RU2454532C1 - Способ разработки залежи высоковязкой нефти - Google Patents

Способ разработки залежи высоковязкой нефти Download PDF

Info

Publication number
RU2454532C1
RU2454532C1 RU2010150933/03A RU2010150933A RU2454532C1 RU 2454532 C1 RU2454532 C1 RU 2454532C1 RU 2010150933/03 A RU2010150933/03 A RU 2010150933/03A RU 2010150933 A RU2010150933 A RU 2010150933A RU 2454532 C1 RU2454532 C1 RU 2454532C1
Authority
RU
Russia
Prior art keywords
well
formation
tubing
solvent
oil
Prior art date
Application number
RU2010150933/03A
Other languages
English (en)
Inventor
Альфред Ядгарович Давлетбаев (RU)
Альфред Ядгарович Давлетбаев
Лиана Ароновна Ковалева (RU)
Лиана Ароновна Ковалева
Расул Рашитович Зиннатуллин (RU)
Расул Рашитович Зиннатуллин
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Башкирский государственный университет", ГОУ ВПО БашГУ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Башкирский государственный университет", ГОУ ВПО БашГУ filed Critical Государственное образовательное учреждение высшего профессионального образования "Башкирский государственный университет", ГОУ ВПО БашГУ
Priority to RU2010150933/03A priority Critical patent/RU2454532C1/ru
Application granted granted Critical
Publication of RU2454532C1 publication Critical patent/RU2454532C1/ru

Links

Images

Abstract

Изобретение относится к области нефтедобывающей промышленности и может быть использовано при разработке залежей со сверхвязкой нефтью и битумом. Способ включает вскрытие пласта, закачку растворителя с одновременной обработкой пласта высокочастотным электромагнитным полем, передаваемым от генератора к забойному излучателю. Вскрытие пласта проводят, по меньшей мере, одной скважиной. Электромагнитную энергию передают посредством фидера и коротко замыкающейся металлической планшайбы, на которую подвешивают колонну насосно-компрессорной трубы, центрирующей диэлектрической шайбы, замкнутого к насосно-компрессорной трубе на расстоянии четверти длины волны металлического штока, являющегося продолжением внутреннего проводника фидера, диэлектрических шайб. Скважину сначала переводят в режим нагнетания. Затем осуществляют выдержку скважины без какого-либо воздействия. Затем скважину переводят в режим добычи и осуществляют отбор смеси нефти с растворителем из пласта без высокочастотного электромагнитного воздействия. Повышается эффективность и рентабельность, повышается нефтеотдача. 5 з.п. ф-лы, 4 ил.

