RU2372738C2 - Method of control of transmission power on basis of evaluation of bit of reverse activity and prescribed linear-increasing/decreasing functions of data flows and corresponding terminal of wireless access - Google Patents

Method of control of transmission power on basis of evaluation of bit of reverse activity and prescribed linear-increasing/decreasing functions of data flows and corresponding terminal of wireless access Download PDF

Info

Publication number
RU2372738C2
RU2372738C2 RU2006104629/09A RU2006104629A RU2372738C2 RU 2372738 C2 RU2372738 C2 RU 2372738C2 RU 2006104629/09 A RU2006104629/09 A RU 2006104629/09A RU 2006104629 A RU2006104629 A RU 2006104629A RU 2372738 C2 RU2372738 C2 RU 2372738C2
Authority
RU
Russia
Prior art keywords
stream
power
assigned
access terminal
sector
Prior art date
Application number
RU2006104629/09A
Other languages
Russian (ru)
Other versions
RU2006104629A (en
Inventor
Кристофер Ж. ЛОТТ (US)
Кристофер Ж. Лотт
Нага БХУШАН (US)
Нага БХУШАН
Рашид А. АТТАР (US)
Рашид А. Аттар
Жан Пут Линг АЮ (US)
Жан Пут Линг Аю
Донна ГХОШ (US)
Донна ГХОШ
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/890,719 external-priority patent/US6970437B2/en
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU2006104629A publication Critical patent/RU2006104629A/en
Application granted granted Critical
Publication of RU2372738C2 publication Critical patent/RU2372738C2/en

Links

Images

Classifications

    • Y02B60/50

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

FIELD: information technologies.
SUBSTANCE: access terminal is configured for wireless connection to access network in sector. Access terminal includes transmitter for transmission of signal of reverse data flow to access network, antenna for receiving of signals from access network, processor and memory connected to processor electrically. Commands are stored in memory. All the commands are composed to make evaluation of current value of bit of reverse activity transmitted by access network possible. Assigned power for each flow may be decreased or increased on the basis of evaluated current value of bit of reverse activity.
EFFECT: improvement in operation of level of control of access to transmission media of access terminal.
13 cl, 27 dwg

Description

Испрашивание приоритетаPriority claiming

Настоящая заявка на патент испрашивает приоритет по предварительной заявке США № 60/487,648, озаглавленной “Дифференцированные услуги обратной линии связи для системы связи с множеством потоков, использующей автономное назначение ресурсов”, заявленной 15 июля 2003 г., права на которую переданы владельцу настоящего изобретения, и которая специально включена в настоящее описание в качестве ссылки.This patent application claims priority to provisional application US No. 60 / 487,648, entitled “Differentiated reverse link services for a multi-stream communication system using autonomous resource assignment”, claimed July 15, 2003, the rights to which are transferred to the owner of the present invention, and which is expressly incorporated herein by reference.

Настоящая заявка на патент также испрашивает приоритет по предварительной заявке США № 60/493,782, озаглавленной “Совместное автономное и запланированное назначение ресурсов для распределенной системы связи”, заявленной 6 августа 2003 г., права на которую принадлежат владельцу настоящего изобретения, и которая специально включена в настоящее описание в качестве ссылки.This patent application also claims priority for provisional application US No. 60 / 493,782, entitled "Joint autonomous and planned resource allocation for a distributed communications system", filed August 6, 2003, the rights of which belong to the owner of the present invention, and which is specifically incorporated into the present description by reference.

Настоящая заявка на патент также испрашивает приоритет по предварительной заявке № 60/527,081, озаглавленной “Управление доступом к обратной линии связи с множеством потоков для системы связи”, заявленной 3 декабря 2003 г., права на которую принадлежат владельцу настоящего изобретения, и которая специально включена в настоящее описание в качестве ссылки.This patent application also claims priority for provisional application No. 60 / 527,081, entitled “Controlling access to the reverse link with multiple streams for a communication system”, claimed December 3, 2003, the rights to which belong to the owner of the present invention, and which is specifically included in the present description by reference.

Область техники, к которой относится изобретениеFIELD OF THE INVENTION

Настоящее изобретение относится, в целом, к беспроводным системам связи и, более конкретно, к усовершенствованиям в работе уровня управления доступом к среде передачи данных (МАС, УДСПД) терминала доступа в беспроводной системе связи.The present invention relates, in General, to wireless communication systems and, more particularly, to improvements in the operation of the level of access control to the data medium (MAC, DTSP) access terminal in a wireless communication system.

Уровень техникиState of the art

Системы связи разработаны с возможностью передачи информационных сигналов из станции отправления в физически отличную станцию назначения. При передаче информационного сигнала из станции отправления через канал связи, информационный сигнал сначала преобразуют в вид, подходящий для эффективной передачи через канал связи. Преобразование или модуляция информационного сигнала включает в себя изменение параметра несущего сигнала в соответствии с информационным сигналом таким образом, чтобы спектр модулированной несущей находился в пределах полосы частот канала связи. В станции назначения исходный информационный сигнал реплицируют из модулированного несущего сигнала, принятого через канал связи. Такое реплицирование обычно выполняют с помощью использования инверсии процесса модуляции, использованного станцией отправления.Communication systems are designed to transmit information signals from a departure station to a physically distinct destination station. When transmitting an information signal from a departure station through a communication channel, the information signal is first converted into a form suitable for efficient transmission through the communication channel. The conversion or modulation of the information signal includes changing the parameter of the carrier signal in accordance with the information signal so that the spectrum of the modulated carrier is within the frequency band of the communication channel. At the destination station, the original information signal is replicated from the modulated carrier signal received through the communication channel. Such replication is usually accomplished using the inverse of the modulation process used by the originating station.

Модуляция также облегчает множественный доступ, т. е. одновременную передачу и/или прием нескольких сигналов через общий канал связи. Системы связи с множественным доступом часто включают в себя множество удаленных абонентских устройств, требующих перемежающегося обслуживания относительно короткой продолжительности, а не постоянного доступа к общему каналу связи. В данной области техник известны несколько способов с множественным доступом, такие как множественный доступ с кодовым разделением (CDMA, МДКР), множественный доступ с временным разделением каналов (TDMA, МДРВ), множественный доступ с частотным разделением каналов (FDMA, МДЧР) и множественный доступ с амплитудной модуляцией (AM, АМ).Modulation also facilitates multiple access, i.e., the simultaneous transmission and / or reception of several signals through a common communication channel. Multiple access communication systems often include many remote subscriber units requiring intermittent service of relatively short duration, rather than constant access to a common communication channel. Several multi-access techniques are known in the art, such as code division multiple access (CDMA, CDMA), time division multiple access (TDMA, MDMA), frequency division multiple access (FDMA, FDMA) and multiple access with amplitude modulation (AM, AM).

Система связи с множественным доступом может быть беспроводной или проводной и может переносить речь и/или данные. В системе связи с множественным доступом связи между пользователями проводится через одну или более базовых станций. Первый пользователь на одной абонентской станции взаимодействует со вторым пользователем на второй абонентской станции с помощью передачи данных по обратной линии связи в базовую станцию. Базовая станция принимает данные и может направить данные в другую базовую станцию. Данные передают по прямому каналу той же самой базовой станции или другой базовой станции во вторую абонентскую станцию. Прямой канал относится к передаче из базовой станции в абонентскую станцию, а обратный канал относится к передаче из абонентской станции в базовую станцию. Также линия связи может быть проведена между первым пользователем мобильной абонентской станции и вторым пользователем станции наземной линии связи. Базовая станция принимает данные от пользователя по обратному каналу и направляет данные через коммутируемую телефонную сеть общего пользования (PSTN, ТСОП) второму пользователю. Во многих системах связи, например, IS-95, W-CDMA, IS-2000, прямому каналу и обратному каналу назначают отдельные частоты.A multiple access communication system may be wireless or wired and may carry voice and / or data. In a multiple access communication system, communications between users are conducted through one or more base stations. The first user at one subscriber station interacts with the second user at the second subscriber station by transmitting data on the reverse link to the base station. A base station receives data and can forward data to another base station. Data is transmitted on the forward channel of the same base station or another base station to a second subscriber station. The forward channel refers to transmission from the base station to the subscriber station, and the reverse channel refers to transmission from the subscriber station to the base station. Also, a communication link may be drawn between a first user of a mobile subscriber station and a second user of a landline station. The base station receives data from the user on the return channel and sends the data through the public switched telephone network (PSTN, PSTN) to the second user. In many communication systems, for example, IS-95, W-CDMA, IS-2000, separate frequencies are assigned to the forward and reverse channels.

Примером системы связи с оптимизацией данных является система связи с высокой скоростью передачи данных (HDR, ВСПД). В системе связи с ВСПД базовую станцию иногда называют сетью доступа, а удаленную станцию иногда называют терминалом доступа (AТ, ТД). Функциональные возможности, выполняемые с помощью ТД могут быть организованы как стек уровней, включающих в себя уровень управления доступом к среде передачи данных (УДСПД). Уровень УДСПД предлагает определенные услуги для более высоких уровней, включающих в себя услуги, которые связаны с работой обратного канала. Преимущества могут быть реализованы с помощью усовершенствований в работе уровня УДСПД ТД в беспроводной системе связи.An example of a communication system with data optimization is a communication system with a high data rate (HDR, HDR). In a communication system with the SPST, the base station is sometimes called an access network, and the remote station is sometimes called an access terminal (AT, TD). The functionality performed using the AP can be organized as a stack of levels, including the level of access control to the data transmission medium (DSPD). Level UCPD offers certain services for higher levels, including services that are associated with the operation of the return channel. Advantages can be realized with the help of improvements in the operation of the DTCPD level in a wireless communication system.

Сущность изобретенияSUMMARY OF THE INVENTION

Раскрыт терминал доступа, который сконфигурирован для беспроводной связи с сетью доступа. Терминал доступа включает в себя передатчик для передачи сигнала обратного потока данных в сеть доступа, антенну для приема сигналов из сети доступа, процессор и память, электрически связанные с процессором. Команды запоминают в памяти. Команды являются выполнимыми для того, чтобы реализовать способ, который включает в себя оценку текущего значения бита обратной активности, передаваемого с помощью сети доступа.An access terminal that is configured for wireless communication with an access network is disclosed. The access terminal includes a transmitter for transmitting a reverse data stream signal to the access network, an antenna for receiving signals from the access network, a processor and memory electrically connected to the processor. Teams are remembered. The commands are feasible in order to implement a method that includes evaluating the current value of the reverse activity bit transmitted by the access network.

Если оцененная текущая величина бита обратной активности указывает на то, что сектор занят, способ также включает в себя уменьшение назначенной текущей мощности для каждого потока из множества потоков в терминале доступа. Величина уменьшения для конкретного потока может быть определена в соответствии с линейно убывающей функцией, которая предназначена для потока. Линейно убывающая функция может быть функцией назначенной текущей мощности для потока.If the estimated current value of the reverse activity bit indicates that the sector is busy, the method also includes reducing the assigned current power for each stream from the plurality of flows in the access terminal. The amount of reduction for a particular stream can be determined in accordance with a linearly decreasing function that is intended for the stream. A linearly decreasing function may be a function of the assigned current power for the stream.

Если оцененная текущая величина бита обратной активности указывает на то, что сектор свободен, способ также включает в себя увеличение назначенной текущей мощности для каждого потока из множества потоков в терминале доступа. Величина увеличения для конкретного потока может быть определена в соответствии с линейно возрастающей функцией, которая предназначена для потока. Линейно возрастающая функция может быть функцией назначенной текущей мощности для потока.If the estimated current value of the reverse activity bit indicates that the sector is free, the method also includes increasing the assigned current power for each stream from the plurality of streams in the access terminal. The magnitude of the increase for a particular stream can be determined in accordance with a linearly increasing function that is intended for the stream. A ramp function may be a function of the assigned current power for the stream.

В некоторых вариантах осуществления оценка текущей величины бита обратной активности может быть выполнена один раз в каждом интервале времени. Оценка может включать в себя фильтрацию сигнала, принятого из сети доступа, с помощью фильтра, имеющего регулируемую постоянную времени.In some embodiments, the implementation of the evaluation of the current value of the bits of the inverse activity can be performed once in each time interval. The estimation may include filtering the signal received from the access network using a filter having an adjustable time constant.

Способ может дополнительно включать в себя оценку уровня нагрузки сектора и определение назначенной максимальной мощности для каждого потока из множества потоков. Назначенная максимальная мощность для конкретного потока может быть функцией назначенной текущей мощности для потока и оценки уровня нагрузки сектора.The method may further include estimating a sector load level and determining an assigned maximum power for each stream from the plurality of flows. The assigned maximum power for a particular stream may be a function of the assigned current power for the stream and estimating the sector load level.

В некоторых вариантах осуществления способ может дополнительно включать в себя для каждого потока определение назначенной накопленной мощности для потока. Назначенная текущая мощность для потока и назначенная накопленная мощность для потока могут быть использованы для определения полной доступной мощности для потока. Полная доступная мощность для потока может быть использована для определения уровня мощности для пакета, который передают в сеть доступа. В некоторых вариантах осуществления назначенная накопленная мощность для потока может быть ограничена уровнем насыщения. Уровень насыщения может представлять собой устанавливаемый коэффициент, который выше назначенной максимальной мощности.In some embodiments, the method may further include, for each stream, determining an assigned accumulated power for the stream. The assigned current power for the stream and the assigned stored power for the stream can be used to determine the total available power for the stream. The total available power for the stream can be used to determine the power level for the packet that is transmitted to the access network. In some embodiments, the assigned accumulated power for the stream may be limited by saturation. The saturation level may be an adjustable coefficient that is higher than the assigned maximum power.

Как линейно убывающая функция, так и линейно возрастающая функция могут зависеть от оценки уровня нагрузки сектора. В качестве альтернативы или дополнительно, как линейно убывающая функция, так и линейно возрастающая функция могут зависеть от мощности пилот-сигнала, измеренной с помощью терминала доступа.Both a linearly decreasing function and a linearly increasing function may depend on an estimation of the sector load level. Alternatively or additionally, both the linearly decreasing function and the linearly increasing function may depend on the power of the pilot signal measured by the access terminal.

Также раскрыт другой вариант осуществления терминала доступа, который сконфигурирован для беспроводной связи с сетью доступа в секторе. Терминал доступа включает в себя средство, предназначенное для оценки текущей величины бита обратной активности, передаваемого с помощью сети доступа.Another embodiment of an access terminal that is configured to wirelessly communicate with an access network in a sector is also disclosed. The access terminal includes means for evaluating the current value of the reverse activity bit transmitted by the access network.

Терминал доступа также включает в себя средство для уменьшения назначенной текущей мощности для каждого потока из множества потоков в терминале доступа, если оцененная текущая величина бита обратной активности указывает на то, что сектор занят. Величина уменьшения для конкретного потока может быть определена в соответствии с линейно убывающей функцией, которая предназначена для потока. Линейно убывающая функция может быть функцией назначенной текущей мощности для потока.The access terminal also includes means for decreasing the assigned current power for each stream from a plurality of streams in the access terminal if the estimated current value of the inverse activity bit indicates that the sector is busy. The amount of reduction for a particular stream can be determined in accordance with a linearly decreasing function that is intended for the stream. A linearly decreasing function may be a function of the assigned current power for the stream.

Терминал доступа также включает в себя средство для увеличения назначенной текущей мощности для каждого потока из множества потоков в терминале доступа, если оцененная текущая величина бита обратной активности указывает на то, что сектор свободен. Величина увеличения для конкретного потока может быть определена в соответствии с линейно возрастающей функцией, которая предназначена для потока. Линейно возрастающая функция может быть функцией назначенной текущей мощности для потока.The access terminal also includes means for increasing the assigned current power for each stream from a plurality of streams in the access terminal if the estimated current value of the inverse activity bit indicates that the sector is free. The magnitude of the increase for a particular stream can be determined in accordance with a linearly increasing function that is intended for the stream. A ramp function may be a function of the assigned current power for the stream.

Терминал доступа также может включать в себя средство для оценки уровня нагрузки сектора. Терминал доступа также может включать в себя средство для определения назначенной максимальной мощности для каждого потока из множества потоков. Назначенная максимальная мощность для конкретного потока может быть функцией назначенной текущей мощности для потока и оценки уровня нагрузки сектора.The access terminal may also include means for estimating a sector load level. The access terminal may also include means for determining the assigned maximum power for each stream from the plurality of streams. The assigned maximum power for a particular stream may be a function of the assigned current power for the stream and estimating the sector load level.

Терминал доступа также может включать в себя для каждого потока средство для определения назначеной накопленной мощности для потока, и средство для использования назначенной текущей мощности для потока и назначенной накопленной мощности для потока, для определения полной доступной мощности для потока. Терминал доступа также может включать в себя средство для использования полной доступной мощности для потока для определения уровня мощности для пакета, который передают в сеть доступа.The access terminal may also include, for each stream, means for determining the assigned accumulated power for the stream, and means for using the assigned current power for the stream and the assigned stored power for the stream, to determine the total available power for the stream. The access terminal may also include means for using the total available power for the stream to determine the power level for the packet that is transmitted to the access network.

Краткое описание чертежейBrief Description of the Drawings

Фиг.1 иллюстрирует пример системы связи, которая поддерживает несколько пользователей, и может реализовать, по меньшей мере, некоторые аспекты вариантов осуществления, обсужденных в настоящей заявке.Figure 1 illustrates an example of a communication system that supports multiple users, and can implement at least some aspects of the embodiments discussed in this application.

Фиг.2 представляет собой блок-схему, иллюстрирующую сеть доступа и терминал доступа в системе связи с высокой скоростью передачи данных.FIG. 2 is a block diagram illustrating an access network and an access terminal in a high data rate communication system.

Фиг.3 представляет собой блок-схему, иллюстрирующую стек уровней в терминале доступа.3 is a block diagram illustrating a stack of layers in an access terminal.

Фиг.4 представляет собой блок-схему, иллюстрирующую пример взаимодействия между высокими уровнями в терминале доступа, уровнем управления доступом к среде передачи данных и физическим уровнем.FIG. 4 is a block diagram illustrating an example of an interaction between high layers in an access terminal, a medium access control layer, and a physical layer.

Фиг.5А представляет собой блок-схему, иллюстрирующую пакет режима высокой пропускной способности, передаваемый в сеть доступа.5A is a block diagram illustrating a high throughput mode packet transmitted to an access network.

Фиг.5В представляет собой блок-схему, иллюстрирующую пакет режима с малой задержкой, передаваемый в сеть доступа.5B is a block diagram illustrating a low latency mode packet transmitted to an access network.

Фиг.6 представляет собой блок-схему, иллюстрирующую различные типы потоков, которые могут присутствовать в сети доступа.6 is a block diagram illustrating various types of streams that may be present in an access network.

Фиг.7 представляет собой блок-схему, иллюстрирующую пример множества потоков для пакета режима высокой пропускной способности.FIG. 7 is a block diagram illustrating an example of a plurality of streams for a high throughput mode packet.

Фиг.8 представляет собой блок-схему, иллюстрирующую примерное множество потоков для пакета режима с малой задержкой.FIG. 8 is a flowchart illustrating an example set of streams for a low latency mode packet.

Фиг.9 представляет собой блок-схему, иллюстрирующую информацию, которая может обслуживаться в терминале доступа, для того чтобы определять, включен ли поток высокой пропускной способности в множество потоков пакетов режима с малой задержкой.9 is a flowchart illustrating information that can be served at an access terminal in order to determine if a high throughput stream is included in a plurality of low-delay mode packet streams.

Фиг.10 представляет собой блок-схему, иллюстрирующую сеть доступа и множество терминалов доступа в секторе.10 is a block diagram illustrating an access network and a plurality of access terminals in a sector.

Фиг.11 иллюстрирует пример механизма, который может быть использован для определения полной доступной мощности для терминала доступа.11 illustrates an example of a mechanism that can be used to determine the total available power for an access terminal.

