Z-Lys-Orn-Cha-D-Al and Gly-Arg-Ile-Asp-Arg-1919 and its pharmaceutically acceptable salts 13. Spôsob výroby ey k I opep t: i ílov potí ľa niektorého z. nárokov 1 až 12 alebo jeho solí, v y z n a é u j ú e i sa t ý m, že sa známymi, metódami v chémii peptidov vytvoria lineárne pept idové sekvenei e zo zodpovedajúcich fragmentov a13. A method of making ey k I opep t: clays of any of the above. of claims 1 to 12 or salts thereof, characterized in that linear peptide sequences are generated from the corresponding fragments by known methods in peptide chemistry; potom then sa eyk l. izujú a ak je sa eyk l. and if it is to po t r to po t r ehné vy tvor i a easy to create zodpovedajúce soli. the corresponding salts. 14 . 14. Fa rinaceu t i eký p r í pravok , Fa rinaceu threefold obsahu j úe i content z 1účen i nu of 1-membered pod ľ pod ľ niektorého z nárokov 1 až 12. Any of claims 1 to 12. 15 . 15 Dec Použ i t i e z 1 účen i ny pod ľa Use from 1 efficacy according to n i e k torélio n i e k torélio z nárokov of the claims 1 až 1 to 12 na výrobu ant ihypertenzí 12 for the production of antihypertensives ví( prípadne knows (eventually hypotenzi hypotension í va . í va. 16. 16th Použ i L i e z 1úéen i ny pod ľa Use of the compounds according to n i t:k torélio n i t: k torélio z nárokov of the claims 1 až 1 to 12 na výrobu diuretiku. 12 for the manufacture of diuretics. 17. 17th Použitie zlúčeniny podľa Use of the compound according to n i ek torélio n i ek torélio z nárokov of the claims 1 až 1 to 12 na výrobu vazod i l.atá tora 12 for the production of ligaments 18 . 18. Použ i t i e z 1účeniny pod ľa It is also possible to use the compound according to niektorého any z nárokov of the claims 1 1 až 12 to 12 na výrobu spasmo1 y Ľ i ká. to produce spasmo1. 19 . 19 Dec Použ i t i e z 1.účen i ny pod ľa Use of the first compound according to n i ek torélio n i ek torélio z nárokov of the claims 1 až 1 to 12 na výrobu hroneho1 y t ika. 12 for the production of the top.
SK32693A 1990-10-11 1991-10-10 Cyclopeptides, a method of preparing them and their use as drugs SK32693A3 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19904032269 DE4032269A1 (en) 1990-10-11 1990-10-11 New cyclo:peptide(s) are atrial natriuretic factor agonists - useful as hypotensives, vasodilators, spasmolytics and broncholytics, as ligands in receptor binding assays and for purificn. of antibodies
DE19904032271 DE4032271A1 (en) 1990-10-11 1990-10-11 New cyclo:peptide(s) are atrial natriuretic factor agonists - useful as hypotensives, vasodilators, spasmolytics and broncholytics, and as ligands in receptor binding assays
DE19904032268 DE4032268A1 (en) 1990-10-11 1990-10-11 New cyclo-peptide(s) are atrial natriuretic factor agonists - useful as hypotensives, vasodilators, spasmolytics and broncholytics, as ligands in receptor binding tests and for antibody purification
DE19914117733 DE4117733A1 (en) 1991-05-30 1991-05-30 Cyclo-peptide(s) agonists to atrial natriuretic protein
PCT/EP1991/001934 WO1992006998A1 (en) 1990-10-11 1991-10-10 Cyclopeptides, a method of preparing them, and their use as drugs

Publications (1)

Publication Number Publication Date
SK32693A3 true SK32693A3 (en) 1993-09-09

Family

ID=27435038

Family Applications (1)

Application Number Title Priority Date Filing Date
SK32693A SK32693A3 (en) 1990-10-11 1991-10-10 Cyclopeptides, a method of preparing them and their use as drugs

Country Status (12)

