SI24055A - The control system for stabilizing the head of the flight or stationary platform - Google Patents

The control system for stabilizing the head of the flight or stationary platform Download PDF

Info

Publication number
SI24055A
SI24055A SI201200117A SI201200117A SI24055A SI 24055 A SI24055 A SI 24055A SI 201200117 A SI201200117 A SI 201200117A SI 201200117 A SI201200117 A SI 201200117A SI 24055 A SI24055 A SI 24055A
Authority
SI
Slovenia
Prior art keywords
head
orientation
platform
stabilization
instrument
Prior art date
Application number
SI201200117A
Other languages
Slovenian (sl)
Inventor
Marko Thaler
Alen Šarlah
Original Assignee
Airmamics Napredni Mehatronski Sistemi D.O.O.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airmamics Napredni Mehatronski Sistemi D.O.O. filed Critical Airmamics Napredni Mehatronski Sistemi D.O.O.
Priority to SI201200117A priority Critical patent/SI24055A/en
Priority to PCT/SI2013/000007 priority patent/WO2013158050A1/en
Publication of SI24055A publication Critical patent/SI24055A/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0016Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement characterised by the operator's input device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0094Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Gyroscopes (AREA)

Abstract

Izum se nanaša na krmiljenje instrumenta (4) nameščenega na leteči (1) ali stacionarni (8) platformi, ki je namenjen za opravljanje različnih nalog kot so na primer snemanje s kamero, opravljanje meritev, pozicioniranje, nadzor, in podobno. Predlagan sistem dovoljuje zanesljivo, natančno in enostavno ravnanje z letečo (1) ali stacionarno (8) platformo in instrumentom (4) hkrati. V primeru leteče platforme (1), tako imenovan brezpilotni leteči sistem ("unmanned aircraft system" -UAS), je le tosestavljeno iz konstrukcije, ki se sestoji iz trupa (2), in rok platforme (3) na katere so nameščeni rotorji (33), in je opremljena z instrumentom (4) kot je na primer kamera, stabilizacijskim sistemom, t.j. stabilizacijsko glavo (5), krmilnim sistemom sestavljenim iz komandnega pulta (6) za krmiljenje leteče platforme (1) ter sistemom za sledenje orientacije glave (7) za vodenje instrumenta (4). Leteča platforma je lahko tudi v obliki fiksnega krila. V primeru stacionarne platforme (8), se le ta sestojiiz instrumenta (4), kot je na primer kamera, nameščenega na stabilizacijski sistem, t.j. stabilizacijsko glavo (5), pri čemer je vse skupaj pritrjeno na fiksno podporo (stativ) ali na premično (tirnica, dvigalo, žerjav, škripci, vzvodi, lestev, in podobno) podporo (9).The invention relates to the control of an instrument (4) installed on a flying (1) or stationary (8) platform, which is intended to perform various tasks such as recording with a camera, taking measurements, positioning, control, and the like. The proposed system allows reliable, precise and easy handling of the flying (1) or stationary (8) platform and the instrument (4) at the same time. In the case of a flying platform (1), the so-called unmanned aircraft system (UAS) is only composed of a structure consisting of a fuselage (2) and the arms of the platform (3) on which the rotors are mounted ( 33), and is equipped with an instrument (4) such as a camera, stabilization system, i.e. stabilization head (5), a control system consisting of a control panel (6) for controlling the flying platform (1) and a system for tracking the orientation of the head (7) for guiding the instrument (4). The flying platform can also be in the form of a fixed wing. In the case of a stationary platform (8), only this consists of an instrument (4), such as a camera, mounted on a stabilization system, i.e. stabilization head (5), whereby everything is attached to a fixed support (tripod) or to a movable (rail, lift, crane, pulleys, levers, ladder, etc.) support (9).

Description

Krmilni sistem stabilizacijske glave za letečo ali stacionarno platformoStabilizer head steering system for flying or stationary platform

Področje tehnike, v katero spada izumFIELD OF THE INVENTION

Predlagan izum se navezuje na sistem krmiljenja instrumenta nameščenega na stabilizacijsko glavo stacionarne ali leteče platforme, oziroma bolj natančno, na krmilni sistem instrumenta vodenega s pomočjo sistema za sledenje orientacije glave (“head-tracking” sistema) in komandnega pulta za daljinsko upravljanje platforme.The present invention relates to a control system of an instrument mounted on a stabilizing head of a stationary or flying platform, or more specifically, a control system of an instrument guided by a head-tracking system and a control panel for remote control of the platform.

Stanje tehnikeThe state of the art

Predlagan izum spada v področje vodenja in krmiljenja stacionarnih ali letečih platform, kot na primer enorotomi oziroma večrotomi brezpilotni leteči sistemi (“UAS - unmanned aircraft system”), ki so opremljeni z instrumentom kot je na primer fotografska ali filmska kamera za snemanje iz zraka ali laserski merilnik.The present invention falls within the field of control and control of stationary or flying platforms, such as single or multiple unmanned aircraft system (UAS) equipped with an instrument such as an aerial or photographic camera, or laser meter.

Enorotomi in večrotomi brezpilotni leteči sistemi se trenutno uporabljajo v najrazličnejših aplikacijah, pri čemer je njihova konfiguracija odvisna od namena uporabe.Single-drone and multi-drone drones are currently used in a wide variety of applications, depending on their intended use.

V patentni prijavi US 2011/0017865 Al je opisana večrotoma leteča platforma pri kateri so rotorji nameščeni tako, da se nameščeni kameri omogoča neoviran pogled naprej.US Patent Application 2011/0017865 Al describes a multi-platform flying platform in which the rotors are mounted in such a way that the mounted camera allows a unobstructed view of the front.

V patentni prijavi US 7,658,555 BI je predstavljena stabilizacijska glava za zmanjšanje vibracij kamere, ki je lahko nameščena na mobilno platformo kot na primer letalo, pri čemer se stabilizacija okrog treh osi vrši s pomočjo žiroskopov.U.S. Patent No. 7,658,555 BI discloses a camera vibration-reduction head that can be mounted on a mobile platform such as an aircraft, with stabilization around the three axes by gyroscopes.

V patentni prijavi US 2006083501 (Al) je opisana naprava za fotografiranje iz zraka pri čemer je omogočena rotacija naprave za 360°.US 2006083501 (Al) discloses an aerial photography device allowing 360 ° rotation of the device.

Iz patentne prijave CN 101619971 (A) je poznan sistem za fotografiranje iz zraka s pomočjo platforme, ki omogoča tri-osno stabilizacijo.From patent application CN 101619971 (A), the aerial photograph system is known by means of a platform capable of three-axis stabilization.

Iz patentne prijave US 2003213868 (Al) je poznan krmilni sistem za kamero, ki omogoča sledenje objektom iz letala pri čemer je kamera premična, njeno gibanje pa je krmiljeno s strani uporabnika in vgrajenega krmilnega sistema.US Patent Application 2003213868 (Al) discloses a camera control system that enables tracking of objects from an aircraft while the camera is movable and its motion is controlled by the user and the integrated control system.

V patentni prijavi US 5995758 (A) je opisan stabilizacijski sistem za usmerjanje kamere pri čemer rotacijski senzoiji vgrajeni na platformo kamere zaznavajo spremembo rotacije v treh oseh.U.S. Pat. No. 5,995,758 (A) describes a stabilization system for directing the camera, wherein rotary sensors mounted on the camera platform detect a rotation change in three axes.

Iz patentne prijave JP2006264568 (A) je poznan helikopter s preprosto konstrukcijo in sistemom za vodenje kamere ter dušenje vibracij.JP2006264568 (A) discloses a helicopter with a simple construction and a camera guidance system and vibration damping.

Iz patentne prijave CN201002722 (Y) je poznan dvoosni sistem za stabilizacijo slike posnete iz letala. Izum se nanaša na stabilizacijo leče in kompenzacijo slike zaradi gibanja letala.From patent application CN201002722 (Y), a two-axis image stabilization system taken from an aircraft is known. The invention relates to lens stabilization and image compensation due to aircraft movement.

Patentna prijava CN201287830 (Y) opisuje stabilizacijsko ohišje za snemanje iz zraka pri čemer sistem kompenzira tresenje in gibanje letala.Patent Application CN201287830 (Y) describes a stabilized airborne housing wherein the system compensates for the vibration and movement of the aircraft.

