RU2252252C1 - Способ выделения мезенхимальных стволовых клеток - Google Patents

Способ выделения мезенхимальных стволовых клеток Download PDF

Info

Publication number
RU2252252C1
RU2252252C1 RU2004110701/13A RU2004110701A RU2252252C1 RU 2252252 C1 RU2252252 C1 RU 2252252C1 RU 2004110701/13 A RU2004110701/13 A RU 2004110701/13A RU 2004110701 A RU2004110701 A RU 2004110701A RU 2252252 C1 RU2252252 C1 RU 2252252C1
Authority
RU
Russia
Prior art keywords
cells
placenta
cell
collagenase
tissue
Prior art date
Application number
RU2004110701/13A
Other languages
English (en)
Inventor
шин А.С. Тепл (RU)
А.С. Тепляшин
Original Assignee
Тепляшин Александр Сергеевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тепляшин Александр Сергеевич filed Critical Тепляшин Александр Сергеевич
Priority to RU2004110701/13A priority Critical patent/RU2252252C1/ru
Priority to PCT/IB2005/002414 priority patent/WO2005121317A2/en
Priority to AT05780159T priority patent/ATE539145T1/de
Priority to EP05780159A priority patent/EP1733027B1/en
Priority to US11/099,176 priority patent/US20050244963A1/en
Priority to CNA200580012239XA priority patent/CN1961069A/zh
Application granted granted Critical
Publication of RU2252252C1 publication Critical patent/RU2252252C1/ru
Priority to US11/969,772 priority patent/US7915039B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0605Cells from extra-embryonic tissues, e.g. placenta, amnion, yolk sac, Wharton's jelly
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0667Adipose-derived stem cells [ADSC]; Adipose stromal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0668Mesenchymal stem cells from other natural sources
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Rheumatology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Pregnancy & Childbirth (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Изобретение относится к области биотехнологии, конкретно, к выделению мезенхимальных стволовых клеток из тканей человека, и может быть использовано для лечения широкого круга заболеваний. Мезенхимальные стволовые клетки человека выделяют из жировой ткани, децидуальной или амниотической оболочки плаценты, или хориальной стромы плаценты. Ткани человека измельчают и обрабатывают раствором коллагеназы в среде Игла в модификации Дюльбекко, при этом жировую ткань, децидуальную или амниотическую оболочку плаценты обрабатывают коллагеназой типа I, а хориальную строму плаценты - коллагеназой типа IV. Затем полученную суспензию очищают от эритроцитов с помощью лизирующего раствора с последующей последовательной фильтрацией через фильтры с размером пор 100 и 10 мкм. Изобретение позволяет повысить однородность клеточной суспензии, выход целевого продукта и жизнеспособность клеток. 1 з.п. ф-лы, 4 табл.

