RU2582480C2 - Кодирование одновременных источников и разделение источников в качестве практического решения по инверсии полного волнового поля - Google Patents

Кодирование одновременных источников и разделение источников в качестве практического решения по инверсии полного волнового поля Download PDF

Info

Publication number
RU2582480C2
RU2582480C2 RU2013119384/28A RU2013119384A RU2582480C2 RU 2582480 C2 RU2582480 C2 RU 2582480C2 RU 2013119384/28 A RU2013119384/28 A RU 2013119384/28A RU 2013119384 A RU2013119384 A RU 2013119384A RU 2582480 C2 RU2582480 C2 RU 2582480C2
Authority
RU
Russia
Prior art keywords
data
sources
encoded
simulated
receivers
Prior art date
Application number
RU2013119384/28A
Other languages
English (en)
Other versions
RU2013119384A (ru
Inventor
Парта С. РУТ
Сунвоонг ЛИ
Рамеш НЕЕЛАМАНИ
Джером Р. Кребс
Спиридон ЛАЗАРАТОС
Кэри МАРЦИНКОВИЧ
Original Assignee
Эксонмобил Апстрим Рисерч Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эксонмобил Апстрим Рисерч Компани filed Critical Эксонмобил Апстрим Рисерч Компани
Publication of RU2013119384A publication Critical patent/RU2013119384A/ru
Application granted granted Critical
Publication of RU2582480C2 publication Critical patent/RU2582480C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/67Wave propagation modeling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Geophysics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к области геофизики и может быть использовано при обработке сейсмических данных. Предложен способ для одновременной инверсии полного волнового поля сейсмограмм, кодированных из источников (или приемников) геофизических данных, чтобы определять модель (118) физических свойств для области геологической среды, в частности, подходящей для съемок, в которых не удовлетворяются условия геометрии стационарных приемников при обнаружении данных. Разделение (104) одновременных источников выполняется для того, чтобы уменьшать влияние неудовлетворения измеренных геофизических данных предположению о стационарных приемниках. Этап (106) обработки данных, осуществляемый после разделения одновременных источников, выполнен с возможностью согласовывать рассчитанные по модели данные (105) с измеренными геофизическими данными (108) для комбинаций источников и приемников, которые отсутствуют в измеренных геофизических данных. Технический результат - повышение точности и достоверности получаемых данных. 5 н. и 18 з.п. ф-лы, 4 ил.