Patentna prijava US7658555 (BI) opisuje ohišje za video kamero s stabilizacijskim sistemom, ki omogoča ročno ravnanje s kamero na letalu.US7658555 (BI) describes a camcorder enclosure with a stabilization system that allows manual handling of the camera on the aircraft.

Iz patentne prijave CN101619971 (A) je poznana rešitev triosne stabilizacije platforme s pomočjo žiroskopov, ki omogoča kompenzacijo rotacije platforme in njenih vibracij.From patent application CN101619971 (A), a solution of three-axis gyroscope platform stabilization is known which compensates for the rotation of the platform and its vibrations.

V patentni prijavi US5995758 (A) je opisana naprava za stabilizacijo instrumenta, kot je na primer kamera, pri čemer senzorji nameščeni na platformi zaznavajo odmik oziroma rotacijo platforme od začetnega položaja v katerokoli od treh osi. Zaznana rotacija v katerikoli osi se izniči oziroma kompenzira z uporabo motorjev, ki platformo usmerijo nazaj v začetno stanje.US5995758 (A) discloses an instrument stabilizer such as a camera, wherein sensors mounted on the platform detect the offset or rotation of the platform from its initial position in any of the three axes. The detected rotation in any axis is canceled or compensated by the use of motors that direct the platform back to its initial state.

Iz patentne prijave W02005114366 (Al) je poznana rešitev sistema za sledenje orientacije glave (“head-tracking” sistem), pri kateri sta oddajnik in baterija vgrajena v slušalko.W02005114366 (Al) discloses a solution of a head-tracking system in which the transmitter and the battery are integrated into the handset.

Iz patentne prijave EP2428813 (Al) je poznana rešitev sistema za sledenje orientacije glave pri kateri je položaj glave določen s pomočjo zvoka.EP2428813 (Al) discloses a solution of a head orientation tracking system in which the position of the head is determined by sound.

Iz patentne prijave US2009237355 (Al) je poznana rešitev za določitev lokacije vsaj enega uporabnika relativno glede na video prikazovalnik, pri čemer je naprava za sledenje nameščena na uporabnika, na primer preko očal, slušalk ali na roki.US2009237355 (Al) discloses a solution for locating at least one user relative to a video display, wherein the tracking device is mounted on the user, for example, via glasses, headsets or on the arm.

V patentni prijavi US2011293129 (Al) je opisana rešitev sistema za sledenje orientacije glave, ki določa rotacijo glave uporabnika glede na referenčno (začetno) orientacijo glave.US2011293129 (Al) discloses a solution for a head orientation tracking system that determines a user's head rotation relative to a reference (initial) head orientation.

Patentna prijava US5138555(A) opisuje sistem za napovedovanje gibanja glave pilota.US5138555 (A) describes a pilot head motion prediction system.

V patentni prijavi US2008120408 (Al) je opisan sistem in metoda za sledenje orientacije glave pri čemer sistem bazira na akustičnih signalih.US2008120408 (Al) discloses a system and method for tracking head orientation, based on acoustic signals.

Patentna prijava US2006146046 (Al) opisuje metodo za sledenje in napovedovanje pričakovane orientacije glave s pomočjo sistema za sledenje orientacije glave.US2006146046 (Al) discloses a method for tracking and predicting the expected orientation of a head using a system for tracking the orientation of the head.

Opis obstoječih sistemovDescription of existing systems

Danes poznani brezpilotni leteči sistemi glede na trenutno stanje tehnike zahtevajo vsaj dva operaterja za nemoteno delovanje celotnega sistema: eden je potreben za vodenje leteče platforme medtem, ko je drugi potreben za nadzor in krmiljenje kamere ter sledenje objektu, ki ga opazujemo. Takšen sistem ima posledično višje obratovalne stroške in slabše usklajeno translacijsko in rotacijsko gibanje stabilizacijske glave.The current unmanned flying systems, according to the state of the art, require at least two operators for the smooth operation of the entire system: one is required to operate the flying platform, while the other is required to monitor and control the camera and track the object being observed. Such a system consequently has higher operating costs and less coordinated translational and rotational motion of the stabilization head.

Nadalje, obstoječi sistemi glede na trenutno stanje tehnike uporabljajo enega ali oba možna načina sledenja in vodenja sistema, to je, vodenje platforme in/ali orientacijo stabilizacijske glave. Vendar vsiFurthermore, according to the current state of the art, existing systems utilize one or both of the possible ways of tracking and controlling the system, i.e., platform control and / or stabilization head orientation. But everyone

sistemi, ki uporabljajo oba načina hkrati, ne omogočajo optimalnega vodenja platforme in hkrati usklajenega in enostavnega snemanja s kamero.systems that use both modes at the same time do not allow the platform to be optimally managed and simultaneously coordinated and easy to shoot with the camera.

Trenutno stanje tehnike na področju sistemov za sledenje orientacije glave (“head-tracking”) z namenom vodenja kamer prav tako ne pozna kombinacije proporcionalnega in progresivnega vodenja kamere glede na premik glave od neke začetne referenčne točke. Takšen sistem vodenja kamere omejuje fleksibilnost uporabe kamer nameščenih na stacionarnih ali letečih sistemih in povzroči, daje celoten sistem manj odziven in posledično manj uporaben. Prav tako je takšen sistem vodenja kamere neroden oziroma naporen za samega pilota oziroma operaterja kamere, saj lahko v posameznih primerih zahteva hitre in nenadne gibe, ter ekstremne obrate glave. To je še posebej jasno v primeru rotacije glave okrog vertikalne osi (gor-dol). Človeško telo namreč omogoča obrat glave navzgor za največ 55° od normalne vodoravne lege. V kolikor želimo usmeriti pogled v smeri, ki je odmaknjena za več kot 55° od vodoravne lege, si moramo pomagati z očmi, ki na ta način omogočijo pogled vse do 90° navpično navzgor. Ker sistemi za sledenje orientacije glave spremljajo obrat glave in ne samih oči, so takšni sistemi manj fleksibilni v primeru snemanja navpično navzgor. Naprednejši sistemi za vodenje kamere sicer uporabljajo tako imenovane “eye-tracking” sisteme (sistemi za sledenje gibanja oči) s katerimi se lahko pokrije celoten 90° kot, vendar se lahko takšen sistem enostavno nadomesti z uporabo progresivnega vodenja kamere, na primer z uporabo eksponentnega odziva kamere glede na premik glave operaterja.The current state of the art in head-tracking systems for camera guidance also does not know the combination of proportional and progressive camera guidance with respect to the movement of the head from some initial reference point. Such a camera guidance system limits the flexibility of using cameras mounted on stationary or flying systems and makes the whole system less responsive and consequently less useful. Also, such a camera control system is awkward or tiring for the pilot or camera operator himself, as in some cases he may require quick and sudden movements and extreme head turns. This is especially clear in the case of head rotation about the vertical axis (up and down). Namely, the human body allows the head to be turned up to 55 ° from its normal horizontal position. If we want to direct our gaze in a direction that is more than 55 ° away from the horizontal position, we need to use eyes that allow the view to be up to 90 ° vertically upwards. Because head orientation tracking systems monitor the turn of the head rather than the eyes themselves, such systems are less flexible when shooting vertically upwards. While more advanced camera guidance systems use so-called eye-tracking systems that can cover the entire 90 ° angle, such a system can easily be replaced by using progressive camera guidance, for example by using an exponential camera response based on operator head displacement.

Namen in cilj izumaPurpose and object of the invention

Namen predlaganega izuma je način vodenja in krmiljenja naprave nameščene na stacionarnih ali letečih sistemih s katero je možno preseči omenjene pomanjkljivosti in ovire. Z uporabo rešitev omenjenih v tem patentu se lahko doseže in zagotovi enostavna, natančnejša, zanesljivejša in cenejša uporaba različnih instrumentov nameščenih na stacionarnih ali letečih sistemih, še posebej za fotografiranje ali filmsko snemanje.The purpose of the present invention is a method of controlling and controlling a device mounted on stationary or flying systems that can overcome the above disadvantages and obstacles. By using the solutions mentioned in this patent, it is possible to achieve and provide simple, accurate, reliable and less expensive use of various instruments installed on fixed or flying systems, especially for photography or filming.

