RU2218242C2 - Method for making medical implants from biologically compatible materials - Google Patents

Method for making medical implants from biologically compatible materials Download PDF

Info

Publication number
RU2218242C2
RU2218242C2 RU99102751/02A RU99102751A RU2218242C2 RU 2218242 C2 RU2218242 C2 RU 2218242C2 RU 99102751/02 A RU99102751/02 A RU 99102751/02A RU 99102751 A RU99102751 A RU 99102751A RU 2218242 C2 RU2218242 C2 RU 2218242C2
Authority
RU
Russia
Prior art keywords
medical implants
powder
titanium
layer
implants
Prior art date
Application number
RU99102751/02A
Other languages
Russian (ru)
Other versions
RU99102751A (en
Inventor
Д.М. Гуреев
А.Л. Петров
И.В. Шишковский
Original Assignee
Физический институт им. П.Н. Лебедева РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Физический институт им. П.Н. Лебедева РАН filed Critical Физический институт им. П.Н. Лебедева РАН
Priority to RU99102751/02A priority Critical patent/RU2218242C2/en
Publication of RU99102751A publication Critical patent/RU99102751A/en
Application granted granted Critical
Publication of RU2218242C2 publication Critical patent/RU2218242C2/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)
  • Materials For Medical Uses (AREA)

Abstract

FIELD: processes of laser synthesis of three-dimensional articles, namely methods for rapid making of powder materials porous medical precise biologically compatible implants for prosthesis, for example with internal voids by selective laser sintering of powder compositions. SUBSTANCE: method for making medical implants of predetermined individual shapes of biologically compatible materials by selective laser sintering of powder compositions comprises steps of successively layer by layer applying powder mixture; treating each layer by means of scanning laser irradiation while using as initial powder composition mixture of metallic powders on base of nickel and titanium at their mass relation 1 : 1; realizing reaction of self-propagating high-temperature synthesis of porous intermetallide phase, namely titanium nickelide (NiTi) in shield gas under control of laser irradiation; in order to enhance biological compatibility of synthesized medical implants, using initial powder mixture containing in addition hydroxy-appatite(-acrylate); in order to accelerate adaptation, infiltrating to pores of implants biostimulating additives. EFFECT: possibility for realizing rapid synthesis of preset individual shapes of porous functional medical implants by means of selective laser sintering from offered powder composition. 3 cl, 2 ex

Description

Изобретение относится к технологии лазерного синтеза объемных изделий (ЛСОИ), в том числе к способам скоростного изготовления из порошковых материалов точных биосовместимых пористых медицинских имплантатов для протезирования, в том числе с внутренними пустотами, методом селективного лазерного спекания (СЛС) порошковых композиций. The invention relates to a technology for laser synthesis of bulk products (SALI), including methods for high-speed production of powder materials of accurate biocompatible porous medical implants for prosthetics, including with internal voids, by the method of selective laser sintering (SLS) of powder compositions.

Известны результаты многочисленных работ /см. например труды Всесоюзной научной конференции "Сверхупругость, эффект памяти формы и их применение в новой технике". Тезисы докладов, Томск, 1985/, в которых раскрываются широкие перспективы по использованию в качестве биосовместимого материала для медицинских имплантатов интерметаллида - никелида титана (NiTi), обладающего даже в пористом состоянии крайне полезным для медицины свойством памяти формы. Традиционно никелид титана получают как минимум двойным переплавом расходуемого электрода в вакуумно-дуговой печи или в режиме самораспространяющегося высокотемпературного синтеза (СВС) горения порошковой смеси Ni и Ti. Использование данных методик получения этого материала для нужд медицины имеет существенный недостаток - трудоемкость процесса создания функциональных медицинских имплантатов с заранее заданными индивидуальными форморазмерами. Сам материал также оказывается загрязнен примесями из-за выгорания и ликвации компонентов, что ухудшает параметры формовосстановления и другие свойства этого интерметаллида. The results of numerous works / cm are known. for example, the proceedings of the All-Union Scientific Conference "Superelasticity, the effect of shape memory and their application in new technology." Abstracts, Tomsk, 1985 /, which disclose broad prospects for using intermetallide - titanium nickelide (NiTi) as a biocompatible material for medical implants, which even has a form-memory property that is extremely useful for medicine. Traditionally, titanium nickelide is produced by at least double remelting of a consumable electrode in a vacuum arc furnace or in the mode of self-propagating high-temperature synthesis (SHS) of burning a powder mixture of Ni and Ti. The use of these methods of obtaining this material for the needs of medicine has a significant drawback - the complexity of the process of creating functional medical implants with predetermined individual sizes. The material itself also appears to be contaminated with impurities due to burnout and segregation of components, which worsens the parameters of the form restoration and other properties of this intermetallic compound.