Description

Изобретение относится к области клеточной биологии, в частности к выделению мезенхимальных стволовых клеток из тканей человека, и может найти применение в медицине для лечения широкого круга заболеваний.
В настоящее время в современной биомедицине формируется новый раздел - клеточная терапия, которая позволяет с помощью трансплантации клеток восполнить недостаточную функциональную активность тканей и регенерировать поврежденные органы. Функцию обновления и восстановления тканей in vivo выполняют стволовые клетки, которые представляют собой пул запасных недифференцированных предшественников клеток различных типов. В связи с этим применение стволовых клеток является наиболее перспективным направлением клеточной терапии, и наибольшую актуальность приобретают работы по выделению стволовых клеток из тканей человека.
В настоящее время выделены различные типы стволовых клеток взрослого организма - гематопоэтические (предшественники клеток крови), нейрональные (предшественники клеток нервной ткани), мезенхимальные (клетки, способные дифференцироваться в клетки тканей мезенхимального происхождения, а также других зародышевых листков) и др.
Мезенхимальные стволовые клетки (МСК) отличаются относительной простотой выделения и культивирования, способностью пролиферировать в течение долгого времени in vitro и широким спектром дифференцировки. В связи с этим особое внимание уделяется способам изоляции МСК из тканей взрослого организма, однако универсального метода их получения до сих пор нет.
Впервые мезенхимальные стволовые клетки были получены из костного мозга по способности прикрепляться к поверхности культуральной посуды (Fridenshtein A.J., Deriglazova U.F., Kulagina N.N. et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp. Hematol. 1974. Vol. 2. P.83-92).
Недостатком данного метода является неоднородность получаемой популяции клеток, тем не менее адгезия МСК на пластике стала основой для последующих модифицированных способов выделения МСК.
Известен способ получения МСК, основанный на способности клеток прикрепляться к поверхности культуральной посуды и использовании определенных лотов бычьей эмбриональной сыворотки, в результате были изолированы клетки с большей адгезивной способностью, скоростью пролиферации и временем сохранения мультипотентности (Heynesworth S.E., Goshima J., Goldberg V.M., Calplan A.I. Characterization of cells with osteogenic potential from the human bone marrow // Bone. 1995. Vol. 13. P.81-95).
Недостатком этого метода является длительность и трудоемкость анализа сыворотки в процессе поиска лота, подходящего для культивирования клеток, а также отсутствие воспроизводимости результатов.
Известен способ выделения МСК с помощью селекции на антитела к Stro-1, антигену с неизвестной функцией, временно экспрессирующемуся на поверхности МСК (Grontos S., Simmons P.J. The growth factors requirements of Stro-1 positive human stromal precursors under serum-deprived conditions in vitro // Blood. 1995. Vol. 85. P.929-940).
Способ является очень трудоемким и требует длительного времени для предварительного выделения антител.
Известен способ выделения МСК, состоящий в получении мононуклеарных клеток центрифугированием в градиенте фиколла, селекции на антитела к поверхностному антигену CD105, экспрессирующемуся на поверхности МСК, и культивировании клеток, прикрепляющихся к пластику. Доля отобранных CD105+ клеток составила 2-3% от фракции моноядерных клеток. В результате была получена популяция клеток, обладающих морфологией и профилем экспрессии поверхностных антигенов, характерным для МСК, а также хондрогенным потенциалом (Majumdar M.K., Banks V., Peluso D.P., Morris E.A. Isolation, characterization, and chondregenic potential of human bone marrow-derived multipotential stromal cells // J. Cell. Physiol. 2000. Vol. 185. P.98-106).
Способ приводит к выделению фракции клеток CD105+, обогащенной МСК, но это требует дополнительной стадии селекции с помощью антител, иммобилизованных на магнитных шариках, что ведет к потере части клеток и требует дополнительных затрат.
Известно, что количество МСК в организме, а также их способность к пролиферации и дифференцировке существенно снижается с возрастом (Rao M.S., Mattson M.P. Stem cell and aging: expanding the possibilities // Mech. Ageing Dev. 2001. Vol. 122. P.713-734). В связи с этим разрабатываются методы выделения МСК с высокой пролиферативной активностью и дифференцировочным потенциалом, например, из фетальных тканей или провизорных органов.
Известен способ выделения МСК из фетальной крови плода. Для их изоляции выделяют фракцию мононуклеарных клеток центрифугированием в градиенте фиколла и культивируют в условиях, поддерживающих рост МСК. Полученные клетки обладают остеогенным и адипогенным потенциалом (Campagnoli С., Roberts I.A., Kumar S. et al. Identification of mesenchymal stem/progenitor cells in human first trimester fetal blood, liver, and bone marrow // Blood. 2001. Vol. 98. P.2396-2402).
Недостатком метода получения МСК из данного источника является труднодоступность фетальных тканей, а также этические проблемы, связанные с их использованием. Кроме того, изолированные популяции клеток были неоднородными: 76% проб содержали остеокластоподобные клетки, экспрессирующие характерные антигены CD45, CD51/CD61, отрицательные по CD64 (маркер макрофагов), SH2 (маркер МСК), CD31 (маркер эндотелиальных клеток). Лишь 26% образцов состояли из МСК-подобных клеток, экспрессирующих SH2, SH3, SH4, МАВ1470, CD 13, CD29, CD49e, CD54, CD90, ASMA, отрицательных по CD31 и vWF (маркеры эндотелиальных клеток).
Известен способ выделения МСК из субэндотелиального слоя пуповинной вены (Romanov Y.A., Svinitskaya V.A., Smimov V.N. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord // Stem Cells. 2003. Vol. 21. P.105-110). Для этого пуповинная вена была обработана изнутри раствором коллагеназы IV в течение короткого периода времени (15 минут), а полученные клетки культивировали в среде DMEM-LG, дополненной 10% FBS. В результате была получена популяция клеток с фибробластоподобной морфологией, которые экспрессировали набор антигенов, сходный с МСК: ICAM1+/-, VCAM1+, CD34-; MуSM- (smooth muscle myosine); CD31-, vWF- (маркеры эндотелиальных клеток); CD14-, CD45-, CD68- (маркеры моноцитов/макрофагов), но экспрессировали гладкомышечный актин ASMA. Полученная популяция клеток обладала остеогенным и адипогенным потенциалом in vitro.
Недостатком данного метода является гетерогенность полученной популяции клеток: в первичной культуре присутствовали эндотелиальные и гладкомышечные клетки, причем эндотелиальные клетки не размножались при данных условиях, а примесь миоцитов сохранялась при культивировании.
Известен наиболее близкий к заявленному способ выделения МСК из липоаспирата человека, состоящий в том, что измельченную жировую ткань подвергают действию коллагеназы типа I, а после нейтрализации коллагеназы и промывки клеточной суспензии очищают с помощью фильтров с размером пор 100 мкм для удаления клеточных остатков. В результате получали популяцию МСК, обладавшую характерной морфологией, иммунофенотипом, а также способностью к дифференцировке в костную, хрящевую, жировую, мышечную и нервную ткани (Zuk P.A., Zhu M., Ashjian P., De Ugarte D.D., Huang J.I., Mizuno H., Alfonso Z.C., Fraiser J.K., Benhaim P. and Hedrick M.H. Human adipose tissue is source of multipotent stem cells // Molecular Biology of the Cell. 2002. Vol. 13. P.4279-4295).
Недостатками данного способа являются неоднородность получаемой клеточной суспензии и невысокий выход.
Изобретение решает задачу выделения мезенхимальных стволовых клеток из тканей человека с высокой однородностью клеточной суспензии.
Для решения поставленной задачи в способе выделения мезенхимальных стволовых клеток из тканей человека, включающем измельчение и ферментативную обработку тканей раствором коллагеназы в среде Игла в модификации Дюльбекко, очистку от эритроцитов с помощью лизирующего буфера с последующей фильтрацией полученной суспензии, в качестве тканей человека используют жировую ткань или плаценту, а фильтрацию проводят последовательно через фильтры с размером пор 100 и 10 мкм.
При проведении ферментативной обработки жировой ткани, децидуальной или амниотической оболочек плаценты используют коллагеназу типа I, а при проведении ферментативной обработки хориальной стромы плаценты - коллагеназу типа IV.
Технический результат изобретения - повышение однородности клеточной суспензии, выхода целевого продукта и повышение жизнеспособности клеток достигается за счет условий фильтрации: определенного размера пор фильтров и определенного соотношения размеров пор используемых фильтров. Изменение этих параметров в сторону увеличения или уменьшения не может привести к указанному техническому результату, т.к. при этом резко снижается выход целевого продукта и/или однородность получаемой суспензии клеток. Выход клеток по сравнению с ближайшим способом-аналогом увеличивается в несколько раз. По данным заявителя, выход в известном способе составляет 104 клеток на образец ткани массой 1 г, в то время как в заявленном способе выход клеток составляет от 1.5-3×104 до 107 клеток на 1 г образцов тканей различных типов. Повышение однородности клеточной суспензии подтверждена данными морфологического анализа и иммунофенотипирования. По данным заявителя, в известном способе в популяции МСК, полученной из липоаспирата, присутствует много морфологических типов клеток, и только на 4 пассаже культура становится гомогенной по форме и гранулярности клеток, а также по экспрессии поверхностных маркеров.