Description

Перекрестные ссылки на родственные заявки
Данная заявка притязает на приоритет предварительной заявки на патент (США) 61/386831, поданной 27 сентября 2010 года, которая содержится в данном документе по ссылке во всех разрешенных юрисдикциях. Данная заявка связана с конкретной заявкой, озаглавленной "Hybrid Method for Full waveform Inversion Using Simultaneous and Sequential source Method", и притязает на приоритет предварительной заявки на патент (США) 61/836828, поданной 27 сентября 2010 года. Эта родственная заявка также содержится по ссылке в данном документе во всех разрешенных юрисдикциях.
Область техники, к которой относится изобретение
Изобретение, в общем, относится к области техники геофизических исследований, а более конкретно - к обработке геофизических данных. В частности, изобретение представляет собой способ для инверсии данных, полученных из нескольких геофизических источников, таких как сейсмические источники, заключающий в себе геофизическое моделирование, которое вычисляет данные из многих одновременно активных геофизических источников при одном выполнении моделирования.
Уровень техники
Геофизическая инверсия [1, 2] нацелена на нахождение модели свойств геологической среды, которая оптимально объясняет наблюдаемые данные и удовлетворяет геологическим и геофизическим ограничениям. Существует большое число известных способов геофизической инверсии. Эти известные способы разделяются на одну из двух категорий - итеративную инверсию и неитеративную инверсию. Ниже приведены определения того, что обычно подразумевается под каждой из двух категорий.
Неитеративная инверсия является инверсией, которая выполняется посредством допущения некоторой простой фоновой модели и обновления модели на основе входных данных. Этот способ не использует обновленную модель в качестве ввода в другой этап инверсии. Для случая сейсмических данных эти способы обычно упоминаются как построение изображений, миграция, дифракционная томография или инверсия Борна.
Итеративная инверсия является инверсией, заключающей в себе повторяющееся улучшение модели свойств геологической среды таким образом, что находится модель, которая удовлетворительно объясняет наблюдаемые данные. Если инверсия сходится, то конечная модель должна лучше объяснять наблюдаемые данные и должна более близко аппроксимировать фактические свойства геологической среды. Итеративная инверсия обычно формирует более точную модель, чем неитеративная инверсия, но является гораздо более затратной в вычислительном отношении.
Итеративная инверсия, в общем, является предпочтительной по сравнению с неитеративной инверсией, поскольку она дает в результате более точные параметрические модели геологической среды. К сожалению, итеративная инверсия является настолько вычислительно затратной, что непрактично ее применение ко многим интересующим задачам. Эти значительные вычислительные ресурсы являются результатом того факта, что все технологии инверсии требуют множества моделирований с большим объемом вычислений. Время вычисления любого отдельного моделирования является пропорциональным числу источников, которые должны быть инвертированы, и типично присутствует большое число источников в геофизических данных, при этом термин "источник" при использовании выше означает местоположение активации аппаратной системы-источника. Проблема обостряется для итеративной инверсии, поскольку число моделирований, которые должны быть вычислены, является пропорциональным числу итераций в инверсии, и число требуемых итераций типично составляет порядка нескольких сотен или тысяч.
Типично используемым способом итеративной инверсии, применяемым в геофизике, является оптимизация функции затрат. Оптимизация функции затрат заключает в себе итеративную минимизацию или максимизацию значения, относительно модели M, функции затрат S(M), которая является мерой несоответствия между расчетными и наблюдаемыми данными (она также иногда упоминается как целевая функция), при этом расчетные данные моделируются на компьютере с использованием текущей модели геофизических свойств и физики, влияющей на распространение сигнала источника в среде, представленной посредством данной модели геофизических свойств. Моделирующие (имитационные) вычисления могут выполняться посредством любого из нескольких численных методов, включающих в себя, но не только, конечную разность, конечный элемент или трассировку лучей. Моделирующие вычисления могут быть выполнены в частотной или временной области.
Способы оптимизации функции затрат являются или локальными, или глобальными [3]. Глобальные способы просто заключают в себе вычисление функции затрат S(M) для совокупности моделей {M1, M2, M3,...} и выбор набора из одной или более моделей из этой совокупности, которые приблизительно минимизируют S(M). Если требуется дополнительное улучшение, этот новый выбранный набор моделей затем может быть использован в качестве основы, чтобы формировать новую совокупность моделей, которые могут быть снова протестированы относительно функции затрат S(M). Для глобальных способов каждая модель в тестовой совокупности может рассматриваться в качестве итерации, или на верхнем уровне каждый тестируемый набор совокупностей может считаться итерацией. Известные глобальные способы инверсии включают в себя метод Монте-Карло, метод имитации отжига, генетические и эволюционные алгоритмы.
К сожалению, глобальные способы оптимизации типично сходятся чрезвычайно медленно, и, следовательно, большинство геофизических инверсий основано на локальной оптимизации функции затрат. Алгоритм 1 обобщает локальную оптимизацию функции затрат.
1. Выбор начальной модели.
2. Вычисление градиента функции затрат S(M) относительно параметров, которые описывают модель.
3. Поиск обновленной модели, которая является возмущением начальной модели в направлении отрицательного градиента, которая лучше объясняет наблюдаемые данные.
Алгоритм 1. Алгоритм для выполнения локальной оптимизации функции затрат
Эта процедура итеративно выполняется посредством использования новой обновленной модели в качестве начальной модели для другого градиентного поиска. Процесс продолжается до тех пор, пока не находится обновленная модель, которая удовлетворительно объясняет наблюдаемые данные. Обычно используемые локальные способы инверсии функции затрат включают в себя поиск градиента, сопряженные градиенты и метод Ньютона.
Локальная оптимизация функции затрат сейсмических данных для акустической аппроксимации является общей задачей геофизической инверсии и является, в общем, иллюстративной для других типов геофизической инверсии. При инвертировании сейсмических данных для акустической аппроксимации функция затрат может записываться в качестве:
S ( M ) = g = 1 N g r = 1 N r t = 1 N t W ( ψ c a l c ( M , r , t , w g ) ψ o b s ( r , t , w g ) )
Figure 00000001
, уравнение 1
где S является функцией затрат,
M является вектором N параметров (m1, m2,..., mN), описывающим модель геологической среды,
g является индексом сейсмограммы,
wg является функцией источника для сейсмограммы g, которая является функцией от пространственных координат и времени, для точечного источника она является дельта-функцией от пространственных координат,
Ng является числом сейсмограмм,
r является индексом приемника в сейсмограмме,
Nr является числом приемников в сейсмограмме,
t является индексом временной выборки в трассе,
Nt является числом временных выборок,
W является функцией критериев минимизации (обычно выбирается W(x)=x2, которая представляет собой критерии по методу наименьших квадратов (L2)),
ψcalc является расчетными данными сейсмического давления из модели M,
ψobs является измеренными данными сейсмического давления.
Сейсмограммы могут быть любым типом сейсмограммы, которая может быть моделирована в одном проходе программы сейсмического прямого моделирования. Обычно сейсмограммы соответствуют сейсмическому взрыву, хотя взрывы могут быть более общими, чем точечные источники. Для точечных источников индекс g сейсмограммы соответствует местоположению отдельных точечных источников. Для плоских сейсмоволн источники g должны соответствовать различным направлениям распространения плоских сейсмоволн. Эти данные обобщенных источников, ψobs, могут или быть обнаружены в поле, или могут быть синтезированы из данных, обнаруженных с использованием точечных источников. Расчетные данные ψcalc, с другой стороны, обычно могут вычисляться непосредственно посредством использования функции обобщенных источников при прямом моделировании. Для многих типов прямого моделирования, включающих в себя моделирование на основе конечных разностей, время вычисления, необходимое для обобщенного источника, примерно равно времени вычисления, необходимому для точечного источника.
Уравнение (1) может быть упрощено до:
S ( M ) = g = 1 N g W ( δ ( M , w g ) )
Figure 00000002
, уравнение 2
причем теперь подразумевается сумма по приемникам и временным выборкам, и
δ ( M , w g ) = ψ c a l c ( M , w g ) ψ o b s ( w g )
Figure 00000003
, уравнение 3
Инверсия пытается обновлять модель M таким образом, что S(M) является минимумом. Это может быть выполнено посредством локальной оптимизации функции затрат, которая обновляет данную модель M(k) следующим образом:
M ( k + 1 ) = M ( k ) α ( k ) M S ( M )
Figure 00000004
, уравнение 4
где k является номером итерации, α является скалярным размером обновления модели, и ∇MS(M) является градиентом функции несоответствия, принятой относительно параметров модели. Возмущения модели или значения, посредством которых обновляется модель, вычисляются посредством умножения градиента целевой функции на длину α шага, которая должна вычисляться многократно.
Из уравнения (2) следующее уравнение может извлекаться для градиента функции затрат:
M S ( M ) = g = 1 N g M W ( δ ( M , w g ) )
Figure 00000005
, уравнение 5
Таким образом, чтобы вычислять градиент функции затрат, следует отдельно вычислять градиент доли каждой сейсмограммы в функции затрат, затем суммировать эти доли. Следовательно, трудоемкость вычислений, требуемая для вычисления ∇MS(M), в Ng раз превышает трудоемкость вычислений, требуемую для того, чтобы определять долю одной сейсмограммы в градиенте. Для геофизических задач Ng обычно соответствует числу геофизических источников и составляет порядка 10000-100000, значительно повышая затраты на вычисление ∇MS(M).
Следует отметить, что вычисление ∇MW(δ) требует вычисления производной W(δ) относительно каждого из N параметров модели mi. Поскольку для геофизических задач N обычно является очень большим (обычно больше одного миллиона), это вычисление может быть чрезвычайно длительным, если оно должно быть выполнено для каждого отдельного параметра модели. К счастью, сопряженный способ может быть использован для того, чтобы эффективно выполнять это вычисление для всех параметров модели сразу [1]. Сопряженный способ для целевой функции на основе метода наименьших квадратов и параметризации модели с координатной привязкой обобщается посредством следующего алгоритма.
1. Вычисление прямого моделирования данных с использованием текущей модели и формы импульса wg сейсмограммы в качестве источника, чтобы получать ψcalc(M(k),wg).
2. Вычитание наблюдаемых данных из моделированных данных, дающее δ(M(k),wg).
3. Вычисление обратного моделирования (т.е. назад во времени) с использованием δ(M(k),wg) в качестве источника, формирующего ψadjoint(M(k),wg).
4. Вычисление интеграла во времени произведения ψcalc(M(k),wg) и ψadjoint(M(k),wg), чтобы получать ∇MW(δ(M,wg)).
Алгоритм 2. Алгоритм для вычисления градиента функции затрат на основе метода наименьших квадратов модели с координатной привязкой с использованием сопряженного способа
Хотя вычисление градиентов с использованием сопряженного способа является эффективным относительно других способов, оно по-прежнему является очень затратным. В частности, сопряженные способы требуют двух моделирований, одного вперед во времени и одного назад во времени, и для геофизических задач эти моделирования обычно подвержены очень большому объему вычислений. Кроме того, как пояснено выше, это вычисление на основе сопряженного способа должно быть выполнено для каждой сейсмограммы с измеренными данными по отдельности, повышая вычислительные затраты на коэффициент Ng.
Вычислительные затраты всех категорий инверсии могут быть уменьшены посредством инвертирования данных из комбинаций источников вместо инвертирования источников по отдельности. Это может называться инверсией одновременных источников. Известно несколько типов комбинаций источников, включающих в себя: когерентное суммирование близко расположенных источников, чтобы формировать эффективный источник, который формирует фронт волны некоторой требуемой формы (например, плоскую сейсмоволну), суммирование широко разнесенных источников либо полное или частичное накопление данных перед инверсией.
Уменьшение вычислительных затрат, полученное посредством инвертирования комбинированных источников, по меньшей мере, частично смещается вследствие того факта, что инверсия комбинированных данных обычно формирует менее точную инвертированную модель. Эти потери в точности обусловлены тем фактом, что информация теряется, когда суммируются отдельные источники, и, следовательно, суммированные данные не ограничивают инвертированную модель так строго, как несуммированные данные. Эти потери информации во время суммирования могут быть минимизированы посредством кодирования каждой записи по взрыву перед суммированием. Кодирование перед комбинированием сохраняет значительно больше информации в данных одновременных источников и, следовательно, лучше ограничивает инверсию [5]. Кодирование также дает возможность комбинирования близко расположенных источников, тем самым давая возможность комбинирования большего числа источников для данной вычислительной области. Для этой технологии могут быть использованы различные схемы кодирования, включающие в себя кодирование на основе сдвига по времени и случайное фазовое кодирование. Оставшаяся часть этого раздела "Уровень техники" кратко анализирует различные опубликованные технологии на основе геофизических одновременных источников, как кодированных, так и некодированных.
Van Manen [6] предлагает использование способа сейсмической интерферометрии для того, чтобы ускорять прямое моделирование. Сейсмическая интерферометрия работает посредством размещения источников по всей границе интересующей области. Эти источники моделируются по отдельности, и записывается волновое поле во всех местоположениях, для которых требуется функция Грина. Функция Грина между любыми двумя записанными местоположениями затем может быть вычислена посредством взаимной корреляции трасс, обнаруженных в двух записанных местоположениях, и суммирования по всем граничным источникам. Если данные, которые должны быть инвертированы, имеют большое число источников и приемников, которые находятся в интересующей области (в противоположность наличию одних или других на границе), это представляет собой очень эффективный метод для вычисления требуемых функций Грина. Тем не менее, для случая сейсмических данных редко когда как источник, так и приемник для данных, которые должны быть инвертированы, находятся в интересующей области. Следовательно, это улучшение имеет очень ограниченную применимость для задачи сейсмической инверсии.