Country Link
EP (1) EP0552238A1 (en)
JP (1) JPH06501950A (en)
KR (1) KR930702395A (en)
AU (1) AU8736691A (en)
CA (1) CA2089747A1 (en)
CZ (1) CZ61893A3 (en)
FI (1) FI931499A (en)
HU (1) HUT63859A (en)
IE (1) IE913582A1 (en)
PL (1) PL168456B1 (en)
SK (1) SK32693A3 (en)
WO (1) WO1992006998A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846932A (en) * 1993-11-12 1998-12-08 Genentech, Inc. Receptor specific atrial natriuretic peptides
US5665704A (en) * 1993-11-12 1997-09-09 Genentech, Inc. Receptor specific atrial natriuretic peptides
US6525022B1 (en) 1993-11-12 2003-02-25 Genentech, Inc. Receptor specific atrial natriuretic peptides
US6337385B1 (en) 1998-06-24 2002-01-08 The Rockefeller University Staphylococcus peptides for bacterial interference
AU769791B2 (en) * 1998-06-24 2004-02-05 New York University Novel Staphylococcus peptides for bacterial interference
FR2797689B1 (en) * 1999-08-16 2003-06-27 Pasteur Sanofi Diagnostics USE OF SYNTHETIC COMPOUNDS FOR IMMUNODAYS
US6455587B1 (en) * 2000-03-15 2002-09-24 Pharmacor Inc. Amino acid derivatives as HIV aspartyl protease inhibitors
US7388008B2 (en) 2004-08-02 2008-06-17 Ambrilia Biopharma Inc. Lysine based compounds
CA2632095A1 (en) 2005-11-30 2007-06-07 Ambrilia Biopharma Inc. Lysine-based prodrugs of aspartyl protease inhibitors and processes for their preparation
US8580746B2 (en) 2006-03-30 2013-11-12 Palatin Technologies, Inc. Amide linkage cyclic natriuretic peptide constructs
EA016804B1 (en) 2006-03-30 2012-07-30 Палатин Текнолоджиз, Инк. Cyclic natriuretic peptide constructs
CA2647146A1 (en) 2006-03-30 2007-10-11 Palatin Technologies, Inc. Linear natriuretic peptide constructs
US8410300B2 (en) 2006-09-21 2013-04-02 Taimed Biologics, Inc. Protease inhibitors
US8889632B2 (en) 2007-01-31 2014-11-18 Dana-Farber Cancer Institute, Inc. Stabilized p53 peptides and uses thereof
KR101623985B1 (en) 2007-03-28 2016-05-25 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Stitched polypeptides
JP2013535514A (en) 2010-08-13 2013-09-12 エイルロン セラピューティクス,インコーポレイテッド Peptidomimetic macrocycle
JP6342808B2 (en) 2011-10-18 2018-06-13 エイルロン セラピューティクス,インコーポレイテッド Peptidomimetic macrocycle
AU2013221433B2 (en) 2012-02-15 2018-01-18 Aileron Therapeutics, Inc. Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles
BR112014020103A2 (en) 2012-02-15 2018-10-09 Aileron Therapeutics, Inc. peptidomimetic macrocycles
BR112015009470A2 (en) 2012-11-01 2019-12-17 Aileron Therapeutics Inc disubstituted amino acids and their methods of preparation and use
US10736932B2 (en) * 2014-05-20 2020-08-11 Ohio State Innovation Foundation Small molecule Ras inhibitors
CN107106642B (en) 2014-09-24 2021-02-26 艾瑞朗医疗公司 Peptidomimetic macrocycles and formulations thereof
SG11201702223UA (en) 2014-09-24 2017-04-27 Aileron Therapeutics Inc Peptidomimetic macrocycles and uses thereof
CA2979847A1 (en) 2015-03-20 2016-09-29 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10023613B2 (en) 2015-09-10 2018-07-17 Aileron Therapeutics, Inc. Peptidomimetic macrocycles as modulators of MCL-1

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1337891C (en) * 1987-12-16 1996-01-02 John Dimaio Anf derivatives with novel bridging
US4935492A (en) * 1987-12-24 1990-06-19 California Biotechnology Inc. Cyclic analogs of atrial natriuretic peptides
DK380288D0 (en) * 1988-07-07 1988-07-07 Novo Industri As HOW TO UNKNOWN PEPTIDES

Also Published As

Publication number Publication date
FI931499A0 (en) 1993-04-02
PL168456B1 (en) 1996-02-29
FI931499A (en) 1993-04-02
HUT63859A (en) 1993-10-28
JPH06501950A (en) 1994-03-03
AU8736691A (en) 1992-05-20
CA2089747A1 (en) 1992-04-12
EP0552238A1 (en) 1993-07-28
WO1992006998A1 (en) 1992-04-30
IE913582A1 (en) 1992-04-22
KR930702395A (en) 1993-09-09
HU9301054D0 (en) 1993-07-28
CZ61893A3 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
SK32693A3 (en) Cyclopeptides, a method of preparing them and their use as drugs
FI91075C (en) Process for the preparation of novel therapeutically useful peptides
US5229489A (en) Parathyroid hormone antagonists
RU2180668C2 (en) Heptapeptide oxytocin analogs
JP3765831B2 (en) Improved cyclic CRF agonist
SK15352000A3 (en) Process for the preparation of resin-bound cyclic peptides
US5807986A (en) Methods of making and screening betide libraries
PT88914B (en) PROCESS FOR THE PREPARATION OF POLYETHYDES AND PHARMACEUTICAL COMPOSITIONS THAT CONTAIN THEM
CA1340007C (en) Linear analogs of atrial natruiretic peptides
NZ229393A (en) Peptide derivative with a terminal heterocyclic group
FI92209C (en) A process for the preparation of therapeutically useful peptide compounds
JPS58116443A (en) Novel peptide and manufacture
US20040122013A1 (en) Analogs of nocicettin
US4721704A (en) Potent synthetic atrial peptide analogs
Gazal et al. Synthesis of novel protected Nα (ω‐thioalkyl) amino acid building units and their incorporation in backbone cyclic disulfide and thioetheric bridged peptides
FI79716B (en) DAEGGDJUR-PGRF.
US5739272A (en) Procedure for obtaining carbocalcitonin
JPH07316195A (en) New pthrp-related peptide and use thereof
Gazal et al. Novel Gly building units for backbone cyclization: synthesis and incorporation into model peptides
SK62998A3 (en) New lh-rh antagonists with improved effectiveness
JP2010150253A (en) Pharmaceutical for treating hepatoma
AU700904C (en) Amino acids for making betides and methods of screening and making betide libraries
Saran et al. Conformation and macromolecular interaction of ACE inhibitors enalapril and lisinopril by NMR
JPS63303999A (en) Vasopressin antagonist
Sorochinskaya et al. Synthesis of a suggested aggression peptide