Description

Изобретение относится к области нефтедобывающей промышленности и может быть использовано для повышения нефтеотдачи пласта при разработке залежей со сверхвязкой нефтью и битума.
Существует способ разработки углеводородных залежей, включающий закачку смешивающего агента, например растворителя (П.И.Забродин, Н.Л.Раковский, М.Д.Розенберг, «Вытеснение нефти из пласта растворителем». - М.: Недра, 1968, 224 с.). Недостатком этого способа является его низкая эффективность при разработке месторождений с высоковязкой нефтью и битумами. При закачке «холодного» растворителя возможно снижение температуры в призабойной зоне пласта ниже начальной пластовой. В ряде случаев, это приводит к значительному изменению происходящих в пласте физико-химических процессов, главным образом, к понижению вязкости сверхвязкой нефти и битума. В результате значительно возрастают энергозатраты на преодоление возросшего начального градиента сдвига нефти и снижение вязкости.
Известен способ добычи полезных ископаемых, включающий нагрев пласта высокочастотным электромагнитным полем посредством эксплуатационный скважины при добыче нефти (патент США №2757738, Е21В 43/00). Высокочастотные электромагнитные волны передаются от устья скважины к забою, в качестве линии передачи используется коаксиальная система внутренних и внешних труб скважины: насосно-компрессорная труба и обсадная колонна. Энергетическое и силовое взаимодействие высокочастотных электромагнитных волн с пластом обуславливает возникновение распределенных по объему пласта источников тепла, что приводит к снижению вязкости пластовой жидкости.
Недостатками данного способа является небольшая глубина проникновения электромагнитных волн, и, следовательно, низкий охват пласта нагревом, а также большие потери электромагнитной энергии при реализации метода, т.к. вследствие конечной электропроводности труб они нагреваются и электромагнитная энергия бесполезно рассеивается в окружающих скважину породах.
Известен также способ теплового воздействия на углеводородную залежь (а.с. СССР 1723314, кл. E21B 43/24, 43/22), предусматривающий закачку в пласт через нагнетательную скважину растворителя или смеси растворителей. С целью повышения эффективности способа при воздействии на залежь, содержащую высоковязкую нефть или битум, одновременно с закачкой растворителя ведут обработку пласта высокочастотным полем до достижения температуры на забое нагнетательной скважины, при которой вязкость нефти не превышает вязкости растворителя более чем в десять раз.
Данный способ имеет недостаток, который сдерживает его применение в случае залежей сверхвязких нефтей и битумов: воздействие осуществляется не более, чем в призабойной области нагнетательной скважины. Поэтому, на добычу продукции из ближайших добывающих скважин способ практически не влияет.
Наиболее близким по технической сущности к заявляемому является способ, предусматривающий воздействие на пласт высокочастотным электромагнитным полем с одновременной закачкой смешивающегося агента - растворителя (патент РФ №1824983). Способ предполагает воздействие высокочастотным электромагнитным полем с одновременной закачкой маловязкого агента (растворителя) в нагнетательной скважине. Из окружающих добывающих скважин извлекается смесь нефти и растворителя. Предварительно в добывающих скважинах также ведется обработка высокочастотным электромагнитным полем.
Недостатком указанного способа является его невысокая эффективность и высокая энергетическая затратность при осуществлении способа в залежах со сверхвязкой нефтью и битумом при реальных расстояниях между нагнетательной и добывающими скважинами (около 100 м). В перечисленных выше случаях, области воздействия между нагнетательной и окружающими добывающими скважинами не перекрываются, образуются застойные зоны, в которых отсутствует фильтрация жидкости и перенос тепла, т.к. получаемое тепло только за счет высокочастотного электромагнитного воздействия в добывающих скважинах локализуется в области забоя скважины, а при отборе жидкости происходит «вынос» этого тепла из пласта вместе с добываемым флюидом. Отсюда, неэффективное использование высокочастотной электромагнитной энергии. Как следствие, все произведенные при использовании данного способа затраты значительно превышают стоимость дополнительно добытой продукции и разработка залежи является нерентабельной.
Техническим результатом изобретения является повышение эффективности и рентабельности способа разработки залежи высоковязкой нефти, интенсификация нефтедобычи в залежах сверхвязких нефтей и битума за счет повышения охвата воздействием на пласт нагревом и вытесняющим агентом в призабойной зоне пласта добывающих скважин, максимального использования тепловой энергии с помощью дополнительного переноса тепла в пласт закачиваемым растворителем.
