RU2548394C1 - Рамановский волоконный импульсный лазер - Google Patents

Рамановский волоконный импульсный лазер Download PDF

Info

Publication number
RU2548394C1
RU2548394C1 RU2013159340/28A RU2013159340A RU2548394C1 RU 2548394 C1 RU2548394 C1 RU 2548394C1 RU 2013159340/28 A RU2013159340/28 A RU 2013159340/28A RU 2013159340 A RU2013159340 A RU 2013159340A RU 2548394 C1 RU2548394 C1 RU 2548394C1
Authority
RU
Russia
Prior art keywords
radiation
raman
laser
fiber
resonator
Prior art date
Application number
RU2013159340/28A
Other languages
English (en)
Inventor
Сергей Михайлович Кобцев
Алексей Владимирович Иваненко
Original Assignee
Общество с ограниченной ответственностью "Техноскан-Лаб" (ООО "Техноскан-Лаб")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Техноскан-Лаб" (ООО "Техноскан-Лаб") filed Critical Общество с ограниченной ответственностью "Техноскан-Лаб" (ООО "Техноскан-Лаб")
Priority to RU2013159340/28A priority Critical patent/RU2548394C1/ru
Priority to PCT/RU2014/000724 priority patent/WO2015102519A1/ru
Application granted granted Critical
Publication of RU2548394C1 publication Critical patent/RU2548394C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1109Active mode locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre

Abstract

Рамановский волоконный импульсный лазер содержит оптически связанные источник излучения накачки, поддерживающий поляризацию излучения волоконный кольцевой резонатор, содержащий рамановское усиливающее волокно, преобразующее излучение накачки в излучение первого или более высокого стоксового компонента рамановского рассеяния. Также лазер содержит волоконный модуль спектрального сведения для введения излучения накачки в кольцевой резонатор, позволяющий ввести излучение накачки в кольцевой резонатор и пропускающий усиливаемое излучение рамановского импульсного лазера, поляризационно-зависимый ответвитель для вывода излучения из резонатора и минимум один изолятор, обеспечивающий однонаправленную генерацию излучения. В резонатор лазера введен элемент активной синхронизации мод излучения на основе амплитудного или фазового модулятора. Технический результат заключается в обеспечении возможности генерации стабильных когерентных импульсов с частотой следования более 1 МГц в широком спектральном диапазоне при использовании излучения накачки с различными длинами волн. 4 з.п. ф-лы, 3 ил.