Opis rešitve tehničnega problema z izvedbenimi primeriDescription of solution to a technical problem with implementation examples

Izum predlaga rešitev problema vodenja in krmiljenja instrumenta 4 nameščenega na letečo 1 ali stacionarno platformo 8, pri čemer je instrument 4 lahko kamera, fotoaparat, laserski merilnik oziroma kakšen drug merilni, snemalni ali nadzorni instrument. Celoten sistem se sestoji iz naslednjih glavnih sklopov:The invention proposes a solution to the problem of controlling and controlling an instrument 4 mounted on a flying 1 or stationary platform 8, wherein the instrument 4 may be a camera, a camera, a laser meter, or any other measuring, recording or monitoring instrument. The whole system consists of the following main sections:

a) Leteče platforme 1 (zračno plovilo) ali stacionarne platforme 8 (fiksna ali premična konstrukcija);a) Flying platforms 1 (aircraft) or fixed platforms 8 (fixed or mobile construction);

b) Sistema za vodenje in pogon platforme (motorji 35 z rotorji 33 ali krila letala v primeru leteče platforme 1, in vzvodi, kabli, stativi, tirnice, žerjavi in podobno v primeru stacionarne platforme 8);b) Platform management and propulsion systems (engines 35 with rotors 33 or aircraft wings in the case of flying platform 1 and levers, cables, tripods, rails, cranes and the like in the case of stationary platform 8);

c) Stabilizacijskega sistema instrumenta 4 - na primer stabilizacijska glava 5;c) Instrument 4 stabilization system - for example stabilization head 5;

d) Komandnega pulta 6 s katerim se nadzoruje in vodi letečo platformo 1 ali stacionarno platformo 8;d) a control panel 6 to control and operate the flying platform 1 or stationary platform 8;

e) Sistema za sledenje orientacije glave 7 za vodenje in nadzor instrumenta 4.e) Orientation tracking system for Chapter 7 for guidance and control of the instrument 4.

Izum se nanaša na krmilni sistem instrumenta 4, ki se lahko montira na letečo platformo 1 ali stacionarno platformo 8, in se lahko uporablja za katerokoli storitev kot so na primer fotografiranje ali video snemanje, nadzor, reševanje in varovanje, geo-informacijske storitve, lasersko meijenje in ostale podobne aktivnosti in storitve. Splošne značilnosti so skupne obema platformama, tako leteči kot stacionarni, in so zato opisane spodaj. V nadaljevanju so nato predstavljeni izvedbeni primeri za posamezno obliko platforme.The invention relates to a control system for instrument 4, which can be mounted on a flying platform 1 or a stationary platform 8, and can be used for any service such as photography or video recording, surveillance, rescue and security, geo-information services, laser changes and other similar activities and services. The common features are common to both platforms, both flying and stationary, and are therefore described below. The following are examples of implementation examples for each platform design.

Stabilizacijski sistem instrumenta oziroma stabilizacijska glavaInstrument stabilization system or stabilization head

Instrument 4 je nameščen na stabilizacijski sistem platforme oziroma tako imenovano stabilizacijsko glavo 5. Stabilizacijska glava 5 omogoča premikanje instrumenta 4 okrog vseh treh osi: vzdolžne 11, prečne 10 in vertikalne 12. Vse tri rotacije so omogočene s pomočjo ležajev 34, ki so nameščeni znotraj stabilizacijske glave 5. Stabilizacijska glava 5 je projektirana in izdelana tako, da se vse tri osi stabilizacijske glave 5, vzdolžna 11, prečna 10 in vertikalna os 12, sekajo v težišču instrumenta 4 in stabilizacijske glave 5. Takšna namestitev instrumenta 4 zmanjša obremenitve aktuatoijev 15, ki krmilijo gibanje instrumenta 4, in hkrati poveča odzivnost sistema.Instrument 4 is mounted on the platform stabilization system or the so-called stabilization head 5. The stabilization head 5 allows the movement of the instrument 4 around all three axes: longitudinal 11, transverse 10 and vertical 12. All three rotations are enabled by means of bearings 34 which are arranged inside stabilization heads 5. The stabilization head 5 is designed and constructed in such a way that all three axes of the stabilization head 5, longitudinal 11, transverse 10 and vertical axis 12 intersect at the center of gravity of the instrument 4 and the stabilization heads 5. Such placement of the instrument 4 reduces the loads of actuators 15 , which control the movement of the instrument 4, while increasing the responsiveness of the system.

V stabilizacijski glavi 5 so vgrajeni aktuatorji 15 in reduktor 16, ki so projektirani tako, daje največja hitrost rotacije približno 70° na sekundo. Aktuatoiji 15 stabilizacijske glave 5 imajo povratno zanko, ki omogoča zelo natančno in gladko stabilizacijo instrumenta 4, saj sistem aktivno nastavlja hitrost in moment motorjev 15 glede na želeno pozicijo oziroma orientacijo.The stabilizer head 5 incorporates actuators 15 and a gearbox 16 designed to give a maximum rotation speed of about 70 ° per second. The actuators 15 of the stabilization head 5 have a feedback loop that allows very precise and smooth stabilization of the instrument 4, since the system actively adjusts the speed and torque of the motors 15 according to the desired position or orientation.

Stabilizacijska glava 5 ima vgrajen tudi oddajnik 14 za prenos signala od stabilizacijske glave 5 do komandnega pulta 6.The stabilization head 5 also has a transmitter 14 for transmitting a signal from the stabilization head 5 to the control panel 6.

Na stabilizacijski glavi 5 so lahko nameščene dodatne krmilne ali nadzorne enote 13 kot na primer inercijski merilni sistem (“inertial measurement unit” - IMU) ali krmilna enota za stabilizacijo same stabilizacijske glave 5.Stabilization head 5 may have additional control or monitoring units 13 such as an inertial measurement unit (IMU) or a control unit for stabilization of the stabilization head 5 itself.

• ·• ·

Krmilni sistemi instrumentaInstrument control systems

Instrument 4 je aktivno krmiljen s strani operaterja 17 s pomočjo komandnega pulta 6 s katerim operater 17 usmerja letečo 1 ali stacionarno platformo 8, in s pomočjo sistema za sledenje orientacije glave 7 s katerim operater upravlja sam instrument 4.Instrument 4 is actively controlled by the operator 17 by means of a control panel 6 with which the operator 17 directs the flying 1 or stationary platform 8, and by means of a head orientation tracking system 7 by which the operator controls the instrument 4 itself.

Operater 17 nadzoruje gibanje leteče 1 ali stacionarne 8 platforme z uporabo komandnega pulta 6 na katerem je eden ali več krmilnih palic. En primer takšne izvedbe je naslednji: leva krmilna palica 18 se uporablja za krmiljenje hitrosti po višini - gor/dol (vzdolž z-osi) - in kotno hitrost okoli z-osi medtem, ko se desna krmilna palica 19 uporablja za vodenje platforme v vodoravni smeri: naprej/nazaj (vzdolž x-osi) in levo/desno (vzdolž y-osi).The operator 17 controls the movement of the flying platform 1 or stationary 8 using a control panel 6 on which one or more control rods are located. One example of such an embodiment is as follows: the left joystick 18 is used to control the height in altitude - up / down (along the z-axis) - and the angular velocity about the z-axis, while the right joystick 19 is used to guide the platform horizontally directions: forward / backward (along the x-axis) and left / right (along the y-axis).

Hkrati lahko isti operater 17 (ali njegov pomočnik) nadzoruje in vodi instrument 4 nameščen na stabilizacijski glavi 5 s pomočjo sistema za sledenje orientacije glave 7. Sistem za sledenje orientacije glave 7 se sestoji iz video prikazovalnika 20 za prikaz slike in/ali signalov iz instrumenta 4 ter obratovalnih podatkov leteče 1 ali stacionarne platforme 8, iz inercijske merilne enote 21, ter krmilnega računalnika 22 za procesiranje in prenos podatkov o orientaciji in gibanju operaterjeve glave od inercijske merilne enote 21 do računalnika 23 nameščenega na leteči 1 ali stacionarni platformi 8.At the same time, the same operator 17 (or an assistant thereof) can control and guide the instrument 4 mounted on the stabilization head 5 by means of a head orientation tracking system 7. The head orientation orientation tracking system 7 consists of a video display 20 for displaying an image and / or signals from the instrument 4 and operating data of the flying 1 or stationary platform 8 from the inertial measuring unit 21 and the control computer 22 for processing and transmitting the orientation and movement data of the operator's head from the inertial measuring unit 21 to the computer 23 mounted on the flying 1 or stationary platform 8.