Технический результат достигается тем, что проводят вскрытие пласта по меньшей мере одной скважиной, сначала добывающую скважину переводят в режим нагнетания, затем проводят воздействие высокочастотным электромагнитным полем с одновременной закачкой смешивающегося агента (растворителя) до заполнения 5-10% объема порового пространства пласта; затем осуществляют выдержку скважины без какого-либо воздействия, длительность которой определяется временем релаксации давления в пласте,
Figure 00000001
,
где tp - время релаксации, с, L - расстояние до контура питания скважины, м, χ - коэффициент пьезопроводности пласта, м2/c, t2 - длительность выдержки скважины, с, ty - время установки оборудования для отбора жидкости из пласта,
затем скважину переводят в режим добычи и осуществляют отбор продукта из пласта без высокочастотного электромагнитного воздействия, длительность отбора продукта определяют временем снижения температуры на забое скважины не ниже первоначальной пластовой температуры, после чего все работы повторяют циклически.
На фиг.1 приведена схема обустройства скважины.
На фиг.2 показана динамика изменения температуры на забое скважины.
На фиг.3 приведена динамика расхода растворителя, отбора смеси нефти с растворителем и нефти.
На фиг.4 приведено изменение коэффициента энергетического баланса от доли заполнения порового пространства.
На схеме обустройства скважины, изображенной на фиг.1, высокочастотная электромагнитная энергия от генератора 1 посредством фидера 2, представляющего собой две коаксиальные трубы, вводится в скважину 3, которая включает обсадную колонну 4 и насосно-компрессорную трубу 5. Выкидная линия 6 служит для подачи закачиваемого растворителя и выкачиваемого продукта в сборный пункт. На короткозамыкающую металлическую планшайбу 7 подвешивается колонна насосно-компрессорной трубы 5, а также центрирующая и герметизирующая диэлектрическая шайба 8 и замкнутый к насосно-компрессорной трубе на расстоянии четверть длины волны металлический шток 9, являющийся продолжением внутреннего проводника фидера 2.
Система «обсадная колонная - насосно-компрессорная труба», изолированная специальными диэлектрическими шайбами 10, представляет собой в радиотехническом отношении коаксиальную передающую линию и служит для канализации высокочастотной электромагнитной энергии от устья скважины 15 к забойному излучателю 11. Забойный излучатель 11 представляет собой коаксиально-вибраторную антенну, которая состоит из нижней части насосно-компрессорной трубы 5, выступающей ниже обсадной колонны 4. На фиг.1 изображены также пласт 12, забой скважины 13, окружающие скважину породы 14, устье скважины 15 и пакер 16, который препятствует проникновению растворителя и нефти в межтрубное пространство (между обсадной колонной 4 и насосно-компрессорной трубой 5).
Динамика изменения температуры на забое скважины 13 приведена на фиг.2, динамика расхода закачиваемого растворителя (кривая 1), дебита отборов смеси нефти с растворителем (кривая 2) и нефти (кривая 3) приведена на фиг.3. Из фиг.2 видно, что в период воздействия с длительностью t1 температура на забое 13 резко возрастает, вследствие чего происходит значительный рост расхода закачиваемого растворителя в скважину 3 (фиг.3). Затем при выдержке скважины 3 с длительностью t2 температура на забое 13 снижается из-за потерь тепла в окружающие скважины породы 14. Согласно результатам, приведенным на фиг.2, при отборе с длительностью t3 происходит дальнейшее снижение температуры из-за выноса тепла из пласта 12 вместе добываемой смесью нефти с растворителем. Вследствие достаточно глубокого прогрева призабойной зоны пласта уменьшение температуры до первоначального значения происходит в течение довольно продолжительного промежутка времени, что способствует дополнительной добыче нефти.
На фиг.4 приведено изменение коэффициента энергетического баланса в зависимости от доли заполнения порового пространства пласта. Коэффициент энергетического баланса рассчитывается как отношение энергетического эквивалента дополнительно добытой по этой технологии воздействия нефти ко всем произведенным при использовании данной технологии затратам. В данном случае учитывается потребляемая мощность генератора высокочастотных электромагнитных волн, его коэффициент полезного действия, потери энергии в линии электропередачи от тепловой электростанции, где условно сжигается добытая нефть, до месторасположения генератора, коэффициент полезного действия линии электропередачи и т.д. Оценка энергетического баланса осуществляется в виде коэффициента, равного отношению получаемой в результате ВЧ нагрева дополнительно добытой энергии и потребленной энергии из-за работы генератора 1 высокочастотных электромагнитных волн.
Способ осуществляется следующим образом.