Berkhout [7] и Zhang [8] предлагают то, что инверсия, в общем, может быть улучшена посредством инвертирования некодированных одновременных источников, которые суммируются когерентно, чтобы формировать некоторый требуемый фронт волны в некоторой области геологической среды. Например, данные точечных источников могут быть суммированы со сдвигами по времени, которые являются линейной функцией от местоположения источников, чтобы формировать нисходящую плоскую сейсмоволну под некоторым конкретным углом относительно поверхности. Эта технология может применяться ко всем категориям инверсии. Проблема этого способа заключается в том, что когерентное суммирование сейсмограмм источников обязательно уменьшает объем информации в данных. Таким образом, например, суммирование для того, чтобы формировать плоскую сейсмоволну, удаляет всю информацию в сейсмических данных, связанную со временем пробега в зависимости от выноса источников от приемников. Эта информация является критически важной для обновления медленно варьирующейся фоновой модели скорости, и, следовательно, способ Berkhout не подчиняется оптимальным ограничениям. Чтобы преодолевать эту проблему, могут инвертироваться множество различных когерентных сумм данных (например, множество плоских сейсмоволн с различными направлениями распространения), но в таком случае теряется эффективность, поскольку затраты на инверсию являются пропорциональными числу различных инвертированных сумм. В данном документе такие когерентно суммированные источники называются обобщенными источниками. Следовательно, обобщенный источник может быть либо точечным источником, либо суммой точечных источников, которая формирует фронт волны некоторой требуемой формы.
Van Riel [9] предлагает инверсию посредством некодированного накопления или частичного накопления (относительно выноса источников от приемников) входных сейсмических данных, а затем задания функции затрат относительно этих накопленных данных, которые должны быть оптимизированы. Таким образом, эта публикация предлагает улучшение инверсии на основе функции затрат с использованием некодированных одновременных источников. Как и для способа инверсии одновременных источников по Berkhout [7], накопление, предлагаемое посредством этого способа, уменьшает объем информации в данных, которые должны быть инвертированы, и, следовательно, инверсия подчиняется субоптимальным ограничениям по сравнению с исходными данными.
Mora [10] предлагает инвертирование данных, которые являются суммой широко разнесенных источников. Таким образом, эта публикация предлагает повышение эффективности инверсии с использованием моделирования на основе некодированных одновременных источников. Суммирование широко разнесенных источников обеспечивает преимущество сохранения гораздо большего объема информации, чем когерентная сумма, предложенная Berkhout. Тем не менее, суммирование широко разнесенных источников подразумевает, что апертура (инвертируемая область модели), которая должна быть использована в инверсии, должна быть увеличена, чтобы охватывать все широко разнесенные источники. Поскольку время вычисления является пропорциональным площади этой апертуры, способ Mora не формирует такой прирост эффективности, который может достигаться, если суммированные источники находятся рядом друг с другом.
Ober [11] предлагает ускорение сейсмической миграции, частного случая неитеративной инверсии, посредством использования одновременных кодированных источников. После тестирования различных способов кодирования Ober выяснил, что результирующие мигрированные изображения значительно уменьшают отношение "сигнал-шум" вследствие того факта, что функции широкополосного кодирования обязательно являются только приблизительно ортогональными. Таким образом, при суммировании более 16 взрывов качество инверсии не является удовлетворительным. Поскольку неитеративная инверсия не является слишком затратной для начального уровня, и поскольку требуется инверсия высокого отношения "сигнал-шум", эта технология не используется широко на практике в геофизической отрасли.
Ikelle [12] предлагает способ для быстрого прямого моделирования посредством одновременного моделирования точечных источников, которые активируются (при моделировании) с варьирующимися временными интервалами. Также поясняется способ для декодирования этих сдвинутых по времени моделированных на основе одновременных источников данных обратно в раздельные моделирования, которые получены из отдельных точечных источников. Эти декодированные данные затем могут быть использованы в качестве части любой традиционной процедуры инверсии. Проблема способа Ikelle заключается в том, что предложенный способ декодирования должен формировать разделенные данные, имеющие уровни шума, пропорциональные разности между данными из смежных источников. Этот шум становится значительным для моделей геологической среды, которые не являются горизонтально постоянными, например из моделей, содержащих наклонные отражающие границы. Кроме того, этот шум должен расти пропорционально числу одновременных источников. Вследствие этих трудностей подход на основе одновременных источников Ikelle может приводить к недопустимым уровням шума, если используется при инвертировании геологической среды, которая не является горизонтально постоянной.
Одновременная инверсия нескольких кодированных источников предлагается Krebs и др. в публикации PCT-заявки на патент номер WO 2008/042081 [5, 18], которая содержится в данном документе по ссылке во всех разрешенных юрисдикциях, представляет собой очень эффективный с точки зрения затрат способ для того, чтобы инвертировать данные полного волнового поля. (Идентичный подход одновременной инверсии кодированной сейсмограммы должен работать для приемников либо через обратимость источников-приемников, либо посредством кодирования фактических местоположений приемников в сейсмограммах общих источников данных.) Для стационарных приемников прямые и сопряженные вычисления должны выполняться только для одного эффективного источника; см. публикацию PCT-заявки на патент номер WO 2009/117174, которая содержится в данном документе по ссылке во всех разрешенных юрисдикциях. Учитывая тот факт, что сотни взрывов записываются для типичных геометрий двумерного обнаружения и тысячи в случае трехмерных съемок, экономия вычислительных ресурсов от этого способа является довольно значительной. На практике предположение о стационарных приемниках не является строго достоверным для наиболее распространенных геометрий обнаружения полевых данных. В случае данных морского сейсморазведочного кабеля источники и приемники перемещаются для каждого нового взрыва. Даже при съемках, в которых местоположения приемников являются стационарными, практика зачастую такова, что не все приемники "прослушивают" каждый взрыв, и приемники, которые прослушивают, могут варьироваться в зависимости от взрыва. Это также нарушает "предположение о стационарных приемниках". Помимо этого вследствие логистических проблем трудно записывать данные близко к источнику, и это означает то, что данные минимальных выносов типично отсутствуют. Это является истинным и для морских, и для наземных съемок. Оба из этих факторов означают, что для сейсмограммы одновременных источников каждое местоположение приемника представляет собой отсутствующие данные для некоторых исходных взрывов. В общих словах в инверсии одновременных кодированных источников, для данной одновременной кодированной сейсмограммы, данные требуются во всех местоположениях приемников для каждого взрыва, и это может упоминаться как предположение о стационарных приемниках инверсии одновременных кодированных источников. В WO 08/042081 некоторые раскрытые варианты осуществления могут работать лучше, чем другие, когда не удовлетворяется предположение о стационарных приемниках. Следовательно, должно быть преимущественным иметь приспособление или регулирование для прямого применения инверсии одновременных кодированных источников (и/или приемников), что должно повышать производительность, когда скомпрометировано предположение о стационарных приемниках. Настоящее изобретение предоставляет способы для осуществления этого. Haber и др. [25] также описывает подход для задачи перемещения приемников в инверсии одновременных кодированных источников с использованием способа стохастической оптимизации и применяет его к задаче удельного сопротивления по постоянному току.
Сущность изобретения
В широком варианте осуществления изобретение представляет собой машинореализованный способ для одновременной инверсии измеренных геофизических данных из нескольких кодированных источников, чтобы определять модель физических свойств для области геологической среды, причем измеренные геофизические данные являются результатом съемки, для которой предположение о стационарных приемниках для инверсии одновременных кодированных источников может не быть достоверным, причем упомянутый способ содержит использование компьютера для того, чтобы выполнять разделение одновременных источников, чтобы уменьшать влияние неудовлетворения измеренных геофизических данных предположению о стационарных приемниках, при этом этап обработки данных, осуществляемый после разделения одновременных источников, выполнен с возможностью согласовывать рассчитанные по модели данные с измеренными геофизическими данными для комбинаций источников и приемников, которые отсутствуют в измеренных геофизических данных.
В более конкретном варианте осуществления изобретение представляет собой машинореализованный способ для инверсии полного волнового поля измеренных геофизических данных, чтобы определять модель физических свойств для области геологической среды, причем упомянутый способ использует компьютер для того, чтобы выполнять этапы, содержащие: (a) составление начальной модели физических свойств и использование ее для того, чтобы моделировать синтетические данные, соответствующие измеренным геофизическим данным, при этом источники и/или приемники при моделировании кодируются и моделируются одновременно, тем самым формируя моделированные кодированные данные; (b) разделение моделированных кодированных данных согласно источнику, что приводит к моделированным данным последовательных источников; (c) обработку моделированных данных последовательных источников таким образом, что обеспечивается их соответствие измеренным геофизическим данным для комбинаций источников и приемников, которые отсутствуют в измеренных геофизических данных; (d) вычисление разностей, называемых остатками данных, между обработанными моделированными данными последовательных источников и измеренными геофизическими данными для комбинаций источников и приемников, которые присутствуют в измеренных геофизических данных; (e) кодирование остатков данных с использованием кодирования, идентичного кодированию, используемому в (a), или другого кодирования; (f) использование кодированных остатков данных, чтобы вычислять обновление начальной модели физических свойств; и (g) комбинирование обновления с начальной моделью, чтобы формировать обновленную модель физических свойств. Вследствие линейности порядок этапов (d) и (e) может меняться местами.
В вариации этого последнего варианта осуществления следующие этапы могут быть выполнены в любое время перед этапом (c) вычисления разностей: кодирование измеренных геофизических данных с использованием кодирования источников, идентичного или различного относительно кодирования источников, используемого при формировании моделированных кодированных данных; затем разделение кодированных измеренных данных согласно источнику, предпочтительно с использованием идентичного алгоритма разделения источников, который использован при разделении моделированных кодированных данных согласно источнику; и использование разделенных измеренных данных при вычислении остатков данных.
Во втором более конкретном варианте осуществления настоящее изобретение представляет собой машинореализованный способ для инверсии полного волнового поля измеренных геофизических данных, чтобы определять модель физических свойств для области геологической среды, причем упомянутый способ использует компьютер для того, чтобы выполнять этапы, содержащие: (a) составление начальной модели физических свойств и использование ее для того, чтобы моделировать синтетические данные, соответствующие измеренным геофизическим данным, при этом источники и/или приемники при моделировании кодируются с использованием выбранных функций кодирования и моделируются одновременно, тем самым формируя моделированные кодированные данные; (b) разделение моделированных кодированных данных согласно источнику и/или приемнику с использованием алгоритма разделения источников или приемников, что приводит к моделированным данным последовательных источников и/или приемников; (c) обработку моделированных данных последовательных источников и/или приемников, чтобы подавлять эти данные, называемые отсутствующими данными, соответствующие комбинациям источников и приемников, которые отсутствуют; (d) кодирование отсутствующих данных с использованием функций кодирования, которые являются идентичными или отличающимися относительно упомянутых выбранных функций кодирования; (e) кодирование измеренных геофизических данных с использованием функций кодирования, которые являются идентичными функциям кодирования, используемым при кодировании отсутствующих данных, и вычитание их согласно позиции источников и приемников из моделированных кодированных данных, тем самым формируя кодированные остатки данных, которые являются некорректными вследствие отсутствующих комбинаций источников и приемников в измеренных геофизических данных; (f) вычитание кодированных отсутствующих данных из кодированных остатков данных, чтобы формировать скорректированные кодированные остатки данных; (g) использование скорректированных кодированных остатков данных, чтобы вычислять обновление начальной модели физических свойств; и (h) комбинирование обновления с начальной моделью, чтобы формировать обновленную модель физических свойств.
В третьем более конкретном варианте осуществления настоящее изобретение представляет собой машинореализованный способ для инверсии полного волнового поля измеренных геофизических данных, чтобы определять модель физических свойств для области геологической среды, причем упомянутый способ использует компьютер для того, чтобы выполнять этапы, содержащие: (a) составление начальной модели физических свойств и использование ее для того, чтобы моделировать синтетические данные, соответствующие измеренным геофизическим данным, при этом источники и/или приемники при моделировании кодируются с использованием выбранных функций кодирования и моделируются одновременно, тем самым формируя моделированные кодированные данные; (b) использование упомянутых выбранных функций кодирования, чтобы кодировать измеренные геофизические данные, и вычитание их согласно позиции источников и приемников из моделированных кодированных данных, тем самым формируя кодированные остатки данных, которые включают в себя некорректные значения вследствие отсутствующих комбинаций источников и приемников в измеренных геофизических данных; (c) разделение кодированных остатков данных согласно источнику и/или приемнику с использованием алгоритма разделения источников или приемников, что приводит к последовательным остаточным данным; (d) обработку последовательных остаточных данных, чтобы оценивать моделированные данные, называемые отсутствующими данными, соответствующие комбинациям источников и приемников, которые отсутствуют в измеренных геофизических данных; (e) кодирование отсутствующих данных с использованием упомянутых выбранных функций кодирования; (f) вычитание кодированных отсутствующих данных из кодированных остатков данных, чтобы формировать скорректированные кодированные остатки данных; (g) использование скорректированных кодированных остатков данных, чтобы вычислять обновление начальной модели физических свойств; и (h) комбинирование обновления с начальной моделью, чтобы формировать обновленную модель физических свойств.
Краткое описание чертежей