Наиболее близкими к заявляемому изобретению прототипом является способ изготовления объемных изделий из порошковой композиции (Шишковский И. В., Куприянов Н. Л. Патент РФ 2145269, B 22 F 3/105), включающий последовательное послойное размещение порошковой композиции в станке для СЛС, обработку каждого слоя лазерным излучением (ЛИ) по заданному контуру и извлечение полученного изделия из станка с удалением порошковой композиции, не принявшей участия в формировании объемного изделия. По этому способу возможно изготовление изделий из металлполимерных порошковых композиций путем реализации процесса жидкофазного спекания. Closest to the claimed invention, the prototype is a method of manufacturing bulk products from a powder composition (Shishkovsky I.V., Kupriyanov N.L. RF Patent 2145269, B 22 F 3/105), including sequential layer-by-layer placement of the powder composition in the machine for SLS, processing each layer by laser radiation (LI) along a given contour and extracting the obtained product from the machine with the removal of the powder composition, which did not take part in the formation of the bulk product. By this method, it is possible to manufacture products from metal-polymer powder compositions by implementing a liquid phase sintering process.

Следующим логичным шагом является синергетическое совмещение процессов СЛС и СВС новых интерметаллидных фаз в контролируемом ЛИ пространстве. Формирование из порошков Ni и Ti в едином технологическом процессе интерметаллидной фазы - пористого никелид титана позволяет рекомендовать такой процесс для создания медицинских имплантатов заданных индивидуальных форм с использованием методов трехмерного компьютерного моделирования. The next logical step is the synergistic combination of the SFS and SHS processes of new intermetallic phases in controlled LI space. The formation of Ni and Ti powders in a single technological process of the intermetallic phase - porous titanium nickelide allows us to recommend such a process for creating medical implants of specified individual shapes using three-dimensional computer simulation methods.

Задачей заявляемого изобретения является реализация скоростного синтеза пористых функциональных медицинских имплантатов заданных индивидуальных форм методом СЛС из предлагаемой порошковой композиции Ni - Ti. The task of the invention is the implementation of high-speed synthesis of porous functional medical implants of predetermined individual forms by the SLS method of the proposed powder composition Ni-Ti.

Поставленная задача достигается тем, что в способе изготовления медицинских имплантатов заданных индивидуальных форм из биосовместимых материалов методом селективного лазерного спекания порошковых композиций, включающем последовательное послойное размещение порошковой смеси, обработку каждого слоя сканирующим лазерным излучением, в качестве исходной порошковой композиции используют смеси металлических порошков на основе никеля и титана при их весовом соотношении 1:1 с реализацией контролируемой лазерным излучением реакции самораспространяющегося высокотемпературного синтеза пористой интерметаллидной фазы - никелида титана (NiTi) в защитной газовой среде. This object is achieved by the fact that in the method of manufacturing medical implants of predetermined individual forms from biocompatible materials by the method of selective laser sintering of powder compositions, including sequential layer-by-layer placement of the powder mixture, processing of each layer with scanning laser radiation, nickel-based metal powder mixtures are used as the initial powder composition and titanium at a weight ratio of 1: 1 with the implementation of a self-controlled laser radiation reaction the spreading high-temperature synthesis of the porous intermetallic phase - titanium nickelide (NiTi) in a protective gas environment.

При этом для повышения биосовместимости синтезированных медицинских имплантатов исходная смесь порошков никеля и титана дополнительно содержит гидроксиаппатит (-акрилат). Moreover, to increase the biocompatibility of the synthesized medical implants, the initial mixture of nickel and titanium powders additionally contains hydroxyappatite (α-acrylate).

При этом для ускорения процесса вживления в поры синтезированных медицинских имплантатов инфильтруют биостимулирующие добавки. At the same time, biostimulating additives are infiltrated into the pores of the synthesized medical implants to accelerate the process of implantation.