Фиг.12 представляет собой блок-схему, иллюстрирующую вариант осуществления, в котором, по меньшей мере, некоторые из терминалов доступа в секторе включают в себя множество потоков.12 is a block diagram illustrating an embodiment in which at least some of the access terminals in a sector include multiple streams.

Фиг.13 представляет собой блок-схему, иллюстрирующую один способ, в котором терминал доступа может получать назначенную текущую мощность для потоков в терминале доступа.FIG. 13 is a flowchart illustrating one method in which an access terminal may receive an assigned current power for streams in an access terminal.

Фиг.14 представляет собой блок-схему, иллюстрирующую бит обратной активности, передаваемый из сети доступа в терминал доступа в секторе.14 is a block diagram illustrating a reverse activity bit transmitted from an access network to an access terminal in a sector.

Фиг.15 представляет собой блок-схему, иллюстрирующую информацию, которая может обслуживаться в терминале доступа, для того чтобы определять назначенную текущую мощность для одного или более потоков в терминале доступа.FIG. 15 is a flowchart illustrating information that may be served in an access terminal in order to determine an assigned current power for one or more streams in an access terminal.

Фиг.16 представляет собой функциональную схему, иллюстрирующую пример функциональных компонентов в терминале доступа, которые могут быть использованы для определения оценки бита обратной активности и оценки уровня текущей нагрузки сектора.16 is a functional diagram illustrating an example of functional components in an access terminal that can be used to determine an estimate of an inverse activity bit and an estimate of a current sector load level.

Фиг.17 представляет собой схему последовательности этапов, иллюстрирующую примерный способ, предназначенный для определения назначенной текущей мощности для потока в терминале доступа.17 is a flowchart illustrating an example method for determining an assigned current power for a stream in an access terminal.

Фиг.18 представляет собой блок-схему, иллюстрирующую терминал доступа, посылающий сообщение запроса в планировщик по сети доступа.Fig. 18 is a block diagram illustrating an access terminal sending a request message to a scheduler over an access network.

Фиг.19 представляет собой блок-схему, иллюстрирующую информацию, которая может обслуживаться в терминале доступа, для того чтобы терминал доступа определял, когда посылать сообщение запроса в сеть доступа.FIG. 19 is a flowchart illustrating information that may be served in an access terminal so that the access terminal determines when to send a request message to the access network.

Фиг.20 представляет собой блок-схему, иллюстрирующую пример взаимодействия между планировщиком, выполняющимся в сети доступа, и терминалами доступа в секторе.20 is a block diagram illustrating an example of interaction between a scheduler running in an access network and access terminals in a sector.

Фиг.21 представляет собой блок-схему, иллюстрирующую другой пример взаимодействия между планировщиком и терминалом доступа, выполняющегося в сети доступа.21 is a flowchart illustrating another example of interaction between a scheduler and an access terminal running in an access network.

Фиг.22 представляет собой блок-схему, иллюстрирующую другой вариант осуществления сообщения разрешения, которое передают из планировщика по сети доступа в терминал доступа.22 is a block diagram illustrating another embodiment of a permission message that is transmitted from a scheduler over an access network to an access terminal.

Фиг.23 представляет собой блок-схему, иллюстрирующую профиль мощности, который может быть запомнен в терминале доступа.23 is a block diagram illustrating a power profile that may be stored in an access terminal.

Фиг.24 представляет собой блок-схему, иллюстрирующую множество условий передачи, которые могут быть запомнены в терминале доступа.24 is a block diagram illustrating a plurality of transmission conditions that may be stored in an access terminal.

Фиг.25 представляет собой схему последовательности этапов, иллюстрирующую пример способа, который может выполнять терминал доступа, для того чтобы определять размер полезной нагрузки и уровень мощности для пакета;25 is a flowchart illustrating an example of a method that an access terminal can perform in order to determine a payload size and a power level for a packet;

Фиг.26 представляет собой функциональную схему, иллюстрирующую вариант осуществления терминала доступа.FIG. 26 is a functional diagram illustrating an embodiment of an access terminal.

Подробное описание вариантов осуществления изобретенияDetailed Description of Embodiments

Слово “примерный” используется в настоящей заявке, чтобы означать “служащий в качестве примера, отдельного случая или иллюстрации”. Вариант осуществления, описанный в настоящей заявке как “примерный”, необязательно должен быть истолкован как предпочтительный или преимущественный относительно других вариантов осуществления.The word “exemplary” is used in this application to mean “serving as an example, individual case or illustration”. The embodiment described herein as “exemplary” does not have to be construed as preferred or advantageous over other embodiments.

Следует заметить, что примерный вариант осуществления предоставлен как образец во всем этом обсуждении, однако альтернативные варианты осуществления могут содержать различные аспекты, не выходя за рамки объема настоящего изобретения. Конкретно, настоящее изобретение применимо к системам обработки данных, системам беспроводной связи, мобильным IP сетям и любым другим системам, требующим принимать и обрабатывать беспроводные сигналы.It should be noted that an exemplary embodiment is provided as an example throughout this discussion, however, alternative embodiments may contain various aspects without departing from the scope of the present invention. Specifically, the present invention is applicable to data processing systems, wireless communication systems, mobile IP networks, and any other systems that require receiving and processing wireless signals.

Примерный вариант осуществления использует широкополосную беспроводную систему связи. Беспроводные системы связи широко используются, чтобы обеспечить различные типы связи, такие как речь, данные и т. д. Эти системы могут быть основаны на множественном доступе с кодовым разделением каналов (CDMA), множественном доступе с временным разделением каналов (TDMA) или некоторых других способах модуляции. Система CDMA предоставляет определенные преимущества относительно других типов систем, включая увеличенную пропускную способность системы.An exemplary embodiment uses a broadband wireless communication system. Wireless communication systems are widely used to provide various types of communication, such as speech, data, etc. These systems can be based on code division multiple access (CDMA), time division multiple access (TDMA), or some other modulation methods. A CDMA system provides certain advantages over other types of systems, including increased system throughput.

Беспроводная система связи может быть сконструирована таким образом, чтобы поддерживать один или более стандартов, таких как “TIA/EIA/IS-95-B Mobile Station-Base Station Compatibiliti Standard for Dual-Mode Wideband Spread Spectrum Cellular System”, упоминаемый в настоящем описании как стандарт IS-95, стандарт, предложенный консорциумом, называемым “3rd Generation Partnership Project” (“Проект партнерства 3-го поколения”), упоминаемый в настоящем описании как 3GPP, и воплощенный во множестве документов, включая документы №№ 3GPP TS 25.211, 3GPP TS 25.212, 3GPP TS 25.213 и 3GPP TS 25.214, 3GPP TS 25.302; стандарт, упоминаемый в настоящем описании как стандарт W-CDMA, предложенный консорциумом, называемый “3rd Generation Partnership Project 2” (“Проект 2 партнерства 3-го поколения”), упоминаемый в настоящем описании как 3GPP2; и стандарт TR-45.5, упоминаемый в настоящем описании как стандарт cdma2000, прежде называемый IS-2000 МС. Стандарты, упомянутые выше, специально включены в настоящее описание в качестве ссылки.A wireless communication system may be designed to support one or more standards, such as the “TIA / EIA / IS-95-B Mobile Station-Base Station Compatibiliti Standard for Dual-Mode Wideband Spread Spectrum Cellular System” referred to in the present description as the IS-95 standard, a standard proposed by a consortium called the “3 rd Generation Partnership Project”, referred to in this description as 3GPP, and embodied in many documents, including documents No. 3GPP TS 25.211 , 3GPP TS 25.212, 3GPP TS 25.213 and 3GPP TS 25.214, 3GPP TS 25.302; the standard referred to in the present description as the W-CDMA standard proposed by the consortium called “3 rd Generation Partnership Project 2”, referred to in the present description as 3GPP2; and the TR-45.5 standard, referred to herein as the cdma2000 standard, formerly called the IS-2000 MS. The standards mentioned above are expressly incorporated herein by reference.

Системы и способы, описанные в настоящей заявке, могут быть использованы с системами связи с высокой скоростью передачи данных (ВСПД). Система связи с ВСПД может быть сконструирована таким образом, чтобы соответствовать одному или более стандартов, таких как “cdma2000 High Rate Packet Data Air Interfase Specification”, 3GPP2 C.S0024, Version 1, March 2004, опубликованным консорциумом “Проект 2 партнерства 3-го поколения”. Содержание упомянутых выше стандартов включено в настоящее описание в качестве ссылки.The systems and methods described in this application can be used with communication systems with a high data rate (SPST). ATSP communication system can be designed to meet one or more standards, such as the “cdma2000 High Rate Packet Data Air Interfase Specification”, 3GPP2 C.S0024, Version 1, March 2004, published by the 3rd Partnership Project 2 consortium generation. ” The contents of the above standards are incorporated herein by reference.

Абонентская станция ВСПД, которая может быть упомянута в настоящем описании как терминал доступа (АТ, ТД), может быть мобильной или стационарной, и может взаимодействовать с одной или более базовыми станциями ВСПД. Терминал доступа передает и принимает пакеты данных через один или более приемопередатчиков модемного пула (МРТ, ПМП) в контроллер базовой станции ВСПД, который может быть упомянут в настоящем описании как контроллер модемного пула (МРС, КМП). Приемопередатчики модемного пула и контроллеры модемного пула являются частями сети, называемой сетью доступа. Сеть доступа передает пакеты данных между множеством терминалов доступа. Сеть доступа дополнительно может быть соединена с дополнительными сетями вне сети доступа, такими как корпоративная сеть интранет или Интернет, и может передавать пакеты данных между каждым терминалом доступа и такими внешними сетями. Терминал доступа, который установил соединение активного канала передачи потока данных с одним или более приемопередатчиков модемного пула, называется активным терминалом доступа, и упоминается как находящийся в состоянии передачи потока данных. Терминал доступа, который находится в процессе установления соединения активного канала передачи потока данных с одним или более приемопередатчиков модемного пула, упоминается как находящийся в состоянии установления соединения. Терминал доступа может быть любым устройством данных, который взаимодействует через беспроводной канал или через проводной канал, например, с использованием волоконно-оптических или коаксиальных кабелей. Терминал доступа дополнительно может быть любым из нескольких типов устройств, включающих, но не ограниченных перечисленным, PC-карту, компакт-флэш-память, внешний или внутренний модем или беспроводной или проводной телефон наземной связи. Канал связи, через который терминал доступа посылает сигналы в приемопередатчик модемного пула, называется обратным каналом. Канал связи, через который приемопередатчик модемного пула посылает сигналы в терминал доступа, называется прямым каналом.A subscriber station of the URTN, which may be referred to in the present description as an access terminal (AT, TD), can be mobile or stationary, and can communicate with one or more base stations of the URTD. The access terminal transmits and receives data packets through one or more modem pool transceivers (MRI, PMP) to the controller of the VSPD base station, which may be referred to in the present description as a modem pool controller (MPC, ILC). Modem pool transceivers and modem pool controllers are parts of a network called an access network. An access network transmits data packets between multiple access terminals. The access network can additionally be connected to additional networks outside the access network, such as a corporate intranet or the Internet, and can transmit data packets between each access terminal and such external networks. An access terminal that establishes a connection of an active data stream transmission channel to one or more modem pool transceivers is called an active access terminal, and is referred to as being in a data stream transmission state. An access terminal that is in the process of establishing a connection of an active channel for transmitting a data stream with one or more modem pool transceivers is referred to as being in a connection state. An access terminal may be any data device that communicates via a wireless channel or through a wired channel, for example using fiber optic or coaxial cables. The access terminal may optionally be any of several types of devices, including, but not limited to, a PC card, compact flash memory, external or internal modem, or a cordless or landline telephone. The communication channel through which the access terminal sends signals to the transceiver of the modem pool is called the return channel. The communication channel through which the modem pool transceiver sends signals to the access terminal is called a direct channel.

Фиг.1 иллюстрирует пример системы 100 связи, которая поддерживает несколько пользователей и может реализовывать, по меньшей мере, некоторые аспекты вариантов осуществления, обсужденных в настоящей заявке. Любые из множества алгоритмов и способов могут быть использованы, чтобы планировать передачи в системе 100. Система 100 обеспечивает обмен данными для нескольких ячеек 102А-102G, каждую из которых обслуживает соответствующая базовая станция 104А-104G, соответственно. В примерном варианте осуществления некоторые из базовых станций 104 имеют множество принимающих антенн, а другие имеют только одну принимающую антенну. Подобным образом некоторые из базовых станций 104 имеют множество передающих антенн, а другие имеют единственную передающую антенну. Не имеется никаких ограничений на комбинации передающих антенн и принимающих антенн. Следовательно, возможно для базовой станции 104 иметь множество передающих антенн и одну принимающую антенну или иметь множество принимающих антенн и одну передающую антенну, или иметь по одной передающей и принимающей антенне, или множество передающих и принимающих антенн.FIG. 1 illustrates an example communication system 100 that supports multiple users and can implement at least some aspects of the embodiments discussed herein. Any of a variety of algorithms and methods can be used to schedule transmissions in system 100. System 100 provides data exchange for multiple cells 102A-102G, each of which is served by a corresponding base station 104A-104G, respectively. In an exemplary embodiment, some of the base stations 104 have multiple receiving antennas, while others have only one receiving antenna. Similarly, some of the base stations 104 have multiple transmit antennas, while others have a single transmit antenna. There are no restrictions on the combination of transmitting antennas and receiving antennas. Therefore, it is possible for base station 104 to have multiple transmit antennas and one receive antenna, or have multiple receive antennas and one transmit antenna, or have one transmit and receive antenna, or multiple transmit and receive antennas.

Удаленные станции 106 в зоне обслуживания могут быть неподвижными (или стационарными) или мобильными. Как изображено на фиг.1, различные удаленные станции 106 распределены по всей системе. Каждая удаленная станция 106 взаимодействует, по меньшей мере, с одной, а, возможно, с более базовыми станциями 104 по прямому каналу и обратному каналу в любой данный момент, в зависимости, например, от того, использована ли технология «мягкой передачи обслуживания», или, терминал сконструирован и функционирует таким образом, чтобы принимать (одновременно или последовательно) множество передач от множества базовых станций. Технология «мягкой передачи обслуживания» в системах связи CDMA широко известна в данной области техники и подробно описана в патенте США № 5,101,501, озаглавленном “Способ и система для обеспечения мягкой передачи обслуживания в сотовой телефонной системе CDMA”, права на который принадлежат владельцу настоящего изобретения.Remote stations 106 in the coverage area may be fixed (or stationary) or mobile. As shown in FIG. 1, various remote stations 106 are distributed throughout the system. Each remote station 106 interacts with at least one, and possibly with more base stations 104, on the forward channel and the reverse channel at any given moment, depending, for example, on whether soft-handoff technology has been used, or, the terminal is designed and operates to receive (simultaneously or sequentially) multiple transmissions from multiple base stations. The “soft handoff” technology in CDMA communication systems is widely known in the art and is described in detail in US Pat. No. 5,101,501 entitled “Method and System for Providing Soft Handoff in a CDMA Cellular Telephone System”, the rights of which belong to the owner of the present invention.

Прямой канал относится к передаче из базовой станции 104 в удаленную станцию 106, а обратный канал относится к передаче из удаленной станции 106 в базовую станцию 104. В примерном варианте осуществления некоторые из удаленных станций 106 имеют множество принимающих антенн, а другие имеют только одну принимающую антенну. На фиг.1 базовая станция 104А передает данные в удаленные станции 106А и 106J по прямому каналу, базовая станция 104В передает данные в удаленные станции 106В и 106J, базовая станция 104С передает данные в удаленную станцию 106С и т. д.The forward channel refers to transmission from the base station 104 to the remote station 106, and the reverse channel refers to transmission from the remote station 106 to the base station 104. In an exemplary embodiment, some of the remote stations 106 have multiple receiving antennas, while others have only one receiving antenna . 1, the base station 104A transmits data to the remote stations 106A and 106J on the forward channel, the base station 104B transmits data to the remote stations 106B and 106J, the base station 104C transmits data to the remote station 106C, etc.

В системе связи с высокой скоростью передачи данных (ВСПД) базовую станцию иногда упоминают как сеть доступа (AN, СД), а удаленную станцию иногда упоминают как терминал доступа (ТД). Фиг.2 иллюстрирует СД204 и ТД 206 в системе связи ВСПД.In a communication system with a high data rate (SPSP), the base station is sometimes referred to as an access network (AN, AN), and the remote station is sometimes referred to as an access terminal (AT). Figure 2 illustrates the SD204 and the AP 206 in the communication system VSPD.

ТД 206 находится в состоянии беспроводной связи с СД 204. Как указано ранее, обратный канал относится к передачам из ТД 206 в СД 204. Обратный канал 208 передачи потока данных изображен на фиг.2. Обратный канал 208 передачи потока данных является частью обратного канала, который передает информацию из конкретного ТД 206 в СД 204. Конечно, обратный канал может включать в себя другие каналы дополнительно к обратному каналу 208 передачи потока данных. Также прямой канал может включать в себя множество каналов, включая пилот-канал.The AP 206 is in a state of wireless communication with the LED 204. As previously indicated, the reverse channel refers to transmissions from the AP 206 to the LED 204. The reverse channel 208 for transmitting the data stream is shown in FIG. The reverse data stream transmission channel 208 is part of a reverse channel that transmits information from a particular AP 206 to the LED 204. Of course, the reverse channel may include other channels in addition to the reverse data stream transmission channel 208. Also, the forward channel may include multiple channels, including a pilot channel.

Функции, выполняемые с помощью ТД 206, могут быть организованы как стек уровней. Фиг.3 иллюстрирует стек уровней в ТД 306. Среди уровней имеется уровень 308 управления доступом к среде передачи данных (УДСПД). Более высокие уровни 310 расположены выше уровня 308 УДСПД. Уровень 308 УДСПД предлагает определенные услуги в более высокие уровни 310, включая услуги, которые относят к работе обратного канала 208 передачи потока данных. Уровень 208 УДСПД включает в себя реализацию протокола 314 УДСПД обратного канала передачи потока данных (RTC, ОКППД). Протокол 314 УДСПД ОКППД обеспечивает процедуры, выполняемые с помощью ТД 306, чтобы передавать, и с помощью СД 204, чтобы принимать по обратному каналу 208 передачи потока данных.Functions performed using the AP 206 can be organized as a stack of levels. Figure 3 illustrates the stack of levels in the AP 306. Among the layers there is a level 308 access control to the data transmission medium (DRMD). Higher levels 310 are located above the level 308 UDP. Level 308 UDPSD offers certain services to higher levels 310, including services that relate to the operation of the reverse channel 208 data stream. Level 208 UDPSD includes the implementation of the protocol 314 UDPSD reverse channel data stream (RTC, OKPPD). Protocol 314 UDPSD OKPD provides procedures performed using the TD 306 to transmit, and using the LED 204 to receive on the return channel 208 data stream.

Физический уровень 312 расположен ниже уровня 308 УДСПД. Уровень 308 УДСПД запрашивает определенные услуги из физического уровня 312. Эти услуги относятся к физической передаче пакетов в СД 204.The physical layer 312 is located below the level 308 UDP. Level 308 UDPSD requests certain services from the physical layer 312. These services relate to the physical transmission of packets to the AN 204.

Фиг.4 иллюстрирует пример взаимодействия между высокими уровнями 410 в ТД 406, уровнем 408 УДСПД и физическим уровнем 412. Как изображено, уровень 408 УДСПД принимает один или более потоков 416 из высоких уровней 410. Поток 416 является потоком данных. Обычно поток 416 соответствует конкретному приложению, такому как передача речи через IP (VoIP), видеотелефония, протокол передачи файлов (FTP), игры и т. д.FIG. 4 illustrates an example of the interaction between the high layers 410 in the AT 406, the DRC layer 408 and the physical layer 412. As shown, the DRC layer 408 receives one or more streams 416 from the high layers 410. The stream 416 is a data stream. Typically, stream 416 corresponds to a specific application, such as voice over IP (VoIP), video telephony, file transfer protocol (FTP), games, etc.

