RU2749194C1 - Способ дистанционного определения координат местоположения наземного (надводного) объекта - Google Patents

Способ дистанционного определения координат местоположения наземного (надводного) объекта Download PDF

Info

Publication number
RU2749194C1
RU2749194C1 RU2020141199A RU2020141199A RU2749194C1 RU 2749194 C1 RU2749194 C1 RU 2749194C1 RU 2020141199 A RU2020141199 A RU 2020141199A RU 2020141199 A RU2020141199 A RU 2020141199A RU 2749194 C1 RU2749194 C1 RU 2749194C1
Authority
RU
Russia
Prior art keywords
aircraft
coordinates
angle
line
ground
Prior art date
Application number
RU2020141199A
Other languages
English (en)
Inventor
Сергей Викторович Евдокимов
Александр Львович Платонов
Михаил Сергеевич Лутков
Георгий Ринатович Куштанов
Алексей Игоревич Сергеев
Андрей Владимирович Пономарев
Original Assignee
Общество с ограниченной ответственностью "Опытно-конструкторское бюро УЗГА" (ООО "ОКБ УЗГА")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Опытно-конструкторское бюро УЗГА" (ООО "ОКБ УЗГА") filed Critical Общество с ограниченной ответственностью "Опытно-конструкторское бюро УЗГА" (ООО "ОКБ УЗГА")
Priority to RU2020141199A priority Critical patent/RU2749194C1/ru
Application granted granted Critical
Publication of RU2749194C1 publication Critical patent/RU2749194C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • B64C19/02Conjoint controls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/485Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an optical system or imaging system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Изобретение относится к навигации, а именно к способам дистанционного определения координат местоположения наземного (надводного) объекта, и может быть использовано при создании новых и модернизации существующих систем определения координат местоположения наземного (надводного) объекта с помощью как дистанционно пилотируемых (беспилотных) летательных аппаратов, так и в пилотируемой авиации. Технический результат заявляемого способа заключается в упрощении процедуры и увеличении скорости наведения вектора линии визирования, в том числе в условиях произвольной ориентации воздушного судна в пространстве, а также в повышении скорости и точности определения координат местоположения наземного (надводного) объекта. Заявленный способ заключается в регистрации измерительной информации с бесплатформенной инерциальной навигационной системы (БИНС), оптико-электронной системы (ОЭС), радиовысотомера, спутнико-навигационной системы (СНС), системы воздушных сигналов (СВС), установленных на воздушном судне. Измерительная информация включает координаты воздушного судна (широту, долготу, высоту), угол курса, угол крена, угол тангажа, угол азимута, угол места. Рассчитывают длину вектора линии визирования. Осуществляют выстраивание вектора линии визирования в необходимое положение в пространстве, используя углы воздушного судна и кватернион, состоящий из векторной и скалярной частей, причем скалярная часть равна произвольному числу, а векторная часть состоит из углов курса, крена и тангажа. Далее вектор линии визирования нормируют и рассчитывают угол разворота в горизонтальной плоскости относительно конструкторской оси воздушного судна. Затем проецируют вектор линии визирования в систему координат, связанную с ОЭС, где последовательно осуществляют повороты по углу места, по углу азимута. На последнем этапе обработки рассчитывают координаты интересующего наземного (надводного) объекта, используя координаты воздушного судна, высоту, юстировочные коэффициенты, рассчитанную длину вектора линии визирования. 1 ил.