Komunikacija med instrumentom, komandnim pultom in sistemom za sledenje orientacije glaveCommunication between instrument, control panel and head orientation tracking system

Komunikacija med sistemom za sledenje orientacije glave 7, ki je lahko v obliki očal ali vizirja na čeladi, in komandnega pulta 6 je lahko ali brezžična 25 ali pa komunikacija preko kabla 24. Prenos podatkov med letečo 1 ali stacionarno platformo 8 in komandnim pultom 6 je lahko v vsaj dveh oblikah:Communication between the head tracking system 7, which may be in the form of glasses or a visor on the helmet, and the control panel 6 may be either wireless 25 or communication via cable 24. Data transmission between the flying 1 or the stationary platform 8 and the control panel 6 is can take at least two forms:

Podatkovna povezava 26 za prenos podatkov o želeni hitrosti in/ali orientaciji leteče 1 ali stacionarne platforme 8, želeni orientaciji stabilizacijske glave 5, in za statusne informacije platforme (stanje platforme);Data link 26 for transmitting data on desired speed and / or orientation of flying 1 or stationary platform 8, desired orientation of stabilizing head 5, and for platform status information (platform status);

Video povezava 27 med instrumentom 4 in sistemom za sledenje orientacije glave 7 preko komandnega pulta 6.Video link 27 between the instrument 4 and the head orientation tracking system 7 via the control panel 6.

Izmerjeni podatki o lokaciji in usmerjenosti instrumenta 4 se lahko prav tako pošiljajo med instrumentom 4 in sistemom za sledenje orientacije glave 7 preko podatkovne povezave (povratna zanka), in prikazujejo na video prikazovalniku 20, ali kakšnem drugem podatkovnem prikazovalniku.The measured location and orientation information of the instrument 4 may also be transmitted between the instrument 4 and the head orientation tracking system 7 via a data link (feedback loop), and displayed on the video display 20, or some other data display.

Orientacija in gibanje platforme in instrumentaOrientation and movement of the platform and instrument

Krmiljenje leteče 1 ali stacionarne platforme 8 in instrumenta 4 sledi naslednji procesno-krmilni logiki:The control of flying 1 or stationary platform 8 and instrument 4 follows the following process control logic:

1. Orientacija in gibanje instrumenta 4 in posledično njegovo krmiljenje je določeno s kontinuiranim merjenjem s pomočjo senzorjev nameščenih na leteči 1 ali stacionarni platformi 8 (inercijska merilna enota - EMU - 28, “real time kinematic global positioning system” RTK GPS 29, tlačni senzor 20, ultrazvočni ali laserski merilnik razdalje 31, ali katerikoli drug posredni ali neposredni merilnik lokacije/hitrosti/orientacije 32), in opcijsko s pomočjo sekundarne oziroma dodatne inercijske merilne enote 13, ki je nameščena na stabilizacijski glavi 5 instrumenta 4 in dodatno meri orientacijo in rotacijo instrumenta samega.1. The orientation and movement of instrument 4 and, consequently, its control are determined by continuous measurement using sensors mounted on a flying 1 or stationary platform 8 (inertial measuring unit - EMU - 28, RTK GPS 29 "real time kinematic global positioning system", pressure sensor 20, ultrasonic or laser distance meter 31, or any other direct or indirect location / speed / orientation meter 32), and optionally by means of a secondary or additional inertial measuring unit 13 mounted on the stabilizing head 5 of the instrument 4 and further measuring the orientation and the rotation of the instrument itself.

2. Računalnik 23 zbira vse izmerjene podatke, jih obdela in nato izračuna hitrost in orientacijo leteče 1 ali stacionarne platforme 8.2. Computer 23 collects all measured data, processes it, and then calculates the speed and orientation of flying 1 or stationary platform 8.

3. Računalnik 23 nato primerja izmerjen položaj ter hitrost leteče 1 ali stacionarne platforme 8 in želen položaj ter hitrost določeno s strani operaterja 17 s pomočjo komandnega pulta 6 in sistema za sledenje orientacije glave 7.3. Computer 23 then compares the measured position and velocity of the flying 1 or stationary platform 8 and the desired position and velocity determined by the operator 17 using the control panel 6 and the head orientation tracking system 7.

4. Glede na razliko med izmerjenim in želenim položajem ter hitrostjo platforme računalnik 23 nato oceni in določi ustrezno krmiljenje pogonskih sistemov leteče 1 ali stacionarne platforme 8 (bodisi so to motorji, dvigala, propelerji, vzvodi, škripci, in podobno).4. Depending on the difference between the measured position and the desired position and the speed of the platform 23, the computer 23 then evaluates and determines the appropriate control of the propulsion systems of the flying 1 or stationary platform 8 (be it engines, elevators, propellers, levers, pulleys, etc.).

5. Računalnik 23 nato glede na razliko med izmerjenim in želenim položajem ter hitrostjo leteče 1 ali stacionarne platforme 8, in glede na želeno orientacijo instrumenta 4 določi želene položaje aktuatorjev 15 stabilizacijske glave 5.5. The computer 23 then determines the desired positions of the stabilization actuators 15 of the stabilization head 5 according to the difference between the measured and desired position and the speed of the flying 1 or stationary platform 8, and depending on the desired orientation of the instrument 4.

Izboljšanje algoritmov za boljšo oceno stanja sistemaImproving algorithms to better evaluate the state of the system

Položaj, hitrost in orientacija leteče platforme 1 so določeni predvsem z meritvami opravljenimi s pospeškomeri in žiroskopskimi senzorji.The position, velocity and orientation of flying platform 1 are determined primarily by measurements made with accelerometers and gyroscopic sensors.

Hitrost je izračunana z integriranjem meritev pospeškomera medtem, ko je položaj določen z integriranjem izračunane hitrosti. To privede do osnovnega problema napredovanja integralne napake. Nobena meritev ni 100% točna oziroma zanesljiva in vsaka meritev vsebuje napako. Te napake se tekom merjenja in obdelave podatkov nabirajo v prvem integralu izračuna hitrosti in v drugem integralu izračuna položaja. To napako meritve je moč zmanjšati oziroma obvladati z uporabo dodatnih fizikalno-neodvisnih senzorjev položaja ali hitrosti platforme. Vključitev rezultatov meritev dodatnih senzorjev za boljšo oceno položaja in hitrosti platforme je opravljena v Kalmanovem filtru. Napredovanje integralne napake pri oceni položaja in hitrosti platforme je možno občutno zmanjšati oziroma omejiti s pomočjo uporabe dodatnih senzorjev kot je na primer GPS. V primeru situacije, kjer GPS začasno ali trajno ni na voljo, kot na primer v primeru uporabe sistema v zaprtih stavbah, se lahko namesto GPS sistema uporablja na primer “optical flow” merilnik.The velocity is calculated by integrating the accelerometer measurements while the position is determined by integrating the calculated velocity. This leads to the basic problem of the progression of integral error. No measurement is 100% accurate or reliable and every measurement contains an error. These errors are accumulated during the measurement and processing of data in the first integral of the velocity calculation and in the second integral of the position calculation. This measurement error can be reduced or controlled using additional physically independent position sensors or platform speeds. Integration of the measurement results of additional sensors for better estimation of platform position and velocity is done in the Kalman filter. The advancement of the integral error in estimating the position and speed of the platform can be significantly reduced or limited by the use of additional sensors such as GPS. In situations where GPS is temporarily or permanently unavailable, such as when the system is used in closed buildings, an “optical flow” meter may be used instead of a GPS system.