Сначала добывающую скважину 3 переводят в режим нагнетания, по насосно-компрессорной трубе 5 закачивают растворитель, который вытесняет сверхвязкую нефть или битум от забоя скважины 13 в пласт 12 и смешивается с ним. Одновременно, в пласт 12 излучают высокочастотные электромагнитные волны, которые передаются на забойный излучатель 11 от наземного генератора 1 по коаксиальной передающей линии. Вследствие диэлектрических потерь в пласте 12, электромагнитная энергия преобразуется в тепловую энергию, появляются объемные тепловые источники 17 в пласте 12. При закачке растворителя тепло, выделяемое в стенках насосно-компрессорной трубы 5 дополнительно переносится в пласт 12 вместе с растворителем за счет конвекции. Совместное действие тепловых источников 17 в пласте 12 и нагретого от стенок насосно-компрессорной трубы 5 скважины 3 растворителя способствует увеличению расхода закачиваемого растворителя в скважину 3. Это приводит к увеличению площади дренирования и охвата тепловым воздействием в пласте 12. При повышении температуры в пласте 12 и закачке нагретого маловязкого растворителя увеличивается подвижность пластовой жидкости. Закачка растворителя и воздействие высокочастотным электромагнитным полем продолжается до заполнения 5-10% объема порового пространства пласта 12.
Затем осуществляют «выдержку» скважины 3, при этом закачку растворителя и воздействие высокочастотным электромагнитным полем приостанавливают. В пласте 12 происходит перераспределение давления и температуры, увеличивается зона перемешивания. При перераспределении давления в пласте 12 происходит накопление пластовой энергии за счет повышения пластового давления, что в последующем увеличивает количество отбираемой нефти. Длительность выдержки t2 оценивается по времени релаксации пластового давления (в течение которого предполагается установка оборудования для отбора жидкости из пласта 12 и обратный перевод скважины 3 в добычу):
Figure 00000001
,
где tp - время релаксации, с, L - расстояние до контура питания скважины 3, м,
Figure 00000002
- пьезопроводность пласта 12, м2/с, t2 - длительность выдержки скважины 3, ty - время установки оборудования для отбора жидкости из пласта.
Затем скважину 3 переводят в режим добычи и осуществляют отбор смеси нефти с растворителем из пласта 12. Необходимой динамики изменения дебита смеси нефти с растворителем из пласта 12 добиваются подбором оптимального сочетания мощности генератора 1 и давления закачки растворителя скважину 13 в режиме воздействия электромагнитным полем и закачки растворителя в пласт 12. Количество дополнительно добытой нефти за счет заявленного способа на скважине 3 и время эффективного отбора зависит от глубины проникновения растворителя в пласт 12, величины области диффундирования и прогретой зоны пласта 12, скорости охлаждения пласта 12. Длительность отбора t3 определяется временем снижения температуры на забое скважины 13, которая должна составлять не ниже первоначальной пластовой температуры.
Пример 1. Производилось воздействие на пласт, содержащий нефть с вязкостью 1 Па·с при пластовой температуре 15°C. Пористость пласта 0,3, проницаемость 0.5 мкм2, мощность пласта h=10 м, глубина залегания H=700 м, мощность генератора высокочастотных электромагнитных волн 60 кВт, расстояние до контура питания скважины L=60 м, коэффициент пьезопроводности пласта χ=0,00025 м2/с.
Сначала добывающая скважина была переведена в режим нагнетания. После чего, осуществлялось воздействие высокочастотным электромагнитным полем на пласт с одновременной закачкой растворителя до заполнения агентом 6,25% порового пространства пласта. Время воздействия составило t1=46 суток. За время обработки расход закачиваемой жидкости увеличился с 3,30 м3/cyт до 13,73 м3/сут.
Затем осуществлялась выдержка скважины с длительностью 1 сут. Согласно расчетам время релаксации давления в пласте меньше времени выдержки, выполняется условие (ty=0,5 сут)<(t2=1 сут)<(tp=L2/χ=33 сут).
Затем осуществлялся отбор смеси нефти с растворителем до снижения температуры на забое до 18 С, при начальном пластовой температуре 15°С (фиг.2). При этом дополнительная добыча нефти составила 122 тонны. Оценка эффективности метода проведена на основе расчета энергетического баланса. Согласно расчетам коэффициент энергетического баланса в этом случае составил 2,33:1, т.е. на одну энергетически эквивалентно затраченную тонну нефти получено 2,33 тонны нефти.
На фиг.4 приведены результаты оценки коэффициента энергетического баланса (KEM) в зависимости от относительного порового объема (Ср), заполненного растворителем при различных вариантах воздействия. Проведенный расчетный анализ показал, что наиболее эффективной и рентабельной является циклическое воздействие с заполнением растворителем от 5 до 10% порового пространства.
Использование заявленного способа по сравнению с известными способами позволит повысить коэффициент извлечения углеводородов на 10-12%, повысить коэффициент охвата залежи вытесняющим агентом, сократить количество скважин, используемых для разработки месторождений тяжелых нефтей и битумов.