Description

Настоящее изобретение относится к лазерам - приборам для генерации когерентных электромагнитных волн и промышленно применимо в устройствах и системах, использующих лазерное излучение.
Из существующего уровня техники известен волоконный кольцевой эрбиевый лазер с синхронизацией мод излучения, реализованной с помощью внутрирезонаторной амплитудной модуляции излучения на частоте, равной межмодовому интервалу резонатора лазера (J.D. Kafka et al. Mode-locked erbium-doped fiber laser with soliton pulse shaping. Opt. Lett., 14 (22), pp. 1269-1271 (1989)). Недостатком данного технического решения является то, что спектральный диапазон излучения импульсов ограничен рабочим спектральным диапазоном эрбиевого лазера, ширина этого спектрального диапазона составляет в лучшем случае несколько десятков нанометров вблизи длины волны 1550 нм, этот относительно узкий рабочий спектральный диапазон задан характеристиками используемой активной среды - световода, легированного ионами эрбия. Кроме того, используемое в резонаторе лазера волокно без поддержки поляризации излучения не подавляет эффект нелинейной эволюции поляризации излучения (V.J. Matsas et al. Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation. Electron. Lett. 28, 1391 (1992)), который инициирует пассивную синхронизацию мод излучения и проявляется одновременно с активной синхронизацией мод излучения. Неконтролируемая паразитная пассивная синхронизация мод излучения вносит нестабильность в генерацию лазера в режиме активной синхронизации мод излучения, что проявляется в существенно более увеличенном временном ″дрожании″ импульсов и в существенно более увеличенной амплитудной нестабильности импульсов излучения, которая может приводить даже к пропаданию отдельных импульсов из их последовательности.
Наиболее близким к заявленному техническому решению является волоконный лазер с активной синхронизацией мод излучения с использованием динамически перестраиваемого оптического фильтра и элемента обратной связи для автоподстройки скорости спектральной перестройки полосы пропускания оптического фильтра (патент ЕР 2264841 А2, опубл. 22.12.2010, Bulletin 2010/51). Синхронизация мод излучения в этом лазере осуществляется за счет свипирования линии генерации лазера с частотой, зависящей от времени обхода резонатора лазера. Данное решение предусматривает (как вариант) использование в резонаторе лазера поддерживающих поляризацию излучения элементов и элемента, задающего поляризацию излучения, - поляризационно-зависимого ответвителя, а также рамановской усиливающей среды. Недостатком этого технического решения является необходимость использования относительно длинного резонатора лазера для того, чтобы понизить частоту свипирования до такой, с какой может перестраиваться спектрально-селективный перестраиваемый фильтр (не более 1 МГц: C.M. Eigenwillig et al. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers. Nature Communications, 4, article number: 1848 (2013)). Это ограничивает частоту повторения импульсов этого лазера величиной 1 МГц.
Задачей, на решение которой направлено заявляемое изобретение, является создание компактного рамановского волоконного импульсного лазера с частотой следования когерентных импульсов более 1 МГц при одновременном существенном улучшении некоторых ключевых параметров излучения: как минимум в несколько раз уменьшеном временном ″дрожании″ импульсов и как минимум в несколько раз уменьшеной амплитудной нестабильности импульсов излучения. Высокая частота следования импульсов излучения (>1 МГц) позволяет реализовать принципиально иной механизм взаимодействия излучения с веществом - абляцию при взаимодействии излучения с поверхностью твердого тела и фотомодификацию материала при взаимодействии с объемной прозрачной средой. Кроме того, рамановская среда в качестве усиливающей среды позволяет получать аналогичные параметры излучения в широком спектральном диапазоне за счет применения излучения накачки с различными длинами волн, а также за счет использования излучения различных стоксовых компонент вынужденного комбинационного (рамановского) рассеяния.
Данная задача решается за счет того, что в известном рамановском волоконном импульсном лазере, содержащем оптически связанные источник излучения накачки, поддерживающий поляризацию излучения волоконный кольцевой резонатор, содержащий рамановское усиливающее волокно, преобразующее излучение накачки в излучение первого или более высокого стоксового компонента вынужденного комбинационного (рамановского) рассеяния, минимум один волоконный модуль спектрального сведения для введения излучения накачки в кольцевой резонатор, позволяющий ввести излучение накачки в кольцевой резонатор и пропускающий усиливаемое излучение рамановского импульсного лазера, минимум один поляризационно-зависимый ответвитель для вывода излучения из резонатора, минимум один изолятор, обеспечивающий однонаправленную генерацию излучения, согласно изобретению в резонатор лазера введен элемент активной синхронизации мод излучения на основе амплитудного или фазового модулятора.