Description

Изобретение относится к навигации, а именно к способам дистанционного определения координат местоположения наземного (надводного) объекта и может быть использовано при создании новых и модернизации существующих систем определения координат местоположения наземного (надводного) объекта с помощью как дистанционно пилотируемых (беспилотных) летательных аппаратов, так и в пилотируемой авиации.
Известен способ дистанционного определения местоположения наземного объекта из обзора по материалам иностранной печати «Дистанционно пилотируемые летательные аппараты капиталистических стран» (под редакцией Федосова Е.А. - Москва, Научно-информационный центр, 1989 г., стр. 53-64). При реализации известного способа на летательный аппарат устанавливают систему обзора, магнитный компас, гировертикаль и барометрический высотомер. В полете на летательном аппарате с помощью системы обзора получают сигналы телевизионного изображения участка местности, который находится в поле зрения системы обзора, с помощью магнитного компаса и барометрического высотомера измеряют значения угла Кмо магнитного курса и высоты Н полета летательного аппарата над уровнем моря. С помощью гировертикали на летательном аппарате измеряют значение угла F по ориентации оси летательного аппарата относительно вертикали, передают по каналу связи с летательного аппарата на наземный пункт значения Н и Fo, а также сигналы изображения. На наземном пункте принимают значения Н, Fo, а также сигналы изображения, отображают сигналы изображения на экране индикатора, наблюдают это отображение сигнала изображения, обнаруживают и опознают наземный объект на отображении сигнала изображения. При этом на летательный аппарат устанавливают систему обзора в кардановом подвесе с возможностью ее вращения относительно осей подвеса, а также лазерный дальномер. В полете на летательном аппарате стабилизируют положение карданового подвеса с помощью гировертикали. С помощью радиосигналов от наземного пункта управляют положением оси поля зрения системы обзора, направляют ось поля зрения системы обзора на наземный объект, измеряют угол Fo ориентации оси поля зрения системы обзора относительно вертикали и угол So ориентации оси поля зрения системы обзора в горизонтальной плоскости относительно направления магнитного курса летательного аппарата. С помощью лазерного дальномера на летательном аппарате измеряют значение дальности Д между летательным аппаратом и наземным объектом, передают по каналу связи с летательного аппарата на наземный пункт значения So и Д. На наземном пункте принимают значения So и Д. Сопровождают летательный аппарат радиолокационной станцией наземного пункта и в результате этого определяют значения дальности Дп между летательным аппаратом и наземным пунктом и углов ориентации направления с наземного пункта на летательный аппарат. С использованием значений этих углов, а также значений Дп, Fo, So, Д на наземном пункте вычисляют значения универсальных прямоугольных меркаторских координат местоположения наземного объекта.
Недостатком известного способа является аппаратная сложность его реализации, энергозатратность, инертность при вычислении координат. Вышеуказанные недостатки обусловлены тем, что весь объем задач по определению местоположения наземного объекта требует размещения на борту летательного аппарата лазерного дальномера, обладающего сравнительно большой массой и требующего для своей работы значительных затрат энергии бортового источника электроэнергии. Кроме того, вычисление координат проводится на наземном пункте, что требует дополнительных действий по передаче информации для расчета координат с летательного аппарата на наземный пункт, что обеспечивает задержку получения результирующих данных (инертность).
Известен способ дистанционного определения координат местоположения наземного объекта из патента РФ №2182713 с датой приоритета 28.03.2000, который состоит в том, что на летательном аппарате устанавливают систему обзора с возможностью ее поворота в вертикальной плоскости, приемник системы спутниковой навигации, магнитный компас, гировертикаль, измеритель угла отклонения системы обзора от продольной оси летательного аппарата и барометрический высотомер. В полете стабилизируют систему обзора по углу крена летательного аппарата, с помощью системы обзора получают сигналы изображения участка местности, находящегося в поле зрения системы обзора, определяют значения Кмо магнитного курса, высоты Н полета над уровнем моря, значения географических широты Wдп и долготы Qдп местоположения летательного аппарата и значение Fo угла ориентации поля зрения системы обзора относительно вертикали, по каналу связи передают с этого аппарата на наземный пункт значения Н, Wдп, Qдп и Fo, а также сигналы изображения участка местности, находящегося в поле зрения системы обзора, принимают на этом пункте значения Н, Wдп, Qдп, Fo, а также сигналы изображения данного участка местности и опознают наземный объект. При этом в вычислитель наземного пункта предварительно вводят цифровую карту местности района, в котором запланирован полет летательного аппарата, зависимость Hp(W, Q) высоты Нр над уровнем моря точек рельефа местности в этом районе от значений географических широты W и долготы Q этих точек, угол G магнитного склонения в этом районе, значения большой полуоси Ар и эксцентриситета Ер референц-эллипсоида Земли, а также значения ширины Fпза поля зрения системы обзора по углу места, ширины Fпза поля зрения этой системы по азимуту, максимальной длины Lд и максимальной ширины La отображения изображения данного участка местности на экране индикатора. На наземном пункте измеряют координаты Lдп и Lац отображения местоположения наземного объекта на этом экране и вводят эти координаты в вычислитель, вводят в этот вычислитель также полученные от этого аппарата значения Н, Wдп, Qдп и Fo и, с использованием информации, введенной в вычислитель предварительно и в процессе полета летательного аппарата, вычисляют на наземном пункте значения географических широты Wц и долготы Qц местоположения наземного объекта.
