RU2083532C1 - Process for manufacturing dinas products - Google Patents

Process for manufacturing dinas products Download PDF

Info

Publication number
RU2083532C1
RU2083532C1 RU95107128A RU95107128A RU2083532C1 RU 2083532 C1 RU2083532 C1 RU 2083532C1 RU 95107128 A RU95107128 A RU 95107128A RU 95107128 A RU95107128 A RU 95107128A RU 2083532 C1 RU2083532 C1 RU 2083532C1
Authority
RU
Russia
Prior art keywords
products
hours
dinas
firing
quartzite
Prior art date
Application number
RU95107128A
Other languages
Russian (ru)
Other versions
RU95107128A (en
Inventor
А.К. Пургин
Г.И. Пирумян
Е.В. Рожков
М.З. Нагинский
Л.А. Карпец
Е.В. Назарова
Original Assignee
Акционерное общество открытого типа "Восточный институт огнеупоров"
Акционерное общество "Первоуральский динасовый завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество открытого типа "Восточный институт огнеупоров", Акционерное общество "Первоуральский динасовый завод" filed Critical Акционерное общество открытого типа "Восточный институт огнеупоров"
Priority to RU95107128A priority Critical patent/RU2083532C1/en
Publication of RU95107128A publication Critical patent/RU95107128A/en
Application granted granted Critical
Publication of RU2083532C1 publication Critical patent/RU2083532C1/en

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Silicon Compounds (AREA)

Abstract

FIELD: laying of coke batteries and lining of metallurgical and glass- making furnaces. SUBSTANCE: blend comprises (wt%): 90.0- 96.0 quartzite; 0.5-7.0 industrial silicon; 2.0-2.8 mineralizer; 0.7-1.0 temporary binder. Pressed products are dried and roasted at 1400-1420 C. Roasting time at temperatures ranging from 1400 to 1420 C is 66-84 hours, roasting operation being carried out at 1410-1420 C lasts 12-14 hours. Characteristics; products comprise 95.7- 96.0% SiO2 and have density of 2.31 g/cubic cm, open porosity of 17.2-19.9%, compressive strength of 45.2-65.0 H/sq.mm. Refractiveness is 1690-1710 C, initial strain temperature under load of 0.2 H/sq.mm is 1650-1670 C, additional growth at 1450 C (maintained for 2 hours) is 0.0-0.5% at 1500 C (maintained for 2 hours) is 0.0-0.06%, residual quartz content is 1-2%. EFFECT: more efficient manufacturing process of Dinas products. 2 tbl

Description

Изобретение относится к огнеупорной промышленности, а именно к способам изготовления динасовых изделий, применяемых для кладки коксовых батарей и футеровки металлургических и стекловаренных печей. The invention relates to the refractory industry, and in particular to methods for the manufacture of dinas products used for masonry coke oven batteries and lining of metallurgical and glass furnaces.

Известен способ изготовления динасовых изделий, включающий приготовленные шихты путем смешения кварцита, минерализатора и временного связующего, прессование изделий, их сушку и обжиг при 1400oC с выдержкой при конечной температуре [1]
Известный способ обеспечивает получение динасовых изделий с показателями: плотность не более 2,35 г/см3; открытая пористость 19,0-23,0% предел прочности при сжатии 30-50 МПа; дополнительный рост при 1500oC 0,4-0,6% температура начала размягчения под нагрузкой 0,2 H/мм2 1620-1650oC.
A known method of manufacturing dinas products, including the prepared mixture by mixing quartzite, mineralizer and a temporary binder, pressing products, drying and firing at 1400 o C with exposure at a final temperature [1]
The known method provides for the production of dinas products with indicators: density not more than 2.35 g / cm 3 ; open porosity 19.0-23.0% ultimate compressive strength 30-50 MPa; additional growth at 1500 o C 0.4-0.6% the temperature of the onset of softening under a load of 0.2 N / mm 2 1620-1650 o C.