Защитная среда позволяет избежать окисления частиц титана. Предварительное просеивание смешиваемых порошков необходимо для усреднения гранулометрического состава, что улучшает однородность материала изготавливаемого имплантата. При этом важно выбирать размер фракции (дисперсность) обрабатываемого порошка так, чтобы она была соизмерима или меньше диаметра пятна ЛИ. Этим достигается одновременное воздействие ЛИ на несколько частиц порошковой смеси, что обеспечивает их надежное сцепление в процессе реакции контролируемого горения. С другой стороны, соотношение размеров каждой фракции в смеси предпочтительно подбирать так, чтобы частицы титана несколько превосходили по размеру частицы никеля. Это связано с тем, что диффузия из более мелких частиц Ni в сторону частиц Ti происходит активней в контролируемой ЛИ реакции СВС интерметаллида, поскольку коэффициент диффузии Ni больше чем соответствующий коэффициент диффузии Ti. Крупно зернистость частиц Ti по сравнению с частицами Ni минимизирует также его неблагоприятную химическую активность со следами остатков газов - О2, N2, Н3, которые могут оказаться в защитной среде по тем или иным причинам. Использование хорошо апробированной СВС композиции Ni:Ti стехиометрического состава 1:1 позволяет обеспечить не просто спекание порошинок друг с другом, но и одновременно синтезировать интерметаллидную фазу - никелид титана NiTi. Его высокая биосовместимость и возможность использования в медицине достоверно доказана в многочисленных публикациях. Экзотермичность реакции горения СВС композиции вносит дополнительный энерговклад в зону лазерного воздействия (ЛВ). С учетом высокой поглощательной способности металлических систем на длинах волн технологических лазерных установок, интервал оптимальных режимов комбинированного процесса СЛС и СВС практически не смещается в область более высоких плотностей мощности ЛИ, что позволяет уменьшить деформации формы имплантата и избежать его расслоения.The protective environment avoids the oxidation of titanium particles. Preliminary screening of the mixed powders is necessary to average the particle size distribution, which improves the uniformity of the material of the manufactured implant. It is important to choose the size of the fraction (dispersion) of the processed powder so that it is comparable or less than the diameter of the spot LI. This achieves the simultaneous effect of LI on several particles of the powder mixture, which ensures their reliable adhesion during the controlled combustion reaction. On the other hand, the size ratio of each fraction in the mixture is preferably selected so that the titanium particles are slightly larger than the nickel particles. This is due to the fact that diffusion from smaller Ni particles toward Ti particles occurs more actively in the LI controlled SHS reaction of the intermetallic compound, since the diffusion coefficient of Ni is greater than the corresponding diffusion coefficient of Ti. Coarse-grained Ti particles as compared to Ni particles also minimize its unfavorable chemical activity with traces of gas residues - О 2 , N 2 , Н 3 , which can be in a protective environment for one reason or another. The use of a well-tested SHS composition of Ni: Ti stoichiometric composition 1: 1 allows not only sintering the powders with each other, but also at the same time synthesize the intermetallic phase - titanium nickelide NiTi. Its high biocompatibility and the possibility of use in medicine are reliably proven in numerous publications. The exothermicity of the combustion reaction of the SHS composition makes an additional energy input into the zone of laser exposure (LP). Given the high absorption capacity of metal systems at the wavelengths of technological laser systems, the interval of optimal modes of the combined SLS and SHS process practically does not shift to the region of higher power densities of the laser radiation, which allows to reduce the deformation of the shape of the implant and to avoid delamination.

Как известно, процесс СВС может протекать либо в режиме неконтролируемого теплового взрыва, либо в поддающемся контролю диффузионном режиме горения, характеризующемся стационарным распространением волны синтеза. Поскольку ЛСОИ требует прецизионного селективного воздействия на порошковую композицию с целью послойного синтеза строго заданной формы имплантата, принципиальным является выбор параметров ЛВ (плотность мощности ЛИ, скорость сканирования луча, диаметр пятна фокусировки, коэффициент его перекрытия) такими, чтобы имел место именно диффузионный режим. В условиях экзотермичности реакции СВС это достигается экспериментальным подбором, например, скорости сканирования ЛИ, при прочих фиксированных параметрах ЛВ. Визуально реакция горения при оптимальной скорости сканирования должна наблюдаться лишь в зоне прохода лазерного луча. As is known, the SHS process can proceed either in an uncontrolled thermal explosion mode or in a controlled diffusion combustion mode characterized by stationary propagation of a synthesis wave. Since SALF requires a precise selective effect on the powder composition in order to layer-by-layer synthesis of a strictly defined implant shape, it is important to choose the parameters of the drug (power density of the laser beam, scanning speed of the beam, diameter of the focus spot, coefficient of overlap) so that the diffusion mode takes place. Under the exothermicity of the SHS reaction, this is achieved by experimental selection, for example, of the scanning speed of the LI, with other fixed parameters of the drug. Visually, the combustion reaction at the optimum scanning speed should be observed only in the zone of passage of the laser beam.

Для заявляемого изобретения характерен следующий отличительный признак. Формирование биосовместимых функциональных медицинских пористых имплантатов заданных индивидуальных форм реализуется путем синергетического совмещения СЛС и СВС процессов. Управление этим сложным комбинированным процессом надежно осуществляется необходимым изменением параметров ЛВ. Никелид титана, в том числе и в пористом виде, обладает известным свойством памяти формы. Наличие этого свойства при синтезе методом СЛС медицинских имплантатов позволяет перевести на качественно новый уровень ортопедию путем создания самосрабатывающих, самофиксирующихся, саморазворачивающихся протезных элементов при температуре живого организма. Наличие пористости здесь может оказаться еще одним положительным фактором, так как позволяет обеспечить прорастание мягких тканей в имплантат, инфильтровать поры стерилизующими препаратами, способствовать повышению биологической совместимости и активизировать процесс заживления. For the claimed invention is characterized by the following distinguishing feature. The formation of biocompatible functional medical porous implants of predetermined individual forms is realized by synergistic combination of SLS and SHS processes. The management of this complex combined process is reliably carried out by the necessary change in the parameters of the drug. Titanium nickelide, including in a porous form, has a well-known property of shape memory. The presence of this property during the synthesis by the SLS method of medical implants allows to translate orthopedics to a qualitatively new level by creating self-working, self-fixing, self-unfolding prosthetic elements at a temperature of a living organism. The presence of porosity here may turn out to be another positive factor, since it allows the soft tissue to grow into the implant, infiltrate the pores with sterilizing agents, help increase biological compatibility and activate the healing process.

Предлагаемый способ реализован следующим образом. The proposed method is implemented as follows.