Недостатками известного способа дистанционного определения координат местоположения наземного объекта также являются низкая точность и инертность при вычислении, поскольку вычисление координат проводится на наземном пункте, что требует дополнительных действий по передаче информации для расчета координат с летательного аппарата на наземный пункт (параметров Кмо магнитного курса, высоты Н полета над уровнем моря, значения географических широты Wдп и долготы Qдп местоположения летательного аппарата и значение Fo угла ориентации поля зрения системы обзора относительно вертикали). Вследствие этого ограничена оперативность отслеживания за изменениями параметров Кмо, Н, Wдп и Qдп), что снижает точность и обеспечивает инертность вычисления реальных координат наземного объекта.
Известен способ измерения координат мерцающей подвижной точки земной поверхности из патента РФ №2368920 с датой приоритета 23.06.2008 (прототип), заключающийся в трехмерной локации точки с помощью оптико-локационных блоков. Причем измерение осуществляется в три момента времени. В первый и второй моменты времени, когда мерцающая точка видима, регистрируют изображения трех идентичных точек земной поверхности и мерцающей точки посредством двух оптико-локационных блоков, осуществляют обработку оцифрованных изображений земной поверхности, снимаемых с фотоматриц, определяют координаты Y1συ, Z1συ, Y2συ, Zσυ; м, где первый индекс обозначает номер фотоматрицы, второй индекс σ=1, 2 - номер момента времени, υ=1...3, для трех идентичных точек земной поверхности и мерцающей точки υ=4, находящихся в поле зрения оптико-локационных блоков, по которым вычисляют их координаты в системе координат, связанной с летательным аппаратом,
Figure 00000001
где F - фокусное расстояние первого и второго фотообъективов, м;
В - расстояние между фото матрица ми, м;
вычисляют координаты точки М4 в первый и второй моменты времени в системе координат X'Y'Z', связанной с земной поверхностью:
Figure 00000002
Б третий момент времени, когда мерцающая точка невидима, регистрируют изображения трех идентичных точек земной поверхности посредством двух оптико-локационных блоков. Осуществляют обработку оцифрованных изображений земной поверхности, снимаемых с фото матриц, определяют координаты Y13υ, Z13υ, Y23υ, Z23υ, где υ=1…3, трех идентичных точек земной поверхности, находящихся в поле зрения оптнко-локационных блоков, по которым вычисляют их координаты в системе координат связанной с летательным аппаратом:
Figure 00000003
Далее находят координаты невидимой точки М4 в третий момент времени с учетом предположения о прямолинейном и равномерном ее движении относительно земли на интервале с первого по третий моменты времени в системе координат, связанной с летательным аппаратом:
Figure 00000004
Недостатком известного способа являются аппаратная сложность при реализации, за счет использования двух оптических блоков для проведения регистрации информации. Также недостатком является и то, что для обеспечения достаточной точности регистрацию мерцающих точек проводят в большое количество моментов времени, что снижает скорость обработки зарегистрированной информации, требует задействования больших ресурсов операционных систем.
Технической проблемой, решение которой обеспечивается при использовании предлагаемого способа дистанционного определения координат местоположения наземного (надводного) объекта является быстрое, точное и надежное определение координат наземного (надводного) объекта с использованием минимального набора измерительной аппаратуры на борту воздушного судна.
Технические результаты заявляемого способа заключаются:
- в упрощении процедуры выстраивания и коррекции вектора линии визирования на цель;
- в увеличении скорости наведения вектора линии визирования;
- в обеспечении возможности выстраивать вектор линии визирования в условиях произвольной ориентации воздушного судна в пространстве;
- в повышении скорости и точности определения координат местоположения наземного (надводного) объекта за счет использования котировочных коэффициентов.
Технические результаты достигаются за счет того, что способ дистанционного определения координат местоположения наземного (надводного) объекта заключается в регистрации измерительной информации с бесплатформенной инерциальной навигационной системы (далее - БИНС), оптико-электронной системы (далее - ОЭС), радиовысотомера, спутнико - навигационной системы (далее - СНС), системы воздушных сигналов (далее СВС), установленных на воздушном судне. При этом формируется массив первоначальных данных, необходимых для последующей обработки и отработки способа. Массив первоначальных данных включает координаты воздушного судна (широту, долготу, высоту), угол курса, угол крена, угол тангажа, угол азимута, угол места. Рассчитывают длину вектора линии визирования. Далее измерительную информацию обрабатывают. На первом этапе обработки измерительной информации осуществляется выстраивание вектора линии визирования в необходимое положение в пространстве, используя углы воздушного судна и кватернион, состоящий из векторной и скалярной части, причем скалярная часть равна произвольному числу, а векторная часть состоит из углов курса, крена и тангажа. На втором этапе обработки измерительной информации вектор линии визирования нормируют и рассчитывают угол разворота в горизонтальной плоскости относительно конструкторской оси воздушного судна. На третьем этапе обработки измерительной информации осуществляется проецирование вектора линии визирования в систему координат, связанную с ОЭС, где последовательно осуществляют повороты по углу места, по углу азимута. На четвертом этапе обработки измерительной информации рассчитывают координаты интересующего наземного (надводного) объекта, используя координаты воздушного судна, высоту, котировочные коэффициенты, рассчитанную длину вектора линии визирования.
Для целей настоящего описания под термином «оптико-электронная система» понимают приборы или системы, в которых информация об исследуемом или наблюдаемом объекте переносится оптическим излучением или содержится в оптическом сигнале, а ее первичная обработка сопровождается преобразованием энергии излучения в электрическую энергию.
Предложенный способ может быть реализован в соответствии с фигурой 1.
Описание осуществления изобретения может быть использовано в качестве примера для лучшего понимания его сущности и изложено со ссылками на фигуру, приложенную к настоящему описанию. При этом приведенные ниже подробности призваны не ограничить сущность изобретения, а сделать ее более ясной.