Наиболее близким к изобретению является способ изготовления динасовых изделий, включающий приготовление шихты путем смешения кварцита, минерализатора и временного связующего, прессование изделий, их сушку и обжиг с выдержкой при 1400-1420oC течение 40-48 ч. Шихта для прессования изделий содержит, мас. кварцит фракции 0,09-3,0 мм 80-83; кварцит фракции менее 0,09 мм 12,8-16,4; смесь известняка и доменного шлака (по CaO) в соотношении (1-2):1 2-3; пыль электрофильтров мартеновских печей (на Fe2O3) 0,6-0,8; временное связующее в виде лигносульфоната технического остальное [2]
Известный способ обеспечивает получение динасовых изделий с открытой пористостью 18,3-19,0% кажущейся плотностью 1,91-1,94 г/см3, пределом прочности при сжатии 47,9-53,2 H/мм2, температурой начала размягчения под нагрузкой 0,2 H/мм2 1650oC, дополнительным ростом при 1500oC 0,3-0,4% Совокупность указанных физико-керамических свойств позволит успешно эксплуатировать изделия в футеровках металлургических и стекловаренных печей.
Closest to the invention is a method of manufacturing dinas products, including the preparation of a mixture by mixing quartzite, a mineralizer and a temporary binder, pressing the products, drying and firing them at a temperature of 1400-1420 o C for 40-48 hours. The charge for pressing products contains, by weight . quartzite fractions of 0.09-3.0 mm 80-83; quartzite fractions less than 0.09 mm 12.8-16.4; a mixture of limestone and blast furnace slag (CaO) in the ratio (1-2): 1 2-3; dust of electric filters of open-hearth furnaces (on Fe 2 O 3 ) 0.6-0.8; temporary binder in the form of a technical lignosulfonate rest [2]
The known method provides dinas products with an open porosity of 18.3-19.0%, an apparent density of 1.91-1.94 g / cm 3 , a compressive strength of 47.9-53.2 N / mm 2 , a softening start temperature under a load of 0.2 N / mm 2 1650 o C, additional growth at 1500 o C 0.3-0.4% The combination of these physical and ceramic properties will allow you to successfully operate the products in the lining of metallurgical and glass melting furnaces.

Однако содержание SiO2 в изделиях известной шихты не превышает 94,5% а показатели дополнительного роста свидетельствуют о наличии в структуре примерно 6% непереродившегося в процессе обжига остаточного кварца, который обуславливает разрыхление огнеупора при эксплуатации в коксовой печи. Кроме того, присутствие остаточного кварца в структуре огнеупора является причиной поверхностных посечек и трещин, возникающих при охлаждении изделий после обжига.However, the SiO 2 content in the products of the known charge does not exceed 94.5% and the additional growth indicators indicate the presence in the structure of about 6% of residual quartz that did not degenerate during the firing process, which causes refractory loosening during operation in a coke oven. In addition, the presence of residual quartz in the structure of the refractory is the cause of surface cuts and cracks that occur during cooling of products after firing.

Задачей изобретения является повышение качества динасовых изделий. The objective of the invention is to improve the quality of dinas products.

Технический результат, который может быть достигнут при использовании изобретения, заключается в снижении плотности динасовых изделий, уменьшении их дополнительного роста при температуре 1500oC за счет снижения количества остаточного кварца, а также повышении доли SiO2 в изделиях.The technical result that can be achieved by using the invention is to reduce the density of dinas products, reduce their additional growth at a temperature of 1500 o C by reducing the amount of residual quartz, as well as increasing the proportion of SiO 2 in the products.

Для достижения указанного технического результата в способе изготовления динасовых изделий, включающем приготовление шихты путем смешения кварцита, минерализатора и временного связующего, прессование изделий, их сушку и обжиг при 1400-1420oC, в шихту дополнительно вводят технический кремний при следующем соотношении компонентов шихты, мас.To achieve the specified technical result in a method of manufacturing dinas products, including the preparation of a mixture by mixing quartzite, a mineralizer and a temporary binder, pressing the products, drying and firing them at 1400-1420 o C, technical silicon is additionally introduced into the mixture in the following ratio of the components of the mixture, wt .