Пример 1. Порошки предварительно просеивались на системе сит 005-05 (ГОСТ 3584-73). Наплавочный порошок ПГ-СР4 на основе (Ni, Cr, В, Si сплава) с размером фракции <50 мкм смешивали механически с порошком титана марки ПТОМ с размером фракции <40 мкм в весовой пропорции 1:1 до равномерного распределения. Совмещение СЛС и СВС процессов осуществлялось в операционном поле лазерной установки КВАНТ-60 при параметрах ЛИ: мощность ЛВ Р=10,8-14,7 Вт, скорость сканирования лазерного луча v=2-3 см/с, диаметр пятна ЛИ d=50 мкм. ЛСОИ на основе интерметаллида NiTi реализовывался в среде защитного газа Аr при компьютерном управлении процессом. Example 1. Powders were pre-sieved on a sieve system 005-05 (GOST 3584-73). PG-CP4 surfacing powder based on (Ni, Cr, B, Si alloy) with a fraction size <50 μm was mixed mechanically with PTOM grade titanium powder with a fraction size <40 μm in a weight ratio of 1: 1 until uniform distribution. The combination of SLS and SHS processes was carried out in the operating field of the KVANT-60 laser unit with LI parameters: LV power Р = 10.8-14.7 W, laser beam scanning speed v = 2-3 cm / s, LI spot diameter d = 50 microns. SALS based on the NiTi intermetallic compound was implemented in a protective gas Ar with computer control of the process.

Пример 2. Процесс реализовывался по примеру 1 с использованием в качестве исходных компонент порошка никеля ПНК 1 с размером фракции <40 мкм и порошка титана марки ПТХ с размером фракции <45 мкм, смешиваемых механически в весовой пропорции 1:1. Example 2. The process was carried out as in example 1, using PNK 1 nickel powder as a starting component with a fraction size <40 μm and PTX grade titanium powder with a fraction size <45 μm, mixed mechanically in a weight ratio of 1: 1.

Изменение марок исходных порошковых компонент смеси отражается на полноте протекания реакции синтеза основного продукта - никелида титана. Так в примере 1 синтез NiTi достигал практически 100%, тогда как при исходном составе порошков в примере 2 в спеченном 3-х мерном изделии рентгенофазовым анализом выявляется образование и других интерметаллидных фаз - NiTi2, Ni3Ti.The change in the grades of the initial powder components of the mixture is reflected in the completeness of the synthesis of the main product - titanium nickelide. Thus, in Example 1, NiTi synthesis reached almost 100%, while with the initial composition of the powders in Example 2, the formation of other intermetallic phases — NiTi 2 , Ni 3 Ti — is revealed in the sintered 3-dimensional product by X-ray analysis.

Claims (3)

1. Способ изготовления медицинских имплантатов заданных индивидуальных форм из биосовместимых материалов методом селективного лазерного спекания порошковых композиций, включающий последовательное послойное размещение порошковой смеси, обработку каждого слоя сканирующим лазерным излучением, отличающийся тем, что в качестве исходной порошковой композиции используют смеси металлических порошков на основе никеля и титана при их весовом соотношении 1:1 с реализацией контролируемой лазерным излучением реакции самораспространяющегося высокотемпературного синтеза пористой интерметаллидной фазы - никелида титана (NiTi) в защитной газовой среде.1. A method of manufacturing medical implants of predetermined individual forms from biocompatible materials by the method of selective laser sintering of powder compositions, comprising sequential layer-by-layer placement of the powder mixture, processing of each layer with scanning laser radiation, characterized in that mixtures of metal powders based on nickel and titanium at a weight ratio of 1: 1 with the implementation of a laser-controlled reaction of self-propagating ysokotemperaturnogo porous intermetallic phase synthesis - nickel-titanium (NiTi) using protective gas. 2. Способ изготовления медицинских имплантатов по п.1, отличающийся тем, что для повышения биосовместимости синтезированных медицинских имплантатов исходная смесь порошков никеля и титана дополнительно содержит гидроксиаппатит (-акрилат).2. A method of manufacturing medical implants according to claim 1, characterized in that to increase the biocompatibility of the synthesized medical implants, the initial mixture of nickel and titanium powders additionally contains hydroxyappatite (α-acrylate). 3. Способ изготовления медицинских имплантатов по п.1, отличающийся тем, что для ускорения процесса вживления в поры синтезированных медицинских имплантатов инфильтруют биостимулирующие добавки.3. A method of manufacturing medical implants according to claim 1, characterized in that biostimulating additives are infiltrated into the pores of the synthesized medical implants to accelerate the process of implantation.
RU99102751/02A 1999-02-11 1999-02-11 Method for making medical implants from biologically compatible materials RU2218242C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99102751/02A RU2218242C2 (en) 1999-02-11 1999-02-11 Method for making medical implants from biologically compatible materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99102751/02A RU2218242C2 (en) 1999-02-11 1999-02-11 Method for making medical implants from biologically compatible materials

Publications (2)

Publication Number Publication Date
RU99102751A RU99102751A (en) 2000-12-27
RU2218242C2 true RU2218242C2 (en) 2003-12-10

Family

ID=32065126

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99102751/02A RU2218242C2 (en) 1999-02-11 1999-02-11 Method for making medical implants from biologically compatible materials

Country Status (1)

Country Link
RU (1) RU2218242C2 (en)