Данные из потоков 416 в ТД 406 передают в СД 204 в пакетах. В соответствии с протоколом 414 УДСПД ОКППД уровень УДСПД определяет множество 418 потоков для каждого пакета. Иногда множество потоков 416 в ТД 406 имеют данные для передачи в одно и то же время. Пакет может включать в себя данные более чем из одного потока 416. Однако иногда может быть один или более потоков 416 в ТД 406, которые имеют данные для передачи, но они не включены в пакет. Множество 418 потоков пакета указывает потоки 416 в ТД 406, которые должны быть включены в пакет. Примерные способы, предназначенные для определения множества потоков 418 пакета, будут описаны ниже.Data from streams 416 to the AT 406 is transmitted to the AN 204 in packets. In accordance with the Protocol 414 UDPSD OKPDD level UDPSD defines a set of 418 flows for each packet. Sometimes, multiple streams 416 in the AT 406 have data to transmit at the same time. A packet may include data from more than one stream 416. However, sometimes there may be one or more streams 416 in the AP 406 that have data to transmit, but they are not included in the package. A plurality of packet streams 418 indicates the streams 416 in the AT 406 to be included in the packet. Exemplary methods for determining a plurality of packet streams 418 will be described below.

Уровень 408 УДСПД также определяет размер 420 полезной нагрузки каждого пакета. Размер 420 полезной нагрузки пакета указывает, сколько данных из множества 418 потоков включено в пакет.The DRCTD layer 408 also determines the payload size 420 of each packet. The packet payload size 420 indicates how much data from a plurality of 418 streams is included in the packet.

Уровень 408 УДСПД также определяет уровень 422 мощности пакета. В некоторых вариантах осуществления уровень 422 мощности пакета определяют относительно уровня мощности обратного пилот-канала.The DRCTD level 408 also determines the packet power level 422. In some embodiments, the packet power level 422 is determined relative to the power level of the reverse pilot channel.

Для каждого пакета, который передают в СД 204, уровень 408 УДСПД передает множество 418 потоков, включаемых в пакет, размер 420 полезной нагрузки пакета и уровень 422 мощности пакета в физический уровень 412. Затем физический уровень выполняет передачу пакета в СД 204 в соответствии с информацией, предоставленной с помощью уровня 308 УДСПД.For each packet that is transmitted to the LED 204, the DRCTD layer 408 transmits a plurality of 418 streams included in the packet, the packet payload size 420, and the packet power level 422 to the physical layer 412. The physical layer then transmits the packet to the LED 204 in accordance with the information provided through level 308 DUA.

Фиг.5А и 5В иллюстрируют пакеты 524, передаваемые из ТД 506 в СД 504. Пакет 524 может быть передан в одном из нескольких возможных режимов передачи. Например, в некоторых вариантах осуществления имеются два возможных режима передачи, режим передачи с высокой пропускной способностью и режим передачи с малой задержкой. Фиг.5А иллюстрирует пакет 524а режима высокой пропускной способности (т. е. пакет 524а, который передают в режиме с высокой пропускной способностью), передаваемый в СД 504. Фиг.5В иллюстрирует пакет 524b режима малой задержки (т. е. пакет 524b, который передают в режиме с малой задержкой), передаваемый в СД 504.5A and 5B illustrate packets 524 transmitted from an AP 506 to an LED 504. Packet 524 may be transmitted in one of several possible transmission modes. For example, in some embodiments, there are two possible transmission modes, a high throughput transmission mode and a low latency transmission mode. Fig. 5A illustrates a high bandwidth mode packet 524a (i.e., a packet 524a that is transmitted in high bandwidth mode) transmitted to an LED 504. Fig. 5B illustrates a low latency mode packet 524b (i.e., packet 524b, which is transmitted in the low-latency mode) transmitted to the SD 504.

Пакет 524b режима малой задержки передают на более высоком уровне 422 мощности, чем пакет 524 режима высокой пропускной способности одного и того же размера пакета. Следовательно, вероятно, что пакет 524b режима малой задержки поступит скорее в СД 504, чем пакет 524 режима высокой пропускной способности. Однако пакет 524b режима малой задержки вызывает большую нагрузку на систему 100, чем пакет 524 режима высокой пропускной способности.The low latency mode packet 524b is transmitted at a higher power level 422 than the high bandwidth mode packet 524 of the same packet size. Therefore, it is likely that the low latency mode packet 524b will arrive in the LED 504 rather than the high throughput mode packet 524. However, the low latency mode packet 524b causes a greater load on the system 100 than the high throughput mode packet 524.

Фиг.6 иллюстрирует различные типы потоков 616, которые могут существовать в ТД 606. В некоторых вариантах осуществления каждый поток 616 в ТД 606 связан с конкретным режимом передачи. Там, где возможные режимы передачи являются режимом передачи с высокой пропускной способностью и режимом передачи с малой задержкой, ТД 606 может включать в себя один или более потоков 616а высокой пропускной способности и/или один или более потоков 616b малой задержки. Предпочтительно, чтобы поток высокой пропускной способности 616а передавался в пакете 524а высокой пропускной способности. Предпочтительно, чтобы поток 616b малой задержки передавался в пакете 524b малой задержки.6 illustrates various types of streams 616 that may exist in an AT 606. In some embodiments, each stream 616 in an AT 606 is associated with a particular transmission mode. Where the possible transmission modes are a high throughput transmission mode and a low latency transmission mode, the AP 606 may include one or more high throughput streams 616a and / or one or more low delay streams 616b. Preferably, the high throughput stream 616a is transmitted in the high throughput packet 524a. Preferably, the low latency stream 616b is transmitted in the low latency packet 524b.

Фиг.7 иллюстрирует пример множества 718 потоков для пакета 524а режима высокой пропускной способности. В некоторых вариантах осуществления пакет 724а передают в режиме с высокой пропускной способностью, если все потоки 716, которые имеют данные для передачи, являются потоками 716а высокой пропускной способности. Таким образом, в некоторых вариантах осуществления множество 718 потоков в пакете 524а режима высокой пропускной способности включает в себя только потоки 716а высокой пропускной способности. В качестве альтернативы, потоки 616b малой задержки могут быть включены в пакеты 724а режима высокой пропускной способности на усмотрение ТД 606. Одним примером причины этого является случай, когда поток 616b малой задержки не получает достаточной пропускной способности. Например, могло бы быть обнаружено, что создается очередь потоков 616b малой задержки. Поток может увеличить свою пропускную способность с помощью использования вместо этого режима с высокой пропускной способностью за счет увеличения задержки.7 illustrates an example of a plurality of streams 718 for a high throughput mode packet 524a. In some embodiments, packet 724a is transmitted in high bandwidth mode if all streams 716 that have data to transmit are high bandwidth streams 716a. Thus, in some embodiments, the plurality of 718 streams in the high throughput mode packet 524a include only the high throughput streams 716a. Alternatively, the low latency streams 616b may be included in the high throughput mode packets 724a at the discretion of the AT 606. One example of the reason for this is when the low latency stream 616b does not receive sufficient bandwidth. For example, it might be detected that a queue of low delay flows 616b is created. A stream can increase its throughput by using a high throughput mode instead by increasing latency.

Фиг.8 иллюстрирует пример множества 818 потоков для пакетов 824b режима малой задержки. В некоторых вариантах осуществления, если имеется, по меньшей мере, один поток 616b малой задержки, который имеет данные для передачи, тогда пакет 824b передают в режиме с малой задержкой. Множество 818 потоков в пакете 824b режима малой задержки включает в себя каждый поток 616b малой задержки, который имеет данные для передачи. Один или более потоков 816а высокой пропускной способности, которые имеют данные для передачи, также могут быть включены в множество 818 потоков. Однако ни один, ни большее количество потоков 816а высокой пропускной способности, которые имеют данные для передачи, не могут быть включены в множество 818 потоков.FIG. 8 illustrates an example of a plurality of stream 818 for low delay mode packets 824b. In some embodiments, if there is at least one low latency stream 616b that has data to transmit, then packet 824b is transmitted in low latency mode. The plurality of 818 streams in the low latency mode packet 824b includes each low latency stream 616b that has data for transmission. One or more high throughput streams 816a that have data to transmit may also be included in multiple 818 streams. However, neither one nor more of the high throughput streams 816a that have data for transmission can be included in a plurality of 818 streams.

Фиг.9 иллюстрирует информацию, которая может обслуживаться в ТД 906, для определения того, включен ли поток 916а высокой пропускной способности в множество 818 потоков пакета 824b малой задержки. Каждый поток 916а высокой пропускной способности в ТД 906 имеет определенное количество данных 926, доступных для передачи. Также может быть определен порог 928 объединения для каждого потока 916а высокой пропускной способности в ТД 906. Кроме того, порог 928 объединения может быть определен для ТД 906 в целом. Наконец, объединение потоков высокой пропускной способности может происходить, когда оценка уровня нагрузки сектора меньше чем величина порога (как определяют оценку уровня нагрузки сектора будет обсуждено ниже). То есть когда сектор нагружен весьма слабо, потери эффективности объединения являются незначительными, и допустимо интенсивное использование.FIG. 9 illustrates information that may be served in an AP 906 to determine whether a high throughput stream 916a is included in a plurality of 818 streams of a low latency packet 824b. Each high throughput stream 916a in the AP 906 has a certain amount of data 926 available for transmission. A combining threshold 928 for each high throughput stream 916a in the AP 906 may also be determined. In addition, a combining threshold 928 may be defined for the AP 906 as a whole. Finally, the combination of high throughput flows can occur when the estimation of the sector load level is less than the threshold value (how the estimation of the sector load level will be discussed below). That is, when the sector is very lightly loaded, the losses in the efficiency of the association are insignificant, and intensive use is permissible.

В некоторых вариантах осуществления поток 916а высокой пропускной способности включают в пакет 524b малой задержки, если удовлетворяется одно из двух условий. Первое условие заключается в том, что сумма передаваемых данных 926 для всех потоков 916а высокой пропускной способности в ТД 906 превышает порог 930 объединения, который определен для ТД 906. Второе условие заключается в том, что сумма передаваемых данных 926 потока 916а высокой пропускной способности превышает порог 928 объединения, который определен для потока 916а высокой пропускной способности.In some embodiments, high throughput stream 916a is included in low latency packet 524b if one of two conditions is met. The first condition is that the sum of the transmitted data 926 for all high throughput streams 916a in the AP 906 exceeds the combining threshold 930 that is defined for the AP 906. The second condition is that the sum of the transmitted data 926 of the high throughput streams 9 exceeds the threshold 928 combining, which is defined for stream 916a high bandwidth.

Первое условие относится к передаче мощности от пакетов 824b режима малой задержки к пакетам 724а режима высокой пропускной способности. Если потоки 916а высокой пропускной способности не включены в пакеты 824b режима малой задержки, данные из потоков 916а высокой пропускной способности создаются до тех пор, пока имеются данные, доступные для передачи, по меньшей мере, из одного потока 816b малой задержки. Если разрешено накапливать слишком много данных из потоков 916а высокой пропускной способности, тогда при следующей передаче пакета 724а режима высокой пропускной способности может произойти недопустимо резкий перепад мощности от последнего пакета 824b малой задержки в пакет 724а режима высокой пропускной способности. Следовательно, в соответствии с первым условием, когда количество передаваемых данных 926 из потоков 916а высокой пропускной способности в ТД 906 превышает определенную величину (определенную с помощью порога 930 объединения), “объединение” данных из потоков 916а высокой пропускной способности в пакеты 824b режима низкой задержки разрешено.The first condition relates to transmitting power from low latency packets 824b to high throughput mode packets 724a. If the high throughput streams 916a are not included in the low delay mode packets 824b, data from the high throughput streams 916a is created as long as there is data available for transmission from at least one low delay stream 816b. If it is allowed to accumulate too much data from the high throughput streams 916a, then the next transmission of the high throughput mode packet 724a may result in an unacceptably sharp power drop from the last low delay packet 824b to the high throughput mode packet 724a. Therefore, according to the first condition, when the amount of transmitted data 926 from the high throughput streams 916a in the AP 906 exceeds a certain amount (determined using the combining threshold 930), “combining” the data from the high throughput streams 916a into low delay mode packets 824b allowed.

Второе условие относится к требованиям качества обслуживания (QOS, КО) для потоков 916а высокой пропускной способности в ТД 906. Если порог 928 объединения для потока 916а высокой пропускной способности установлен на очень большую величину, это означает, что поток 916а высокой пропускной способности является редким, даже если он включен в пакет 824b режима малой задержки. Следовательно, такой поток 916а высокой пропускной способности может испытывать задержки передачи, так как его не передают всякий раз, когда имеется, по меньшей мере, один поток 816b малой задержки с данными для передачи. Наоборот, если порог 928 объединения для потока 916а высокой пропускной способности установлен на очень малую величину, это означает, что поток 916а высокой пропускной способности почти всегда включен в пакет 824b малой задержки. Следовательно, такие потоки 916 высокой пропускной способности могут испытывать очень малую задержку передачи. Однако такие потоки 916а высокой пропускной способности используют больше ресурсов сектора, чтобы передавать свои данные.The second condition relates to Quality of Service (QOS) requirements for high throughput streams 916a in the AT 906. If the combining threshold 928 for the high throughput stream 916a is set to a very large value, this means that the high throughput stream 916a is rare. even if it is included in low latency mode packet 824b. Therefore, such a high throughput stream 916a may experience transmission delays since it is not transmitted whenever there is at least one low delay stream 816b with data for transmission. Conversely, if the combining threshold 928 for the high throughput stream 916a is set to a very small value, this means that the high throughput stream 916a is almost always included in the low latency packet 824b. Therefore, such high throughput streams 916 may experience very low transmission delay. However, such high throughput streams 916a use more sector resources to transmit their data.

Преимущественно в некоторых вариантах осуществления порог 928 объединения для некоторых потоков 916а высокой пропускной способности в ТД 906 может быть установлен на очень большую величину, в то время как порог 928 объединения для некоторых других потоков 916а высокой пропускной способности в ТД 906 может быть установлен на очень малый порог 928 объединения. Такой замысел является преимущественным, так как некоторые типы потоков 916а высокой пропускной способности могут иметь строгие требования КО, в то время как другие могут не иметь таких требований. Примером потока 916, который имеет строгие требования КО, и который может быть передан в режиме с высокой пропускной способностью, является видео в реальном времени. Видео в реальном времени имеет высокие требования к пропускной способности, что может сделать его неэффективным для передачи в режиме с малой задержкой. Однако произвольные задержки передачи нежелательны для видео реального времени. Примером потока 916, который не имеет строгих требований задержки КО, и который может быть передан в режиме с высокой пропускной способностью является поток 916 наилучшей попытки.Advantageously, in some embodiments, the combining threshold 928 for some high throughput streams 916a in the AP 906 can be set to a very large value, while the merging threshold 928 for some other high throughput streams 916a in the AP 906 can be set to a very small threshold 928 unification. Such an arrangement is advantageous since some types of high throughput streams 916a may have strict QoS requirements, while others may not have such requirements. An example of a stream 916 that has strict QoS requirements and that can be transmitted in high throughput mode is real-time video. Real-time video has high bandwidth requirements, which can make it inefficient for low-latency transmission. However, arbitrary transmission delays are undesirable for real-time video. An example of a stream 916 that does not have strict QoS delay requirements, and which can be transmitted in high throughput mode, is a best attempt stream 916.

Фиг.10 иллюстрирует СД 1004 и множество ТД 1006 в секторе 1032. Сектор 1032 является географической областью, в которой сигналы из СД 1004 могут быть приняты с помощью ТД 1006, и наоборот.10 illustrates LEDs 1004 and a plurality of APs 1006 in sector 1032. Sector 1032 is a geographic area in which signals from LEDs 1004 can be received using APs 1006, and vice versa.

Одним свойством некоторых беспроводных систем связи, таких как системы на основе множественной передачи с кодовым разделением каналов (СDM), является то, что передачи мешают друг другу. Следовательно, чтобы гарантировать, что не имеется слишком большой помехи между ТД 1006 в одном и том же секторе 1032, существует ограниченная величина мощности, принимаемой в СД 1004, которую могут совместно использовать ТД 1006. Чтобы гарантировать, что ТД 1006 останутся в этом пределе, определенная величина мощности 1034 существует для каждого ТД 1006 в секторе 1032 для передачи по обратному каналу 208 передачи потока данных. Каждый ТД 1006 устанавливает уровень 422 мощности пакетов 524, которые он передает по обратному каналу 208 передачи потока данных таким образом, чтобы он не превышал его полную доступную мощность 1034.One feature of some wireless communication systems, such as code division multiple transmission (CDM) based systems, is that the transmissions interfere with each other. Therefore, in order to ensure that there is not too much interference between the AP 1006 in the same sector 1032, there is a limited amount of power received in the LED 1004 that the AP 1006 can share. In order to ensure that the AP 1006 remains in this limit, a certain amount of power 1034 exists for each AP 1006 in sector 1032 for transmission on the reverse channel 208 data stream. Each AP 1006 sets the power level 422 of packets 524, which it transmits on the reverse channel 208 of the data stream so that it does not exceed its total available power 1034.

Уровень 1034 мощности, который распределяется в ТД 1006, может не быть точно равен уровню 422 мощности, который ТД 1006 использует для передачи пакетов 524 по обратному каналу 208 передачи потока данных. Например, в некоторых вариантах осуществления имеется множество дискретных уровней мощности, которые ТД 1006 выбирает из определения уровня 422 мощности пакета 524. Полная доступная мощность 1034 для ТД 1006 может не быть точно равна любому из дискретных уровней мощности.The power level 1034, which is allocated in the AP 1006, may not be exactly equal to the power level 422, which the AP 1006 uses to transmit packets 524 on the reverse channel 208 data stream. For example, in some embodiments, there are many discrete power levels that the AP 1006 selects from the determination of the power level 422 of packet 524. The total available power 1034 for the AP 1006 may not be exactly equal to any of the discrete power levels.

Полная доступная мощность 1034, которая не используется в любой заданный момент времени, допустима для накопления, с тем, чтобы она могла быть использована в следующий момент времени. Следовательно, в некоторых вариантах осуществления, полная доступная мощность 1034 для ТД 1006 (приблизительно) равна назначенной текущей мощности 1034а плюс, по меньшей мере, некоторая часть назначенной накопленной мощности 1034b. ТД 1006 определяет уровень 422 мощности пакета 524 таким образом, чтобы он не превышал полной доступной мощности 1034 для ТД 1006.The total available power 1034, which is not used at any given point in time, is acceptable for accumulation so that it can be used at the next point in time. Therefore, in some embodiments, the total available power 1034 for the AP 1006 is (approximately) equal to the assigned current power 1034a plus at least some of the assigned stored power 1034b. The AP 1006 determines the power level 422 of the packet 524 so that it does not exceed the total available power 1034 for the AP 1006.

Полная доступная мощность 1034 для ТД 1006 не всегда может быть равна назначенной текущей мощности 1034a ТД 1006 плюс назначенная накопленная мощность 1034b ТД 1006. В некоторых вариантах осуществления полная доступная мощность 1034 ТД 1006 может быть ограничена максимально назначенной мощностью 1034с. Максимально назначенная мощность 1034с для ТД 1006 может быть равна назначенной текущей мощностью 1034а для ТД 1006, умноженной на некоторый ограничивающий коэффициент. Например, если ограничивающий коэффициент равен двум, тогда максимальная назначенная мощность 1034с ТД 1006 равна ее удвоенной назначенной текущей мощности 1034а. В некоторых вариантах осуществления ограничивающий коэффициент является функцией назначенной текущей мощности 1034а для ТД 1006.The total available power 1034 for the AP 1006 may not always be equal to the assigned current power 1034a of the AP 1006 plus the assigned accumulated power 1034b of the AP 1006. In some embodiments, the total available power 1034 of the AP 1006 may be limited by the maximum assigned power of 1034s. The maximum assigned power 1034c for the AP 1006 may be equal to the assigned current power 1034a for the AP 1006 multiplied by some limiting factor. For example, if the limiting factor is two, then the maximum assigned power 1034c of the AP 1006 is equal to its twice the assigned current power 1034a. In some embodiments, the limiting factor is a function of the assigned current power 1034a for the AP 1006.