Claims (6)

1. Способ разработки залежи высоковязкой нефти и/или битума, включающий вскрытие пласта, закачку растворителя с одновременной обработкой пласта высокочастотным электромагнитным полем, передаваемым от генератора к забойному излучателю, отличающийся тем, что вскрытие пласта проводят, по меньшей мере, одной скважиной, включающей обсадную колонну и насосно-компрессорную трубу, высокочастотную электромагнитную энергию передают от генератора посредством фидера и короткозамыкающейся металлической планшайбы, на которую подвешивают колонну насосно-компрессорной трубы, центрирующей диэлектрической шайбы, замкнутого к насосно-компрессорной трубе на расстоянии четверти длины волны металлического штока, являющегося продолжением внутреннего проводника фидера, диэлектрических шайб для изоляции системы «обсадная колонна - насосно-компрессорная труба», скважину сначала переводят в режим нагнетания, затем осуществляют выдержку скважины без какого-либо воздействия, затем скважину переводят в режим добычи и осуществляют отбор смеси нефти с растворителем из пласта без высокочастотного электромагнитного воздействия.
2. Способ разработки залежи высоковязкой нефти по п.1, отличающийся тем, что в режиме нагнетания осуществляют закачку растворителя до заполнения 5-10% объема порового пространства пласта.
3. Способ разработки залежи высоковязкой нефти по п.1, отличающийся тем, что длительность выдержки скважины определяется временем релаксации давления в пласте.
4. Способ разработки залежи высоковязкой нефти по п.1, отличающийся тем, что между обсадной колонной и насосно-компрессорной трубой устанавливают пакер.
5. Способ разработки залежи высоковязкой нефти по п.1, отличающийся тем, что все работы повторяют циклически после снижения температуры на забое скважины не ниже первоначальной пластовой температуры.
6. Способ разработки залежи высоковязкой нефти по п.1, отличающийся тем, что все работы повторяют циклически после достижения первоначального (до воздействия) дебита.
RU2010150933/03A 2010-12-13 2010-12-13 Способ разработки залежи высоковязкой нефти RU2454532C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010150933/03A RU2454532C1 (ru) 2010-12-13 2010-12-13 Способ разработки залежи высоковязкой нефти

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010150933/03A RU2454532C1 (ru) 2010-12-13 2010-12-13 Способ разработки залежи высоковязкой нефти

Publications (1)

Publication Number Publication Date
RU2454532C1 true RU2454532C1 (ru) 2012-06-27

Family

ID=46681919

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010150933/03A RU2454532C1 (ru) 2010-12-13 2010-12-13 Способ разработки залежи высоковязкой нефти

Country Status (1)

Country Link
RU (1) RU2454532C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555731C1 (ru) * 2013-12-06 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" Способ разработки обводненных залежей нефти свч электромагнитным воздействием (варианты)
RU2704159C1 (ru) * 2018-08-06 2019-10-24 Региональная общественная организация "Волгоградское научно-техническое общество нефтяников и газовиков им. акад. И.М. Губкина" (РОО "ВНТО НГ им. акад. И.М. Губкина") Способ разработки залежей углеводородов
RU2720338C1 (ru) * 2019-04-13 2020-04-29 Общество с ограниченной ответственностью малое инновационное предприятие "Технологические машины и оборудование" Способ разработки залежей тяжелых нефтей, нефтяных песков и битумов
US11346196B2 (en) 2018-09-21 2022-05-31 Ilmasonic-Science Limited Liability Company Method and apparatus for complex action for extracting heavy crude oil and bitumens using wave technologies

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026358A (en) * 1976-06-23 1977-05-31 Texaco Inc. Method of in situ recovery of viscous oils and bitumens
SU672332A1 (ru) * 1977-02-09 1979-07-05 Башкирский государственный университет им.40-летия Октября Устройство дл ввода высокочастотной электромагнитной энергии в пласт через скважину
RU2060378C1 (ru) * 1993-04-06 1996-05-20 Александр Константинович Шевченко Способ разработки нефтяного пласта
SU1824983A1 (ru) * 1989-12-14 1996-12-10 Башкирский государственный университет им.40-летия Октября Способ добычи полезных ископаемых
RU2108446C1 (ru) * 1995-11-01 1998-04-10 Башкирский государственный университет Способ добычи полезных ископаемых
RU2139415C1 (ru) * 1998-01-21 1999-10-10 Башкирский государственный университет Способ добычи полезных ископаемых
US7677673B2 (en) * 2006-09-26 2010-03-16 Hw Advanced Technologies, Inc. Stimulation and recovery of heavy hydrocarbon fluids
RU2399753C2 (ru) * 2007-07-24 2010-09-20 ГОУ ВПО Башкирский государственный университет, БашГУ Способ разработки залежи высоковязкой нефти или битума