Вследствие ограничений на основе правил выдачи патентов на использование цвета прилагаемые чертежи являются черно-белыми репродукциями цветных оригиналов. Копии американской взаимодополняющей заявки или публикации с 20 цветными чертежами могут быть получены из Патентного ведомства (США) после запроса и выплаты необходимых платежей.
Настоящее изобретение и его преимущества должны лучше пониматься посредством рассмотрения нижеприведенного подробного описания и прилагаемых чертежей, на которых:
фиг.1 является блок-схемой последовательности операций способа, показывающей базовые этапы в настоящем изобретаемом способе для инверсии одновременных источников для задачи геометрии нестационарных приемников в варианте осуществления, в котором кодированные прогнозированные данные разделяются с использованием способа разделения источников;
фиг.2 является блок-схемой последовательности операций способа, показывающей базовые этапы в настоящем изобретаемом способе для инверсии одновременных источников для задачи геометрии нестационарных приемников в варианте осуществления, в котором кодированные прогнозированные данные, а также кодированные измеренные данные разделяются с использованием способа разделения источников, чтобы уменьшать ошибку в процессе разделения источников; и
фиг.3 и 4 являются блок-схемами последовательности операций способа, показывающими базовые этапы в настоящем изобретаемом способе для инверсии одновременных источников для задачи геометрии нестационарных приемников в двух вариантах осуществления, в которых некорректные кодированные остатки данных корректируются посредством кодированной части отсутствующих данных, полученных из способа разделения источников.
Изобретение описывается в связи с примерными вариантами осуществления. Тем не менее, в степени, в которой нижеприведенное подробное описание является характерным для конкретного варианта осуществления или конкретного варианта применения изобретения, оно должно быть только иллюстративным и не должно быть истолковано в качестве ограничения объема изобретения. Наоборот, оно должно охватывать все альтернативы, модификации и эквиваленты, которые могут быть включены в пределы объема изобретения, определенные посредством прилагаемой формулы изобретения.
Подробное описание примерных вариантов осуществления
Настоящий изобретаемый способ использует кодирование и декодирование источников (т.е. разделение источников), чтобы обходить предположение о стационарных приемниках, и является применимым для геометрии обнаружения с помощью морского сейсморазведочного кабеля, а также геометрии наземного обнаружения. В типичном обнаружении с помощью морского сейсморазведочного кабеля и наземном обнаружении покрытие данных является зачастую недостаточным, чтобы удовлетворять геометрии стационарных приемников, тем самым ограничивая выгоды полноволновой инверсии (FWI) одновременных источников, предложенной Krebs и др. [5, 18]. В дополнение к геометрическим соображениям должны быть обработаны полевые данные, чтобы соответствовать физике прямого моделирования, используемого в инверсии. Например, чтобы использовать акустическую инверсию для инвертирования эластичных данных, типично подавляются максимальные выносы, и обрабатываются данные, чтобы удалять другие эластичные эффекты. Другие практические аспекты, такие как кодирование с временными окнами на основе событий (отражений, преломлений, кратных чисел) для FWI-инверсии, должны допускать геометрию стационарных приемников, т.е. предположение, зачастую не удовлетворяющееся на практике.
Большая часть работ по использованию кодирования и декодирования ориентирована на обработку и построение изображений (алгоритмы миграции) сейсмических данных (Ikelle [17], Berkhout [16], Beasley и др. [26], Stefani и др. [22], Verschuur и Berkhout [23]). Некоторые из опубликованных работ по инверсии принадлежат Krebs и др. [5, 18], Hinkley [4], Ben-Hadj-Ali и др. [15] и Herrmann [24] для инвертирования данных полного сейсмического сигнала. Основная идея настоящего изобретения состоит в том, чтобы использовать мощность кодирования одновременных источников (и/или приемников) для процесса прямого моделирования, обратного распространения и инверсии, но одновременно иметь возможность обрабатывать практические аспекты ограничения по данным, обычно встречающиеся при полевых съемках (наземных и морских).
Krebs и др. [5, 16] показывают, что функция затрат кодированных одновременных источников может быть вычислена более эффективно, чем традиционные функции затрат, при одновременном предоставлении точных инверсий. Функция затрат одновременных источников задается здесь следующим образом (следует сравнить с вышеприведенным уравнением (2)):
S s i m ( M ) = G = 1 N G W ( δ ( M , g G c g w g ) )
Figure 00000006
, уравнение 6
причем подразумевается суммирование по приемникам и временным выборкам, аналогично уравнению (2), и:
g = 1 N g = G = 1 N G g G
Figure 00000007
задает сумму по сейсмограммам посредством подгрупп сейсмограмм,
Ssim является функцией затрат для данных одновременных источников,
G является группами одновременных обобщенных источников, и
NG является числом групп,
cg являются функциями от времени, которые свертываются (⊗) с формой импульса источника каждой сейсмограммы, чтобы кодировать сейсмограммы; эти функции кодирования могут выбираться так, что они являются приблизительно ортогональными относительно некоторой надлежащей операции в зависимости от функции W взвешивания. Когда W является L2-нормой, надлежащая операция является взаимной корреляцией.
Внешнее суммирование в уравнении (6) выполняется по группам одновременных обобщенных источников, соответствующих типу сейсмограммы (например, точечных источников для сейсмограмм по общим взрывам). Внутреннее суммирование, g, выполняется по сейсмограммам, которые группируются для одновременного вычисления. Для некоторых способов прямого моделирования, таких как моделирование на основе конечных разностей, вычисление прямой модели для суммированных обобщенных источников (внутренняя сумма g∈G) может быть выполнено за идентичное количество времени, что и вычисление для одного источника. Следовательно, как показано в Krebs и др. [5], δ(M,Σcg⊗wg) может быть вычислено очень эффективно с использованием алгоритма 3.
1. Моделирование ψcalc(M,Σcg⊗wg) с использованием одного прохода модуля моделирования с использованием Σcg⊗wg в качестве источника.
2. Свертка каждой сейсмограммы с измеренными данными с помощью функций cg кодирования, затем суммирование результирующих кодированных сейсмограмм (т.е. Σcg⊗ψobs(wg)).
3. Вычитание результата этапа 2 из результата этапа 1.
Алгоритм 3. Алгоритм для вычисления остатка данных кодированных одновременных источников. (Примечание: чтобы вычислять функцию затрат, остаток должен быть оценен с помощью функции W; например, по методу наименьших квадратов.)
Как также показано в Krebs и др. [5], этот алгоритм может вычислять Ssim(M) на коэффициент Ng/NG раз быстрее, чем S(M) из уравнения (2).
В уравнении (6) могут быть использованы множество типов функций cg кодирования, включающие в себя, но не только:
- линейное, случайное, на основе линейной частотной модуляции и на основе модифицированной линейной частотной модуляции частотно-зависимое фазовое кодирование, как представлено в Romero и др. [13];
- частотно-независимое фазовое кодирование, как представлено в Jing и др. [14];
- кодирование на основе случайного сдвига по времени;
- мультиплексирование с частотным разделением каналов (FDMA), мультиплексирование с временным разделением каналов (TDMA) и мультиплексирование с кодовым разделением каналов (CDMA), используемые в связи.
Некоторые из этих технологий кодирования должны работать лучше, чем другие, в зависимости от варианта применения, и некоторые могут быть комбинированы. В частности, хорошие результаты получены с использованием частотно-зависимого случайного фазового кодирования, а также посредством комбинирования частотно-независимого кодирования соседних источников с частотно-зависимым случайным фазовым кодированием для более широко разделенных источников. Индикатор относительных преимуществ различных кодирований может быть получен посредством прохождения тестовых инверсий с каждым набором функций кодирования, чтобы определять то, какой из них сходится быстрее.
Следует отметить, что технология на основе одновременных кодированных источников может использоваться для многих типов функции затрат при инверсии. В частности, она может использоваться для функций затрат на основе норм, отличных от L2, поясненной выше. Она также может быть использована в более сложных функциях затрат по сравнению с функцией затрат, представленной в уравнении 2, включающих в себя регуляризованные функции затрат. В завершение способ одновременных кодированных источников может быть использован с любым типом глобального или локального способа инверсии функции затрат, включающим в себя метод Монте-Карло, метод имитации отжига, генетический алгоритм, эволюционный алгоритм, градиентный линейный поиск, сопряженные градиенты и метод Ньютона.
Настоящий изобретаемый способ также может быть использован в сочетании с различными типами технологий на основе обобщенных источников, таких как технологии, предложенные Berkhout [7]. В этом случае вместо кодирования различных форм импульса сейсмограмм точечных источников можно кодировать формы импульса для различных синтезированных плоских сейсмоволн.
Некоторые вариации варианта осуществления, описанного выше, включают в себя:
- Функции cg кодирования могут быть изменены для каждой итерации инверсии. По меньшей мере, в некоторых случаях это приводит к более быстрой сходимости инверсии.
- В некоторых случаях (например, когда дискретизация источников является более плотной, чем дискретизация приемников) может быть преимущественным использовать обратимость, чтобы трактовать фактические приемники в качестве вычислительных источников и кодировать приемники вместо источников.
- Это изобретение не ограничено однокомпонентными точечными приемниками. Например, приемники могут быть матрицами приемников или они могут быть многокомпонентными приемниками.
- Способ может быть улучшен посредством оптимизации кодирования, чтобы давать в результате инверсию высшего качества. Например, функции кодирования могут быть оптимизированы, чтобы сокращать число локальных минимумов в функции затрат. Функции кодирования могут быть оптимизированы либо посредством проверки вручную тестов, выполняемых с использованием различных функций кодирования, либо с использованием процедуры автоматизированной оптимизации.
- Обнаружение данных одновременных кодированных источников может приводить к значительному снижению затрат на обнаружение геофизических данных.
- Для съемок на основе данных морской сейсморазведки должно быть очень эффективным обнаруживать данные кодированных источников из нескольких одновременно работающих морских вибраторов, которые работают непрерывно в движении.
- Как указано выше, процесс кодирования в настоящем изобретении может быть выполнен при полевом обнаружении данных, например, когда пилотные сигналы нескольких одновременно работающих вибраторов кодируются с помощью различных функций кодирования. В прилагаемой формуле изобретения этапы, относящиеся к кодированию геофизических данных либо к геофизическим данным из кодированных источников, либо к получению кодированных сейсмограмм геофизических данных должны пониматься как включающие в себя получение данных, уже кодированных в процессе полевого обнаружения, если контекст не указывает явно, что кодирование осуществляется на этапе обработки данных.
- Могут быть использованы другие определения для функции затрат, включающие в себя использование другой нормы (например, L1-нормы (абсолютное значение) вместо L2-нормы) и дополнительных членов, чтобы регуляризовать и стабилизировать инверсию (например, членов, которые штрафуют модели, которые не являются сглаженными, или модели, которые не являются разреженными).
Основная идея настоящего изобретения состоит в том, чтобы использовать кодирование одновременных источников и разделение одновременных источников для полноволновой инверсии таким образом, чтобы уменьшать воздействие, когда скомпрометировано предположение о стационарных приемниках, и тем самым повышать применимость FWI одновременных источников к общим геометриям данных. Фиг.1 показывает базовые этапы в одном варианте осуществления настоящего изобретаемого способа. Согласно блок-схеме последовательности операций способа, показанной на фиг.1, этапы приводятся ниже. Нижеприведенное описание дается с точки зрения кодированных источников; тем не менее, альтернативно приемники могут быть кодированы вместо или в дополнение к источникам.
1. Для данной модели физических свойств геологической среды (100) источники съемки (т.е. местоположения источников) кодируются, чтобы формировать одновременный кодированный источник (101), который используется в прямом моделировании (102), чтобы формировать моделированные кодированные данные (103). Кодированные данные формируются при условии геометрии стационарных приемников с активностью всех приемников для кодированного источника.
2. Поскольку полевые данные типично нарушают геометрию стационарных приемников, по меньшей мере, в некоторой степени, кодированные данные разделяются на отдельные взрывы с использованием технологии (104) разделения источников, как, к примеру, описано в Neelamani и др. [19, 20, 21]. Разделение источников согласно Neelamani базируется на условии, что функция Грина модели имеет разреженное представление в области преобразования, такой как курвлет- или вейвлет-область. При знании схемы кодирования и при условии разреженности функции Грина взрывы могут быть разделены с использованием, например, инверсии L1-нормы в преобразованной области. Эта задача разделения может разрешаться для одних кодированных данных по взрывам для области всей модели, либо она может применяться к нескольким наборам из кодированных данных по взрывам. Специалисты в данной области техники должны знать множество технологий разделения источников, которые могут быть использованы в качестве альтернативы технологии из Neelamani и др. [19, 20, 21]. Например, Spitz и др. [28] предлагает подход на основе вычитания при прогнозировании, который сначала оценивает первичное волновое поле второго источника и затем вычитает его из полного волнового поля через адаптивное вычитание на основе PEF. Akerberg и др. [27] использует разреженные преобразования Радона для разделения источников. Для всех алгоритмов разделения источников несколько кодированных наборов данных являются предпочтительными.
3. Разделение источников, описанное на предыдущем этапе, является крайне важным для того, чтобы обрабатывать практические геометрии данных. При разделенных взрывах (105) могут применяться (106) все этапы обработки, которые могут быть обязательными, так что моделированные данные соответствуют полевым данным. Таким образом, при разделенных взрывах данные могут обрабатываться, чтобы соответствовать геометрии обнаружения полевых данных, такой как подавление выносов, т.е. удаление минимальных и максимальных выносов, подавление на основе типа поступлений, к примеру, компонента передачи в зависимости от отражения для данных, или удаление эластичного компонента данных, если регулирующий прямой механизм основан на акустическом допущении. Следовательно, этот общий этап обработки данных при разделенных взрывах для того, чтобы обеспечивать аналогичность прогнозированных данных (107) геометрии (108) измеренных данных, а также обеспечивать соответствие данных уровню физики, дает возможность формирования последовательных остатков (109) данных, т.е. остатков данных для выбранных сейсмограмм по взрывам. Остаток данных является мерой разности между измеренным значением данных и соответствующим прогнозированным значением данных.