Кварцит 90,0-96,0
Ттехнический кремний 0,5-7,0
Минерализатор 2,0-2,8
Временное связующее 0,7-1,0,
а обжиг изделий в интервале температур 1400-1420oC осуществляют 66-84 ч, при этом продолжительность обжига в интервале температур 1410-1420oC составляет 12-16 ч.
Quartzite 90.0-96.0
Technical silicon 0.5-7.0
Mineralizer 2.0-2.8
Temporary binder 0.7-1.0,
and firing products in the temperature range 1400-1420 o C carry 66-84 hours, while the firing duration in the temperature range 1410-1420 o C is 12-16 hours

Технический кремний полупроводниковый материал, проявляющий неметаллические свойства. Получают его восстановительной плавкой кварцита в электропечах и производят дробленным и порошкообразным по ГОСТ 2169-69. Technical silicon is a semiconductor material exhibiting non-metallic properties. Get it by reducing smelting of quartzite in electric furnaces and produce crushed and powder in accordance with GOST 2169-69.

Введение в шихту технического кремния, содержащего 97-98% Si, повышает долю кремнезема в огнеупоре. В процессе обжига, при соблюдении предлагаемого режима, наличие технического кремния позволяет создать оптимальные условия для модификационных превращений кварца в структуре огнеупора. Расплавляясь при 1412oC, кремний повышает вязкость жидкой фазы, образованной минерализатором, что снижает напряжения, связанные с перестройкой кремнекислородных комплексов. Одновременно происходит окисление кремния до SiO2, благодаря чему в структуре огнеупора создается восстановительная среда, способствующая наиболее полному перерождению кварца. Образующийся в результате окисления реакционноспособный кристобалит взаимодействует с оксидом кальция с образованием кальций силикатной жидкой фазы, которая заполняет микротрещины и пустоты, активно увеличивает их и уплотняет изделия, что приводит к повышению показателей качества динасовых огнеупоров.The introduction of technical silicon containing 97-98% Si into the charge increases the proportion of silica in the refractory. In the process of firing, subject to the proposed regime, the presence of technical silicon allows you to create optimal conditions for the modification of the transformation of quartz in the structure of the refractory. Melting at 1412 o C, silicon increases the viscosity of the liquid phase formed by the mineralizer, which reduces the stresses associated with the restructuring of silicon-oxygen complexes. Simultaneously, oxidation of silicon to SiO 2 occurs, due to which a reducing medium is created in the refractory structure, which contributes to the most complete degeneration of quartz. The reactive cristobalite resulting from oxidation interacts with calcium oxide to form calcium silicate liquid phase, which fills microcracks and voids, actively increases them and compacts products, which leads to an increase in the quality indicators of dinas refractories.

Содержание в шихте технического кремния менее 0,5 мас. недостаточно для активного влияния образующейся жидкой фазы на процессы, происходящие при обжиге изделий, а значит и их свойства. Увеличение количества технического кремния более 7,0 мас. приводит к значительному удорожанию огнеупоров. The content in the charge of technical silicon is less than 0.5 wt. not enough for the active influence of the resulting liquid phase on the processes occurring during the firing of products, and hence their properties. The increase in the number of technical silicon more than 7.0 wt. leads to a significant increase in the cost of refractories.

