RU2017103161A - Применение региональной сети опорных приемников для устранения локальных источников ошибок - Google Patents

Применение региональной сети опорных приемников для устранения локальных источников ошибок Download PDF

Info

Publication number
RU2017103161A
RU2017103161A RU2017103161A RU2017103161A RU2017103161A RU 2017103161 A RU2017103161 A RU 2017103161A RU 2017103161 A RU2017103161 A RU 2017103161A RU 2017103161 A RU2017103161 A RU 2017103161A RU 2017103161 A RU2017103161 A RU 2017103161A
Authority
RU
Russia
Prior art keywords
reference receivers
ground
ephemeris
satellites
sighted
Prior art date
Application number
RU2017103161A
Other languages
English (en)
Inventor
Брюс Г. ДЖОНСОН
Джеймс Артур МАКДОНАЛЬД
Ким А. КЛАСС
Original Assignee
Ханивелл Интернешнл Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ханивелл Интернешнл Инк. filed Critical Ханивелл Интернешнл Инк.
Publication of RU2017103161A publication Critical patent/RU2017103161A/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/072Ionosphere corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/073Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections involving a network of fixed stations
    • G01S19/074Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections involving a network of fixed stations providing integrity data, e.g. WAAS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/08Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing integrity information, e.g. health of satellites or quality of ephemeris data

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Claims (69)