4. Эти остатки данных, которые являются последовательными остатками (109) данных на основе этапа 104 разделения источников, кодируются (110) с использованием схемы кодирования, идентичной или различной относительно схемы кодирования, используемой на этапе 101 для того, чтобы формировать кодированные остатки (111) данных. Это представляет собой важный этап, поскольку пробелы в данных вследствие геометрии обнаружения или вследствие выбора пользователем конкретных событий в данных теперь находятся в этих кодированных остатках (111) данных. Затем кодированные остатки данных используются для того, чтобы вычислять градиент целевой функции (117). Например, остатки могут быть обратными распространяемыми (115) с использованием сопряженного уравнения состояния и взаимно коррелированными (116) с прямыми распространяемыми данными (112) из 103 с использованием одновременного источника, чтобы вычислять градиент целевой функции, которая должна быть минимизирована, как описано в публикации PCT-заявки на патент номер WO 2009/117174. Следует отметить, что моделированные кодированные данные 112 могут, но не должны быть, идентичными моделированным кодированным данным 103, поскольку они могут быть кодированы с помощью различных функций кодирования; тем не менее, кодирование на 112 должно совпадать с кодированием на 111.
5. На конечном этапе модель обновляется (118) с использованием вычисленного градиента из предыдущего этапа. Множество известных способов оптимизации, таких как быстрейший спуск, сопряженные градиенты или метод Ньютона, могут быть использованы для того, чтобы осуществлять обновление модели, чтобы обеспечивать то, что снижается значение целевой функции. Алгоритм инверсии одновременных источников, представленный посредством этапов в поле 120, обведенном пунктирной линией, основан на WO 2009/117174, но может быть использован любой алгоритм обратного или прямого моделирования (ручного регулирования).
Для обработки и построения изображений точность разделения источников является важной, поскольку любой артефакт, возникающий вследствие процесса разделения источников, в конечном счете преобразуется в конечное изображение. В предыдущей аналогичной работе, в которой используется разделение источников, прилагаются значительные усилия для того, чтобы выбирать тип кодирования так, чтобы обеспечивать повышенную точность разделения (Ikelle [17]). Считается, что требование к точности должно ослабляться для варианта применения инверсии в этом изобретении, поскольку небольшие неточности в остатках данных вследствие разделения источников могут обрабатываться через линейный поиск и процесс регуляризации модели во время этапа инверсии. Для вариантов применения инверсии ключевым является то, чтобы для прогнозированных данных, которые вычитаются из измеренных данных, обеспечивать соответствие геометрии обнаружения и соблюдение уровня применяемой физики (например, подавление больших выносов, когда анизотропные эффекты присутствуют в данных, и алгоритм прямого моделирования допускает модель изотропной среды). При достижении этого через обработку разделенных взрывов удаляются большие ошибки в остатках данных.
Хотя считается, что небольшие неточности при разделении источников могут обрабатываться в процессе инверсии, большие ошибки по-прежнему могут представлять собой проблему. Следовательно, альтернативный вариант осуществления настоящего изобретаемого способа выполнен с возможностью обрабатывать большие ошибки вследствие разделения источников и может быть использован, когда это считается проблемой. Пример этого альтернативного варианта осуществления проиллюстрирован посредством блок-схемы последовательности операций способа по фиг.2. Чтобы реплицировать ошибки вследствие разделения, измеренные данные кодируются (108b) с использованием идентичной схемы кодирования и с использованием разделения (108c) источников, чтобы получать измеренные сейсмограммы по разделенным взрывам. Эти измеренные сейсмограммы по разделенным взрывам могут быть использованы для того, чтобы вычислять остатки данных вместо исходных измеренных взрывов.
Другой способ изучать эту задачу состоит в том, чтобы определять кодированные остатки данных, которые корректируются для отсутствующих трасс с максимальным и минимальным выносом. Так, другая альтернатива может быть описана следующим образом, как показано на фиг.3. Во-первых, формируется остаток (309) данных, который является разностью между моделированными кодированными данными (103) и кодированными измеренными данными (308) с отсутствующими максимальными и минимальными выносами (т.е. моделированные кодированные минус кодированные измеренные). Этот остаток (309) данных является неподходящим для вычисления градиента, поскольку моделированные кодированные данные (103) имеют долю от отсутствующей части данных (например, трасс с минимальным и максимальным выносом), тогда как измеренные кодированные данные (308) не имеют доли от отсутствующих данных. На следующем этапе (304) выполняется разделение источников моделированных кодированных данных и обрабатывается результирующая оценка моделированных последовательных взрывов (305), но вместо удаления отсутствующей части данных (к примеру, подавления минимальных и максимальных выносов из сейсмограмм (306) по разделенным взрывам) кодируется отсутствующая часть (к примеру, минимальные и максимальные выносы) сейсмограмм (307) по взрывам. Эта кодированная отсутствующая часть данных (307) может вычитаться (310) из некорректного остатка (309) данных, чтобы компенсировать информацию отсутствующих данных и получать скорректированный остаток (311) данных. (Она вычитается, а не прибавляется, поскольку она должна смещать моделированные кодированные данные, которые присутствуют в некорректном остатке данных со знаком плюс, поскольку остаток задается (см. выше) в качестве кодированных измеренных данных минус моделированные кодированные данные. Если это определение, которое является произвольным, изменено на противоположное, то отсутствующие данные прибавляются остатку. Кроме того, вместо трактовки коррекции отсутствующих данных как вычитания из доли моделированных данных в остатке данных она может рассматриваться как прибавление к доле измеренных данных в остатке данных. Следует понимать, что настоящее изобретение, включающее в себя прилагаемую формулу изобретения, включает в себя все такие эквивалентные подходы.) Основное отличие этого варианта осуществления по сравнению с вариантом осуществления, описанным на фиг.1, заключается в том, что кодированные остатки данных корректируются в этом варианте осуществления вместо формирования после обработки, как показано на фиг.1. Если разделение источников является идеальным, то два подхода (фиг.1 и фиг.3) являются математически эквивалентными; тем не менее, при наличии ошибок разделения источников возможно то, что подход на основе коррекции, показанный на фиг.3, может предоставлять лучший результат.
Фиг.4 описывает альтернативу способу коррекции остатков данных, описанному на фиг.3. Аналогично способу на фиг.3, во-первых, формируется кодированный остаток (409) данных, который является разностью между моделированными кодированными данными (103) и кодированными измеренными данными (408) с отсутствующими максимальными и минимальными выносами. На следующем этапе разделение источников (404) выполняется с использованием кодированного остатка данных, что приводит к последовательным остаточным данным (405). Разделение источников оценивает остаток между моделированными на основе последовательных источников данными и измеренными на основе последовательных источников данными. В комбинациях источников и приемников, которые не присутствуют в измеренных данных (не обнаружены), оцененный остаток состоит только из моделированных данных. Эта отсутствующая часть (к примеру, минимальные и максимальные выносы) сейсмограмм по взрывам, определенных посредством этапов (406) обработки, кодируется (407) и затем вычитается (410) из некорректного остатка (409) данных, чтобы получать скорректированный остаток (311) данных. Результат разделения источников может быть улучшен посредством использования нескольких кодированных остатков данных, каждый из которых вычисляется с использованием различного кодирования. В таком случае многие кодированные остатки данных могут быть скорректированы и затем использованы для того, чтобы обновлять начальную модель.
Возможны другие вариации вариантов осуществления по фиг.1-4. Преимущество всех вариантов осуществления настоящего изобретаемого способа состоит в том, что они могут обрабатывать множество полевых геометрий, чтобы инвертировать реальные данные и реализовывать повышение скорости вследствие одновременного кодирования. Ключевой этап разделения одновременных источников, после которого выполняются этапы обработки, делает алгоритм практичным для наборов полевых данных. Neelamani и др. [20, 21] показывает, что время вычисления для разделения одновременных источников значительно меньше по сравнению с одним проходом прямого моделирования, что представляет собой одно из главных преимуществ для этого подхода. Другой вариант осуществления этого изобретения определяет оптимальное число источников таким образом, что задача разделения является корректно поставленной. Использование меньшего числа дальше разнесенных источников для кодирования упрощает задачу разделения источников; тем не менее, слишком большое разделение может приводить к пространственному наложению спектров в обновлении модели и, в конечном счете, ухудшать модель геологической среды. С другой стороны, кодирование слишком многих близко расположенных источников затрудняет задачу разделения. Таким образом, в зависимости от длины шкалы модели геологической среды, которая должна быть обновлена, и доступных источников при съемке оптимальное разнесение источников (т.е. оптимальное число источников) может выбираться, чтобы балансировать два конкурирующих соображения. Таким образом, обеспечение корректной постановки задачи разделения источников может требовать неиспользования всех источников, записываемых при съемке. В другом варианте осуществления кодирование изменяется каждую итерацию инверсии или, по меньшей мере, в некоторых итерациях, как рассматривается посредством WO 2008/042081. Вышеприведенная заявка направлена на конкретные варианты осуществления настоящего изобретения для его иллюстрации. Тем не менее, для специалистов в данной области техники должно быть очевидным, что возможно множество модификаций и вариаций вариантов осуществления, описанных в данном документе. Все эти модификации и вариации имеют намерение быть в пределах объема настоящего изобретения, заданного в прилагаемой формуле изобретения. Специалисты в данной области техники должны признавать, что в предпочтительных вариантах осуществления изобретения, по меньшей мере, некоторые этапы в настоящем изобретаемом способе выполняются на компьютере, т.е. изобретение является машинореализованным. В таких случаях результирующая обновленная модель физических свойств может загружаться, отображаться или сохраняться в компьютерном устройстве хранения данных.
Библиографический список
1. Tarantola, A., "Inversion of seismic reflection data in the acoustic approximation", Geophysics 49, 1259-1266 (1984 год).
2. Sirgue, L. и Pratt G. "Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies", Geophysics 69, 231-248 (2004 год).
3. Fallat, M. R., Dosso, S. E., "Geoacoustic inversion via local, global and hybrid algorithms", Journal of the Acoustical Society of America 105, 3219-3230 (1999 год).
4. Hinkley, D. и Krebs, J., "Gradient computation for simultaneous source inversion", публикация PCT-заявки на патент номер WO 2009/117174.
5. Krebs, J. R., Anderson, J. A., Neelamani, R., Hinkley, D., Jing, C., Dickens, T., Krohn, C., Traynin, P., "Iterative inversion of data from simultaneous geophysical sources", публикация PCT-заявки на патент номер WO 2008/042081.
6. Van Manen, D. J., Robertsson, J.O.A., Curtis, A., "Making wave by time reversal", SEG International Exposition and 75th Annual Meeting Expanded Abstracts, 1763-1766 (2005 год).
7. Berkhout, A. J., "Areal shot record technology", Journal of Seismic Exploration 1, 251-264 (1992 год).
8. Zhang, Y., Sun, J., Notfors, C., Gray, S. H., Cherris, L., Young, J., "Delayed-shot 3D depth migration", Geophysics 70, E21-E28 (2005 год).
9. Van Riel, P. и Hendrik, W. J. D., "Method of estimating elastic and compositional parameters from seismic and echo-acoustic data", Патент (США) номер 6876928 (2005 год).
10. Mora, P., "Nonlinear two-dimensional elastic inversion of multi-offset seismic data", Geophysics 52, 1211-1228 (1987 год).
11. Ober, C. C., Romero, L. A., Ghiglia, D. C., "Method of Migrating Seismic Records", Патент (США) номер 6021094 (2000 год).
12. Ikelle, L. T., "Multi-shooting approach to seismic modeling and acquisition", Патент (США) номер 6327537 (2001 год).
13. Romero, L. A., Ghiglia, D. C., Ober, C. C., Morton, S. A., "Phase encoding of shot records in prestack migration", Geophysics 65, 426-436 (2000 год).
14. Jing X., Finn, C. J., Dickens, T. A., Willen, D. E., "Encoding multiple shot gathers in prestack migration", SEG International Exposition and 70th Annual Meeting Expanded Abstracts, 786-789 (2000 год).
15. Ben-Hadj-Ali, H., Opertor, S. и Vireus, J., "Three-dimensional frequency-domain full waveform inversion with phase encoding", SEG Expanded Abstracts, 2288-2292 (2009 год).
16. Berkhout, A. J., "Changing the mindset in seismic data acquisition", The Leading Edge 27-7, 924-938 (2008 год).
17. Ikelle, L. T., "Coding and decoding: Seismic data modeling, acquisition and processing", 77th Annual International Meeting, SEG, Expanded Abstracts, 66-70 (2007 год).
18. Jerome R. Krebs, John E. Anderson, David Hinkley, Ramesh Neelamani, Sunwoong Lee, Anatoly Baumstein и Martin-Daniel Lacasse, "Full-wavefield seismic inversion using encoded sources", Geophysics 74-6, WCC177-WCC188 (2009 год).
19. Neelamani, R. и C. E. Krohn, "Simultaneous sourcing without compromise", представлено на 70th Annual International Conference and Exhibition, EAGE (2008 год).
20. Neelamani, R. и C. E. Krohn, "Separation and noise removal for multiple vibratory source seismic data", публикация международной PCT-заявки на патент номер WO 2008/123920.
21. Neelamani, R., C. E. Krohn, Krebs, J. R., Deffenbaugh, M. Anderson, J. E. и Romberg, J. K., "Efficient seismic forward modeling using simultaneous sources and sparsity", SEG Expanded Abstracts, 2107-2111 (2009 год).
22. Stefani, J., G. Hampson и E. F. Herkenhoff, "Acquisition using simultaneous sources", 69th Annual Conference and Exhibition, EAGE, Extended Abstracts, B006 (2007 год).
23. Verschuur, D. J. и A. J. Berkhout, "Target-oriented, least-squares imaging of blended data", 79th Annual International Meeting, SEG, Expanded Abstracts (2009 год).
24. Herrmann, F. J., "Randomized dimensionality reduction for full-waveform inversion", EAGE abstract G001, EAGE Barcelona meeting (2010 год).
25. Haber, E., Chung M. и Herrmann, "An effective method for parameter estimation with PDE constraints with multiple right hand sides", Preprint - UBC http://www.math.ubc.ca/~haber/pubs/PdeOptStochV5.pdf (2010 год).
26. Beasley, C., "A new look at marine simultaneous sources", The Leading Edge 27(7), 914-917 (2008 год).
27. Akerberg, P., G. Hampson, J. Rickett, H. Martin и J. Cole, "Simultaneous source separation by sparse radon transform", 78th Annual International Meeting, SEG, Expanded Abstracts, 2801-2805 (2008 год).
28. Spitz, S., G. Hampson и A. Pica, "Simultaneous source separation: the prediction-subtraction approach", 78th Annual International Meeting, SEG, Expanded Abstracts, 2811-2815 (2008 год).