Ί * ·Ί * ·

Izvedbeni primeriImplementation examples

V nadaljevanju je izum podrobneje predstavljen s pomočjo slik in dveh izvedbenih primerov:In the following, the invention is presented in greater detail by means of figures and two embodiments:

Sl. 1 shematsko predstavlja letečo platformo 1 sestavljeno iz trupa platforme 2, na katero so pritrjene roke platforme 3 in na katerih so nameščeni po en rotor 33 na roko platforme 3. Prikazana je tudi lokacija stabilizacijske glave 5 v kateri je nameščen instrument 4;FIG. 1 schematically represents a flying platform 1 consisting of a fuselage of platform 2, to which the arms of the platform 3 are attached and on which one rotor 33 is mounted on the arm of the platform 3. The location of the stabilization head 5 in which the instrument 4 is mounted is also shown;

Sl. 2 je shematska predstavitev stabilizacijskega sistema oziroma stabilizacijske glave 5 instrumenta 4 v treh pogledih ter v 3D prikazu. V tej predstavitvi izvedbenega primera je instrument kamera za snemanje videa ali fotografiranje;FIG. 2 is a schematic representation of the stabilization system or stabilization head 5 of the instrument 4 in three views and in 3D. In this embodiment, the instrument is a camera for recording video or photographing;

Sl. 3 prikazuje krmilni sistem leteče platforme 1 in instrumenta 4 kot je predstavljen v tem izvedbenem primeru;FIG. 3 shows the control system of flying platform 1 and instrument 4 as presented in this embodiment;

Sl. 4 shematsko predstavlja krmilni sistem leteče platforme 1 in instrumenta 4 kot je predstavljeno v tem izvedbenem primeru, vendar iz stališča samega vodenja, torej povezavo med premikom glave operaterja 17 in gibanjem leteče platforme 1 skupaj s stabilizacijsko glavo 5.FIG. 4 schematically represents the control system of the flying platform 1 and the instrument 4 as presented in this embodiment, but from the point of view of control itself, that is, the connection between the movement of the head of the operator 17 and the movement of the flying platform 1 together with the stabilizing head 5.

Sl. 5 prikazuje dodatni izvedbeni primer pri katerem je instrument 4 (v tem primeru video kamera ali fotoaparat) nameščen na stacionarno platformo 8, kije pritrjena na fiksno ali premično podporo kot na primer tirnice, žerjav, vzvodi, kabli, stativi, in podobno.FIG. 5 shows an additional embodiment in which the instrument 4 (in this case, video camera or camera) is mounted on a stationary platform 8, which is attached to a fixed or movable support such as rails, crane, levers, cables, tripods, and the like.

Na Sl. 1 je prikazana leteča platforma 1 s štirimi rotorji 33. Rotorji 33 so razporejeni na štirih rokah 3 platforme, ki so pritrjene na trup 2 platforme v X-razporeditvi. Razporeditev rok 3 platforme je lahko v tem primeru kakršnekoli oblike ali ureditve, kot na primer X-,Y-,Z-,A-,H-razporeditve. Rotorje 33 poganjajo motoiji 35.In FIG. 1 shows a flying platform 1 with four rotors 33. The rotors 33 are arranged on four arms 3 of the platform, which are attached to the hull 2 of the platform in X-arrangement. The arrangement of the arms 3 of the platform may in this case be of any shape or arrangement, such as the X-, Y-, Z-, A-, H-arrangement. The rotors 33 are driven by motoes 35.

Instrument 4, kije v tem primeru kamera, je pritrjen na stabilizacijski sistem, t.j. Stabilizacijsko glavo 5, ki izniči vse nezaželene spremembe orientacije in vibracije instrumenta 4.Instrument 4, which in this case is a camera, is attached to a stabilization system, i.e. Stabilization head 5, which eliminates any unwanted changes in orientation and vibration of the instrument 4.

Leteča platforma 1 je opremljena z računalnikom 23, ki zbira in obdeluje podatke ter krmili letečo platformo 1 in stabilizacijsko glavo 5 na katero je nameščen instrument 4. Računalnik 23 vsebuje inercijsko merilno enoto 28 s pomočjo katere oceni položaj, hitrost in orientacijo leteče platforme 1. Leteča platforma nadalje vsebuje tudi RTK GPS 29, tlačni senzor 30, ultrazvočni ali laserski merilnik razdalje 31 ali katerokoli dodatni senzor za določitev položaja, hitrosti, orientacije 32, ki se uporabljajo kot dodatne meritve stanja leteče platforme 1.Flying platform 1 is equipped with a computer 23 that collects and processes the data and controls the flying platform 1 and the stabilization head 5 on which the instrument 4 is mounted. The computer 23 comprises an inertial measuring unit 28 by which it estimates the position, speed and orientation of the flying platform 1. The flying platform further comprises RTK GPS 29, a pressure sensor 30, an ultrasonic or laser distance meter 31, or any additional sensor for determining the position, velocity, orientation 32, which are used as additional measurements of the status of the flying platform 1.

Na Sl. 3 je predstavljena leteča platforma 1, ki vključuje tudi podatkovno povezavo 26 za prenos podatkov med letečo platformo 1 in komandnim pultom 6 s pomočjo radijskega signala, in video povezavo 27 za prenos video podatkov na video prikazovalnik 20 nameščen na sistemu za sledenje orientacije glave 7. Prenos video podatkov poteka preko komandnega pulta 6.In FIG. 3 shows a flying platform 1, which also includes a data link 26 for transmitting data between the flying platform 1 and the radio control panel 6, and a video link 27 for transmitting video data to a video display 20 mounted on the head orientation tracking system 7. Video data is transmitted via the control panel 6.

Takšna leteča platforma 1, kot je opisana zgoraj, je lahko dodatno opremljena s sistemi opisanimi na drugih mestih tega izuma, t.j. eden ali več senzorjev za stabilizacijo instrumenta 4 s pomočjo stabilizacijske glave 5, krmilni sistem instrumenta 4 s pomočjo sistema za sledenje orientacije glave in komandnega pulta 6, in komunikacijskim sistemom med letečo platformo 1, sistemom za sledenje glave 7 in komandnim pultom 6.Such flying platform 1 as described above may be further equipped with systems described elsewhere in the present invention, i.e. one or more sensors for stabilizing the instrument 4 by means of a stabilization head 5, a control system for the instrument 4 by a system for tracking the orientation of the head and the control panel 6, and a communication system between the flying platform 1, the tracking system for the head 7 and the control panel 6.

Na Sl. 2 je nadalje predstavljen predlagan izvedbeni primer že opisan zgoraj, pri katerem je leteča platforma opremljena še z dodatno inercijsko merilno enoto 13 pritrjeno na instrument 4. Omenjena meritev preko inercij ske merilne enote 13 je lahko nadalje podvojena z dodatnim senzoijem kot je na primer pospeškomer in/ali senzor za merjenje zemeljskega magnetnega polja, ki lahko nudi časovnostabilno meritev orientacije leteče platforme 1.In FIG. 2, a proposed embodiment already described above is presented in which the flying platform is further provided with an additional inertial measuring unit 13 attached to the instrument 4. Said measurement via an inertial measuring unit 13 may be further duplicated by an additional sensor such as an accelerometer and / or a ground magnetic field sensor capable of providing a temporally stable measurement of the orientation of the flying platform 1.

V omenjenem izvedbenem primeru je lahko orientacija stabilizacijske glave 5 določena na dva načina: ali direktno s pomočjo dodatne inercijske merilne enote 13 nameščene na stabilizacijski glavi 5, ali pa indirektno preko inercijske merilne enote 28 nameščene na leteči platformi 1, in povratne zanke od aktuatoijev 15 stabilizacijske glave 5, torej povratne informacije o položaju aktuatorjev.In the said embodiment, the orientation of the stabilization head 5 can be determined in two ways: either directly by means of an additional inertial measuring unit 13 mounted on the stabilizing head 5, or indirectly via an inertial measuring unit 28 mounted on a flying platform 1, and feedback loops from actuators 15 stabilization heads 5, hence the actuator position feedback.

V nadaljevanju omenjenega izvedbenega primera, je stabilizacijska glava 5 vodena samo s signalom od sistema za sledenje orientacije glave 7. Z drugimi besedami, četudi se leteča platforma 1 premika ali rotira glede na ukaze od operaterja 17 in/ali zaradi zunanjih vplivov kot na primer veter, bo stabilizacijska glava 5 držala instrument 4 v želeni orientaciji. Stabilizacijska glava 5 izniči vsakršno rotacijsko gibanje ali premikanje leteče platforme 1.In the following embodiment, stabilization head 5 is guided only by a signal from the head orientation tracking system 7. In other words, even if the flying platform 1 moves or rotates according to commands from the operator 17 and / or due to external influences such as wind , the stabilization head 5 will hold the instrument 4 in the desired orientation. Stabilization head 5 nullifies any rotational motion or movement of the flying platform 1.