1. Система, устраняющая ошибки в поправках к результатам измерения глобальной системы позиционирования (GPS) и данных о неопределенности эфемерид, транслируемых в транспортное средство, являющееся потребителем поправок к результатам измерения GPS и данных о неопределенности эфемерид, причем указанная система содержит:
по меньшей мере два опорных приемника в первой наземной подсистеме в первом наземном местонахождении;
по меньшей мере один процессор, соединенный, с возможностью передачи данных, с указанными по меньшей мере двумя опорными приемниками, причем указанный по меньшей мере один процессор выполнен с возможностью следующего:
получения от множества опорных приемников в региональной сети опорных приемников, расположенных в других наземных местонахождениях, спутниковых данных измерений для первого множества спутников, визируемых множеством опорных приемников; и
получения от указанных по меньшей мере двух опорных приемников в первой наземной подсистеме спутниковых данных измерений и данных эфемерид от второго множества спутников, визируемых первой наземной подсистемой, причем первое наземное местонахождение отличается от остальных наземных местонахождений и причем второе множество спутников входит в первое множество спутников;
выполнения алгоритмов для следующего:
анализа спутниковых данных измерений, получаемых от указанных по меньшей мере двух опорных приемников в первой наземной подсистеме, и спутниковых данных измерений, получаемых от множества опорных приемников в региональной сети опорных приемников, для определения, исказились ли поправки к результатам измерения GPS, транслируемые в транспортное средство, из-за текущей активности возмущений ионосферы;
определения текущего качественного показателя ионосферы на основе анализа спутниковых данных измерений;
корректировки стандартного отклонения вертикального градиента электронной концентрации ионосферы «сигма-vig» (σvig) на основе определенного качественного показателя ионосферы;
анализа данных эфемерид, связанных со вторым множеством спутников, визируемых первой наземной подсистемой, и анализа спутниковых данных измерения для первого множества спутников, визируемых множеством опорных приемников, для определения, исказились ли поправки к результатам измерения GPS, транслируемые в транспортное средство, из-за ошибок эфемерид; и
установки неопределенности эфемерид для защиты целостности на основе анализа данных эфемерид.
2. Система по п. 1, в которой указанный по меньшей мере один процессор дополнительно выполнен с возможностью следующего:
определения, превышает ли неопределенность эфемерид предварительно выбранный порог для одного или нескольких спутников второго множества, визируемых первой наземной подсистемой; и
транслирования скорректированного стандартного отклонения вертикального градиента электронной концентрации ионосферы «сигма-vig» (σvig) и данных о неопределенности эфемерид от первой наземной подсистемы, если неопределенность эфемерид для спутника, визируемого первой наземной подсистемой, меньше предварительно выбранного порога.
3. Система по п. 1, дополнительно содержащая:
по меньшей мере один передатчик в первой наземной подсистеме, причем указанный по меньшей мере один процессор дополнительно выполнен с возможностью следующего:
определения, превышает ли неопределенность эфемерид предварительно выбранный порог для одного или нескольких спутников второго множества, визируемых первой наземной подсистемой, и
транслирования скорректированного стандартного отклонения вертикального градиента электронной концентрации ионосферы «сигма-vig» (σvig) и данных о неопределенности эфемерид от указанного по меньшей мере одного передатчика в первой наземной подсистеме, если неопределенность эфемерид для спутника, визируемого первой наземной подсистемой, меньше предварительно выбранного порога.
4. Система по п. 1, в которой указанный по меньшей мере один процессор дополнительно выполнен с возможностью следующего:
определения, превышает ли неопределенность эфемерид предварительно выбранный порог для одного или нескольких спутников второго множества, визируемых первой наземной подсистемой; и
прекращения трансляции данных о поправках для соответствующего спутника от первой наземной подсистемы, если неопределенность эфемерид для этого спутника, визируемого первой наземной подсистемой, превышает предварительно выбранный порог.
5. Система по п. 1, дополнительно содержащая:
множество опорных приемников, расположенных в других наземных местонахождениях.
6. Система по п. 5, в которой региональная сеть опорных приемников, расположенных в указанных других наземных местонахождениях, содержит региональную сеть опорных приемников в других наземных подсистемах, расположенных в соответствующих других наземных местонахождениях.