Способ осуществляют следующим образом:
Образец ткани предварительно промывают физиологическим раствором, забуференным фосфатами (PBS, phosphate buffered saline) при рН 7.2, без ионов Са2+ и Mg2+, дополненным антибиотиками (пенициллин 100 ед/мл, стрептомицин 100 мкг/мл) и антимикотиком (амфотерицин В 0.25 мкг/мл). Обрабатываемую ткань измельчают, добавляют среду Игла в модификации Дюльбекко (DMEM, Dulbecco’s Modified Eagle Medium), содержащую антибиотики и антимикотик, указанные выше, при объемном соотношении ткани и среды от 1:5 до 1:10. В суспензию вводят раствор коллагеназы до конечной концентрации 0.075% для ферментативной обработки. Суспензию инкубируют при 37°С 30 минут при медленном покачивании.
Полученную смесь перемешивают до получения однородной суспензии, затем для нейтрализации коллагеназы добавляют эквивалентный объем среды DMEM, содержащей 10% по объему фетальной бычьей сыворотки (FBS, fetal bovine serum) с последующим центрифугированием в течение 10 минут при 1000g. Осадок ресуспендируют в буфере, лизирующем эритроциты (155 мM NH4Cl, 10 мМ КНСО3, 0,1 мМ Na2EDTA). Смесь тщательно перемешивают и инкубируют 3-5 минут при комнатной температуре.
Суспензию разбавляют эквивалентным объемом среды DMEM, содержащей антибиотики и антимикотик, затем клетки осаждают центрифугированием в течение 10 минут при 1000 g. Клеточный осадок промывают средой DMEM и снова осаждают центрифугированием в том же режиме. Клетки суспендируют в среде DMEM-LG с концентрацией глюкозы 1 г/л, дополненной 20% FBS, антибиотиками и антимикотиком. Полученную клеточную суспензию пропускают через фильтры с размером пор 100 мкм и 10 мкм и высевают из расчета 1 млн клеток на 1 см2.
Выделенная популяция клеток характеризуется высокой однородностью МСК, причем изменение параметров фильтрации в сторону увеличения и/или уменьшения размеров пор приводит к снижению однородности целевого продукта или выхода клеток.
Изобретение иллюстрируют следующие примеры.
Пример 1.
Децидуальную оболочку отделяют от плаценты с помощью маленьких ножниц. Образец ткани массой 2 г промывают трижды в PBS (Gibco) при рН 7.2, без ионов Са2+ и Mg2+, содержащем однократный раствор антибиотиков и антимикотика (Gibco), в котором конечная концентрация пенициллина составляет 100 ед/мл, стрептомицина 100 мкг/мл, амфотерицина В 0.25 мкг/мл.
Ткань измельчают ножницами в чашках Петри диаметром 10 см, затем добавляют среду DMEM (Gibco) объемом 25 мл, содержащую антибиотики и антимикотик, суспендируют и переносят в пробирку на 50 мл (Costar).
В полученную суспензию для ферментативной обработки вводят 1 мл 2% раствора коллагеназы типа I (Gibco) до конечной концентрации 0.075%, инкубируют 30 минут в при 37°С на шейкере при медленном покачивании.
Смесь тщательно перемешивают до получения однородной суспензии, затем для нейтрализации коллагеназы добавляют 25 мл среды DMEM, содержащей 10% FBS (HyClone, PerBio). Клетки осаждают центрифугированием в течение 10 минут при 1000 g.
Надосадочную жидкость удаляют. Для лизирования эритроцитов осадок ресуспендируют в 20 мл холодного буфера, содержащего 155 мM NH4Cl, 10 мМ КНСО3, 0.1 мМ Na2EDTA. Смесь тщательно перемешивают и инкубируют 3-5 минут при комнатной температуре.
Полученную суспензию разбавляют средой DMEM, содержащей антибиотики и антимикотик (Gibco), объемом 25 мл, затем клетки осаждают центрифугированием в течение 10 минут при 1000 g.
Надосадочную жидкость удаляют, клеточный осадок суспендируют в среде DMEM для промывки. Клетки осаждают центрифугированием в течение 10 минут при 1000 g.
Полученный клеточный осадок суспендируют в 25 мл среды DMEM-LG с концентрацией глюкозы 1 г/л (Gibco), дополненной 20% FBS (HyClone, PerBio), однократным раствором незаменимых аминокислот (Gibco) и однократным раствором антибиотиков и антимикотика (100 ед/мл пенициллина, 100 мкг/мл стрептомицина, 0.25 мкг/мл амфотерицина В, Gibco).
Суспензию клеток пропускают последовательно через фильтры с размером пор 100 мкм и 10 мкм (Millipore) для удаления клеточных остатков и дебриса.
Количество очищенных клеток оценивают подсчетом в камере Горяева. Суммарный выход клеток составляет 108/1 г ткани. Клетки высевают во флаконы площадью 75 см2 из расчета 1 млн/1 см2. Доля прикрепившихся клеток составляет около 1%, т.о. выход МСК из децидуальной оболочки - примерно 106/1 г ткани.
Через 24 часа клеткам меняют среду на свежую. По достижении монослоя клетки субкультивируют, оценивают визуально по морфологии с помощью фазово-контрастного микроскопа, подсчитывают митотический индекс и время цитогенерации.
По результатам морфологического анализа выявлено две основных популяции клеток по фенотипу. Первый тип клеток представлен веретеновидными клетками диаметром 15-35 мкм с гомогенной цитоплазмой, низким ядерно-цитоплазматическим соотношением, центрально расположенным ядром, содержащим 4-7 ядрышек. Второй тип включает крупные фибробластоподобные распластанные клетки диаметром 90 мкм с цитоплазмой различной гомогенности, более низким ядерно-цитоплазматическим соотношением, центрально расположенным ядром, содержащим 2-4 ядрышка. Таким образом, исследуемые клетки имеют морфологию, характерную для МСК человека.
Митотический индекс рассчитывают в фазе логарифмического роста как соотношение количества митозов к общему количеству клеток, его величина составляет 29.5%. Время цитогенерации 29 часов.
Полученные клетки имунофенотипируют окраской антителами к поверхностным антигенам CD10, CD13, CD31, CD34, CD44, CD45, CD90, CD105, CD117 (Becton Dickinson) с использованием непрямой флуоресценции, анализ проводят с помощью проточного цитофлуориметра (Beckman Coulter). Экспрессия поверхностных маркеров соответствует иммунофенотипу МСК: клетки положительны по CD13, CD44, CD90, CD105 и отрицательны по CD31, CD34, CD45, CD117. Экспрессия CD10 умеренно положительна (таблица 1).
Таблица 1
Экспрессия поверхностных антигенов на поверхности МСК из децидуальной оболочки плаценты
Иммунофенотип МСК децидуальной оболочки
CD %
CD10 50,30
CD13 87,00
CD31 1,50
CD34 1,30
CD44 95,90
CD45 3,40
CD90 93,70
CD105 95,50
CD117 7,00
Пример 2
Хориальную строму отделяют от плаценты с помощью маленьких ножниц. Образец ткани массой 5 г промывают трижды PBS (Gibco) при рН 7.2, без ионов Са2+ и Mg2+, содержащим однократный раствор антибиотиков и антимикотика (Gibco), конечная концентрация пенициллина составляет 100 ед/мл, стрептомицина 100 мкг/мл, амфотерицина В 0.25 мкг/мл.
Ткань измельчают ножницами в чашках Петри диаметром 10 см, затем добавляют среду DMEM (Gibco) объемом 25 мл, содержащую антибиотики и антимикотик, суспендируют и переносят в пробирку на 50 мл (Costar).
В полученную суспензию для ферментативной обработки вводят 1 мл 2% раствора коллагеназы типа IV (Gibco) до конечной концентрации 0.075%, инкубируют 30 минут в при 37°С на шейкере при медленном покачивании.
Полученную смесь тщательно перемешивают до получения однородной суспензии затем для нейтрализации коллагеназы добавляют 25 мл среды DMEM, содержащей 10% FBS (HyClone, PerBio). Клетки осаждают центрифугированием в течение 10 минут при 1000 g.
Надосадочную жидкость удаляют. Для лизирования эритроцитов осадок ресуспендируют в 20 мл холодного буфера, содержащего 155 мM NH4Cl, 10 мМ КНСО3, 0.1 мМ Na2EDTA. Смесь тщательно перемешивают и инкубируют 3-5 минут при комнатной температуре.
Суспензию разбавляют средой DMEM, содержащей антибиотики и антимикотик (Gibco), объемом 25 мл, затем клетки осаждают центрифугированием в течение 10 минут при 1000 g.
Надосадочную жидкость удаляют, клеточный осадок суспендируют в среде DMEM для промывки. Клетки осаждают центрифугированием в течение 10 минут при 1000 g.
Полученный клеточный осадок суспендируют в 25 мл среды DMEM-LG с концентрацией глюкозы 1 мг/мл (Gibco), дополненной 20% FBS (HyClone, PerBio), однократным раствором незаменимых аминокислот (Gibco) и однократным раствором антибиотиков и антимикотика (100 ед/мл пенициллина, 100 мкг/мл стрептомицина, 0.25 мкг/мл амфотерицина В, Gibco).
Суспензию клеток пропускают последовательно через фильтры с размером пор 100 мкм и 10 мкм (Millipore) для удаления клеточных остатков и дебриса.
Количество очищенных клеток оценивают подсчетом в камере Горяева. Суммарный выход клеток составляет 109/1 г ткани. Клетки высевают во флаконы площадью 75 см2 из расчета 1 млн/1 см2. Доля прикрепившихся клеток составляет около 1%, т.о. выход МСК из хориальной стромы - примерно 107/1 г ткани.
Через 24 часа клеткам меняют среду на свежую. По достижении монослоя клетки субкультивируют, оценивают визуально по морфологии с помощью фазово-контрастного микроскопа, подсчитывают митотический индекс и время цитогенерации.
По результатам морфологического анализа выявлено две основных популяции клеток по фенотипу. Первый тип клеток представлен веретеновидными клетками диаметром 20-40 мкм с гомогенной цитоплазмой, низким ядерно-цитоплазматическим соотношением, центрально расположенным ядром, содержащим 4-7 ядрышек. Второй тип включает крупные фибробластоподобные распластанные клетки диаметром 100 мкм с цитоплазмой различной гомогенности, более низким ядерно-цитоплазматическим соотношением, центрально расположенным ядром, содержащим 2-4 ядрышка. Таким образом, исследуемые клетки имеют морфологию, характерную для МСК человека.