Cited By (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1800700A2 (en) * 2005-12-06 2007-06-27 Howmedica Osteonics Corp. Implant with laser-produced porous surface
US7241313B2 (en) * 2001-08-11 2007-07-10 Stanmore Implants Worldwide Limited Surgical implant
WO2008017028A3 (en) * 2006-08-02 2008-04-03 Boston Scient Scimed Inc Endoprosthesis with three-dimensional disintegration control
WO2009032475A3 (en) * 2007-09-06 2009-08-13 Boston Scient Ltd Endoprostheses having porous claddings prepared using metal hydrides
CN101906572A (en) * 2010-08-31 2010-12-08 辽宁工程技术大学 Method for synthesizing in-situ formed ceramic particle reinforced iron-aluminum-based composites by laser combustion
CN101906564A (en) * 2010-08-31 2010-12-08 辽宁工程技术大学 Method for synthesizing in situ authigene ceramic phase strengthened Al-Cu matrix composite through laser combustion
US7955382B2 (en) 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
RU2443506C2 (en) * 2010-04-05 2012-02-27 Государственное образовательное учреждение высшего профессионального образования "Удмуртский государственный университет" (УдГУ) Method of coating article by laser layer-by-layer synthesis
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8142886B2 (en) 2007-07-24 2012-03-27 Howmedica Osteonics Corp. Porous laser sintered articles
US8147861B2 (en) 2006-08-15 2012-04-03 Howmedica Osteonics Corp. Antimicrobial implant
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
RU2459686C2 (en) * 2010-07-15 2012-08-27 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Method of making titanium nickelide-based porous biocompatible materials
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8268099B2 (en) 2002-11-08 2012-09-18 Howmedica Osteonics Corp. Laser-produced porous surface
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
WO2013113249A1 (en) * 2012-01-31 2013-08-08 重庆润泽医药有限公司 Method for preparing porous tantalum medical implant material through selective laser sintering forming
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US8979936B2 (en) 2006-06-09 2015-03-17 Biomet Manufacturing, Llc Patient-modified implant
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9135374B2 (en) 2012-04-06 2015-09-15 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US9173666B2 (en) 2011-07-01 2015-11-03 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US9180010B2 (en) 2012-04-06 2015-11-10 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US9351743B2 (en) 2011-10-27 2016-05-31 Biomet Manufacturing, Llc Patient-specific glenoid guides
US9364896B2 (en) 2012-02-07 2016-06-14 Medical Modeling Inc. Fabrication of hybrid solid-porous medical implantable devices with electron beam melting technology
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9393028B2 (en) 2009-08-13 2016-07-19 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9427320B2 (en) 2011-08-04 2016-08-30 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9445907B2 (en) 2011-03-07 2016-09-20 Biomet Manufacturing, Llc Patient-specific tools and implants
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
US9456901B2 (en) 2004-12-30 2016-10-04 Howmedica Osteonics Corp. Laser-produced porous structure
US9456833B2 (en) 2010-02-26 2016-10-04 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US9474539B2 (en) 2011-04-29 2016-10-25 Biomet Manufacturing, Llc Patient-specific convertible guides
US9480580B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US9480490B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific guides
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US9522010B2 (en) 2006-02-27 2016-12-20 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9539013B2 (en) 2006-02-27 2017-01-10 Biomet Manufacturing, Llc Patient-specific elbow guides and associated methods
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9572590B2 (en) 2006-10-03 2017-02-21 Biomet Uk Limited Surgical instrument
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9662216B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific hip joint devices
US9662127B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9668863B2 (en) 2009-08-19 2017-06-06 Smith & Nephew, Inc. Porous implant structures
US9717510B2 (en) 2011-04-15 2017-08-01 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US9757238B2 (en) 2011-06-06 2017-09-12 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9861387B2 (en) 2006-06-09 2018-01-09 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US10159498B2 (en) 2008-04-16 2018-12-25 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10278711B2 (en) 2006-02-27 2019-05-07 Biomet Manufacturing, Llc Patient-specific femoral guide
US10282488B2 (en) 2014-04-25 2019-05-07 Biomet Manufacturing, Llc HTO guide with optional guided ACL/PCL tunnels
US10492798B2 (en) 2011-07-01 2019-12-03 Biomet Manufacturing, Llc Backup kit for a patient-specific arthroplasty kit assembly
RU195801U1 (en) * 2019-07-17 2020-02-05 Георгий Михайлович Берберов Individual framework for repairing defects in the brain and facial parts of the skeleton of the head
RU196140U1 (en) * 2019-07-17 2020-02-18 Георгий Михайлович Берберов Individual implant to replace dentition defects
US10568647B2 (en) 2015-06-25 2020-02-25 Biomet Manufacturing, Llc Patient-specific humeral guide designs
RU2717605C1 (en) * 2019-06-04 2020-03-24 Георгий Михайлович Берберов Method of making and installing individual implant for orthopaedic prosthetics and method of using individual implant to eliminate defects in oral cavity
US10603179B2 (en) 2006-02-27 2020-03-31 Biomet Manufacturing, Llc Patient-specific augments
US10662513B2 (en) * 2016-07-26 2020-05-26 Verkko Biomedical, LLC Dynamic, non-homogenous shape memory alloys
US10722310B2 (en) 2017-03-13 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Virtual surgery planning system and method
US11179165B2 (en) 2013-10-21 2021-11-23 Biomet Manufacturing, Llc Ligament guide registration
US11298747B2 (en) 2017-05-18 2022-04-12 Howmedica Osteonics Corp. High fatigue strength porous structure
US11419618B2 (en) 2011-10-27 2022-08-23 Biomet Manufacturing, Llc Patient-specific glenoid guides
RU222788U1 (en) * 2023-06-29 2024-01-18 Екатерина Александровна Зерницкая INDIVIDUAL FRAMEWORK MEMBRANE FOR JAW BONE TISSUE AUGMENTATION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ШИШКОВСКИЙ И.В. и др. Условия послойного селективного спекания по контуру металлополимерных композиций при лазерном воздействии. - Физика и химия обработки материалов, 1995, № 3, с.89. *