Рассмотрим реализацию предлагаемого способа на примере осуществления способа дистанционного определения координат местоположения наземного (надводного) объекта в условиях наличия исходной информации, постановки полетного задания.
Решение данной задачи осуществляется следующим образом. Производится регистрация измерительной информации и формируется массив данных, на основе которого производятся преобразования. Регистрацию измерительной информации осуществляют устройства, установленные на воздушном судне: БИНС, ОЭС, радиовысотомер, СНС, СВС.
В БИНС регистрируются следующие данные:
- Координаты воздушного судна:
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
В ОЭС регистрируются следующие данные:
Figure 00000010
Figure 00000011
С радиовысотомера регистрируются следующие данные:
Figure 00000012
С СНС регистрируются следующие данные:
Figure 00000013
С СВС регистрируются следующие данные:
Figure 00000014
Для осуществления последующих преобразований для реализации алгоритма вводятся следующие системы координат:
Figure 00000015
Figure 00000016
Figure 00000017
Далее вектор линии визирования из произвольного положения начинает совершать последовательные развороты относительно углов воздушного судна - курс, тангаж, крен, а после - по углу места и углу азимута для наведения на наземный объект - цель.
Далее проводится обработка измерительной информации.
Наиболее удобным математическим аппаратом, позволяющим корректно осуществить процедуру обработки информации является кватернион, а также углы прецессии, нутации и собственный угол вращения (в составе измерительной информации данные углы равны углу курса, углу крена, углу тангажа соответственно).
Длина вектора линии визирования рассчитывается через общеизвестные методы расчета длины вектора линии визирования по углам самолета, данным, регистрируемым с ОЭС, высоте и матрице высот и т.д.
Пусть LV - вектор линии визирования, который выражается через кватернион LV=[р0123], где р0 - скалярная часть, а p1,p2,p3 - векторная.
На первом этапе обработки используются данные, полученные с БИНС: угол курса, угол крена, угол тангажа. Вектор линии визирования LV разворачивают относительно трехмерной оси Z и выстраивают по углу курса (5). Следовательно, получают:
Figure 00000018
Figure 00000019
На втором этапе выполняется разворот вектора линии визирования LV относительно перпендикуляра к конструкторской оси воздушного судна, ось Y по углу тангажа (3):
Figure 00000020
Figure 00000021
На третьем этапе выполняется разворот вектора линии визирования LV относительно конструкторской оси воздушного судна, оси X - по углу крена (4). Отсюда:
Figure 00000022
Figure 00000023
После этапов 1-3, вектор линии визирования LV нормализуют и разворачивают по углу места (6), затем по углу азимута (7). Для угла места:
Figure 00000024
Figure 00000025
Для угла азимута:
Figure 00000026
Корректно выставленный вектор линии визирования в необходимое положение (20)-(22), позволяет перейти к этапу расчета координат интересующего наземного (надводного) объекта.
Для последующей операции расчета координат наземного (надводного) объекта с целью повышения точности расчета вводятся котировочные коэффициенты, определенные на основании простейших тригонометрических преобразований по углу азимута и углу места и проецирования вектора линии визирования на оси абсцисс и ординат с использованием расчетной длины вектора линии визирования и высоты воздушного судна.
Используя координаты воздушного судна, высоты, поступающие с приборов, котировочные коэффициенты и матрицу высот рассчитывают координаты наземного (надводного) объекта:
Figure 00000027
Figure 00000028
Figure 00000029
Figure 00000030
Figure 00000031
где Hц - высота цели, полученная через матрицу высот;
L - длина вектора линии визирования, полученная через алгоритм расчета вектора линии визирования.
Используя высоты (9)-(11) с целью устранения шумов, получаемых в процессе регистрации высот, используем общеизвестный фильтр Калмана. Данный фильтр в условиях данного способа позволяет устранить резкие скачки высот, с последующим сглаживанием (устранение шумов), при использовании радиовысотомера (радиовысоту используем до 762 м), и предсказать вероятную высоту на основе барометрической и спутниковой высоты.
Упрощение процедуры выстраивания и коррекции вектора линии визирования на цель, увеличение скорости наведения вектора линии визирования, обеспечение возможности выстраивать вектор линии визирования в условиях произвольной ориентации воздушного судна в пространстве, повышение скорости и точности определения координат местоположения наземного (надводного) объекта за счет использования котировочных коэффициентов достигается за счет того, что способ дистанционного определения координат местоположения наземного (надводного) объекта заключается в регистрации измерительной информации с БИНС, ОЭС, радиовысотомера, СНС, СВС, установленных на воздушном судне. При этом формируется массив первоначальных данных, необходимых для последующей обработки и отработки способа. Массив первоначальных данных включает координаты воздушного судна (широту, долготу, высоту), угол курса, угол крена, угол тангажа, угол азимута, угол места, длину вектора линии визирования. Рассчитывают длину вектора линии визирования. Далее измерительную информацию обрабатывают. На первом этапе обработки измерительной информации осуществляется выстраивание вектора линии визирования в необходимое положение в пространстве, используя углы воздушного судна и кватернион, состоящий из векторной и скалярной части, причем скалярная часть равна произвольному числу, а векторная часть состоит из углов курса, крена и тангажа. На втором этапе обработки измерительной информации вектор линии визирования нормируют и рассчитывают угол разворота в горизонтальной плоскости относительно конструкторской оси воздушного судна. На третьем этапе обработки измерительной информации осуществляется проецирование вектора линии визирования в систему координат, связанную с ОЭС, где последовательно осуществляют развороты по углу места, по углу азимута. На четвертом этапе обработки измерительной информации рассчитывают координаты интересующего наземного объекта, используя координаты воздушного судна, высоту, котировочные коэффициенты, рассчитанную длину вектора линии визирования.