Митотический индекс рассчитывают в фазе логарифмического роста как соотношение количества митозов к общему количеству клеток, его величина составляет 31.8%. Время цитогенерации 28 часов.
Полученные клетки иммунофенотипируют окраской антителами к поверхностным антигенам CD10, CD13, CD31, CD34, CD44, CD45, CD90, CD105, CD117 (Becton Dickinson) с использованием непрямой флуоресценции, анализ проводят с помощью проточного цитофлуориметра (Beckman Coulter). Экспрессия поверхностных маркеров соответствует иммунофенотипу МСК: клетки положительны по CD13, CD44, CD90, CD 105 и отрицательны по CD31, CD34, CD45, CD117. Экспрессия CD10 умеренно положительна (таблица 2).
Таблица 2
Экспрессия поверхностных антигенов на поверхности МСК из хориальной стромы плаценты
Иммунофенотип МСК хориальной стромы
CD %
CD10 84,40
CD13 90,90
CD31 0,20
CD34 0,30
CD44 97,60
CD45 1,50
CD90 95,30
CD105 92,70
CD117 3,90
Пример 3
Амниотическую оболочку отделяют от плаценты с помощью маленьких ножниц. Образец ткани массой 2 г промывают трижды в PBS (Gibco) при рН 7,2, без ионов Са2+ и Mg2+ содержащим однократный раствор антибиотиков и антимикотика (Gibco), конечная концентрация пенициллина составляет 100 ед/мл, стрептомицина 100 мкг/мл, амфотерицина В 0.25 мкг/мл.
Ткань измельчают ножницами в чашках Петри диаметром 10 см, затем добавляют среду DMEM (Gibco) объемом 25 мл, содержащую антибиотики и антимикотик, суспендируют и переносят в пробирку на 50 мл (Costar).
В полученную суспензию для ферментативной обработки вводят 1 мл 1% раствора коллагеназы типа I (Gibco) до конечной концентрации 0.075%, инкубируют 30 минут в при 37°С на шейкере при медленном покачивании.
Полученную смесь тщательно перемешивают до получения однородной суспензии, затем для нейтрализации коллагеназы добавляют 25 мл среды DMEM, содержащей 10% FBS (HyClone, PerBio). Клетки осаждают центрифугированием в течение 10 минут при 1000 g.
Надосадочную жидкость удаляют. Для лизирования эритроцитов осадок ресуспендируют в 20 мл холодного буфера, содержащего 155 мM NH4Cl, 10 мM КНСО3, 0.1 мM Na2EDTA. Смесь тщательно перемешивают и инкубируют 5 минут при комнатной температуре.
Полученную суспензию разбавляют средой DMEM, содержащей антибиотики и антимикотик (Gibco) объемом 25 мл, затем клетки осаждают центрифугированием в течение 10 минут при 1000 g.
Надосадочную жидкость удаляют, клеточный осадок суспендируют в среде DMEM для промывки. Клетки осаждают центрифугированием в течение 10 минут при 1000 g.
Полученный клеточный осадок суспендируют в 25 мл среды DMEM-LG с содержанием глюкозы 1 г/л (Gibco), дополненной 20% FBS (HyClone, PerBio), однократным раствором незаменимых аминокислот (Gibco) и однократным раствором антибиотиков и антимикотика (100 ед/мл пенициллина, 100 мкг/мл стрептомицина, 0.25 мкг/мл амфотерицина В, Gibco).
Суспензию клеток пропускают последовательно через фильтры с размером пор 100 мкм и 10 мкм (Millipore). Количество очищенных клеток оценивают подсчетом в камере Горяева. Суммарный выход клеток составляет 108/1 г ткани. Клетки высевают во флаконы площадью 75 см2 из расчета 1 млн/1 см2. Доля прикрепившихся клеток около 1%, т.о. выход МСК из амниотической оболочки - примерно 106/1 г ткани.
Через 24 часа клеткам меняют среду на свежую. По достижении монослоя клетки субкультивируют, оценивают визуально по морфологии с помощью фазово-контрастного микроскопа, подсчитывают митотический индекс и время цитогенерации.
По результатам морфологического анализа выявлено две основных популяции клеток по фенотипу. Первый тип клеток представлен веретеновидными клетками диаметром 10-30 мкм с гомогенной цитоплазмой, низким ядерно-цитоплазматическим соотношением, центрально расположенным ядром, содержащим 4-7 ядрышек. Второй тип включает крупные фибробластоподобные распластанные клетки диаметром 80 мкм с цитоплазмой различной гомогенности, более низким ядерно-цитоплазматическим соотношением, центрально расположенным ядром, содержащим 2-4 ядрышка. Таким образом, исследуемые клетки имеют морфологию, характерную для МСК человека.
Митотический индекс рассчитывают в фазе логарифмического роста как соотношение количества митозов к общему количеству клеток, его величина составляет 31.6%. Время цитогенерации 25.7 часа.
Полученные клетки имунофенотипируют окраской антителами к поверхностным антигенам CD10, CD13, CD31, CD34, CD44, CD45, CD90, CD105, CD117 (Becton Dickinson) с использованием непрямой флуоресценции, анализ проводят с помощью проточного цитофлуориметра (Beckman Coulter). Экспрессия поверхностных маркеров соответствует иммунофенотипу МСК: клетки положительны по CD13, CD44, CD90, CD105 и отрицательны по CD31, CD34, CD45, CD117. Экспрессия CD10 умеренно положительна (таблица 3).
Таблица 3
Экспрессия поверхностных антигенов на поверхности МСК из амниотической оболочки плаценты
Иммунофенотип МСК амниотической оболочки
CD %
CD10 58,70
CD13 93,20
CD31 1,70
CD34 1,40
CD44 98,30
CD45 0,00
CD90 92,60
CD 105 96,90
CD117 1,70
Пример 4.
Образец жировой ткани массой 10 г трижды промывают PBS (Gibco) при рН 7.2, без ионов Са2+ и Mg2+, содержащим однократный раствор антибиотиков и антимикотика (Gibco), конечная концентрация пенициллина составляет 100 ед/мл, стрептомицина 100 мкг/мл, амфотерицина В 0.25 мкг/мл, и удаляют примеси плотной соединительной ткани.
Далее проводят механическую фрагментацию ткани медицинскими ножницами в культуральных чашках диаметром 10 см (Costar) до получения мелкодисперсной массы, которую переносят в две пробирки объемом 50 мл с коническим дном (Costar) и суспендируют каждый образец в 25 мл среды DMEM, содержащей антибиотики и антимикотик.
Далее проводят стадию обработки ферментом: в полученные суспензии вводят по 1 мл 2% раствора коллагеназы I типа (Gibco) в буферном растворе PBS без ионов Са2+ и Mg2+, до конечной концентрации фермента 0.075%, инкубируют при температуре 37°С в течение 30 минут при медленном покачивании.
Полученную смесь тщательно перемешивают, затем добавляют эквивалентный объем DMEM, содержащую 10% FBS и антибиотики и антимикотик, и центрифугируют в течение 10 минут при 1000 g. Надосадочную жидкость и жировые капли удаляют, осадки объединяют и суспендируют в 10 мл холодного лизирующего буфера (+4°С), содержащего 155 мM NH4Cl, 10 мМ КНСО3, 0.1 мМ Na2EDTA. Смесь тщательно перемешивают и инкубируют 3-5 минут при комнатной температуре.
Далее в клеточную суспензию добавляют 10 мл среды DMEM, содержащей антибиотики и антимикотик. Клетки осаждают центрифугированием в течение 10 минут при 1000 g.
Надосадочную жидкость удаляют и проводят стадию промывания. Клеточный осадок ресуспендируют в 30 мл среды DMEM, содержащей антибиотики и антимикотик, и центрифугируют в режиме 1000 g в течение 10 минут.
Полученный осадок ресуспендируют в 25 мл среды DMEM, содержащей антибиотики и антимикотик.
Полученную клеточную суспензию пропускают через фильтр с размером пор 100 мкм и центрифугируют в течение 10 минут при 300 g. Осадок ресуспендируют в среде DMEM, дополненной антибиотиками и антимикотиком, 10% FBS и однократным раствором заменимых аминокислот (Non-Essential Amino Acids, Gibco) в объеме 25 мл. Суспензию пропускают через фильтр с размером пор 10 мкм.
Таким образом, получают гомогенную фракцию клеток, свободную от клеточного дебриса и клеток крови.
Полученную клеточную суспензию оценивают подсчетом в камере Горяева и высевают во флаконы площадью 75 см2 из расчета 106 клеток/см2. Доля прикрепившихся клеток составляет приблизительно 1-1,5%. Таким образом, количество мезенхимальных стволовых клеток, выделенных из 1 г жировой ткани, составляет около 1,5-3×104 клеток.
По истечении 24 часов проводят смену среды на DMEM, содержащей антибиотики (100 ед/мл пеницилина, 100 мкг/мл стрептомицина, Gibco), 10% FBS и однократный раствор заменимых аминокислот (Nоn - Essential Amino Acids, Gibco).
По достижении монослоя клетки субкультивируют, проводят визуальную оценку морфологии клеток посредством методом фазово-контрастного микроскопирования, оценивают митотический индекс и время цитогенерации.
По результатам морфологического анализа в полученной после выделения фракции клеток выявлено две субпопуляции. Первый тип клеток представляет собой субпопуляцию малых веретеновидных клеток диаметром 10-15 мкм, с четко выделенным ядром и гомогенной цитоплазмой. Второй тип представлен клетками округлой формы с вытянутым с одной стороны плоским выростом цитоплазмы, размер клеток достигает 40 мкм; отмечается темное ядро, смещенное к одному краю, гетерогенная цитоплазма и повышенная гранулярность в ядерной области.
В фазе логарифмического роста клеток подсчитывают митотический индекс и время цитогенерации. Соотношение количества митотических клеток к общему количеству клеток составляет 34%. Время удвоения 54-62 час.
Полученные клетки иммунофенотипируют методом непрямой иммунофлуоресценции. Посредством проточного цитофлуориметра (Beckman Coulter) выявлен высокий уровень экспрессии следующих антигенов CD10, (CALLA), CD 13 (APN), CD44 (hyaluronic acid receptor), CD90 (Thy-1), CD105 (endoglin) (Becton Dickinson). Также показано отсутствие экспрессии маркеров гематопоэтических клеток CD34, CD45 и CD117 (Becton Dickinson) (таблица 4). Результаты иммунофенотипирования показывают, что популяция полученных клеток соответствует по экспрессии поверхностных антигенов мезенхимальным стволовым клеткам.
Таблица 4
Экспрессия поверхностных антигенов на поверхности МСК из жировой ткани
Иммунофенотип МСК из жировой ткани
CD %
CD10 68,08
CD13 96,53
CD34 4,38
CD44 93,08
CD45 3,28
CD90 98,36
СD105 90,18
CD117 2,30