Выбор параметров обжига обусловлен следующим. Уменьшение продолжительности обжига в интервале температур 1400-1420oC менее 66 ч не обеспечивает требуемой полноты физико-химических превращений при обжиге, что приводит к увеличению брака изделий по поверхностным посечкам и трещинам. Продолжительность обжига в данном интервале более 84 ч и увеличение времени обжига в интервале 1410-1420oC более 16 ч нецелесообразны, так как за счет присутствия в шихте технического кремния полное перерождение кварцита уже произошло. Сокращение времени термообработки в интервале температур 1410-1420oC менее 12 ч не обеспечивает достаточный прогрев изделий, необходимый для завершения физико-химических процессов, связанных с взаимодействием технического кремния с другими компонентами шихты.The choice of firing parameters is due to the following. Reducing the duration of firing in the temperature range 1400-1420 o C less than 66 hours does not provide the required completeness of physico-chemical transformations during firing, which leads to an increase in marriage of products on surface sections and cracks. The firing duration in this range of more than 84 hours and an increase in firing time in the range of 1410-1420 o C more than 16 hours are impractical, because due to the presence of technical silicon in the charge, complete degeneration of quartzite has already occurred. Reducing the heat treatment time in the temperature range 1410-1420 o C less than 12 hours does not provide sufficient heating of the products necessary to complete the physico-chemical processes associated with the interaction of technical silicon with other components of the charge.

В качестве сырьевых материалов для изготовления динасовых огнеупоров использовали
кварцит кристаллический по ГОСТ 9854-81 фракции 3,2-0 мм, в том числе содержащий 30-40% фракции менее 0,09 мм;
кремний технический кристаллический по ГОСТ 2169-69, молотый до зерен менее 0,09 мм, марки Кр-2 и Кр-3;
лигносульфонат технический по ОСТ 13-183-83 в качестве временного связующего;
известковое молоко из комовой извести по ГОСТ 9179-77;
конвертерный шлам по ТУ 14-134-147-77.
As raw materials for the manufacture of dinas refractories used
crystalline quartzite according to GOST 9854-81 fractions of 3.2-0 mm, including containing 30-40% of the fraction of less than 0.09 mm;
technical crystalline silicon in accordance with GOST 2169-69, ground to grains less than 0.09 mm, grade Kr-2 and Kr-3;
technical lignosulfonate according to OST 13-183-83 as a temporary binder;
lime milk from lump lime according to GOST 9179-77;
converter sludge according to TU 14-134-147-77.

Шихту для изготовления динасовых огнеупоров готовили путем смешения сырьевых компонентов в центробежном смесителе. При этом первоначально в течение 3-4 мин смешивали кварцитовые фракции и технический кремний, после чего вводили предварительно приготовленную смесь минерализаторов (известкового молока и конвертерного шлама) и временного связующего и вновь производили смешение в течение 3-4 мин. Влажность полученной массы 4,5-5,0
Из массы на гидравлических и фрикционных прессах формовали изделия до получения кажущейся плотности 2,25-2,28 г/см3. Свежесформованные изделия сушили в туннельном сушиле при 140-180oC, а затем подвергали обжигу в туннельной печи. Продолжительность обжига в интервале температур 1400-1420oC составляла 66-84 ч, причем продолжительность обжига в интервале температур 1410-1420oC 12-16 ч.
A mixture for the manufacture of dinas refractories was prepared by mixing the raw materials in a centrifugal mixer. In this case, quartzite fractions and technical silicon were initially mixed for 3-4 minutes, after which a pre-prepared mixture of mineralizers (milk of lime and converter sludge) and a temporary binder were introduced and again mixed for 3-4 minutes. Humidity of the resulting mass 4.5-5.0
Products were formed from the mass on hydraulic and friction presses to obtain an apparent density of 2.25-2.28 g / cm 3 . Freshly formed products were dried in a tunnel dryer at 140-180 o C, and then subjected to firing in a tunnel oven. The firing duration in the temperature range 1400-1420 o C was 66-84 hours, and the firing duration in the temperature range 1410-1420 o C 12-16 hours

Составы шихт и режимы обжига, использованные в примерах выполнения, указаны в табл.1. The compositions of the blends and firing modes used in the examples are shown in table 1.

Показатели свойств динасовых огнеупоров, приведенные в табл.2, определены по известным стандартным методикам. Количество остаточного кварца в структуре огнеупора определяли рентгенофазовым анализом. The properties of dinas refractories, shown in table 2, are determined by known standard methods. The amount of residual quartz in the structure of the refractory was determined by x-ray phase analysis.