Claims (1)

  1. Способ дистанционного определения координат местоположения наземного (надводного) объекта, заключающийся в регистрации измерительной информации с установленных на воздушном судне бесплатформенной инерциальной навигационной системы, оптико-электронной системы, радиовысотомера, спутнико-навигационной системы, системы воздушных сигналов - координат воздушного судна (широта, долгота, высота), с последующей ее обработкой, отличающийся тем, что дополнительно регистрируют угол курса, угол крена, угол тангажа, угол азимута, угол места, рассчитывают длину вектора линии визирования, при обработке измерительной информации на первом этапе осуществляется выстраивание вектора линии визирования в необходимое положение в пространстве, используя углы воздушного судна и кватернион, состоящий из векторной и скалярной частей, причем скалярная часть равна произвольному числу, а векторная часть состоит из углов курса, крена и тангажа, на втором этапе обработки измерительной информации вектор линии визирования нормируют и рассчитывают угол разворота в горизонтальной плоскости относительно конструкторской оси воздушного судна, на третьем этапе обработки измерительной информации осуществляется проецирование вектора линии визирования в систему координат, связанную с оптико-электронной системой, и последовательные повороты по углу места, по углу азимута, на четвертом этапе обработки измерительной информации рассчитывают координаты наземного (надводного) объекта с использованием координат воздушного судна, высоты, юстировочных коэффициентов, рассчитанной длины вектора линии визирования.
RU2020141199A 2020-12-15 2020-12-15 Способ дистанционного определения координат местоположения наземного (надводного) объекта RU2749194C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020141199A RU2749194C1 (ru) 2020-12-15 2020-12-15 Способ дистанционного определения координат местоположения наземного (надводного) объекта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020141199A RU2749194C1 (ru) 2020-12-15 2020-12-15 Способ дистанционного определения координат местоположения наземного (надводного) объекта