Stabilizacijska glava 5 opisana v gornjem izvedbenem primeru je lahko nadalje vodena s pomočjo naprednega krmilnega sistema, ki vključuje napoved pričakovanega gibanja platforme. Z drugimi besedami, aktuatorji 15 so lahko krmiljeni glede na trenutne, dejanske izmerjene podatke leteče platforme 1, in hkrati z dodatnim napovedovanjem prihodnjega gibanja platforme pri čemer napoved temelji na preteklih in sedanjih izmerjenih podatkih in vhodnih krmilnih ukazih operaterja 17. Takšno krmiljenje lahko dodatno izboljša stabilizacijo leteče platforme 1 in instrumenta 4.The stabilization head 5 described in the above embodiment may be further guided by an advanced control system that includes a prediction of the expected movement of the platform. In other words, the actuators 15 can be controlled based on the current, actual measured data of the flying platform 1, and at the same time with additional prediction of the future movement of the platform, the prediction being based on the past and present measured data and input control commands of the operator 17. Such control can further improve stabilization of flying platform 1 and instrument 4.

Opisan izvedbeni primer lahko nadalje vključuje tudi proporcionalno odvisnost odmika krmilne palice (leve 18 ali desne 19) ter hitrosti leteče platforme 1. Takšen način krmiljenja se lahko doseže s tako imenovanim “fly-by-wire” sistemom.The described embodiment may further include the proportional dependence of the displacement of the joystick (left 18 or right 19) and the speed of the flying platform 1. This control method can be achieved with a so-called fly-by-wire system.

Sl. 4 prikazuje še nadalje predstavljen izvedbeni primer izuma, pri čemer je lahko stabilizacijska glava 5 instrumenta 4 izvedena kot eno-, dvo- ali tri-osno. Hkrati je lahko tudi sistem za sledenje orientacije glave 7 izveden v eni, dveh ali treh oseh. Kombinacija teh možnosti omogoča krmiljenje celotnega sistema pri čemer rotacija celotne leteče platforme 1 okrog njene vertikalne osi 41 hkrati prevzame vlogo krmiljenja stabilizacijske glave okrog njene vertikalne osi 12. Takšen način krmiljenja omogoča, da se ne izvaja aktivna stabilizacija stabilizacijske glave 5 in instrumenta 4 okrog njegove vertikalne osi 12 - to je predvsem zanimivo za aplikacije, kjer dodatna stabilizacija okrog vertikalne osi ni potrebna.FIG. 4 shows a further exemplary embodiment of the invention, wherein the stabilization head 5 of the instrument 4 can be implemented as one, two or three-axis. At the same time, the head orientation tracking system 7 can also be implemented in one, two or three axes. The combination of these options allows for the control of the entire system, with the rotation of the entire flying platform 1 around its vertical axis 41 simultaneously assuming the role of steering the stabilizing head around its vertical axis 12. This control means that active stabilization of the stabilization head 5 and the instrument 4 around its axis is not performed. vertical axis 12 - This is especially interesting for applications where additional stabilization around the vertical axis is not required.

Tehnična rešitev izvedbenega primera kot je opisan zgoraj lahko vključuje tudi katerikoli drug instrument 4 vgrajen v enorotomi ali večrotomi brezpilotni leteči sistem. Ti instrumenti so lahko na primer različni laserski sistemi, infrardeče kamere, radarji in podobno.The technical solution of an embodiment as described above may also include any other instrument 4 incorporated in a single or multiple drone flying system. For example, these instruments can be different laser systems, infrared cameras, radars and the like.

V posebnem izvedbenem primeru opisanem zgoraj, je orientacija glave operaterja 17 merjena s pomočjo inercijske merilne enote 21 vgrajene v sistem za sledenje orientacije glave 7, pri čemer je funkcijsko povezana linearno (za primer: 1° rotacije glave je enako 1° rotacije stabilizacijske glave 5) ali progresivno, na primer exponentno, in je definirana z ustrezno funkcijo. Na ta način se lahko doseže orientiranost stabilizacijske glave v navpični smeri 37 preko kota odklona 55° od vodoravne lege kar je fizična meja človeškega vratu. Takšen sistem posledično dovoljuje opustitev uporabe sistemov za sledenje gibanja oči.In the specific embodiment described above, the orientation of the operator head 17 is measured by means of an inertial measuring unit 21 built into the head orientation tracking system 7, being functionally connected in a linear fashion (for example: 1 ° of head rotation equals 1 ° of stabilization head 5 rotation ) or progressively, for example, exponentially, and is defined by an appropriate function. In this way, the orientation of the stabilization head in a vertical direction 37 can be achieved over an angle of inclination of 55 ° from the horizontal position, which is the physical limit of the human neck. Such a system consequently permits the abandonment of the use of eye-tracking systems.

Dodatno je lahko izvedbeni primer opisan zgoraj nadgrajen tako, daje orientacija glave operaterja 17 določena s pomočju inercijske merilne enote 21 in s krmilnim računalnikom 22 nameščenima na sistemu za sledenje orientacije glave 7.In addition, the embodiment can be described above upgraded such that the orientation of the head of the operator 17 is determined by means of an inertial measuring unit 21 and with a control computer 22 mounted on the tracking system of the orientation of the head 7.

Za natančnejše in/ali časovno-stabilnejše meritve orientacije glave operaterja 17 se lahko dodatno uporabi aksialni pospeškomer, senzor za merjenje zemeljskega magnetnega polja ali kakšen drug sistem, ki omogoča direktno ali indirektno določitev položaja ali orientacije glave operaterja 17. Sistem za sledenje orientacije glave 7, ki meri in ocenjuje orientiranost glave operateija 17, je lahko vgrajen v očala, vizir ali kakšen drug element na operaterjevi glavi, ali pa je lahko nameščen v bližini operateija 17.For more accurate and / or more stable measurements of the orientation of the head of the operator 17, an axial accelerometer, a sensor for measuring the earth's magnetic field, or any other system that directly or indirectly determine the position or orientation of the head of the operator 17 may be used. , which measures and evaluates the orientation of the operator's head 17, may be fitted to glasses, the visor or any other element on the operator's head, or may be positioned near the operator's 17.

Nadalje je lahko izvedbeni primer opisan zgoraj, skupaj z vsemi dodatnimi izvedenimi primeri in nadgradnjami, podobno implementiran v sistemu s krilom (“fixed-wing”) pri katerem vzgon plovila zagotavlja krilo namesto rotoijev.Further, the embodiment may be described above, together with any additional embodiments and upgrades, similarly implemented in a fixed-wing system in which the buoyancy of the vessel provides the wing instead of the rotoi.

Na sliki 5 je predstavljena stacionarna platforma 8 s stabilizacijsko glavo 5 in instrumentom 4. Podobno principi vodenja in krmiljenja instrumenta 5 kot so bili zgoraj omenjeni pri leteči platformi 1 se lahko uporabijo tudi v primeru stacionarne platforme 8: vodenje stabilizacijske glave 5 stacionarne platforme 8 se izvaja s pomočjo sistema za sledenje orientacije glave 7 in stabilizacijske glave 5. Vsi podrejeni opisi izvedbenega primera leteče platforme 1 so uporabljeni tudi v tem primeru stacionarne platforme 8 pri čemer je lahko stacionarna platforma 8 nameščena ali na nepremično podporo (stativ) ali na premično vendar stacionarno podporo 9 (tirnice, dvigalo, žerjav, vzvodi, škripci, itd).Figure 5 shows a stationary platform 8 with stabilization head 5 and instrument 4. Similar to the guidance and control principles of instrument 5 as mentioned above for flying platform 1 can also be applied in the case of stationary platform 8: guidance of stabilization head 5 of stationary platform 8 se. implemented with the help of the tracking system for the orientation of the head 7 and the stabilization head 5. All the subordinate descriptions of the implementation example of the flying platform 1 are also used in this case stationary platform 8 wherein the stationary platform 8 can be mounted either on a fixed support (tripod) or on a movable but stationary support 9 (rails, elevator, crane, levers, pulleys, etc.).