Обеспечение максимальной назначенной мощности 1034 для ТД может ограничить величину “пульсаций,” допустимых передач ТД 1006. Например, может случиться, что ТД 1006 не имеет данных для передачи в течение определенного периода времени. В течение этого периода времени могут продолжать назначать мощность в ТД 1006. Так как данные для передачи не имеются, назначенная мощность накапливается. В некоторый момент времени ТД 1006 может внезапно иметь относительно большое количество данных для передачи. В этот момент времени назначенная накопленная мощность 1034b может быть относительно большой. Если бы ТД 1006 было бы разрешено использовать всю назначенную накопленную мощность 1034b, тогда передаваемая мощность 422 ТД 1006 могла бы испытать внезапное быстрое увеличение. Однако, если передаваемая мощность 422 ТД 1006 увеличивается слишком быстро, это может влиять на стабильность системы 100. Таким образом, максимально назначенная мощность 1034с может быть обеспечена для ТД 100, чтобы ограничить полную доступную мощность 1034 ТД 1006 при обстоятельствах, подобных этому. Следует заметить, что назначение накопленной мощности 1034b является по-прежнему доступным, но ее использование распределяется между большим числом пакетов, когда максимально назначенная мощность 1034 ограничена.Providing a maximum assigned power of 1034 for an AP can limit the amount of “ripple,” allowable transmissions of the AP 1006. For example, it may happen that the AP 1006 does not have data to transmit for a certain period of time. During this time period, power can continue to be assigned in the AP 1006. Since no data is available for transmission, the assigned power is accumulated. At some point in time, the AP 1006 may suddenly have a relatively large amount of data to transmit. At this point in time, the assigned stored power 1034b may be relatively large. If the AP 1006 would be allowed to use all the assigned accumulated power 1034b, then the transmitted power 422 of the AP 1006 could experience a sudden rapid increase. However, if the transmitted power 422 of the AP 1006 increases too quickly, this may affect the stability of the system 100. Thus, the maximum assigned power 1034c can be provided for the AP 100 to limit the total available power 1034 of the AP 1006 in circumstances like this. It should be noted that the purpose of the accumulated power 1034b is still available, but its use is distributed among a large number of packets when the maximum assigned power 1034 is limited.

Фиг.11 иллюстрирует примерный механизм, который может быть использован для определения полной доступной мощности 1034 для ТД 206. Механизм включает в себя использование виртуального “накопителя” 1136. С периодическими интервалами назначенную новую текущую мощность 1034а добавляют в накопитель 1136. Также с периодическими интервалами уровень 422 мощности пакетов 524, передаваемых с помощью ТД 206, выходит из накопителя 1136. Величина, на которую назначенная текущая мощность 1034, превышает уровень 422 мощности пакетов, является назначенной накопленной мощностью 1034b. Назначенная накопленная мощность 1034b остается в накопителе 1136 до тех пор, пока она не будет использована.11 illustrates an example mechanism that can be used to determine the total available power 1034 for the AP 206. The mechanism includes the use of a virtual “drive” 1136. At regular intervals, the assigned new current power 1034a is added to the drive 1136. Also at periodic intervals, the level 422 of the power of packets 524 transmitted by the AP 206 leaves the drive 1136. The amount by which the assigned current power of 1034 exceeds the level of 422 power of the packets is the assigned accumulated power nost 1034b. The assigned stored power 1034b remains in the drive 1136 until it is used up.

Полная доступная 1034 мощность, за вычетом назначенной текущей мощности 1034а, является полным потенциальным расходом из накопителя 1136. ТД 1006 гарантирует, что уровень 422 мощности пакетов 524, которые он передает, не превышает полную доступную мощность для ТД 1006. Как указано ранее, при определенных обстоятельствах полная доступная мощность 1034 меньше, чем сумма назначенной текущей мощности 1034а и назначенной накопленной мощности 1034b. Например, полная доступная мощность 1034 может быть ограничена назначенной максимальной мощностью 1034с.The total available power 1034, minus the assigned current capacity 1034a, is the total potential consumption from drive 1136. The AP 1006 ensures that the power level 422 of the packets 524 it transmits does not exceed the total available power for the AP 1006. As indicated earlier, for certain circumstances, the total available power 1034 is less than the sum of the assigned current power 1034a and the assigned stored power 1034b. For example, the total available power 1034 may be limited by the assigned maximum power 1034s.

Назначенная накопленная мощность 1034b может быть ограничена уровнем 1135 насыщения. В некоторых вариантах осуществления уровень 1135 насыщения является функцией количества времени, которое разрешено ТД, чтобы использовать свою назначенную максимальную мощность 1034с.The assigned stored power 1034b may be limited by saturation level 1135. In some embodiments, the saturation level 1135 is a function of the amount of time that the AP is allowed to use its assigned maximum power of 1034s.

Фиг.12 иллюстрирует вариант осуществления, в котором, по меньшей мере, некоторые из ТД 1206 в секторе 1232 включают в себя множество потоков 1216. В таком варианте осуществления отдельная величина доступной мощности 1238 может быть определена для каждого потока 1216 в ТД 1206. Доступная мощность 1238 для потока 1216 в ТД 1206 может быть определена в соответствии со способами, описанными ранее в связи с фиг.10-фиг.11. Более конкретно, полная доступная мощность 1238 для потока 1216 может включать в себя назначенную текущую мощность 1238а для потока 1216 плюс, по меньшей мере, некоторая часть назначенной текущей мощности 1238b для потока 1216. Кроме того, полная доступная мощность 1238 для потока 1216 может быть ограничена максимально назначенной мощностью 1238с для потока 1216. Отдельный механизм накопителя, такой как механизм, изображенный на фиг.11, может быть поддержан для каждого потока 1216, для того чтобы определить полную доступную мощность 1238 для каждого потока 1216. Полная доступная мощность 1238 для ТД 1206 может быть определена с помощью суммирования полной доступной мощности 1238 для разных потоков 1216 в ТД 1206.12 illustrates an embodiment in which at least some of the APs 1206 in sector 1232 include a plurality of streams 1216. In such an embodiment, a separate amount of available power 1238 may be determined for each stream 1216 in the AP 1206. Available power 1238 for stream 1216 in the AP 1206 may be determined in accordance with the methods described previously in connection with FIG. 10-FIG. 11. More specifically, the total available power 1238 for stream 1216 may include the assigned current power 1238a for stream 1216 plus at least some of the assigned current power 1238b for stream 1216. In addition, the total available power 1238 for stream 1216 may be limited maximum assigned power 1238c for stream 1216. A separate drive mechanism, such as the mechanism shown in FIG. 11, can be supported for each stream 1216, in order to determine the total available power 1238 for each stream 1216. Full I'm available power 1238 for the AT 1206 may be determined by summing the total available power 1238 for various streams 1216 1206 TD.

Далее представлено математическое описание различных формул и алгоритмов, которые могут быть использованы при определении полной доступной мощности 1238 для потока 1216 в ТД 1206. В уравнениях, описанных ниже, полную доступную мощность 1238 для каждого потока i в ТД 1206 определяют один раз в каждом подкадре (в некоторых вариантах осуществления подкадр равен четырем интервалам времени, а интервал времени равен 5/3 мсек). Полная доступная мощность 1238 упомянута в уравнениях как PotentialT2Poutflow.The following is a mathematical description of various formulas and algorithms that can be used to determine the total available power 1238 for stream 1216 in TD 1206. In the equations described below, the total available power 1238 for each stream i in TD 1206 is determined once in each subframe ( in some embodiments, the subframe is four time intervals and the time interval is 5/3 ms). The total available power of 1238 is referred to in the equations as PotentialT2Poutflow.

Полная доступная мощность 1238 для потока i, передаваемого в пакете 524а режима высокой пропускной способности, может быть выражена как:The total available power 1238 for stream i transmitted in high bandwidth mode packet 524a can be expressed as:

Figure 00000001
Figure 00000001

Полная доступная мощность 1238 для потока i, передаваемого в пакете 524а малой задержки, может быть выражена как:The total available power 1238 for stream i transmitted in low latency packet 524a can be expressed as:

Figure 00000002
Figure 00000002

BucketLeveli,n - назначенная накопленная мощность 1238b для потока i в подкадре n. T2Pinflow - назначенная текущая мощность 1238а для потока i в подкадре n. BucketFactor(T2Pinflowi,n, FRABi,n)xT2Pinflowi,n - назначенная максимальная мощность 1238с для потока i в подкадре n. BucketFactor(T2Pinflowi,n, FRABi,n) - функция, предназначенная для определения коэффициента ограничения для полной доступной мощности 1238, т. е. коэффициента, на который полной доступной мощности 1238 для потока i в подкадре n разрешено превышать назначение 1238а текущей мощности для потока i в подкадре n. FRABi,n - оценка уровня нагрузки сектора 1232, и будет обсуждена более подробно ниже. AllocationStagger - амплитуда случайного члена уравнения, который размывает уровни назначения, чтобы исключить проблемы синхронизации, и rn - действительное случайное число равномерно распределенное в диапазоне [-1,1].BucketLeveli, n is the assigned accumulated power 1238b for stream i in subframe n. T2Pinflow is the assigned current power 1238a for stream i in subframe n. BucketFactor (T2Pinflowi, n, FRABi, n) xT2Pinflowi, n - assigned maximum power 1238s for stream i in subframe n. BucketFactor (T2Pinflowi, n, FRABi, n) is a function designed to determine the restriction coefficient for the total available power 1238, i.e., the coefficient by which the total available power 1238 for stream i in subframe n is allowed to exceed the current power setting 1238a for the stream i in subframe n. FRABi, n is an estimate of the load level of sector 1232, and will be discussed in more detail below. AllocationStagger is the amplitude of a random term in the equation that erodes assignment levels to eliminate synchronization problems, and rn is a real random number uniformly distributed over the range [-1,1].

Назначенная накопленная мощность 1238b для потока i в подкадре n+1 может быть выражена как:The assigned accumulated power 1238b for stream i in subframe n + 1 can be expressed as:

Figure 00000003
Figure 00000003

T2Poutflowi,n - часть передаваемой мощности 422, которая пропорционально распределена в поток i в подкадре n. Пример уравнения для T2Poutflowi,n предоставлено ниже. BucketLevelSati,n+1 - уровень 1135 насыщения для назначенной накопленной мощности 1238b для потока i в подкадре n+1. Примерное уравнение для BucketLevelSati,n+1 предоставлено ниже.T2Poutflowi, n is part of the transmitted power 422, which is proportionally distributed in stream i in subframe n. An example equation for T2Poutflowi, n is provided below. BucketLevelSati, n + 1 - saturation level 1135 for the assigned accumulated power 1238b for stream i in subframe n + 1. An example equation for BucketLevelSati, n + 1 is provided below.

T2Poutflowi,n может быть выражена как:T2Poutflowi, n can be expressed as:

Figure 00000004
Figure 00000004

В уравнении 4 di,n - количество данных из потока i, который включен в подпакет, который передают в течение подкадра n (подпакет - это часть пакета, которую передают в течение подкадра). SumPayloadn - сумма di,n. TxT2Pn - уровень 422 мощности подпакета, который передают в течение подкадра n.In equation 4, di, n is the amount of data from stream i that is included in a subpacket that is transmitted during subframe n (the subpacket is part of the packet that is transmitted during the subframe). SumPayloadn - sum di, n. TxT2Pn is a subpacket power level 422 that is transmitted during subframe n.

BucketLevelSati,n+1 может быть выражен как:BucketLevelSati, n + 1 can be expressed as:

Figure 00000005
Figure 00000005

BurstDurationFactori - ограничение на длительность времени, когда поток i разрешено передавать на назначениной максимальной мощности 1238с.BurstDurationFactori - restriction on the length of time when stream i is allowed to transmit at the destination with a maximum power of 1238s.

Фиг.13 иллюстрирует один способ, в котором ТД 1306 может получать назначенную текущую мощность 1338а для потоков 1316 в ТД 1306. Как изображено, ТД 1306 может принимать сообщение 1342 разрешения из планировщика 1340, который выполняется в СД 1304. Сообщение 1342 разрешения может включать в себя разрешение 1374 назначенной текущей мощности для некоторых или всех потоков 1316 в ТД 1306. Для каждого принятого разрешения 1374 назначенной текущей мощности ТД 1306 устанавливает назначенную текущую мощность 1338а для соответствующего потока, равное разрешению 1374 назначенной текущей мощности.FIG. 13 illustrates one method in which an AP 1306 can receive the assigned current power 1338a for streams 1316 in the AP 1306. As shown, the AP 1306 may receive a permission message 1342 from a scheduler 1340, which is executed in the LED 1304. The permission message 1342 may include the resolution 1374 of the assigned current power for some or all of the streams 1316 in the AP 1306 itself. For each received resolution 1374 of the assigned current power, the AP 1306 sets the assigned current power 1338a for the corresponding stream equal to the resolution 1374 of the assigned t current power.

В некоторых вариантах осуществления получение назначенной текущей мощности 1338а является двухэтапным процессом. Первый этап включает в себя определение, принято ли разрешение 1374 назначенной текущей мощности для потока из СД 1304. Если нет, тогда ТД 1306 автономно определяет назначенную текущую мощность 1338а для потока 1216. Иначе говоря, ТД 1306 определяет назначенную текущую мощность 1338а для потока 1216 без вмешательства из планировщика 1340. Следующее обсуждение относится к примерным способам для ТД 1306, чтобы автономно определять назначенную текущую мощность 1338а для одного или более потоков 1316 в ТД 1306.In some embodiments, obtaining the assigned current power 1338a is a two-step process. The first step includes determining whether the resolution 1374 of the assigned current power for the stream from LED 1304 is accepted. If not, then the AP 1306 autonomously determines the assigned current power 1338a for the stream 1216. In other words, the AP 1306 determines the assigned current power 1338a for the stream 1216 without interventions from scheduler 1340. The following discussion relates to exemplary methods for an AP 1306 to autonomously determine an assigned current power 1338a for one or more threads 1316 in an AP 1306.

Фиг.14 иллюстрирует бит обратной активности (RAB, БОА) 1444, передаваемый из СД 1404 в ТД 1406 в секторе 1432. БОА 1444 является указанием перегрузки. БОА 1444 может быть одной из двух величин, первой величиной (например, +1), которая указывает, что сектор 1432 в настоящий момент занят, или второй величиной (например, -1), которая указывает, что сектор 1432 в настоящий момент свободен. Как будет объяснено ниже, БОА может быть использован, чтобы определять назначенную текущую мощность 1338а для потоков 1216 в ТД 1206.Fig. 14 illustrates a Reverse Activity Bit (RAB, BOA) 1444 transmitted from LED 1404 to AT 1406 in sector 1432. BOA 1444 is an indication of congestion. BOA 1444 may be one of two values, the first value (e.g., +1), which indicates that sector 1432 is currently occupied, or the second value (e.g., -1), which indicates that sector 1432 is currently free. As will be explained below, the BOA can be used to determine the assigned current power 1338a for streams 1216 in the AP 1206.

Фиг.15 иллюстрирует информацию, которая может обслуживаться в ТД 1506, для того чтобы определять назначенную текущую мощность 1338а для одного или более потоков в ТД 1506. В проиллюстрированном варианте осуществления каждый поток 1516 связан с “быстрой” оценкой БОА 1444. Эта быстрая оценка будет упомянута в настоящем описании как QRAB, ББОА 1546. Пример способа, предназначенного для определения ББОА 1546, будет описан ниже.FIG. 15 illustrates information that can be serviced by an AT 1506 in order to determine an assigned current power 1338a for one or more streams in an AT 1506. In the illustrated embodiment, each stream 1516 is associated with a “quick” estimate of the BRA 1444. This quick estimate will referred to in the present description as QRAB, FACS 1546. An example of a method for determining FACS 1546 will be described below.

Каждый поток 1516 также связан с оценкой продолжительного уровня нагрузки сектора 1232, упомянутого в настоящем описании как FRAB, ФБОА 1548 (что означает “отфильтрованный” БОА 1444). ФБОА является действительным числом, которое находится где-то между двумя возможными величинами БОА 1444. Чем ближе ФБОА 1548 подходит к величине БОА 1444, которая указывает, что сектор 1432 занят, тем более загруженным является сектор 1432. Наоборот, чем ближе ФБОА подходит к величине БОА 1444, которая указывает, что сектор 1432 свободен, тем менее загруженными является сектор 1432. Пример способа, предназначенного для определения ФБОА 1548, будет описан ниже.Each stream 1516 is also associated with an assessment of the continuous load level of sector 1232, referred to herein as FRAB, TSFVA 1548 (which means “filtered” BOA 1444). The TSF is a real number that lies somewhere between the two possible values of the BOA 1444. The closer the TSF is 1548 to the value of the BOA 1444, which indicates that sector 1432 is busy, the more loaded the sector 1432. Conversely, the closer the TSF is to the value BOA 1444, which indicates that the sector 1432 is free, the less loaded is the sector 1432. An example of a method for determining the TSF 1548 will be described below.

Каждый поток также связан с линейно возрастающей функцией 1550 и линейно убывающей функцией 1552. Линейно возрастающая функция 1550 и линейно убывающая функция 1552, связанные с конкретным потоком 1516, являются функциями назначенной текущей мощности 1238а для потока 1516. Линейно возрастающую функцию 1550, связанную с потоком 1516, используют для определения увеличения назначенной текущей мощности 1238а для потока 1516. Наоборот, линейно убывающую функцию 1552, связанную с потоком 1516, используют для определения уменьшения назначенной текущей мощности 1238а для потока 1516. В некоторых вариантах осуществления как линейно возрастающая функция 1550, так и линейно убывающая функция 1552 зависят от величины ФБОА 1548 и назначенной текущей мощности 1238а для потока 1516.Each stream is also associated with a linearly increasing function 1550 and a linearly decreasing function 1552. A linearly increasing function 1550 and a linearly decreasing function 1552 associated with a particular stream 1516 are functions of the assigned current power 1238a for stream 1516. A linearly increasing function 1550 associated with stream 1516 , used to determine the increase in the assigned current power 1238a for the stream 1516. Conversely, a linearly decreasing function 1552 associated with the stream 1516 is used to determine the decrease in the assigned current power 1238a for stream 1516. In some embodiments, both the linearly increasing function 1550 and the linearly decreasing function 1552 depend on the value of the TSFL 1548 and the assigned current power 1238a for the stream 1516.

Линейно возрастающую функцию 1550 и линейно убывающую функцию 1552 определяют для каждого потока 1516 в сети, и они являются загружаемыми из СД 1404, управляющей ТД 1506 потока. Линейно возрастающая функция 1550 и линейно убывающая функция 1552 имеют назначенную текущую мощность 1238а потока в качестве их аргумента. Линейно возрастающая функция 1550 иногда будет упомянута в настоящем описании как gu, а линейно убывающая функция 1552 иногда будет упомянута в настоящем описании как gd. Заявители упоминают отношение gu/gd (также функция назначенной текущей мощности 1238а) как функцию потребности. Можно продемонстрировать, что зависящий от данных и доступности мощности терминала доступа алгоритм RLMac сходится к назначенной текущей мощности 1238 для каждого потока 1516, таким образом, что все величины функции потребности потоков равны при взятии при их назначении потока. Используя этот факт, с помощью тщательного составления функции потребности потоков можно получить то же самое общее отображение компоновки потоков и требования назначения ресурсов, что и достигаемые с помощью централизованного планировщика. Но способ функции потребности достигает возможности общего планирования с минимальной передачей управляющих сигналов и полностью децентрализованным способом.A linearly increasing function 1550 and a linearly decreasing function 1552 are determined for each stream 1516 in the network, and they are downloadable from the LED 1404 controlling the stream AP 1506. The ramp function 1550 and the ramp function 1552 have an assigned current flow power 1238a as their argument. A linearly increasing function 1550 will sometimes be referred to in the present description as gu, and a linearly decreasing function 1552 will sometimes be referred to in the present description as gd. Applicants cite the gu / gd ratio (also a function of the assigned current power 1238a) as a function of demand. It can be demonstrated that the RLMac algorithm, which depends on the data and availability of the access terminal power, converges to the assigned current power 1238 for each stream 1516, so that all values of the demand function of the flows are equal when taken when they are assigned to the stream. Using this fact, by carefully compiling the thread demand function, you can get the same general display of the flow layout and resource assignment requirements as achieved with a centralized scheduler. But the need function method achieves the possibility of general planning with minimal transmission of control signals and in a fully decentralized way.

