RU2650851C1 - Лазерный дальномер - Google Patents

Лазерный дальномер Download PDF

Info

Publication number
RU2650851C1
RU2650851C1 RU2017108892A RU2017108892A RU2650851C1 RU 2650851 C1 RU2650851 C1 RU 2650851C1 RU 2017108892 A RU2017108892 A RU 2017108892A RU 2017108892 A RU2017108892 A RU 2017108892A RU 2650851 C1 RU2650851 C1 RU 2650851C1
Authority
RU
Russia
Prior art keywords
laser
input
output
receiver
current sensor
Prior art date
Application number
RU2017108892A
Other languages
English (en)
Inventor
Валерий Григорьевич Вильнер
Владимир Георгиевич Волобуев
Original Assignee
Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" filed Critical Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха"
Priority to RU2017108892A priority Critical patent/RU2650851C1/ru
Application granted granted Critical
Publication of RU2650851C1 publication Critical patent/RU2650851C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит лазерный полупроводниковый излучатель с датчиком тока накачки, двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности, причем приемное устройство состоит из фотоприемника, подключенного к первому входу двухканального усилителя, второй вход которого связан с датчиком тока лазерного излучателя, введено второе двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности. Причем приемное устройство состоит из фотоприемника, подключенного к первому входу двухканального усилителя, второй вход которого связан с датчиком тока лазерного излучателя, а также введен расщепитель выходного излучения лазерного полупроводникового излучателя, причем первый пучок выходного излучения направлен на первый объект, находящийся в поле зрения первого приемника, а второй пучок - на второй объект, находящийся в поле зрения второго приемника, при этом введен вычислитель дифференциальной дальности до первого и второго объектов. Технический результат – повышение точности лазерного дальномера. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии.
Известен лазерный дальномер, содержащий лазерный передатчик, приемник отраженного объектом излучения и измеритель временного интервала между зондирующим и отраженным целью импульсами, определяемого путем подсчета хронирующих импульсов, заполняющих измеряемый временной интервал [1].
Такие устройства характеризуются невысокой точностью измерения, определяемой погрешностью временной фиксации передаваемого и принимаемого импульсов излучения, дискретностью хронирующих импульсов и систематической ошибкой, связанной с разной задержкой сигнала в устройствах временной фиксации зондирующего и принятого импульса.
Наиболее близким по технической сущности к предлагаемому устройству является лазерный дальномер, описанный в [2].
Этот лазерный дальномер содержит лазерный полупроводниковый излучатель с датчиком тока накачки, двухканальный приемник с коммутатором входов, а также внешнее вычислительное устройство, причем один из входов коммутатора связан с выходом лазерного излучателя, а второй вход - с датчиком тока накачки лазера.
На выходе приемника поочередно формируются сигналы от этих источников. Внешнее устройство (схема временной фиксации [3] с последующим измерителем временных интервалов или цифровой сигнальный процессор (ЦСП) с аналого-цифровым преобразователем на входе) осуществляет временную привязку выходных сигналов приемника к хронирующим импульсам времязадающего устройства [4].
Данное решение компенсирует погрешность измерения временного интервала τ, обусловленную разным временем регистрации и обработки сигналов с датчика тока накачки Iн(t,t0) и с выхода приемника Iф(t,tD), но не устраняет разность временного положения импульса тока накачки Iн(t,t0) и светового импульса лазера S0(t,t0), которая может достигать 1-5 нс. Здесь t - текущее время, t0 - момент зондирования, tD - момент приема отраженного сигнала.
Задачей изобретения является повышение точности лазерного дальномера.
Указанная задача решается за счет того, что в известном лазерном дальномере, содержащем лазерный полупроводниковый излучатель с датчиком тока накачки, двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности, причем приемное устройство состоит из фотоприемника, подключенного к первому входу двухканального усилителя, второй вход которого связан с датчиком тока лазерного излучателя, введено второе двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности, причем приемное устройство состоит из фотоприемника, подключенного к первому входу двухканального усилителя, второй вход которого связан с датчиком тока лазерного излучателя, а также введен расщепитель выходного излучения лазерного полупроводникового излучателя, причем первый пучок выходного излучения направлен на первый объект, находящийся в поле зрения первого приемника, а второй пучок - на второй объект, находящийся в поле зрения второго приемника, при этом введен вычислитель дифференциальной дальности до первого и второго объектов.
Может быть введен калиброванный по оптической длине световод, вход которого направлен на излучатель и является расщепителем выходного излучения, а выход направлен на второй приемник.