В частности, в качестве рамановского усиливающего волокна может быть использовано как стеклянное оптическое волокно, так и стеклянное оптическое волокно, легированное оксидами германия, фосфора, а также их сочетанием, при этом в оксидную матрицу может входить соединение химического элемента Si, Ν, Ga, Al, Fe, F, Ti, В, Sn, Ba, Та, Zr, Bi.
В частности, источником излучения накачки рамановского импульсного лазера может служить рамановский лазер при использовании в качестве усиливающего волокна стекловолокна, легированного оксидами германия, фосфора, а также их сочетанием, при этом в оксидную матрицу может входить соединение химического элемента Si, Ν, Ga, Al, Fe, F, Ti, B, Sn, Ba, Та, Zr, Bi, при этом резонатор рамановского лазера образуют две волоконные брэгговские решетки, имеющие перпендикулярные лучу или наклонные штрихи и отражающие излучение первой стоксовой компоненты вынужденного комбинационного (рамановского) рассеяния.
В частности, источником излучения накачки рамановского импульсного лазера могут служить два рамановских лазера при использовании в качестве усиливающего волокна стекловолокна, легированного оксидами германия, фосфора, а также их сочетанием, при этом в оксидную матрицу может входить соединение химического элемента Si, Ν, Ga, Al, Fe, F, Ti, B, Sn, Ba, Та, Zr, Bi, при этом резонаторы двух рамановских лазеров образуют четыре волоконные брэгговские решетки, имеющие перпендикулярные лучу или наклонные штрихи и отражающие излучение первой и второй стоксовых компонент вынужденного комбинационного (рамановского) рассеяния.
В частности, для уменьшения длительности генерируемых лазерных импульсов могут быть использованы электрические импульсы, управляющие элементом активной синхронизации мод, длительность которых не превышает длительность генерируемых импульсов.
Из уровня техники не известно устройство, имеющее совокупность заявляемых признаков, т.е. оно обладает новизной.
Признаки, указанные в описании и формуле прототипа, не позволяют достичь заявляемого технического результата. Лазеры с синхронизацией мод излучения на основе спектрального свипирования линии генерации (Fourier domain mode-locked laser, FDML) не способны свипировать линию генерации в широком диапазоне (5-10 нм и более) с частотой более 1 МГц, поэтому частота следования импульсов этих лазеров ограничена величиной 1 МГц. Для уменьшения частоты свипирования линии генерации в FDML-лазерах используются длинные резонаторы (длиной более 1 км) с межмодовой частотой менее 1 МГц. Значительное увеличение длины резонатора волоконного лазера с синхронизацией мод излучения приводит к тому, что в таком резонаторе преимущественно реализуется режим генерации цугов импульсов (пико- или наносекундных), заполненных стохастической последовательностью более коротких импульсов (S. Smirnov et al. Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation. Optics Express, Vol.20, Issue 24, pp. 27447-27453 (2012)). Эти некогерентные импульсы, часто называемые в литературе ″шумоподобными″ (″noise-like″), имеют очень ограниченную область применения в силу их специфичной структуры, а также в силу нестабильности параметров импульсов, вызванной стохастическим наполнением цугов - увеличенного временного ″дрожания″ импульсов, достигающего нескольких процентов от межимпульсного временного интервала, и увеличенной амплитудной нестабильности импульсов излучения, достигающей нескольких десятков процентов.
Активная синхронизация мод излучения позволяет реализовать режим генерации когерентных импульсов с мегагерцовой и более частотой повторения, имеющих существенно более широкую область применения и обладающих существенно более стабильными параметрами излучения - временное ″дрожание″ импульсов не превышает одного процента от межимпульсного временного интервала, амплитудная нестабильность импульсов излучения не превышает нескольких процентов.
Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является достижение в компактном рамановском волоконном импульсном лазере частоты следования когерентных импульсов более 1 МГц при одновременном существенном улучшении некоторых ключевых параметров излучения: как минимум в несколько раз уменьшеном временном ″дрожании″ импульсов и как минимум в несколько раз уменьшеной амплитудной нестабильности импульсов излучения. Кроме того, использование рамановской усиливающей среды позволяет преобразовывать спектр излучения - смещать его в длинноволновую область спектра, соответствующую излучению первого или более высокого стоксового компонента вынужденного комбинационного (рамановского) рассеяния.