Cited By (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US7241313B2 (en) * 2001-08-11 2007-07-10 Stanmore Implants Worldwide Limited Surgical implant
US8268100B2 (en) 2002-11-08 2012-09-18 Howmedica Osteonics Corp. Laser-produced porous surface
US10525688B2 (en) 2002-11-08 2020-01-07 Howmedica Osteonics Corp. Laser-produced porous surface
US8268099B2 (en) 2002-11-08 2012-09-18 Howmedica Osteonics Corp. Laser-produced porous surface
US11155073B2 (en) 2002-11-08 2021-10-26 Howmedica Osteonics Corp. Laser-produced porous surface
US11186077B2 (en) 2002-11-08 2021-11-30 Howmedica Osteonics Corp. Laser-produced porous surface
US8992703B2 (en) 2002-11-08 2015-03-31 Howmedica Osteonics Corp. Laser-produced porous surface
US11510783B2 (en) 2002-11-08 2022-11-29 Howmedica Osteonics Corp. Laser-produced porous surface
US11660195B2 (en) 2004-12-30 2023-05-30 Howmedica Osteonics Corp. Laser-produced porous structure
US9456901B2 (en) 2004-12-30 2016-10-04 Howmedica Osteonics Corp. Laser-produced porous structure
US10716673B2 (en) 2005-12-06 2020-07-21 Howmedica Osteonics Corp. Laser-produced porous surface
EP1800700A2 (en) * 2005-12-06 2007-06-27 Howmedica Osteonics Corp. Implant with laser-produced porous surface
US8728387B2 (en) 2005-12-06 2014-05-20 Howmedica Osteonics Corp. Laser-produced porous surface
US8556981B2 (en) 2005-12-06 2013-10-15 Howmedica Osteonics Corp. Laser-produced porous surface
US11918474B2 (en) 2005-12-06 2024-03-05 The University Of Liverpool Laser-produced porous surface
US10398559B2 (en) 2005-12-06 2019-09-03 Howmedica Osteonics Corp. Laser-produced porous surface
EP1800700A3 (en) * 2005-12-06 2007-10-10 Howmedica Osteonics Corp. Implant with laser-produced porous surface
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US9662216B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific hip joint devices
US9913734B2 (en) 2006-02-27 2018-03-13 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US9539013B2 (en) 2006-02-27 2017-01-10 Biomet Manufacturing, Llc Patient-specific elbow guides and associated methods
US9480490B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific guides
US9480580B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US10507029B2 (en) 2006-02-27 2019-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US10426492B2 (en) 2006-02-27 2019-10-01 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US10603179B2 (en) 2006-02-27 2020-03-31 Biomet Manufacturing, Llc Patient-specific augments
US10743937B2 (en) 2006-02-27 2020-08-18 Biomet Manufacturing, Llc Backup surgical instrument system and method
US10390845B2 (en) 2006-02-27 2019-08-27 Biomet Manufacturing, Llc Patient-specific shoulder guide
US10278711B2 (en) 2006-02-27 2019-05-07 Biomet Manufacturing, Llc Patient-specific femoral guide
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9522010B2 (en) 2006-02-27 2016-12-20 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9662127B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9700329B2 (en) 2006-02-27 2017-07-11 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US11534313B2 (en) 2006-02-27 2022-12-27 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US10206695B2 (en) 2006-02-27 2019-02-19 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US9861387B2 (en) 2006-06-09 2018-01-09 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9993344B2 (en) 2006-06-09 2018-06-12 Biomet Manufacturing, Llc Patient-modified implant
US8979936B2 (en) 2006-06-09 2015-03-17 Biomet Manufacturing, Llc Patient-modified implant
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US10206697B2 (en) 2006-06-09 2019-02-19 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US10893879B2 (en) 2006-06-09 2021-01-19 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US11576689B2 (en) 2006-06-09 2023-02-14 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
WO2008017028A3 (en) * 2006-08-02 2008-04-03 Boston Scient Scimed Inc Endoprosthesis with three-dimensional disintegration control
US8147861B2 (en) 2006-08-15 2012-04-03 Howmedica Osteonics Corp. Antimicrobial implant
US7955382B2 (en) 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US9572590B2 (en) 2006-10-03 2017-02-21 Biomet Uk Limited Surgical instrument
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8715339B2 (en) 2006-12-28 2014-05-06 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US11554019B2 (en) 2007-04-17 2023-01-17 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US8142886B2 (en) 2007-07-24 2012-03-27 Howmedica Osteonics Corp. Porous laser sintered articles
US7883736B2 (en) 2007-09-06 2011-02-08 Boston Scientific Scimed, Inc. Endoprostheses having porous claddings prepared using metal hydrides
WO2009032475A3 (en) * 2007-09-06 2009-08-13 Boston Scient Ltd Endoprostheses having porous claddings prepared using metal hydrides
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US10159498B2 (en) 2008-04-16 2018-12-25 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US10052110B2 (en) 2009-08-13 2018-08-21 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9839433B2 (en) 2009-08-13 2017-12-12 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9393028B2 (en) 2009-08-13 2016-07-19 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9668863B2 (en) 2009-08-19 2017-06-06 Smith & Nephew, Inc. Porous implant structures
US11793645B2 (en) 2009-08-19 2023-10-24 Smith & Nephew, Inc. Porous implant structures
US10945847B2 (en) 2009-08-19 2021-03-16 Smith & Nephew, Inc. Porous implant structures
US10588749B2 (en) 2009-08-19 2020-03-17 Smith & Nephew, Inc. Porous implant structures
US11529235B2 (en) 2009-08-19 2022-12-20 Smith & Nephew, Inc. Porous implant structures
US11324522B2 (en) 2009-10-01 2022-05-10 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US9456833B2 (en) 2010-02-26 2016-10-04 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US10893876B2 (en) 2010-03-05 2021-01-19 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
RU2443506C2 (en) * 2010-04-05 2012-02-27 Государственное образовательное учреждение высшего профессионального образования "Удмуртский государственный университет" (УдГУ) Method of coating article by laser layer-by-layer synthesis
RU2459686C2 (en) * 2010-07-15 2012-08-27 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Method of making titanium nickelide-based porous biocompatible materials