Claims (2)

1. Способ выделения мезенхимальных стволовых клеток из тканей человека, включающий измельчение и ферментативную обработку тканей раствором коллагеназы в среде Игла в модификации Дюльбекко, очистку от эритроцитов с помощью лизирующего раствора с последующей фильтрацией полученной суспензии, отличающийся тем, что в качестве тканей человека используют жировую ткань, или децидуальную, или амниотическую оболочку плаценты, или хориальную строму плаценты, а фильтрацию проводят последовательно через фильтры с размером пор 100 и 10 мкм.
2. Способ по п.1, отличающийся тем, что при проведении ферментативной обработки жировой ткани, децидуальной или амниотической оболочек плаценты используют коллагеназу типа I, а при проведении ферментативной обработки хориальной стромы плаценты - коллагеназу типа IV.
RU2004110701/13A 2004-04-09 2004-04-09 Способ выделения мезенхимальных стволовых клеток RU2252252C1 (ru)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2004110701/13A RU2252252C1 (ru) 2004-04-09 2004-04-09 Способ выделения мезенхимальных стволовых клеток
PCT/IB2005/002414 WO2005121317A2 (en) 2004-04-09 2005-04-04 Method for obtaining mesenchymal stem cells
AT05780159T ATE539145T1 (de) 2004-04-09 2005-04-04 Verfahren zum erhalt von mesenchymalen stammzellen
EP05780159A EP1733027B1 (en) 2004-04-09 2005-04-04 Method for obtaining mesenchymal stem cells
US11/099,176 US20050244963A1 (en) 2004-04-09 2005-04-04 Method for obtaining mesenchymal stem cells
CNA200580012239XA CN1961069A (zh) 2004-04-09 2005-04-04 获得间充质干细胞的方法
US11/969,772 US7915039B2 (en) 2004-04-09 2008-01-04 Method for obtaining mesenchymal stem cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004110701/13A RU2252252C1 (ru) 2004-04-09 2004-04-09 Способ выделения мезенхимальных стволовых клеток