Необходимо отметить, что ни одно отдельно взятое устройство не дает такого эффекта, какой дает совокупность заявленных признаков. До подачи данной заявки было неочевидно, что совокупность заявленных признаков позволит решить задачу создания компактного рамановского волоконного импульсного лазера с частотой следования когерентных импульсов более 1 МГц при одновременном существенном улучшении некоторых ключевых параметров излучения: как минимум в несколько раз уменьшеном временном ″дрожании″ импульсов и как минимум в несколько раз уменьшеной амплитудной нестабильности импульсов излучения.
Сущность изобретения поясняется следующими схемами.
На фиг. 1 представлена схема рамановского волоконного импульсного лазера: 1 - источник излучения накачки, 2 - волоконный модуль спектрального сведения, 3 - рамановское усиливающее волокно, 4 - элемент активной синхронизации мод, 5 - изолятор, 6 - поляризационно-зависимый ответвитель, 7 - выходное изучение лазера.
На фиг. 2 представлена схема рамановского волоконного импульсного лазера, в котором источником излучения накачки рамановского волоконного импульсного лазера служит рамановский лазер, резонатор которого образуют две волоконные брэгговские решетки 8, отражающие излучение первой стоксовой компоненты вынужденного комбинационного (рамановского) рассеяния.
На фиг. 3 представлена схема рамановского волоконного импульсного лазера, в котором источником излучения накачки рамановского волоконного импульсного лазера служат два рамановских лазера, резонаторы которых образуют четыре волоконные брэгговские решетки, отражающие излучение первой (решетки 8) и второй (решетки 9) стоксовых компонент вынужденного комбинационного (рамановского) рассеяния.
Работает устройство следующим образом:
излучение накачки, генерируемое источником 1 оптического излучения накачки, через волоконный модуль спектрального сведения 2 попадает в рамановское усиливающее волокно 3; генерация лазера осуществляется в кольцевом резонаторе, однонаправленный режим генерации обеспечивается изолятором 5, для вывода излучения из резонатора служит поляризационно-зависимый ответвитель 6, который также выполняет функция поляризатора излучения. Синхронизация мод излучения лазера производится элементом активной синхронизации мод излучения 4 на основе амплитудного или фазового модулятора. Для устранения паразитного влияния эффекта нелинейной эволюции поляризации все элементы резонатора выполнены из поддерживающего поляризацию излучения волокна. Лазер генерирует импульсы излучения в спектральной области, соответствующей спектру излучения первой стоксовой компоненты вынужденного комбинационного (рамановского) рассеяния относительно спектра излучения накачки.
При использовании схемы рамановского волоконного импульсного лазера, в котором источником излучения накачки рамановского волоконного импульсного лазера служит рамановский лазер, резонатор которого образуют две волоконные брэгговские решетки 8, отражающие излучение первой стоксовой компоненты вынужденного комбинационного (рамановского) рассеяния, лазер генерирует импульсы излучения в спектральной области, соответствующей спектру излучения второй стоксовой компоненты вынужденного комбинационного (рамановского) рассеяния относительно спектра излучения накачки.
При использовании схемы рамановского волоконного импульсного лазера, в котором источником излучения накачки рамановского волоконного импульсного лазера служат два рамановских лазера, резонаторы которых образуют четыре волоконные брэгговские решетки, отражающие излучение первой (решетки 8) и второй (решетки 9) стоксовых компонент вынужденного комбинационного (рамановского) рассеяния, лазер генерирует импульсы излучения в спектральной области, соответствующей спектру излучения третьей стоксовой компоненты вынужденного комбинационного (рамановского) рассеяния относительно спектра излучения накачки.
При использовании схемы рамановского волоконного импульсного лазера, в котором источником излучения накачки рамановского волоконного импульсного лазера служат один или два рамановских лазера, их резонаторы могут быть образованы отражающими волоконными брэгговскими решетками, имеющими перпендикулярные лучу или наклонные штрихи.
Для уменьшения длительности генерируемых импульсов необходимо использовать электрические импульсы, управляющие элементом активной синхронизации мод, длительность которых не превышает длительность генерируемых импульсов.