Из табл.2 видно, что патентуемый способ обеспечивает получение динасовых изделий, отвечающих современным требованиям, предъявляемым к коксовому динасу, так содержание SiO2 составляет 95,7-96,0% плотность изделий 2,31 г/см3, дополнительный рост при 1500oC практически отсутствует, содержание остаточного кварца не превышает 1-2% При этом изделия по показателям внешнего вида удовлетворяют требованиям нормативно-технической документации.From table 2 it can be seen that the patented method provides dinas products that meet modern requirements for coke dinas, so the content of SiO 2 is 95.7-96.0% product density 2.31 g / cm 3 , additional growth at 1500 o C is practically absent, the content of residual quartz does not exceed 1-2%. At the same time, products in terms of appearance meet the requirements of regulatory and technical documentation.

Как показывают данные примера 4, патентуемый способ обеспечивает полное перерождение кварца даже при отсутствии железосодержащего минерализатора. As the data of example 4 show, the patented method ensures complete degeneration of quartz even in the absence of an iron-containing mineralizer.

Использование предлагаемого способа позволяет получать высококачественные динасовые изделия для коксовых печей из трудноперерождаемых кристаллических кварцитов. Using the proposed method allows to obtain high-quality dinas products for coke ovens from refractory crystalline quartzites.

Claims (1)

Способ изготовления динасовых изделий, включающий приготовление шихты путем смешения кварцита, минерализатора и временного связующего, прессование изделий, их сушку и обжиг при 1400 1420oС, отличающийся тем, что в шихту дополнительно вводят технический кремний при следующем соотношении компонентов шихты, мас.A method of manufacturing dinas products, including the preparation of a mixture by mixing quartzite, a mineralizer and a temporary binder, pressing the products, drying and firing them at 1400 1420 o C, characterized in that technical silicon is additionally introduced into the mixture in the following ratio of the components of the mixture, wt. Кварцит 90 96
Технический кремний 0,5 7,0
Минерализатор 2,0 2,8
Временное связующее 0,7 1,0
а обжиг изделий в интервале температур 1400 1420oС осуществляют в течение 66 84 ч, при этом продолжительность обжига в интервале 1410 - 1420oС составляет 12 16 ч.
Quartzite 90 96
Technical silicon 0.5 7.0
Mineralizer 2.0 2.8
Temporary binder 0.7 1.0
and firing products in the temperature range 1400 1420 o C is carried out for 66 84 hours, while the firing time in the range 1410 - 1420 o C is 12 16 hours
RU95107128A 1995-05-06 1995-05-06 Process for manufacturing dinas products RU2083532C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95107128A RU2083532C1 (en) 1995-05-06 1995-05-06 Process for manufacturing dinas products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95107128A RU2083532C1 (en) 1995-05-06 1995-05-06 Process for manufacturing dinas products

Publications (2)

Publication Number Publication Date
RU95107128A RU95107128A (en) 1997-04-27
RU2083532C1 true RU2083532C1 (en) 1997-07-10

Family

ID=20167396

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95107128A RU2083532C1 (en) 1995-05-06 1995-05-06 Process for manufacturing dinas products

Country Status (1)