Publications (1)

Publication Number Publication Date
RU2252252C1 true RU2252252C1 (ru) 2005-05-20

Family

ID=35187605

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004110701/13A RU2252252C1 (ru) 2004-04-09 2004-04-09 Способ выделения мезенхимальных стволовых клеток

Country Status (6)

Country Link
US (2) US20050244963A1 (ru)
EP (1) EP1733027B1 (ru)
CN (1) CN1961069A (ru)
AT (1) ATE539145T1 (ru)
RU (1) RU2252252C1 (ru)
WO (1) WO2005121317A2 (ru)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009002223A1 (ru) * 2007-06-21 2008-12-31 Alexander Sergeevich Teplyashin Способ получения гибридной стволовой клетки человека
RU2515475C1 (ru) * 2012-11-15 2014-05-10 Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ЦИТОЛОГИИ РОССИЙСКОЙ АКАДЕМИИ НАУК Способ стимуляции образования децидуальной оболочки эндометрия в эксперименте
RU2515156C2 (ru) * 2008-05-27 2014-05-10 Плуристем Лтд. Способы лечения воспалительных заболеваний ободочной кишки
RU2599418C1 (ru) * 2015-10-06 2016-10-10 Общество с ограниченной ответственностью "Научно-производственная компания Стемма" Способ получения клеточного материала из плаценты человека
RU2609657C1 (ru) * 2015-10-22 2017-02-02 федеральное государственное бюджетное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения Российской Федерации Способ выделения мезенхимных стволовых клеток из орбитальной жировой ткани
WO2017078563A1 (ru) * 2015-11-03 2017-05-11 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ДЖОИН ТЕКСЭЛЛ" (ООО "Джоин ТекСэлл") Устройство для выделения клеточных фракций из тканей человека и животных и способ его применения
RU2620304C2 (ru) * 2015-11-03 2017-05-24 Общество с ограниченной ответственностью "ДжоинТекСэлл" Устройство для выделения клеточных фракций из тканей человека и животных и способ его применения
RU173796U1 (ru) * 2017-03-02 2017-09-11 Общество с ограниченной ответственностью "ДжоинТекСэлл" Устройство для фракционирования жировой ткани и выделения из нее стромально-васкулярной фракции для применения в регенеративной медицине
RU2645255C1 (ru) * 2016-12-16 2018-02-19 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И.Кулакова" Министерства здравоохранения Российской Федерации Способ получения биобезопасной культуры мезенхимальных стволовых клеток из ворсин хориона человека
WO2018160096A1 (ru) * 2017-03-02 2018-09-07 Общество С Ограниченной Ответственностью "Джоин Тексэлл"(Ооо "Джоин Тексэлл") Устройство для фракционирования жировой ткани и выделения из нее стромально-васкулярной фракции для применения в регенеративной медицине
RU2671642C1 (ru) * 2018-04-02 2018-11-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный педиатрический медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО СПбГПМУ Минздрава России) Способ восстановления кожного покрова при обширных глубоких ожогах
RU2674344C2 (ru) * 2016-12-16 2018-12-07 ФГБУ "Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И.Кулакова" Министерства здравоохранения Российской Федерации Способ получения биобезопасной культуры мезенхимальных стволовых клеток из Вартонова студня пуповины человека
RU2675354C1 (ru) * 2018-04-02 2018-12-18 Общество с ограниченной ответственностью "Покровский банк стволовых клеток" Способ стимуляции веса плода на ранних сроках беременности в эксперименте
RU195366U1 (ru) * 2019-05-08 2020-01-23 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр реабилитации и курортологии" Министерства здравоохранения Российской Федерации (ФГБУ НМИЦ РК Минздрава России) Устройство для выделения из жировой ткани клеток стромально-васкулярной фракции для последующего их применения в регенеративной медицине
RU2720002C1 (ru) * 2018-12-28 2020-04-23 Андрей Степанович БРЮХОВЕЦКИЙ Биомедицинский клеточный продукт для лечения нервных болезней и психических расстройств, способ его получения и его применение