Фиг.16 представляет собой блок-схему, иллюстрирующую примерные функциональные компоненты в ТД 1606, который может быть использован для определения ББОА 1646 и ФБОА 1648. Как изображено, ТД 1606 может включать в себя компонент 1654 демодуляции БОА, преобразователь 1656, первый и второй однополюсные фильтры 1658, 1660 IIR, БИХ (бесконечная импульсная характеристика) и ограничивающее устройство 1662.Fig is a block diagram illustrating exemplary functional components in the AP 1606, which can be used to determine the FWA 1646 and TSF 16A. As shown, the AP 1606 may include a component 1654 demodulation BOA, the converter 1656, the first and second unipolar filters 1658, 1660 IIR, IIR (infinite impulse response) and limiting device 1662.

БОА 1644 передают из СД 1604 в ТД 1606 через канал 1664 связи. Компонент 1654 демодуляции БОА выполняет демодуляцию принятого сигнала с использованием стандартных способов, которые известны специалистам в данной области техники. Компонент 1654 демодуляции БОА выводит коэффициент логарифмической вероятности (LLR, КЛВ) 1666. Преобразователь берет КЛВ 1666 в качестве входного сигнала и преобразует КЛВ 1666 в величину, попадающую в интервал между возможными величинами БОА 1644 (например, +1 и -1), которая является оценкой переданного БОА для этого интервала времени.BOA 1644 is transmitted from SD 1604 to TD 1606 via communication channel 1664. The BOA demodulation component 1654 performs demodulation of the received signal using standard methods that are known to those skilled in the art. The BOA demodulation component 1654 outputs a logarithmic probability coefficient (LLR, CLW) 1666. The converter takes the CLW 1666 as an input signal and converts the CLW 1666 to a value that falls between the possible values of the BOA 1644 (for example, +1 and -1), which is an estimate of the transmitted BOA for this time interval.

Выходной сигнал преобразователя 1656 подают в первый однополюсный фильтр 1658 БИХ. Первый фильтр 1658 БИХ имеет постоянную времени τs. Выходной сигнал первого фильтра 1658 БИХ подают в ограничивающее устройство 1662. Ограничивающее устройство 1662 преобразует выходной сигнал первого фильтра 1658 БИХ в одну из двух возможных величин, соответствующих двум возможным величинам БОА 1644. Например, если БОА 1644 был либо -1, либо +1, тогда ограничивающее устройство 1662 преобразует выходной сигнал первого фильтра 1658 БИХ либо в -1, либо в +1. Выходным сигналом ограничивающего устройства 1662 является ББОА 1646. Постоянную времени τs выбирают таким образом, чтобы ББОА 1646 представлял оценку того, чему равна текущая величина БОА 1644, переданного из СД 1604. Примерная величина для постоянной времени τs равна четырем интервалам времени.The output of converter 1656 is fed to a first IIP 1658 IIR filter. The first IIR 1658 filter has a time constant τ s . The output signal of the first IIR filter 1658 is supplied to the limiting device 1662. The limiting device 1662 converts the output signal of the first IIR filter 1658 to one of two possible values corresponding to the two possible values of BOA 1644. For example, if BOA 1644 was either -1 or +1, then the limiting device 1662 converts the output of the first IIR filter 1658 to either -1 or +1. The output signal of the limiting device 1662 is the BWA 1646. The time constant τ s is chosen so that the BWA 1646 represents an estimate of what the current value of the BOA 1644 transmitted from the LED 1604 is equal. The approximate value for the time constant τ s is four time intervals.

Выходной сигнал преобразователя 1556 также подают во второй однополюсный фильтр 1660 БИХ, имеющий постоянную времени τ1. Выходным сигналом второго фильтра 1660 БИХ является ФБОА 1648. Постоянная времени τ1 значительно больше, чем постоянная времени τs. Примерная величина для постоянной времени τ1 равна 384 интервалам времени.The output of converter 1556 is also supplied to a second IIR single pole filter 1660 having a time constant τ 1 . The output signal of the second IIR filter 1660 is FBOA 1648. The time constant τ 1 is much larger than the time constant τ s . The approximate value for the time constant τ 1 is equal to 384 time intervals.

Выходной сигнал второго фильтра 1660 БИХ не подают в ограничивающее устройство. Следовательно, как описано выше, ФБОА 1648 является действительным числом, которое находится где-то в интервале между первой величиной БОА 1644, которая указывает, что сектор 1432 занят, и второй величиной БОА 1644, которая указывает, что сектор 1432 свободен.The output of the second IIR filter 1660 is not supplied to the limiting device. Therefore, as described above, the TSF 1648 is a real number that lies somewhere between the first BOA value 1644, which indicates that the sector 1432 is busy, and the second BOA value 1644, which indicates that the sector 1432 is free.

Фиг.17 иллюстрирует примерный способ 1700, предназначенный для определения назначенной текущей мощности 1238а для потока 1216 в ТД 1206. Этап 1702 способа 1700 включает в себя определение величины ББОА 1546, который связан с потоком 1216. На этапе 1704 определяют, равен ли ББОА 1546 величине занятого состояния (т. е. величине, которая указывает, что сектор 1432 в настоящий момент занят). Если ББОА 1546 равен величине занятого состояния, тогда на этапе 1706 уменьшают назначенную текущую мощность 1238, т. е. назначенная текущая мощность 1238 для потока 1216 в момент времени n меньше, чем назначенная текущая мощность 1238 для потока 1216 в момент времени n-1. Величина уменьшения может быть вычислена с использованием линейно убывающей функции 1552, которая определена для потока 1216.FIG. 17 illustrates an example method 1700 for determining an assigned current power 1238a for stream 1216 in an AT 1206. Step 1702 of method 1700 includes determining a value of AEC 1546 that is associated with a stream 1216. At step 1704, it is determined whether the AEC 1546 is equal to busy state (i.e., a value that indicates that sector 1432 is currently busy). If the BWA 1546 is equal to the occupied state value, then at step 1706 the assigned current power 1238 is reduced, i.e., the assigned current power 1238 for stream 1216 at time n is less than the assigned current power 1238 for stream 1216 at time n-1. The magnitude of the reduction can be calculated using a linearly decreasing function 1552, which is defined for the stream 1216.

Если ББОА 1546 равен величине свободного состояния, тогда на этапе 1708 увеличивают назначенную текущую мощность 1238, т. е. назначенная текущая мощность 1238 для потока 1216 в течение текущего интервала времени больше, чем назначенная текущая мощность 1238 для потока 1216 в течение самого недавнего интервала времени. Величина увеличения может быть вычислена с использованием линейно возрастающей функции 1550, которая определена для потока 1216.If the BWA 1546 is equal to the free state value, then at step 1708 the assigned current power 1238 is increased, i.e., the assigned current power 1238 for stream 1216 during the current time interval is greater than the assigned current power 1238 for stream 1216 during the most recent time interval . The magnitude of the increase can be calculated using a ramp function 1550, which is defined for stream 1216.

Линейно возрастающая функция 1550 и линейно убывающая функция 1552 являются функциями назначенной текущей мощности 1238а, и потенциально являются разными для каждого потока 1516 (загружаемого с помощью СД 1404). Таким образом, получают установление различий КО на поток с помощью автономного назначения. Также значение линейной функции может изменяться с ФБОА 1548, означая, что динамика линейности изменения может изменяться с нагрузкой, что дает возможность более быстрой сходимости к фиксированной точке при менее нагруженных состояниях.The linearly increasing function 1550 and the linearly decreasing function 1552 are functions of the assigned current power 1238a, and are potentially different for each stream 1516 (loaded using LED 1404). In this way, the establishment of QoS differences on the stream using the autonomous assignment is obtained. Also, the value of the linear function can change with TSF 15A, meaning that the dynamics of the linearity of the change can change with the load, which makes it possible to more quickly converge to a fixed point under less loaded conditions.

Когда назначенную текущую мощность 1238а увеличивают, величина увеличения может быть выражена как:When the assigned current power 1238a is increased, the magnitude of the increase can be expressed as:

Figure 00000006
Figure 00000006

Когда назначенную текущую мощность 1238а уменьшают, величина увеличения может быть выражена как:When the assigned current power 1238a is reduced, the magnitude of the increase can be expressed as:

Figure 00000007
Figure 00000007

T2PUpi - линейно возрастающая функция 1550 для потока i. T2Pdpi - линейно убывающая функция 1552 для потока i. PilotStrengthn,s - показатель мощности пилот-сигнала обслуживающего сектора относительно мощности пилот-сигналов других секторов. В некоторых вариантах осуществления - это отношение мощности пилот сигнала FL обслуживающего сектора к мощности пилот-сигналов других секторов. PilotStrengthi - функция, преобразующая интенсивность пилот-сигнала в поправку в аргументе линейной функции, и является загружаемой из СД. Таким образом, приоритет потоков в ТД можно регулировать на основании местоположения ТД в сети, как измеренного с помощью переменной PilotStrengthn,s.T2PUpi is a linearly increasing function of 1550 for stream i. T2Pdpi is a linearly decreasing function 1552 for stream i. PilotStrengthn, s is a measure of the pilot power of a serving sector relative to the pilot power of other sectors. In some embodiments, the implementation is the ratio of the pilot power FL of a serving sector to the pilot power of other sectors. PilotStrengthi - a function that converts the intensity of the pilot signal into a correction in the argument of a linear function, and is loaded from the SD. Thus, the priority of the flows in the AP can be adjusted based on the location of the AP in the network, as measured using the PilotStrengthn, s variable.

Назначенная текущая мощность 1238 может быть выражена как:The assigned current power 1238 may be expressed as:

Figure 00000008
Figure 00000008

Как видно из приведенных выше уравнений, когда достигнут уровень 1135 насыщения и линейное изменение установлено в ноль, назначенная текущая мощность 1238 затухает по экспоненте. Это учитывает установление величины назначенной текущей мощности 1238а для источников неравномерной передачи потока данных, для которого время установления должно быть больше, чем обычное время между двумя последовательными пакетами.As can be seen from the above equations, when the saturation level 1135 is reached and the ramp is set to zero, the assigned current power 1238 decays exponentially. This takes into account the establishment of the assigned current power 1238a for sources of uneven transmission of the data stream, for which the settling time should be longer than the usual time between two consecutive packets.

В некоторых вариантах осуществления величину ББОА 1546 оценивают для каждого сектора в активном множестве ТД 1206. Если ББОА равен занятому состоянию для любого из секторов в активном множестве ТД, тогда уменьшают назначенную текущую мощность 1238а. Если ББОА равен свободному состоянию для любого из секторов в активном множестве ТД, тогда увеличивают назначенную текущую мощность 1238а. В альтернативных вариантах осуществления может быть определен другой параметр ББОАps, ББОАпс. Для ББОАпс принимают во внимание измеренную интенсивность пилот-сигнала. (Интенсивность пилот-сигнала является показателем мощности пилот-сигнала обслуживающего сектора относительно мощности пилот-сигналов других секторов. В некоторых вариантах осуществления - это отношение мощности пилот сигнала FL обслуживающего сектора к мощности пилот-сигналов других секторов. ББОАпс устанавливают в величину занятого состояния, если ББОА равен занятому состоянию для сектора s, который удовлетворяет одному или более из следующих условий: (1) сектор s является обслуживающим сектором прямой линии связи; (2) бита DRCLock из сектора s разблокирован, а PilotStrengthn,s сектора s больше чем величина порога; (3) бита DRCLock из сектора s заблокирован, а PilotStrengthn,s сектора s больше чем величина порога. В противном случае ББОАпс устанавливают в величину свободного состояния. В вариантах осуществления, в которых определен ББОАпс, назначенная текущая мощность 1238 может быть увеличена, когда ББОАпс равен свободному состоянию, и может быть уменьшено, когда ББОАпс равен занятому состоянию.In some embodiments, the value of the BWA 1546 is estimated for each sector in the active set of the AP 1206. If the BWA is equal to the occupied state for any of the sectors in the active set of the AP, then the assigned current power 1238a is reduced. If the BOAA is equal to the free state for any of the sectors in the active set of APs, then the assigned current power 1238a is increased. In alternative embodiments, another parameter of BOAps, BOAps, may be determined. For BPOAps, the measured pilot signal strength is taken into account. (The pilot strength is a measure of the serving sector pilot power relative to the pilot strength of other sectors. In some embodiments, this is the ratio of the serving sector pilot power FL of the serving sector to the pilot strength of other sectors. BOAps are set to the busy state if The FWAA is equal to the busy state for sector s, which satisfies one or more of the following conditions: (1) sector s is the serving sector of the forward link; (2) the DRCLock bits from the sector and s is unlocked, and PilotStrengthn, s of sector s is greater than the threshold value; (3) the DRCLock bit from sector s is blocked, and PilotStrengthn, s of sector s is larger than the threshold value. Otherwise, FBOAps are set to the free state value. in which BOAps is determined, the assigned current power 1238 may be increased when the BOAps is equal to the idle state, and may be reduced when the BOAps is equal to the occupied state.

Фиг.18 иллюстрирует ТД 1806, посылающий сообщение 1866 запроса в планировщик 1840 в СД 1804. Фиг.18 также иллюстрирует планировщик, посылающий сообщение 1842 разрешения в ТД 1806. В некоторых вариантах осуществления планировщик 1840 может посылать сообщения 1842 разрешения в ТД 1806 по своей собственной инициативе. В качестве альтернативы, планировщик 1840 может посылать сообщения 1842 разрешения в ТД 1806 в ответ на сообщение 1866 запроса, которое посылают с помощью ТД 1806. Сообщение 1866 запроса содержит информацию в месте заголовка о мощности ТД, а также информацию о длине очереди на поток.FIG. 18 illustrates an AP 1806 sending request message 1866 to scheduler 1840 in ST 1804. FIG. 18 also illustrates a scheduler sending permission message 1842 to AT 1806. In some embodiments, scheduler 1840 may send permission messages 1842 to AT 1806 in its own right. initiative. Alternatively, the scheduler 1840 may send permission messages 1842 to the AP 1806 in response to the request message 1866, which is sent by the AP 1806. The request message 1866 contains information at the heading of the AP power as well as information about the length of the queue per stream.

Фиг.19 иллюстрирует информацию, которая может обслуживаться в ТД 1906, для того чтобы для ТД 1906 определять, когда посылать сообщение 1866 запроса в СД 1804. Как изображено, ТД 1906 может быть связан с коэффициентом 1968 запроса. Коэффициент 1968 запроса указывает отношение размера 1866 сообщения запроса, посланного по обратному каналу 208 передачи потока данных, к данным, посланным по обратному каналу 208 передачи потока данных. В некоторых вариантах осуществления, когда коэффициент 1968 запроса уменьшается ниже определенной величины порога, тогда ТД 1906 посылает сообщение 1866 запроса в планировщик 1840.FIG. 19 illustrates information that may be served in an AT 1906 in order to determine for an AT 1906 when to send a request message 1866 to an AN 1804. As shown, the AT 1906 may be associated with a request coefficient 1968. The request coefficient 1968 indicates the ratio of the size 1866 of the request message sent on the return channel 208 of the data stream to the data sent on the return channel 208 of the data stream. In some embodiments, when the request coefficient 1968 decreases below a certain threshold value, then the AP 1906 sends a request message 1866 to the scheduler 1840.

ТД 1906 также может быть связан с интервалом 1970 запроса. Интервал 1970 запроса указывает период времени с последнего сообщения 1866 запроса, которое было послано в планировщик 1840. В некоторых вариантах осуществления, когда интервал 1970 запроса увеличивается выше определенной пороговой величины, тогда ТД 1906 посылает сообщение 1866 запроса в планировщик 1840. Оба способа для инициирования сообщения 1866 запроса также могут быть использованы вместе (т. е. сообщение 1866 запроса может быть послано, когда его вызывает любой способ).TD 1906 may also be associated with a request interval 1970. The request interval 1970 indicates the period of time from the last request message 1866 that was sent to the scheduler 1840. In some embodiments, when the request interval 1970 increases above a certain threshold value, then the AP 1906 sends a request message 1866 to the scheduler 1840. Both methods for initiating a message Request 1866 can also be used together (i.e., request message 1866 can be sent when it is called in any way).

Фиг.20 иллюстрирует пример взаимодействия между планировщиком 1040, выполняющимся в СД 2004, и ТД 2006 в секторе 2032. Как изображено на фиг.20, планировщик 2040 может определять разрешения 1374 назначенной текущей мощности для подмножества 2072 ТД 2006 в секторе 2032. Отдельное разрешение 1374 назначенной текущей мощности может быть определено для каждого ТД 2006. Когда ТД 2006 в подмножестве 2072 включает в себя более одного потока 1216, планировщик 2040 может определить отдельные разрешения 1374 назначенной текущей мощности для некоторых или всех потоков 1216 в каждом ТД 2006. Планировщик 2040 периодически посылает сообщения 2042 разрешения в ТД 2006 в подмножество 2072. Планировщик 2040 не определяет разрешения 1374 назначенной текущей мощности для ТД 2006 в секторе 2032, который не является частью подмножества 2072. Вместо этого остальные ТД 2006 в секторе 2032 автономно определяют свои собственные назначенные текущие мощности 1038а. Сообщения 2042 разрешения могут включать в себя период блокировки для некоторых или всех разрешений 1374 назначенной текущей мощности. Период блокировки для разрешения 1374 назначенной текущей мощности указывает, как долго ТД 2006 сохраняет назначенную текущую мощность 1238 для соответствующего потока 1216 на уровне, заданном с помощью разрешения 1374 назначенной текущей мощности.FIG. 20 illustrates an example of an interaction between scheduler 1040 running in LED 2004 and AP 2006 in sector 2032. As depicted in FIG. 20, scheduler 2040 can determine the permissions 1374 of the assigned current power for a subset of 2072 AP 2006 in sector 2032. Separate resolution 1374 the assigned current power can be determined for each AP 2006. When the AP 2006 in a subset of 2072 includes more than one thread 1216, the scheduler 2040 can determine the individual permissions 1374 of the assigned current power for some or all of the threads 1216 in each AP 20 06. Scheduler 2040 periodically sends permission messages 2042 to AP 2006 to subset 2072. Scheduler 2040 does not determine permission 1374 of the assigned current capacity for AP 2006 in sector 2032, which is not part of subset 2072. Instead, the rest of 2006 APs in sector 2032 autonomously determine their own designated current capacities 1038a. Permission messages 2042 may include a blocking period for some or all of the permissions 1374 of the assigned current power. The blocking period for resolution 1374 of the assigned current power indicates how long the AP 2006 maintains the assigned current power 1238 for the corresponding stream 1216 at the level set by the resolution 1374 of the assigned current power.