7. Система по п. 6, дополнительно содержащая:
по меньшей мере один процессор в указанных других наземных подсистемах, расположенных в соответствующих других наземных местонахождениях.
8. Система по п. 7, в которой указанный по меньшей мере один процессор в указанных других наземных подсистемах, расположенных в соответствующих других наземных местонахождениях, выполнен с возможностью следующего:
получения спутниковых данных измерений и данных эфемерид от по меньшей мере двух опорных приемников в указанной другой наземной подсистеме, в которой расположен соответствующий по меньшей мере один процессор, и
получения от указанных по меньшей мере двух опорных приемников в первой наземной подсистеме спутниковых данных измерений от второго множества спутников, визируемых первой наземной подсистемой.
9. Система по п. 6, в которой указанные по меньшей мере два опорных приемника в первой наземной подсистеме содержат по меньшей мере один передатчик.
10. Система по п. 1, дополнительно содержащая:
приемник в первой наземной подсистеме для ввода и компиляции спутниковых данных измерений от множества опорных приемников для передачи их в указанный по меньшей мере один процессор.
11. Система по п. 1, дополнительно содержащая:
модем в первой наземной подсистеме для ввода и компиляции спутниковых данных измерений от множества опорных приемников для передачи их в указанный по меньшей мере один процессор.
12. Способ устранения ошибок в поправках к результатам измерения глобальной системы позиционирования (GPS) и данных о неопределенности эфемерид, транслируемых в транспортное средство, являющееся потребителем поправок к результатам измерения GPS и данных о неопределенности эфемерид, причем указанный способ включает следующее:
получение спутниковых данных измерений для первого множества спутников, визируемых множеством опорных приемников, от множества опорных приемников в региональной сети опорных приемников, расположенных в других наземных местонахождениях, в первой наземной подсистеме, расположенной в первом наземном местонахождении, причем указанные другие местонахождения отличаются от первого наземного местонахождения;
получение спутниковых данных измерений и данных эфемерид от второго множества спутников, визируемых первой наземной подсистемой, от по меньшей мере двух опорных приемников в первой наземной подсистеме, причем второе множество спутников входит в первое множество спутников;
анализ спутниковых данных измерений, получаемых от указанных по меньшей мере двух опорных приемников в первой наземной подсистеме, и спутниковых данных измерений, получаемых от множества опорных приемников в региональной сети опорных приемников, для определения, исказились ли поправки к результатам измерения GPS, транслируемые в транспортное средство, из-за текущей активности возмущений ионосферы;
определение текущего качественного показателя ионосферы на основе анализа спутниковых данных измерений;
корректировку стандартного отклонения вертикального градиента электронной концентрации ионосферы «сигма-vig» (σvig) на основе определенного качественного показателя ионосферы;
анализ данных эфемерид, связанных со вторым множеством спутников, визируемых первой наземной подсистемой, и анализа спутниковых данных измерения для первого множества спутников, визируемых множеством опорных приемников, для определения, исказились ли поправки к результатам измерения GPS, транслируемые в транспортное средство, из-за ошибок эфемерид; и
установку неопределенности эфемерид для защиты целостности на основе анализа данных эфемерид.
13. Способ по п. 12, дополнительно включающий следующее:
определение, превышает ли неопределенность эфемерид предварительно выбранный порог для одного или нескольких спутников второго множества, визируемых первой наземной подсистемой; и
прекращение трансляции данных о поправках для соответствующего спутника от первой наземной подсистемы, если неопределенность эфемерид для этого спутника, визируемого первой наземной подсистемой, превышает предварительно выбранный порог.
14. Способ по п. 12, дополнительно включающий следующее:
определение, превышает ли неопределенность эфемерид предварительно выбранный порог для одного или нескольких спутников второго множества, визируемых первой наземной подсистемой; и
транслирование скорректированного стандартного отклонения вертикального градиента электронной концентрации ионосферы «сигма-vig» (σvig) и данных о неопределенности эфемерид от первой наземной подсистемы, если неопределенность эфемерид для спутника, визируемого первой наземной подсистемой, меньше предварительно выбранного порога.