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060045872A1 (en) 2004-08-25 2006-03-02 Universidad Autonoma De Madrid Ciudad Universitaria de Cantoblanco Use of adipose tissue-derived stromal stem cells in treating fistula
ES2313805B1 (es) 2004-10-04 2009-12-23 Cellerix, S.L. Identificacion y aislamiento de celulas multipotentes de tejido mesenquimal no osteocondral.
SG10201400793RA (en) 2005-09-23 2014-08-28 Cellerix Sl Cell populations having immunoregulatory activity, method for isolation and uses
WO2007114740A2 (fr) * 2006-04-04 2007-10-11 Trans-Technologies Ltd Transplant biologique destiné à la thérapie cellulaire à base de cellules souches mésenchymateuses, obtenues à partir de la moelle osseuse
US8372437B2 (en) * 2006-08-17 2013-02-12 Mimedx Group, Inc. Placental tissue grafts
EP3539380A3 (en) 2008-08-20 2019-12-18 Celularity, Inc. Improved cell composition and methods of making the same
CN101889079B (zh) * 2008-10-17 2012-08-08 宁夏医科大学附属医院 适于临床应用的人胎盘间质细胞库的建立方法
ITUD20090202A1 (it) * 2009-11-13 2011-05-14 Giovanni Cricini Metodo per la replicazione di cellule staminali mesenchimali e utilizzo terapeutico delle cellule staminali cosi' ottenute
US8809054B2 (en) 2010-05-12 2014-08-19 Xpand Biotechnology B.V. Cell-culture-bag
EP2550357B1 (en) * 2010-05-12 2016-09-14 Xpand Biotechnology BV Cell-culture-bag
US9352003B1 (en) 2010-05-14 2016-05-31 Musculoskeletal Transplant Foundation Tissue-derived tissuegenic implants, and methods of fabricating and using same
US8883210B1 (en) 2010-05-14 2014-11-11 Musculoskeletal Transplant Foundation Tissue-derived tissuegenic implants, and methods of fabricating and using same
US10130736B1 (en) 2010-05-14 2018-11-20 Musculoskeletal Transplant Foundation Tissue-derived tissuegenic implants, and methods of fabricating and using same
WO2012048298A2 (en) 2010-10-08 2012-04-12 Caridianbct, Inc. Methods and systems of growing and harvesting cells in a hollow fiber bioreactor system with control conditions
CN101974486A (zh) * 2010-11-25 2011-02-16 王泰华 从微量人脂肪组织提取间充质干细胞及规模化培养的方法
CN102210707B (zh) * 2011-04-01 2014-04-30 四川大学 协同刺激分子修饰胎盘成体干细胞活制剂及其制备与应用
CN102212461B (zh) * 2011-05-05 2013-04-17 中国人民解放军第二炮兵总医院 间充质干细胞过滤分离器及其应用
US8834928B1 (en) 2011-05-16 2014-09-16 Musculoskeletal Transplant Foundation Tissue-derived tissugenic implants, and methods of fabricating and using same
TWI419971B (zh) * 2011-09-28 2013-12-21 Tissue Decomposition, Cell Adhesion and Extraction and Culture of Adult Stem Cells.
BR102012007438A2 (pt) * 2012-03-26 2013-11-19 Bio Biotecnologia Em Reproducao Animal Ltda Processo de aplicação de procedimentos através da biologia celular para uso em animais
CN103173405B (zh) * 2013-03-21 2017-11-07 北京京蒙高科干细胞技术有限公司 一种人胎盘成肌纤维母细胞的简易分离及鉴定方法
CN103160459B (zh) * 2013-04-01 2015-01-14 哈尔滨体育学院 一种优秀冰雪运动员胎盘干细胞分离培养及鉴定方法
CA2919374C (en) 2013-07-30 2019-12-03 Musculoskeletal Transplant Foundation Acellular soft tissue-derived matrices and methods for preparing same
CN104560862B (zh) * 2013-10-14 2019-09-13 佛教慈济医疗财团法人 分离脂肪组织活细胞方法、医药组合物及其用途、细胞库
CN105793411B (zh) 2013-11-16 2018-04-17 泰尔茂比司特公司 生物反应器中的细胞扩增
US9856454B2 (en) 2014-02-27 2018-01-02 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation Rapid mincing of adipose tissues to isolate live cells in vitro
WO2015148704A1 (en) 2014-03-25 2015-10-01 Terumo Bct, Inc. Passive replacement of media
EP3140417B1 (en) * 2014-05-09 2021-04-21 Reelabs Private Limited Foetal polymix of mesenchymal stem cells under hypoxic conditions for the treatment of clinical disorders
CN105316283B (zh) * 2014-08-01 2019-02-12 深圳华大基因科技有限公司 一种临床级胎盘间充质干细胞制备方法
WO2016049421A1 (en) 2014-09-26 2016-03-31 Terumo Bct, Inc. Scheduled feed
CA2986702C (en) 2015-05-21 2023-04-04 David Wang Modified demineralized cortical bone fibers
WO2017004592A1 (en) 2015-07-02 2017-01-05 Terumo Bct, Inc. Cell growth with mechanical stimuli
US10912864B2 (en) 2015-07-24 2021-02-09 Musculoskeletal Transplant Foundation Acellular soft tissue-derived matrices and methods for preparing same
US11052175B2 (en) 2015-08-19 2021-07-06 Musculoskeletal Transplant Foundation Cartilage-derived implants and methods of making and using same
GB201604304D0 (en) 2016-03-14 2016-04-27 Tigenix S A U Adipose tissue-derived stromal stem cells for use in treating refractory complex perianal fistulas in crohn's disease
EP3464565A4 (en) 2016-05-25 2020-01-01 Terumo BCT, Inc. CELL EXPANSION
US11104874B2 (en) 2016-06-07 2021-08-31 Terumo Bct, Inc. Coating a bioreactor
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
CN106190969A (zh) * 2016-08-26 2016-12-07 杭州易文赛生物技术有限公司 一种蜕膜间充质干细胞的制备方法
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
EP3656841A1 (en) 2017-03-31 2020-05-27 Terumo BCT, Inc. Cell expansion
US11285177B2 (en) 2018-01-03 2022-03-29 Globus Medical, Inc. Allografts containing viable cells and methods thereof
CN108300689A (zh) * 2018-01-16 2018-07-20 佛山科学技术学院 一种分离与原代培养胎盘壁蜕膜间充质干细胞的方法
CN111454890A (zh) * 2020-01-23 2020-07-28 广州医科大学附属第二医院 一种小鼠脂肪间充质干细胞的分离培养方法
CN111733128A (zh) * 2020-05-14 2020-10-02 厚朴生物科技(苏州)有限公司 人脂肪间充质干细胞制备方法及体外分化能力鉴定方法
CN114149966A (zh) * 2021-12-08 2022-03-08 华夏源细胞工程集团股份有限公司 一种获取胎盘间充质干细胞的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842477A (en) * 1996-02-21 1998-12-01 Advanced Tissue Sciences, Inc. Method for repairing cartilage
US20030082152A1 (en) * 1999-03-10 2003-05-01 Hedrick Marc H. Adipose-derived stem cells and lattices
US20030161817A1 (en) * 2001-03-28 2003-08-28 Young Henry E. Pluripotent embryonic-like stem cells, compositions, methods and uses thereof
AU2003239159A1 (en) * 2002-04-19 2003-11-03 University Of Pittsburgh Of The Commonwealth System Of Higher Education Placental derived stem cells and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZUK P.A. et al. Human adipose tissue is a source of multipotent stem cells, Mol. Biol. Cell. 2002, v.13, n.12, p.4279-4295. ROMANOV Y.A. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells. 2003, v.21, n.1, p.105-110. *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009002223A1 (ru) * 2007-06-21 2008-12-31 Alexander Sergeevich Teplyashin Способ получения гибридной стволовой клетки человека
RU2515156C2 (ru) * 2008-05-27 2014-05-10 Плуристем Лтд. Способы лечения воспалительных заболеваний ободочной кишки
US9393273B2 (en) 2008-05-27 2016-07-19 Pluristem Ltd. Methods of treating inflammatory colon diseases
RU2515475C1 (ru) * 2012-11-15 2014-05-10 Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ЦИТОЛОГИИ РОССИЙСКОЙ АКАДЕМИИ НАУК Способ стимуляции образования децидуальной оболочки эндометрия в эксперименте
RU2599418C1 (ru) * 2015-10-06 2016-10-10 Общество с ограниченной ответственностью "Научно-производственная компания Стемма" Способ получения клеточного материала из плаценты человека
RU2609657C1 (ru) * 2015-10-22 2017-02-02 федеральное государственное бюджетное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения Российской Федерации Способ выделения мезенхимных стволовых клеток из орбитальной жировой ткани
WO2017078563A1 (ru) * 2015-11-03 2017-05-11 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ДЖОИН ТЕКСЭЛЛ" (ООО "Джоин ТекСэлл") Устройство для выделения клеточных фракций из тканей человека и животных и способ его применения
RU2620304C2 (ru) * 2015-11-03 2017-05-24 Общество с ограниченной ответственностью "ДжоинТекСэлл" Устройство для выделения клеточных фракций из тканей человека и животных и способ его применения
EA037537B1 (ru) * 2015-11-03 2021-04-09 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ДжоинТекСэлл" (ООО "ДжоинТекСэлл") Устройство для выделения клеточных фракций из тканей человека и животных и способ его применения
RU2674344C2 (ru) * 2016-12-16 2018-12-07 ФГБУ "Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И.Кулакова" Министерства здравоохранения Российской Федерации Способ получения биобезопасной культуры мезенхимальных стволовых клеток из Вартонова студня пуповины человека
RU2645255C1 (ru) * 2016-12-16 2018-02-19 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И.Кулакова" Министерства здравоохранения Российской Федерации Способ получения биобезопасной культуры мезенхимальных стволовых клеток из ворсин хориона человека
WO2018160096A1 (ru) * 2017-03-02 2018-09-07 Общество С Ограниченной Ответственностью "Джоин Тексэлл"(Ооо "Джоин Тексэлл") Устройство для фракционирования жировой ткани и выделения из нее стромально-васкулярной фракции для применения в регенеративной медицине
RU173796U1 (ru) * 2017-03-02 2017-09-11 Общество с ограниченной ответственностью "ДжоинТекСэлл" Устройство для фракционирования жировой ткани и выделения из нее стромально-васкулярной фракции для применения в регенеративной медицине
RU2671642C1 (ru) * 2018-04-02 2018-11-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный педиатрический медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО СПбГПМУ Минздрава России) Способ восстановления кожного покрова при обширных глубоких ожогах
RU2675354C1 (ru) * 2018-04-02 2018-12-18 Общество с ограниченной ответственностью "Покровский банк стволовых клеток" Способ стимуляции веса плода на ранних сроках беременности в эксперименте
RU2720002C1 (ru) * 2018-12-28 2020-04-23 Андрей Степанович БРЮХОВЕЦКИЙ Биомедицинский клеточный продукт для лечения нервных болезней и психических расстройств, способ его получения и его применение
RU195366U1 (ru) * 2019-05-08 2020-01-23 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр реабилитации и курортологии" Министерства здравоохранения Российской Федерации (ФГБУ НМИЦ РК Минздрава России) Устройство для выделения из жировой ткани клеток стромально-васкулярной фракции для последующего их применения в регенеративной медицине