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026358A (en) * 1976-06-23 1977-05-31 Texaco Inc. Method of in situ recovery of viscous oils and bitumens
SU672332A1 (ru) * 1977-02-09 1979-07-05 Башкирский государственный университет им.40-летия Октября Устройство дл ввода высокочастотной электромагнитной энергии в пласт через скважину
SU1824983A1 (ru) * 1989-12-14 1996-12-10 Башкирский государственный университет им.40-летия Октября Способ добычи полезных ископаемых
RU2060378C1 (ru) * 1993-04-06 1996-05-20 Александр Константинович Шевченко Способ разработки нефтяного пласта
RU2108446C1 (ru) * 1995-11-01 1998-04-10 Башкирский государственный университет Способ добычи полезных ископаемых
RU2139415C1 (ru) * 1998-01-21 1999-10-10 Башкирский государственный университет Способ добычи полезных ископаемых
US7677673B2 (en) * 2006-09-26 2010-03-16 Hw Advanced Technologies, Inc. Stimulation and recovery of heavy hydrocarbon fluids
RU2399753C2 (ru) * 2007-07-24 2010-09-20 ГОУ ВПО Башкирский государственный университет, БашГУ Способ разработки залежи высоковязкой нефти или битума

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555731C1 (ru) * 2013-12-06 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" Способ разработки обводненных залежей нефти свч электромагнитным воздействием (варианты)
RU2704159C1 (ru) * 2018-08-06 2019-10-24 Региональная общественная организация "Волгоградское научно-техническое общество нефтяников и газовиков им. акад. И.М. Губкина" (РОО "ВНТО НГ им. акад. И.М. Губкина") Способ разработки залежей углеводородов
US11346196B2 (en) 2018-09-21 2022-05-31 Ilmasonic-Science Limited Liability Company Method and apparatus for complex action for extracting heavy crude oil and bitumens using wave technologies
RU2720338C1 (ru) * 2019-04-13 2020-04-29 Общество с ограниченной ответственностью малое инновационное предприятие "Технологические машины и оборудование" Способ разработки залежей тяжелых нефтей, нефтяных песков и битумов

Similar Documents

Publication Publication Date Title
US11788393B2 (en) Thermal energy delivery and oil production arrangements and methods thereof
RU2414592C1 (ru) Способ и устройство для добычи из подземного месторождения углеводородсодержащего вещества со снижением его вязкости
US20090139716A1 (en) Method of recovering bitumen from a tunnel or shaft with heating elements and recovery wells
US8534350B2 (en) RF fracturing to improve SAGD performance
US8689865B2 (en) Process for enhanced production of heavy oil using microwaves
US20120061080A1 (en) Inline rf heating for sagd operations
CN206439038U (zh) 一种井下原位流体微波电加热器
RU2454532C1 (ru) Способ разработки залежи высоковязкой нефти
US20130008651A1 (en) Method for hydrocarbon recovery using sagd and infill wells with rf heating
CA2911108C (en) Hydrocarbon resource heating system including choke fluid dispenser and related methods
US10087715B2 (en) Arrangement and method for introducing heat into a geological formation by means of electromagnetic induction
CA2898065A1 (en) Pressure cycling with mobilizing fluid circulation for heavy hydrocarbon recovery
US9822622B2 (en) Hydrocarbon resource heating system including choke fluid dispensers and related methods
CA2963459A1 (en) The method of thermal reservoir stimulation
RU2555731C1 (ru) Способ разработки обводненных залежей нефти свч электромагнитным воздействием (варианты)
RU2334097C1 (ru) Способ разработки залежи высоковязкой нефти
RU2630330C1 (ru) Способ разработки залежи битуминозной нефти
CA3059145C (en) Method of producing hydrocarbon resources using an upper rf heating well and a lower producer/injection well and associated apparatus
RU2570586C1 (ru) Способ добычи высоковязкой нефти из нефтяной залежи, расположенной в зоне многолетнемерзлых пород
US10626711B1 (en) Method of producing hydrocarbon resources using an upper RF heating well and a lower producer/injection well and associated apparatus
US9416639B2 (en) Combined RF heating and gas lift for a hydrocarbon resource recovery apparatus and associated methods
CA2963439A1 (en) The method of thermal reservoir stimulation
RU2669967C1 (ru) Способ разработки залежи битуминозной нефти из горизонтальной скважины
RU2669968C1 (ru) Способ разработки залежи битуминозной нефти из горизонтальной скважины
RU2669950C1 (ru) Способ разработки залежи с высоковязкой нефтью

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141214