15. Способ по п. 12, в котором получение спутниковых данных измерений для первого множества спутников, визируемых множеством опорных приемников, от множества опорных приемников в региональной сети опорных приемников, расположенных в указанных других наземных местонахождениях, включает
получение данных двухчастотных спутниковых измерений для спутников с двумя частотами сигнала, визируемых множеством опорных приемников в региональной сети опорных приемников.
16. Способ по п. 12, в котором получение спутниковых данных измерений для первого множества спутников, визируемых множеством опорных приемников, от множества опорных приемников в региональной сети опорных приемников, расположенных в указанных других наземных местонахождениях, включает
получение данных одночастотных спутниковых измерений для спутников с одной частотой сигнала, визируемых множеством опорных приемников в региональной сети опорных приемников.
17. Способ по п. 12, в котором региональная сеть опорных приемников в указанных других наземных местонахождениях содержит первую наземную подсистему и в котором множество опорных приемников в региональной сети опорных приемников расположено в других наземных подсистемах, причем указанный способ дополнительно включает
передачу спутниковых данных измерений для указанных по меньшей мере двух спутников, визируемых первой наземной подсистемой в первом наземном местонахождении, в опорные приемники в региональной сети опорных приемников, расположенные в других наземных местонахождениях, в других наземных подсистемах.
18. Способ по п. 12, дополнительно включающий:
трансляцию стандартного отклонения вертикального градиента электронной концентрации ионосферы «сигма-vig» (σvig) из первой наземной подсистемы.
19. Наземная подсистема, устраняющая ошибки в поправках к результатам измерения глобальной системы позиционирования (GPS) и данных о неопределенности эфемерид, транслируемых в транспортное средство, являющееся потребителем поправок к результатам измерения GPS и данных о неопределенности эфемерид, причем указанная система содержит:
по меньшей мере два опорных приемника в первой наземной подсистеме в первом наземном местонахождении;
по меньшей мере один процессор, соединенный, с возможностью передачи данных, с указанными по меньшей мере двумя опорными приемниками, причем указанный по меньшей мере один процессор выполнен с возможностью следующего:
получения от множества опорных приемников в региональной сети опорных приемников, расположенных в других наземных местонахождениях, спутниковых данных измерений для первого множества спутников, визируемых множеством опорных приемников;
получения от указанных по меньшей мере двух опорных приемников в первой наземной подсистеме спутниковых данных измерений и данных эфемерид от второго множества спутников, визируемых первой наземной подсистемой, причем первое наземное местонахождение отличается от остальных наземных местонахождений и причем второе множество спутников входит в первое множество спутников;
выполнения алгоритмов для следующего:
анализа спутниковых данных измерений, получаемых от указанных по меньшей мере двух опорных приемников в первой наземной подсистеме, и спутниковых данных измерений, получаемых от множества опорных приемников в региональной сети опорных приемников, для определения, исказились ли поправки к результатам измерения GPS, транслируемые в транспортное средство, из-за текущей активности возмущений ионосферы;
определения текущего качественного показателя ионосферы на основе анализа спутниковых данных измерений;
корректировки стандартного отклонения вертикального градиента электронной концентрации ионосферы «сигма-vig» (σvig) на основе определенного качественного показателя ионосферы;
анализа данных эфемерид, связанных со вторым множеством спутников, визируемых первой наземной подсистемой, и анализа спутниковых данных измерения для первого множества спутников, визируемых множеством опорных приемников, для определения, исказились ли поправки к результатам измерения GPS, транслируемые в транспортное средство, из-за ошибок эфемерид; и
установки неопределенности эфемерид для защиты целостности на основе анализа данных эфемерид.
20. Наземная подсистема по п. 19, дополнительно содержащая:
приемник для ввода и компиляции спутниковых данных измерений от множества опорных приемников в региональной сети опорных приемников, расположенных в других наземных местонахождениях.
RU2017103161A 2016-02-09 2017-01-31 Применение региональной сети опорных приемников для устранения локальных источников ошибок RU2017103161A (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/019,840 2016-02-09
US15/019,840 US9989644B2 (en) 2016-02-09 2016-02-09 Use of wide area reference receiver network data to mitigate local area error sources