Claims (5)

1. Рамановский волоконный импульсный лазер, содержащий оптически связанные источник излучения накачки, поддерживающий поляризацию излучения волоконный кольцевой резонатор, содержащий рамановское усиливающее волокно, преобразующее излучение накачки в излучение первого или более высокого стоксового компонента вынужденного комбинационного (рамановского) рассеяния, минимум один волоконный модуль спектрального сведения для введения излучения накачки в кольцевой резонатор, позволяющий ввести излучение накачки в кольцевой резонатор и пропускающий усиливаемое излучение рамановского импульсного лазера, минимум один поляризационно-зависимый ответвитель для вывода излучения из резонатора, минимум один изолятор, обеспечивающий однонаправленную генерацию излучения, отличающийся тем, что в резонатор лазера введен элемент активной синхронизации мод излучения на основе амплитудного или фазового модулятора.
2. Лазер по п. 1, отличающийся тем, что в качестве рамановского усиливающего волокна может быть использовано как стеклянное оптическое волокно, так и стеклянное оптическое волокно, легированное оксидами германия, фосфора, а также их сочетанием, при этом в оксидную матрицу может входить соединение химического элемента Si, Ν, Ga, Al, Fe, F, Ti, B, Sn, Ba, Та, Zr, Bi.
3. Лазер по п. 1, отличающийся тем, что источником излучения накачки рамановского импульсного лазера может служить рамановский лазер при использовании в качестве усиливающего волокна стекловолокна, легированного оксидами германия, фосфора, а также их сочетанием, при этом в оксидную матрицу может входить соединение химического элемента Si, Ν, Ga, Al, Fe, F, Ti, B, Sn, Ba, Та, Zr, Bi, при этом резонатор рамановского лазера образуют две волоконные брэгговские решетки, имеющие перпендикулярные лучу или наклонные штрихи и отражающие излучение первой стоксовой компоненты вынужденного комбинационного (рамановского) рассеяния.
4. Лазер по п. 1, отличающийся тем, что источником излучения накачки рамановского импульсного лазера могут служить два рамановских лазера при использовании в качестве усиливающего волокна стекловолокна, легированного оксидами германия, фосфора, а также их сочетанием, при этом в оксидную матрицу может входить соединение химического элемента Si, Ν, Ga, Al, Fe, F, Ti, B, Sn, Ba, Та, Zr, Bi, при этом резонаторы двух рамановских лазеров образуют четыре волоконные брэгговские решетки, имеющие перпендикулярные лучу или наклонные штрихи и отражающие излучение первой и второй стоксовых компонент вынужденного комбинационного (рамановского) рассеяния.
5. Лазер по п. 1, отличающийся тем, что длительность электрических импульсов, управляющих элементом активной синхронизации мод излучения, меньше длительности генерируемых импульсов.
RU2013159340/28A 2013-12-30 2013-12-30 Рамановский волоконный импульсный лазер RU2548394C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2013159340/28A RU2548394C1 (ru) 2013-12-30 2013-12-30 Рамановский волоконный импульсный лазер
PCT/RU2014/000724 WO2015102519A1 (ru) 2013-12-30 2014-09-26 Рамановский волоконный импульсный лазер

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013159340/28A RU2548394C1 (ru) 2013-12-30 2013-12-30 Рамановский волоконный импульсный лазер

Publications (1)

Publication Number Publication Date
RU2548394C1 true RU2548394C1 (ru) 2015-04-20

Family

ID=53289293

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013159340/28A RU2548394C1 (ru) 2013-12-30 2013-12-30 Рамановский волоконный импульсный лазер

Country Status (2)

Country Link
RU (1) RU2548394C1 (ru)
WO (1) WO2015102519A1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216993A1 (en) * 2004-03-05 2007-09-20 The Furukawa Electric Co., Ltd Optical Fiber Laser Using Rare Earth-Added Fiber And Wide Band Light Source
EP1493212B1 (en) * 2002-04-09 2009-10-14 California Institute Of Technology Atomic clock based on an opto-electronic oscillator
RU2008140186A (ru) * 2008-10-09 2010-04-20 Государственное образовательное учреждение высшего профессионального образования Новосибирский государственный университет (НГУ) (RU) Волоконный лазер
EP2264841A2 (en) * 2005-01-20 2010-12-22 Massachusetts Institute of Technology (MIT) Mode locking methods and apparatus
EP2530795A2 (en) * 2008-10-22 2012-12-05 Massachusetts Institute of Technology (MIT) Fourier domain mode locking