На фиг. 1 представлена блок-схема лазерного дальномера. На фиг. 2 - функциональная схема одного из его каналов.
Лазерный дальномер (фиг. 1) содержит передающее устройство 1 с датчиком тока накачки, первый приемный канал, включающий первое приемное устройство 2, первый двухканальный усилитель 3, выход которого подключен к первому аналого-цифровому вычислителю 4. Второй приемный канал содержит второе приемное устройство 5, второй двухканальный усилитель 6, выход которого подключен к второму аналого-цифровому вычислителю 7. К управляющим входам первого и второго усилителей подключены соответственно первый 8 и второй 9 коммутаторы. Цифровые выходы аналого-цифровых вычислителей поступают на вход вычислителя дифференциальной дальности 10. Устройства 4, 7, 10 входят в состав вычислительного устройства 11. На выходе передающего устройства 1 установлен расщепитель выходного излучения 12, направляющий часть выходного излучения на первый объект 13, а часть - на второй объект 14. Сигнал с датчика тока накачки поступает на вторые входы усилителей 3 и 6.
На фиг. 2 показан двухканальный усилитель 3, на первый вход которого поступает сигнал с нагрузки фотоприемника 15, входящего в состав приемного устройства 2, а на второй вход - с датчика тока накачки 16, включенного в цепь тока накачки лазерного диода 17, входящего в состав передающего устройства 1. Питание фотоприемника, усилителя и лазерного диода осуществляется от источников питания 17, 18 и 19. Рабочий режим двухканального усилителя задается источником 20. Коммутатор 8 с помощью ключей 21 и 22 переключает входы двухканального усилителя, представляющего собой два истоковых повторителя с общей нагрузкой.
Устройство работает следующим образом.
Лазерный диод 17, входящий в состав передающего устройства 1, излучает ряд зондирующих импульсов. С помощью расщепителя 12 часть излучения направляется на первый объект 13, а часть - на второй объект 14. Отраженное этими объектами излучение принимается соответственно первым 2 и вторым 5 приемными устройствами, с помощью коммутаторов 8 и 9 подключаемыми к первому входу усилителей 3 и 6. При этом второй вход усилителей закрыт. При излучении очередного зондирующего импульса первый вход усилителей закрывается, а на второй вход поступает сигнал с датчика тока накачки 16. Таким образом, на выходах усилителей поочередно возникают импульсы, соответствующие зондирующим импульсам, вызванным током накачки Iн(t), и импульсы, соответствующие отраженным целью задержанным сигналам Is(t-τ)=Sλ⋅P(t-τ), где Sλ - спектральная чувствительность приемного устройства; P(t-τ) - мощность отраженного первым или вторым объектом сигнала на чувствительной площадке приемного устройства; τ=2R/c - задержка отраженного сигнала; t - текущее время; R - дальность до объекта; с - скорость света.
Аналого-цифровые вычислители 4 и 7 определяют [3, 4] временное положение tн импульса Iн(t) и временное положение ts1 и ts2 импульсов Is1(t-τ) и Is2(t-τ), после чего вычисляют оценку τ*1 и τ*1 задержки отраженного сигнала от первого и второго объектов по формулам
Figure 00000001
Figure 00000002
В связи с тем, что сигналы Iн(t) и Is(t-τ) проходят по одинаковым цепям, ошибки, связанные с их временем распространения, компенсируются.
Однако остается ошибка, достигающая нескольких наносекунд, определяемая несовпадением тока накачки Iн(t,t0) и светового импульса лазера S0(t,t0). Эта ошибка компенсируется путем определения вычислителем дифференциальной разности величины
Figure 00000003
Данное техническое решение позволяет определять с высокой точностью относительное перемещение двух элементов объекта, что бывает необходимо при установке строительных конструкций, стыковке космических аппаратов, контроле ширины рельсового пути и т.п.
В качестве первого объекта может быть введен точно калиброванный по оптической длине световод, вход которого зафиксирован на выходе передающего устройства и играет роль расщепителя, а выход закреплен у первого приемного устройства. Такая конструкция создает эталон дальности, относительно которого дальность до второго объекта определяется с высокой точностью, соизмеримой с погрешностью определения оптической длины световода. Построенный подобным образом лазерный дальномер не содержит источников систематической погрешности и обеспечивает погрешность измерения несколько миллиметров по сравнению с несколькими десятками миллиметров у прототипа.
Благодаря указанному построению дальномера обеспечивается решение поставленной задачи - повышение точности лазерного дальномера
Источники информации
1. В.А. Смирнов. Введение в оптическую радиоэлектронику. М.: Советское радио, 1973 г., с. 189.
2. Патент РФ №2506547 по з-ке 2012140350 от 21.09.2012 г. - прототип.
3. В.Г. Вильнер и др. Методы повышения точности импульсных лазерных дальномеров. «Электроника. Наука, Технология, Бизнес». №3, 2008 г. - с. 118.
4. В.Г. Вильнер и др. Способ измерения временного интервала. Патент РФ №2451962.