Publications (1)

Publication Number Publication Date
RU2017103161A true RU2017103161A (ru) 2018-07-31

Family

ID=57838257

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017103161A RU2017103161A (ru) 2016-02-09 2017-01-31 Применение региональной сети опорных приемников для устранения локальных источников ошибок

Country Status (4)

Country Link
US (1) US9989644B2 (ru)
EP (1) EP3206048B1 (ru)
JP (1) JP6833536B2 (ru)
RU (1) RU2017103161A (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10345448B2 (en) 2016-01-21 2019-07-09 Honeywell International Inc. Using space based augmentation system (SBAS) ephemeris sigma information to reduce ground based augmentation systems (GBAS) ephemeris decorrelation parameter
US10514463B2 (en) * 2016-01-26 2019-12-24 Honeywell International Inc. Ground-based system and method to monitor for excessive delay gradients using long reference receiver separation distances
KR102043712B1 (ko) * 2017-12-18 2019-11-12 한국과학기술원 Gnss 전리층 측정치 검증 방법 및 시스템
US20210116575A1 (en) * 2019-10-16 2021-04-22 Navmatic, Inc. Updating atmospheric delay models within a geographic region
CN114002724B (zh) * 2021-12-30 2022-03-11 自然资源部第三大地测量队 基于cors网的控制点在线实时快速分析方法和装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323322A (en) 1992-03-05 1994-06-21 Trimble Navigation Limited Networked differential GPS system
JPH0743446A (ja) 1993-08-02 1995-02-14 Aisin Seiki Co Ltd Gps衛星デ−タの検証装置
WO1996022546A1 (en) 1995-01-17 1996-07-25 The Board Of Trustees Of The Leland Stanford Junior University Wide area differential gps reference system and method
US5828336A (en) 1996-03-29 1998-10-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Robust real-time wide-area differential GPS navigation
JP3545640B2 (ja) * 1999-04-30 2004-07-21 株式会社東芝 ローカルエリア統合測位システム
US6356232B1 (en) 1999-12-17 2002-03-12 University Corporation For Atmospheric Research High resolution ionospheric technique for regional area high-accuracy global positioning system applications
US6407700B1 (en) 2000-12-05 2002-06-18 Agilent Technologies, Inc. Method and apparatus for autonomously measuring ionospheric delay and single-frequency, GPS time receiver incorporating same
US6799116B2 (en) 2000-12-15 2004-09-28 Trimble Navigation Limited GPS correction methods, apparatus and signals
US6639549B2 (en) 2001-12-20 2003-10-28 Honeywell International Inc. Fault detection and exclusion for global position systems
US6647340B1 (en) 2002-03-13 2003-11-11 Garmin Ltd. Space based augmentation systems and methods using ionospheric bounding data to determine geographical correction source
US6826476B2 (en) 2002-11-01 2004-11-30 Honeywell International Inc. Apparatus for improved integrity of wide area differential satellite navigation systems
FR2849209B1 (fr) 2002-12-19 2007-04-06 Agence Spatiale Europeenne Procede et systeme de navigation en temps reel a l'aide de signaux radioelectriques a trois porteuses emis par des satellites et de corrections ionospheriques
US6781542B2 (en) 2003-01-13 2004-08-24 The Boeing Company Method and system for estimating ionospheric delay using a single frequency or dual frequency GPS signal
US7117417B2 (en) 2003-07-30 2006-10-03 Navcom Technology, Inc. Method for generating clock corrections for a wide-area or global differential GPS system
US8131463B2 (en) 2003-12-02 2012-03-06 Gmv Aerospace And Defence, S.A. GNSS navigation solution integrity in non-controlled environments
US20050212696A1 (en) 2004-03-25 2005-09-29 Bartone Chris G Reat-time WaveSmooth™ error mitigation for Global Navigation Satellite Systems
US7289061B2 (en) 2004-07-23 2007-10-30 California Institute Of Technology Generating high precision ionospheric ground-truth measurements
ATE527553T1 (de) 2006-02-28 2011-10-15 Nokia Corp Verfahren und vorrichtung für navigationssysteme
JP5012347B2 (ja) * 2007-09-12 2012-08-29 日本電気株式会社 軌道情報誤り検出装置、航法システム及びそれに用いる軌道情報誤り検知方法
CN102016619B (zh) 2008-03-20 2014-07-02 电视广播有限公司 改进的星基增强系统接收器
FR2929015B1 (fr) 2008-03-21 2010-04-23 Thales Sa Reseau et procede de calcul de corrections ionospheriques
JP5369475B2 (ja) 2008-04-07 2013-12-18 日本電気株式会社 航法データ更新通知システム及び方法
ES2348109T3 (es) 2008-04-21 2010-11-30 Deutsches Zentrum Fur Luft- Und Raumfahrt E.V. Procedimiento de operacion de un receptor de navegacion por satelite.
EP2113786B1 (en) 2008-04-30 2010-08-11 GMV Aerospace and Defence S.A. Method for autonomous determination of protection levels for GNSS positioning based on navigation residuals and an isotropic confidence ratio
GB0901685D0 (en) 2009-01-31 2009-03-11 Qinetiq Ltd Navigation system integrity
US8085196B2 (en) 2009-03-11 2011-12-27 Hemisphere Gps Llc Removing biases in dual frequency GNSS receivers using SBAS
US8344946B2 (en) * 2009-08-25 2013-01-01 Raytheon Company Single frequency user ionosphere system and technique
DE112010003681T5 (de) 2009-09-19 2013-01-10 Trimble Navigation Limited GNSS-Signalverabeitung zum Schätzen von MW-Biasen
US20120208557A1 (en) 2009-10-19 2012-08-16 Carter Robert A Location Reliability Determination
DE112011100526T5 (de) 2010-02-14 2012-12-06 Trimble Navigation Limited GNSS-Signalverarbeitung mit regionaler Augmentationspositionierung
CN101839986B (zh) 2010-05-11 2012-10-03 北京航空航天大学 基于laas和waas的卫星导航监测方法和系统
WO2014011792A1 (en) 2012-07-12 2014-01-16 California Institute Of Technology Ionospheric slant total electron content analysis using global positioning system based estimation
US8976064B2 (en) 2012-09-06 2015-03-10 Honeywell International Inc. Systems and methods for solution separation for ground-augmented multi-constellation terminal area navigation and precision approach guidance
US9557419B2 (en) 2012-12-18 2017-01-31 Trimble Inc. Methods for generating accuracy information on an ionosphere model for satellite navigation applications
US9476985B2 (en) 2013-03-20 2016-10-25 Honeywell International Inc. System and method for real time subset geometry screening satellite constellations
US20150145722A1 (en) 2013-11-27 2015-05-28 Honeywell International Inc. Using sbas ionospheric delay measurements to mitigate ionospheric error
EP3035080B1 (en) * 2014-12-16 2022-08-31 Trimble Inc. Navigation satellite system positioning involving the generation of correction information
US10495758B2 (en) * 2015-03-27 2019-12-03 Honeywell International Inc. Systems and methods using multi frequency satellite measurements to mitigate spatial decorrelation errors caused by ionosphere delays
US10345448B2 (en) 2016-01-21 2019-07-09 Honeywell International Inc. Using space based augmentation system (SBAS) ephemeris sigma information to reduce ground based augmentation systems (GBAS) ephemeris decorrelation parameter