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1493212B1 (en) * 2002-04-09 2009-10-14 California Institute Of Technology Atomic clock based on an opto-electronic oscillator
US20070216993A1 (en) * 2004-03-05 2007-09-20 The Furukawa Electric Co., Ltd Optical Fiber Laser Using Rare Earth-Added Fiber And Wide Band Light Source
EP2264841A2 (en) * 2005-01-20 2010-12-22 Massachusetts Institute of Technology (MIT) Mode locking methods and apparatus
RU2008140186A (ru) * 2008-10-09 2010-04-20 Государственное образовательное учреждение высшего профессионального образования Новосибирский государственный университет (НГУ) (RU) Волоконный лазер
EP2530795A2 (en) * 2008-10-22 2012-12-05 Massachusetts Institute of Technology (MIT) Fourier domain mode locking

Also Published As

Publication number Publication date
WO2015102519A1 (ru) 2015-07-09

Similar Documents

Publication Publication Date Title
US8817827B2 (en) Ultraviolet fiber laser system
CA2978360C (en) Passive mode-locked laser system and method for generation of long pulses
Zhang et al. SESAM mode-locked, environmentally stable, and compact dissipative soliton fiber laser
Gao et al. High energy all-fiber Tm-doped femtosecond soliton laser mode-locked by nonlinear polarization rotation
US20170310068A1 (en) Giant-chirp oscillator
JP7452926B2 (ja) 極高繰り返し率を有するレーザパルスを生成するためのレーザシステム及び方法
Kivistö et al. 600-fs mode-locked Tm–Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber
CN102368588B (zh) 一种提高超短脉冲对比度的方法
Vazquez-Zuniga et al. Wavelength-tunable, passively mode-locked erbium-doped fiber master-oscillator incorporating a semiconductor saturable absorber mirror
Yue et al. Spectral and repetition rate programmable fiber laser
Mkrtchyan et al. Dispersion managed mode-locking in all-fiber polarization-maintaining Nd-doped laser at 920 nm
RU2548394C1 (ru) Рамановский волоконный импульсный лазер
WO2019053487A1 (en) LASER OR STABILIZED OPTICAL AMPLIFIER AND METHOD OF STABILIZATION
Liu et al. Square nanosecond mode-locked laser based on nonlinear amplifying loop mirror
JP2501468B2 (ja) モ―ド同期ファイバレ―ザ装置
Cserteg et al. High pulse energy sub-nanosecond Tm-doped fiber laser
Huang et al. 1-GHz, compact mode locked femtosecond all-polarization maintaining erbium-doped fiber oscillator
Chen et al. High repetition rate, low jitter, fundamentally mode-locked soliton Er-fiber laser
Jiang Design and analysis of passively mode-locked fiber lasers based on saturable absorber for multi-wavelength applications
Yang et al. Highly Efficient Multiple Watt Gain-Switched 1.7 μm All-Fiber Laser Pumped by 1.6 μm Harmonic Dissipative Soliton Resonance Pulses
Cáceres-Pablo et al. Real-Time Transition Dynamics of Harmonically Mode-Locked Femtosecond Ultralong Ring Fiber Lasers
Dias et al. Dynamic operation of an assynchronous mode-lock Erbium-doped fiber laser
Katano et al. Monolithic mode-locked erbium-doped LiNbO3 waveguide laser with dielectric multilayer mirror
Pasquazi et al. Highly stable 200GHz soliton microring resonator laser based on filter-driven four wave mixing
Herda et al. Semiconductor reflection modulator synchronizes mode-locked fiber oscillators

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161231