Drugi možni izvedbeni primeri izuma bodo razvidni strokovnjakom s področja brezpilotnih letečih sistemov in snemanja iz zraka. Eden izmed njih je ta, da se lahko brezpilotno leteči sistem zamenja za katerokoli plovilo, bodisi na tleh, v vodi ali v zraku, in je tako dodatno opremljeno s stabilizacijskim sistemom, torej stabilizacijsko glavo 5, v katero je nameščen katerikoli instrument 4.Other possible embodiments of the invention will be apparent to those skilled in the art of unmanned aerial vehicles and aerial photography. One of them is that the unmanned aerial vehicle system can be exchanged for any vessel, whether on the ground, in water or in the air, and is thus further equipped with a stabilization system, ie a stabilization head 5, in which any instrument 4 is installed.

Opisi izvedbenih primerov podanih v tem izumu služijo samo kot primer in v nobenem primeru omejujejo obsega predstavljenega izuma.The descriptions of the embodiment examples given in this invention serve only as an example and in no way limit the scope of the present invention.

Claims (15)

1. Stabilizacijski sistem za različne platforme, ki se sestoji iz stabilizacijske glave (5) nameščene na letečo platformo (1) ali stacionarno platformo (8), ki je opremljena z instrumentom (4) in/ali ostalimi senzoiji, in je integrirana s sistemom za sledenje orientacije glave (7);A multi-platform stabilization system consisting of a stabilization head (5) mounted on a flying platform (1) or stationary platform (8) equipped with an instrument (4) and / or other sensors and integrated with the system for tracking the orientation of the head (7); pri čemer je sistem za sledenje orientacije glave (7) namenjen za vodenje in krmiljenje stabilizacijske glave (5) in instrumenta (4).wherein the head orientation tracking system (7) is intended to guide and control the stabilization head (5) and the instrument (4). 2. Sistem po zahtevku 1 označena s tem, daje platforma leteča platforma (1) pri čemer je lahko v izvedbi s krilom, ali enim oziroma več rotorji, in pri čemer ima leteča platforma (1) šest prostostnih stopenj, torej tri rotacije in tri translacije, in stabilizacijska glava (5) eno, dve ali tri aktivne prostostne stopnje za stabilizacijo orientacije instrumenta (4).System according to claim 1, characterized in that the platform is a flying platform (1) wherein it can be in the design with a wing or one or more rotors, and wherein the flying platform (1) has six degrees of freedom, ie three rotations and three translations, and stabilization head (5) one, two or three active degrees of freedom to stabilize the orientation of the instrument (4). 3. Sistem po zahtevku 1 označena s tem, daje stacionarna platforma (8) pritrjena na vozilo ali vodno plovilo, ali je pritrjena na dvigalo, kable, vzvode, škripce, tirnice ali stativ, in pri čemer ima stabilizacijska glava (5) eno, dve ali tri prostostne stopnje za stabilizacijo orientacije instrumenta (4).System according to claim 1, characterized in that the stationary platform (8) is attached to a vehicle or water craft, or is attached to a lift, cables, levers, pulleys, rails or tripod, and wherein the stabilizing head (5) has one, two or three degrees of freedom to stabilize the orientation of the instrument (4). 4. Sistem po zahtevku 1 označena s tem, da je orientacija stabilizacijske glave (5) ocenjena in izračunana s pomočjo inercijske merilne enote (28) nameščene na platformo, s položajem aktuatorjev (15) stabilizacijske glave (5), in računalnika 23 nameščenega na platformi za zajem in procesiranje izmerjenih podatkov iz senzoijev.System according to claim 1, characterized in that the orientation of the stabilization head (5) is estimated and calculated by means of an inertial measuring unit (28) mounted on the platform, with the position of the actuators (15) of the stabilizing head (5), and a computer 23 mounted on a platform for capturing and processing sensory data. 5. Sistem po zahtevku 4 pri čemer je ocena orientacije stabilizacijske glave (5) nadalje izboljšana z uporabo senzorjev za merjenje zemeljskega magnetnega polja in/ali z uporabo drugih naprav za merjenje položaja/orientacije/rotacije, ki omogočajo direktno ali indirektno oceno orientacije stabilizacijske glave (5).5. The system of claim 4, wherein the orientation orientation stabilization estimate (5) is further improved by the use of ground magnetic field sensors and / or other position / orientation / rotation measurement devices that allow the stabilization head orientation to be directly or indirectly evaluated (5). 6. Sistem po zahtevku 1 pri čemer je orientacija stabilizacijske glave (5) ocenjena direktno iz meritev inercijske merilne enote (13) nameščene na stabilizacijski glavi (5).The system of claim 1 wherein the orientation of the stabilization head (5) is estimated directly from the measurements of the inertial measuring unit (13) mounted on the stabilization head (5). 7. Sistem po zahtevkih 4 - 6 pri čemer je ocena orientacije in/ali položaja stabilizacijske glave (5) izračunana s pomočjo izmerjenih podatkov iz senzorjev in ocene stanja s pomočjo Kalmanovega filtra.System according to claims 4 - 6, wherein the orientation and / or position estimate of the stabilization head (5) is calculated using the measured data from the sensors and the state estimation using a Kalman filter. 8. Sistem po zahtevku 2 pri čemer je uporabljen tako imenovani “fly-by-wire” krmilni sistem za krmiljenje hitrosti in položaja leteče platforme (1), in pri katerem je hitrost platforme funkcijsko povezana z odmikom leve (18) ali desne (19) krmilne palice na komandnem pultu (6).8. The system of claim 2, wherein a so-called fly-by-wire steering system is used to control the speed and position of the flying platform (1) and wherein the speed of the platform is functionally related to the offset of the left (18) or right (19) ) joysticks on the control panel (6). 9. Sistem po zahtevku 8 pri čemer so aktuatorji (15) in stabilizacijska glava (5) krmiljeni s pomočjo računalniškega algoritma, ki omogoča napovedovanje gibanja platforme v prihodnjih časovnih trenutkih.The system of claim 8, wherein the actuators (15) and the stabilization head (5) are controlled by a computer algorithm that allows the prediction of the movement of the platform at future times. 10. Sistem po zahtevku 1 pri čemer so lahko senzorji sistema za sledenje orientacije glave (7) neposredno pritrjeni na glavo operaterja (17), čelado, očala ali vizir, ali pa omogočajo posredno merjenje orientacija in/ali položaja glave operaterja (17) preko senzorjev nameščenih v okolici operaterja (17).The system of claim 1 wherein the sensors of the head orientation tracking system (7) can be directly attached to the operator head (17), helmet, goggles or visor, or allow indirect measurement of the orientation and / or position of the operator head (17) via sensors installed in the vicinity of the operator (17). 11. Naprava za vodenje instrumenta (4) nameščenega na različnih platformah, ki se sestoji iz sistema za sledenje orientacije glave (7) s katerim se upravlja s stabilizacijsko glavo (5) nameščeno na platformo in opremljeno z instrumentom (4) pri čemer je funkcijska odvisnost med premikanjem glave operaterja (17) in orientacijo stabilizacijske glave (5) dosežena z računalniškim algoritmom.A device for controlling the instrument (4) mounted on different platforms, consisting of a head orientation tracking system (7) operated by a stabilizing head (5) mounted on the platform and equipped with an instrument (4) the dependence between the movement of the operator head (17) and the orientation of the stabilization head (5) is achieved by a computer algorithm. 12. Naprava po zahtevku 11 pri čemer je funkcijska povezava med orientacijo glave operaterja (17) in orientacijo stabilizacijske glave (5) odvisna od orientacije glave operaterja (17), in pri čemer je ta funkcijska odvisnost med orientacijo glave operaterja (17) in orientacijo stabilizacijske glave (5) linearna pri odklonu glave operaterja (17) do 20° od normalnega položaja glave, in ne-lineama, na primer eksponentna, pri odklonih glave operaterja (17) za več kot 20°.The apparatus of claim 11 wherein the functional relationship between the orientation of the operator head (17) and the orientation of the stabilization head (5) depends on the orientation of the operator head (17), and wherein this functional relationship is between the orientation of the operator head (17) and the orientation stabilization heads (5) linear at an operator head deflection (17) up to 20 ° from the normal head position, and non-lineam, for example exponential, at an operator head (17) deflection by more than 20 °. 13. Naprava po zahtevku 11 pri čemer je povratna zanka z informacijo glede položaja in/ali orientacije stabilizacijske glave (5) vzpostavljena s prenosom podatkov med dodatno inercijsko merilno enoto (13) nameščeno na stabilizacijski glavi (5) in sistemom za sledenje orientacije glave (7).The apparatus of claim 11, wherein a feedback loop with information regarding the position and / or orientation of the stabilization head (5) is established by transferring data between the additional inertial measuring unit (13) mounted on the stabilization head (5) and the head orientation tracking system ( 7). 14. Naprava po zahtevku 11 pri čemer je povratna zanka z informacijo glede položaja in/ali orientacije stabilizacijske glave (5) določena z položajem aktuatorjev (15) in inercijsko merilno enoto (28) nameščeno na platformi.The apparatus of claim 11 wherein the feedback loop with position and / or orientation information of the stabilization head (5) is determined by the position of the actuators (15) and the inertial measuring unit (28) is mounted on the platform. 15. Naprava po zahtevku 13 pri čemer je povratna zanka z informacijo glede položaja in/ali orientacije stabilizacijske glave (5) prikazana na video prikazovalniku (20) operaterjevega sistema za sledenje orientacije glave (7) ali kateregakoli drugega prikazovalnika.The apparatus of claim 13, wherein the feedback loop with information regarding the position and / or orientation of the stabilization head (5) is displayed on the video display (20) of the operator's head orientation tracking system (7) or any other display.
SI201200117A 2012-04-16 2012-04-16 The control system for stabilizing the head of the flight or stationary platform SI24055A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201200117A SI24055A (en) 2012-04-16 2012-04-16 The control system for stabilizing the head of the flight or stationary platform
PCT/SI2013/000007 WO2013158050A1 (en) 2012-04-16 2013-02-18 Stabilization control system for flying or stationary platforms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201200117A SI24055A (en) 2012-04-16 2012-04-16 The control system for stabilizing the head of the flight or stationary platform