CN101906564A (en) * 2010-08-31 2010-12-08 辽宁工程技术大学 Method for synthesizing in situ authigene ceramic phase strengthened Al-Cu matrix composite through laser combustion
CN101906572A (en) * 2010-08-31 2010-12-08 辽宁工程技术大学 Method for synthesizing in-situ formed ceramic particle reinforced iron-aluminum-based composites by laser combustion
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US10098648B2 (en) 2010-09-29 2018-10-16 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US11234719B2 (en) 2010-11-03 2022-02-01 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9743935B2 (en) 2011-03-07 2017-08-29 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9445907B2 (en) 2011-03-07 2016-09-20 Biomet Manufacturing, Llc Patient-specific tools and implants
US9717510B2 (en) 2011-04-15 2017-08-01 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US9743940B2 (en) 2011-04-29 2017-08-29 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US9474539B2 (en) 2011-04-29 2016-10-25 Biomet Manufacturing, Llc Patient-specific convertible guides
US9757238B2 (en) 2011-06-06 2017-09-12 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9687261B2 (en) 2011-06-13 2017-06-27 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US10492798B2 (en) 2011-07-01 2019-12-03 Biomet Manufacturing, Llc Backup kit for a patient-specific arthroplasty kit assembly
US9173666B2 (en) 2011-07-01 2015-11-03 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US11253269B2 (en) 2011-07-01 2022-02-22 Biomet Manufacturing, Llc Backup kit for a patient-specific arthroplasty kit assembly
US9668747B2 (en) 2011-07-01 2017-06-06 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US9427320B2 (en) 2011-08-04 2016-08-30 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9439659B2 (en) 2011-08-31 2016-09-13 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9603613B2 (en) 2011-08-31 2017-03-28 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US11406398B2 (en) 2011-09-29 2022-08-09 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US10456205B2 (en) 2011-09-29 2019-10-29 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US11298188B2 (en) 2011-10-27 2022-04-12 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US10842510B2 (en) 2011-10-27 2020-11-24 Biomet Manufacturing, Llc Patient specific glenoid guide
US10426549B2 (en) 2011-10-27 2019-10-01 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9936962B2 (en) 2011-10-27 2018-04-10 Biomet Manufacturing, Llc Patient specific glenoid guide
US11419618B2 (en) 2011-10-27 2022-08-23 Biomet Manufacturing, Llc Patient-specific glenoid guides
US10426493B2 (en) 2011-10-27 2019-10-01 Biomet Manufacturing, Llc Patient-specific glenoid guides
US9351743B2 (en) 2011-10-27 2016-05-31 Biomet Manufacturing, Llc Patient-specific glenoid guides
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
US11602360B2 (en) 2011-10-27 2023-03-14 Biomet Manufacturing, Llc Patient specific glenoid guide
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
WO2013113249A1 (en) * 2012-01-31 2013-08-08 重庆润泽医药有限公司 Method for preparing porous tantalum medical implant material through selective laser sintering forming
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9827106B2 (en) 2012-02-02 2017-11-28 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9364896B2 (en) 2012-02-07 2016-06-14 Medical Modeling Inc. Fabrication of hybrid solid-porous medical implantable devices with electron beam melting technology
US9180010B2 (en) 2012-04-06 2015-11-10 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US11759323B2 (en) 2012-04-06 2023-09-19 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US9135374B2 (en) 2012-04-06 2015-09-15 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US10614176B2 (en) 2012-04-06 2020-04-07 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9597201B2 (en) 2012-12-11 2017-03-21 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US11617591B2 (en) 2013-03-11 2023-04-04 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US10441298B2 (en) 2013-03-11 2019-10-15 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9700325B2 (en) 2013-03-12 2017-07-11 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US10426491B2 (en) 2013-03-13 2019-10-01 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US10376270B2 (en) 2013-03-13 2019-08-13 Biomet Manufacturing, Llc Universal acetabular guide and associated hardware
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US11191549B2 (en) 2013-03-13 2021-12-07 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US11179165B2 (en) 2013-10-21 2021-11-23 Biomet Manufacturing, Llc Ligament guide registration
US10282488B2 (en) 2014-04-25 2019-05-07 Biomet Manufacturing, Llc HTO guide with optional guided ACL/PCL tunnels
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US10335162B2 (en) 2014-09-29 2019-07-02 Biomet Sports Medicine, Llc Tibial tubercle osteotomy
US11026699B2 (en) 2014-09-29 2021-06-08 Biomet Manufacturing, Llc Tibial tubercule osteotomy
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
US11801064B2 (en) 2015-06-25 2023-10-31 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10925622B2 (en) 2015-06-25 2021-02-23 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10568647B2 (en) 2015-06-25 2020-02-25 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10662513B2 (en) * 2016-07-26 2020-05-26 Verkko Biomedical, LLC Dynamic, non-homogenous shape memory alloys
US10722310B2 (en) 2017-03-13 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Virtual surgery planning system and method
US11684478B2 (en) 2017-05-18 2023-06-27 Howmedica Osteonics Corp. High fatigue strength porous structure
US11298747B2 (en) 2017-05-18 2022-04-12 Howmedica Osteonics Corp. High fatigue strength porous structure
RU2717605C1 (en) * 2019-06-04 2020-03-24 Георгий Михайлович Берберов Method of making and installing individual implant for orthopaedic prosthetics and method of using individual implant to eliminate defects in oral cavity
RU195801U1 (en) * 2019-07-17 2020-02-05 Георгий Михайлович Берберов Individual framework for repairing defects in the brain and facial parts of the skeleton of the head
RU196140U1 (en) * 2019-07-17 2020-02-18 Георгий Михайлович Берберов Individual implant to replace dentition defects
RU222788U1 (en) * 2023-06-29 2024-01-18 Екатерина Александровна Зерницкая INDIVIDUAL FRAMEWORK MEMBRANE FOR JAW BONE TISSUE AUGMENTATION