Publications (1)

Publication Number Publication Date
RU2749194C1 true RU2749194C1 (ru) 2021-06-07

Family

ID=76301643

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020141199A RU2749194C1 (ru) 2020-12-15 2020-12-15 Способ дистанционного определения координат местоположения наземного (надводного) объекта

Country Status (1)

Country Link
RU (1) RU2749194C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114020003A (zh) * 2021-12-23 2022-02-08 中国卫星海上测控部 用于测控天线海上轴系参数标校的无人机航路规划方法
CN117111178A (zh) * 2023-10-18 2023-11-24 中国电建集团贵阳勘测设计研究院有限公司 一种堤坝隐患和险情空地水协同探测系统及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2026037A2 (en) * 2007-08-14 2009-02-18 Honeywell International Inc. Navigation system and corresponding method for gyrocompass alignment using dynamically calibrated sensor data and an iterative extended kalman filter
US7873472B2 (en) * 2006-03-08 2011-01-18 Honeywell International Inc. Methods and systems for implementing an iterated extended Kalman filter within a navigation system
CN102866397A (zh) * 2012-10-12 2013-01-09 中国测绘科学研究院 一种多源异构遥感影像联合定位方法
RU2536768C1 (ru) * 2013-07-29 2014-12-27 Закрытое акционерное общество "ВНИИРА-Навигатор" Способ инерциально-спутниковой навигации летательных аппаратов
CN104422948A (zh) * 2013-09-11 2015-03-18 南京理工大学 一种嵌入式组合导航系统及其方法
RU2550811C1 (ru) * 2014-04-15 2015-05-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ и устройство определения координат объектов
RU2556286C1 (ru) * 2014-04-17 2015-07-10 Сергей Михайлович Мужичек Способ измерения курса летательного аппарата
RU2619915C1 (ru) * 2016-06-22 2017-05-19 федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ определения координат источника радиоизлучений с борта летательного аппарата
RU2646957C1 (ru) * 2016-11-03 2018-03-12 Открытое акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (ОАО МНПК "Авионика") Комплексный способ навигации летательных аппаратов
RU2658115C2 (ru) * 2016-11-22 2018-06-19 Федеральное государственное унитарное предприятие Государственный научно-исследовательский институт авиационных систем Способ одновременного измерения вектора скорости летательного аппарата и дальности до наземного объекта
RU2694786C1 (ru) * 2018-11-12 2019-07-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Навигационная комбинированная оптическая система