Claims (23)

1. Машинореализованный способ одновременной инверсии измеренных геофизических данных из нескольких кодированных источников, чтобы определять модель физических свойств для области геологической среды, причем измеренные геофизические данные являются результатом съемки, для которой предположение о стационарных приемниках инверсии одновременных кодированных источников может не быть достоверным, причем упомянутый способ содержит использование компьютера для того, чтобы выполнять разделение одновременных источников, чтобы уменьшать влияние неудовлетворения измеренных геофизических данных предположению о стационарных приемниках, при этом этап обработки данных, осуществляемый после разделения одновременных источников, выполнен с возможностью согласовывать рассчитанные по модели данные с измеренными геофизическими данными для комбинаций источников и приемников, которые отсутствуют в измеренных геофизических данных.
2. Способ по п. 1, при этом способ содержит этапы, на которых:
- составляют начальную модель физических свойств и используют ее для того, чтобы моделировать синтетические данные, соответствующие измеренным геофизическим данным, при этом источники и/или приемники при моделировании кодируются и моделируются одновременно, тем самым формируя моделированные кодированные данные;
- разделяют моделированные кодированные данные согласно источнику, что приводит к моделированным данным последовательных
источников;
- обрабатывают моделированные данные последовательных источников таким образом, что обеспечивается их соответствие измеренным геофизическим данным для комбинаций источников и приемников, которые отсутствуют в измеренных геофизических данных;
- вычисляют разности, называемые остатками данных, между обработанными моделированными данными последовательных источников и измеренными геофизическими данными для комбинаций источников и приемников, которые присутствуют в измеренных геофизических данных;
- кодируют остатки данных с использованием кодирования, идентичного или различного относительно кодирования, используемого при формировании моделированных кодированных данных;
- используют кодированные остатки данных, чтобы вычислять обновление начальной модели физических свойств; и
- комбинируют обновление с начальной моделью, чтобы формировать обновленную модель физических свойств.
3. Способ по п. 2, в котором кодированные остатки данных используются для того, чтобы вычислять градиент целевой функции, причем упомянутый градиент предусмотрен относительно параметров модели физических свойств, который затем используется в выбранной схеме оптимизации, чтобы обновлять модель физических свойств.
4. Способ по п. 2, дополнительно содержащий этап, на котором выполняют итерации этапов способа, по меньшей мере, один раз с
использованием обновленной модели физических свойств из одной итерации в качестве начальной модели для следующей итерации.
5. Способ по п. 4, в котором источники кодируются с использованием выбранного набора функций кодирования, при этом различный набор функций кодирования выбирается, по меньшей мере, для одной из итераций.
6. Способ по п. 2, дополнительно содержащий в любое время перед этапом вычисления разностей этапы, на которых:
- кодируют измеренные геофизические данные с использованием кодирования источников, идентичного или различного относительно кодирования источников, используемого при формировании моделированных кодированных данных;
- разделяют кодированные измеренные данные согласно источнику с использованием алгоритма разделения источников, который также использован при разделении моделированных кодированных данных согласно источнику; и
- используют разделенные измеренные данные при вычислении остатков данных.
7. Способ по п. 2, дополнительно содержащий после этапа разделения и перед этапом вычисления разностей этап, на котором удаляют местоположения источников-приемников из моделированных данных последовательных источников так, что они соответствуют местоположениям источников-приемников с отсутствующими данными в измеренных геофизических данных.
8. Способ по п. 7, в котором удаление местоположений источников-приемников из моделированных данных последовательных источников выполняется посредством одного или более этапов
обработки данных из группы, состоящей из этапов, на которых подавляют выносы, т.е. удаляют минимальные и максимальные выносы; подавляют на основе типа поступлений, включающего в себя компонент передачи в зависимости от отражения для данных, и удаляют эластичный компонент данных, когда прямое моделирование основано на акустическом предположении.
9. Способ по п. 2, в котором каждая сейсмограмма моделированных кодированных данных кодируется посредством временной свертки всех трасс из сейсмограммы с помощью формы импульса кодирования, выбранной для сейсмограммы.
10. Способ по п. 1, при этом способ содержит этапы, на которых:
- составляют начальную модель физических свойств и используют ее для того, чтобы моделировать синтетические данные, соответствующие измеренным геофизическим данным, при этом источники и/или приемники при моделировании кодируются с использованием выбранных функций кодирования и моделируются одновременно, тем самым формируя моделированные кодированные данные;
- разделяют моделированные кодированные данные согласно источнику и/или приемнику с использованием алгоритма разделения источников или приемников, что приводит к моделированным данным последовательных источников и/или приемников;
- обрабатывают моделированные данные последовательных источников и/или приемников, чтобы подавлять эти данные, называемые отсутствующими данными, соответствующие комбинациям источников и приемников, которые отсутствуют в измеренных
геофизических данных;
- кодируют отсутствующие данные с использованием функций кодирования, которые являются идентичными или отличающимися относительно упомянутых выбранных функций кодирования;
- кодируют измеренные геофизические данные с использованием функций кодирования, которые являются идентичными функциям кодирования, используемым при кодировании отсутствующих данных, и вычитают их, согласно позиции источников и приемников, из моделированных кодированных данных, тем самым формируя кодированные остатки данных, которые являются некорректными вследствие отсутствующих комбинаций источников и приемников в измеренных геофизических данных;
- вычитают кодированные отсутствующие данные из кодированных остатков данных, чтобы формировать скорректированные кодированные остатки данных;
- используют скорректированные кодированные остатки данных, чтобы вычислять обновление начальной модели физических свойств; и
- комбинируют обновление с начальной моделью, чтобы формировать обновленную модель физических свойств.
11. Способ по п. 10, дополнительно содержащий этап, на котором выполняют итерации этапов способа, по меньшей мере, один раз с использованием обновленной модели физических свойств из одной итерации в качестве начальной модели для следующей итерации.
12. Способ по п. 11, в котором функции или формы импульса кодирования изменяются, по меньшей мере, для одной из итераций.
13. Способ по п. 10, в котором не все местоположения источников и/или приемников в измеренных геофизических данных используются при формировании моделированных кодированных данных, чтобы повышать точность алгоритма разделения источников или приемников посредством обеспечения корректной постановки разделения, но не уменьшения дискретизации измеренных геофизических данных до степени, которая вызывает наложение спектров.
14. Способ по п. 10, в котором отсутствующие данные возникают на ближнем и дальнем концах диапазона выноса измеренных геофизических данных.
15. Способ по п. 10, в котором каждая сейсмограмма моделированных кодированных данных кодируется посредством временной свертки всех трасс из сейсмограммы с помощью формы импульса кодирования, выбранной для сейсмограммы.
16. Способ по п. 10, в котором кодирование измеренных геофизических данных выполняется посредством получения сейсмограмм данных из геофизической съемки, в которой данные обнаруживаются из множества одновременно работающих уникально кодированных устройств источников.
17. Способ по п. 1, при этом способ содержит этапы, на которых:
- составляют начальную модель физических свойств и используют ее для того, чтобы моделировать синтетические данные, соответствующие измеренным геофизическим данным, при этом источники и/или приемники при моделировании кодируются с использованием выбранных функций кодирования и моделируются
одновременно, тем самым формируя моделированные кодированные данные;
- используют упомянутые выбранные функции кодирования, чтобы кодировать измеренные геофизические данные, и вычитают их, согласно позиции источников и приемников, из моделированных кодированных данных, тем самым формируя кодированные остатки данных, которые включают в себя некорректные значения вследствие отсутствующих комбинаций источников и приемников в измеренных геофизических данных;
- разделяют кодированные остатки данных согласно источнику и/или приемнику с использованием алгоритма разделения источников или приемников, что приводит к последовательным остаточным данным;
- обрабатывают последовательные остаточные данные, чтобы оценивать моделированные данные, называемые отсутствующими данными, соответствующие комбинациям источников и приемников, которые отсутствуют в измеренных геофизических данных;
- кодируют отсутствующие данные с использованием упомянутых выбранных функций кодирования;
- вычитают кодированные отсутствующие данные из кодированных остатков данных, чтобы формировать скорректированные кодированные остатки данных;
- используют скорректированные кодированные остатки данных, чтобы вычислять обновление начальной модели физических свойств; и
- комбинируют обновление с начальной моделью, чтобы формировать обновленную модель физических свойств.
18. Способ по п. 1, в котором геофизические данные являются сейсмическими данными, полное волновое поле которых инвертируется.
19. Способ по п. 1, в котором множество наборов кодированных данных используются для того, чтобы выполнять разделение одновременных источников.
20. Энергонезависимый используемый компьютером носитель, имеющий исполняемый машиночитаемый программный код, исполнение которого побуждает компьютер реализовывать способ инверсии полного волнового поля измеренных геофизических данных, чтобы определять модель физических свойств для области геологической среды, причем упомянутый способ содержит этапы, на которых:
- составляют или вводят начальную модель физических свойств и используют ее для того, чтобы моделировать синтетические данные, соответствующие измеренным геофизическим данным, при этом источники и/или приемники при моделировании кодируются и моделируются одновременно, тем самым формируя моделированные кодированные данные;
- разделяют моделированные кодированные данные согласно источнику, что приводит к моделированным данным последовательных источников;
- вычисляют разности, называемые остатками данных, между моделированными данными последовательных источников и соответствующими измеренными геофизическими данными;
- кодируют остатки данных согласно источнику с использованием кодирования, идентичного кодированию, используемому при формировании моделированных кодированных
данных;
- используют кодированные остатки данных, чтобы вычислять обновление начальной модели физических свойств; и
- комбинируют обновление с начальной моделью, чтобы формировать обновленную модель физических свойств.
21. Энергонезависимый используемый компьютером носитель, имеющий исполняемый машиночитаемый программный код, исполнение которого побуждает компьютер реализовывать способ инверсии полного волнового поля измеренных геофизических данных, чтобы определять модель физических свойств для области геологической среды, причем упомянутый способ содержит этапы, на которых:
- составляют или вводят начальную модель физических свойств и используют ее для того, чтобы моделировать синтетические данные, соответствующие измеренным геофизическим данным, при этом источники и/или приемники при моделировании кодируются с использованием выбранных функций кодирования и моделируются одновременно, тем самым формируя моделированные кодированные данные;
- разделяют моделированные кодированные данные согласно источнику и/или приемнику с использованием алгоритма разделения источников или приемников, что приводит к моделированным данным последовательных источников и/или приемников;
- обрабатывают моделированные данные последовательных источников и/или приемников, чтобы подавлять эти данные, называемые отсутствующими данными, соответствующие комбинациям источников и приемников, которые отсутствуют в измеренных геофизических данных;
- кодируют отсутствующие данные с использованием функций кодирования, которые являются идентичными или отличающимися относительно упомянутых выбранных функций кодирования;
- кодируют измеренные геофизические данные с использованием функций кодирования, которые являются идентичными функциям кодирования, используемым при кодировании отсутствующих данных, и вычитают их, согласно позиции источников и приемников, из моделированных кодированных данных, тем самым формируя кодированные остатки данных;
- вычитают кодированные отсутствующие данные из кодированных остатков данных, чтобы формировать скорректированные кодированные остатки данных;
- используют скорректированные кодированные остатки данных, чтобы вычислять обновление начальной модели физических свойств; и
- комбинируют обновление с начальной моделью, чтобы формировать обновленную модель физических свойств.
22. Энергонезависимый используемый компьютером носитель, имеющий исполняемый машиночитаемый программный код, исполнение которого побуждает компьютер реализовывать способ инверсии полного волнового поля измеренных геофизических данных, чтобы определять модель физических свойств для области геологической среды, причем упомянутый способ содержит этапы, на которых:
- составляют или вводят начальную модель физических свойств и используют ее для того, чтобы моделировать синтетические данные, соответствующие измеренным геофизическим данным, при этом источники и/или приемники при моделировании кодируются с
использованием выбранных функций кодирования и моделируются одновременно, тем самым формируя моделированные кодированные данные;
- используют упомянутые выбранные функции кодирования, чтобы кодировать измеренные геофизические данные, и вычитают их, согласно позиции источников и приемников, из моделированных кодированных данных, тем самым формируя кодированные остатки данных;
- разделяют кодированные остатки данных согласно источнику и/или приемнику с использованием алгоритма разделения источников или приемников, что приводит к последовательным остаточным данным;
- обрабатывают последовательные остаточные данные, чтобы оценивать моделированные данные, называемые отсутствующими данными, соответствующие комбинациям источников и приемников, которые отсутствуют в измеренных геофизических данных;
- кодируют отсутствующие данные с использованием упомянутых выбранных функций кодирования;
- вычитают кодированные отсутствующие данные из кодированных остатков данных, чтобы формировать скорректированные кодированные остатки данных;
- используют скорректированные кодированные остатки данных, чтобы вычислять обновление начальной модели физических свойств; и
- комбинируют обновление с начальной моделью, чтобы формировать обновленную модель физических свойств.
23. Способ получения углеводородов из области геологической
среды, содержащий этапы, на которых:
- выполняют геофизическую съемку области геологической среды, приводящую к измеренным геофизическим данным;
- обрабатывают измеренные геофизические данные на компьютере посредством способа по п. 1, чтобы формировать модель физических свойств области геологической среды;
- оценивают углеводородный потенциал области геологической среды с использованием модели физических свойств; и
- бурят скважину в области геологической среды, по меньшей мере, частично на основе оценки углеводородного потенциала и получают углеводороды из скважины.
RU2013119384/28A 2010-09-27 2011-08-15 Кодирование одновременных источников и разделение источников в качестве практического решения по инверсии полного волнового поля RU2582480C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US38683110P 2010-09-27 2010-09-27
US61/386,831 2010-09-27
PCT/US2011/047770 WO2012047378A1 (en) 2010-09-27 2011-08-15 Simultaneous source encoding and source separation as a practical solution for full wavefield inversion