Country Link
RU (1) RU2083532C1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105036748A (en) * 2015-07-09 2015-11-11 浙江长兴银兴窑业有限公司 Silicon carbide brick and preparation method thereof
US10760002B2 (en) 2012-12-28 2020-09-01 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US10920148B2 (en) 2014-08-28 2021-02-16 Suncoke Technology And Development Llc Burn profiles for coke operations
US10927303B2 (en) 2013-03-15 2021-02-23 Suncoke Technology And Development Llc Methods for improved quench tower design
US10947455B2 (en) 2012-08-17 2021-03-16 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US10968393B2 (en) 2014-09-15 2021-04-06 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US10968395B2 (en) 2014-12-31 2021-04-06 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10975309B2 (en) 2012-12-28 2021-04-13 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US11008517B2 (en) 2012-12-28 2021-05-18 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US11008518B2 (en) 2018-12-28 2021-05-18 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11021655B2 (en) 2018-12-28 2021-06-01 Suncoke Technology And Development Llc Decarbonization of coke ovens and associated systems and methods
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11071935B2 (en) 2018-12-28 2021-07-27 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11117087B2 (en) 2012-12-28 2021-09-14 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US11214739B2 (en) 2015-12-28 2022-01-04 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
US11261381B2 (en) 2018-12-28 2022-03-01 Suncoke Technology And Development Llc Heat recovery oven foundation
US11359146B2 (en) 2013-12-31 2022-06-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11441077B2 (en) 2012-08-17 2022-09-13 Suncoke Technology And Development Llc Coke plant including exhaust gas sharing
US11486572B2 (en) 2018-12-31 2022-11-01 Suncoke Technology And Development Llc Systems and methods for Utilizing flue gas
US11508230B2 (en) 2016-06-03 2022-11-22 Suncoke Technology And Development Llc Methods and systems for automatically generating a remedial action in an industrial facility
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
US11767482B2 (en) 2020-05-03 2023-09-26 Suncoke Technology And Development Llc High-quality coke products
US11788012B2 (en) 2015-01-02 2023-10-17 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11845898B2 (en) 2017-05-23 2023-12-19 Suncoke Technology And Development Llc System and method for repairing a coke oven
US11851724B2 (en) 2021-11-04 2023-12-26 Suncoke Technology And Development Llc. Foundry coke products, and associated systems, devices, and methods
US11939526B2 (en) 2012-12-28 2024-03-26 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Стрелов К.К., Мамыкин П.С. Технология огнеупоров. - М.: Металлургия, 1978, с. 137 - 168. 2. Авторское свидетельство СССР N 1742267, кл. C 04 B 35/14, 1992. *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10947455B2 (en) 2012-08-17 2021-03-16 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US11692138B2 (en) 2012-08-17 2023-07-04 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US11441077B2 (en) 2012-08-17 2022-09-13 Suncoke Technology And Development Llc Coke plant including exhaust gas sharing
US11117087B2 (en) 2012-12-28 2021-09-14 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US10760002B2 (en) 2012-12-28 2020-09-01 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US11939526B2 (en) 2012-12-28 2024-03-26 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US11845037B2 (en) 2012-12-28 2023-12-19 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US10975309B2 (en) 2012-12-28 2021-04-13 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US11008517B2 (en) 2012-12-28 2021-05-18 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US11359145B2 (en) 2012-12-28 2022-06-14 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US10927303B2 (en) 2013-03-15 2021-02-23 Suncoke Technology And Development Llc Methods for improved quench tower design
US11746296B2 (en) 2013-03-15 2023-09-05 Suncoke Technology And Development Llc Methods and systems for improved quench tower design
US11359146B2 (en) 2013-12-31 2022-06-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US10920148B2 (en) 2014-08-28 2021-02-16 Suncoke Technology And Development Llc Burn profiles for coke operations
US11053444B2 (en) 2014-08-28 2021-07-06 Suncoke Technology And Development Llc Method and system for optimizing coke plant operation and output
US10968393B2 (en) 2014-09-15 2021-04-06 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US11795400B2 (en) 2014-09-15 2023-10-24 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US10968395B2 (en) 2014-12-31 2021-04-06 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10975310B2 (en) 2014-12-31 2021-04-13 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10975311B2 (en) 2014-12-31 2021-04-13 Suncoke Technology And Development Llc Multi-modal beds of coking material
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11788012B2 (en) 2015-01-02 2023-10-17 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
CN105036748A (en) * 2015-07-09 2015-11-11 浙江长兴银兴窑业有限公司 Silicon carbide brick and preparation method thereof
US11214739B2 (en) 2015-12-28 2022-01-04 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
US11508230B2 (en) 2016-06-03 2022-11-22 Suncoke Technology And Development Llc Methods and systems for automatically generating a remedial action in an industrial facility
US11845898B2 (en) 2017-05-23 2023-12-19 Suncoke Technology And Development Llc System and method for repairing a coke oven
US11008518B2 (en) 2018-12-28 2021-05-18 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11845897B2 (en) 2018-12-28 2023-12-19 Suncoke Technology And Development Llc Heat recovery oven foundation
US11505747B2 (en) 2018-12-28 2022-11-22 Suncoke Technology And Development Llc Coke plant tunnel repair and anchor distribution
US11597881B2 (en) 2018-12-28 2023-03-07 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11643602B2 (en) 2018-12-28 2023-05-09 Suncoke Technology And Development Llc Decarbonization of coke ovens, and associated systems and methods
US11680208B2 (en) 2018-12-28 2023-06-20 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11071935B2 (en) 2018-12-28 2021-07-27 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
US11365355B2 (en) 2018-12-28 2022-06-21 Suncoke Technology And Development Llc Systems and methods for treating a surface of a coke plant
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11261381B2 (en) 2018-12-28 2022-03-01 Suncoke Technology And Development Llc Heat recovery oven foundation
US11193069B2 (en) 2018-12-28 2021-12-07 Suncoke Technology And Development Llc Coke plant tunnel repair and anchor distribution
US11021655B2 (en) 2018-12-28 2021-06-01 Suncoke Technology And Development Llc Decarbonization of coke ovens and associated systems and methods
US11486572B2 (en) 2018-12-31 2022-11-01 Suncoke Technology And Development Llc Systems and methods for Utilizing flue gas
US11819802B2 (en) 2018-12-31 2023-11-21 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11767482B2 (en) 2020-05-03 2023-09-26 Suncoke Technology And Development Llc High-quality coke products
US11851724B2 (en) 2021-11-04 2023-12-26 Suncoke Technology And Development Llc. Foundry coke products, and associated systems, devices, and methods
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas

Also Published As

Publication number Publication date
RU95107128A (en) 1997-04-27

Similar Documents

Publication Publication Date Title
RU2083532C1 (en) Process for manufacturing dinas products
JPS6035292B2 (en) glass manufacturing method
US5830394A (en) Process for making building products, production line, process for firing, apparatus for firing, batch, building product
CN114031381A (en) Silicon brick added with silicon iron nitride and preparation method thereof
US1897183A (en) Method of and material employed in the manufacture of refractory
US3253067A (en) Process for the production of ladle bricks
US1616192A (en) Unburned refractory brick and method of making it
JPS6218498B2 (en)
RU2243953C2 (en) Composition and method for producing of dinas refractory
SU628136A1 (en) Charge for making high-alumina refractories
RU2805692C1 (en) Mineral wool production method
RU2196118C2 (en) Method of manufacturing chromo-alumino-zirconium refractory materials
RU2170717C1 (en) Method of manufacture of corundum crucibles from low-cement refractory concrete
RU43544U1 (en) DYNAS FIREPROOF PRODUCT
NO149175B (en) PROCEDURE FOR THE PREPARATION OF ANTIBACTERY ACTIVE RIFAMYCINE P DERIVATIVES
SU1416473A1 (en) Charge for producing fired refractory material
SU1414834A1 (en) Mixture for producing periclase-chromite refraktory materials
JPS5839798B2 (en) Method for producing coal-fired firebrick
US3689615A (en) Method of improving refractory bricks
Khalil Refractory aspects of Egyptian alum-waste material
US3463649A (en) Ladle brick
SU1747421A1 (en) Raw materials mixture for preparing silicate articles
SU1399291A1 (en) Method of producing refractory material
RU2161144C1 (en) Mixture for forsterite refractories manufacture and method of their manufacture
SU1530613A1 (en) Method of producing construction bricks