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7873472B2 (en) * 2006-03-08 2011-01-18 Honeywell International Inc. Methods and systems for implementing an iterated extended Kalman filter within a navigation system
EP2026037A2 (en) * 2007-08-14 2009-02-18 Honeywell International Inc. Navigation system and corresponding method for gyrocompass alignment using dynamically calibrated sensor data and an iterative extended kalman filter
CN102866397A (zh) * 2012-10-12 2013-01-09 中国测绘科学研究院 一种多源异构遥感影像联合定位方法
RU2536768C1 (ru) * 2013-07-29 2014-12-27 Закрытое акционерное общество "ВНИИРА-Навигатор" Способ инерциально-спутниковой навигации летательных аппаратов
CN104422948A (zh) * 2013-09-11 2015-03-18 南京理工大学 一种嵌入式组合导航系统及其方法
RU2550811C1 (ru) * 2014-04-15 2015-05-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ и устройство определения координат объектов
RU2556286C1 (ru) * 2014-04-17 2015-07-10 Сергей Михайлович Мужичек Способ измерения курса летательного аппарата
RU2619915C1 (ru) * 2016-06-22 2017-05-19 федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ определения координат источника радиоизлучений с борта летательного аппарата
RU2646957C1 (ru) * 2016-11-03 2018-03-12 Открытое акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (ОАО МНПК "Авионика") Комплексный способ навигации летательных аппаратов
RU2658115C2 (ru) * 2016-11-22 2018-06-19 Федеральное государственное унитарное предприятие Государственный научно-исследовательский институт авиационных систем Способ одновременного измерения вектора скорости летательного аппарата и дальности до наземного объекта
RU2694786C1 (ru) * 2018-11-12 2019-07-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Навигационная комбинированная оптическая система

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114020003A (zh) * 2021-12-23 2022-02-08 中国卫星海上测控部 用于测控天线海上轴系参数标校的无人机航路规划方法
CN114020003B (zh) * 2021-12-23 2024-04-19 中国卫星海上测控部 用于测控天线海上轴系参数标校的无人机航路规划方法
CN117111178A (zh) * 2023-10-18 2023-11-24 中国电建集团贵阳勘测设计研究院有限公司 一种堤坝隐患和险情空地水协同探测系统及方法
CN117111178B (zh) * 2023-10-18 2024-02-06 中国电建集团贵阳勘测设计研究院有限公司 一种堤坝隐患和险情空地水协同探测系统及方法

Similar Documents

Publication Publication Date Title
US9194954B2 (en) Method for geo-referencing an imaged area
CN107727079B (zh) 一种微小型无人机全捷联下视相机的目标定位方法
US7805244B2 (en) Attitude correction apparatus and method for inertial navigation system using camera-type solar sensor
Biezad Integrated navigation and guidance systems
US7791529B2 (en) System for estimating the speed of an aircraft, and an application thereof to detecting obstacles
EP1019862B1 (en) Method and apparatus for generating navigation data
US20090262974A1 (en) System and method for obtaining georeferenced mapping data
EP2413097A2 (en) A method, tool, and device for determining the coordinates of points on a surface by means of an accelerometer and a camera
WO2011149738A1 (en) Determining spatial orientation information of a body from multiple electromagnetic signals
RU2749194C1 (ru) Способ дистанционного определения координат местоположения наземного (надводного) объекта
EP3287736B1 (en) Dynamic, persistent tracking of multiple field elements
US9875403B2 (en) Method for accurately geolocating an image sensor installed on board an aircraft
Mouget et al. Photogrammetric archaeological survey with UAV
RU2513900C1 (ru) Способ и устройство определения координат объектов
KR100963680B1 (ko) 원격 표적의 좌표 측정 장치 및 방법
IL267309B2 (en) Terrestrial observation device with positioning functionality
Wierzbicki et al. Determining the elements of exterior orientation in aerial triangulation processing using UAV technology
JP3353571B2 (ja) 地球形状計測装置
Veth et al. Tightly-coupled ins, gps, and imaging sensors for precision geolocation
Runnalls et al. Terrain-referenced navigation using the IGMAP data fusion algorithm
Giebner Tightly-coupled image-aided inertial navigation system via a kalman filter
CN113640848A (zh) 无人机的地面激光足印数据采集方法、系统、介质及设备
RU2583851C2 (ru) Беспилотный мобильный комплекс
JP3503384B2 (ja) 地球形状計測装置
RU2711834C1 (ru) Способ определения орбиты космического аппарата с аппаратурой для съёмки подстилающей поверхности

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20211005