Publications (2)

Publication Number Publication Date
RU2013119384A RU2013119384A (ru) 2014-11-10
RU2582480C2 true RU2582480C2 (ru) 2016-04-27

Family

ID=45869461

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013119384/28A RU2582480C2 (ru) 2010-09-27 2011-08-15 Кодирование одновременных источников и разделение источников в качестве практического решения по инверсии полного волнового поля

Country Status (11)

Country Link
US (1) US8775143B2 (ru)
EP (1) EP2622457A4 (ru)
KR (1) KR101908278B1 (ru)
CN (1) CN103119552B (ru)
AU (1) AU2011312800B2 (ru)
BR (1) BR112013002842A2 (ru)
CA (1) CA2807575C (ru)
MY (1) MY163568A (ru)
RU (1) RU2582480C2 (ru)
SG (1) SG188191A1 (ru)
WO (1) WO2012047378A1 (ru)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8694299B2 (en) 2010-05-07 2014-04-08 Exxonmobil Upstream Research Company Artifact reduction in iterative inversion of geophysical data
EP2691795A4 (en) 2011-03-30 2015-12-09 CONVERGENCE SPEED OF COMPLETE WAVELENGTH INVERSION USING SPECTRAL SHAPING
US9075162B2 (en) 2011-11-10 2015-07-07 Pgs Geophysical As Method and system for separating seismic sources in marine simultaneous shooting acquisition
US9176930B2 (en) 2011-11-29 2015-11-03 Exxonmobil Upstream Research Company Methods for approximating hessian times vector operation in full wavefield inversion
US9453928B2 (en) * 2012-03-06 2016-09-27 Westerngeco L.L.C. Methods and computing systems for processing data
WO2013133912A1 (en) 2012-03-08 2013-09-12 Exxonmobil Upstream Research Company Orthogonal source and receiver encoding
SG11201405980RA (en) * 2012-05-11 2014-11-27 Exxonmobil Upstream Res Co Redatuming seismic data with correct internal multiples
US20130311149A1 (en) * 2012-05-17 2013-11-21 Yaxun Tang Tomographically Enhanced Full Wavefield Inversion
US10317548B2 (en) 2012-11-28 2019-06-11 Exxonmobil Upstream Research Company Reflection seismic data Q tomography
CA2909105C (en) 2013-05-24 2018-08-28 Ke Wang Multi-parameter inversion through offset dependent elastic fwi
US10459117B2 (en) 2013-06-03 2019-10-29 Exxonmobil Upstream Research Company Extended subspace method for cross-talk mitigation in multi-parameter inversion
US9702998B2 (en) 2013-07-08 2017-07-11 Exxonmobil Upstream Research Company Full-wavefield inversion of primaries and multiples in marine environment
US9772413B2 (en) 2013-08-23 2017-09-26 Exxonmobil Upstream Research Company Simultaneous sourcing during both seismic acquisition and seismic inversion
US10036818B2 (en) 2013-09-06 2018-07-31 Exxonmobil Upstream Research Company Accelerating full wavefield inversion with nonstationary point-spread functions
CN104977608B (zh) * 2014-04-09 2017-07-07 中国石油集团东方地球物理勘探有限责任公司 利用固定网格声波波场模拟的时间域全波形反演方法
US9910189B2 (en) 2014-04-09 2018-03-06 Exxonmobil Upstream Research Company Method for fast line search in frequency domain FWI
CN104977607B (zh) * 2014-04-09 2017-07-07 中国石油集团东方地球物理勘探有限责任公司 利用变步长网格声波波场模拟的时间域全波形反演方法
US10670752B2 (en) 2014-04-14 2020-06-02 Cgg Services Sas Method for iterative inversion of data from non-encoded composite sources
CA2947847C (en) * 2014-05-09 2018-08-14 Exxonmobil Upstream Research Company Efficient line search methods for multi-parameter full wavefield inversion
US10185046B2 (en) 2014-06-09 2019-01-22 Exxonmobil Upstream Research Company Method for temporal dispersion correction for seismic simulation, RTM and FWI
EP3158367A1 (en) 2014-06-17 2017-04-26 Exxonmobil Upstream Research Company Fast viscoacoustic and viscoelastic full-wavefield inversion
US10838092B2 (en) 2014-07-24 2020-11-17 Exxonmobil Upstream Research Company Estimating multiple subsurface parameters by cascaded inversion of wavefield components
US10422899B2 (en) * 2014-07-30 2019-09-24 Exxonmobil Upstream Research Company Harmonic encoding for FWI
US10551517B2 (en) 2014-09-04 2020-02-04 Westerngeco L.L.C. Multiples mitigation and imaging with incomplete seismic data
US10386511B2 (en) 2014-10-03 2019-08-20 Exxonmobil Upstream Research Company Seismic survey design using full wavefield inversion
CA2961572C (en) 2014-10-20 2019-07-02 Exxonmobil Upstream Research Company Velocity tomography using property scans
WO2016065247A1 (en) * 2014-10-24 2016-04-28 Westerngeco Llc Travel-time objective function for full waveform inversion
AU2015363241A1 (en) * 2014-12-18 2017-06-29 Exxonmobil Upstream Research Company Scalable scheduling of parallel iterative seismic jobs
US10520618B2 (en) 2015-02-04 2019-12-31 ExxohnMobil Upstream Research Company Poynting vector minimal reflection boundary conditions
AU2015382333B2 (en) 2015-02-13 2018-01-04 Exxonmobil Upstream Research Company Efficient and stable absorbing boundary condition in finite-difference calculations
KR20190075176A (ko) 2015-02-17 2019-06-28 엑손모빌 업스트림 리서치 캄파니 다중반사파 없는 데이터 세트를 생성하는 다단식 전 파동장 역산 프로세스
US10242136B2 (en) * 2015-05-20 2019-03-26 Saudi Arabian Oil Company Parallel solution for fully-coupled fully-implicit wellbore modeling in reservoir simulation
AU2016270000B2 (en) 2015-06-04 2019-05-16 Exxonmobil Upstream Research Company Method for generating multiple free seismic images
US10542961B2 (en) 2015-06-15 2020-01-28 The Research Foundation For The State University Of New York System and method for infrasonic cardiac monitoring
US10838093B2 (en) 2015-07-02 2020-11-17 Exxonmobil Upstream Research Company Krylov-space-based quasi-newton preconditioner for full-wavefield inversion
BR112018003117A2 (pt) 2015-10-02 2018-09-25 Exxonmobil Upstream Res Co inversão de campo de onda completa compensada em q
MX2018003495A (es) 2015-10-15 2018-06-06 Exxonmobil Upstream Res Co Apilados angulares de dominio de modelo de fwi con conservacion de amplitud.
US10295683B2 (en) 2016-01-05 2019-05-21 Schlumberger Technology Corporation Amplitude inversion on partitioned depth image gathers using point spread functions
US10768324B2 (en) 2016-05-19 2020-09-08 Exxonmobil Upstream Research Company Method to predict pore pressure and seal integrity using full wavefield inversion
CA3030006A1 (en) * 2016-08-19 2018-02-22 Halliburton Energy Services, Inc. Full waveform inversion of vertical seismic profile data for anisotropic velocities using pseudo-acoustic wave equations
US10908305B2 (en) 2017-06-08 2021-02-02 Total Sa Method for evaluating a geophysical survey acquisition geometry over a region of interest, related process, system and computer program product
US11656377B2 (en) * 2018-03-30 2023-05-23 Cgg Services Sas Visco-acoustic full waveform inversion of velocity and Q
CN109782350B (zh) * 2019-01-29 2021-06-01 国油伟泰(北京)科技有限公司 模式识别自适应全波形反演方法
US11372123B2 (en) 2019-10-07 2022-06-28 Exxonmobil Upstream Research Company Method for determining convergence in full wavefield inversion of 4D seismic data
US11496241B2 (en) * 2021-03-31 2022-11-08 Advanced Micro Devices, Inc. Method and apparatus for data transmission mitigating interwire crosstalk