Claims (2)

1. Лазерный дальномер, содержащий лазерный полупроводниковый излучатель с датчиком тока накачки, двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности, причем приемное устройство состоит из фотоприемника, подключенного к первому входу двухканального усилителя, второй вход которого связан с датчиком тока лазерного излучателя, отличающийся тем, что введено второе двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности, приемное устройство состоит из фотоприемника, подключенного к первому входу двухканального усилителя, второй вход которого связан с датчиком тока лазерного излучателя, а также введен расщепитель выходного излучения лазерного полупроводникового излучателя, причем первый пучок выходного излучения направлен на первый объект, находящийся в поле зрения первого приемника, а второй пучок - на второй объект, находящийся в поле зрения второго приемника, при этом введен вычислитель дифференциальной дальности до первого и второго объектов.
2. Лазерный дальномер по п. 1, отличающийся тем, что введен калиброванный по оптической длине световод, вход которого направлен на излучатель и является расщепителем выходного излучения, а выход направлен на второй приемник.
RU2017108892A 2017-03-17 2017-03-17 Лазерный дальномер RU2650851C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017108892A RU2650851C1 (ru) 2017-03-17 2017-03-17 Лазерный дальномер

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017108892A RU2650851C1 (ru) 2017-03-17 2017-03-17 Лазерный дальномер

Publications (1)

Publication Number Publication Date
RU2650851C1 true RU2650851C1 (ru) 2018-04-17

Family

ID=61976678

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017108892A RU2650851C1 (ru) 2017-03-17 2017-03-17 Лазерный дальномер

Country Status (1)

Country Link
RU (1) RU2650851C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2759300C1 (ru) * 2021-04-02 2021-11-11 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ измерения дальности

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805275A (en) * 1993-04-08 1998-09-08 Kollmorgen Corporation Scanning optical rangefinder
RU112399U1 (ru) * 2011-03-11 2012-01-10 Михаил Тихонович Прилепин Дисперсионный лазерный дальномер с повышенной дальностью действия
RU2554279C2 (ru) * 2010-10-04 2015-06-27 Валерий Васильевич Баланюк Лазерный дальномер
RU2610514C2 (ru) * 2015-02-11 2017-02-13 Открытое Акционерное общество "Ростовский оптико-механический завод" Лазерный фазовый дальномер

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805275A (en) * 1993-04-08 1998-09-08 Kollmorgen Corporation Scanning optical rangefinder
RU2554279C2 (ru) * 2010-10-04 2015-06-27 Валерий Васильевич Баланюк Лазерный дальномер
RU112399U1 (ru) * 2011-03-11 2012-01-10 Михаил Тихонович Прилепин Дисперсионный лазерный дальномер с повышенной дальностью действия
RU2610514C2 (ru) * 2015-02-11 2017-02-13 Открытое Акционерное общество "Ростовский оптико-механический завод" Лазерный фазовый дальномер

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2759300C1 (ru) * 2021-04-02 2021-11-11 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ измерения дальности

Similar Documents

Publication Publication Date Title
US7911589B2 (en) Optical distance measuring method and corresponding optical distance measurement device
EP3447534B1 (en) Laser ranging system and method employing time domain waveform matching technique
US7623222B2 (en) Single-channel heterodyne distance-measuring method
US9025141B1 (en) Position determination using synthetic wave laser ranging
US9041918B2 (en) Measuring apparatus and referencing method for a digital laser distance meter, and laser distance meter
JP2011511261A5 (ru)
CN107843903B (zh) 一种多阀值tdc高精度激光脉冲测距方法
JP2008122137A (ja) レーダ装置
JP2015094760A (ja) 合成波レーザー測距センサ及び方法
US9798004B2 (en) Laser ranging sensors and methods that use a ladder of synthetic waves having increasing wavelengths to calculate a distance measurement
RU2650851C1 (ru) Лазерный дальномер
Hanto et al. Time of flight Lidar employing dual-modulation frequencies switching for optimizing unambiguous range extension and high resolution
JP2017173173A (ja) 距離測定装置およびその校正方法
JP7192959B2 (ja) 測距装置及び測距方法
Patil et al. Novel Pulse Detection System Using Differentiation: Prototyping and Experimental Results
Nissinen et al. An integrated CMOS receiver-TDC chip for mm-accurate pulsed time-of-flight laser radar measurements
RU2720268C1 (ru) Лазерный дальномер
RU2511069C1 (ru) Приемник импульсного оптического излучения
RU173991U1 (ru) Лазерный дальномер с повышенным разрешением по дальности
US9983298B2 (en) Fiber optic based laser range finder
US20220260427A1 (en) Method and System utilizing absolute velocity to improve the performance of electromagnetic devices
Deschênes et al. Optical two-way time synchronization at the femtosecond level over a 4-km free space link
JP3651412B2 (ja) 距離測定装置および距離測定方法
RU2506547C1 (ru) Приемник импульсных оптических сигналов
JP2014174069A (ja) レーザ測距装置