В соответствии с подходом, проиллюстрированным на фиг.20, планировщик 2040 не предназначен для того, чтобы заполнять всю пропускную способность в секторе 2032. Вместо этого планировщик 2040 определяет назначенную текущую мощность 1038а для ТД 2006 в подмножестве 2072, а затем остальную пропускную способность сектора 2032 эффективно используют с помощью остальных ТД 2006 без вмешательства из планировщика 2040. Подмножество 2072 может изменяться во времени и даже может изменяться с каждым сообщением 2042 разрешения. Также решение послать сообщение 2042 разрешения в некоторое подмножество 2072 ТД 2006 может быть инициировано с помощью любого числа внешних событий, включая обнаружение того, что некоторые потоки не удовлетворяют определенным требованиям КО.In accordance with the approach illustrated in FIG. 20, scheduler 2040 is not designed to fill all of the bandwidth in sector 2032. Instead, scheduler 2040 determines the assigned current capacity 1038a for AP 2006 in a subset of 2072, and then the remaining bandwidth of sector 2032 effectively used with the rest of the 2006 APs without intervention from the scheduler 2040. The subset 2072 may change over time and may even change with each permission message 2042. Also, the decision to send a permission message 2042 to a subset 2072 of the AP 2006 can be triggered by any number of external events, including the discovery that some threads do not satisfy certain QoS requirements.

Фиг.21 иллюстрирует другой пример взаимодействия между планировщиком 2140, выполняющимся в СД 2104, и ТД 2106. В некоторых вариантах осуществления, если ТД 2106 разрешено определять назначенную текущую мощность 2138а для потоков 2116 в СД 2106, каждое из назначенной текущей мощности 2138а во времени будет сходиться к величине установившегося режима. Например, если один ТД 2106 входит в незагруженный сектор 1232 с потоком 2116, который не имеет данных для передачи, назначенной текущей мощности 2138а для этого потока 2116 будет линейно увеличиваться до тех пор, пока этот поток 2116 занимает всю пропускную способность сектора 2132. Однако для того, чтобы это произошло, может потребоваться некоторое время.FIG. 21 illustrates another example of interaction between a scheduler 2140 running in LED 2104 and an AP 2106. In some embodiments, if the AP 2106 is allowed to determine the assigned current power 2138a for the threads 2116 in the LED 2106, each of the assigned current power 2138a will be timed converge to the value of the steady state. For example, if one AP 2106 enters an unloaded sector 1232 with a stream 2116 that does not have data to transmit, the assigned current power 2138a for this stream 2116 will increase linearly until this stream 2116 occupies the entire bandwidth of sector 2132. However, for it may take some time for this to happen.

Альтернативным подходом для планировщика 2140 является определение оценок величин установившегося режима, которых будут окончательно достигать потоки в каждом ТД 2106. Затем планировщик 2140 может послать сообщение 2142 разрешения во все ТД 2106. В сообщении 2142 разрешения разрешение 2174 назначенной текущей мощности для потока 2116 устанавливают равным оценке величины установившегося режима, как определено с помощью планировщика 2140. После приема сообщения 2142 разрешения ТД 2106 посылает назначенную текущую мощность 2138а для потоков 2116 в ТД 2106, равные оценкам 2174 установившегося режима в сообщении 2142 разрешения. Когда это сделано, ТД 2106 затем может быть разрешено отслеживать любые изменения состояний системы и автономно определять назначенную текущую мощность 2138а для потоков 2116 без дополнительного вмешательства из планировщика 2140.An alternative approach for the scheduler 2140 is to determine the steady state estimates that the threads in each AP 2106 will ultimately reach. Then, the scheduler 2140 can send a permission message 2142 to all APs 2106. In the permission message 2142, the resolution 2174 of the assigned current power for stream 2116 is set to an estimate steady state values, as determined by the scheduler 2140. After receiving permission message 2142, the AP 2106 sends the assigned current power 2138a for streams 2116 to the AP 2106, equal to enkam 2174 steady state in the message 2142 resolution. When this is done, the AP 2106 may then be allowed to monitor any changes in the state of the system and autonomously determine the assigned current power 2138a for the threads 2116 without additional intervention from the scheduler 2140.

Фиг.22 иллюстрирует другой вариант осуществления сообщения 2242 разрешения, которое передают из планировщика 2240 по СД 2204 в ТД 2206. Как прежде, сообщение 2242 разрешения включает в себя разрешение 2274 назначенной текущей мощности для одного или более потоков 2216 назначенной текущей мощности 2138а для потоков 2116 в ТД 2206. Кроме того, сообщение разрешения включает в себя период 2276 блокировки для некоторых или всех разрешений 2274 назначенной текущей мощности.FIG. 22 illustrates another embodiment of a permission message 2242 that is transmitted from scheduler 2240 via LED 2204 to AT 2206. As before, permission message 2242 includes permission 2274 of the assigned current power for one or more threads 2216 of the assigned current power 2138a for threads 2116 in the AT 2206. In addition, the permission message includes a blocking period 2276 for some or all of the permissions 2274 of the assigned current power.

Сообщение 2242 разрешения также включает в себя разрешение 2278 назначенной накопленной мощности для некоторых или всех потоков 2216 в ТД 2206. После приема сообщения 2142 разрешения ТД 2106 посылает назначенную накопленную мощность 2238b для потоков 2116 в ТД 2106, равные разрешениям 2278 назначенной накопленной мощности для соответствующих потоков 2216 в сообщении 2342 разрешения.The permission message 2242 also includes a resolution 2278 of the assigned accumulated power for some or all of the threads 2216 in the AP 2206. After receiving the permission message 2142, the AP 2106 sends the assigned accumulated power 2238b for the threads 2116 to the AP 2106, equal to the permissions 2278 of the assigned accumulated power for the respective flows 2216 in message 2342 permission.

Фиг.23 иллюстрирует профиль 2380 мощности, который может быть запомнен в ТД 2306 в некоторых вариантах осуществления. Профиль 2332 мощности может быть использован для того, чтобы определять величину 420 полезной нагрузки и уровень 422 мощности пакета, который передают с помощью ТД 2306 в СД 204.23 illustrates a power profile 2380 that may be stored in an AP 2306 in some embodiments. The power profile 2332 can be used to determine the payload value 420 and the packet power level 422, which is transmitted by the AP 2306 to the LED 204.

Профиль 2380 мощности включает в себя множество величин 2320 полезной нагрузки. Величины 2320 полезной нагрузки, включенные в профиль 2380 мощности, являются возможными величинами 2320 полезной нагрузки для пакетов 524, которые передают с помощью ТД 2306.Power profile 2380 includes a plurality of payload values 2320. The payload values 2320 included in the power profile 2380 are possible payload values 2320 for packets 524 that are transmitted using the AP 2306.

Каждая величина 2320 полезной нагрузки в профиле 2380 мощности связана с уровнем 2322 мощности для каждого возможного режима передачи. В проиллюстрированном варианте осуществления каждая величина 2320 полезной нагрузки связана с уровнем 2322а мощности режима высокой пропускной способности и уровнем 2322b мощности режима малой задержки. Уровень 2322а мощности режима высокой пропускной способности является уровнем мощности для пакета 524а режима высокой пропускной способности с соответствующей величиной 2320 полезной нагрузки. Уровень 2322b мощности режима малой задержки является уровнем мощности для пакета 524b режима малой задержки с соответствующей величиной 2320 полезной нагрузки.Each payload value 2320 in the power profile 2380 is associated with a power level 2322 for each possible transmission mode. In the illustrated embodiment, each payload value 2320 is associated with a high throughput mode power level 2322a and a low delay mode power level 2322b. The high throughput mode power level 2322a is the power level for the high throughput mode packet 524a with a corresponding payload value 2320. The low latency mode power level 2322b is the power level for the low latency mode packet 524b with a corresponding payload value 2320.

Фиг.24 иллюстрирует множество условий 2482 передачи, которые могут быть запомнены в ТД 2406. В некоторых вариантах осуществления условия 2482 передачи влияют на выбор величины 420 полезной нагрузки и уровень 422 мощности для пакета 524.24 illustrates a variety of transmission conditions 2482 that can be stored in the AP 2406. In some embodiments, transmission conditions 2482 affect the selection of payload value 420 and power level 422 for packet 524.

Условия 2482 передачи включают в себя условие 2484 назначенной мощности. Условие 2484 назначенной мощности обычно относится к гарантированию того, что ТД 2406 не использует больше мощности, чем ему назначено. Более конкретно, условие 2484 назначенной мощности заключается в том, что уровень 422 мощности пакета 524 не превышает полную доступную мощность 1034 для ТД 2406. Различные, примерные способы, предназначенные для определения полной доступной мощности 1034 для ТД 2406, были обсуждены выше.Transmission conditions 2482 include an assigned power condition 2484. Assigned Power Condition 2484 typically refers to ensuring that the AP 2406 does not use more power than it is assigned. More specifically, the assigned power condition 2484 is that the power level 422 of packet 524 does not exceed the total available power 1034 for the AP 2406. Various, exemplary methods for determining the total available power 1034 for the AP 2406 have been discussed above.

Условия 2482 передачи также включают в себя условие 2486 максимальной мощности. Условие 2486 максимальной мощности заключается в том, что уровень 422 мощности пакета 524 не превышает максимального уровня мощности, который задан для ТД 2406.Transmission conditions 2482 also include a maximum power condition 2486. Condition 2486 maximum power is that the power level 422 of the packet 524 does not exceed the maximum power level, which is set for the AP 2406.

Условия 2482 передачи также включают в себя условие 2488 данных. Условие 2488 данных обычно относится к гарантированию того, что величина 420 полезной нагрузки пакета 524 не является слишком большой в виду полной доступной мощности 1034 ТД 2406, а также количества данных, которые ТД 2406 в настоящий момент имеет доступными для передачи. Более конкретно, условие 2488 данных заключается в том, что отсутствует величина 2320 полезной нагрузки в профиле мощности, который соответствует более низкому уровню 2322 мощности для режима передачи пакета 524, и, который может переносить меньше (1) количества данных, чем имеется в настоящий момент для передачи, и (2) количества данные, которым соответствует полная доступная мощность для ТД 2406.Transmission conditions 2482 also include data condition 2488. Data condition 2488 typically refers to ensuring that the payload value of packet 524 is not too large in view of the total available power 1034 of the AP 2406, as well as the amount of data that the AP 2406 currently has available for transmission. More specifically, the data condition 2488 is that there is no payload value 2320 in the power profile that corresponds to a lower power level 2322 for the transmission mode of packet 524, and which can carry less (1) amount of data than is currently available for transmission, and (2) the amount of data that corresponds to the total available power for the AP 2406.

Ниже предоставлено математическое описание условий 2482 передачи. Условие 2484 назначенной мощности может быть выражено как: The following is a mathematical description of the conditions of 2482 transmission. Assigned power condition 2484 may be expressed as:

Figure 00000009
Figure 00000009

TxT2PNominalps,tm - уровень 2322 мощности для величины PS полезной нагрузки и режима ТМ передачи. F - множество 418 потоков.TxT2PNominalps, tm - power level 2322 for the value of PS payload and TM transmission mode. F is a set of 418 threads.

Условие 2486 максимальной мощности может быть выражено как:Condition 2486 of maximum power can be expressed as:

Figure 00000010
Figure 00000010

В некоторых вариантах осуществления уровню 422 мощности пакета 524 разрешено переходить из первой величины во вторую величину в некоторый момент времени во время передачи пакета 524. В таких вариантах осуществления уровень 2322 мощности, который задан в профиле 2380 мощности, включает в себя величину перед переходом и величину после перехода. TxT2PreTransitionps,tm - величина перед переходом для величины PS полезной нагрузки и режима ТМ передачи. TxT2PostTransitionps,tm - величина после перехода для величины PS полезной нагрузки и режима ТМ передачи. TxT2Pmax - максимальный уровень мощности, который определен для ТД 206, и может быть функцией интенсивности пилот-сигнала, измеренной с помощью ТД 206. Интенсивность пилот-сигнала является показателем мощности пилот-сигнала обслуживающего сектора относительно мощности пилот-сигнала других секторов. В некоторых вариантах осуществления он равен отношению мощности пилот-сигнала FL обслуживающего сектора к мощности пилот-сигнала других секторов. Он также может быть использован для управления линейным увеличением и уменьшением, которое ТД выполняет автономно. Он также может быть использован, чтобы управлять TxT2Pmax таким образом, чтобы ТД 206 при неудачном расположении (например, на краю сектора) могли ограничивать свои максимальные мощности передачи, чтобы исключить создание нежелательных помех в других секторах.In some embodiments, the power level 422 of packet 524 is allowed to transition from a first value to a second value at some point in time during transmission of packet 524. In such embodiments, the power level 2322 that is specified in the power profile 2380 includes a pre-transition value and a value after the transition. TxT2PreTransitionps, tm - value before transition for the value of PS payload and TM transmission mode. TxT2PostTransitionps, tm is the value after the transition for the value of PS payload and TM transmission mode. TxT2Pmax is the maximum power level that is defined for the AP 206, and may be a function of the pilot signal strength measured by the AP 206. The pilot signal strength is an indicator of the serving sector pilot power relative to the pilot signal strength of other sectors. In some embodiments, it is equal to the ratio of the pilot power FL of the serving sector to the pilot power of other sectors. It can also be used to control linear increase and decrease, which the AP performs autonomously. It can also be used to control TxT2Pmax in such a way that APs 206, when not located (for example, at the edge of a sector), can limit their maximum transmit powers to prevent unwanted interference in other sectors.

В некоторых вариантах осуществления условие 2488 данных заключается в том, что не имеется величины 2320 полезной нагрузки в профиле 2380 мощности, который соответствует более низкому уровню 2322 мощности для режима передачи пакета 524, и который может нести полезную нагрузку величины, задаваемой с помощью:In some embodiments, the data condition 2488 is that there is no payload value 2320 in the power profile 2380, which corresponds to a lower power level 2322 for the transmission mode of packet 524, and which can carry a payload of a value set by:

Figure 00000011
Figure 00000011

В уравнении 11 di,n - количество данных из потока i, который включен в подпакет, который передают в течение подкадра n. Выражение T2PConversionTM x PotentialT2Poutflowi,TM - передаваемые данные для потока i, т. е. количество данных, которым соответствует полная доступная мощность 1034 для ТД 2406. T2PconversionFactorTM - коэффициент преобразования для преобразования полной доступной мощности 1238 для потока i в уровень данных.In equation 11, di, n is the amount of data from stream i that is included in a subpacket that is transmitted during subframe n. The expression T2PConversionTM x PotentialT2Poutflowi, TM is the transmitted data for stream i, i.e. the amount of data that corresponds to the total available power of 1034 for the AP 2406. T2PconversionFactorTM is the conversion coefficient for converting the total available power of 1238 for stream i to the data level.

Фиг.25 иллюстрирует пример способа 2500, который может выполнять ТД 206, для того чтобы определять величину 420 полезной нагрузки и уровень 422 мощности для пакета 524. Этап 2502 включает в себя выбор величины 2320 полезной нагрузки из профиля 2380 мощности. Этап 2504 включает в себя идентификацию уровня 2322 мощности, связанного с выбранной величиной 2320 полезной нагрузки для режима передачи пакета 524. Например, если пакет 524 собираются передавать в режиме с высокой пропускной способностью, тогда этап 2504 включает в себя идентификацию уровня 2322а мощности высокой пропускной способности, связанного с выбранной величиной 2320 полезной нагрузки. Наоборот, если пакет 524 собираются передавать в режиме с малой задержкой, тогда этап 2504 включает в себя идентификацию уровня 2322b мощности режима малой задержки, связанного с выбранной величиной 2320 полезной нагрузки.25 illustrates an example of a method 2500 that an AP 206 can perform to determine a payload value 420 and a power level 422 for a packet 524. Step 2502 includes selecting a payload value 2320 from a power profile 2380. Step 2504 includes identifying a power level 2322 associated with the selected payload value 2320 for the transmission mode of packet 524. For example, if packet 524 is going to be transmitted in high bandwidth mode, then step 2504 includes identifying high bandwidth power level 2322a associated with the selected value 2320 payload. Conversely, if packet 524 is going to be transmitted in a low-latency mode, then step 2504 includes identifying the low-latency mode power level 2322b associated with the selected payload value 2320.

Этап 2506 включает в себя определение того, удовлетворяются ли условия 2482 передачи, если пакет 524 передают с выбранной величиной 2320 полезной нагрузки и соответствующим уровнем 2322 мощности. Если на этапе 2506 определено, что условия 2482 передачи удовлетворяются, тогда на этапе 2508 выбранную величину 2320 полезной нагрузки и соответствующий уровень 2322 мощности передают на физический уровень 312.Step 2506 includes determining whether transmission conditions 2482 are satisfied if packet 524 is transmitted with a selected payload value 2320 and a corresponding power level 2322. If it is determined at step 2506 that the transmission conditions 2482 are satisfied, then at step 2508, the selected payload value 2320 and the corresponding power level 2322 are passed to the physical layer 312.

Если на этапе 2506 определено, что условия 2482 передачи не удовлетворяются, тогда на этапе 2510 выбирают другую величину 2320 полезной нагрузки из профиля 2380 мощности. Затем способ 2500 возвращается на этап 2504 и продолжается, как описано выше.If it is determined in step 2506 that the transmission conditions 2482 are not satisfied, then in step 2510 a different payload value 2320 is selected from the power profile 2380. Then, method 2500 returns to step 2504 and continues, as described above.

Методика замысла после назначения множества потоков заключается в том, что полная доступная мощность равна сумме доступных мощностей для каждого потока в терминале доступа. Этот способ хорошо работает до того момента времени, когда терминал доступа сам исчерпывает мощность передачи, либо из-за ограничений аппаратного обеспечения, либо из-за ограничений, налагаемых TxT2Pmax. Когда мощность передачи ограничена, необходимо дополнительное разрешение конфликтных ситуаций назначения мощности потока в терминале доступа. Как обсуждено выше, при отсутствии ограничений мощности функция потребности gu/gd определяет назначенную текущую мощность каждого потока посредством обычной функции БОА и линейного изменения потока. Теперь, когда мощность ТД ограничена, одним способом установления назначение потока является рассмотрение ограничения мощности ТД в качестве точного аналога ограничения мощности сектора. Обычно сектор имеет критерий максимальной мощности приема, который используется, чтобы устанавливать БОА, который затем приводит к назначению мощности каждого потока. Идея заключается в том, что, когда ТД ограничен по мощности, каждый поток в этом ТД устанавливают в назначение мощности, которое он бы принимал, если ограничение мощности ТД фактически соответствовало бы ограничению принимаемой мощности сектора. Это назначение мощности потока может быть определено непосредственно из функции потребности gu/gd, либо с помощью выполнения виртуального БОА в ТД, либо с помощью других эквивалентных алгоритмов. Таким образом, поддерживают приоритет потока в ТД, и он согласован с приоритетом потока между ТД. Кроме того, не требуется информация сверх имеющихся функций gu и gd.The design technique after assigning multiple streams is that the total available power is equal to the sum of the available capacities for each stream in the access terminal. This method works well up to the point in time when the access terminal itself exhausts the transmit power, either due to hardware limitations or due to the restrictions imposed by TxT2Pmax. When the transmit power is limited, additional resolution of conflicts in the allocation of the power of the stream in the access terminal is necessary. As discussed above, in the absence of power limitations, the demand function gu / gd determines the assigned current power of each stream by means of the normal BOA function and the ramp. Now that the AP power is limited, one way to establish the purpose of the flow is to consider the AP power limit as an exact counterpart to the sector power limit. Typically, a sector has a criterion for maximum receive power, which is used to set the BOA, which then leads to the assignment of power to each stream. The idea is that when an AP is power limited, each thread in this AP is set to a power assignment that it would accept if the AP power limit actually corresponded to the received power limit of the sector. This flow power assignment can be determined directly from the gu / gd demand function, either by performing a virtual BOA in the AT or by using other equivalent algorithms. Thus, the priority of the flow in the AP is maintained, and it is consistent with the priority of the flow between the APs. In addition, information beyond the existing gu and gd functions is not required.