Also Published As

Publication number Publication date
US20080102506A1 (en) 2008-05-01
EP1733027A2 (en) 2006-12-20
EP1733027B1 (en) 2011-12-28
CN1961069A (zh) 2007-05-09
ATE539145T1 (de) 2012-01-15
US7915039B2 (en) 2011-03-29
WO2005121317A2 (en) 2005-12-22
WO2005121317A3 (en) 2006-06-08
US20050244963A1 (en) 2005-11-03

Similar Documents

Publication Publication Date Title
RU2252252C1 (ru) Способ выделения мезенхимальных стволовых клеток
US7056738B2 (en) Early stage multipotential stem cells in colonies of bone marrow stromal cells
Mareschi et al. Multipotent mesenchymal stromal stem cell expansion by plating whole bone marrow at a low cellular density: a more advantageous method for clinical use
Rossignoli et al. Isolation, characterization, and transduction of endometrial decidual tissue multipotent mesenchymal stromal/stem cells from menstrual blood
US20050176139A1 (en) Placental stem cell and methods thereof
Leyva-Leyva et al. Characterization of mesenchymal stem cell subpopulations from human amniotic membrane with dissimilar osteoblastic potential
Hsu et al. Isolation of the multipotent MSC subpopulation from human gingival fibroblasts by culturing on chitosan membranes
US20100105132A1 (en) Human Mesenchymal stem cells and preparation thereof
US20070128722A1 (en) Human mesenchymal stem cells and culturing methods thereof
US7781211B2 (en) Isolation of multi-lineage stem cells
Yan et al. Scalable generation of mesenchymal stem cells from human embryonic stem cells in 3D
US9234177B2 (en) Human multipotent embryonic stem cell-like progenitor cells
Veryasov et al. Isolation of mesenchymal stromal cells from extraembryonic tissues and their characteristics
US9700585B2 (en) Multipotent prenatal stem cells
EP2615166B1 (en) Equine amniotic fluid derived multipotent stem cells and a production method therefor
Danisovic et al. Morphology of in vitro expanded human muscle-derived stem cells.
Chen et al. The biological characteristics of sheep umbilical cord mesenchymal stem cells
JP7069492B2 (ja) 類似間葉系幹細胞の製造方法及びこれにより製造された類似間葉系幹細胞
Mahmood et al. Biological properties of mesenchymal stem cells derived from adipose tissue, umbilical cord tissue and bone marrow
RU2280462C2 (ru) Способ выделения мезенхимальных стволовых клеток
Anastasiu et al. Explants-isolated human placenta and umbilical cord cells share characteristics of both epithelial and mesenchymal stem cells
RU2391400C1 (ru) Способ снятия клеток с культуральной поверхности при проведении пассажа мультипотентных мезенхимальных стромальных клеток
Singh et al. Neonatal derived mesenchymal stem cells can Be isolated from human umbilical cord Wharton’s jelly but not from human umbilical cord blood
Smolinska et al. Stemness properties of SSEA-4+ subpopulation isolated from heterogenous Wharton’s jelly mesenchymal stem/stromal cells
Utama et al. Isolation of Amniotic Fluid Mesenchymal Stem Cells Obtained from Cesarean Sections. Open Access Maced J Med Sci. 2020 May 13; 8 (A): 245-249

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070410