Similar Documents

Publication Publication Date Title
RU2218242C2 (en) Method for making medical implants from biologically compatible materials
Vasconcellos et al. Evaluation of bone ingrowth into porous titanium implant: histomorphometric analysis in rabbits
Jorge et al. Titanium in dentistry: historical development, state of the art and future perspectives
EP0760687B1 (en) A biomaterial and bone implant for bone repair and replacement
Shaoki et al. Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting
US7666522B2 (en) Laser based metal deposition (LBMD) of implant structures
Braga et al. Surface modification of Ti dental implants by Nd: YVO4 laser irradiation
Singh et al. Titanium foams for biomedical applications: a review
RU99102751A (en) METHOD FOR PRODUCING MEDICAL IMPLANTS FROM BIOS-COMPATIBLE MATERIALS
Ponader et al. In vivo performance of selective electron beam‐melted Ti‐6Al‐4V structures
Thomas Hydroxyapatite coatings
Lin et al. Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters.
CN106041074B (en) A kind of preparation method of titanium alloy artificial bone implant
EP1773418A2 (en) Pulsed current sintering for surfaces of medical implants
CN101249279A (en) Method using laser quick forming producing HA/Ti gradient biological activity material
Witek et al. Characterization and in vivo evaluation of laser sintered dental endosseous implants in dogs
CN101053677B (en) Gradient biologically active ceramic coating and its preparation method and product application
Peng et al. Mechanical performance and in-vitro biological behaviors of boronized Ti6Al4V/HA composites synthesized by microwave sintering
CN101053675B (en) Gradient biologically active ceramic coating material, broad band laser preparing method and product application
US8545786B2 (en) Manufacture of porous net-shaped materials comprising alpha or beta tricalcium phosphate or mixtures thereof
CN100544777C (en) Coating material, method for making and the application of the gradient biologically active ceramic of trioxygen-containingization two lanthanums
RU2732716C1 (en) Method of producing porous material based on titanium nickelide
Kotila et al. Direct metal laser sintering–new possibilities in biomedical part manufacturing
Gureev et al. Formation of intermetallic phases under laser sintering of powdered SHS compositions
CN100544778C (en) The broad band laser preparation contains material, method and the product of ceria ceramic coating and uses

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080212

NF4A Reinstatement of patent

Effective date: 20100420

MM4A The patent is invalid due to non-payment of fees

Effective date: 20170212