Теперь будет предоставлена сущность различных признаков некоторых или всех вариантов осуществления, описанных в настоящей заявке. Система учитывает разделение назначения (T2Pinflow) основного ресурса и, как этот ресурс используется для назначения пакета (включая управление максимальной скоростью и максимальной длительностью пачки).Now will be provided the essence of the various features of some or all of the embodiments described in this application. The system takes into account the separation of the destination (T2Pinflow) of the main resource and how this resource is used to assign the packet (including controlling the maximum speed and maximum burst duration).

Назначение пакета может оставаться автономным во всех случаях. Для назначения главного ресурса возможно либо планируемое, либо автономное назначение. Это дает возможность цельного объединения планируемого и автономного назначения, так как процесс назначения пакета проходит одинаково в обоих случаях, и основной ресурс может быть либо обновлен, либо нет так часто, как это необходимо.The purpose of the package may remain autonomous in all cases. To assign the main resource, either a planned or an autonomous appointment is possible. This makes it possible to integrate the planned and autonomous assignments seamlessly, since the package assignment process is the same in both cases, and the main resource can either be updated or not as often as necessary.

Управление временем блокировки в сообщении разрешения дает возможность точного управления синхронизацией назначения ресурсов с минимальными непроизводительными потерями передачи сигналов.The control of the blocking time in the permission message enables precise control of the timing of resource assignments with minimal overhead of signal transmission.

Управление уровнем накопителя в сообщении разрешения учитывает быстрое внесение ресурса в поток без влияния на его главное назначение во времени. Это является типом внесения ресурса 'однократного использования'.The drive level control in the permission message takes into account the quick introduction of a resource into the stream without affecting its main purpose in time. This is a type of single-use resource contribution.

Планировщик может делать оценку c 'фиксированной точкой' или соответствующее назначение ресурса для каждого потока, а затем загружать эти величины в каждый поток. Это уменьшает время приближения сети к своему соответствующему назначению ('грубое' назначение), а затем автономный режим быстро достигает окончательного назначения ('точное' назначение).The scheduler can make an estimate with a 'fixed point' or the corresponding resource assignment for each thread, and then load these values into each thread. This reduces the time it takes for the network to reach its appropriate destination ('rough' destination), and then offline mode quickly reaches its final destination ('exact' destination).

Планировщик может посылать разрешения в подмножество потоков и дает возможность другим выполнять автономное назначение. Таким образом, гарантии ресурса могут быть сделаны для определенных ключевых потоков, а затем остальные потоки автономно 'заполняют' остальной диапазон пропускной способности соответствующим образом.A scheduler can send permissions to a subset of threads and allows others to perform an autonomous assignment. Thus, resource guarantees can be made for certain key streams, and then the remaining streams autonomously 'fill' the remaining bandwidth range accordingly.

Планировщик может реализовывать 'сопровождающую' функцию, в которой передача сообщения разрешения происходит только, тогда когда поток не отвечает требованиям КО. В противном случае, потоку разрешено автономно устанавливать свое собственное назначение мощности. Таким образом, могут быть сделаны гарантии КО с минимизацией передачи сигналов и непроизводительных затрат. Следует заметить, что, для того чтобы достичь цели КО для потока, сопровождающий планировщик может разрешить назначение мощности, отличное от решения с фиксированной точкой автономных назначений.The scheduler can implement the 'accompanying' function in which the transmission of the permission message occurs only when the flow does not meet the QoS requirements. Otherwise, the thread is allowed to autonomously establish its own power assignment. Thus, QoS guarantees can be made with minimization of signal transmission and overhead. It should be noted that, in order to achieve the QoS goal for the flow, the accompanying scheduler may allow a power assignment other than a fixed-point solution of autonomous assignments.

СД может задавать вид возрастающих и убывающих линейных функций для каждого потока, возрастающих и убывающих. С помощью соответствующего выбора этих линейных функций можно точно задавать любое назначение основного ресурса для каждого потока просто с помощью только автономной операции с использованием только 1 бит управляющей информации в каждом секторе.SD can specify the form of increasing and decreasing linear functions for each flow, increasing and decreasing. Using the appropriate selection of these linear functions, you can precisely specify any purpose of the main resource for each stream simply using only an autonomous operation using only 1 bit of control information in each sector.

Очень быстрая синхронизация, примененная в схеме ББОА (обновляемый каждый интервал времени и отфильтрованный с помощью малой постоянной времени в каждом ТД), предоставляет возможность очень жесткого управления назначением мощности каждого потока и максимизирует общую пропускную способность сектора, в то же время поддерживая стабильность и зону обслуживания.The very fast synchronization applied in the BOAA scheme (updated every time interval and filtered using a small time constant in each AP) provides the possibility of very tight control of the power allocation of each stream and maximizes the overall sector throughput while maintaining stability and coverage .

Управление каждым потоком максимальной мощности допустимо как функция назначения основной мощности и нагрузки сектора (ФБОА). Это предоставляет возможность согласования осей времени неравномерного потока передачи данных с влиянием на общую нагрузку и стабильность сектора.The control of each maximum power flow is permissible as a function of the allocation of the main power and sector load (TSF). This provides the opportunity to coordinate the time axes of an uneven data flow with an effect on the overall load and sector stability.

Управление каждым потоком максимальной длительности передачи со скоростью максимальной мощности допустимо посредством использования коэффициента длительности пачки. В связи с управлением максимальной мощностью он учитывает управление стабильностью сектора и максимальной нагрузкой без центральной координации автономного назначения потоков, и учитывает требования настройки на конкретные типы источников.Controlling each stream with a maximum transmission duration at a maximum power rate is permissible by using the burst duration coefficient. In connection with maximum power control, it takes into account the management of sector stability and maximum load without central coordination of the autonomous assignment of flows, and takes into account the tuning requirements for specific types of sources.

Назначением для источников передачи пакетированных данных изящно управляют с помощью механизма накопителя и инерционности T2Pinflow, что дает возможность преобразования назначенной основной мощности для поступления источников передачи пакетных данных, в то же время поддерживая управление основной мощностью. Постоянная времени фильтра T2Pinflow управляет временем инерционности, в течение которого допустимы внезапные поступления пакетов, и после которого T2Pinflow затухает до минимального назначения.The destination for the packet data sources is gracefully controlled by the T2Pinflow drive and inertia mechanism, which enables the conversion of the assigned primary power to the incoming packet data sources, while still supporting the main power control. The T2Pinflow filter time constant controls the inertia time during which sudden packet arrivals are allowed and after which T2Pinflow decays to its minimum destination.

Зависимость линейного изменения T2Pinflow от ФБОА учитывает более высокую динамику линейного изменения в менее загруженных секторах без влияния на конечное назначение основной мощности. Таким образом, энергичное линейное изменение может быть реализовано, когда сектор является менее загруженным, в то же время поддерживают хорошую стабильность на уровнях высокой нагрузки с помощью уменьшения энергичности линейного изменения.The dependence of the linear change of T2Pinflow on the TSFA takes into account the higher dynamics of the linear change in less busy sectors without affecting the final purpose of the main power. Thus, vigorous ramp can be realized when the sector is less busy, while maintaining good stability at high load levels by reducing ramp energy.

T2Pinflow является самонастраивающимся на соответствующее назначение для данного потока посредством автономного функционирования, основанного на приоритете потока, требованиях данных и доступной мощности. Когда поток переназначен, уровень накопителя достигает величины уровня насыщения накопителя, линейное увеличение останавливается, и величина T2Pinflow будет затухать до уровня, на котором уровень накопителя меньше чем уровень насыщения накопителя. Затем она становится соответствующим назначением для T2Pinflow.T2Pinflow is self-adjusting to the appropriate assignment for a given stream through autonomous operation based on the priority of the stream, data requirements and available power. When the flow is reassigned, the drive level reaches the drive saturation level, the linear increase stops, and T2Pinflow will decay to a level where the drive level is less than the drive saturation level. Then it becomes the appropriate destination for T2Pinflow.

Кроме установления различий КО для каждого потока, доступного при автономном назначении, на основании составления возрастающей/убывающей линейной функции, также можно управлять назначением мощности потока на основании состояний канала посредством ББОА или ББОАпс и зависимости линейного изменения от интенсивности пилот-сигнала. Таким образом, потоки при плохих состояниях канала могут получать меньшее назначение, при этом уменьшаются помехи и улучшается общая пропускная способность системы, или могут получать полное назначение, независимо от состояния канала, что поддерживает равномерный режим работы за счет пропускной способности системы. Это предоставляет возможность управления согласованием между справедливостью распределения ресурсов и общим благополучием сети.In addition to establishing differences in the QoS for each stream available for autonomous assignment, based on the compilation of an increasing / decreasing linear function, it is also possible to control the assignment of the power of the stream based on the channel conditions by using BOA or BOAps and the dependence of the linear change on the pilot signal intensity. Thus, streams with poor channel conditions can receive less assignment, while reducing interference and improving the overall system capacity, or can receive a full destination, regardless of channel status, which maintains a uniform mode of operation due to system bandwidth. This provides the ability to manage the alignment between fair allocation of resources and the overall well-being of the network.

Насколько это возможно, назначение мощности как между ТД, так и в ТД для каждого потока является независимым от местоположения. Это значит, что не имеет значения, что другие потоки находятся в одном и том же ТД или в других ТД, назначение потока зависит только от полной нагрузки сектора. Некоторые физические факты ограничивают то, насколько эта цель может быть достигнута, в частности максимальная мощность передачи ТД и вопросы о слиянии потоков высокой пропускной способности и малой задержки.As far as possible, the power assignment between both APs and APs for each stream is location independent. This means that it does not matter that other threads are in the same AP or in other APs, the purpose of the flow depends only on the full load of the sector. Some physical facts limit the extent to which this goal can be achieved, in particular, the maximum transmission power of APs and questions about the merging of high throughput and low latency streams.

Придерживаясь этого подхода, полная мощность, доступная для назначения пакета ТД, равна сумме мощностей, доступных для каждого потока в ТД, в зависимости от ограничения мощности передачи ТД.Adhering to this approach, the total power available for assigning the AP packet is equal to the sum of the powers available for each stream in the AP, depending on the limitation of the transmit power of the AP.

Какое бы правило не было использовано для определения назначения данных из каждого потока, включенного в назначение пакета, сохраняют точный учет использования ресурса потока в понятиях расхода из накопителя. Таким образом, гарантирована справедливость распределения ресурсов между потоками для любого правила назначения данных.Whichever rule is used to determine the purpose of the data from each stream included in the destination of the packet, an accurate account of the use of the resource of the stream is kept in terms of flow from the drive. Thus, the fair distribution of resources between flows is guaranteed for any data assignment rule.

Когда ТД ограничен по мощности и не может обеспечить совокупную мощность, доступную для всех его потоков, то используют мощность из каждого потока, соответствующего меньшей мощности, доступной в ТД. То есть потоки в ТД поддерживают соответствующий приоритет друг относительно друга так, как если бы они совместно использовали сектор только с этими ТД и этот максимальный уровень мощности (ограничение мощности ТД является аналогом ограничения мощности сектора в целом). Мощность, остающаяся в секторе, не использованная ТД с ограниченной мощностью, затем, как обычно, является доступной для других потоков в секторе.When the AP is limited in power and cannot provide the aggregate power available for all its flows, then the power from each stream corresponding to the lower power available in the AP is used. That is, the flows in the APs maintain the corresponding priority relative to each other as if they shared the sector only with these APs and this maximum power level (the power limitation of the APs is analogous to the power limit of the sector as a whole). The power remaining in the sector, not used by the AP with limited power, is then, as usual, available for other flows in the sector.

Потоки высокой пропускной способности могут быть объединены в передачи малой задержки в случае, когда сумма использования потенциальных данных высокой пропускной способности в одном ТД является достаточно большой так, чтобы объединение не привело бы к большой разности мощности между пакетами. Это поддерживает однородность передаваемой мощности, соответствующей системе с собственными помехами. Потоки высокой пропускной способности могут быть объединены в передачи малой задержки, когда конкретный поток высокой пропускной способности имеет требования задержки такие, что он не может ждать все потоки малой задержки в том же самом ТД для передачи, тогда после достижения порога потенциального использования данных поток может объединить свои данные в передаче малой задержки. Следовательно, требования задержки для потоков высокой пропускной способности могут быть удовлетворены при совместном использовании ТД с постоянными потоками малой задержки. Потоки высокой пропускной способности могут быть объединены в передаче малой задержки, когда сектор является несильно загруженным, причем потери эффективности при посылке потоков высокой пропускной способности в виде потоков с малой задержкой не являются важными и, следовательно, объединение всегда может быть допустимо.High throughput streams can be combined into low latency transmissions when the sum of the use of potential high throughput data in one AP is large enough so that the combination does not lead to a large power difference between packets. This maintains the uniformity of the transmitted power corresponding to the inherent interference system. High throughput streams can be combined into low latency transmissions, when a particular high throughput stream has delay requirements such that it cannot wait for all low latency streams in the same AP for transmission, then after reaching the potential data utilization threshold, the stream can combine its data in the transmission of low latency. Therefore, the delay requirements for high throughput streams can be met by sharing APs with constant low delay streams. High throughput streams can be combined in low latency transmission when the sector is lightly loaded, and the loss of efficiency when sending high throughput streams in the form of low latency streams is not important and, therefore, combining can always be acceptable.

Множество потоков высокой пропускной способности могут быть переданы в режиме малой задержки, даже если отсутствуют активные потоки малой задержки в случае, когда размер пакета для режима высокой пропускной способности является, по меньшей мере, равным по размеру порогу полезной нагрузки. Это дает возможность потокам режима высокой пропускной способности достигать наивысшей производительности, когда их назначенная мощность является достаточно большой, так как наивысшая производительность для ТД имеет место при наибольшем размере пакета и режиме передачи с малой задержкой. Иначе говоря, максимальная скорость передачи для режима высокой пропускной способности значительно ниже, чем максимальная скорость передачи режима малой задержки, таким образом потоку режима высокой пропускной способности разрешено использовать передачу малой задержки, когда требуется, чтобы он достигал наивысшей производительности.Many high throughput streams may be transmitted in low latency mode even if there are no active low latency streams in the case where the packet size for the high throughput mode is at least equal in size to the payload threshold. This enables high throughput mode streams to achieve the highest performance when their assigned power is large enough, since the highest performance for APs occurs with the largest packet size and low latency transmission mode. In other words, the maximum transmission rate for the high-throughput mode is much lower than the maximum transmission rate of the low-latency mode, so the high-throughput mode stream is allowed to use low-latency transmission when it is required to achieve the highest performance.

Каждый поток имеет параметр T2Pmax, который ограничивает его назначенную максимальную мощность. Также может быть желательно ограничить совокупную мощность передачи ТД, возможно, в зависимости от его местоположения в сети (например, когда на границе двух секторов ТД создает дополнительные помехи и влияет на стабильность). Параметр T2Pmax может быть составлен как функция от мощности пилот-сигнала, и ограничивает максимальную мощность передачи ТД.Each stream has a parameter T2Pmax, which limits its assigned maximum power. It may also be desirable to limit the aggregate transmit power of the AP, possibly depending on its location in the network (for example, when the AP creates additional interference at the boundary of two sectors and affects stability). The T2Pmax parameter can be compiled as a function of pilot power, and limits the maximum transmit power of the AP.

Фиг.26 является функциональной схемой, иллюстрирующей вариант осуществления ТД 2606. ТД 2606 включает в себя процессор 2602, который управляет работой ТД 2606. Процессор 2602 также может быть упомянут как CPU, ЦП. Память 2604, которая может включать в себя как постоянное запоминающее устройство (ROM, ПЗУ), так и оперативное запоминающее устройство (RAM, ОЗУ), предоставляет команды и данные в процессор 2602. Часть памяти 2604 также может включать в себя энергонезависимое оперативное запоминающеее устройство (NVRAM, ЭНОЗУ).26 is a functional diagram illustrating an embodiment of an AP 2606. The AP 2606 includes a processor 2602 that controls the operation of the AP 2606. The processor 2602 may also be referred to as a CPU, a CPU. A memory 2604, which may include both read-only memory (ROM, ROM) and random access memory (RAM, RAM), provides instructions and data to a processor 2602. A portion of memory 2604 may also include non-volatile random access memory ( NVRAM, ENOZU).

ТД 2606, который может быть осуществлен в беспроводном устройстве связи, таком как сотовый телефон, также может включать в себя корпус 2607, который содержит передатчик 2608 и приемник 2610, чтобы предоставить возможность передачи и приема данных, таких как аудиопередачи, между ТД 2606 и удаленным местоположением, таким как СД 204. Передатчик 2608 и приемник 2610 могут быть объединены в приемопередатчик 2612. Антенна 2614 прикреплена к корпусу 2607 и электрически соединена с приемопередатчиком 2612. Также может быть использована дополнительная антенна (не изображена). Работа передатчика 2608, приемника 2610 и антенны 2614 хорошо известна в данной области техники и не требует описания в настоящей заявке.The AP 2606, which may be implemented in a wireless communication device, such as a cell phone, may also include a housing 2607 that includes a transmitter 2608 and a receiver 2610 to allow transmission and reception of data, such as audio transmissions, between the AP 2606 and the remote location, such as LED 204. Transmitter 2608 and receiver 2610 can be combined into transceiver 2612. Antenna 2614 is attached to the housing 2607 and electrically connected to transceiver 2612. An additional antenna (not shown) can also be used. ene). The operation of the transmitter 2608, receiver 2610 and antenna 2614 is well known in the art and does not require a description in this application.

ТД 2606 также включает в себя детектор 2616 сигналов, используемый для обнаружения и количественной оценки уровня сигналов, принятых с помощью приемопередатчика 2612. Детектор 2616 сигналов обнаруживает такие сигналы, как полная энергия, элементарные посылки энергии пилот-сигнала по псевдошуму (PN, ПШ), спектральная плотность мощности и другие сигналы, как известно в данной области техники.The AP 2606 also includes a signal detector 2616, used to detect and quantify the level of signals received by the transceiver 2612. The signal detector 2616 detects signals such as total energy, chip energy from the pilot signal by pseudo noise (PN, PN), power spectral density and other signals, as is known in the art.

Устройство 2626 изменения состояния ТД 2606 управляет состоянием ТД 2606 беспроводного устройства связи на основании текущего состояния и дополнительных сигналов, принятых с помощью приемопередатчика 2612, и обнаруженных с помощью детектора 2616 сигналов. Устройство беспроводной связи может работать в любом из ряда состояний.The state change device 2626 of the AP 2606 controls the state of the AP 2606 of the wireless communication device based on the current state and additional signals received by the transceiver 2612 and detected by the signal detector 2616. A wireless communications device may operate in any of a number of conditions.

ТД 2606 также включает в себя определитель 2628 системы, используемый для управления беспроводным устройством связи и определения, в какую систему провайдера услуг должно перейти беспроводное устройство связи, когда оно определяет, что текущая система провайдера услуг является неудовлетворительной.The AP 2606 also includes a system identifier 2628 used to control the wireless communication device and determine which service provider system the wireless communication device should go to when it determines that the current service provider system is unsatisfactory.

Различные компоненты ТД 2606 соединены вместе с помощью системы 2630 шин, которая может включать в себя шину питания, шину управляющих сигналов и шину сигналов состояния в дополнение к шине данных. Однако для ясности различные шины проиллюстрированы на фиг.26 как система 2630 шин. ТД 2606 также может включать в себя цифровой сигнальный процессор (DSP) 2609 для использования при обработке сигналов. Специалист в данной области техники поймет, что ТД 2606, проиллюстрированный на фиг.26, является функциональной схемой, а не перечислением конкретных компонентов.The various components of the AP 2606 are connected together using a bus system 2630, which may include a power bus, a control signal bus, and a status signal bus in addition to the data bus. However, for clarity, various tires are illustrated in FIG. 26 as a bus system 2630. The AP 2606 may also include a Digital Signal Processor (DSP) 2609 for use in signal processing. One skilled in the art will understand that the TD 2606 illustrated in FIG. 26 is a functional diagram and not an enumeration of specific components.