Also Published As

Publication number Publication date
JP6833536B2 (ja) 2021-02-24
US20170227648A1 (en) 2017-08-10
JP2017142247A (ja) 2017-08-17
EP3206048B1 (en) 2019-10-30
US9989644B2 (en) 2018-06-05
EP3206048A1 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
RU2017103161A (ru) Применение региональной сети опорных приемников для устранения локальных источников ошибок
Odolinski et al. An assessment of smartphone and low-cost multi-GNSS single-frequency RTK positioning for low, medium and high ionospheric disturbance periods
JP6725280B2 (ja) 電離層遅延によって生じる空間非相関誤差を軽減するために多周波衛星測定値を使用するシステム及び方法
JP6649751B2 (ja) 静止衛星型補強システム(sbas)格子点電離層垂直遅延量誤差(give)情報を使用して地上型補強システム(gbas)のために電離層誤差を緩和する方法
EP2529248B1 (en) Multi-constellation global navigation satellite system augmentation and assistance
JP4745144B2 (ja) 電離層モデル補正方法
US9921314B2 (en) Using code minus carrier measurements to mitigate spatial decorrelation errors caused by ionosphere delays
US11409002B2 (en) Method for operating a plurality of GNSS receivers for detecting satellite signal deformation
CN102016620B (zh) 用于计算电离层校正的网络和方法
JP2017173327A (ja) 衛星測位システムを用いた測位方法および測位装置
US20130234886A1 (en) Adaptive Method for Estimating the Electron Content of the Ionosphere
RU2016107173A (ru) Навигация и контроль целостности
US10371820B2 (en) Positioning device
US20170184723A1 (en) System and method for determining protection level
US20160077211A1 (en) Method and system for dynamic-to-dynamic precise relative positioning using global navigation satellite systems
EP3475730B1 (en) Method, apparatus and computer-readable medium for reducing tropospheric effects in gnss positioning
JP6203608B2 (ja) Glonass受信機
KR101486329B1 (ko) 지상기반 위성항법 보강 시스템의 평가 장치 및 그 방법
JP2018204953A (ja) 測位用受信機、方法、記録媒体及びコンピュータプログラム
JP2017129555A (ja) 衛星航法システムにおける測位誤差の補正方法及びその装置
Blanch et al. Near term improvements to WAAS availability
US9488732B1 (en) GPS optimization for limited data
CN102123344A (zh) 利用数字广播信号检测内部位置的设备和方法
KR101367822B1 (ko) 디지털 방송신호를 이용한 실내측위 장치 및 방법
US10514463B2 (en) Ground-based system and method to monitor for excessive delay gradients using long reference receiver separation distances

Legal Events

Date Code Title Description
FA93 Acknowledgement of application withdrawn (no request for examination)

Effective date: 20200203