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798982A (en) * 1996-04-29 1998-08-25 The Trustees Of Columbia University In The City Of New York Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models
US6549854B1 (en) * 1999-02-12 2003-04-15 Schlumberger Technology Corporation Uncertainty constrained subsurface modeling
US20080189043A1 (en) * 2007-02-06 2008-08-07 Conocophillips Company Direct Time Lapse Inversion of Seismic Data
WO2009117174A1 (en) * 2008-03-21 2009-09-24 Exxonmobil Upstream Research Company An efficient method for inversion of geophysical data
US20100018718A1 (en) * 2006-09-28 2010-01-28 Krebs Jerome R Iterative inversion of data from simultaneous geophysical sources

Family Cites Families (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812457A (en) 1969-11-17 1974-05-21 Shell Oil Co Seismic exploration method
US3864667A (en) 1970-09-11 1975-02-04 Continental Oil Co Apparatus for surface wave parameter determination
US3984805A (en) 1973-10-18 1976-10-05 Daniel Silverman Parallel operation of seismic vibrators without phase control
US4168485A (en) 1974-08-12 1979-09-18 Continental Oil Company Simultaneous use of pseudo-random control signals in vibrational exploration methods
US4545039A (en) 1982-09-09 1985-10-01 Western Geophysical Co. Of America Methods for seismic exploration
US4675851A (en) 1982-09-09 1987-06-23 Western Geophysical Co. Method for seismic exploration
US4575830A (en) 1982-10-15 1986-03-11 Schlumberger Technology Corporation Indirect shearwave determination
US4594662A (en) 1982-11-12 1986-06-10 Schlumberger Technology Corporation Diffraction tomography systems and methods with fixed detector arrays
US4562540A (en) 1982-11-12 1985-12-31 Schlumberger Technology Corporation Diffraction tomography system and methods
FR2543306B1 (fr) 1983-03-23 1985-07-26 Elf Aquitaine Procede et dispositif pour l'optimisation des donnees sismiques
US4924390A (en) 1985-03-04 1990-05-08 Conoco, Inc. Method for determination of earth stratum elastic parameters using seismic energy
US4715020A (en) 1986-10-29 1987-12-22 Western Atlas International, Inc. Simultaneous performance of multiple seismic vibratory surveys
FR2589587B1 (fr) 1985-10-30 1988-02-05 Inst Francais Du Petrole Procede de prospection sismique marine utilisant un signal vibratoire code et dispositif pour sa mise en oeuvre
US4707812A (en) 1985-12-09 1987-11-17 Atlantic Richfield Company Method of suppressing vibration seismic signal correlation noise
US4823326A (en) 1986-07-21 1989-04-18 The Standard Oil Company Seismic data acquisition technique having superposed signals
US4686654A (en) 1986-07-31 1987-08-11 Western Geophysical Company Of America Method for generating orthogonal sweep signals
US4766574A (en) 1987-03-31 1988-08-23 Amoco Corporation Method for depth imaging multicomponent seismic data
US4953657A (en) 1987-11-30 1990-09-04 Halliburton Geophysical Services, Inc. Time delay source coding
US4969129A (en) 1989-09-20 1990-11-06 Texaco Inc. Coding seismic sources
US4982374A (en) 1989-10-23 1991-01-01 Halliburton Geophysical Services, Inc. Method of source coding and harmonic cancellation for vibrational geophysical survey sources
GB9011836D0 (en) 1990-05-25 1990-07-18 Mason Iain M Seismic surveying
US5469062A (en) 1994-03-11 1995-11-21 Baker Hughes, Inc. Multiple depths and frequencies for simultaneous inversion of electromagnetic borehole measurements
GB2293010B (en) 1994-07-07 1998-12-09 Geco As Method of processing seismic data
EP0766836B1 (en) 1995-04-18 2003-01-29 Western Atlas International, Inc. Uniform subsurface coverage at steep dips
US5924049A (en) 1995-04-18 1999-07-13 Western Atlas International, Inc. Methods for acquiring and processing seismic data
US5721710A (en) 1995-09-29 1998-02-24 Atlantic Richfield Company High fidelity vibratory source seismic method with source separation
US5719821A (en) 1995-09-29 1998-02-17 Atlantic Richfield Company Method and apparatus for source separation of seismic vibratory signals
US5715213A (en) 1995-11-13 1998-02-03 Mobil Oil Corporation High fidelity vibratory source seismic method using a plurality of vibrator sources
US5790473A (en) 1995-11-13 1998-08-04 Mobil Oil Corporation High fidelity vibratory source seismic method for use in vertical seismic profile data gathering with a plurality of vibratory seismic energy sources
US5822269A (en) 1995-11-13 1998-10-13 Mobil Oil Corporation Method for separation of a plurality of vibratory seismic energy source signals
US5838634A (en) 1996-04-04 1998-11-17 Exxon Production Research Company Method of generating 3-D geologic models incorporating geologic and geophysical constraints
GB9612471D0 (en) 1996-06-14 1996-08-14 Geco As Method and apparatus for multiple seismic vibratory surveys
US5878372A (en) 1997-03-04 1999-03-02 Western Atlas International, Inc. Method for simultaneous inversion processing of well log data using a plurality of earth models
US5999489A (en) 1997-03-21 1999-12-07 Tomoseis Inc. High vertical resolution crosswell seismic imaging
US6014342A (en) 1997-03-21 2000-01-11 Tomo Seis, Inc. Method of evaluating a subsurface region using gather sensitive data discrimination
US5920828A (en) 1997-06-02 1999-07-06 Baker Hughes Incorporated Quality control seismic data processing system
FR2765692B1 (fr) 1997-07-04 1999-09-10 Inst Francais Du Petrole Methode pour modeliser en 3d l'impedance d'un milieu heterogene
GB2329043B (en) 1997-09-05 2000-04-26 Geco As Method of determining the response caused by model alterations in seismic simulations
US5999488A (en) 1998-04-27 1999-12-07 Phillips Petroleum Company Method and apparatus for migration by finite differences
US6219621B1 (en) 1998-06-30 2001-04-17 Exxonmobil Upstream Research Co. Sparse hyperbolic inversion of seismic data
US6388947B1 (en) 1998-09-14 2002-05-14 Tomoseis, Inc. Multi-crosswell profile 3D imaging and method
US6574564B2 (en) 1998-10-01 2003-06-03 Institut Francais Du Petrole 3D prestack seismic data migration method
FR2784195B1 (fr) 1998-10-01 2000-11-17 Inst Francais Du Petrole Methode pour realiser en 3d avant sommation, une migration de donnees sismiques
US6225803B1 (en) 1998-10-29 2001-05-01 Baker Hughes Incorporated NMR log processing using wavelet filter and iterative inversion
US6021094A (en) 1998-12-03 2000-02-01 Sandia Corporation Method of migrating seismic records
US6754588B2 (en) 1999-01-29 2004-06-22 Platte River Associates, Inc. Method of predicting three-dimensional stratigraphy using inverse optimization techniques
US6058073A (en) 1999-03-30 2000-05-02 Atlantic Richfield Company Elastic impedance estimation for inversion of far offset seismic sections
FR2792419B1 (fr) 1999-04-16 2001-09-07 Inst Francais Du Petrole Methode pour obtenir un modele optimal d'une caracteristique physique dans un milieu heterogene, tel que le sous-sol
GB9927395D0 (en) 1999-05-19 2000-01-19 Schlumberger Holdings Improved seismic data acquisition method
US6327537B1 (en) 1999-07-19 2001-12-04 Luc T. Ikelle Multi-shooting approach to seismic modeling and acquisition
FR2798197B1 (fr) 1999-09-02 2001-10-05 Inst Francais Du Petrole Methode pour former un modele d'une formation geologique, contraint par des donnees dynamiques et statiques
EP2296013B1 (en) 1999-10-22 2016-03-30 CGG Services (NL) B.V. Method of estimating elastic and compositional parameters from seismic and echo-acoustic data
FR2800473B1 (fr) 1999-10-29 2001-11-30 Inst Francais Du Petrole Methode pour modeliser en 2d ou 3d un milieu heterogene tel que le sous-sol decrit par plusieurs parametres physiques
US6480790B1 (en) 1999-10-29 2002-11-12 Exxonmobil Upstream Research Company Process for constructing three-dimensional geologic models having adjustable geologic interfaces
US6836448B2 (en) 2000-01-21 2004-12-28 Schlumberger Technology Corporation System and method for seismic wavefield separation
WO2001053853A1 (en) 2000-01-21 2001-07-26 Schlumberger Holdings Limited System and method for estimating seismic material properties
US6826486B1 (en) 2000-02-11 2004-11-30 Schlumberger Technology Corporation Methods and apparatus for predicting pore and fracture pressures of a subsurface formation
FR2805051B1 (fr) 2000-02-14 2002-12-06 Geophysique Cie Gle Methode de surveillance sismique d'une zone souterraine par utilisation simultanee de plusieurs sources vibrosismiques
GB2359363B (en) 2000-02-15 2002-04-03 Geco Prakla Processing simultaneous vibratory seismic data
US6687659B1 (en) 2000-03-24 2004-02-03 Conocophillips Company Method and apparatus for absorbing boundary conditions in numerical finite-difference acoustic applications
US6317695B1 (en) 2000-03-30 2001-11-13 Nutec Sciences, Inc. Seismic data processing method
US6687619B2 (en) 2000-10-17 2004-02-03 Westerngeco, L.L.C. Method of using cascaded sweeps for source coding and harmonic cancellation
US20020120429A1 (en) 2000-12-08 2002-08-29 Peter Ortoleva Methods for modeling multi-dimensional domains using information theory to resolve gaps in data and in theories
FR2818753B1 (fr) 2000-12-21 2003-03-21 Inst Francais Du Petrole Methode et dispositif de prospection sismique par emission simultanee de signaux sismisques obtenus en codant un signal par des sequences pseudo aleatoires
FR2821677B1 (fr) 2001-03-05 2004-04-30 Geophysique Cie Gle Perfectionnements aux procedes d'inversion tomographique d'evenements pointes sur les donnees sismiques migrees
US6751558B2 (en) 2001-03-13 2004-06-15 Conoco Inc. Method and process for prediction of subsurface fluid and rock pressures in the earth
US6927698B2 (en) 2001-08-27 2005-08-09 Larry G. Stolarczyk Shuttle-in receiver for radio-imaging underground geologic structures
US6545944B2 (en) 2001-05-30 2003-04-08 Westerngeco L.L.C. Method for acquiring and processing of data from two or more simultaneously fired sources
GB2379013B (en) 2001-08-07 2005-04-20 Abb Offshore Systems Ltd Microseismic signal processing
US6593746B2 (en) 2001-08-27 2003-07-15 Larry G. Stolarczyk Method and system for radio-imaging underground geologic structures
US7069149B2 (en) 2001-12-14 2006-06-27 Chevron U.S.A. Inc. Process for interpreting faults from a fault-enhanced 3-dimensional seismic attribute volume
US7330799B2 (en) 2001-12-21 2008-02-12 Société de commercialisation des produits de la recherche appliquée-Socpra Sciences et Génie s.e.c. Method and algorithm for using surface waves
US6842701B2 (en) 2002-02-25 2005-01-11 Westerngeco L.L.C. Method of noise removal for cascaded sweep data
GB2387226C (en) 2002-04-06 2008-05-12 Westerngeco Ltd A method of seismic surveying
FR2839368B1 (fr) 2002-05-06 2004-10-01 Total Fina Elf S A Methode de decimation de traces sismiques pilotee par le trajet sismique
US6832159B2 (en) 2002-07-11 2004-12-14 Schlumberger Technology Corporation Intelligent diagnosis of environmental influence on well logs with model-based inversion
FR2843202B1 (fr) 2002-08-05 2004-09-10 Inst Francais Du Petrole Methode pour former un modele representatif de la distribution d'une grandeur physique dans une zone souterraine, affranchi de l'effet de bruits correles entachant des donnees d'exploration
WO2004034088A2 (en) 2002-10-04 2004-04-22 Paradigm Geophysical Corporation Method and system for limited frequency seismic imaging
GB2396448B (en) 2002-12-21 2005-03-02 Schlumberger Holdings System and method for representing and processing and modeling subterranean surfaces
US6735527B1 (en) 2003-02-26 2004-05-11 Landmark Graphics Corporation 3-D prestack/poststack multiple prediction
US6999880B2 (en) 2003-03-18 2006-02-14 The Regents Of The University Of California Source-independent full waveform inversion of seismic data
US7184367B2 (en) 2003-03-27 2007-02-27 Exxonmobil Upstream Research Company Method to convert seismic traces into petrophysical property logs
US7072767B2 (en) 2003-04-01 2006-07-04 Conocophillips Company Simultaneous inversion for source wavelet and AVO parameters from prestack seismic data
MXPA05010458A (es) 2003-04-01 2006-03-21 Exxonmobil Upstream Res Co Fuente vibratoria de alta frecuencia conformada.
NO322089B1 (no) 2003-04-09 2006-08-14 Norsar V Daglig Leder Fremgangsmate for simulering av lokale prestakk dypmigrerte seismiske bilder
GB2400438B (en) 2003-04-11 2005-06-01 Westerngeco Ltd Determination of waveguide parameters
US6970397B2 (en) 2003-07-09 2005-11-29 Gas Technology Institute Determination of fluid properties of earth formations using stochastic inversion
US6882938B2 (en) 2003-07-30 2005-04-19 Pgs Americas, Inc. Method for separating seismic signals from two or more distinct sources
US6944546B2 (en) 2003-10-01 2005-09-13 Halliburton Energy Services, Inc. Method and apparatus for inversion processing of well logging data in a selected pattern space
US6901333B2 (en) 2003-10-27 2005-05-31 Fugro N.V. Method and device for the generation and application of anisotropic elastic parameters
US7046581B2 (en) 2003-12-01 2006-05-16 Shell Oil Company Well-to-well tomography
US20050128874A1 (en) 2003-12-15 2005-06-16 Chevron U.S.A. Inc. Methods for acquiring and processing seismic data from quasi-simultaneously activated translating energy sources
US7791980B2 (en) 2004-05-21 2010-09-07 Westerngeco L.L.C. Interpolation and extrapolation method for seismic recordings
US7836044B2 (en) * 2004-06-22 2010-11-16 Google Inc. Anticipated query generation and processing in a search engine
FR2872584B1 (fr) 2004-06-30 2006-08-11 Inst Francais Du Petrole Methode pour simuler le depot sedimentaire dans un bassin respectant les epaisseurs des sequences sedimentaires
US7646924B2 (en) 2004-08-09 2010-01-12 David Leigh Donoho Method and apparatus for compressed sensing
US7480206B2 (en) 2004-09-13 2009-01-20 Chevron U.S.A. Inc. Methods for earth modeling and seismic imaging using interactive and selective updating
GB2422433B (en) 2004-12-21 2008-03-19 Sondex Wireline Ltd Method and apparatus for determining the permeability of earth formations
US7373251B2 (en) 2004-12-22 2008-05-13 Marathon Oil Company Method for predicting quantitative values of a rock or fluid property in a reservoir using seismic data
US7230879B2 (en) 2005-02-12 2007-06-12 Chevron U.S.A. Inc. Method and apparatus for true relative amplitude correction of seismic data for normal moveout stretch effects
EP1859301B1 (en) 2005-02-22 2013-07-17 Paradigm Geophysical Ltd. Multiple suppression in angle domain time and depth migration
US7840625B2 (en) 2005-04-07 2010-11-23 California Institute Of Technology Methods for performing fast discrete curvelet transforms of data
US8438142B2 (en) * 2005-05-04 2013-05-07 Google Inc. Suggesting and refining user input based on original user input
US7271747B2 (en) 2005-05-10 2007-09-18 Rice University Method and apparatus for distributed compressed sensing
US7405997B2 (en) 2005-08-11 2008-07-29 Conocophillips Company Method of accounting for wavelet stretch in seismic data
US7516124B2 (en) * 2005-12-20 2009-04-07 Yahoo! Inc. Interactive search engine
WO2007046711A1 (en) 2005-10-18 2007-04-26 Sinvent As Geological response data imaging with stream processors
AU2006235820B2 (en) 2005-11-04 2008-10-23 Westerngeco Seismic Holdings Limited 3D pre-stack full waveform inversion
FR2895091B1 (fr) 2005-12-21 2008-02-22 Inst Francais Du Petrole Methode pour mettre a jour un modele geologique par des donnees sismiques
GB2436626B (en) 2006-03-28 2008-08-06 Westerngeco Seismic Holdings Method of evaluating the interaction between a wavefield and a solid body
US7620534B2 (en) 2006-04-28 2009-11-17 Saudi Aramco Sound enabling computerized system for real time reservoir model calibration using field surveillance data
US20070274155A1 (en) 2006-05-25 2007-11-29 Ikelle Luc T Coding and Decoding: Seismic Data Modeling, Acquisition and Processing
US7725266B2 (en) 2006-05-31 2010-05-25 Bp Corporation North America Inc. System and method for 3D frequency domain waveform inversion based on 3D time-domain forward modeling
US7599798B2 (en) 2006-09-11 2009-10-06 Westerngeco L.L.C. Migrating composite seismic response data to produce a representation of a seismic volume
EP2104869B1 (en) 2007-01-20 2012-01-25 Spectraseis AG Time reverse reservoir localization
US7715986B2 (en) 2007-05-22 2010-05-11 Chevron U.S.A. Inc. Method for identifying and removing multiples for imaging with beams
JP2009063942A (ja) 2007-09-10 2009-03-26 Sumitomo Electric Ind Ltd 遠赤外線カメラ用レンズ、レンズユニット及び撮像装置
US20090070042A1 (en) 2007-09-11 2009-03-12 Richard Birchwood Joint inversion of borehole acoustic radial profiles for in situ stresses as well as third-order nonlinear dynamic moduli, linear dynamic elastic moduli, and static elastic moduli in an isotropically stressed reference state
US20090083006A1 (en) 2007-09-20 2009-03-26 Randall Mackie Methods and apparatus for three-dimensional inversion of electromagnetic data
US20090164186A1 (en) 2007-12-20 2009-06-25 Bhp Billiton Innovation Pty Ltd. Method for determining improved estimates of properties of a model
US8577660B2 (en) 2008-01-23 2013-11-05 Schlumberger Technology Corporation Three-dimensional mechanical earth modeling
EP2105765A1 (en) 2008-03-28 2009-09-30 Schlumberger Holdings Limited Simultaneous inversion of induction data for dielectric permittivity and electric conductivity
US8275592B2 (en) 2008-04-07 2012-09-25 Westerngeco L.L.C. Joint inversion of time domain controlled source electromagnetic (TD-CSEM) data and further data
US8494777B2 (en) 2008-04-09 2013-07-23 Schlumberger Technology Corporation Continuous microseismic mapping for real-time 3D event detection and location
US8345510B2 (en) 2008-06-02 2013-01-01 Pgs Geophysical As Method for aquiring and processing marine seismic data to extract and constructively use the up-going and down-going wave-fields emitted by the source(s)
BRPI0918020B8 (pt) 2008-08-15 2020-01-28 Bp Corp North America Inc métodos de exploração sísmica
US20100054082A1 (en) 2008-08-29 2010-03-04 Acceleware Corp. Reverse-time depth migration with reduced memory requirements
US8296069B2 (en) * 2008-10-06 2012-10-23 Bp Corporation North America Inc. Pseudo-analytical method for the solution of wave equations
US7616523B1 (en) 2008-10-22 2009-11-10 Pgs Geophysical As Method for combining pressure and motion seismic signals from streamers where sensors are not at a common depth
US9213119B2 (en) * 2008-10-29 2015-12-15 Conocophillips Company Marine seismic acquisition
US20100118651A1 (en) 2008-11-10 2010-05-13 Chevron U.S.A. Inc. Method for generation of images related to a subsurface region of interest
US20100142316A1 (en) 2008-12-07 2010-06-10 Henk Keers Using waveform inversion to determine properties of a subsurface medium
US8095345B2 (en) 2009-01-20 2012-01-10 Chevron U.S.A. Inc Stochastic inversion of geophysical data for estimating earth model parameters
US9052410B2 (en) * 2009-02-12 2015-06-09 Conocophillips Company Multiple seismic signal inversion
US8352190B2 (en) * 2009-02-20 2013-01-08 Exxonmobil Upstream Research Company Method for analyzing multiple geophysical data sets

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798982A (en) * 1996-04-29 1998-08-25 The Trustees Of Columbia University In The City Of New York Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models
US6549854B1 (en) * 1999-02-12 2003-04-15 Schlumberger Technology Corporation Uncertainty constrained subsurface modeling
US20100018718A1 (en) * 2006-09-28 2010-01-28 Krebs Jerome R Iterative inversion of data from simultaneous geophysical sources
US20080189043A1 (en) * 2007-02-06 2008-08-07 Conocophillips Company Direct Time Lapse Inversion of Seismic Data
WO2009117174A1 (en) * 2008-03-21 2009-09-24 Exxonmobil Upstream Research Company An efficient method for inversion of geophysical data

Also Published As

Publication number Publication date
EP2622457A1 (en) 2013-08-07
CN103119552B (zh) 2016-06-08
SG188191A1 (en) 2013-04-30
AU2011312800B2 (en) 2014-10-16
CA2807575C (en) 2016-12-13
KR101908278B1 (ko) 2018-10-17
RU2013119384A (ru) 2014-11-10
AU2011312800A1 (en) 2013-04-11
MY163568A (en) 2017-09-29
US20120073825A1 (en) 2012-03-29
KR20140014074A (ko) 2014-02-05
EP2622457A4 (en) 2018-02-21
CA2807575A1 (en) 2012-04-12
US8775143B2 (en) 2014-07-08
CN103119552A (zh) 2013-05-22
BR112013002842A2 (pt) 2016-06-07
WO2012047378A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
RU2582480C2 (ru) Кодирование одновременных источников и разделение источников в качестве практического решения по инверсии полного волнового поля
AU2011337143B2 (en) Simultaneous source inversion for marine streamer data with cross-correlation objective function
RU2612896C2 (ru) Ортогональное кодирование источника и приемника
EP2260331B1 (en) An efficient method for inversion of geophysical data
US8437998B2 (en) Hybrid method for full waveform inversion using simultaneous and sequential source method
EP2067112B1 (en) Iterative inversion of data from simultaneous geophysical sources
RU2570827C2 (ru) Гибридный способ для полноволновой инверсии с использованием способа одновременных и последовательных источников

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180816