Специалистам в данной области техники понятно, что информация и сигналы могут быть представлены с использованием любых из множества различных технологий и способов. Например, данные, команды, информация, сигналы, биты, символы и элементарные посылки, которые могут быть упомянуты по всему приведенному выше описанию, могут быть представлены с помощью напряжений, токов, электромагнитных волн, магнитных полей или частиц, оптических полей или частиц или любых их комбинаций.Those skilled in the art will understand that information and signals may be represented using any of a variety of different technologies and methods. For example, data, commands, information, signals, bits, symbols and chips that can be mentioned throughout the description above can be represented using voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any their combinations.

Специалистам в данной области техники также понятно, что различные иллюстративные логические блоки, модули, схемы и этапы алгоритмов, описанные в связи с вариантами осуществления, раскрытыми в настоящей заявке, могут быть реализованы в виде электронного аппаратного обеспечения, компьютерного программного обеспечения или комбинации того и другого. Чтобы понятно проиллюстрировать эту взаимозаменяемость аппаратного обеспечения и программного обеспечения, различные иллюстративные компоненты, блоки, модули, схемы и этапы описаны выше в общем виде в понятиях выполняемых ими функций. Реализация таких выполняемых функций в виде аппаратного обеспечения или программного обеспечения зависит от конкретного применения и ограничений разработки, наложенных на всю систему. Опытные специалисты могут реализовать описанные выполняемые функции различными способами для каждого конкретного применения, но такие решения реализации не должны интерпретироваться как вызывающие выход за рамки настоящего изобретения.Those skilled in the art will also appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or a combination of the two. . To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps are described above in general terms in terms of their functions. The implementation of these functions in the form of hardware or software depends on the specific application and development restrictions imposed on the entire system. Skilled artisans may implement the described functions in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.

Различные иллюстративные логические блоки, модули и схемы, описанные в связи с вариантами осуществления, раскрытыми в настоящей заявке, могут быть реализованы или выполнены с помощью универсального процессора, цифрового сигнального процессора DSP, специализированной интегральной схемы (ASIC), вентильной матрицы, программируемой в условиях эксплуатации (FPGA) или другого программируемого логического устройства, дискретного вентиля или транзисторной логики, дискретных компонентов аппаратного обеспечения или любых их комбинаций, предназначенных для выполнения функций, описанных в настоящей заявке. Универсальный процессор может быть микропроцессором, но в качестве альтернативы, процессор может быть любым традиционным процессором, контроллером, микроконтроллером или конечным автоматом. Процессор также может быть реализован как комбинация вычислительных устройств, например, комбинация DSP и микропроцессора, множества микропроцессоров, один или более микропроцессоров в сочетании с ядром DSP или в виде любой другой такой конфигурации.The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or implemented using a universal processor, a digital signal processor DSP, a specialized integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, is intended nnyh to perform the functions described herein. A universal processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in combination with a DSP core, or any other such configuration.

Этапы способа или алгоритма, описанного в связи с вариантами осуществления, раскрытыми в настоящей заявке, могут быть осуществлены непосредственно на аппаратуре, в модуле программного обеспечения, выполняемого с помощью процессора, или комбинацией того и другого. Модуль программного обеспечения может находиться в памяти ОЗУ, флэш-памяти, памяти ПЗУ, памяти EPROM (электрически программируемое ПЗУ), памяти ЕEPROM (электрически стираемое программируемое ПЗУ), в регистрах, на жестком диске, на сменном диске, компакт-диске или любом другом виде запоминающего носителя, известного в данной области техники. Примерный запоминающий носитель соединен с процессором таким образом, что процессор может считывать информацию из запоминающего носителя и записывать информацию на запоминающий носитель. В качестве альтернативы запоминающий носитель может быть объединен с процессором. Процессор и запоминающий носитель могут находиться в ASIC. ASIC может находиться в качестве дискретного компонента в пользовательском терминале.The steps of a method or algorithm described in connection with the embodiments disclosed herein may be implemented directly on hardware, in a software module executed by a processor, or in a combination of the two. The software module can be located in RAM memory, flash memory, ROM memory, EPROM memory (electrically programmable ROM), EEPROM memory (electrically erasable programmable ROM), in registers, on a hard disk, on a removable disk, a CD-ROM or any other as a storage medium known in the art. An exemplary storage medium is connected to the processor so that the processor can read information from the storage medium and write information to the storage medium. Alternatively, the storage medium may be combined with a processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside as a discrete component in a user terminal.

Предыдущее описание раскрытых вариантов осуществления предоставлено, чтобы дать возможность любому специалисту в данной области техники изготовить или использовать настоящее изобретение. Различные модификации в этих вариантах осуществления будут очевидны специалистам в данной области техники, и основные принципы, определенные в настоящем описании, могут быть применены к другим вариантам осуществления, не выходя за рамки сущности и объема изобретения. Следовательно, не предполагается, что настоящее изобретение ограничено вариантами осуществления, представленными в настоящей заявке, а должно соответствовать самым широким рамкам, согласующимися с принципами и новыми признаками, раскрытыми в настоящей заявке.The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications in these embodiments will be apparent to those skilled in the art, and the basic principles defined herein may be applied to other embodiments without departing from the spirit and scope of the invention. Therefore, it is not intended that the present invention be limited by the embodiments presented in this application, but rather should be within the broadest possible scope consistent with the principles and new features disclosed in this application.

Claims (13)

1. Терминал доступа, который сконфигурирован для беспроводной связи с сетью доступа в секторе, содержащий:
приемопередатчик, предназначенный для передачи сигнала обратного потока данных в сеть доступа и приема данных из сети доступа,
антенну, электрически связанную с приемопередатчиком и предназначенную для приема сигналов из сети доступа,
процессор, управляющий функционированием терминала доступа,
память, электрически связанную с процессором, и
причем процессор при обращении к памяти выполняет команды, хранящиеся в памяти, реализующие этапы, на которых:
оценивают текущую величину бита обратной активности, передаваемого с помощью сети доступа,
если оцененная текущая величина бита обратной активности указывает на то, что сектор занят, уменьшают назначенную текущую мощность для каждого потока из множества потоков в терминале доступа, причем величину уменьшения для конкретного потока определяют в соответствии с линейно убывающей функцией, которая предназначена для потока, причем линейно убывающая функция является функцией назначенной текущей мощности для потока, и,
если оцененная текущая величина бита обратной активности указывает на то, что сектор свободен, увеличивают назначенную текущую мощность для каждого потока из множества потоков в терминале доступа, причем величину увеличения для конкретного потока определяют в соответствии с линейно возрастающей функцией, которая предназначена для потока, причем линейно возрастающая функция является функцией назначенной текущей мощности для потока.
1. An access terminal that is configured for wireless communication with an access network in a sector, comprising:
a transceiver for transmitting a signal of the reverse data stream to the access network and receiving data from the access network,
an antenna electrically connected to the transceiver and designed to receive signals from the access network,
a processor controlling the operation of the access terminal,
a memory electrically connected to the processor, and
moreover, the processor, when accessing the memory, executes instructions stored in memory that implement the steps in which:
evaluate the current value of the bits of the inverse activity transmitted using the access network,
if the estimated current value of the inverse activity bit indicates that the sector is busy, the assigned current power for each stream from the plurality of flows in the access terminal is reduced, and the reduction value for a particular stream is determined in accordance with a linearly decreasing function that is intended for the stream, and linearly the decreasing function is a function of the assigned current power for the stream, and,
if the estimated current value of the inverse activity bit indicates that the sector is free, the assigned current power for each stream from a plurality of streams in the access terminal is increased, and the magnitude of the increase for a particular stream is determined in accordance with a linearly increasing function that is intended for the stream, and linearly an increasing function is a function of the assigned current power for the flow.
2. Терминал доступа по п.1, в котором этап, на котором оценивают текущую величину бита обратной активности, выполняют один раз в каждом интервале времени.2. The access terminal according to claim 1, wherein the step of evaluating the current value of the inverse activity bit is performed once in each time interval. 3. Терминал доступа по п.2, в котором этап, на котором оценивают текущую величину бита обратной активности, содержит подэтап, на котором фильтруют сигнал, принятый из сети доступа, с помощью фильтра, имеющего регулируемую постоянную времени.3. The access terminal according to claim 2, wherein the step of evaluating the current value of the reverse activity bit comprises a sub-step in which the signal received from the access network is filtered using a filter having an adjustable time constant. 4. Терминал доступа по п.1, в котором способ дополнительно содержит этапы, на которых:
оценивают уровень нагрузки сектора и
определяют назначенную максимальную мощность для каждого потока из множества потоков, причем назначенная максимальная мощность для конкретного потока является функцией назначенной текущей мощности для потока и оценки уровня нагрузки сектора.
4. The access terminal according to claim 1, in which the method further comprises the steps of:
assess the level of sector load and
determining the assigned maximum power for each stream from a plurality of streams, the assigned maximum power for a particular stream being a function of the assigned current power for the stream and estimating the sector load level.
5. Терминал доступа по п.1, в котором способ дополнительно содержит этапы, на которых для каждого потока:
определяют назначенную накопленную мощность для потока,
используют назначенную текущую мощность для потока и назначенную накопленную мощность для потока для определения полной доступной мощности для потока и
используют полную доступную мощность для потока для определения уровня мощности для пакета, который передают в сеть доступа.
5. The access terminal according to claim 1, in which the method further comprises the steps in which for each stream:
determine the assigned stored power for the stream,
using the assigned current power for the stream and the assigned accumulated power for the stream to determine the total available power for the stream and
use the total available power for the stream to determine the power level for the packet that is transmitted to the access network.
6. Терминал доступа по п.5, в котором назначенная накопленная мощность для потока ограничена уровнем насыщения, причем уровень насыщения является устанавливаемым коэффициентом, который выше назначенной максимальной мощности.6. The access terminal according to claim 5, in which the assigned accumulated power for the stream is limited by the saturation level, the saturation level being a settable coefficient that is higher than the assigned maximum power. 7. Терминал доступа по п.1, в котором как линейно убывающая функция, так и линейно возрастающая функции зависят от оценки уровня нагрузки сектора.7. The access terminal according to claim 1, in which both the linearly decreasing function and the linearly increasing function depend on the estimation of the sector load level. 8. Терминал доступа по п.1, в котором как линейно убывающая функция, так и линейно возрастающая функции зависят от мощности пилот-сигнала, измеренной с помощью терминала доступа.8. The access terminal according to claim 1, wherein both the linearly decreasing function and the linearly increasing function depend on the pilot power measured by the access terminal. 9. Терминал доступа по п.1, в котором назначенную текущую мощность определяют в соответствии с
Figure 00000012

где T2PInflow - назначенная текущая мощность для потока i в подкадре n, T2PfilterTC - постоянная времени фильтра, причем, если назначенную текущую мощность увеличивают, ΔT2PInflow выражается как
Figure 00000013

причем, если назначенную текущую мощность уменьшают, Δ T2PInflow выражается как
Figure 00000014

где T2PUpi - линейно возрастающая функция для потока i, где T2PDni - линейно убывающая функция для потока i, PilotStrength - показатель мощности пилот-сигнала обслуживающего сектора относительно мощности пилот-сигналов других секторов.
9. The access terminal according to claim 1, in which the assigned current power is determined in accordance with
Figure 00000012

where T2PInflow is the assigned current power for stream i in subframe n, T2PfilterTC is the filter time constant, and if the assigned current power is increased, ΔT2PInflow is expressed as
Figure 00000013

moreover, if the assigned current power is reduced, Δ T2PInflow is expressed as
Figure 00000014

where T2PUpi is a linearly increasing function for stream i, where T2PDni is a linearly decreasing function for stream i, PilotStrength is an indicator of the power of the pilot signal of the serving sector relative to the power of the pilot signals of other sectors.
10. Терминал доступа, который сконфигурирован для беспроводной связи с сетью доступа в секторе, содержащий
средство для оценки текущей величины бита обратной активности, передаваемого с помощью сети доступа,
средство для уменьшения назначенной текущей мощности для каждого потока из множества потоков в терминале доступа, если оцененная текущая величина бита обратной активности указывает на то, что сектор занят, причем величину уменьшения для конкретного потока определяют в соответствии с линейно убывающей функцией, которая предназначена для потока, причем линейно убывающая функция является функцией назначенной текущей мощности для потока, и
средство для увеличения назначенной текущей мощности для каждого потока из множества потоков в терминале доступа, если оцененная текущая величина бита обратной активности указывает на то, что сектор свободен, причем величину увеличения для конкретного потока определяют в соответствии с линейно возрастающей функцией, которая предназначена для потока, причем линейно возрастающая функция является функцией назначенной текущей мощности для потока.
10. An access terminal that is configured for wireless communication with an access network in a sector, comprising
means for estimating the current value of the reverse activity bit transmitted by the access network,
means for decreasing the assigned current power for each stream from a plurality of streams in the access terminal if the estimated current value of the reverse activity bit indicates that the sector is busy, and the reduction value for a particular stream is determined in accordance with a linearly decreasing function that is intended for the stream, wherein the linearly decreasing function is a function of the assigned current power for the flow, and
means for increasing the assigned current power for each stream from a plurality of streams in the access terminal, if the estimated current value of the reverse activity bit indicates that the sector is free, and the magnitude of the increase for a particular stream is determined in accordance with a linearly increasing function that is intended for the stream, wherein the ramp function is a function of the assigned current power for the flow.
11. Терминал доступа по п.10, дополнительно содержащий средство для оценки уровня нагрузки сектора и средство для определения назначенной максимальной мощности для каждого потока из множества потоков, причем назначенная максимальная мощность для конкретного потока является функцией назначенной текущей мощности для потока и оценки уровня нагрузки сектора.11. The access terminal of claim 10, further comprising means for estimating a sector load level and means for determining an assigned maximum power for each stream from a plurality of streams, the assigned maximum power for a particular stream being a function of the assigned current power for the stream and estimating a sector load level . 12. Терминал доступа по п.10, дополнительно содержащий для каждого потока
средство для определения назначенной накопленной мощности для потока,
средство для использования назначенной текущей мощности для потока и назначенной накопленной мощности для потока для определения полной доступной мощности для потока и
средство для использования полной доступной мощности для потока для определения уровня мощности для пакета, который передают в сеть доступа.
12. The access terminal of claim 10, further comprising for each stream
means for determining the assigned stored power for the stream,
means for using the assigned current power for the stream and the assigned accumulated power for the stream to determine the total available power for the stream and
means for using the total available power for the stream to determine the power level for the packet that is transmitted to the access network.
13. Способ управления мощностью передачи в терминале доступа, который сконфигурирован для беспроводной связи с сетью доступа в секторе, содержащий этапы, на которых:
оценивают текущую величину бита обратной активности, передаваемого с помощью сети доступа,
если оцененная текущая величина бита обратной активности указывает на то, что сектор занят, уменьшают назначенную текущую мощность для каждого потока из множества потоков в терминале доступа, причем величину уменьшения для конкретного потока определяют в соответствии с линейно убывающей функцией, которая предназначена для потока, причем линейно убывающая функция является функцией назначенной текущей мощности для потока, и,
если оцененная текущая величина бита обратной активности указывает на то, что сектор свободен, увеличивают назначенную текущую мощность для каждого потока из множества потоков в терминале доступа, причем величину увеличения для конкретного потока определяют в соответствии с линейно возрастающей функцией, которая предназначена для потока, причем линейно возрастающая функция является функцией назначенной текущей мощности для потока.
13. A method for controlling transmit power in an access terminal that is configured for wireless communication with an access network in a sector, comprising the steps of:
evaluate the current value of the bits of the inverse activity transmitted using the access network,
if the estimated current value of the inverse activity bit indicates that the sector is busy, the assigned current power for each stream from the plurality of flows in the access terminal is reduced, and the reduction value for a particular stream is determined in accordance with a linearly decreasing function that is intended for the stream, and linearly the decreasing function is a function of the assigned current power for the stream, and,
if the estimated current value of the inverse activity bit indicates that the sector is free, the assigned current power for each stream from a plurality of streams in the access terminal is increased, and the magnitude of the increase for a particular stream is determined in accordance with a linearly increasing function that is intended for the stream, and linearly an increasing function is a function of the assigned current power for the flow.
RU2006104629/09A 2003-07-15 2004-07-15 Method of control of transmission power on basis of evaluation of bit of reverse activity and prescribed linear-increasing/decreasing functions of data flows and corresponding terminal of wireless access RU2372738C2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US48764803P 2003-07-15 2003-07-15
US60/487,648 2003-07-15
US49378203P 2003-08-06 2003-08-06
US60/493,782 2003-08-06
US60/527,081 2003-12-03
US10/890,719 2004-07-13
US10/890,719 US6970437B2 (en) 2003-07-15 2004-07-13 Reverse link differentiated services for a multiflow communications system using autonomous allocation

Publications (2)

Publication Number Publication Date
RU2006104629A RU2006104629A (en) 2006-08-10
RU2372738C2 true RU2372738C2 (en) 2009-11-10

Family

ID=37059482

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2006104629/09A RU2372738C2 (en) 2003-07-15 2004-07-15 Method of control of transmission power on basis of evaluation of bit of reverse activity and prescribed linear-increasing/decreasing functions of data flows and corresponding terminal of wireless access
RU2007113960/09A RU2007113960A (en) 2003-07-15 2007-04-13 METHOD FOR TRANSMISSION POWER CONTROL BASED ON THE ASSESSMENT OF A BIT OF REVERSE ACTIVITY AND TARGETED LINEAR-GROWING / DROP-OUT FUNCTIONS OF DATA FLOWS AND THE CORRESPONDING ACCESS TERMINAL

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2007113960/09A RU2007113960A (en) 2003-07-15 2007-04-13 METHOD FOR TRANSMISSION POWER CONTROL BASED ON THE ASSESSMENT OF A BIT OF REVERSE ACTIVITY AND TARGETED LINEAR-GROWING / DROP-OUT FUNCTIONS OF DATA FLOWS AND THE CORRESPONDING ACCESS TERMINAL

Country Status (1)

Country Link
RU (2) RU2372738C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2559818C1 (en) * 2011-07-01 2015-08-10 Квэлкомм Инкорпорейтед Systems, methods and devices to control communication via multiple unidirectional channels of radio access with limited power

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8203987B2 (en) * 2007-03-30 2012-06-19 Ntt Docomo, Inc. Mobile communications system, base station apparatus, user apparatus, and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2559818C1 (en) * 2011-07-01 2015-08-10 Квэлкомм Инкорпорейтед Systems, methods and devices to control communication via multiple unidirectional channels of radio access with limited power

Also Published As

Publication number Publication date
RU2006104629A (en) 2006-08-10
RU2007113960A (en) 2008-10-20

Similar Documents

Publication Publication Date Title
JP4699421B2 (en) Method for transmit power control based on reverse activity bit evaluation and data flow specific upper / lower ramping function and corresponding radio access terminal
JP5086326B2 (en) Cooperative autonomous scheduled resource allocation for distributed communication systems
RU2388163C2 (en) Device and method of allocating carriers and controlling said carriers in multiple carrier communication systems
JP2008533833A (en) Multi-carrier, multi-flow, reverse link medium access control for communication systems
RU2364043C2 (en) Matched automated and scheduled resource assignation in distributed communication system
ZA200601023B (en) Cooperative autonomous and scheduled resource allocation for a distributed communication system
RU2372738C2 (en) Method of control of transmission power on basis of evaluation of bit of reverse activity and prescribed linear-increasing/decreasing functions of data flows and corresponding terminal of wireless access
NZ552300A (en) Cooperative autonomous and scheduled resource allocation for a distributed communication system
NZ545067A (en) Cooperative autonomous and scheduled resource allocation for a distributed communication system
AU2008201260A1 (en) Method for transmission power control based on evaluation of a reverse activity bit and data flow specific upward/downward ramping functions, and corressponding wireless access terminal

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110716