Publications (1)

Publication Number Publication Date
SI24055A true SI24055A (en) 2013-10-30

Family

ID=48142059

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201200117A SI24055A (en) 2012-04-16 2012-04-16 The control system for stabilizing the head of the flight or stationary platform

Country Status (2)

Country Link
SI (1) SI24055A (en)
WO (1) WO2013158050A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2881825A1 (en) * 2013-12-06 2015-06-10 BAE SYSTEMS plc Imaging method and apparatus
WO2015082311A1 (en) * 2013-12-06 2015-06-11 Bae Systems Plc Imaging method and apparatus
RU2548304C1 (en) * 2014-03-05 2015-04-20 Дмитрий Сергеевич Дуров Multirotor convertible high-speed helicopter
RU2550909C1 (en) * 2014-03-26 2015-05-20 Дмитрий Сергеевич Дуров Multirotor convertible pilotless helicopter
DE102014211050B4 (en) * 2014-06-10 2020-10-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Imaging device with an airworthy carrying device
GB201411293D0 (en) * 2014-06-25 2014-08-06 Pearson Eng Ltd Improvements in or relating to inspection systems
USD756842S1 (en) 2014-08-21 2016-05-24 Javad Gnss, Inc. Unmanned aerial drone
CN104369863A (en) * 2014-10-31 2015-02-25 吴建伟 Composite vertical take-off/landing aircraft
US9946267B2 (en) 2015-04-06 2018-04-17 Thomas A. Youmans Control and stabilization of a flight vehicle from a detected perturbation by tilt and rotation
EP3086554B1 (en) * 2015-04-24 2019-04-24 Visual Vertigo Software Technologies GmbH System and method for producing and dispensing stereoscopic video films
CN104918020A (en) * 2015-06-17 2015-09-16 宋克凡 Unmanned plane driving simulation display unit
US10097745B2 (en) * 2016-04-27 2018-10-09 Zepp Labs, Inc. Head rotation tracking device for video highlights identification
RU2625691C1 (en) * 2016-06-28 2017-07-18 Федеральное государственное казенное военное образовательное учреждение высшего образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" Surface facility surviellance system and targeting
CN106370184A (en) * 2016-08-29 2017-02-01 北京奇虎科技有限公司 Automatically tracking shooting method of unmanned aerial vehicle, unmanned aerial vehicle and mobile terminal equipment
CN107454947A (en) * 2016-09-26 2017-12-08 深圳市大疆创新科技有限公司 Unmanned aerial vehicle (UAV) control method, wear-type show glasses and system
CN107004343B (en) * 2016-10-25 2019-09-17 深圳市大疆灵眸科技有限公司 Computer-readable medium, focus tracking system, clouds terrace system, holder, holder data transfer control method and device
ES2755821B2 (en) * 2018-10-23 2021-07-20 Univ Extremadura Gyro-stabilizing warhead for unmanned aircraft

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138555A (en) 1990-06-28 1992-08-11 Albrecht Robert E Helmet mounted display adaptive predictive tracking
DE19731724A1 (en) * 1997-07-23 1999-01-28 Horst Juergen Dipl Ing Duschek Virtual reality control method for unmanned helicopter, aircraft etc.
US5995758A (en) 1998-02-02 1999-11-30 Tyler; Nelson Stabilization apparatus
DE19906244A1 (en) * 1999-02-15 2000-08-24 Alf Holger Tschersich Virtual reality transmission system, relaying scene perceived by e.g. robot or telechir to operator, includes stereoscopic camera pair turning in sympathy with operators head movement
US6672535B2 (en) 2002-04-22 2004-01-06 Aerial View Systems, Inc. Camera systems for tracking objects from an aircraft
AU2003901528A0 (en) 2003-03-31 2003-05-01 Seeing Machines Pty Ltd Eye tracking system and method
US20080048931A1 (en) * 2003-11-26 2008-02-28 Rafael - Armament Development Authority Ltd. Helmet System for Information or Weapon Systems
DE202004008110U1 (en) 2004-05-22 2004-08-12 Quade, Kay, Dipl.-Ing. (FH) Autonomous, self-referencing head tracking module
WO2006044844A2 (en) 2004-10-18 2006-04-27 Mark Segal Method and apparatus for creating aerial panoramic photography
JP4396938B2 (en) 2005-03-25 2010-01-13 日産ディーゼル工業株式会社 Air conditioner / refrigerator and automobile equipped with the same
KR101148828B1 (en) 2006-11-22 2012-05-29 삼성전자주식회사 System for offering web page having home network function and method for controlling a home network device
US7658555B1 (en) 2006-12-15 2010-02-09 Moilanen Joe A Aerial video mount
CN201002722Y (en) 2007-01-25 2008-01-09 仝昊天 Aircraft two freedom degree image stabilizing platform
DE102008014853B4 (en) 2008-03-18 2010-11-18 Ascending Technologies Gmbh Rotary-wing aircraft
US20090237355A1 (en) 2008-03-24 2009-09-24 Storm Orion Head tracking for virtual reality displays
CN201287830Y (en) 2008-10-14 2009-08-12 西安展翼航空科技有限公司 Stabilising bracket for aerial photography camera
RU2523961C2 (en) 2009-02-13 2014-07-27 Конинклейке Филипс Электроникс Н.В. Head position monitoring
CN101619971B (en) 2009-07-31 2012-02-01 北京航空航天大学 Aerophotography gyrostabilized platform with three freedom degrees and large load
WO2011140606A1 (en) * 2010-05-13 2011-11-17 Constantine Papas Remote control assembly for use with a model vehicle
EP2428813B1 (en) 2010-09-08 2014-02-26 Harman Becker Automotive Systems GmbH Head Tracking System with Improved Detection of Head Rotation

Also Published As

Publication number Publication date
WO2013158050A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
SI24055A (en) The control system for stabilizing the head of the flight or stationary platform
US10556708B2 (en) Payload mounting platform
US9765926B2 (en) Systems and methods for payload stabilization
US11572196B2 (en) Methods and systems for movement control of flying devices
US10571779B2 (en) Flying camera with string assembly for localization and interaction
US11801938B2 (en) Aircraft control apparatus, control system and control method
US11118728B2 (en) Method and system for stabilizing a payload
US10447912B2 (en) Systems, methods, and devices for setting camera parameters
EP2895819B1 (en) Sensor fusion
EP3487759A1 (en) Gimbaled universal drone controller
US20200319642A1 (en) Gimbal control method and device, gimbal, and unmanned aerial vehicle
JP6369877B2 (en) platform
Bird et al. Low-cost compact instrumentation, control, and aerial surveillance payload support for small UAVs
JP2019138739A (en) Position measurement device and method for position measurement

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20131119

KO00 Lapse of patent

Effective date: 20151215